xref: /optee_os/core/tee/fs_htree.c (revision 89da7ffe58b51e694eef722a0db34b19531ef770)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2017, Linaro Limited
4  */
5 
6 #include <assert.h>
7 #include <config.h>
8 #include <crypto/crypto.h>
9 #include <initcall.h>
10 #include <kernel/tee_common_otp.h>
11 #include <stdlib.h>
12 #include <string_ext.h>
13 #include <string.h>
14 #include <tee/fs_htree.h>
15 #include <tee/tee_fs_key_manager.h>
16 #include <tee/tee_fs_rpc.h>
17 #include <utee_defines.h>
18 #include <util.h>
19 
20 #define TEE_FS_HTREE_CHIP_ID_SIZE	32
21 #define TEE_FS_HTREE_HASH_ALG		TEE_ALG_SHA256
22 #define TEE_FS_HTREE_TSK_SIZE		TEE_FS_HTREE_HASH_SIZE
23 #define TEE_FS_HTREE_ENC_ALG		TEE_ALG_AES_ECB_NOPAD
24 #define TEE_FS_HTREE_ENC_SIZE		TEE_AES_BLOCK_SIZE
25 #define TEE_FS_HTREE_SSK_SIZE		TEE_FS_HTREE_HASH_SIZE
26 
27 #define TEE_FS_HTREE_AUTH_ENC_ALG	TEE_ALG_AES_GCM
28 #define TEE_FS_HTREE_HMAC_ALG		TEE_ALG_HMAC_SHA256
29 
30 #define BLOCK_NUM_TO_NODE_ID(num)	((num) + 1)
31 
32 #define NODE_ID_TO_BLOCK_NUM(id)	((id) - 1)
33 
34 /*
35  * The hash tree is implemented as a binary tree with the purpose to ensure
36  * integrity of the data in the nodes. The data in the nodes their turn
37  * provides both integrity and confidentiality of the data blocks.
38  *
39  * The hash tree is saved in a file as:
40  * +----------------------------+
41  * | htree_image.0		|
42  * | htree_image.1		|
43  * +----------------------------+
44  * | htree_node_image.1.0	|
45  * | htree_node_image.1.1	|
46  * +----------------------------+
47  * | htree_node_image.2.0	|
48  * | htree_node_image.2.1	|
49  * +----------------------------+
50  * | htree_node_image.3.0	|
51  * | htree_node_image.3.1	|
52  * +----------------------------+
53  * | htree_node_image.4.0	|
54  * | htree_node_image.4.1	|
55  * +----------------------------+
56  * ...
57  *
58  * htree_image is the header of the file, there's two instances of it. One
59  * which is committed and the other is used when updating the file. Which
60  * is committed is indicated by the "counter" field, the one with the
61  * largest value is selected.
62  *
63  * htree_node_image is a node in the hash tree, each node has two instances
64  * which is committed is decided by the parent node .flag bit
65  * HTREE_NODE_COMMITTED_CHILD. Which version is the committed version of
66  * node 1 is determined by the by the lowest bit of the counter field in
67  * the header.
68  *
69  * Note that nodes start counting at 1 while blocks at 0, this means that
70  * block 0 is represented by node 1.
71  *
72  * Where different elements are stored in the file is managed by the file
73  * system.
