xref: /optee_os/core/mm/core_mmu.c (revision ff3ed644be78500d7e0d726f592a93f7061233ec)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016-2025 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <memtag.h>
22 #include <mm/core_memprot.h>
23 #include <mm/core_mmu.h>
24 #include <mm/mobj.h>
25 #include <mm/pgt_cache.h>
26 #include <mm/phys_mem.h>
27 #include <mm/tee_pager.h>
28 #include <mm/vm.h>
29 #include <platform_config.h>
30 #include <stdalign.h>
31 #include <string.h>
32 #include <trace.h>
33 #include <util.h>
34 
35 #ifndef DEBUG_XLAT_TABLE
36 #define DEBUG_XLAT_TABLE 0
37 #endif
38 
39 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
40 
41 /* Virtual memory pool for core mappings */
42 tee_mm_pool_t core_virt_mem_pool;
43 
44 /* Virtual memory pool for shared memory mappings */
45 tee_mm_pool_t core_virt_shm_pool;
46 
47 #ifdef CFG_CORE_PHYS_RELOCATABLE
48 unsigned long core_mmu_tee_load_pa __nex_bss;
49 #else
50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
51 #endif
52 
53 /*
54  * These variables are initialized before .bss is cleared. To avoid
55  * resetting them when .bss is cleared we're storing them in .data instead,
56  * even if they initially are zero.
57  */
58 
59 #ifdef CFG_CORE_RESERVED_SHM
60 /* Default NSec shared memory allocated from NSec world */
61 unsigned long default_nsec_shm_size __nex_bss;
62 unsigned long default_nsec_shm_paddr __nex_bss;
63 #endif
64 
65 static struct memory_map static_memory_map __nex_bss;
66 void (*memory_map_realloc_func)(struct memory_map *mem_map) __nex_bss;
67 
68 /* Offset of the first TEE RAM mapping from start of secure RAM */
69 static size_t tee_ram_initial_offs __nex_bss;
70 
71 /* Define the platform's memory layout. */
72 struct memaccess_area {
73 	paddr_t paddr;
74 	size_t size;
75 };
76 
77 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
78 
79 static struct memaccess_area secure_only[] __nex_data = {
80 #ifdef CFG_CORE_PHYS_RELOCATABLE
81 	MEMACCESS_AREA(0, 0),
82 #else
83 #ifdef TRUSTED_SRAM_BASE
84 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
85 #endif
86 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
87 #endif
88 };
89 
90 static struct memaccess_area nsec_shared[] __nex_data = {
91 #ifdef CFG_CORE_RESERVED_SHM
92 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
93 #endif
94 };
95 
96 #if defined(CFG_SECURE_DATA_PATH)
97 static const char *tz_sdp_match = "linaro,secure-heap";
98 static struct memaccess_area sec_sdp;
99 #ifdef CFG_TEE_SDP_MEM_BASE
100 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
101 #endif
102 #ifdef TEE_SDP_TEST_MEM_BASE
103 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
104 #endif
105 #endif
106 
107 #ifdef CFG_CORE_RESERVED_SHM
108 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
109 #endif
110 static unsigned int mmu_spinlock;
111 
112 static uint32_t mmu_lock(void)
113 {
114 	return cpu_spin_lock_xsave(&mmu_spinlock);
115 }
116 
117 static void mmu_unlock(uint32_t exceptions)
118 {
119 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
120 }
121 
122 static void heap_realloc_memory_map(struct memory_map *mem_map)
123 {
124 	struct tee_mmap_region *m = NULL;
125 	struct tee_mmap_region *old = mem_map->map;
126 	size_t old_sz = sizeof(*old) * mem_map->alloc_count;
127 	size_t sz = old_sz + sizeof(*m);
128 
129 	assert(nex_malloc_buffer_is_within_alloced(old, old_sz));
130 	m = nex_realloc(old, sz);
131 	if (!m)
132 		panic();
133 	mem_map->map = m;
134 	mem_map->alloc_count++;
135 }
136 
137 static void boot_mem_realloc_memory_map(struct memory_map *mem_map)
138 {
139 	struct tee_mmap_region *m = NULL;
140 	struct tee_mmap_region *old = mem_map->map;
141 	size_t old_sz = sizeof(*old) * mem_map->alloc_count;
142 	size_t sz = old_sz * 2;
143 
144 	m = boot_mem_alloc_tmp(sz, alignof(*m));
145 	memcpy(m, old, old_sz);
146 	mem_map->map = m;
147 	mem_map->alloc_count *= 2;
148 }
149 
150 static void grow_mem_map(struct memory_map *mem_map)
151 {
152 	if (mem_map->count == mem_map->alloc_count) {
153 		if (!memory_map_realloc_func) {
154 			EMSG("Out of entries (%zu) in mem_map",
155 			     mem_map->alloc_count);
156 			panic();
157 		}
158 		memory_map_realloc_func(mem_map);
159 	}
160 	mem_map->count++;
161 }
162 
163 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
164 {
165 	/*
166 	 * The first range is always used to cover OP-TEE core memory, but
167 	 * depending on configuration it may cover more than that.
168 	 */
169 	*base = secure_only[0].paddr;
170 	*size = secure_only[0].size;
171 }
172 
173 void core_mmu_set_secure_memory(paddr_t base, size_t size)
174 {
175 #ifdef CFG_CORE_PHYS_RELOCATABLE
176 	static_assert(ARRAY_SIZE(secure_only) == 1);
177 #endif
178 	runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE));
179 	assert(!secure_only[0].size);
180 	assert(base && size);
181 
182 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
183 	secure_only[0].paddr = base;
184 	secure_only[0].size = size;
185 }
186 
187 static struct memory_map *get_memory_map(void)
188 {
189 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
190 		struct memory_map *map = virt_get_memory_map();
191 
192 		if (map)
193 			return map;
194 	}
195 
196 	return &static_memory_map;
197 }
198 
199 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
200 			     paddr_t pa, size_t size)
201 {
202 	size_t n;
203 
204 	for (n = 0; n < alen; n++)
205 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
206 			return true;
207 	return false;
208 }
209 
210 #define pbuf_intersects(a, pa, size) \
211 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
212 
213 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
214 			    paddr_t pa, size_t size)
215 {
216 	size_t n;
217 
218 	for (n = 0; n < alen; n++)
219 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
220 			return true;
221 	return false;
222 }
223 
224 #define pbuf_is_inside(a, pa, size) \
225 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
226 
227 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
228 {
229 	paddr_t end_pa = 0;
230 
231 	if (!map)
232 		return false;
233 
234 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
235 		return false;
236 
237 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
238 }
239 
240 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
241 {
242 	if (!map)
243 		return false;
244 	return (va >= map->va && va <= (map->va + map->size - 1));
245 }
246 
247 /* check if target buffer fits in a core default map area */
248 static bool pbuf_inside_map_area(unsigned long p, size_t l,
249 				 struct tee_mmap_region *map)
250 {
251 	return core_is_buffer_inside(p, l, map->pa, map->size);
252 }
253 
254 TEE_Result core_mmu_for_each_map(void *ptr,
255 				 TEE_Result (*fn)(struct tee_mmap_region *map,
256 						  void *ptr))
257 {
258 	struct memory_map *mem_map = get_memory_map();
259 	TEE_Result res = TEE_SUCCESS;
260 	size_t n = 0;
261 
262 	for (n = 0; n < mem_map->count; n++) {
263 		res = fn(mem_map->map + n, ptr);
264 		if (res)
265 			return res;
266 	}
267 
268 	return TEE_SUCCESS;
269 }
270 
271 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
272 {
273 	struct memory_map *mem_map = get_memory_map();
274 	size_t n = 0;
275 
276 	for (n = 0; n < mem_map->count; n++) {
277 		if (mem_map->map[n].type == type)
278 			return mem_map->map + n;
279 	}
280 	return NULL;
281 }
282 
283 static struct tee_mmap_region *
284 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
285 {
286 	struct memory_map *mem_map = get_memory_map();
287 	size_t n = 0;
288 
289 	for (n = 0; n < mem_map->count; n++) {
290 		if (mem_map->map[n].type != type)
291 			continue;
292 		if (pa_is_in_map(mem_map->map + n, pa, len))
293 			return mem_map->map + n;
294 	}
295 	return NULL;
296 }
297 
298 static struct tee_mmap_region *find_map_by_va(void *va)
299 {
300 	struct memory_map *mem_map = get_memory_map();
301 	vaddr_t a = (vaddr_t)va;
302 	size_t n = 0;
303 
304 	for (n = 0; n < mem_map->count; n++) {
305 		if (a >= mem_map->map[n].va &&
306 		    a <= (mem_map->map[n].va - 1 + mem_map->map[n].size))
307 			return mem_map->map + n;
308 	}
309 
310 	return NULL;
311 }
312 
313 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
314 {
315 	struct memory_map *mem_map = get_memory_map();
316 	size_t n = 0;
317 
318 	for (n = 0; n < mem_map->count; n++) {
319 		/* Skip unmapped regions */
320 		if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) &&
321 		    pa >= mem_map->map[n].pa &&
322 		    pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size))
323 			return mem_map->map + n;
324 	}
325 
326 	return NULL;
327 }
328 
329 #if defined(CFG_SECURE_DATA_PATH)
330 static bool dtb_get_sdp_region(void)
331 {
332 	void *fdt = NULL;
333 	int node = 0;
334 	int tmp_node = 0;
335 	paddr_t tmp_addr = 0;
336 	size_t tmp_size = 0;
337 
338 	if (!IS_ENABLED(CFG_EMBED_DTB))
339 		return false;
340 
341 	fdt = get_embedded_dt();
342 	if (!fdt)
343 		panic("No DTB found");
344 
345 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
346 	if (node < 0) {
347 		DMSG("No %s compatible node found", tz_sdp_match);
348 		return false;
349 	}
350 	tmp_node = node;
351 	while (tmp_node >= 0) {
352 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
353 							 tz_sdp_match);
354 		if (tmp_node >= 0)
355 			DMSG("Ignore SDP pool node %s, supports only 1 node",
356 			     fdt_get_name(fdt, tmp_node, NULL));
357 	}
358 
359 	if (fdt_reg_info(fdt, node, &tmp_addr, &tmp_size)) {
360 		EMSG("%s: Unable to get base addr or size from DT",
361 		     tz_sdp_match);
362 		return false;
363 	}
364 
365 	sec_sdp.paddr = tmp_addr;
366 	sec_sdp.size = tmp_size;
367 
368 	return true;
369 }
370 #endif
371 
372 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
373 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
374 				const struct core_mmu_phys_mem *start,
375 				const struct core_mmu_phys_mem *end)
376 {
377 	const struct core_mmu_phys_mem *mem;
378 
379 	for (mem = start; mem < end; mem++) {
380 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
381 			return true;
382 	}
383 
384 	return false;
385 }
386 #endif
387 
388 #ifdef CFG_CORE_DYN_SHM
389 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
390 			       paddr_t pa, size_t size)
391 {
392 	struct core_mmu_phys_mem *m = *mem;
393 	size_t n = 0;
394 
395 	while (n < *nelems) {
396 		if (!core_is_buffer_intersect(pa, size, m[n].addr, m[n].size)) {
397 			n++;
398 			continue;
399 		}
400 
401 		if (core_is_buffer_inside(m[n].addr, m[n].size, pa, size)) {
402 			/* m[n] is completely covered by pa:size */
403 			rem_array_elem(m, *nelems, sizeof(*m), n);
404 			(*nelems)--;
405 			m = nex_realloc(m, sizeof(*m) * *nelems);
406 			if (!m)
407 				panic();
408 			*mem = m;
409 			continue;
410 		}
411 
412 		if (pa > m[n].addr &&
413 		    pa + size - 1 < m[n].addr + m[n].size - 1) {
414 			/*
415 			 * pa:size is strictly inside m[n] range so split
416 			 * m[n] entry.
