xref: /optee_os/core/mm/fobj.c (revision c3deb3d6f3b13d0e17fc9efe5880aec039e47594)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2019-2022, Linaro Limited
4  */
5 
6 #include <config.h>
7 #include <crypto/crypto.h>
8 #include <crypto/internal_aes-gcm.h>
9 #include <initcall.h>
10 #include <kernel/boot.h>
11 #include <kernel/panic.h>
12 #include <memtag.h>
13 #include <mm/core_memprot.h>
14 #include <mm/core_mmu.h>
15 #include <mm/fobj.h>
16 #include <mm/phys_mem.h>
17 #include <mm/tee_mm.h>
18 #include <stdlib.h>
19 #include <string.h>
20 #include <tee_api_types.h>
21 #include <types_ext.h>
22 #include <util.h>
23 
24 #ifdef CFG_WITH_PAGER
25 
26 #define RWP_AE_KEY_BITS		256
27 
28 struct rwp_aes_gcm_iv {
29 	uint32_t iv[3];
30 };
31 
32 #define RWP_AES_GCM_TAG_LEN	16
33 
34 struct rwp_state {
35 	uint64_t iv;
36 	uint8_t tag[RWP_AES_GCM_TAG_LEN];
37 };
38 
39 /*
40  * Note that this struct is padded to a size which is a power of 2, this
41  * guarantees that this state will not span two pages. This avoids a corner
42  * case in the pager when making the state available.
43  */
44 struct rwp_state_padded {
45 	struct rwp_state state;
46 	uint64_t pad;
47 };
48 
49 struct fobj_rwp_unpaged_iv {
50 	uint8_t *store;
51 	struct rwp_state *state;
52 	struct fobj fobj;
53 };
54 
55 struct fobj_rwp_paged_iv {
56 	size_t idx;
57 	struct fobj fobj;
58 };
59 
60 const struct fobj_ops ops_rwp_paged_iv;
61 const struct fobj_ops ops_rwp_unpaged_iv;
62 
63 static struct internal_aes_gcm_key rwp_ae_key;
64 
65 static struct rwp_state_padded *rwp_state_base;
66 static uint8_t *rwp_store_base;
67 
68 static void fobj_init(struct fobj *fobj, const struct fobj_ops *ops,
69 		      unsigned int num_pages)
70 {
71 	fobj->ops = ops;
72 	fobj->num_pages = num_pages;
73 	refcount_set(&fobj->refc, 1);
74 	TAILQ_INIT(&fobj->regions);
75 }
76 
77 static void fobj_uninit(struct fobj *fobj)
78 {
79 	assert(!refcount_val(&fobj->refc));
80 	assert(TAILQ_EMPTY(&fobj->regions));
81 	tee_pager_invalidate_fobj(fobj);
82 }
83 
84 static TEE_Result rwp_load_page(void *va, struct rwp_state *state,
85 				const uint8_t *src)
86 {
87 	struct rwp_aes_gcm_iv iv = {
88 		.iv = { (vaddr_t)state, state->iv >> 32, state->iv }
89 	};
90 
91 	if (!state->iv) {
92 		/*
93 		 * IV still zero which means that this is previously unused
94 		 * page.