74  */
75 
76 #define HTREE_NODE_COMMITTED_BLOCK	BIT32(0)
77 /* n is 0 or 1 */
78 #define HTREE_NODE_COMMITTED_CHILD(n)	BIT32(1 + (n))
79 
80 struct htree_node {
81 	size_t id;
82 	bool dirty;
83 	bool block_updated;
84 	struct tee_fs_htree_node_image node;
85 	struct htree_node *parent;
86 	struct htree_node *child[2];
87 };
88 
89 struct tee_fs_htree {
90 	struct htree_node root;
91 	struct tee_fs_htree_image head;
92 	uint8_t fek[TEE_FS_HTREE_FEK_SIZE];
93 	struct tee_fs_htree_imeta imeta;
94 	bool dirty;
95 	const TEE_UUID *uuid;
96 	const struct tee_fs_htree_storage *stor;
97 	void *stor_aux;
98 };
99 
100 struct traverse_arg;
101 typedef TEE_Result (*traverse_cb_t)(struct traverse_arg *targ,
102 				    struct htree_node *node);
103 struct traverse_arg {
104 	struct tee_fs_htree *ht;
105 	traverse_cb_t cb;
106 	void *arg;
107 };
108 
109 static TEE_Result rpc_read(struct tee_fs_htree *ht, enum tee_fs_htree_type type,
110 			   size_t idx, size_t vers, void *data, size_t dlen)
111 {
112 	TEE_Result res;
113 	struct tee_fs_rpc_operation op;
114 	size_t bytes;
115 	void *p;
116 
117 	res = ht->stor->rpc_read_init(ht->stor_aux, &op, type, idx, vers, &p);
118 	if (res != TEE_SUCCESS)
119 		return res;
120 
121 	res = ht->stor->rpc_read_final(&op, &bytes);
122 	if (res != TEE_SUCCESS)
123 		return res;
124 
125 	if (bytes != dlen)
126 		return TEE_ERROR_CORRUPT_OBJECT;
127 
128 	memcpy(data, p, dlen);
129 	return TEE_SUCCESS;
130 }
131 
132 static TEE_Result rpc_read_head(struct tee_fs_htree *ht, size_t vers,
133 				struct tee_fs_htree_image *head)
134 {
135 	return rpc_read(ht, TEE_FS_HTREE_TYPE_HEAD, 0, vers,
136 			head, sizeof(*head));
137 }
138 
139 static TEE_Result rpc_read_node(struct tee_fs_htree *ht, size_t node_id,
140 				size_t vers,
141 				struct tee_fs_htree_node_image *node)
142 {
143 	return rpc_read(ht, TEE_FS_HTREE_TYPE_NODE, node_id - 1, vers,
144 			node, sizeof(*node));
145 }
146 
147 static TEE_Result rpc_write(struct tee_fs_htree *ht,
148 			    enum tee_fs_htree_type type, size_t idx,
149 			    size_t vers, const void *data, size_t dlen)
150 {
151 	TEE_Result res;
152 	struct tee_fs_rpc_operation op;
153 	void *p;
154 
155 	res = ht->stor->rpc_write_init(ht->stor_aux, &op, type, idx, vers, &p);
156 	if (res != TEE_SUCCESS)
157 		return res;
158 
159 	memcpy(p, data, dlen);
160 	return ht->stor->rpc_write_final(&op);
161 }
162 
163 static TEE_Result rpc_write_head(struct tee_fs_htree *ht, size_t vers,
164 				 const struct tee_fs_htree_image *head)
165 {
166 	return rpc_write(ht, TEE_FS_HTREE_TYPE_HEAD, 0, vers,
167 			 head, sizeof(*head));
168 }
169 
170 static TEE_Result rpc_write_node(struct tee_fs_htree *ht, size_t node_id,
171 				 size_t vers,
172 				 const struct tee_fs_htree_node_image *node)
173 {
174 	return rpc_write(ht, TEE_FS_HTREE_TYPE_NODE, node_id - 1, vers,
175 			 node, sizeof(*node));
176 }
177 
178 static TEE_Result traverse_post_order(struct traverse_arg *targ,
179 				      struct htree_node *node)
180 {
181 	TEE_Result res;
182 
183 	/*
184 	 * This function is recursing but not very deep, only with Log(N)
185 	 * maximum depth.
186 	 */
187 
188 	if (!node)
189 		return TEE_SUCCESS;
190 
191 	res = traverse_post_order(targ, node->child[0]);
192 	if (res != TEE_SUCCESS)
193 		return res;
194 
195 	res = traverse_post_order(targ, node->child[1]);
196 	if (res != TEE_SUCCESS)
197 		return res;
198 
199 	return targ->cb(targ, node);
200 }
201 
202 static TEE_Result htree_traverse_post_order(struct tee_fs_htree *ht,
203 					    traverse_cb_t cb, void *arg)
204 {
205 	struct traverse_arg targ = { ht, cb, arg };
206 
207 	return traverse_post_order(&targ, &ht->root);
208 }
209 
210 static size_t node_id_to_level(size_t node_id)
211 {
212 	assert(node_id && node_id < UINT_MAX);
213 	/* Calculate level of the node, root node (1) has level 1 */
214 	return sizeof(unsigned int) * 8 - __builtin_clz(node_id);
215 }
216 
217 static struct htree_node *find_closest_node(struct tee_fs_htree *ht,
218 					    size_t node_id)
219 {
220 	struct htree_node *node = &ht->root;
221 	size_t level = node_id_to_level(node_id);
222 	size_t n;
223 
224 	/* n = 1 because root node is level 1 */
225 	for (n = 1; n < level; n++) {
226 		struct htree_node *child;
227 		size_t bit_idx;
228 
229 		/*
230 		 * The difference between levels of the current node and
231 		 * the node we're looking for tells which bit decides
232 		 * direction in the tree.