417 			 */
418 			m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
419 			if (!m)
420 				panic();
421 			*mem = m;
422 			(*nelems)++;
423 			ins_array_elem(m, *nelems, sizeof(*m), n + 1, NULL);
424 			m[n + 1].addr = pa + size;
425 			m[n + 1].size = m[n].addr + m[n].size - pa - size;
426 			m[n].size = pa - m[n].addr;
427 			n++;
428 		} else if (pa <= m[n].addr) {
429 			/*
430 			 * pa:size is overlapping (possibly partially) at the
431 			 * beginning of m[n].
432 			 */
433 			m[n].size = m[n].addr + m[n].size - pa - size;
434 			m[n].addr = pa + size;
435 		} else {
436 			/*
437 			 * pa:size is overlapping (possibly partially) at
438 			 * the end of m[n].
439 			 */
440 			m[n].size = pa - m[n].addr;
441 		}
442 		n++;
443 	}
444 }
445 
446 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
447 				      size_t nelems,
448 				      struct tee_mmap_region *map)
449 {
450 	size_t n;
451 
452 	for (n = 0; n < nelems; n++) {
453 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
454 					    map->pa, map->size)) {
455 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
456 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
457 			     start[n].addr, start[n].size,
458 			     map->type, map->pa, map->size);
459 			panic();
460 		}
461 	}
462 }
463 
464 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
465 static size_t discovered_nsec_ddr_nelems __nex_bss;
466 
467 static int cmp_pmem_by_addr(const void *a, const void *b)
468 {
469 	const struct core_mmu_phys_mem *pmem_a = a;
470 	const struct core_mmu_phys_mem *pmem_b = b;
471 
472 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
473 }
474 
475 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
476 				      size_t nelems)
477 {
478 	struct core_mmu_phys_mem *m = start;
479 	size_t num_elems = nelems;
480 	struct memory_map *mem_map = &static_memory_map;
481 	const struct core_mmu_phys_mem __maybe_unused *pmem;
482 	size_t n = 0;
483 
484 	assert(!discovered_nsec_ddr_start);
485 	assert(m && num_elems);
486 
487 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
488 
489 	/*
490 	 * Non-secure shared memory and also secure data
491 	 * path memory are supposed to reside inside
492 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
493 	 * are used for a specific purpose make holes for
494 	 * those memory in the normal non-secure memory.
495 	 *
496 	 * This has to be done since for instance QEMU
497 	 * isn't aware of which memory range in the
498 	 * non-secure memory is used for NSEC_SHM.
499 	 */
500 
501 #ifdef CFG_SECURE_DATA_PATH
502 	if (dtb_get_sdp_region())
503 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
504 
505 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
506 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
507 #endif
508 
509 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
510 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
511 				   secure_only[n].size);
512 
513 	for  (n = 0; n < mem_map->count; n++) {
514 		switch (mem_map->map[n].type) {
515 		case MEM_AREA_NSEC_SHM:
516 			carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa,
517 					   mem_map->map[n].size);
518 			break;
519 		case MEM_AREA_EXT_DT:
520 		case MEM_AREA_MANIFEST_DT:
521 		case MEM_AREA_RAM_NSEC:
522 		case MEM_AREA_RES_VASPACE:
523 		case MEM_AREA_SHM_VASPACE:
524 		case MEM_AREA_TS_VASPACE:
525 		case MEM_AREA_PAGER_VASPACE:
526 			break;
527 		default:
528 			check_phys_mem_is_outside(m, num_elems,
529 						  mem_map->map + n);
530 		}
531 	}
532 
533 	discovered_nsec_ddr_start = m;
534 	discovered_nsec_ddr_nelems = num_elems;
535 
536 	DMSG("Non-secure RAM:");
537 	for (n = 0; n < num_elems; n++)
538 		DMSG("%zu: pa %#"PRIxPA"..%#"PRIxPA" sz %#"PRIxPASZ,
539 		     n, m[n].addr, m[n].addr + m[n].size - 1, m[n].size);
540 
541 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
542 				   m[num_elems - 1].size))
543 		panic();
544 }
545 
546 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
547 				    const struct core_mmu_phys_mem **end)
548 {
549 	if (!discovered_nsec_ddr_start)
550 		return false;
551 
552 	*start = discovered_nsec_ddr_start;
553 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
554 
555 	return true;
556 }
557 
558 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
559 {
560 	const struct core_mmu_phys_mem *start;
561 	const struct core_mmu_phys_mem *end;
562 
563 	if (!get_discovered_nsec_ddr(&start, &end))
564 		return false;
565 
566 	return pbuf_is_special_mem(pbuf, len, start, end);
567 }
568 
569 bool core_mmu_nsec_ddr_is_defined(void)
570 {
571 	const struct core_mmu_phys_mem *start;
572 	const struct core_mmu_phys_mem *end;
573 
574 	if (!get_discovered_nsec_ddr(&start, &end))
575 		return false;
576 
577 	return start != end;
578 }
579 #else
580 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
581 {
582 	return false;
583 }
584 #endif /*CFG_CORE_DYN_SHM*/
585 
586 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
587 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
588 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
589 
590 #ifdef CFG_SECURE_DATA_PATH
591 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
592 {
593 	bool is_sdp_mem = false;
594 
595 	if (sec_sdp.size)
596 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
597 						   sec_sdp.size);
598 
599 	if (!is_sdp_mem)
600 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
601 						 phys_sdp_mem_end);
602 
603 	return is_sdp_mem;
604 }
605 
606 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
607 {
608 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
609 					    CORE_MEM_SDP_MEM);
610 
611 	if (!mobj)
612 		panic("can't create SDP physical memory object");
613 
614 	return mobj;
615 }
616 
617 struct mobj **core_sdp_mem_create_mobjs(void)
618 {
619 	const struct core_mmu_phys_mem *mem = NULL;
620 	struct mobj **mobj_base = NULL;
621 	struct mobj **mobj = NULL;
622 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
623 
624 	if (sec_sdp.size)
625 		cnt++;
626 
627 	/* SDP mobjs table must end with a NULL entry */
628 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
629 	if (!mobj_base)
630 		panic("Out of memory");
631 
632 	mobj = mobj_base;
633 
634 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
635 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
636 
637 	if (sec_sdp.size)
638 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
639 
640 	return mobj_base;
641 }
642 
643 #else /* CFG_SECURE_DATA_PATH */
644 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
645 {
646 	return false;
647 }
648 
649 #endif /* CFG_SECURE_DATA_PATH */
650 
651 /* Check special memories comply with registered memories */
652 static void verify_special_mem_areas(struct memory_map *mem_map,
653 				     const struct core_mmu_phys_mem *start,
654 				     const struct core_mmu_phys_mem *end,
655 				     const char *area_name __maybe_unused)
656 {
657 	const struct core_mmu_phys_mem *mem = NULL;
658 	const struct core_mmu_phys_mem *mem2 = NULL;
659 	size_t n = 0;
660 
661 	if (start == end) {
662 		DMSG("No %s memory area defined", area_name);
663 		return;
664 	}
665 
666 	for (mem = start; mem < end; mem++)
667 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
668 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
669 
670 	/* Check memories do not intersect each other */
671 	for (mem = start; mem + 1 < end; mem++) {
672 		for (mem2 = mem + 1; mem2 < end; mem2++) {
673 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
674 						     mem->addr, mem->size)) {
675 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
676 						   mem->addr, mem->size);
677 				panic("Special memory intersection");
678 			}
679 		}
680 	}
681 
682 	/*
683 	 * Check memories do not intersect any mapped memory.