95 		 */
96 		memset(va, 0, SMALL_PAGE_SIZE);
97 		return TEE_SUCCESS;
98 	}
99 
100 	return internal_aes_gcm_dec(&rwp_ae_key, &iv, sizeof(iv),
101 				    NULL, 0, src, SMALL_PAGE_SIZE, va,
102 				    state->tag, sizeof(state->tag));
103 }
104 
105 static TEE_Result rwp_save_page(const void *va, struct rwp_state *state,
106 				uint8_t *dst)
107 {
108 	size_t tag_len = sizeof(state->tag);
109 	struct rwp_aes_gcm_iv iv = { };
110 
111 	assert(state->iv + 1 > state->iv);
112 
113 	state->iv++;
114 
115 	/*
116 	 * IV is constructed as recommended in section "8.2.1 Deterministic
117 	 * Construction" of "Recommendation for Block Cipher Modes of
118 	 * Operation: Galois/Counter Mode (GCM) and GMAC",
119 	 * http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
120 	 */
121 	iv.iv[0] = (vaddr_t)state;
122 	iv.iv[1] = state->iv >> 32;
123 	iv.iv[2] = state->iv;
124 
125 	return internal_aes_gcm_enc(&rwp_ae_key, &iv, sizeof(iv),
126 				    NULL, 0, va, SMALL_PAGE_SIZE, dst,
127 				    state->tag, &tag_len);
128 }
129 
130 static struct rwp_state_padded *idx_to_state_padded(size_t idx)
131 {
132 	assert(rwp_state_base);
133 	return rwp_state_base + idx;
134 }
135 
136 static uint8_t *idx_to_store(size_t idx)
137 {
138 	assert(rwp_store_base);
139 	return rwp_store_base + idx * SMALL_PAGE_SIZE;
140 }
141 
142 static struct fobj *rwp_paged_iv_alloc(unsigned int num_pages)
143 {
144 	struct fobj_rwp_paged_iv *rwp = NULL;
145 	tee_mm_entry_t *mm = NULL;
146 	size_t size = 0;
147 
148 	COMPILE_TIME_ASSERT(IS_POWER_OF_TWO(sizeof(struct rwp_state_padded)));
149 
150 	rwp = calloc(1, sizeof(*rwp));
151 	if (!rwp)
152 		return NULL;
153 
154 	if (MUL_OVERFLOW(num_pages, SMALL_PAGE_SIZE, &size))
155 		goto err;
156 	mm = nex_phys_mem_ta_alloc(size);
157 	if (!mm)
158 		goto err;
159 	rwp->idx = (tee_mm_get_smem(mm) - nex_phys_mem_get_ta_base()) /
160 		   SMALL_PAGE_SIZE;
161 
162 	memset(idx_to_state_padded(rwp->idx), 0,
163 	       num_pages * sizeof(struct rwp_state_padded));
164 
165 	fobj_init(&rwp->fobj, &ops_rwp_paged_iv, num_pages);
166 
167 	return &rwp->fobj;
168 err:
169 	tee_mm_free(mm);
170 	free(rwp);
171 
172 	return NULL;
173 }
174 
175 static struct fobj_rwp_paged_iv *to_rwp_paged_iv(struct fobj *fobj)
176 {
177 	assert(fobj->ops == &ops_rwp_paged_iv);
178 
179 	return container_of(fobj, struct fobj_rwp_paged_iv, fobj);
180 }
181 
182 static TEE_Result rwp_paged_iv_load_page(struct fobj *fobj,
183 					 unsigned int page_idx, void *va)
184 {
185 	struct fobj_rwp_paged_iv *rwp = to_rwp_paged_iv(fobj);
186 	uint8_t *src = idx_to_store(rwp->idx) + page_idx * SMALL_PAGE_SIZE;
187 	struct rwp_state_padded *st = idx_to_state_padded(rwp->idx + page_idx);
188 
189 	assert(refcount_val(&fobj->refc));
190 	assert(page_idx < fobj->num_pages);
191 
192 	return rwp_load_page(va, &st->state, src);
193 }
194 DECLARE_KEEP_PAGER(rwp_paged_iv_load_page);
195 
196 static TEE_Result rwp_paged_iv_save_page(struct fobj *fobj,
197 					 unsigned int page_idx, const void *va)
198 {
199 	struct fobj_rwp_paged_iv *rwp = to_rwp_paged_iv(fobj);
200 	uint8_t *dst = idx_to_store(rwp->idx) + page_idx * SMALL_PAGE_SIZE;
201 	struct rwp_state_padded *st = idx_to_state_padded(rwp->idx + page_idx);
202 
203 	assert(page_idx < fobj->num_pages);
204 
205 	if (!refcount_val(&fobj->refc)) {
206 		/*
207 		 * This fobj is being teared down, it just hasn't had the time
208 		 * to call tee_pager_invalidate_fobj() yet.