233 		 *
234 		 * As the first bit has index 0 we'll subtract 1
235 		 */
236 		bit_idx = level - n - 1;
237 		child = node->child[((node_id >> bit_idx) & 1)];
238 		if (!child)
239 			return node;
240 		node = child;
241 	}
242 
243 	return node;
244 }
245 
246 static struct htree_node *find_node(struct tee_fs_htree *ht, size_t node_id)
247 {
248 	struct htree_node *node = find_closest_node(ht, node_id);
249 
250 	if (node && node->id == node_id)
251 		return node;
252 	return NULL;
253 }
254 
255 static TEE_Result get_node(struct tee_fs_htree *ht, bool create,
256 			   size_t node_id, struct htree_node **node_ret)
257 {
258 	struct htree_node *node;
259 	struct htree_node *nc;
260 	size_t n;
261 
262 	node = find_closest_node(ht, node_id);
263 	if (!node)
264 		return TEE_ERROR_GENERIC;
265 	if (node->id == node_id)
266 		goto ret_node;
267 
268 	/*
269 	 * Trying to read beyond end of file should be caught earlier than
270 	 * here.
271 	 */
272 	if (!create)
273 		return TEE_ERROR_GENERIC;
274 
275 	/*
276 	 * Add missing nodes, some nodes may already be there. When we've
277 	 * processed the range all nodes up to node_id will be in the tree.
278 	 */
279 	for (n = node->id + 1; n <= node_id; n++) {
280 		node = find_closest_node(ht, n);
281 		if (node->id == n)
282 			continue;
283 		/* Node id n should be a child of node */
284 		assert((n >> 1) == node->id);
285 		assert(!node->child[n & 1]);
286 
287 		nc = calloc(1, sizeof(*nc));
288 		if (!nc)
289 			return TEE_ERROR_OUT_OF_MEMORY;
290 		nc->id = n;
291 		nc->parent = node;
292 		node->child[n & 1] = nc;
293 		node = nc;
294 	}
295 
296 	if (node->id > ht->imeta.max_node_id)
297 		ht->imeta.max_node_id = node->id;
298 
299 ret_node:
300 	*node_ret = node;
301 	return TEE_SUCCESS;
302 }
303 
304 static int get_idx_from_counter(uint32_t counter0, uint32_t counter1)
305 {
306 	if (!(counter0 & 1)) {
307 		if (!(counter1 & 1))
308 			return 0;
309 		if (counter0 > counter1)
310 			return 0;
311 		else
312 			return 1;
313 	}
314 
315 	if (counter1 & 1)
316 		return 1;
317 	else
318 		return -1;
319 }
320 
321 static TEE_Result init_head_from_data(struct tee_fs_htree *ht,
322 				      const uint8_t *hash, uint32_t min_counter)
323 {
324 	TEE_Result res;
325 	int idx;
326 
327 	if (hash) {
328 		for (idx = 0;; idx++) {
329 			res = rpc_read_node(ht, 1, idx, &ht->root.node);
330 			if (res != TEE_SUCCESS)
331 				return res;
332 
333 			if (!memcmp(ht->root.node.hash, hash,
334 				    sizeof(ht->root.node.hash))) {
335 				res = rpc_read_head(ht, idx, &ht->head);
336 				if (res != TEE_SUCCESS)
337 					return res;
338 				break;
339 			}
340 
341 			if (idx)
342 				return TEE_ERROR_CORRUPT_OBJECT;
343 		}
344 	} else {
345 		struct tee_fs_htree_image head[2];
346 
347 		for (idx = 0; idx < 2; idx++) {
348 			res = rpc_read_head(ht, idx, head + idx);
349 			if (res != TEE_SUCCESS)
350 				return res;
351 		}
352 
353 		idx = get_idx_from_counter(head[0].counter, head[1].counter);
354 		if (idx < 0)
355 			return TEE_ERROR_SECURITY;
356 
357 		res = rpc_read_node(ht, 1, idx, &ht->root.node);
358 		if (res != TEE_SUCCESS)
359 			return res;
360 
361 		ht->head = head[idx];
362 	}
363 
