1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2019-2021, Linaro Limited 4 */ 5 6 #include <config.h> 7 #include <crypto/crypto.h> 8 #include <crypto/internal_aes-gcm.h> 9 #include <initcall.h> 10 #include <kernel/boot.h> 11 #include <kernel/panic.h> 12 #include <mm/core_memprot.h> 13 #include <mm/core_mmu.h> 14 #include <mm/fobj.h> 15 #include <mm/tee_mm.h> 16 #include <stdlib.h> 17 #include <string.h> 18 #include <tee_api_types.h> 19 #include <types_ext.h> 20 #include <util.h> 21 22 #ifdef CFG_WITH_PAGER 23 24 #define RWP_AE_KEY_BITS 256 25 26 struct rwp_aes_gcm_iv { 27 uint32_t iv[3]; 28 }; 29 30 #define RWP_AES_GCM_TAG_LEN 16 31 32 struct rwp_state { 33 uint64_t iv; 34 uint8_t tag[RWP_AES_GCM_TAG_LEN]; 35 }; 36 37 /* 38 * Note that this struct is padded to a size which is a power of 2, this 39 * guarantees that this state will not span two pages. This avoids a corner 40 * case in the pager when making the state available. 41 */ 42 struct rwp_state_padded { 43 struct rwp_state state; 44 uint64_t pad; 45 }; 46 47 struct fobj_rwp_unpaged_iv { 48 uint8_t *store; 49 struct rwp_state *state; 50 struct fobj fobj; 51 }; 52 53 struct fobj_rwp_paged_iv { 54 size_t idx; 55 struct fobj fobj; 56 }; 57 58 const struct fobj_ops ops_rwp_paged_iv; 59 const struct fobj_ops ops_rwp_unpaged_iv; 60 61 static struct internal_aes_gcm_key rwp_ae_key; 62 63 static struct rwp_state_padded *rwp_state_base; 64 static uint8_t *rwp_store_base; 65 66 static void fobj_init(struct fobj *fobj, const struct fobj_ops *ops, 67 unsigned int num_pages) 68 { 69 fobj->ops = ops; 70 fobj->num_pages = num_pages; 71 refcount_set(&fobj->refc, 1); 72 TAILQ_INIT(&fobj->regions); 73 } 74 75 static void fobj_uninit(struct fobj *fobj) 76 { 77 assert(!refcount_val(&fobj->refc)); 78 assert(TAILQ_EMPTY(&fobj->regions)); 79 tee_pager_invalidate_fobj(fobj); 80 } 81 82 static TEE_Result rwp_load_page(void *va, struct rwp_state *state, 83 const uint8_t *src) 84 { 85 struct rwp_aes_gcm_iv iv = { 86 .iv = { (vaddr_t)state, state->iv >> 32, state->iv } 87 }; 88 89 if (!state->iv) { 90 /* 91 * IV still zero which means that this is previously unused 92 * page. 93 */ 94 memset(va, 0, SMALL_PAGE_SIZE); 95 return TEE_SUCCESS; 96 } 97 98 return internal_aes_gcm_dec(&rwp_ae_key, &iv, sizeof(iv), 99 NULL, 0, src, SMALL_PAGE_SIZE, va, 100 state->tag, sizeof(state->tag)); 101 } 102 103 static TEE_Result rwp_save_page(const void *va, struct rwp_state *state, 104 uint8_t *dst) 105 { 106 size_t tag_len = sizeof(state->tag); 107 struct rwp_aes_gcm_iv iv = { }; 108 109 assert(state->iv + 1 > state->iv); 110 111 state->iv++; 112 113 /* 114 * IV is constructed as recommended in section "8.2.1 Deterministic 115 * Construction" of "Recommendation for Block Cipher Modes of 116 * Operation: Galois/Counter Mode (GCM) and GMAC", 117 * http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf 118 */ 119 iv.iv[0] = (vaddr_t)state; 120 iv.iv[1] = state->iv >> 32; 121 iv.iv[2] = state->iv; 122 123 return internal_aes_gcm_enc(&rwp_ae_key, &iv, sizeof(iv), 124 NULL, 0, va, SMALL_PAGE_SIZE, dst, 125 state->tag, &tag_len); 126 } 127 128 static struct rwp_state_padded *idx_to_state_padded(size_t idx) 129 { 130 assert(rwp_state_base); 131 return rwp_state_base + idx; 132 } 133 134 static uint8_t *idx_to_store(size_t idx) 135 { 136 assert(rwp_store_base); 137 return rwp_store_base + idx * SMALL_PAGE_SIZE; 138 } 139 140 static struct fobj *rwp_paged_iv_alloc(unsigned int num_pages) 141 { 142 struct fobj_rwp_paged_iv *rwp = NULL; 143 tee_mm_entry_t *mm = NULL; 144 size_t size = 0; 145 146 COMPILE_TIME_ASSERT(IS_POWER_OF_TWO(sizeof(struct rwp_state_padded))); 147 148 rwp = calloc(1, sizeof(*rwp)); 149 if (!rwp) 150 return NULL; 151 152 if (MUL_OVERFLOW(num_pages, SMALL_PAGE_SIZE, &size)) 153 goto err; 154 mm = tee_mm_alloc(&tee_mm_sec_ddr, size); 155 if (!mm) 156 goto err; 157 rwp->idx = (tee_mm_get_smem(mm) - tee_mm_sec_ddr.lo) / SMALL_PAGE_SIZE; 158 159 memset(idx_to_state_padded(rwp->idx), 0, 160 num_pages * sizeof(struct rwp_state_padded)); 161 162 fobj_init(&rwp->fobj, &ops_rwp_paged_iv, num_pages); 163 164 return &rwp->fobj; 165 err: 166 tee_mm_free(mm); 167 free(rwp); 168 169 return NULL; 170 } 171 172 static struct fobj_rwp_paged_iv *to_rwp_paged_iv(struct fobj *fobj) 173 { 174 assert(fobj->ops == &ops_rwp_paged_iv); 175 176 return container_of(fobj, struct fobj_rwp_paged_iv, fobj); 177 } 178 179 static TEE_Result rwp_paged_iv_load_page(struct fobj *fobj, 180 unsigned int page_idx, void *va) 181 { 182 struct fobj_rwp_paged_iv *rwp = to_rwp_paged_iv(fobj); 183 uint8_t *src = idx_to_store(rwp->idx) + page_idx * SMALL_PAGE_SIZE; 184 struct rwp_state_padded *st = idx_to_state_padded(rwp->idx + page_idx); 185 186 assert(refcount_val(&fobj->refc)); 187 assert(page_idx < fobj->num_pages); 188 189 return rwp_load_page(va, &st->state, src); 190 } 191 DECLARE_KEEP_PAGER(rwp_paged_iv_load_page); 192 193 static TEE_Result rwp_paged_iv_save_page(struct fobj *fobj, 194 unsigned int page_idx, const void *va) 195 { 196 struct fobj_rwp_paged_iv *rwp = to_rwp_paged_iv(fobj); 197 uint8_t *dst = idx_to_store(rwp->idx) + page_idx * SMALL_PAGE_SIZE; 198 struct rwp_state_padded *st = idx_to_state_padded(rwp->idx + page_idx); 199 200 assert(page_idx < fobj->num_pages); 201 202 if (!refcount_val(&fobj->refc)) { 203 /* 204 * This fobj is being teared down, it just hasn't had the time 205 * to call tee_pager_invalidate_fobj() yet. 206 */ 207 assert(TAILQ_EMPTY(&fobj->regions)); 208 return TEE_SUCCESS; 209 } 210 211 return rwp_save_page(va, &st->state, dst); 212 } 213 DECLARE_KEEP_PAGER(rwp_paged_iv_save_page); 214 215 static void