209 		 */
210 		assert(TAILQ_EMPTY(&fobj->regions));
211 		return TEE_SUCCESS;
212 	}
213 
214 	return rwp_save_page(va, &st->state, dst);
215 }
216 DECLARE_KEEP_PAGER(rwp_paged_iv_save_page);
217 
218 static void rwp_paged_iv_free(struct fobj *fobj)
219 {
220 	struct fobj_rwp_paged_iv *rwp = to_rwp_paged_iv(fobj);
221 	paddr_t pa = rwp->idx * SMALL_PAGE_SIZE + nex_phys_mem_get_ta_base();
222 	tee_mm_entry_t *mm = nex_phys_mem_mm_find(pa);
223 
224 	assert(mm);
225 
226 	fobj_uninit(fobj);
227 	tee_mm_free(mm);
228 	free(rwp);
229 }
230 
231 static vaddr_t rwp_paged_iv_get_iv_vaddr(struct fobj *fobj,
232 					 unsigned int page_idx)
233 {
234 	struct fobj_rwp_paged_iv *rwp = to_rwp_paged_iv(fobj);
235 	struct rwp_state_padded *st = idx_to_state_padded(rwp->idx + page_idx);
236 
237 	assert(page_idx < fobj->num_pages);
238 	return (vaddr_t)&st->state & ~SMALL_PAGE_MASK;
239 }
240 DECLARE_KEEP_PAGER(rwp_paged_iv_get_iv_vaddr);
241 
242 /*
243  * Note: this variable is weak just to ease breaking its dependency chain
244  * when added to the unpaged area.
245  */
246 const struct fobj_ops ops_rwp_paged_iv
247 __weak __relrodata_unpaged("ops_rwp_paged_iv") = {
248 	.free = rwp_paged_iv_free,
249 	.load_page = rwp_paged_iv_load_page,
250 	.save_page = rwp_paged_iv_save_page,
251 	.get_iv_vaddr = rwp_paged_iv_get_iv_vaddr,
252 };
253 
254 static struct fobj *rwp_unpaged_iv_alloc(unsigned int num_pages)
255 {
256 	struct fobj_rwp_unpaged_iv *rwp = NULL;
257 	tee_mm_entry_t *mm = NULL;
258 	size_t size = 0;
259 
260 	rwp = calloc(1, sizeof(*rwp));
261 	if (!rwp)
262 		return NULL;
263 
264 	rwp->state = calloc(num_pages, sizeof(*rwp->state));
265 	if (!rwp->state)
266 		goto err_free_rwp;
267 
268 	if (MUL_OVERFLOW(num_pages, SMALL_PAGE_SIZE, &size))
269 		goto err_free_state;
270 	mm = nex_phys_mem_ta_alloc(size);
271 	if (!mm)
272 		goto err_free_state;
273 	rwp->store = phys_to_virt(tee_mm_get_smem(mm),
274 				  MEM_AREA_SEC_RAM_OVERALL, size);
275 	assert(rwp->store);
276 
277 	fobj_init(&rwp->fobj, &ops_rwp_unpaged_iv, num_pages);
278 
279 	return &rwp->fobj;
280 
281 err_free_state:
282 	free(rwp->state);
283 err_free_rwp:
284 	free(rwp);
285 	return NULL;
286 }
287 
288 static struct fobj_rwp_unpaged_iv *to_rwp_unpaged_iv(struct fobj *fobj)
289 {
290 	assert(fobj->ops == &ops_rwp_unpaged_iv);
291 
292 	return container_of(fobj, struct fobj_rwp_unpaged_iv, fobj);
293 }
294 
295 static TEE_Result rwp_unpaged_iv_load_page(struct fobj *fobj,
296 					   unsigned int page_idx, void *va)
297 {
298 	struct fobj_rwp_unpaged_iv *rwp = to_rwp_unpaged_iv(fobj);
299 	uint8_t *src = rwp->store + page_idx * SMALL_PAGE_SIZE;
300 
301 	assert(refcount_val(&fobj->refc));
302 	assert(page_idx < fobj->num_pages);
303 
304 	return rwp_load_page(va, rwp->state + page_idx, src);
305 }
306 DECLARE_KEEP_PAGER(rwp_unpaged_iv_load_page);
307 
308 static TEE_Result rwp_unpaged_iv_save_page(struct fobj *fobj,
309 					   unsigned int page_idx,
310 					   const void *va)
311 {
312 	struct fobj_rwp_unpaged_iv *rwp = to_rwp_unpaged_iv(fobj);
313 	uint8_t *dst = rwp->store + page_idx * SMALL_PAGE_SIZE;
314 
315 	assert(page_idx < fobj->num_pages);
316 
317 	if (!refcount_val(&fobj->refc)) {
318 		/*
319 		 * This fobj is being teared down, it just hasn't had the time
320 		 * to call tee_pager_invalidate_fobj() yet.