364 	if (ht->head.counter < min_counter)
365 		return TEE_ERROR_SECURITY;
366 
367 	ht->root.id = 1;
368 
369 	return TEE_SUCCESS;
370 }
371 
372 static TEE_Result init_tree_from_data(struct tee_fs_htree *ht)
373 {
374 	TEE_Result res;
375 	struct tee_fs_htree_node_image node_image;
376 	struct htree_node *node;
377 	struct htree_node *nc;
378 	size_t committed_version;
379 	size_t node_id = 2;
380 
381 	while (node_id <= ht->imeta.max_node_id) {
382 		node = find_node(ht, node_id >> 1);
383 		if (!node)
384 			return TEE_ERROR_GENERIC;
385 		committed_version = !!(node->node.flags &
386 				    HTREE_NODE_COMMITTED_CHILD(node_id & 1));
387 
388 		res = rpc_read_node(ht, node_id, committed_version,
389 				    &node_image);
390 		if (res != TEE_SUCCESS)
391 			return res;
392 
393 		res = get_node(ht, true, node_id, &nc);
394 		if (res != TEE_SUCCESS)
395 			return res;
396 		nc->node = node_image;
397 		node_id++;
398 	}
399 
400 	return TEE_SUCCESS;
401 }
402 
403 static TEE_Result calc_node_hash(struct htree_node *node,
404 				 struct tee_fs_htree_meta *meta, void *ctx,
405 				 uint8_t *digest)
406 {
407 	TEE_Result res;
408 	uint8_t *ndata = (uint8_t *)&node->node + sizeof(node->node.hash);
409 	size_t nsize = sizeof(node->node) - sizeof(node->node.hash);
410 
411 	res = crypto_hash_init(ctx);
412 	if (res != TEE_SUCCESS)
413 		return res;
414 
415 	res = crypto_hash_update(ctx, ndata, nsize);
416 	if (res != TEE_SUCCESS)
417 		return res;
418 
419 	if (meta) {
420 		res = crypto_hash_update(ctx, (void *)meta, sizeof(*meta));
421 		if (res != TEE_SUCCESS)
422 			return res;
423 	}
424 
425 	if (node->child[0]) {
426 		res = crypto_hash_update(ctx, node->child[0]->node.hash,
427 					 sizeof(node->child[0]->node.hash));
428 		if (res != TEE_SUCCESS)
429 			return res;
430 	}
431 
432 	if (node->child[1]) {
433 		res = crypto_hash_update(ctx, node->child[1]->node.hash,
434 					 sizeof(node->child[1]->node.hash));
435 		if (res != TEE_SUCCESS)
436 			return res;
437 	}
438 
439 	return crypto_hash_final(ctx, digest, TEE_FS_HTREE_HASH_SIZE);
440 }
441 
442 static TEE_Result authenc_init(void **ctx_ret, TEE_OperationMode mode,
443 			       struct tee_fs_htree *ht,
444 			       struct tee_fs_htree_node_image *ni,
445 			       size_t payload_len)
446 {
447 	TEE_Result res = TEE_SUCCESS;
448 	const uint32_t alg = TEE_FS_HTREE_AUTH_ENC_ALG;
449 	void *ctx;
450 	size_t aad_len = TEE_FS_HTREE_FEK_SIZE + TEE_FS_HTREE_IV_SIZE;
451 	uint8_t *iv;
452 
453 	if (ni) {
454 		iv = ni->iv;
455 	} else {
456 		iv = ht->head.iv;
457 		aad_len += TEE_FS_HTREE_HASH_SIZE + sizeof(ht->head.counter);
458 	}
459 
460 	if (mode == TEE_MODE_ENCRYPT) {
461 		res = crypto_rng_read(iv, TEE_FS_HTREE_IV_SIZE);
462 		if (res != TEE_SUCCESS)
463 			return res;
464 	}
465 
466 	res = crypto_authenc_alloc_ctx(&ctx, alg);
467 	if (res != TEE_SUCCESS)
468 		return res;
469 
470 	res = crypto_authenc_init(ctx, mode, ht->fek, TEE_FS_HTREE_FEK_SIZE, iv,
471 				  TEE_FS_HTREE_IV_SIZE, TEE_FS_HTREE_TAG_SIZE,
472 				  aad_len, payload_len);
473 	if (res != TEE_SUCCESS)
474 		goto err_free;
475 
476 	if (!ni) {
477 		size_t hash_size = TEE_FS_HTREE_HASH_SIZE;
478 
