xref: /optee_os/core/mm/fobj.c (revision 27c649258feac14983d97f07fb7247a67726d0e8)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2019-2021, Linaro Limited
4  */
5 
6 #include <config.h>
7 #include <crypto/crypto.h>
8 #include <crypto/internal_aes-gcm.h>
9 #include <initcall.h>
10 #include <kernel/boot.h>
11 #include <kernel/panic.h>
12 #include <mm/core_memprot.h>
13 #include <mm/core_mmu.h>
14 #include <mm/fobj.h>
15 #include <mm/tee_mm.h>
16 #include <stdlib.h>
17 #include <string.h>
18 #include <tee_api_types.h>
19 #include <types_ext.h>
20 #include <util.h>
21 
22 #ifdef CFG_WITH_PAGER
23 
24 #define RWP_AE_KEY_BITS		256
25 
26 struct rwp_aes_gcm_iv {
27 	uint32_t iv[3];
28 };
29 
30 #define RWP_AES_GCM_TAG_LEN	16
31 
32 struct rwp_state {
33 	uint64_t iv;
34 	uint8_t tag[RWP_AES_GCM_TAG_LEN];
35 };
36 
37 /*
38  * Note that this struct is padded to a size which is a power of 2, this
39  * guarantees that this state will not span two pages. This avoids a corner
40  * case in the pager when making the state available.
41  */
42 struct rwp_state_padded {
43 	struct rwp_state state;
44 	uint64_t pad;
45 };
46 
47 struct fobj_rwp_unpaged_iv {
48 	uint8_t *store;
49 	struct rwp_state *state;
50 	struct fobj fobj;
51 };
52 
53 struct fobj_rwp_paged_iv {
54 	size_t idx;
55 	struct fobj fobj;
56 };
57 
58 static const struct fobj_ops ops_rwp_paged_iv;
59 static const struct fobj_ops ops_rwp_unpaged_iv;
60 
61 static struct internal_aes_gcm_key rwp_ae_key;
62 
63 static struct rwp_state_padded *rwp_state_base;
64 static uint8_t *rwp_store_base;
65 
66 static void fobj_init(struct fobj *fobj, const struct fobj_ops *ops,
67 		      unsigned int num_pages)
68 {
69 	fobj->ops = ops;
70 	fobj->num_pages = num_pages;
71 	refcount_set(&fobj->refc, 1);
72 	TAILQ_INIT(&fobj->regions);
73 }
74 
75 static void fobj_uninit(struct fobj *fobj)
76 {
77 	assert(!refcount_val(&fobj->refc));
78 	assert(TAILQ_EMPTY(&fobj->regions));
79 	tee_pager_invalidate_fobj(fobj);
80 }
81 
82 static TEE_Result rwp_load_page(void *va, struct rwp_state *state,
83 				const uint8_t *src)
84 {
85 	struct rwp_aes_gcm_iv iv = {
86 		.iv = { (vaddr_t)state, state->iv >> 32, state->iv }
87 	};
88 
89 	if (!state->iv) {
90 		/*
91 		 * IV still zero which means that this is previously unused
92 		 * page.