321 		 */
322 		assert(TAILQ_EMPTY(&fobj->regions));
323 		return TEE_SUCCESS;
324 	}
325 
326 	return rwp_save_page(va, rwp->state + page_idx, dst);
327 }
328 DECLARE_KEEP_PAGER(rwp_unpaged_iv_save_page);
329 
330 static void rwp_unpaged_iv_free(struct fobj *fobj)
331 {
332 	struct fobj_rwp_unpaged_iv *rwp = NULL;
333 	tee_mm_entry_t *mm = NULL;
334 
335 	if (IS_ENABLED(CFG_CORE_PAGE_TAG_AND_IV))
336 		panic();
337 
338 	rwp = to_rwp_unpaged_iv(fobj);
339 	mm = nex_phys_mem_mm_find(virt_to_phys(rwp->store));
340 
341 	assert(mm);
342 
343 	fobj_uninit(fobj);
344 	tee_mm_free(mm);
345 	free(rwp->state);
346 	free(rwp);
347 }
348 
349 /*
350  * Note: this variable is weak just to ease breaking its dependency chain
351  * when added to the unpaged area.
352  */
353 const struct fobj_ops ops_rwp_unpaged_iv
354 __weak __relrodata_unpaged("ops_rwp_unpaged_iv") = {
355 	.free = rwp_unpaged_iv_free,
356 	.load_page = rwp_unpaged_iv_load_page,
357 	.save_page = rwp_unpaged_iv_save_page,
358 };
359 
360 static TEE_Result rwp_init(void)
361 {
362 	paddr_size_t ta_size = nex_phys_mem_get_ta_size();
363 	uint8_t key[RWP_AE_KEY_BITS / 8] = { 0 };
364 	struct fobj *fobj = NULL;
365 	size_t num_pool_pages = 0;
366 	size_t num_fobj_pages = 0;
367 
368 	if (crypto_rng_read(key, sizeof(key)) != TEE_SUCCESS)
369 		panic("failed to generate random");
370 	if (crypto_aes_expand_enc_key(key, sizeof(key), rwp_ae_key.data,
371 				      sizeof(rwp_ae_key.data),
372 				      &rwp_ae_key.rounds))
373 		panic("failed to expand key");
374 
375 	if (!IS_ENABLED(CFG_CORE_PAGE_TAG_AND_IV))
376 		return TEE_SUCCESS;
377 
378 	assert(ta_size && !(ta_size & SMALL_PAGE_SIZE));
379 
380 	num_pool_pages = ta_size / SMALL_PAGE_SIZE;
381 	num_fobj_pages = ROUNDUP_DIV(num_pool_pages * sizeof(*rwp_state_base),
382 				     SMALL_PAGE_SIZE);
383 
384 	/*
385 	 * Each page in the pool needs a struct rwp_state.
386 	 *
387 	 * This isn't entirely true, the pages not used by
388 	 * fobj_rw_paged_alloc() don't need any. A future optimization
389 	 * may try to avoid allocating for such pages.