684 	 * This is called before reserved VA space is loaded in mem_map.
685 	 */
686 	for (mem = start; mem < end; mem++) {
687 		for (n = 0; n < mem_map->count; n++) {
688 #ifdef TEE_SDP_TEST_MEM_BASE
689 			/*
690 			 * Ignore MEM_AREA_SEC_RAM_OVERALL since it covers
691 			 * TEE_SDP_TEST_MEM too.
692 			 */
693 			if (mem->addr == TEE_SDP_TEST_MEM_BASE &&
694 			    mem->size == TEE_SDP_TEST_MEM_SIZE &&
695 			    mem_map->map[n].type == MEM_AREA_SEC_RAM_OVERALL)
696 				continue;
697 #endif
698 			if (core_is_buffer_intersect(mem->addr, mem->size,
699 						     mem_map->map[n].pa,
700 						     mem_map->map[n].size)) {
701 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
702 						   mem_map->map[n].pa,
703 						   mem_map->map[n].size);
704 				panic("Special memory intersection");
705 			}
706 		}
707 	}
708 }
709 
710 static void merge_mmaps(struct tee_mmap_region *dst,
711 			const struct tee_mmap_region *src)
712 {
713 	paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1);
714 	paddr_t pa = MIN(dst->pa, src->pa);
715 
716 	DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA,
717 	     dst->pa, dst->pa + dst->size - 1, src->pa,
718 	     src->pa + src->size - 1);
719 	dst->pa = pa;
720 	dst->size = end_pa - pa + 1;
721 }
722 
723 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1,
724 				const struct tee_mmap_region *r2)
725 {
726 	if (r1->type != r2->type)
727 		return false;
728 
729 	if (r1->pa == r2->pa)
730 		return true;
731 
732 	if (r1->pa < r2->pa)
733 		return r1->pa + r1->size >= r2->pa;
734 	else
735 		return r2->pa + r2->size >= r1->pa;
736 }
737 
738 static void add_phys_mem(struct memory_map *mem_map,
739 			 const char *mem_name __maybe_unused,
740 			 enum teecore_memtypes mem_type,
741 			 paddr_t mem_addr, paddr_size_t mem_size)
742 {
743 	size_t n = 0;
744 	const struct tee_mmap_region m0 = {
745 		.type = mem_type,
746 		.pa = mem_addr,
747 		.size = mem_size,
748 	};
749 
750 	if (!mem_size)	/* Discard null size entries */
751 		return;
752 
753 	/*
754 	 * If some ranges of memory of the same type do overlap
755 	 * each others they are coalesced into one entry. To help this
756 	 * added entries are sorted by increasing physical.
757 	 *
758 	 * Note that it's valid to have the same physical memory as several
759 	 * different memory types, for instance the same device memory
760 	 * mapped as both secure and non-secure. This will probably not
761 	 * happen often in practice.
762 	 */
763 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
764 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
765 	for  (n = 0; n < mem_map->count; n++) {
766 		if (mmaps_are_mergeable(mem_map->map + n, &m0)) {
767 			merge_mmaps(mem_map->map + n, &m0);
768 			/*
769 			 * The merged result might be mergeable with the
770 			 * next or previous entry.
771 			 */
772 			if (n + 1 < mem_map->count &&
773 			    mmaps_are_mergeable(mem_map->map + n,
774 						mem_map->map + n + 1)) {
775 				merge_mmaps(mem_map->map + n,
776 					    mem_map->map + n + 1);
777 				rem_array_elem(mem_map->map, mem_map->count,
778 					       sizeof(*mem_map->map), n + 1);
779 				mem_map->count--;
780 			}
781 			if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1,
782 							 mem_map->map + n)) {
783 				merge_mmaps(mem_map->map + n - 1,
784 					    mem_map->map + n);
785 				rem_array_elem(mem_map->map, mem_map->count,
786 					       sizeof(*mem_map->map), n);
787 				mem_map->count--;
788 			}
789 			return;
790 		}
791 		if (mem_type < mem_map->map[n].type ||
792 		    (mem_type == mem_map->map[n].type &&
793 		     mem_addr < mem_map->map[n].pa))
794 			break; /* found the spot where to insert this memory */
795 	}
796 
797 	grow_mem_map(mem_map);
798 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
799 		       n, &m0);
800 }
801 
802 static void add_va_space(struct memory_map *mem_map,
803 			 enum teecore_memtypes type, size_t size)
804 {
805 	size_t n = 0;
806 
807 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
808 	for  (n = 0; n < mem_map->count; n++) {
809 		if (type < mem_map->map[n].type)
810 			break;
811 	}
812 
813 	grow_mem_map(mem_map);
814 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
815 		       n, NULL);
816 	mem_map->map[n] = (struct tee_mmap_region){
817 		.type = type,
818 		.size = size,
819 	};
820 }
821 
822 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
823 {
824 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
825 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
826 				TEE_MATTR_MEM_TYPE_SHIFT;
827 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
828 				TEE_MATTR_MEM_TYPE_SHIFT;
829 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
830 				  TEE_MATTR_MEM_TYPE_SHIFT;
831 
832 	switch (t) {
833 	case MEM_AREA_TEE_RAM:
834 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
835 	case MEM_AREA_TEE_RAM_RX:
836 	case MEM_AREA_INIT_RAM_RX:
837 	case MEM_AREA_IDENTITY_MAP_RX:
838 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
839 	case MEM_AREA_TEE_RAM_RO:
840 	case MEM_AREA_INIT_RAM_RO:
841 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
842 	case MEM_AREA_TEE_RAM_RW:
843 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
844 	case MEM_AREA_NEX_RAM_RW:
845 	case MEM_AREA_NEX_DYN_VASPACE:
846 	case MEM_AREA_TEE_DYN_VASPACE:
847 	case MEM_AREA_TEE_ASAN:
848 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
849 	case MEM_AREA_TEE_COHERENT:
850 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
851 	case MEM_AREA_NSEC_SHM:
852 	case MEM_AREA_NEX_NSEC_SHM:
853 		return attr | TEE_MATTR_PRW | cached;
854 	case MEM_AREA_MANIFEST_DT:
855 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
856 	case MEM_AREA_TRANSFER_LIST:
857 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
858 	case MEM_AREA_EXT_DT:
859 		/*
860 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
861 		 * tree as secure non-cached memory, otherwise, fall back to
862 		 * non-secure mapping.
863 		 */
864 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
865 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
866 			       noncache;
867 		fallthrough;
868 	case MEM_AREA_IO_NSEC:
869 		return attr | TEE_MATTR_PRW | noncache;
870 	case MEM_AREA_IO_SEC:
871 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
872 	case MEM_AREA_RAM_NSEC:
873 		return attr | TEE_MATTR_PRW | cached;
874 	case MEM_AREA_RAM_SEC:
875 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
876 	case MEM_AREA_SEC_RAM_OVERALL:
877 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
878 	case MEM_AREA_ROM_SEC:
879 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
880 	case MEM_AREA_RES_VASPACE:
881 	case MEM_AREA_SHM_VASPACE:
882 		return 0;
883 	case MEM_AREA_PAGER_VASPACE:
884 		return TEE_MATTR_SECURE;
885 	default:
886 		panic("invalid type");
887 	}
888 }
889 
890 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
891 {
892 	switch (mm->type) {
893 	case MEM_AREA_TEE_RAM:
894 	case MEM_AREA_TEE_RAM_RX:
895 	case MEM_AREA_TEE_RAM_RO:
896 	case MEM_AREA_TEE_RAM_RW:
897 	case MEM_AREA_INIT_RAM_RX:
898 	case MEM_AREA_INIT_RAM_RO:
899 	case MEM_AREA_NEX_RAM_RW:
900 	case MEM_AREA_NEX_RAM_RO:
901 	case MEM_AREA_TEE_ASAN:
902 		return true;
903 	default:
904 		return false;
905 	}
906 }
907 
908 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
909 {
910 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
911 }
912 
913 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
914 {
915 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
916 }
917 
918 static int cmp_mmap_by_lower_va(const void *a, const void *b)
919 {
920 	const struct tee_mmap_region *mm_a = a;
921 	const struct tee_mmap_region *mm_b = b;
922 
923 	return CMP_TRILEAN(mm_a->va, mm_b->va);
924 }
925 
926 static void dump_mmap_table(struct memory_map *mem_map)
927 {
928 	size_t n = 0;
929 
930 	for (n = 0; n < mem_map->count; n++) {
931 		struct tee_mmap_region *map __maybe_unused = mem_map->map + n;
932 
933 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
934 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
935 		     teecore_memtype_name(map->type), map->va,
936 		     map->va + map->size - 1, map->pa,
937 		     (paddr_t)(map->pa + map->size - 1), map->size,
938 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
939 	}
940 }
941 
942 #if DEBUG_XLAT_TABLE
943 
944 static void dump_xlat_table(vaddr_t va, unsigned int level)
945 {
946 	struct core_mmu_table_info tbl_info;
947 	unsigned int idx = 0;
948 	paddr_t pa;
949 	uint32_t attr;
950 
951 	core_mmu_find_table(NULL, va, level, &tbl_info);
952 	va = tbl_info.va_base;
953 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
954 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
955 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
956 			const char *security_bit = "";
957 
958 			if (core_mmu_entry_have_security_bit(attr)) {
959 				if (attr & TEE_MATTR_SECURE)
960 					security_bit = "S";
961 				else
962 					security_bit = "NS";
963 			}
964 
965 			if (attr & TEE_MATTR_TABLE) {
966 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
967 					" TBL:0x%010" PRIxPA " %s",
968 					level * 2, "", level, va, pa,
969 					security_bit);
970 				dump_xlat_table(va, level + 1);
971 			} else if (attr) {
972 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
973 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
974 					level * 2, "", level, va, pa,
975 					mattr_is_cached(attr) ? "MEM" :
976 					"DEV",
977 					attr & TEE_MATTR_PW ? "RW" : "RO",
978 					attr & TEE_MATTR_PX ? "X " : "XN",
979 					security_bit);
980 			} else {
981 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
982 					    " INVALID\n",
983 					    level * 2, "", level, va);
984 			}
985 		}
986 		va += BIT64(tbl_info.shift);
987 	}
988 }
989 
990 #else
991 
992 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
993 {
994 }
995 
996 #endif
997 
998 /*
999  * Reserves virtual memory space for pager usage.