93 		 */
94 		memset(va, 0, SMALL_PAGE_SIZE);
95 		return TEE_SUCCESS;
96 	}
97 
98 	return internal_aes_gcm_dec(&rwp_ae_key, &iv, sizeof(iv),
99 				    NULL, 0, src, SMALL_PAGE_SIZE, va,
100 				    state->tag, sizeof(state->tag));
101 }
102 
103 static TEE_Result rwp_save_page(const void *va, struct rwp_state *state,
104 				uint8_t *dst)
105 {
106 	size_t tag_len = sizeof(state->tag);
107 	struct rwp_aes_gcm_iv iv = { };
108 
109 	assert(state->iv + 1 > state->iv);
110 
111 	state->iv++;
112 
113 	/*
114 	 * IV is constructed as recommended in section "8.2.1 Deterministic
115 	 * Construction" of "Recommendation for Block Cipher Modes of
116 	 * Operation: Galois/Counter Mode (GCM) and GMAC",
117 	 * http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
118 	 */
119 	iv.iv[0] = (vaddr_t)state;
120 	iv.iv[1] = state->iv >> 32;
121 	iv.iv[2] = state->iv;
122 
123 	return internal_aes_gcm_enc(&rwp_ae_key, &iv, sizeof(iv),
124 				    NULL, 0, va, SMALL_PAGE_SIZE, dst,
125 				    state->tag, &tag_len);
126 }
127 
128 static struct rwp_state_padded *idx_to_state_padded(size_t idx)
129 {
130 	assert(rwp_state_base);
131 	return rwp_state_base + idx;
132 }
133 
134 static uint8_t *idx_to_store(size_t idx)
135 {
136 	assert(rwp_store_base);
137 	return rwp_store_base + idx * SMALL_PAGE_SIZE;
138 }
139 
140 static struct fobj *rwp_paged_iv_alloc(unsigned int num_pages)
141 {
142 	struct fobj_rwp_paged_iv *rwp = NULL;
143 	tee_mm_entry_t *mm = NULL;
144 	size_t size = 0;
145 
146 	COMPILE_TIME_ASSERT(IS_POWER_OF_TWO(sizeof(struct rwp_state_padded)));
147 
148 	rwp = calloc(1, sizeof(*rwp));
149 	if (!rwp)
150 		return NULL;
151 
152 	if (MUL_OVERFLOW(num_pages, SMALL_PAGE_SIZE, &size))
153 		goto err;
154 	mm = tee_mm_alloc(&tee_mm_sec_ddr, size);
155 	if (!mm)
156 		goto err;
157 	rwp->idx = (tee_mm_get_smem(mm) - tee_mm_sec_ddr.lo) / SMALL_PAGE_SIZE;
158 
159 	memset(idx_to_state_padded(rwp->idx), 0,
160 	       num_pages * sizeof(struct rwp_state_padded));
161 
162 	fobj_init(&rwp->fobj, &ops_rwp_paged_iv, num_pages);
163 
164 	return &rwp->fobj;
165 err:
166 	tee_mm_free(mm);
167 	free(rwp);
168 
169 	return NULL;
170 }
171 
172 static struct fobj_rwp_paged_iv *to_rwp_paged_iv(struct fobj *fobj)
173 {
174 	assert(fobj->ops == &ops_rwp_paged_iv);
175 
176 	return container_of(fobj, struct fobj_rwp_paged_iv, fobj);
177 }
178 
179 static TEE_Result rwp_paged_iv_load_page(struct fobj *fobj,
180 					 unsigned int page_idx, void *va)
181 {
182 	struct fobj_rwp_paged_iv *rwp = to_rwp_paged_iv(fobj);
183 	uint8_t *src = idx_to_store(rwp->idx) + page_idx * SMALL_PAGE_SIZE;
184 	struct rwp_state_padded *st = idx_to_state_padded(rwp->idx + page_idx);
185 
186 	assert(refcount_val(&fobj->refc));
187 	assert(page_idx < fobj->num_pages);
188 
189 	return rwp_load_page(va, &st->state, src);
190 }
191 DECLARE_KEEP_PAGER(rwp_paged_iv_load_page);
192 
193 static TEE_Result rwp_paged_iv_save_page(struct fobj *fobj,
194 					 unsigned int page_idx, const void *va)
195 {
196 	struct fobj_rwp_paged_iv *rwp = to_rwp_paged_iv(fobj);
197 	uint8_t *dst = idx_to_store(rwp->idx) + page_idx * SMALL_PAGE_SIZE;
198 	struct rwp_state_padded *st = idx_to_state_padded(rwp->idx + page_idx);
199 
200 	assert(page_idx < fobj->num_pages);
201 
202 	if (!refcount_val(&fobj->refc)) {
203 		/*
204 		 * This fobj is being teared down, it just hasn't had the time
205 		 * to call tee_pager_invalidate_fobj() yet.