390 	 */
391 	fobj = rwp_unpaged_iv_alloc(num_fobj_pages);
392 	if (!fobj)
393 		panic();
394 
395 	rwp_state_base = (void *)tee_pager_init_iv_region(fobj);
396 	assert(rwp_state_base);
397 
398 	rwp_store_base = phys_to_virt(nex_phys_mem_get_ta_base(),
399 				      MEM_AREA_SEC_RAM_OVERALL, ta_size);
400 	assert(rwp_store_base);
401 
402 	return TEE_SUCCESS;
403 }
404 driver_init_late(rwp_init);
405 
406 struct fobj *fobj_rw_paged_alloc(unsigned int num_pages)
407 {
408 	assert(num_pages);
409 
410 	if (IS_ENABLED(CFG_CORE_PAGE_TAG_AND_IV))
411 		return rwp_paged_iv_alloc(num_pages);
412 	else
413 		return rwp_unpaged_iv_alloc(num_pages);
414 }
415 
416 struct fobj_rop {
417 	uint8_t *hashes;
418 	uint8_t *store;
419 	struct fobj fobj;
420 };
421 
422 const struct fobj_ops ops_ro_paged;
423 
424 static void rop_init(struct fobj_rop *rop, const struct fobj_ops *ops,
425 		     unsigned int num_pages, void *hashes, void *store)
426 {
427 	rop->hashes = hashes;
428 	rop->store = store;
429 	fobj_init(&rop->fobj, ops, num_pages);
430 }
431 
432 struct fobj *fobj_ro_paged_alloc(unsigned int num_pages, void *hashes,
433 				 void *store)
434 {
435 	struct fobj_rop *rop = NULL;
436 
437 	assert(num_pages && hashes && store);
438 
439 	rop = calloc(1, sizeof(*rop));
440 	if (!rop)
441 		return NULL;
442 
443 	rop_init(rop, &ops_ro_paged, num_pages, hashes, store);
444 
445 	return &rop->fobj;
446 }
447 
448 static struct fobj_rop *to_rop(struct fobj *fobj)
449 {
450 	assert(fobj->ops == &ops_ro_paged);
451 
452 	return container_of(fobj, struct fobj_rop, fobj);
453 }
454 
455 static void rop_uninit(struct fobj_rop *rop)
456 {
457 	fobj_uninit(&rop->fobj);
458 	tee_mm_free(nex_phys_mem_mm_find(virt_to_phys(rop->store)));
459 	free(rop->hashes);
460 }
461 
462 static void rop_free(struct fobj *fobj)
463 {
464 	struct fobj_rop *rop = to_rop(fobj);
465 
466 	rop_uninit(rop);
467 	free(rop);
468 }
469 
470 static TEE_Result rop_load_page_helper(struct fobj_rop *rop,
471 				       unsigned int page_idx, void *va)
472 {
473 	const uint8_t *hash = rop->hashes + page_idx * TEE_SHA256_HASH_SIZE;
474 	const uint8_t *src = rop->store + page_idx * SMALL_PAGE_SIZE;
475 
476 	assert(refcount_val(&rop->fobj.refc));
477 	assert(page_idx < rop->fobj.num_pages);
478 	memcpy(va, src, SMALL_PAGE_SIZE);
479 
480 	return hash_sha256_check(hash, va, SMALL_PAGE_SIZE);
481 }
482 
483 static TEE_Result rop_load_page(struct fobj *fobj, unsigned int page_idx,
484 				void *va)
485 {
486 	return rop_load_page_helper(to_rop(fobj), page_idx, va);
487 }
488 DECLARE_KEEP_PAGER(rop_load_page);
489 
490 static TEE_Result rop_save_page(struct fobj *fobj __unused,
491 				unsigned int page_idx __unused,
492 				const void *va __unused)
493 {
494 	return TEE_ERROR_GENERIC;
495 }
496 DECLARE_KEEP_PAGER(rop_save_page);
497 
498 /*
499  * Note: this variable is weak just to ease breaking its dependency chain
500  * when added to the unpaged area.
501  */
502 const struct fobj_ops ops_ro_paged
503 __weak __relrodata_unpaged("ops_ro_paged") = {
504 	.free = rop_free,
505 	.load_page = rop_load_page,
506 	.save_page = rop_save_page,
507 };
508 
509 #ifdef CFG_CORE_ASLR
510 /*
511  * When using relocated pages the relocation information must be applied
512  * before the pages can be used. With read-only paging the content is only
513  * integrity protected so relocation cannot be applied on pages in the less
514  * secure "store" or the load_address selected by ASLR could be given away.