1000  *
1001  * From the start of the first memory used by the link script +
1002  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
1003  * mapping for pager usage. This adds translation tables as needed for the
1004  * pager to operate.
1005  */
1006 static void add_pager_vaspace(struct memory_map *mem_map)
1007 {
1008 	paddr_t begin = 0;
1009 	paddr_t end = 0;
1010 	size_t size = 0;
1011 	size_t pos = 0;
1012 	size_t n = 0;
1013 
1014 
1015 	for (n = 0; n < mem_map->count; n++) {
1016 		if (map_is_tee_ram(mem_map->map + n)) {
1017 			if (!begin)
1018 				begin = mem_map->map[n].pa;
1019 			pos = n + 1;
1020 		}
1021 	}
1022 
1023 	end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size;
1024 	assert(end - begin < TEE_RAM_VA_SIZE);
1025 	size = TEE_RAM_VA_SIZE - (end - begin);
1026 
1027 	grow_mem_map(mem_map);
1028 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
1029 		       n, NULL);
1030 	mem_map->map[n] = (struct tee_mmap_region){
1031 		.type = MEM_AREA_PAGER_VASPACE,
1032 		.size = size,
1033 		.region_size = SMALL_PAGE_SIZE,
1034 		.attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE),
1035 	};
1036 }
1037 
1038 static void check_sec_nsec_mem_config(void)
1039 {
1040 	size_t n = 0;
1041 
1042 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
1043 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
1044 				    secure_only[n].size))
1045 			panic("Invalid memory access config: sec/nsec");
1046 	}
1047 }
1048 
1049 static void collect_device_mem_ranges(struct memory_map *mem_map)
1050 {
1051 	const char *compatible = "arm,ffa-manifest-device-regions";
1052 	void *fdt = get_manifest_dt();
1053 	const char *name = NULL;
1054 	uint64_t page_count = 0;
1055 	uint64_t base = 0;
1056 	int subnode = 0;
1057 	int node = 0;
1058 
1059 	assert(fdt);
1060 
1061 	node = fdt_node_offset_by_compatible(fdt, 0, compatible);
1062 	if (node < 0)
1063 		return;
1064 
1065 	fdt_for_each_subnode(subnode, fdt, node) {
1066 		name = fdt_get_name(fdt, subnode, NULL);
1067 		if (!name)
1068 			continue;
1069 
1070 		if (dt_getprop_as_number(fdt, subnode, "base-address",
1071 					 &base)) {
1072 			EMSG("Mandatory field is missing: base-address");
1073 			continue;
1074 		}
1075 
1076 		if (base & SMALL_PAGE_MASK) {
1077 			EMSG("base-address is not page aligned");
1078 			continue;
1079 		}
1080 
1081 		if (dt_getprop_as_number(fdt, subnode, "pages-count",
1082 					 &page_count)) {
1083 			EMSG("Mandatory field is missing: pages-count");
1084 			continue;
1085 		}
1086 
1087 		add_phys_mem(mem_map, name, MEM_AREA_IO_SEC,
1088 			     base, page_count * SMALL_PAGE_SIZE);
1089 	}
1090 }
1091 
1092 static void collect_mem_ranges(struct memory_map *mem_map)
1093 {
1094 	const struct core_mmu_phys_mem *mem = NULL;
1095 	vaddr_t ram_start = secure_only[0].paddr;
1096 	size_t n = 0;
1097 
1098 #define ADD_PHYS_MEM(_type, _addr, _size) \
1099 		add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size))
1100 
1101 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
1102 		paddr_t next_pa = 0;
1103 
1104 		/*
1105 		 * Read-only and read-execute physical memory areas must
1106 		 * not be mapped by MEM_AREA_SEC_RAM_OVERALL, but all the
1107 		 * read/write should.
1108 		 */
1109 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, ram_start,
1110 			     VCORE_UNPG_RX_PA - ram_start);
1111 		assert(VCORE_UNPG_RX_PA >= ram_start);
1112 		tee_ram_initial_offs = VCORE_UNPG_RX_PA - ram_start;
1113 		DMSG("tee_ram_initial_offs %#zx", tee_ram_initial_offs);
1114 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
1115 			     VCORE_UNPG_RX_SZ);
1116 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
1117 			     VCORE_UNPG_RO_SZ);
1118 
1119 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1120 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
1121 				     VCORE_UNPG_RW_SZ);
1122 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA,
1123 				     VCORE_UNPG_RW_SZ);
1124 
1125 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
1126 				     VCORE_NEX_RW_SZ);
1127 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_NEX_RW_PA,
1128 				     VCORE_NEX_RW_SZ);
1129 
1130 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_FREE_PA,
1131 				     VCORE_FREE_SZ);
1132 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA,
1133 				     VCORE_FREE_SZ);
1134 			next_pa = VCORE_FREE_PA + VCORE_FREE_SZ;
1135 		} else {
1136 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
1137 				     VCORE_UNPG_RW_SZ);
1138 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA,
1139 				     VCORE_UNPG_RW_SZ);
1140 
1141 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_FREE_PA,
1142 				     VCORE_FREE_SZ);
1143 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA,
1144 				     VCORE_FREE_SZ);
1145 			next_pa = VCORE_FREE_PA + VCORE_FREE_SZ;
1146 		}
1147 
1148 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1149 			paddr_t pa = 0;
1150 			size_t sz = 0;
1151 
1152 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
1153 				     VCORE_INIT_RX_SZ);
1154 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
1155 				     VCORE_INIT_RO_SZ);
1156 			/*
1157 			 * Core init mapping shall cover up to end of the
1158 			 * physical RAM.  This is required since the hash
1159 			 * table is appended to the binary data after the
1160 			 * firmware build sequence.
1161 			 */
1162 			pa = VCORE_INIT_RO_PA + VCORE_INIT_RO_SZ;
1163 			sz = TEE_RAM_START + TEE_RAM_PH_SIZE - pa;
1164 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM, pa, sz);
1165 		} else {
1166 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, next_pa,
1167 				     secure_only[0].paddr +
1168 				     secure_only[0].size - next_pa);
1169 		}
1170 	} else {
1171 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
1172 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr,
1173 			     secure_only[0].size);
1174 	}
1175 
1176 	for (n = 1; n < ARRAY_SIZE(secure_only); n++)
1177 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr,
1178 			     secure_only[n].size);
1179 
1180 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
1181 	    IS_ENABLED(CFG_WITH_PAGER)) {
1182 		/*
1183 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
1184 		 * disabled.
1185 		 */
1186 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1187 	}
1188 
1189 #undef ADD_PHYS_MEM
1190 
1191 	/* Collect device memory info from SP manifest */
1192 	if (IS_ENABLED(CFG_CORE_SEL2_SPMC))
1193 		collect_device_mem_ranges(mem_map);
1194 
1195 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1196 		/* Only unmapped virtual range may have a null phys addr */
1197 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1198 
1199 		add_phys_mem(mem_map, mem->name, mem->type,
1200 			     mem->addr, mem->size);
1201 	}
1202 
1203 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1204 		verify_special_mem_areas(mem_map, phys_sdp_mem_begin,
1205 					 phys_sdp_mem_end, "SDP");
1206 
1207 	add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE);
1208 	add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE);
1209 	if (IS_ENABLED(CFG_DYN_CONFIG)) {
1210 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
1211 			add_va_space(mem_map, MEM_AREA_NEX_DYN_VASPACE,
1212 				     ROUNDUP(CFG_NEX_DYN_VASPACE_SIZE,
1213 					     CORE_MMU_PGDIR_SIZE));
1214 		add_va_space(mem_map, MEM_AREA_TEE_DYN_VASPACE,
1215 			     CFG_TEE_DYN_VASPACE_SIZE);
1216 	}
1217 }
1218 
1219 static void assign_mem_granularity(struct memory_map *mem_map)
1220 {
1221 	size_t n = 0;
1222 
1223 	/*
1224 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1225 	 * SMALL_PAGE_SIZE.
1226 	 */
1227 	for  (n = 0; n < mem_map->count; n++) {
1228 		paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size;
1229 
1230 		if (mask & SMALL_PAGE_MASK)
1231 			panic("Impossible memory alignment");
1232 
1233 		if (map_is_tee_ram(mem_map->map + n))
1234 			mem_map->map[n].region_size = SMALL_PAGE_SIZE;
1235 		else
1236 			mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE;
1237 	}
1238 }
1239 
1240 static bool place_tee_ram_at_top(paddr_t paddr)
1241 {
1242 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1243 }
1244 
1245 /*
1246  * MMU arch driver shall override this function if it helps
1247  * optimizing the memory footprint of the address translation tables.