206 		 */
207 		assert(TAILQ_EMPTY(&fobj->regions));
208 		return TEE_SUCCESS;
209 	}
210 
211 	return rwp_save_page(va, &st->state, dst);
212 }
213 DECLARE_KEEP_PAGER(rwp_paged_iv_save_page);
214 
215 static void rwp_paged_iv_free(struct fobj *fobj)
216 {
217 	struct fobj_rwp_paged_iv *rwp = to_rwp_paged_iv(fobj);
218 	paddr_t pa = rwp->idx * SMALL_PAGE_SIZE + tee_mm_sec_ddr.lo;
219 	tee_mm_entry_t *mm = tee_mm_find(&tee_mm_sec_ddr, pa);
220 
221 	assert(mm);
222 
223 	fobj_uninit(fobj);
224 	tee_mm_free(mm);
225 	free(rwp);
226 }
227 
228 static vaddr_t rwp_paged_iv_get_iv_vaddr(struct fobj *fobj,
229 					 unsigned int page_idx)
230 {
231 	struct fobj_rwp_paged_iv *rwp = to_rwp_paged_iv(fobj);
232 	struct rwp_state_padded *st = idx_to_state_padded(rwp->idx + page_idx);
233 
234 	assert(page_idx < fobj->num_pages);
235 	return (vaddr_t)&st->state & ~SMALL_PAGE_MASK;
236 }
237 DECLARE_KEEP_PAGER(rwp_paged_iv_get_iv_vaddr);
238 
239 static const struct fobj_ops ops_rwp_paged_iv
240 __rodata_unpaged("ops_rwp_paged_iv") = {
241 	.free = rwp_paged_iv_free,
242 	.load_page = rwp_paged_iv_load_page,
243 	.save_page = rwp_paged_iv_save_page,
244 	.get_iv_vaddr = rwp_paged_iv_get_iv_vaddr,
245 };
246 
247 static struct fobj *rwp_unpaged_iv_alloc(unsigned int num_pages)
248 {
249 	struct fobj_rwp_unpaged_iv *rwp = NULL;
250 	tee_mm_entry_t *mm = NULL;
251 	size_t size = 0;
252 
253 	rwp = calloc(1, sizeof(*rwp));
254 	if (!rwp)
255 		return NULL;
256 
257 	rwp->state = calloc(num_pages, sizeof(*rwp->state));
258 	if (!rwp->state)
259 		goto err_free_rwp;
260 
261 	if (MUL_OVERFLOW(num_pages, SMALL_PAGE_SIZE, &size))
262 		goto err_free_state;
263 	mm = tee_mm_alloc(&tee_mm_sec_ddr, size);
264 	if (!mm)
265 		goto err_free_state;
266 	rwp->store = phys_to_virt(tee_mm_get_smem(mm), MEM_AREA_TA_RAM);
267 	assert(rwp->store);
268 
269 	fobj_init(&rwp->fobj, &ops_rwp_unpaged_iv, num_pages);
270 
271 	return &rwp->fobj;
272 
273 err_free_state:
274 	free(rwp->state);
275 err_free_rwp:
276 	free(rwp);
277 	return NULL;
278 }
279 
280 static struct fobj_rwp_unpaged_iv *to_rwp_unpaged_iv(struct fobj *fobj)
281 {
282 	assert(fobj->ops == &ops_rwp_unpaged_iv);
283 
284 	return container_of(fobj, struct fobj_rwp_unpaged_iv, fobj);
285 }
286 
287 static TEE_Result rwp_unpaged_iv_load_page(struct fobj *fobj,
288 					   unsigned int page_idx, void *va)
289 {
290 	struct fobj_rwp_unpaged_iv *rwp = to_rwp_unpaged_iv(fobj);
291 	uint8_t *src = rwp->store + page_idx * SMALL_PAGE_SIZE;
292 
293 	assert(refcount_val(&fobj->refc));
294 	assert(page_idx < fobj->num_pages);
295 
296 	return rwp_load_page(va, rwp->state + page_idx, src);
297 }
298 DECLARE_KEEP_PAGER(rwp_unpaged_iv_load_page);
299 
300 static TEE_Result rwp_unpaged_iv_save_page(struct fobj *fobj,
301 					   unsigned int page_idx,
302 					   const void *va)
303 {
304 	struct fobj_rwp_unpaged_iv *rwp = to_rwp_unpaged_iv(fobj);
305 	uint8_t *dst = rwp->store + page_idx * SMALL_PAGE_SIZE;
306 
307 	assert(page_idx < fobj->num_pages);
308 
309 	if (!refcount_val(&fobj->refc)) {
310 		/*
311 		 * This fobj is being teared down, it just hasn't had the time
312 		 * to call tee_pager_invalidate_fobj() yet.