515  * This means that each time a page has been loaded and verified it has to
516  * have its relocation information applied before it can be used.
517  *
518  * Only the relative relocations are supported, this allows a rather compact
519  * represenation of the needed relocation information in this struct.
520  * r_offset is replaced with the offset into the page that need to be updated,
521  * this number can never be larger than SMALL_PAGE_SIZE so a uint16_t can be
522  * used to represent it.
523  *
524  * All relocations are converted and stored in @relocs. @page_reloc_idx is
525  * an array of length @rop.fobj.num_pages with an entry for each page. If
526  * @page_reloc_idx[page_idx] isn't UINT16_MAX it's an index into @relocs.
527  */
528 struct fobj_ro_reloc_paged {
529 	uint16_t *page_reloc_idx;
530 	uint16_t *relocs;
531 	unsigned int num_relocs;
532 	struct fobj_rop rop;
533 };
534 
535 const struct fobj_ops ops_ro_reloc_paged;
536 
537 static unsigned int get_num_rels(unsigned int num_pages,
538 				 unsigned int reloc_offs,
539 				 const uint32_t *reloc, unsigned int num_relocs)
540 {
541 	const unsigned int align_mask __maybe_unused = sizeof(long) - 1;
542 	unsigned int nrels = 0;
543 	unsigned int n = 0;
544 	vaddr_t offs = 0;
545 
546 	/*
547 	 * Count the number of relocations which are needed for these
548 	 * pages.  Also check that the data is well formed, only expected
549 	 * relocations and sorted in order of address which it applies to.
550 	 */
551 	for (; n < num_relocs; n++) {
552 		assert(IS_ALIGNED_WITH_TYPE(reloc[n], unsigned long));
553 		assert(offs < reloc[n]);	/* check that it's sorted */
554 		offs = reloc[n];
555 		if (offs >= reloc_offs &&
556 		    offs <= reloc_offs + num_pages * SMALL_PAGE_SIZE)
557 			nrels++;
558 	}
559 
560 	return nrels;
561 }
562 
563 static void init_rels(struct fobj_ro_reloc_paged *rrp, unsigned int reloc_offs,
564 		      const uint32_t *reloc, unsigned int num_relocs)
565 {
566 	unsigned int npg = rrp->rop.fobj.num_pages;
567 	unsigned int pg_idx = 0;
568 	unsigned int reln = 0;
569 	unsigned int n = 0;
570 	uint32_t r = 0;
571 
572 	for (n = 0; n < npg; n++)
573 		rrp->page_reloc_idx[n] = UINT16_MAX;
574 
575 	for (n = 0; n < num_relocs ; n++) {
576 		if (reloc[n] < reloc_offs)
577 			continue;
578 
579 		/* r is the offset from beginning of this fobj */
580 		r = reloc[n] - reloc_offs;
581 
582 		pg_idx = r / SMALL_PAGE_SIZE;
583 		if (pg_idx >= npg)
584 			break;
585 
586 		if (rrp->page_reloc_idx[pg_idx] == UINT16_MAX)
587 			rrp->page_reloc_idx[pg_idx] = reln;
588 		rrp->relocs[reln] = r - pg_idx * SMALL_PAGE_SIZE;
589 		reln++;
590 	}
591 