479 		if (IS_ENABLED(CFG_REE_FS_HTREE_HASH_SIZE_COMPAT))
480 			hash_size = TEE_FS_HTREE_FEK_SIZE;
481 
482 		res = crypto_authenc_update_aad(ctx, mode, ht->root.node.hash,
483 						hash_size);
484 		if (res != TEE_SUCCESS)
485 			goto err;
486 
487 		res = crypto_authenc_update_aad(ctx, mode,
488 						(void *)&ht->head.counter,
489 						sizeof(ht->head.counter));
490 		if (res != TEE_SUCCESS)
491 			goto err;
492 	}
493 
494 	res = crypto_authenc_update_aad(ctx, mode, ht->head.enc_fek,
495 					TEE_FS_HTREE_FEK_SIZE);
496 	if (res != TEE_SUCCESS)
497 		goto err;
498 
499 	res = crypto_authenc_update_aad(ctx, mode, iv, TEE_FS_HTREE_IV_SIZE);
500 	if (res != TEE_SUCCESS)
501 		goto err;
502 
503 	*ctx_ret = ctx;
504 
505 	return TEE_SUCCESS;
506 err:
507 	crypto_authenc_final(ctx);
508 err_free:
509 	crypto_authenc_free_ctx(ctx);
510 	return res;
511 }
512 
513 static TEE_Result authenc_decrypt_final(void *ctx, const uint8_t *tag,
514 					const void *crypt, size_t len,
515 					void *plain)
516 {
517 	TEE_Result res;
518 	size_t out_size = len;
519 
520 	res = crypto_authenc_dec_final(ctx, crypt, len, plain, &out_size, tag,
521 				       TEE_FS_HTREE_TAG_SIZE);
522 	crypto_authenc_final(ctx);
523 	crypto_authenc_free_ctx(ctx);
524 
525 	if (res == TEE_SUCCESS && out_size != len)
526 		return TEE_ERROR_GENERIC;
527 	if (res == TEE_ERROR_MAC_INVALID)
528 		return TEE_ERROR_CORRUPT_OBJECT;
529 
530 	return res;
531 }
532 
533 static TEE_Result authenc_encrypt_final(void *ctx, uint8_t *tag,
534 					const void *plain, size_t len,
535 					void *crypt)
536 {
537 	TEE_Result res;
538 	size_t out_size = len;
539 	size_t out_tag_size = TEE_FS_HTREE_TAG_SIZE;
540 
541 	res = crypto_authenc_enc_final(ctx, plain, len, crypt, &out_size, tag,
542 				       &out_tag_size);
543 	crypto_authenc_final(ctx);
544 	crypto_authenc_free_ctx(ctx);
545 
546 	if (res == TEE_SUCCESS &&
547 	    (out_size != len || out_tag_size != TEE_FS_HTREE_TAG_SIZE))
548 		return TEE_ERROR_GENERIC;
549 
550 	return res;
551 }
552 
553 static TEE_Result verify_root(struct tee_fs_htree *ht)
554 {
555 	TEE_Result res;
556 	void *ctx;
557 
558 	res = tee_fs_fek_crypt(ht->uuid, TEE_MODE_DECRYPT, ht->head.enc_fek,
559 			       sizeof(ht->fek), ht->fek);
560 	if (res != TEE_SUCCESS)
561 		return res;
562 
563 	res = authenc_init(&ctx, TEE_MODE_DECRYPT, ht, NULL, sizeof(ht->imeta));
564 	if (res != TEE_SUCCESS)
565 		return res;
566 
567 	return authenc_decrypt_final(ctx, ht->head.tag, ht->head.imeta,
568 				     sizeof(ht->imeta), &ht->imeta);
569 }
570 
571 static TEE_Result verify_node(struct traverse_arg *targ,
572 			      struct htree_node *node)
573 {
574 	void *ctx = targ->arg;
575 	TEE_Result res;
576 	uint8_t digest[TEE_FS_HTREE_HASH_SIZE];
577 
578 	if (node->parent)
579 		res = calc_node_hash(node, NULL, ctx, digest);
580 	else
581 		res = calc_node_hash(node, &targ->ht->imeta.meta, ctx, digest);
582 	if (res == TEE_SUCCESS &&
583 	    consttime_memcmp(digest, node->node.hash, sizeof(digest)))
584 		return TEE_ERROR_CORRUPT_OBJECT;
585 
586 	return res;
587 }
588 
589 static TEE_Result verify_tree(struct tee_fs_htree *ht)
590 {
591 	TEE_Result res;
592 	void *ctx;
593 