313 		 */
314 		assert(TAILQ_EMPTY(&fobj->regions));
315 		return TEE_SUCCESS;
316 	}
317 
318 	return rwp_save_page(va, rwp->state + page_idx, dst);
319 }
320 DECLARE_KEEP_PAGER(rwp_unpaged_iv_save_page);
321 
322 static void rwp_unpaged_iv_free(struct fobj *fobj)
323 {
324 	struct fobj_rwp_unpaged_iv *rwp = NULL;
325 	tee_mm_entry_t *mm = NULL;
326 
327 	if (IS_ENABLED(CFG_CORE_PAGE_TAG_AND_IV))
328 		panic();
329 
330 	rwp = to_rwp_unpaged_iv(fobj);
331 	mm = tee_mm_find(&tee_mm_sec_ddr, virt_to_phys(rwp->store));
332 
333 	assert(mm);
334 
335 	fobj_uninit(fobj);
336 	tee_mm_free(mm);
337 	free(rwp->state);
338 	free(rwp);
339 }
340 
341 static const struct fobj_ops ops_rwp_unpaged_iv
342 __rodata_unpaged("ops_rwp_unpaged_iv") = {
343 	.free = rwp_unpaged_iv_free,
344 	.load_page = rwp_unpaged_iv_load_page,
345 	.save_page = rwp_unpaged_iv_save_page,
346 };
347 
348 static TEE_Result rwp_init(void)
349 {
350 	uint8_t key[RWP_AE_KEY_BITS / 8] = { 0 };
351 	struct fobj *fobj = NULL;
352 	size_t num_pool_pages = 0;
353 	size_t num_fobj_pages = 0;
354 	size_t sz = 0;
355 
356 	if (crypto_rng_read(key, sizeof(key)) != TEE_SUCCESS)
357 		panic("failed to generate random");
358 	if (crypto_aes_expand_enc_key(key, sizeof(key), rwp_ae_key.data,
359 				      sizeof(rwp_ae_key.data),
360 				      &rwp_ae_key.rounds))
361 		panic("failed to expand key");
362 
363 	if (!IS_ENABLED(CFG_CORE_PAGE_TAG_AND_IV))
364 		return TEE_SUCCESS;
365 
366 	assert(tee_mm_sec_ddr.hi > tee_mm_sec_ddr.lo);
367 	sz = tee_mm_sec_ddr.hi - tee_mm_sec_ddr.lo;
368 	assert(!(sz & SMALL_PAGE_SIZE));
369 
370 	num_pool_pages = sz / SMALL_PAGE_SIZE;
371 	num_fobj_pages = ROUNDUP(num_pool_pages * sizeof(*rwp_state_base),
372 				 SMALL_PAGE_SIZE) / SMALL_PAGE_SIZE;
373 
374 	/*
375 	 * Each page in the pool needs a struct rwp_state.
376 	 *
377 	 * This isn't entirely true, the pages not used by
378 	 * fobj_rw_paged_alloc() don't need any. A future optimization
379 	 * may try to avoid allocating for such pages.