592 	assert(reln == rrp->num_relocs);
593 }
594 
595 struct fobj *fobj_ro_reloc_paged_alloc(unsigned int num_pages, void *hashes,
596 				       unsigned int reloc_offs,
597 				       const void *reloc,
598 				       unsigned int reloc_len, void *store)
599 {
600 	struct fobj_ro_reloc_paged *rrp = NULL;
601 	const unsigned int num_relocs = reloc_len / sizeof(uint32_t);
602 	unsigned int nrels = 0;
603 
604 	assert(IS_ALIGNED_WITH_TYPE(reloc, uint32_t));
605 	assert(IS_ALIGNED_WITH_TYPE(reloc_len, uint32_t));
606 	assert(num_pages && hashes && store);
607 	if (!reloc_len) {
608 		assert(!reloc);
609 		return fobj_ro_paged_alloc(num_pages, hashes, store);
610 	}
611 	assert(reloc);
612 
613 	nrels = get_num_rels(num_pages, reloc_offs, reloc, num_relocs);
614 	if (!nrels)
615 		return fobj_ro_paged_alloc(num_pages, hashes, store);
616 
617 	rrp = calloc(1, sizeof(*rrp) + num_pages * sizeof(uint16_t) +
618 			nrels * sizeof(uint16_t));
619 	if (!rrp)
620 		return NULL;
621 	rop_init(&rrp->rop, &ops_ro_reloc_paged, num_pages, hashes, store);
622 	rrp->page_reloc_idx = (uint16_t *)(rrp + 1);
623 	rrp->relocs = rrp->page_reloc_idx + num_pages;
624 	rrp->num_relocs = nrels;
625 	init_rels(rrp, reloc_offs, reloc, num_relocs);
626 
627 	return &rrp->rop.fobj;
628 }
629 
630 static struct fobj_ro_reloc_paged *to_rrp(struct fobj *fobj)
631 {
632 	assert(fobj->ops == &ops_ro_reloc_paged);
633 
634 	return container_of(fobj, struct fobj_ro_reloc_paged, rop.fobj);
635 }
636 
637 static void rrp_free(struct fobj *fobj)
638 {
639 	struct fobj_ro_reloc_paged *rrp = to_rrp(fobj);
640 
641 	rop_uninit(&rrp->rop);
642 	free(rrp);
643 }
644 
645 static TEE_Result rrp_load_page(struct fobj *fobj, unsigned int page_idx,
646 				void *va)
647 {
648 	struct fobj_ro_reloc_paged *rrp = to_rrp(fobj);
649 	unsigned int end_rel = rrp->num_relocs;
650 	TEE_Result res = TEE_SUCCESS;
651 	unsigned long *where = NULL;
652 	unsigned int n = 0;
653 
654 	res = rop_load_page_helper(&rrp->rop, page_idx, va);
655 	if (res)
656 		return res;
657 
658 	/* Find the reloc index of the next page to tell when we're done */
659 	for (n = page_idx + 1; n < fobj->num_pages; n++) {
660 		if (rrp->page_reloc_idx[n] != UINT16_MAX) {
661 			end_rel = rrp->page_reloc_idx[n];
662 			break;
663 		}
664 	}
665 
666 	for (n = rrp->page_reloc_idx[page_idx]; n < end_rel; n++) {
667 		where = (void *)((vaddr_t)va + rrp->relocs[n]);
668 		*where += boot_mmu_config.map_offset;
669 	}
670 
671 	return TEE_SUCCESS;
672 }
673 DECLARE_KEEP_PAGER(rrp_load_page);
674 
675 /*
676  * Note: this variable is weak just to ease breaking its dependency chain
677  * when added to the unpaged area.