594 	res = crypto_hash_alloc_ctx(&ctx, TEE_FS_HTREE_HASH_ALG);
595 	if (res != TEE_SUCCESS)
596 		return res;
597 
598 	res = htree_traverse_post_order(ht, verify_node, ctx);
599 	crypto_hash_free_ctx(ctx);
600 
601 	return res;
602 }
603 
604 static TEE_Result init_root_node(struct tee_fs_htree *ht)
605 {
606 	TEE_Result res;
607 	void *ctx;
608 
609 	res = crypto_hash_alloc_ctx(&ctx, TEE_FS_HTREE_HASH_ALG);
610 	if (res != TEE_SUCCESS)
611 		return res;
612 
613 	ht->root.id = 1;
614 	ht->root.dirty = true;
615 
616 	res = calc_node_hash(&ht->root, &ht->imeta.meta, ctx,
617 			     ht->root.node.hash);
618 	crypto_hash_free_ctx(ctx);
619 
620 	return res;
621 }
622 
623 TEE_Result tee_fs_htree_open(bool create, uint8_t *hash, uint32_t min_counter,
624 			     const TEE_UUID *uuid,
625 			     const struct tee_fs_htree_storage *stor,
626 			     void *stor_aux, struct tee_fs_htree **ht_ret)
627 {
628 	TEE_Result res;
629 	struct tee_fs_htree *ht = calloc(1, sizeof(*ht));
630 
631 	if (!ht)
632 		return TEE_ERROR_OUT_OF_MEMORY;
633 
634 	ht->uuid = uuid;
635 	ht->stor = stor;
636 	ht->stor_aux = stor_aux;
637 
638 	if (create) {
639 		const struct tee_fs_htree_image dummy_head = {
640 			.counter = min_counter,
641 		};
642 
643 		res = crypto_rng_read(ht->fek, sizeof(ht->fek));
644 		if (res != TEE_SUCCESS)
645 			goto out;
646 
647 		res = tee_fs_fek_crypt(ht->uuid, TEE_MODE_ENCRYPT, ht->fek,
648 				       sizeof(ht->fek), ht->head.enc_fek);
649 		if (res != TEE_SUCCESS)
650 			goto out;
651 
652 		res = init_root_node(ht);
653 		if (res != TEE_SUCCESS)
654 			goto out;
655 
656 		ht->dirty = true;
657 		res = tee_fs_htree_sync_to_storage(&ht, hash, NULL);
658 		if (res != TEE_SUCCESS)
659 			goto out;
660 		res = rpc_write_head(ht, 0, &dummy_head);
661 	} else {
662 		res = init_head_from_data(ht, hash, min_counter);
663 		if (res != TEE_SUCCESS)
664 			goto out;
665 
666 		res = verify_root(ht);
667 		if (res != TEE_SUCCESS)
668 			goto out;
669 
670 		res = init_tree_from_data(ht);
671 		if (res != TEE_SUCCESS)
672 			goto out;
673 
674 		res = verify_tree(ht);
675 	}
676 out:
677 	if (res == TEE_SUCCESS)
678 		*ht_ret = ht;
679 	else
680 		tee_fs_htree_close(&ht);
681 	return res;
682 }
683 
684 struct tee_fs_htree_meta *tee_fs_htree_get_meta(struct tee_fs_htree *ht)
685 {
686 	return &ht->imeta.meta;
687 }
688 
689 void tee_fs_htree_meta_set_dirty(struct tee_fs_htree *ht)
690 {
691 	ht->dirty = true;
692 	ht->root.dirty = true;
693 }
694 
695 static TEE_Result free_node(struct traverse_arg *targ __unused,
696 			    struct htree_node *node)
697 {
698 	if (node->parent)
699 		free(node);
700 	return TEE_SUCCESS;
701 }
702 
703 void tee_fs_htree_close(struct tee_fs_htree **ht)
704 {
705 	if (!*ht)
706 		return;
707 	htree_traverse_post_order(*ht, free_node, NULL);
708 	free(*ht);
709 	*ht = NULL;
710 }
711 
712 static TEE_Result htree_sync_node_to_storage(struct traverse_arg *targ,
713 					     struct htree_node *node)
714 {
715 	TEE_Result res;
716 	uint8_t vers;
717 	struct tee_fs_htree_meta *meta = NULL;
718 
719 	/*
720 	 * The node can be dirty while the block isn't updated due to
721 	 * updated children, but if block is updated the node has to be
722 	 * dirty.