380 	 */
381 	fobj = rwp_unpaged_iv_alloc(num_fobj_pages);
382 	if (!fobj)
383 		panic();
384 
385 	rwp_state_base = (void *)tee_pager_init_iv_region(fobj);
386 	assert(rwp_state_base);
387 
388 	rwp_store_base = phys_to_virt(tee_mm_sec_ddr.lo, MEM_AREA_TA_RAM);
389 	assert(rwp_store_base);
390 
391 	return TEE_SUCCESS;
392 }
393 driver_init_late(rwp_init);
394 
395 struct fobj *fobj_rw_paged_alloc(unsigned int num_pages)
396 {
397 	assert(num_pages);
398 
399 	if (IS_ENABLED(CFG_CORE_PAGE_TAG_AND_IV))
400 		return rwp_paged_iv_alloc(num_pages);
401 	else
402 		return rwp_unpaged_iv_alloc(num_pages);
403 }
404 
405 struct fobj_rop {
406 	uint8_t *hashes;
407 	uint8_t *store;
408 	struct fobj fobj;
409 };
410 
411 static const struct fobj_ops ops_ro_paged;
412 
413 static void rop_init(struct fobj_rop *rop, const struct fobj_ops *ops,
414 		     unsigned int num_pages, void *hashes, void *store)
415 {
416 	rop->hashes = hashes;
417 	rop->store = store;
418 	fobj_init(&rop->fobj, ops, num_pages);
419 }
420 
421 struct fobj *fobj_ro_paged_alloc(unsigned int num_pages, void *hashes,
422 				 void *store)
423 {
424 	struct fobj_rop *rop = NULL;
425 
426 	assert(num_pages && hashes && store);
427 
428 	rop = calloc(1, sizeof(*rop));
429 	if (!rop)
430 		return NULL;
431 
432 	rop_init(rop, &ops_ro_paged, num_pages, hashes, store);
433 
434 	return &rop->fobj;
435 }
436 
437 static struct fobj_rop *to_rop(struct fobj *fobj)
438 {
439 	assert(fobj->ops == &ops_ro_paged);
440 
441 	return container_of(fobj, struct fobj_rop, fobj);
442 }
443 
444 static void rop_uninit(struct fobj_rop *rop)
445 {
446 	fobj_uninit(&rop->fobj);
447 	tee_mm_free(tee_mm_find(&tee_mm_sec_ddr, virt_to_phys(rop->store)));
448 	free(rop->hashes);
449 }
450 
451 static void rop_free(struct fobj *fobj)
452 {
453 	struct fobj_rop *rop = to_rop(fobj);
454 
455 	rop_uninit(rop);
456 	free(rop);
457 }
458 
459 static TEE_Result rop_load_page_helper(struct fobj_rop *rop,
460 				       unsigned int page_idx, void *va)
461 {
462 	const uint8_t *hash = rop->hashes + page_idx * TEE_SHA256_HASH_SIZE;
463 	const uint8_t *src = rop->store + page_idx * SMALL_PAGE_SIZE;
464 
465 	assert(refcount_val(&rop->fobj.refc));
466 	assert(page_idx < rop->fobj.num_pages);
467 	memcpy(va, src, SMALL_PAGE_SIZE);
468 
469 	return hash_sha256_check(hash, va, SMALL_PAGE_SIZE);
470 }
471 
472 static TEE_Result rop_load_page(struct fobj *fobj, unsigned int page_idx,
473 				void *va)
474 {
475 	return rop_load_page_helper(to_rop(fobj), page_idx, va);
476 }
477 DECLARE_KEEP_PAGER(rop_load_page);
478 
479 static TEE_Result rop_save_page(struct fobj *fobj __unused,
480 				unsigned int page_idx __unused,
481 				const void *va __unused)
482 {
483 	return TEE_ERROR_GENERIC;
484 }
485 DECLARE_KEEP_PAGER(rop_save_page);
486 
487 static const struct fobj_ops ops_ro_paged __rodata_unpaged("ops_ro_paged") = {
488 	.free = rop_free,
489 	.load_page = rop_load_page,
490 	.save_page = rop_save_page,
491 };
492 
493 #ifdef CFG_CORE_ASLR
494 /*
495  * When using relocated pages the relocation information must be applied
496  * before the pages can be used. With read-only paging the content is only
497  * integrity protected so relocation cannot be applied on pages in the less
498  * secure "store" or the load_address selected by ASLR could be given away.