1248  */
1249 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1250 {
1251 	return place_tee_ram_at_top(paddr);
1252 }
1253 
1254 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map,
1255 			      bool tee_ram_at_top)
1256 {
1257 	struct tee_mmap_region *map = NULL;
1258 	vaddr_t va = 0;
1259 	bool va_is_secure = true;
1260 	size_t n = 0;
1261 
1262 	/*
1263 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1264 	 * 0 is by design an invalid va, so return false directly.
1265 	 */
1266 	if (!tee_ram_va)
1267 		return false;
1268 
1269 	/* Clear eventual previous assignments */
1270 	for (n = 0; n < mem_map->count; n++)
1271 		mem_map->map[n].va = 0;
1272 
1273 	/*
1274 	 * TEE RAM regions are always aligned with region_size.
1275 	 *
1276 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1277 	 * since it handles virtual memory which covers the part of the ELF
1278 	 * that cannot fit directly into memory.
1279 	 */
1280 	va = tee_ram_va + tee_ram_initial_offs;
1281 	for (n = 0; n < mem_map->count; n++) {
1282 		map = mem_map->map + n;
1283 		if (map_is_tee_ram(map) ||
1284 		    map->type == MEM_AREA_PAGER_VASPACE) {
1285 			assert(!(va & (map->region_size - 1)));
1286 			assert(!(map->size & (map->region_size - 1)));
1287 			map->va = va;
1288 			if (ADD_OVERFLOW(va, map->size, &va))
1289 				return false;
1290 			if (va >= BIT64(core_mmu_get_va_width()))
1291 				return false;
1292 		}
1293 	}
1294 
1295 	if (tee_ram_at_top) {
1296 		/*
1297 		 * Map non-tee ram regions at addresses lower than the tee
1298 		 * ram region.
1299 		 */
1300 		va = tee_ram_va;
1301 		for (n = 0; n < mem_map->count; n++) {
1302 			map = mem_map->map + n;
1303 			map->attr = core_mmu_type_to_attr(map->type);
1304 			if (map->va)
1305 				continue;
1306 
1307 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1308 			    va_is_secure != map_is_secure(map)) {
1309 				va_is_secure = !va_is_secure;
1310 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1311 			}
1312 
1313 			if (SUB_OVERFLOW(va, map->size, &va))
1314 				return false;
1315 			va = ROUNDDOWN2(va, map->region_size);
1316 			/*
1317 			 * Make sure that va is aligned with pa for
1318 			 * efficient pgdir mapping. Basically pa &
1319 			 * pgdir_mask should be == va & pgdir_mask
1320 			 */
1321 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1322 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1323 					return false;
1324 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1325 			}
1326 			map->va = va;
1327 		}
1328 	} else {
1329 		/*
1330 		 * Map non-tee ram regions at addresses higher than the tee
1331 		 * ram region.
1332 		 */
1333 		for (n = 0; n < mem_map->count; n++) {
1334 			map = mem_map->map + n;
1335 			map->attr = core_mmu_type_to_attr(map->type);
1336 			if (map->va)
1337 				continue;
1338 
1339 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1340 			    va_is_secure != map_is_secure(map)) {
1341 				va_is_secure = !va_is_secure;
1342 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1343 						     &va))
1344 					return false;
1345 			}
1346 
1347 			if (ROUNDUP2_OVERFLOW(va, map->region_size, &va))
1348 				return false;
1349 			/*
1350 			 * Make sure that va is aligned with pa for
1351 			 * efficient pgdir mapping. Basically pa &
1352 			 * pgdir_mask should be == va & pgdir_mask
1353 			 */
1354 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1355 				vaddr_t offs = (map->pa - va) &
1356 					       CORE_MMU_PGDIR_MASK;
1357 
1358 				if (ADD_OVERFLOW(va, offs, &va))
1359 					return false;
1360 			}
1361 
1362 			map->va = va;
1363 			if (ADD_OVERFLOW(va, map->size, &va))
1364 				return false;
1365 			if (va >= BIT64(core_mmu_get_va_width()))
1366 				return false;
1367 		}
1368 	}
1369 
1370 	return true;
1371 }
1372 
1373 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map)
1374 {
1375 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1376 
1377 	/*
1378 	 * Check that we're not overlapping with the user VA range.
1379 	 */
1380 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1381 		/*
1382 		 * User VA range is supposed to be defined after these
1383 		 * mappings have been established.
1384 		 */
1385 		assert(!core_mmu_user_va_range_is_defined());
1386 	} else {
1387 		vaddr_t user_va_base = 0;
1388 		size_t user_va_size = 0;
1389 
1390 		assert(core_mmu_user_va_range_is_defined());
1391 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1392 		if (tee_ram_va < (user_va_base + user_va_size))
1393 			return false;
1394 	}
1395 
1396 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1397 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1398 
1399 		/* Try whole mapping covered by a single base xlat entry */
1400 		if (prefered_dir != tee_ram_at_top &&
1401 		    assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir))
1402 			return true;
1403 	}
1404 
1405 	return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top);
1406 }
1407 
1408 static int cmp_init_mem_map(const void *a, const void *b)
1409 {
1410 	const struct tee_mmap_region *mm_a = a;
1411 	const struct tee_mmap_region *mm_b = b;
1412 	int rc = 0;
1413 
1414 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1415 	if (!rc)
1416 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1417 	/*
1418 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1419 	 * the same level2 table. Hence sort secure mapping from non-secure
1420 	 * mapping.
1421 	 */
1422 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1423 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1424 
1425 	return rc;
1426 }
1427 
1428 static bool mem_map_add_id_map(struct memory_map *mem_map,
1429 			       vaddr_t id_map_start, vaddr_t id_map_end)
1430 {
1431 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1432 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1433 	size_t len = end - start;
1434 	size_t n = 0;
1435 
1436 
1437 	for (n = 0; n < mem_map->count; n++)
1438 		if (core_is_buffer_intersect(mem_map->map[n].va,
1439 					     mem_map->map[n].size, start, len))
1440 			return false;
1441 
1442 	grow_mem_map(mem_map);
1443 	mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){
1444 		.type = MEM_AREA_IDENTITY_MAP_RX,
1445 		/*
1446 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1447 		 * translation table, at the increased risk of clashes with
1448 		 * the rest of the memory map.
1449 		 */
1450 		.region_size = SMALL_PAGE_SIZE,
1451 		.pa = start,
1452 		.va = start,
1453 		.size = len,
1454 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1455 	};
1456 
1457 	return true;
1458 }
1459 
1460 static struct memory_map *init_mem_map(struct memory_map *mem_map,
1461 				       unsigned long seed,
1462 				       unsigned long *ret_offs)
1463 {
1464 	/*
1465 	 * @id_map_start and @id_map_end describes a physical memory range
1466 	 * that must be mapped Read-Only eXecutable at identical virtual
1467 	 * addresses.
1468 	 */
1469 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1470 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1471 	vaddr_t start_addr = secure_only[0].paddr;
1472 	unsigned long offs = 0;
1473 
1474 	collect_mem_ranges(mem_map);
1475 	assign_mem_granularity(mem_map);
1476 
1477 	/*
1478 	 * To ease mapping and lower use of xlat tables, sort mapping
1479 	 * description moving small-page regions after the pgdir regions.
1480 	 */
1481 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1482 	      cmp_init_mem_map);
1483 
1484 	if (IS_ENABLED(CFG_WITH_PAGER))
1485 		add_pager_vaspace(mem_map);
1486 
1487 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1488 		vaddr_t base_addr = start_addr + seed;
1489 		const unsigned int va_width = core_mmu_get_va_width();
1490 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1491 						   SMALL_PAGE_SHIFT);
1492 		vaddr_t ba = base_addr;
1493 		size_t n = 0;
1494 
1495 		for (n = 0; n < 3; n++) {
1496 			if (n)
1497 				ba = base_addr ^ BIT64(va_width - n);
1498 			ba &= va_mask;
1499 			if (assign_mem_va(ba, mem_map) &&
1500 			    mem_map_add_id_map(mem_map, id_map_start,
1501 					       id_map_end)) {
1502 				offs = ba - start_addr;
1503 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1504 				     ba, offs);
1505 				goto out;
1506 			} else {
1507 				DMSG("Failed to map core at %#"PRIxVA, ba);
1508 			}
1509 		}
1510 		EMSG("Failed to map core with seed %#lx", seed);
1511 	}
1512 
1513 	if (!assign_mem_va(start_addr, mem_map))
1514 		panic();
1515 
1516 out:
1517 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1518 	      cmp_mmap_by_lower_va);
1519 
1520 	dump_mmap_table(mem_map);
1521 
1522 	*ret_offs = offs;
1523 	return mem_map;
1524 }
1525 
1526 static void check_mem_map(struct memory_map *mem_map)
1527 {
1528 	struct tee_mmap_region *m = NULL;
1529 	size_t n = 0;
1530 
1531 	for (n = 0; n < mem_map->count; n++) {
1532 		m = mem_map->map + n;
1533 		switch (m->type) {
1534 		case MEM_AREA_TEE_RAM:
1535 		case MEM_AREA_TEE_RAM_RX:
1536 		case MEM_AREA_TEE_RAM_RO:
1537 		case MEM_AREA_TEE_RAM_RW:
1538 		case MEM_AREA_INIT_RAM_RX:
1539 		case MEM_AREA_INIT_RAM_RO:
1540 		case MEM_AREA_NEX_RAM_RW:
1541 		case MEM_AREA_NEX_RAM_RO:
1542 		case MEM_AREA_IDENTITY_MAP_RX:
1543 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1544 				panic("TEE_RAM can't fit in secure_only");
1545 			break;
1546 		case MEM_AREA_SEC_RAM_OVERALL:
1547 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1548 				panic("SEC_RAM_OVERALL can't fit in secure_only");
1549 			break;
1550 		case MEM_AREA_NSEC_SHM:
1551 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1552 				panic("NS_SHM can't fit in nsec_shared");
1553 			break;
1554 		case MEM_AREA_TEE_COHERENT:
1555 		case MEM_AREA_TEE_ASAN:
1556 		case MEM_AREA_IO_SEC:
1557 		case MEM_AREA_IO_NSEC:
1558 		case MEM_AREA_EXT_DT:
1559 		case MEM_AREA_MANIFEST_DT:
1560 		case MEM_AREA_TRANSFER_LIST:
1561 		case MEM_AREA_RAM_SEC:
1562 		case MEM_AREA_RAM_NSEC:
1563 		case MEM_AREA_ROM_SEC:
1564 		case MEM_AREA_RES_VASPACE:
1565 		case MEM_AREA_SHM_VASPACE:
1566 		case MEM_AREA_PAGER_VASPACE:
1567 		case MEM_AREA_NEX_DYN_VASPACE:
1568 		case MEM_AREA_TEE_DYN_VASPACE:
1569 			break;
1570 		default:
1571 			EMSG("Uhandled memtype %d", m->type);
1572 			panic();
1573 		}
1574 	}
1575 }
1576 
1577 /*
1578  * core_init_mmu_map() - init tee core default memory mapping
1579  *
1580  * This routine sets the static default TEE core mapping. If @seed is > 0
1581  * and configured with CFG_CORE_ASLR it will map tee core at a location
1582  * based on the seed and return the offset from the link address.