723 	 */
724 	assert(node->dirty >= node->block_updated);
725 
726 	if (!node->dirty)
727 		return TEE_SUCCESS;
728 
729 	if (node->parent) {
730 		uint32_t f = HTREE_NODE_COMMITTED_CHILD(node->id & 1);
731 
732 		node->parent->dirty = true;
733 		node->parent->node.flags ^= f;
734 		vers = !!(node->parent->node.flags & f);
735 	} else {
736 		/*
737 		 * Counter isn't updated yet, it's increased just before
738 		 * writing the header.
739 		 */
740 		vers = !(targ->ht->head.counter & 1);
741 		meta = &targ->ht->imeta.meta;
742 	}
743 
744 	res = calc_node_hash(node, meta, targ->arg, node->node.hash);
745 	if (res != TEE_SUCCESS)
746 		return res;
747 
748 	node->dirty = false;
749 	node->block_updated = false;
750 
751 	return rpc_write_node(targ->ht, node->id, vers, &node->node);
752 }
753 
754 static TEE_Result update_root(struct tee_fs_htree *ht)
755 {
756 	TEE_Result res;
757 	void *ctx;
758 
759 	ht->head.counter++;
760 
761 	res = authenc_init(&ctx, TEE_MODE_ENCRYPT, ht, NULL, sizeof(ht->imeta));
762 	if (res != TEE_SUCCESS)
763 		return res;
764 
765 	return authenc_encrypt_final(ctx, ht->head.tag, &ht->imeta,
766 				     sizeof(ht->imeta), &ht->head.imeta);
767 }
768 
769 TEE_Result tee_fs_htree_sync_to_storage(struct tee_fs_htree **ht_arg,
770 					uint8_t *hash, uint32_t *counter)
771 {
772 	TEE_Result res;
773 	struct tee_fs_htree *ht = *ht_arg;
774 	void *ctx;
775 
776 	if (!ht)
777 		return TEE_ERROR_CORRUPT_OBJECT;
778 
779 	if (!ht->dirty)
780 		return TEE_SUCCESS;
781 
782 	res = crypto_hash_alloc_ctx(&ctx, TEE_FS_HTREE_HASH_ALG);
783 	if (res != TEE_SUCCESS)
784 		return res;
785 
786 	res = htree_traverse_post_order(ht, htree_sync_node_to_storage, ctx);
787 	if (res != TEE_SUCCESS)
788 		goto out;
789 
790 	/* All the nodes are written to storage now. Time to update root. */
791 	res = update_root(ht);
792 	if (res != TEE_SUCCESS)
793 		goto out;
794 
795 	res = rpc_write_head(ht, ht->head.counter & 1, &ht->head);
796 	if (res != TEE_SUCCESS)
797 		goto out;
798 
799 	ht->dirty = false;
800 	if (hash)
801 		memcpy(hash, ht->root.node.hash, sizeof(ht->root.node.hash));
802 	if (counter)
803 		*counter = ht->head.counter;
804 out:
805 	crypto_hash_free_ctx(ctx);
806 	if (res != TEE_SUCCESS)
807 		tee_fs_htree_close(ht_arg);
808 	return res;
809 }
810 
811 static TEE_Result get_block_node(struct tee_fs_htree *ht, bool create,
812 				 size_t block_num, struct htree_node **node)
813 {
814 	TEE_Result res;
815 	struct htree_node *nd;
816 
817 	res = get_node(ht, create, BLOCK_NUM_TO_NODE_ID(block_num), &nd);
818 	if (res == TEE_SUCCESS)
819 		*node = nd;
820 
821 	return res;
822 }
823 
824 TEE_Result tee_fs_htree_write_block(struct tee_fs_htree **ht_arg,
825 				    size_t block_num, const void *block)
826 {
827 	struct tee_fs_htree *ht = *ht_arg;
828 	TEE_Result res;
829 	struct tee_fs_rpc_operation op;
830 	struct htree_node *node = NULL;
831 	uint8_t block_vers;
832 	void *ctx;
833 	void *enc_block;
834 
835 	if (!ht)
836 		return TEE_ERROR_CORRUPT_OBJECT;
837 