499  * This means that each time a page has been loaded and verified it has to
500  * have its relocation information applied before it can be used.
501  *
502  * Only the relative relocations are supported, this allows a rather compact
503  * represenation of the needed relocation information in this struct.
504  * r_offset is replaced with the offset into the page that need to be updated,
505  * this number can never be larger than SMALL_PAGE_SIZE so a uint16_t can be
506  * used to represent it.
507  *
508  * All relocations are converted and stored in @relocs. @page_reloc_idx is
509  * an array of length @rop.fobj.num_pages with an entry for each page. If
510  * @page_reloc_idx[page_idx] isn't UINT16_MAX it's an index into @relocs.
511  */
512 struct fobj_ro_reloc_paged {
513 	uint16_t *page_reloc_idx;
514 	uint16_t *relocs;
515 	unsigned int num_relocs;
516 	struct fobj_rop rop;
517 };
518 
519 static const struct fobj_ops ops_ro_reloc_paged;
520 
521 static unsigned int get_num_rels(unsigned int num_pages,
522 				 unsigned int reloc_offs,
523 				 const uint32_t *reloc, unsigned int num_relocs)
524 {
525 	const unsigned int align_mask __maybe_unused = sizeof(long) - 1;
526 	unsigned int nrels = 0;
527 	unsigned int n = 0;
528 	vaddr_t offs = 0;
529 
530 	/*
531 	 * Count the number of relocations which are needed for these
532 	 * pages.  Also check that the data is well formed, only expected
533 	 * relocations and sorted in order of address which it applies to.
534 	 */
535 	for (; n < num_relocs; n++) {
536 		assert(ALIGNMENT_IS_OK(reloc[n], unsigned long));
537 		assert(offs < reloc[n]);	/* check that it's sorted */
538 		offs = reloc[n];
539 		if (offs >= reloc_offs &&
540 		    offs <= reloc_offs + num_pages * SMALL_PAGE_SIZE)
541 			nrels++;
542 	}
543 
544 	return nrels;
545 }
546 
547 static void init_rels(struct fobj_ro_reloc_paged *rrp, unsigned int reloc_offs,
548 		      const uint32_t *reloc, unsigned int num_relocs)
549 {
550 	unsigned int npg = rrp->rop.fobj.num_pages;
551 	unsigned int pg_idx = 0;
552 	unsigned int reln = 0;
553 	unsigned int n = 0;
554 	uint32_t r = 0;
555 
556 	for (n = 0; n < npg; n++)
557 		rrp->page_reloc_idx[n] = UINT16_MAX;
558 
559 	for (n = 0; n < num_relocs ; n++) {
560 		if (reloc[n] < reloc_offs)
561 			continue;
562 
563 		/* r is the offset from beginning of this fobj */
564 		r = reloc[n] - reloc_offs;
565 
566 		pg_idx = r / SMALL_PAGE_SIZE;
567 		if (pg_idx >= npg)
568 			break;
569 
570 		if (rrp->page_reloc_idx[pg_idx] == UINT16_MAX)
571 			rrp->page_reloc_idx[pg_idx] = reln;
572 		rrp->relocs[reln] = r - pg_idx * SMALL_PAGE_SIZE;
573 		reln++;
574 	}
575 
576 	assert(reln == rrp->num_relocs);
577 }
578 
579 struct fobj *fobj_ro_reloc_paged_alloc(unsigned int num_pages, void *hashes,
580 				       unsigned int reloc_offs,