rwp_paged_iv_free(struct fobj *fobj) 216 { 217 struct fobj_rwp_paged_iv *rwp = to_rwp_paged_iv(fobj); 218 paddr_t pa = rwp->idx * SMALL_PAGE_SIZE + tee_mm_sec_ddr.lo; 219 tee_mm_entry_t *mm = tee_mm_find(&tee_mm_sec_ddr, pa); 220 221 assert(mm); 222 223 fobj_uninit(fobj); 224 tee_mm_free(mm); 225 free(rwp); 226 } 227 228 static vaddr_t rwp_paged_iv_get_iv_vaddr(struct fobj *fobj, 229 unsigned int page_idx) 230 { 231 struct fobj_rwp_paged_iv *rwp = to_rwp_paged_iv(fobj); 232 struct rwp_state_padded *st = idx_to_state_padded(rwp->idx + page_idx); 233 234 assert(page_idx < fobj->num_pages); 235 return (vaddr_t)&st->state & ~SMALL_PAGE_MASK; 236 } 237 DECLARE_KEEP_PAGER(rwp_paged_iv_get_iv_vaddr); 238 239 /* 240 * Note: this variable is weak just to ease breaking its dependency chain 241 * when added to the unpaged area. 242 */ 243 const struct fobj_ops ops_rwp_paged_iv 244 __weak __rodata_unpaged("ops_rwp_paged_iv") = { 245 .free = rwp_paged_iv_free, 246 .load_page = rwp_paged_iv_load_page, 247 .save_page = rwp_paged_iv_save_page, 248 .get_iv_vaddr = rwp_paged_iv_get_iv_vaddr, 249 }; 250 251 static struct fobj *rwp_unpaged_iv_alloc(unsigned int num_pages) 252 { 253 struct fobj_rwp_unpaged_iv *rwp = NULL; 254 tee_mm_entry_t *mm = NULL; 255 size_t size = 0; 256 257 rwp = calloc(1, sizeof(*rwp)); 258 if (!rwp) 259 return NULL; 260 261 rwp->state = calloc(num_pages, sizeof(*rwp->state)); 262 if (!rwp->state) 263 goto err_free_rwp; 264 265 if (MUL_OVERFLOW(num_pages, SMALL_PAGE_SIZE, &size)) 266 goto err_free_state; 267 mm = tee_mm_alloc(&tee_mm_sec_ddr, size); 268 if (!mm) 269 goto err_free_state; 270 rwp->store = phys_to_virt(tee_mm_get_smem(mm), MEM_AREA_TA_RAM, size); 271 assert(rwp->store); 272 273 fobj_init(&rwp->fobj, &ops_rwp_unpaged_iv, num_pages); 274 275 return &rwp->fobj; 276 277 err_free_state: 278 free(rwp->state); 279 err_free_rwp: 280 free(rwp); 281 return NULL; 282 } 283 284 static struct fobj_rwp_unpaged_iv *to_rwp_unpaged_iv(struct fobj *fobj) 285 { 286 assert(fobj->ops == &ops_rwp_unpaged_iv); 287 288 return container_of(fobj, struct fobj_rwp_unpaged_iv, fobj); 289 } 290 291 static TEE_Result rwp_unpaged_iv_load_page(struct fobj *fobj, 292 unsigned int page_idx, void *va) 293 { 294 struct fobj_rwp_unpaged_iv *rwp = to_rwp_unpaged_iv(fobj); 295 uint8_t *src = rwp->store + page_idx * SMALL_PAGE_SIZE; 296 297 assert(refcount_val(&fobj->refc)); 298 assert(page_idx < fobj->num_pages); 299 300 return rwp_load_page(va, rwp->state + page_idx, src); 301 } 302 DECLARE_KEEP_PAGER(rwp_unpaged_iv_load_page); 303 304 static TEE_Result rwp_unpaged_iv_save_page(struct fobj *fobj, 305 unsigned int page_idx, 306 const void *va) 307 { 308 struct fobj_rwp_unpaged_iv *rwp = to_rwp_unpaged_iv(fobj); 309 uint8_t *dst = rwp->store + page_idx * SMALL_PAGE_SIZE; 310 311 assert(page_idx < fobj->num_pages); 312 313 if (!refcount_val(&fobj->refc)) { 314 /* 315 * This fobj is being teared down, it just hasn't had the time 316 * to call tee_pager_invalidate_fobj() yet. 317 */ 318 assert(TAILQ_EMPTY(&fobj->regions)); 319 return TEE_SUCCESS; 320 } 321 322 return rwp_save_page(va, rwp->state + page_idx, dst); 323 } 324 DECLARE_KEEP_PAGER(rwp_unpaged_iv_save_page); 325 326 static void rwp_unpaged_iv_free(struct fobj *fobj) 327 { 328 struct fobj_rwp_unpaged_iv *rwp = NULL; 329 tee_mm_entry_t *mm = NULL; 330 331 if (IS_ENABLED(CFG_CORE_PAGE_TAG_AND_IV)) 332 panic(); 333 334 rwp = to_rwp_unpaged_iv(fobj); 335 mm = tee_mm_find(&tee_mm_sec_ddr, virt_to_phys(rwp->store)); 336 337 assert(mm); 338 339 fobj_uninit(fobj); 340 tee_mm_free(mm); 341 free(rwp->state); 342 free(rwp); 343 } 344 345 /* 346 * Note: this variable is weak just to ease breaking its dependency chain 347 * when added to the unpaged area. 348 */ 349 const struct fobj_ops ops_rwp_unpaged_iv 350 __weak __rodata_unpaged("ops_rwp_unpaged_iv") = { 351 .free = rwp_unpaged_iv_free, 352 .load_page = rwp_unpaged_iv_load_page, 353 .save_page = rwp_unpaged_iv_save_page, 354 }; 355 356 static TEE_Result rwp_init(void) 357 { 358 uint8_t key[RWP_AE_KEY_BITS / 8] = { 0 }; 359 struct fobj *fobj = NULL; 360 size_t num_pool_pages = 0; 361 size_t num_fobj_pages = 0; 362 363 if (crypto_rng_read(key, sizeof(key)) != TEE_SUCCESS) 364 panic("failed to generate random"); 365 if (crypto_aes_expand_enc_key(key, sizeof(key), rwp_ae_key.data, 366 sizeof(rwp_ae_key.data), 367 &rwp_ae_key.rounds)) 368 panic("failed to expand key"); 369 370 if (!IS_ENABLED(CFG_CORE_PAGE_TAG_AND_IV)) 371 return TEE_SUCCESS; 372 373 assert(tee_mm_sec_ddr.size && !(tee_mm_sec_ddr.size & SMALL_PAGE_SIZE)); 374 375 num_pool_pages = tee_mm_sec_ddr.size / SMALL_PAGE_SIZE; 376 num_fobj_pages = ROUNDUP(num_pool_pages * sizeof(*rwp_state_base), 377 SMALL_PAGE_SIZE) / SMALL_PAGE_SIZE; 378 379 /* 380 * Each page in the pool needs a struct rwp_state. 381 * 382 * This isn't entirely true, the pages not used by 383 * fobj_rw_paged_alloc() don't need any. A future optimization 384 * may try to avoid allocating for such pages. 385 */ 386 fobj = rwp_unpaged_iv_alloc(num_fobj_pages); 387 if (!fobj) 388 panic(); 389 390 rwp_state_base = (void *)tee_pager_init_iv_region(fobj); 391 assert(rwp_state_base); 392 393 rwp_store_base = phys_to_virt(tee_mm_sec_ddr.lo, MEM_AREA_TA_RAM, 394 tee_mm_sec_ddr.size); 395 assert(rwp_store_base); 396 397 return TEE_SUCCESS; 398 } 399 driver_init_late(rwp_init); 400 401 struct fobj *fobj_rw_paged_alloc(unsigned int num_pages) 402 { 403 assert(num_pages); 404 405 if (IS_ENABLED(CFG_CORE_PAGE_TAG_AND_IV)) 406 return rwp_paged_iv_alloc(num_pages); 407 else 408 return rwp_unpaged_iv_alloc(num_pages); 409 } 410 411 struct fobj_rop { 412 uint8_t *hashes; 413 uint8_t *store; 414 struct fobj fobj; 415 }; 416 417 const struct fobj_ops ops_ro_paged; 418 419 static void rop_init(struct fobj_rop *rop, const struct fobj_ops *ops, 420 unsigned int num_pages, void *hashes, void *store) 421 { 422 rop->hashes = hashes; 423 rop->store = store; 424 fobj_init(&rop->fobj, ops, num_pages); 425 } 426 427 struct fobj *fobj_ro_paged_alloc(unsigned int num_pages, void *hashes, 428 void *store) 429 { 430 struct fobj_rop *rop = NULL; 431 432 assert(num_pages && hashes && store); 433 434 rop = calloc(1, sizeof(*rop)); 435 if (!rop) 436 return NULL; 437 438 rop_init(rop, &ops_ro_paged, num_pages, hashes, store); 439 440 return &rop->fobj; 441 } 442 443 static struct fobj_rop *to_rop(struct fobj *fobj) 444 { 445 assert(fobj->ops == &ops_ro_paged); 446 447 return container_of(fobj, struct fobj_rop, fobj); 448 } 449 450 static void rop_uninit(struct fobj_rop *rop) 451 { 452 fobj_uninit(&rop->fobj); 453 tee_mm_free(tee_mm_find(&tee_mm_sec_ddr, virt_to_phys(rop->store))); 454 free(rop->hashes); 455 } 456 457 static void rop_free(struct fobj *fobj) 458 { 459 struct fobj_rop *rop = to_rop(fobj); 460 461 rop_uninit(rop); 462 free(rop); 463 } 464 465 static TEE_Result rop_load_page_helper(struct fobj_rop *rop, 466 unsigned int page_idx, void *va) 467 { 468 const uint8_t *hash = rop->hashes + page_idx * TEE_SHA256_HASH_SIZE; 469 const uint8_t *src = rop->store + page_idx * SMALL_PAGE_SIZE; 470 471 assert(refcount_val(&rop->fobj.refc)); 472 assert(page_idx < rop->fobj.num_pages); 473 memcpy(va, src, SMALL_PAGE_SIZE); 474 475 return hash_sha256_check(hash, va, SMALL_PAGE_SIZE); 476 } 477 478 static TEE_Result rop_load_page(struct fobj *fobj, unsigned int page_idx, 479 void *va) 480 { 481 return rop_load_page_helper(to_rop(fobj), page_idx, va); 482 } 483 DECLARE_KEEP_PAGER(rop_load_page); 484 485 static TEE_Result rop_save_page(struct fobj *fobj __unused, 486 unsigned int page_idx __unused, 487 const void *va __unused) 488 { 489 return TEE_ERROR_GENERIC; 490 } 491 DECLARE_KEEP_PAGER(rop_save_page); 492 493 /* 494 * Note: this variable is weak just to ease breaking its dependency chain 495 * when added to the unpaged area. 496 */ 497 const struct fobj_ops ops_ro_paged __weak __rodata_unpaged("ops_ro_paged") = { 498 .free = rop_free, 499 .load_page = rop_load_page, 500 .save_page = rop_save_page, 501 }; 502 503 #ifdef CFG_CORE_ASLR 504 /* 505 * When using relocated pages the relocation information must be applied 506 * before the pages can be used. With read-only paging the content is only 507 * integrity protected so relocation cannot be applied on pages in the less 508 * secure "store" or the load_address selected by ASLR could be given away. 509 * This means that each time a page has been loaded and verified it has to 510 * have its relocation information applied before it can be used. 511 * 512 * Only the relative relocations are supported, this allows a rather compact 513 * represenation of the needed relocation information in this struct. 