838 	res = get_block_node(ht, true, block_num, &node);
839 	if (res != TEE_SUCCESS)
840 		goto out;
841 
842 	if (!node->block_updated)
843 		node->node.flags ^= HTREE_NODE_COMMITTED_BLOCK;
844 
845 	block_vers = !!(node->node.flags & HTREE_NODE_COMMITTED_BLOCK);
846 	res = ht->stor->rpc_write_init(ht->stor_aux, &op,
847 				       TEE_FS_HTREE_TYPE_BLOCK, block_num,
848 				       block_vers, &enc_block);
849 	if (res != TEE_SUCCESS)
850 		goto out;
851 
852 	res = authenc_init(&ctx, TEE_MODE_ENCRYPT, ht, &node->node,
853 			   ht->stor->block_size);
854 	if (res != TEE_SUCCESS)
855 		goto out;
856 	res = authenc_encrypt_final(ctx, node->node.tag, block,
857 				    ht->stor->block_size, enc_block);
858 	if (res != TEE_SUCCESS)
859 		goto out;
860 
861 	res = ht->stor->rpc_write_final(&op);
862 	if (res != TEE_SUCCESS)
863 		goto out;
864 
865 	node->block_updated = true;
866 	node->dirty = true;
867 	ht->dirty = true;
868 out:
869 	if (res != TEE_SUCCESS)
870 		tee_fs_htree_close(ht_arg);
871 	return res;
872 }
873 
874 TEE_Result tee_fs_htree_read_block(struct tee_fs_htree **ht_arg,
875 				   size_t block_num, void *block)
876 {
877 	struct tee_fs_htree *ht = *ht_arg;
878 	TEE_Result res;
879 	struct tee_fs_rpc_operation op;
880 	struct htree_node *node;
881 	uint8_t block_vers;
882 	size_t len;
883 	void *ctx;
884 	void *enc_block;
885 
886 	if (!ht)
887 		return TEE_ERROR_CORRUPT_OBJECT;
888 
889 	res = get_block_node(ht, false, block_num, &node);
890 	if (res != TEE_SUCCESS)
891 		goto out;
892 
893 	block_vers = !!(node->node.flags & HTREE_NODE_COMMITTED_BLOCK);
894 	res = ht->stor->rpc_read_init(ht->stor_aux, &op,
895 				      TEE_FS_HTREE_TYPE_BLOCK, block_num,
896 				      block_vers, &enc_block);
897 	if (res != TEE_SUCCESS)
898 		goto out;
899 
900 	res = ht->stor->rpc_read_final(&op, &len);
901 	if (res != TEE_SUCCESS)
902 		goto out;
903 	if (len != ht->stor->block_size) {
904 		res = TEE_ERROR_CORRUPT_OBJECT;
905 		goto out;
906 	}
907 
908 	res = authenc_init(&ctx, TEE_MODE_DECRYPT, ht, &node->node,
909 			   ht->stor->block_size);
910 	if (res != TEE_SUCCESS)
911 		goto out;
912 
913 	res = authenc_decrypt_final(ctx, node->node.tag, enc_block,
914 				    ht->stor->block_size, block);
915 out:
916 	if (res != TEE_SUCCESS)
917 		tee_fs_htree_close(ht_arg);
918 	return res;
919 }
920 
921 TEE_Result tee_fs_htree_truncate(struct tee_fs_htree **ht_arg, size_t block_num)
922 {
923 	struct tee_fs_htree *ht = *ht_arg;
924 	size_t node_id = BLOCK_NUM_TO_NODE_ID(block_num);
925 	struct htree_node *node;
926 
927 	if (!ht)
928 		return TEE_ERROR_CORRUPT_OBJECT;
929 
930 	while (node_id < ht->imeta.max_node_id) {
931 		node = find_closest_node(ht, ht->imeta.max_node_id);
932 		assert(node && node->id == ht->imeta.max_node_id);
933 		assert(!node->child[0] && !node->child[1]);
934 		assert(node->parent);
935 		assert(node->parent->child[node->id & 1] == node);
936 		node->parent->child[node->id & 1] = NULL;
937 		free(node);
938 		ht->imeta.max_node_id--;
939 		ht->dirty = true;
940 	}
941 
942 	return TEE_SUCCESS;
943 }
944