581 				       const void *reloc,
582 				       unsigned int reloc_len, void *store)
583 {
584 	struct fobj_ro_reloc_paged *rrp = NULL;
585 	const unsigned int num_relocs = reloc_len / sizeof(uint32_t);
586 	unsigned int nrels = 0;
587 
588 	assert(ALIGNMENT_IS_OK(reloc, uint32_t));
589 	assert(ALIGNMENT_IS_OK(reloc_len, uint32_t));
590 	assert(num_pages && hashes && store);
591 	if (!reloc_len) {
592 		assert(!reloc);
593 		return fobj_ro_paged_alloc(num_pages, hashes, store);
594 	}
595 	assert(reloc);
596 
597 	nrels = get_num_rels(num_pages, reloc_offs, reloc, num_relocs);
598 	if (!nrels)
599 		return fobj_ro_paged_alloc(num_pages, hashes, store);
600 
601 	rrp = calloc(1, sizeof(*rrp) + num_pages * sizeof(uint16_t) +
602 			nrels * sizeof(uint16_t));
603 	if (!rrp)
604 		return NULL;
605 	rop_init(&rrp->rop, &ops_ro_reloc_paged, num_pages, hashes, store);
606 	rrp->page_reloc_idx = (uint16_t *)(rrp + 1);
607 	rrp->relocs = rrp->page_reloc_idx + num_pages;
608 	rrp->num_relocs = nrels;
609 	init_rels(rrp, reloc_offs, reloc, num_relocs);
610 
611 	return &rrp->rop.fobj;
612 }
613 
614 static struct fobj_ro_reloc_paged *to_rrp(struct fobj *fobj)
615 {
616 	assert(fobj->ops == &ops_ro_reloc_paged);
617 
618 	return container_of(fobj, struct fobj_ro_reloc_paged, rop.fobj);
619 }
620 
621 static void rrp_free(struct fobj *fobj)
622 {
623 	struct fobj_ro_reloc_paged *rrp = to_rrp(fobj);
624 
625 	rop_uninit(&rrp->rop);
626 	free(rrp);
627 }
628 
629 static TEE_Result rrp_load_page(struct fobj *fobj, unsigned int page_idx,
630 				void *va)
631 {
632 	struct fobj_ro_reloc_paged *rrp = to_rrp(fobj);
633 	unsigned int end_rel = rrp->num_relocs;
634 	TEE_Result res = TEE_SUCCESS;
635 	unsigned long *where = NULL;
636 	unsigned int n = 0;
637 
638 	res = rop_load_page_helper(&rrp->rop, page_idx, va);
639 	if (res)
640 		return res;
641 
642 	/* Find the reloc index of the next page to tell when we're done */
643 	for (n = page_idx + 1; n < fobj->num_pages; n++) {
644 		if (rrp->page_reloc_idx[n] != UINT16_MAX) {
645 			end_rel = rrp->page_reloc_idx[n];
646 			break;
647 		}
648 	}
649 
650 	for (n = rrp->page_reloc_idx[page_idx]; n < end_rel; n++) {
651 		where = (void *)((vaddr_t)va + rrp->relocs[n]);
652 		*where += boot_mmu_config.load_offset;
653 	}
654 
655 	return TEE_SUCCESS;
656 }
657 DECLARE_KEEP_PAGER(rrp_load_page);
658 
659 static const struct fobj_ops ops_ro_reloc_paged
660 __rodata_unpaged("ops_ro_reloc_paged") = {
661 	.free = rrp_free,
662 	.load_page = rrp_load_page,
663 	.save_page = rop_save_page, /* Direct reuse */
664 };
665 #endif /*CFG_CORE_ASLR*/
666 
667 static const struct fobj_ops ops_locked_paged;
668 
669 struct fobj *fobj_locked_paged_alloc(unsigned int num_pages)
670 {
671 	struct fobj *f = NULL;
672 
673 	assert(num_pages);
674 
675 	f = calloc(1, sizeof(*f));
676 	if (!f)