678  */
679 const struct fobj_ops ops_ro_reloc_paged
680 __weak __relrodata_unpaged("ops_ro_reloc_paged") = {
681 	.free = rrp_free,
682 	.load_page = rrp_load_page,
683 	.save_page = rop_save_page, /* Direct reuse */
684 };
685 #endif /*CFG_CORE_ASLR*/
686 
687 const struct fobj_ops ops_locked_paged;
688 
689 struct fobj *fobj_locked_paged_alloc(unsigned int num_pages)
690 {
691 	struct fobj *f = NULL;
692 
693 	assert(num_pages);
694 
695 	f = calloc(1, sizeof(*f));
696 	if (!f)
697 		return NULL;
698 
699 	fobj_init(f, &ops_locked_paged, num_pages);
700 
701 	return f;
702 }
703 
704 static void lop_free(struct fobj *fobj)
705 {
706 	assert(fobj->ops == &ops_locked_paged);
707 	fobj_uninit(fobj);
708 	free(fobj);
709 }
710 
711 static TEE_Result lop_load_page(struct fobj *fobj __maybe_unused,
712 				unsigned int page_idx __maybe_unused,
713 				void *va)
714 {
715 	assert(fobj->ops == &ops_locked_paged);
716 	assert(refcount_val(&fobj->refc));
717 	assert(page_idx < fobj->num_pages);
718 
719 	memset(va, 0, SMALL_PAGE_SIZE);
720 
721 	return TEE_SUCCESS;
722 }
723 DECLARE_KEEP_PAGER(lop_load_page);
724 
725 static TEE_Result lop_save_page(struct fobj *fobj __unused,
726 				unsigned int page_idx __unused,
727 				const void *va __unused)
728 {
729 	return TEE_ERROR_GENERIC;
730 }
731 DECLARE_KEEP_PAGER(lop_save_page);
732 
733 /*
734  * Note: this variable is weak just to ease breaking its dependency chain
735  * when added to the unpaged area.
736  */
737 const struct fobj_ops ops_locked_paged
738 __weak __relrodata_unpaged("ops_locked_paged") = {
739 	.free = lop_free,
740 	.load_page = lop_load_page,
741 	.save_page = lop_save_page,
742 };
743 #endif /*CFG_WITH_PAGER*/
744 
745 #ifndef CFG_PAGED_USER_TA
746 
747 struct fobj_sec_mem {
748 	tee_mm_entry_t *mm;
749 	struct fobj fobj;
750 };
751 
752 const struct fobj_ops ops_sec_mem;
753 
754 struct fobj *fobj_sec_mem_alloc(unsigned int num_pages)
755 {
756 	struct fobj_sec_mem *f = calloc(1, sizeof(*f));
757 	size_t size = 0;
758 	void *va = NULL;
759 
760 	if (!f)
761 		return NULL;
762 
763 	if (MUL_OVERFLOW(num_pages, SMALL_PAGE_SIZE, &size))
764 		goto err;
765 
766 	f->mm = phys_mem_ta_alloc(size);
767 	if (!f->mm)
768 		goto err;
769 
770 	va = phys_to_virt(tee_mm_get_smem(f->mm), MEM_AREA_SEC_RAM_OVERALL,
771 			  size);
772 	if (!va)
773 		goto err;
774 
775 	memtag_clear_mem(va, size);
776 	f->fobj.ops = &ops_sec_mem;
777 	f->fobj.num_pages = num_pages;
778 	refcount_set(&f->fobj.refc, 1);
779 
780 	return &f->fobj;
781 err:
782 	tee_mm_free(f->mm);
783 	free(f);
784 
785 	return NULL;
786 }
787 
788 static struct fobj_sec_mem *to_sec_mem(struct fobj *fobj)
789 {
790 	assert(fobj->ops == &ops_sec_mem);
791 
792 	return container_of(fobj, struct fobj_sec_mem, fobj);
793 }
794 
795 static void sec_mem_free(struct fobj *fobj)
796 {
797 	struct fobj_sec_mem *f = to_sec_mem(fobj);
798 
799 	assert(!refcount_val(&fobj->refc));
800 	tee_mm_free(f->mm);
801 	free(f);
802 }
803 
804 static paddr_t sec_mem_get_pa(struct fobj *fobj, unsigned int page_idx)
805 {
806 	struct fobj_sec_mem *f = to_sec_mem(fobj);
807 
808 	assert(refcount_val(&fobj->refc));
809 	assert(page_idx < fobj->num_pages);
810 
811 	return tee_mm_get_smem(f->mm) + page_idx * SMALL_PAGE_SIZE;
812 }
813 
814 /*
815  * Note: this variable is weak just to ease breaking its dependency chain
816  * when added to the unpaged area.
817  */
818 const struct fobj_ops ops_sec_mem __weak __relrodata_unpaged("ops_sec_mem") = {
819 	.free = sec_mem_free,
820 	.get_pa = sec_mem_get_pa,
821 };
822 
823 #endif /*PAGED_USER_TA*/
824