1583  *
1584  * If an error happened: core_init_mmu_map is expected to panic.
1585  *
1586  * Note: this function is weak just to make it possible to exclude it from
1587  * the unpaged area.
1588  */
1589 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1590 {
1591 #ifndef CFG_NS_VIRTUALIZATION
1592 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1593 #else
1594 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1595 				  SMALL_PAGE_SIZE);
1596 #endif
1597 #ifdef CFG_DYN_CONFIG
1598 	vaddr_t len = ROUNDUP(VCORE_FREE_END_PA, SMALL_PAGE_SIZE) - start;
1599 #else
1600 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1601 #endif
1602 	struct tee_mmap_region tmp_mmap_region = { };
1603 	struct memory_map mem_map = { };
1604 	unsigned long offs = 0;
1605 
1606 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1607 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1608 		panic("OP-TEE load address is not page aligned");
1609 
1610 	check_sec_nsec_mem_config();
1611 
1612 	mem_map.alloc_count = CFG_MMAP_REGIONS;
1613 	mem_map.map = boot_mem_alloc_tmp(mem_map.alloc_count *
1614 						sizeof(*mem_map.map),
1615 					 alignof(*mem_map.map));
1616 	memory_map_realloc_func = boot_mem_realloc_memory_map;
1617 
1618 	static_memory_map = (struct memory_map){
1619 		.map = &tmp_mmap_region,
1620 		.alloc_count = 1,
1621 		.count = 1,
1622 	};
1623 	/*
1624 	 * Add a entry covering the translation tables which will be
1625 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1626 	 */
1627 	static_memory_map.map[0] = (struct tee_mmap_region){
1628 		.type = MEM_AREA_TEE_RAM,
1629 		.region_size = SMALL_PAGE_SIZE,
1630 		.pa = start,
1631 		.va = start,
1632 		.size = len,
1633 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1634 	};
1635 
1636 	init_mem_map(&mem_map, seed, &offs);
1637 
1638 	check_mem_map(&mem_map);
1639 	core_init_mmu(&mem_map);
1640 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1641 	core_init_mmu_regs(cfg);
1642 	cfg->map_offset = offs;
1643 	static_memory_map = mem_map;
1644 	boot_mem_add_reloc(&static_memory_map.map);
1645 }
1646 
1647 void core_mmu_save_mem_map(void)
1648 {
1649 	size_t alloc_count = static_memory_map.count + 5;
1650 	size_t elem_sz = sizeof(*static_memory_map.map);
1651 	void *p = NULL;
1652 
1653 	p = nex_calloc(alloc_count, elem_sz);
1654 	if (!p)
1655 		panic();
1656 	memcpy(p, static_memory_map.map, static_memory_map.count * elem_sz);
1657 	static_memory_map.map = p;
1658 	static_memory_map.alloc_count = alloc_count;
1659 	memory_map_realloc_func = heap_realloc_memory_map;
1660 }
1661 
1662 bool core_mmu_mattr_is_ok(uint32_t mattr)
1663 {
1664 	/*
1665 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1666 	 * core_mmu_v7.c:mattr_to_texcb
1667 	 */
1668 
1669 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1670 	case TEE_MATTR_MEM_TYPE_DEV:
1671 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1672 	case TEE_MATTR_MEM_TYPE_CACHED:
1673 	case TEE_MATTR_MEM_TYPE_TAGGED:
1674 		return true;
1675 	default:
1676 		return false;
1677 	}
1678 }
1679 
1680 /*
1681  * test attributes of target physical buffer
1682  *
1683  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1684  *
1685  */
1686 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1687 {
1688 	struct tee_mmap_region *map;
1689 
1690 	/* Empty buffers complies with anything */
1691 	if (len == 0)
1692 		return true;
1693 
1694 	switch (attr) {
1695 	case CORE_MEM_SEC:
1696 		return pbuf_is_inside(secure_only, pbuf, len);
1697 	case CORE_MEM_NON_SEC:
1698 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1699 			pbuf_is_nsec_ddr(pbuf, len);
1700 	case CORE_MEM_TEE_RAM:
1701 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1702 							TEE_RAM_PH_SIZE);
1703 #ifdef CFG_CORE_RESERVED_SHM
1704 	case CORE_MEM_NSEC_SHM:
1705 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1706 							TEE_SHMEM_SIZE);
1707 #endif
1708 	case CORE_MEM_SDP_MEM:
1709 		return pbuf_is_sdp_mem(pbuf, len);
1710 	case CORE_MEM_CACHED:
1711 		map = find_map_by_pa(pbuf);
1712 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1713 			return false;
1714 		return mattr_is_cached(map->attr);
1715 	default:
1716 		return false;
1717 	}
1718 }
1719 
1720 /* test attributes of target virtual buffer (in core mapping) */
1721 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1722 {
1723 	paddr_t p;
1724 
1725 	/* Empty buffers complies with anything */
1726 	if (len == 0)
1727 		return true;
1728 
1729 	p = virt_to_phys((void *)vbuf);
1730 	if (!p)
1731 		return false;
1732 
1733 	return core_pbuf_is(attr, p, len);
1734 }
1735 
1736 /* core_va2pa - teecore exported service */
1737 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1738 {
1739 	struct tee_mmap_region *map;
1740 
1741 	map = find_map_by_va(va);
1742 	if (!va_is_in_map(map, (vaddr_t)va))
1743 		return -1;
1744 
1745 	/*
1746 	 * We can calculate PA for static map. Virtual address ranges
1747 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1748 	 * together with an invalid null physical address.
1749 	 */
1750 	if (map->pa)
1751 		*pa = map->pa + (vaddr_t)va  - map->va;
1752 	else
1753 		*pa = 0;
1754 
1755 	return 0;
1756 }
1757 
1758 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1759 {
1760 	if (!pa_is_in_map(map, pa, len))
1761 		return NULL;
1762 
1763 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1764 }
1765 
1766 /*
1767  * teecore gets some memory area definitions
1768  */
1769 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1770 			      vaddr_t *e)
1771 {
1772 	struct tee_mmap_region *map = find_map_by_type(type);
1773 
1774 	if (map) {
1775 		*s = map->va;
1776 		*e = map->va + map->size;
1777 	} else {
1778 		*s = 0;
1779 		*e = 0;
1780 	}
1781 }
1782 
1783 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1784 {
1785 	struct tee_mmap_region *map = find_map_by_pa(pa);
1786 
1787 	if (!map)
1788 		return MEM_AREA_MAXTYPE;
1789 	return map->type;
1790 }
1791 
1792 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1793 			paddr_t pa, uint32_t attr)
1794 {
1795 	assert(idx < tbl_info->num_entries);
1796 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1797 				     idx, pa, attr);
1798 }
1799 
1800 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1801 			paddr_t *pa, uint32_t *attr)
1802 {
1803 	assert(idx < tbl_info->num_entries);
1804 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1805 				     idx, pa, attr);
1806 }
1807 
1808 static void clear_region(struct core_mmu_table_info *tbl_info,
1809 			 struct tee_mmap_region *region)
1810 {
1811 	unsigned int end = 0;
1812 	unsigned int idx = 0;
1813 
1814 	/* va, len and pa should be block aligned */
1815 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1816 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1817 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1818 
1819 	idx = core_mmu_va2idx(tbl_info, region->va);
1820 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1821 
1822 	while (idx < end) {
1823 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1824 		idx++;
1825 	}
1826 }
1827 
1828 static void set_region(struct core_mmu_table_info *tbl_info,
1829 		       struct tee_mmap_region *region)
1830 {
1831 	unsigned int end;
1832 	unsigned int idx;
1833 	paddr_t pa;
1834 
1835 	/* va, len and pa should be block aligned */
1836 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1837 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1838 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1839 
1840 	idx = core_mmu_va2idx(tbl_info, region->va);
1841 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1842 	pa = region->pa;
1843 
1844 	while (idx < end) {
1845 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1846 		idx++;
1847 		pa += BIT64(tbl_info->shift);
1848 	}
1849 }
1850 
1851 static void set_pg_region(struct core_mmu_table_info *dir_info,
1852 			  struct vm_region *region, struct pgt **pgt,
1853 			  struct core_mmu_table_info *pg_info)
1854 {
1855 	struct tee_mmap_region r = {
1856 		.va = region->va,
1857 		.size = region->size,
1858 		.attr = region->attr,
1859 	};
1860 	vaddr_t end = r.va + r.size;
1861 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1862 
1863 	while (r.va < end) {
1864 		if (!pg_info->table ||
1865 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1866 			/*
1867 			 * We're assigning a new translation table.