677 		return NULL;
678 
679 	fobj_init(f, &ops_locked_paged, num_pages);
680 
681 	return f;
682 }
683 
684 static void lop_free(struct fobj *fobj)
685 {
686 	assert(fobj->ops == &ops_locked_paged);
687 	fobj_uninit(fobj);
688 	free(fobj);
689 }
690 
691 static TEE_Result lop_load_page(struct fobj *fobj __maybe_unused,
692 				unsigned int page_idx __maybe_unused,
693 				void *va)
694 {
695 	assert(fobj->ops == &ops_locked_paged);
696 	assert(refcount_val(&fobj->refc));
697 	assert(page_idx < fobj->num_pages);
698 
699 	memset(va, 0, SMALL_PAGE_SIZE);
700 
701 	return TEE_SUCCESS;
702 }
703 DECLARE_KEEP_PAGER(lop_load_page);
704 
705 static TEE_Result lop_save_page(struct fobj *fobj __unused,
706 				unsigned int page_idx __unused,
707 				const void *va __unused)
708 {
709 	return TEE_ERROR_GENERIC;
710 }
711 DECLARE_KEEP_PAGER(lop_save_page);
712 
713 static const struct fobj_ops ops_locked_paged
714 __rodata_unpaged("ops_locked_paged") = {
715 	.free = lop_free,
716 	.load_page = lop_load_page,
717 	.save_page = lop_save_page,
718 };
719 #endif /*CFG_WITH_PAGER*/
720 
721 #ifndef CFG_PAGED_USER_TA
722 
723 struct fobj_sec_mem {
724 	tee_mm_entry_t *mm;
725 	struct fobj fobj;
726 };
727 
728 static const struct fobj_ops ops_sec_mem;
729 
730 struct fobj *fobj_sec_mem_alloc(unsigned int num_pages)
731 {
732 	struct fobj_sec_mem *f = calloc(1, sizeof(*f));
733 	size_t size = 0;
734 	void *va = NULL;
735 
736 	if (!f)
737 		return NULL;
738 
739 	if (MUL_OVERFLOW(num_pages, SMALL_PAGE_SIZE, &size))
740 		goto err;
741 
742 	f->mm = tee_mm_alloc(&tee_mm_sec_ddr, size);
743 	if (!f->mm)
744 		goto err;
745 
746 	va = phys_to_virt(tee_mm_get_smem(f->mm), MEM_AREA_TA_RAM);
747 	if (!va)
748 		goto err;
749 
750 	memset(va, 0, size);
751 	f->fobj.ops = &ops_sec_mem;
752 	f->fobj.num_pages = num_pages;
753 	refcount_set(&f->fobj.refc, 1);
754 
755 	return &f->fobj;
756 err:
757 	tee_mm_free(f->mm);
758 	free(f);
759 
760 	return NULL;
761 }
762 
763 static struct fobj_sec_mem *to_sec_mem(struct fobj *fobj)
764 {
765 	assert(fobj->ops == &ops_sec_mem);
766 
767 	return container_of(fobj, struct fobj_sec_mem, fobj);
768 }
769 
770 static void sec_mem_free(struct fobj *fobj)
771 {
772 	struct fobj_sec_mem *f = to_sec_mem(fobj);
773 
774 	assert(!refcount_val(&fobj->refc));
775 	tee_mm_free(f->mm);
776 	free(f);
777 }
778 
779 static paddr_t sec_mem_get_pa(struct fobj *fobj, unsigned int page_idx)
780 {
781 	struct fobj_sec_mem *f = to_sec_mem(fobj);
782 
783 	assert(refcount_val(&fobj->refc));
784 	assert(page_idx < fobj->num_pages);
785 
786 	return tee_mm_get_smem(f->mm) + page_idx * SMALL_PAGE_SIZE;
787 }
788 
789 static const struct fobj_ops ops_sec_mem __rodata_unpaged("ops_sec_mem") = {
790 	.free = sec_mem_free,
791 	.get_pa = sec_mem_get_pa,
792 };
793 
794 #endif /*PAGED_USER_TA*/
795