514 * r_offset is replaced with the offset into the page that need to be updated, 515 * this number can never be larger than SMALL_PAGE_SIZE so a uint16_t can be 516 * used to represent it. 517 * 518 * All relocations are converted and stored in @relocs. @page_reloc_idx is 519 * an array of length @rop.fobj.num_pages with an entry for each page. If 520 * @page_reloc_idx[page_idx] isn't UINT16_MAX it's an index into @relocs. 521 */ 522 struct fobj_ro_reloc_paged { 523 uint16_t *page_reloc_idx; 524 uint16_t *relocs; 525 unsigned int num_relocs; 526 struct fobj_rop rop; 527 }; 528 529 const struct fobj_ops ops_ro_reloc_paged; 530 531 static unsigned int get_num_rels(unsigned int num_pages, 532 unsigned int reloc_offs, 533 const uint32_t *reloc, unsigned int num_relocs) 534 { 535 const unsigned int align_mask __maybe_unused = sizeof(long) - 1; 536 unsigned int nrels = 0; 537 unsigned int n = 0; 538 vaddr_t offs = 0; 539 540 /* 541 * Count the number of relocations which are needed for these 542 * pages. Also check that the data is well formed, only expected 543 * relocations and sorted in order of address which it applies to. 544 */ 545 for (; n < num_relocs; n++) { 546 assert(IS_ALIGNED_WITH_TYPE(reloc[n], unsigned long)); 547 assert(offs < reloc[n]); /* check that it's sorted */ 548 offs = reloc[n]; 549 if (offs >= reloc_offs && 550 offs <= reloc_offs + num_pages * SMALL_PAGE_SIZE) 551 nrels++; 552 } 553 554 return nrels; 555 } 556 557 static void init_rels(struct fobj_ro_reloc_paged *rrp, unsigned int reloc_offs, 558 const uint32_t *reloc, unsigned int num_relocs) 559 { 560 unsigned int npg = rrp->rop.fobj.num_pages; 561 unsigned int pg_idx = 0; 562 unsigned int reln = 0; 563 unsigned int n = 0; 564 uint32_t r = 0; 565 566 for (n = 0; n < npg; n++) 567 rrp->page_reloc_idx[n] = UINT16_MAX; 568 569 for (n = 0; n < num_relocs ; n++) { 570 if (reloc[n] < reloc_offs) 571 continue; 572 573 /* r is the offset from beginning of this fobj */ 574 r = reloc[n] - reloc_offs; 575 576 pg_idx = r / SMALL_PAGE_SIZE; 577 if (pg_idx >= npg) 578 break; 579 580 if (rrp->page_reloc_idx[pg_idx] == UINT16_MAX) 581 rrp->page_reloc_idx[pg_idx] = reln; 582 rrp->relocs[reln] = r - pg_idx * SMALL_PAGE_SIZE; 583 reln++; 584 } 585 586 assert(reln == rrp->num_relocs); 587 } 588 589 struct fobj *fobj_ro_reloc_paged_alloc(unsigned int num_pages, void *hashes, 590 unsigned int reloc_offs, 591 const void *reloc, 592 unsigned int reloc_len, void *store) 593 { 594 struct fobj_ro_reloc_paged *rrp = NULL; 595 const unsigned int num_relocs = reloc_len / sizeof(uint32_t); 596 unsigned int nrels = 0; 597 598 