1868 			 */
1869 			unsigned int idx;
1870 
1871 			/* Virtual addresses must grow */
1872 			assert(r.va > pg_info->va_base);
1873 
1874 			idx = core_mmu_va2idx(dir_info, r.va);
1875 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1876 
1877 			/*
1878 			 * Advance pgt to va_base, note that we may need to
1879 			 * skip multiple page tables if there are large
1880 			 * holes in the vm map.
1881 			 */
1882 			while ((*pgt)->vabase < pg_info->va_base) {
1883 				*pgt = SLIST_NEXT(*pgt, link);
1884 				/* We should have allocated enough */
1885 				assert(*pgt);
1886 			}
1887 			assert((*pgt)->vabase == pg_info->va_base);
1888 			pg_info->table = (*pgt)->tbl;
1889 
1890 			core_mmu_set_entry(dir_info, idx,
1891 					   virt_to_phys(pg_info->table),
1892 					   pgt_attr);
1893 		}
1894 
1895 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1896 			     end - r.va);
1897 
1898 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1899 			size_t granule = BIT(pg_info->shift);
1900 			size_t offset = r.va - region->va + region->offset;
1901 
1902 			r.size = MIN(r.size,
1903 				     mobj_get_phys_granule(region->mobj));
1904 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1905 
1906 			if (mobj_get_pa(region->mobj, offset, granule,
1907 					&r.pa) != TEE_SUCCESS)
1908 				panic("Failed to get PA of unpaged mobj");
1909 			set_region(pg_info, &r);
1910 		}
1911 		r.va += r.size;
1912 	}
1913 }
1914 
1915 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1916 			     size_t size_left, paddr_t block_size,
1917 			     struct tee_mmap_region *mm)
1918 {
1919 	/* VA and PA are aligned to block size at current level */
1920 	if ((vaddr | paddr) & (block_size - 1))
1921 		return false;
1922 
1923 	/* Remainder fits into block at current level */
1924 	if (size_left < block_size)
1925 		return false;
1926 
1927 	/*
1928 	 * The required block size of the region is compatible with the
1929 	 * block size of the current level.
1930 	 */
1931 	if (mm->region_size < block_size)
1932 		return false;
1933 
1934 #ifdef CFG_WITH_PAGER
1935 	/*
1936 	 * If pager is enabled, we need to map TEE RAM and the whole pager
1937 	 * regions with small pages only
1938 	 */
1939 	if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) &&
1940 	    block_size != SMALL_PAGE_SIZE)
1941 		return false;
1942 #endif
1943 
1944 	return true;
1945 }
1946 
1947 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1948 {
1949 	struct core_mmu_table_info tbl_info = { };
1950 	unsigned int idx = 0;
1951 	vaddr_t vaddr = mm->va;
1952 	paddr_t paddr = mm->pa;
1953 	ssize_t size_left = mm->size;
1954 	uint32_t attr = mm->attr;
1955 	unsigned int level = 0;
1956 	bool table_found = false;
1957 	uint32_t old_attr = 0;
1958 
1959 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1960 	if (!paddr)
1961 		attr = 0;
1962 
1963 	while (size_left > 0) {
1964 		level = CORE_MMU_BASE_TABLE_LEVEL;
1965 
1966 		while (true) {
1967 			paddr_t block_size = 0;
1968 
1969 			assert(core_mmu_level_in_range(level));
1970 
1971 			table_found = core_mmu_find_table(prtn, vaddr, level,
1972 							  &tbl_info);
1973 			if (!table_found)
1974 				panic("can't find table for mapping");
1975 
1976 			block_size = BIT64(tbl_info.shift);
1977 
1978 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1979 			if (!can_map_at_level(paddr, vaddr, size_left,
1980 					      block_size, mm)) {
1981 				bool secure = mm->attr & TEE_MATTR_SECURE;
1982 
1983 				/*
1984 				 * This part of the region can't be mapped at
1985 				 * this level. Need to go deeper.
1986 				 */
1987 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1988 								     idx,
1989 								     secure))
1990 					panic("Can't divide MMU entry");
1991 				level = tbl_info.next_level;
1992 				continue;
1993 			}
1994 
1995 			/* We can map part of the region at current level */
1996 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1997 			if (old_attr)
1998 				panic("Page is already mapped");
1999 
2000 			core_mmu_set_entry(&tbl_info, idx, paddr, attr);
2001 			/*
2002 			 * Dynamic vaspace regions don't have a physical
2003 			 * address initially but we need to allocate and
2004 			 * initialize the translation tables now for later
2005 			 * updates to work properly.
2006 			 */
2007 			if (paddr)
2008 				paddr += block_size;
2009 			vaddr += block_size;
2010 			size_left -= block_size;
2011 
2012 			break;
2013 		}
2014 	}
2015 }
2016 
2017 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
2018 			      enum teecore_memtypes memtype)
2019 {
2020 	TEE_Result ret;
2021 	struct core_mmu_table_info tbl_info;
2022 	struct tee_mmap_region *mm;
2023 	unsigned int idx;
2024 	uint32_t old_attr;
2025 	uint32_t exceptions;
2026 	vaddr_t vaddr = vstart;
2027 	size_t i;
2028 	bool secure;
2029 
2030 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
2031 
2032 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
2033 
2034 	if (vaddr & SMALL_PAGE_MASK)
2035 		return TEE_ERROR_BAD_PARAMETERS;
2036 
2037 	exceptions = mmu_lock();
2038 
2039 	mm = find_map_by_va((void *)vaddr);
2040 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
2041 		panic("VA does not belong to any known mm region");
2042 
2043 	if (!core_mmu_is_dynamic_vaspace(mm))
2044 		panic("Trying to map into static region");
2045 
2046 	for (i = 0; i < num_pages; i++) {
2047 		if (pages[i] & SMALL_PAGE_MASK) {
2048 			ret = TEE_ERROR_BAD_PARAMETERS;
2049 			goto err;
2050 		}
2051 
2052 		while (true) {
2053 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
2054 						 &tbl_info))
2055 				panic("Can't find pagetable for vaddr ");
2056 
2057 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2058 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
2059 				break;
2060 
2061 			/* This is supertable. Need to divide it. */
2062 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
2063 							     secure))
2064 				panic("Failed to spread pgdir on small tables");
2065 		}
2066 
2067 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2068 		if (old_attr)
2069 			panic("Page is already mapped");
2070 
2071 		core_mmu_set_entry(&tbl_info, idx, pages[i],
2072 				   core_mmu_type_to_attr(memtype));
2073 		vaddr += SMALL_PAGE_SIZE;
2074 	}
2075 
2076 	/*
2077 	 * Make sure all the changes to translation tables are visible
2078 	 * before returning. TLB doesn't need to be invalidated as we are
2079 	 * guaranteed that there's no valid mapping in this range.
2080 	 */
2081 	core_mmu_table_write_barrier();
2082 	mmu_unlock(exceptions);
2083 
2084 	return TEE_SUCCESS;
2085 err:
2086 	mmu_unlock(exceptions);
2087 
2088 	if (i)
2089 		core_mmu_unmap_pages(vstart, i);
2090 
2091 	return ret;
2092 }
2093 
2094 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
2095 					 size_t num_pages,
2096 					 enum teecore_memtypes memtype)
2097 {
2098 	struct core_mmu_table_info tbl_info = { };
2099 	struct tee_mmap_region *mm = NULL;
2100 	unsigned int idx = 0;
2101 	uint32_t old_attr = 0;
2102 	uint32_t exceptions = 0;
2103 	vaddr_t vaddr = vstart;
2104 	paddr_t paddr = pstart;
2105 	size_t i = 0;
2106 	bool secure = false;
2107 
2108 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
2109 
2110 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
2111 
2112 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
2113 		return TEE_ERROR_BAD_PARAMETERS;
2114 
2115 	exceptions = mmu_lock();
2116 
2117 	mm = find_map_by_va((void *)vaddr);
2118 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
2119 		panic("VA does not belong to any known mm region");
2120 
2121 	if (!core_mmu_is_dynamic_vaspace(mm))
2122 		panic("Trying to map into static region");
2123 
2124 	for (i = 0; i < num_pages; i++) {
2125 		while (true) {
2126 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
2127 						 &tbl_info))
2128 				panic("Can't find pagetable for vaddr ");
2129 
2130 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2131 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
2132 				break;
2133 
2134 			/* This is supertable. Need to divide it. */
2135 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
2136 							     secure))
2137 				panic("Failed to spread pgdir on small tables");
2138 		}
2139 
2140 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2141 		if (old_attr)
2142 			panic("Page is already mapped");
2143 
2144 		core_mmu_set_entry(&tbl_info, idx, paddr,
2145 				   core_mmu_type_to_attr(memtype));
2146 		paddr += SMALL_PAGE_SIZE;
2147 		vaddr += SMALL_PAGE_SIZE;
2148 	}
2149 
2150 	/*
2151 	 * Make sure all the changes to translation tables are visible
2152 	 * before returning. TLB doesn't need to be invalidated as we are
2153 	 * guaranteed that there's no valid mapping in this range.