assert(IS_ALIGNED_WITH_TYPE(reloc, uint32_t)); 599 assert(IS_ALIGNED_WITH_TYPE(reloc_len, uint32_t)); 600 assert(num_pages && hashes && store); 601 if (!reloc_len) { 602 assert(!reloc); 603 return fobj_ro_paged_alloc(num_pages, hashes, store); 604 } 605 assert(reloc); 606 607 nrels = get_num_rels(num_pages, reloc_offs, reloc, num_relocs); 608 if (!nrels) 609 return fobj_ro_paged_alloc(num_pages, hashes, store); 610 611 rrp = calloc(1, sizeof(*rrp) + num_pages * sizeof(uint16_t) + 612 nrels * sizeof(uint16_t)); 613 if (!rrp) 614 return NULL; 615 rop_init(&rrp->rop, &ops_ro_reloc_paged, num_pages, hashes, store); 616 rrp->page_reloc_idx = (uint16_t *)(rrp + 1); 617 rrp->relocs = rrp->page_reloc_idx + num_pages; 618 rrp->num_relocs = nrels; 619 init_rels(rrp, reloc_offs, reloc, num_relocs); 620 621 return &rrp->rop.fobj; 622 } 623 624 static struct fobj_ro_reloc_paged *to_rrp(struct fobj *fobj) 625 { 626 assert(fobj->ops == &ops_ro_reloc_paged); 627 628 return container_of(fobj, struct fobj_ro_reloc_paged, rop.fobj); 629 } 630 631 static void rrp_free(struct fobj *fobj) 632 { 633 struct fobj_ro_reloc_paged *rrp = to_rrp(fobj); 634 635 rop_uninit(&rrp->rop); 636 free(rrp); 637 } 638 639 static TEE_Result rrp_load_page(struct fobj *fobj, unsigned int page_idx, 640 void *va) 641 { 642 struct fobj_ro_reloc_paged *rrp = to_rrp(fobj); 643 unsigned int end_rel = rrp->num_relocs; 644 TEE_Result res = TEE_SUCCESS; 645 unsigned long *where = NULL; 646 unsigned int n = 0; 647 648 res = rop_load_page_helper(&rrp->rop, page_idx, va); 649 if (res) 650 return res; 651 652 /* Find the reloc index of the next page to tell when we're done */ 653 for (n = page_idx + 1; n < fobj->num_pages; n++) { 654 if (rrp->page_reloc_idx[n] != UINT16_MAX) { 655 end_rel = rrp->page_reloc_idx[n]; 656 break; 657 } 658 } 659 660 for (n = rrp->page_reloc_idx[page_idx]; n < end_rel; n++) { 661 where = (void *)((vaddr_t)va + rrp->relocs[n]); 662 *where += boot_mmu_config.load_offset; 663 } 664 665 return TEE_SUCCESS; 666 } 667 DECLARE_KEEP_PAGER(rrp_load_page); 668 669 /* 670 * Note: this variable is weak just to ease breaking its dependency chain 671 * when added to the unpaged area. 672 */ 673 const struct fobj_ops ops_ro_reloc_paged 674 __weak __rodata_unpaged("ops_ro_reloc_paged") = { 675 .free = rrp_free, 676 .load_page = rrp_load_page, 677 .save_page = rop_save_page, /* Direct reuse */ 678 }; 679 #endif /*CFG_CORE_ASLR*/ 680 681 const struct fobj_ops ops_locked_paged; 682 683 struct fobj *fobj_locked_paged_alloc(unsigned int num_pages) 684 { 685 struct fobj *f = NULL; 686 687 assert(num_pages); 688 689 f = calloc(1, sizeof(*f)); 690 if (!f) 691 return NULL; 692 693 fobj_init(f, &ops_locked_paged, num_pages); 694 695 return f; 696 } 697 698 static void lop_free(struct fobj *fobj) 699 { 700 assert(fobj->ops == &ops_locked_paged); 701 fobj_uninit(fobj); 702 free(fobj); 703 } 704 705 static TEE_Result lop_load_page(struct fobj *fobj __maybe_unused, 706 unsigned int page_idx __maybe_unused, 707 void *va) 708 { 709 assert(fobj->ops == &ops_locked_paged); 710 assert(refcount_val(&fobj->refc)); 711 assert(page_idx < fobj->num_pages); 712 713 memset(va, 0, SMALL_PAGE_SIZE); 714 715 return TEE_SUCCESS; 716 } 717 DECLARE_KEEP_PAGER(lop_load_page); 718 719 static TEE_Result lop_save_page(struct fobj *fobj __unused, 720 unsigned int page_idx __unused, 721 const void *va __unused) 722 { 723 return TEE_ERROR_GENERIC; 724 } 725 DECLARE_KEEP_PAGER(lop_save_page); 726 727 /* 728 * Note: this variable is weak just to ease breaking its dependency chain 729 * when added to the unpaged area. 730 */ 731 const struct fobj_ops ops_locked_paged 732 __weak __rodata_unpaged("ops_locked_paged") = { 733 .free = lop_free, 734 .load_page = lop_load_page, 735 .save_page = lop_save_page, 736 }; 737 #endif /*CFG_WITH_PAGER*/ 738 739 #ifndef CFG_PAGED_USER_TA 740 741 struct fobj_sec_mem { 742 tee_mm_entry_t *mm; 743 struct fobj fobj; 744 }; 745 746 const struct fobj_ops ops_sec_mem; 747 748 struct fobj *fobj_sec_mem_alloc(unsigned int num_pages) 749 { 750 struct fobj_sec_mem *f = calloc(1, sizeof(*f)); 751 size_t size = 0; 752 void *va = NULL; 753 754 if (!f) 755 return NULL; 756 757 if (MUL_OVERFLOW(num_pages, SMALL_PAGE_SIZE, &size)) 758 goto err; 759 760 f->mm = tee_mm_alloc(&tee_mm_sec_ddr, size); 761 if (!f->mm) 762 goto err; 763 764 va = phys_to_virt(tee_mm_get_smem(f->mm), MEM_AREA_TA_RAM, size); 765 if (!va) 766 goto err; 767 768 memset(va, 0, size); 769 f->fobj.ops = &ops_sec_mem; 770 f->fobj.num_pages = num_pages; 771 refcount_set(&f->fobj.refc, 1); 772 773 return &f->fobj; 774 err: 775 tee_mm_free(f->mm); 776 free(f); 777 778 return NULL; 779 } 780 781 static struct fobj_sec_mem *to_sec_mem(struct fobj *fobj) 782 { 783 assert(fobj->ops == &ops_sec_mem); 784 785 return container_of(fobj, struct fobj_sec_mem, fobj); 786 } 787 788 static void sec_mem_free(struct fobj *fobj) 789 { 790 struct fobj_sec_mem *f = to_sec_mem(fobj); 791 792 assert(!refcount_val(&fobj->refc)); 793 tee_mm_free(f->mm); 794 free(f); 795 } 796 797 static paddr_t sec_mem_get_pa(struct fobj *fobj, unsigned int page_idx) 798 { 799 struct fobj_sec_mem *f = to_sec_mem(fobj); 800 801 assert(refcount_val(&fobj->refc)); 802 assert(page_idx < fobj->num_pages); 803 804 return tee_mm_get_smem(f->mm) + page_idx * SMALL_PAGE_SIZE; 805 } 806 807 /* 808 * Note: this variable is weak just to ease breaking its dependency chain 809 * when added to the unpaged area. 810 */ 811 const struct fobj_ops ops_sec_mem __weak __rodata_unpaged("ops_sec_mem") = { 812 .free = sec_mem_free, 813 .get_pa = sec_mem_get_pa, 814 }; 815 816 #endif /*PAGED_USER_TA*/ 817