2154 	 */
2155 	core_mmu_table_write_barrier();
2156 	mmu_unlock(exceptions);
2157 
2158 	return TEE_SUCCESS;
2159 }
2160 
2161 static bool mem_range_is_in_vcore_free(vaddr_t vstart, size_t num_pages)
2162 {
2163 	return core_is_buffer_inside(vstart, num_pages * SMALL_PAGE_SIZE,
2164 				     VCORE_FREE_PA, VCORE_FREE_SZ);
2165 }
2166 
2167 static void maybe_remove_from_mem_map(vaddr_t vstart, size_t num_pages)
2168 {
2169 	struct memory_map *mem_map = NULL;
2170 	struct tee_mmap_region *mm = NULL;
2171 	size_t idx = 0;
2172 	vaddr_t va = 0;
2173 
2174 	mm = find_map_by_va((void *)vstart);
2175 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
2176 		panic("VA does not belong to any known mm region");
2177 
2178 	if (core_mmu_is_dynamic_vaspace(mm))
2179 		return;
2180 
2181 	if (!mem_range_is_in_vcore_free(vstart, num_pages))
2182 		panic("Trying to unmap static region");
2183 
2184 	/*
2185 	 * We're going to remove a memory from the VCORE_FREE memory range.
2186 	 * Depending where the range is we may need to remove the matching
2187 	 * mm, peal of a bit from the start or end of the mm, or split it
2188 	 * into two with a whole in the middle.
2189 	 */
2190 
2191 	va = ROUNDDOWN(vstart, SMALL_PAGE_SIZE);
2192 	assert(mm->region_size == SMALL_PAGE_SIZE);
2193 
2194 	if (va == mm->va && mm->size == num_pages * SMALL_PAGE_SIZE) {
2195 		mem_map = get_memory_map();
2196 		idx = mm - mem_map->map;
2197 		assert(idx < mem_map->count);
2198 
2199 		rem_array_elem(mem_map->map, mem_map->count,
2200 			       sizeof(*mem_map->map), idx);
2201 		mem_map->count--;
2202 	} else if (va == mm->va) {
2203 		mm->va += num_pages * SMALL_PAGE_SIZE;
2204 		mm->pa += num_pages * SMALL_PAGE_SIZE;
2205 		mm->size -= num_pages * SMALL_PAGE_SIZE;
2206 	} else if (va + num_pages * SMALL_PAGE_SIZE == mm->va + mm->size) {
2207 		mm->size -= num_pages * SMALL_PAGE_SIZE;
2208 	} else {
2209 		struct tee_mmap_region m = *mm;
2210 
2211 		mem_map = get_memory_map();
2212 		idx = mm - mem_map->map;
2213 		assert(idx < mem_map->count);
2214 
2215 		mm->size = va - mm->va;
2216 		m.va += mm->size + num_pages * SMALL_PAGE_SIZE;
2217 		m.pa += mm->size + num_pages * SMALL_PAGE_SIZE;
2218 		m.size -= mm->size + num_pages * SMALL_PAGE_SIZE;
2219 		grow_mem_map(mem_map);
2220 		ins_array_elem(mem_map->map, mem_map->count,
2221 			       sizeof(*mem_map->map), idx + 1, &m);
2222 	}
2223 }
2224 
2225 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
2226 {
2227 	struct core_mmu_table_info tbl_info;
2228 	size_t i;
2229 	unsigned int idx;
2230 	uint32_t exceptions;
2231 
2232 	exceptions = mmu_lock();
2233 
2234 	maybe_remove_from_mem_map(vstart, num_pages);
2235 
2236 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
2237 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
2238 			panic("Can't find pagetable");
2239 
2240 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
2241 			panic("Invalid pagetable level");
2242 
2243 		idx = core_mmu_va2idx(&tbl_info, vstart);
2244 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
2245 	}
2246 	tlbi_all();
2247 
2248 	mmu_unlock(exceptions);
2249 }
2250 
2251 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
2252 				struct user_mode_ctx *uctx)
2253 {
2254 	struct core_mmu_table_info pg_info = { };
2255 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
2256 	struct pgt *pgt = NULL;
2257 	struct pgt *p = NULL;
2258 	struct vm_region *r = NULL;
2259 
2260 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
2261 		return; /* Nothing to map */
2262 
2263 	/*
2264 	 * Allocate all page tables in advance.
2265 	 */
2266 	pgt_get_all(uctx);
2267 	pgt = SLIST_FIRST(pgt_cache);
2268 
2269 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2270 
2271 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2272 		set_pg_region(dir_info, r, &pgt, &pg_info);
2273 	/* Record that the translation tables now are populated. */
2274 	SLIST_FOREACH(p, pgt_cache, link) {
2275 		p->populated = true;
2276 		if (p == pgt)
2277 			break;
2278 	}
2279 	assert(p == pgt);
2280 }
2281 
2282 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2283 				   size_t len)
2284 {
2285 	struct core_mmu_table_info tbl_info = { };
2286 	struct tee_mmap_region *res_map = NULL;
2287 	struct tee_mmap_region *map = NULL;
2288 	paddr_t pa = virt_to_phys(addr);
2289 	size_t granule = 0;
2290 	ptrdiff_t i = 0;
2291 	paddr_t p = 0;
2292 	size_t l = 0;
2293 
2294 	map = find_map_by_type_and_pa(type, pa, len);
2295 	if (!map)
2296 		return TEE_ERROR_GENERIC;
2297 
2298 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2299 	if (!res_map)
2300 		return TEE_ERROR_GENERIC;
2301 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2302 		return TEE_ERROR_GENERIC;
2303 	granule = BIT(tbl_info.shift);
2304 
2305 	if (map < static_memory_map.map ||
2306 	    map >= static_memory_map.map + static_memory_map.count)
2307 		return TEE_ERROR_GENERIC;
2308 	i = map - static_memory_map.map;
2309 
2310 	/* Check that we have a full match */
2311 	p = ROUNDDOWN2(pa, granule);
2312 	l = ROUNDUP2(len + pa - p, granule);
2313 	if (map->pa != p || map->size != l)
2314 		return TEE_ERROR_GENERIC;
2315 
2316 	clear_region(&tbl_info, map);
2317 	tlbi_all();
2318 
2319 	/* If possible remove the va range from res_map */
2320 	if (res_map->va - map->size == map->va) {
2321 		res_map->va -= map->size;
2322 		res_map->size += map->size;
2323 	}
2324 
2325 	/* Remove the entry. */
2326 	rem_array_elem(static_memory_map.map, static_memory_map.count,
2327 		       sizeof(*static_memory_map.map), i);
2328 	static_memory_map.count--;
2329 
2330 	return TEE_SUCCESS;
2331 }
2332 
2333 struct tee_mmap_region *
2334 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2335 {
2336 	struct memory_map *mem_map = get_memory_map();
2337 	struct tee_mmap_region *map_found = NULL;
2338 	size_t n = 0;
2339 
2340 	if (!len)
2341 		return NULL;
2342 
2343 	for (n = 0; n < mem_map->count; n++) {
2344 		if (mem_map->map[n].type != type)
2345 			continue;
2346 
2347 		if (map_found)
2348 			return NULL;
2349 
2350 		map_found = mem_map->map + n;
2351 	}
2352 
2353 	if (!map_found || map_found->size < len)
2354 		return NULL;
2355 
2356 	return map_found;
2357 }
2358 
2359 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2360 {
2361 	struct memory_map *mem_map = &static_memory_map;
2362 	struct core_mmu_table_info tbl_info = { };
2363 	struct tee_mmap_region *map = NULL;
2364 	size_t granule = 0;
2365 	paddr_t p = 0;
2366 	size_t l = 0;
2367 
2368 	if (!len)
2369 		return NULL;
2370 
2371 	if (!core_mmu_check_end_pa(addr, len))
2372 		return NULL;
2373 
2374 	/* Check if the memory is already mapped */
2375 	map = find_map_by_type_and_pa(type, addr, len);
2376 	if (map && pbuf_inside_map_area(addr, len, map))
2377 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2378 
2379 	/* Find the reserved va space used for late mappings */
2380 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2381 	if (!map)
2382 		return NULL;
2383 
2384 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2385 		return NULL;
2386 
2387 	granule = BIT64(tbl_info.shift);
2388 	p = ROUNDDOWN2(addr, granule);
2389 	l = ROUNDUP2(len + addr - p, granule);
2390 
2391 	/* Ban overflowing virtual addresses */
2392 	if (map->size < l)
2393 		return NULL;
2394 
2395 	/*
2396 	 * Something is wrong, we can't fit the va range into the selected
2397 	 * table. The reserved va range is possibly missaligned with
2398 	 * granule.
2399 	 */
2400 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2401 		return NULL;
2402 
2403 	if (static_memory_map.count >= static_memory_map.alloc_count)
2404 		return NULL;
2405 
2406 	mem_map->map[mem_map->count] = (struct tee_mmap_region){
2407 		.va = map->va,
2408 		.size = l,
2409 		.type = type,
2410 		.region_size = granule,
2411 		.attr = core_mmu_type_to_attr(type),
2412 		.pa = p,
2413 	};
2414 	map->va += l;
2415 	map->size -= l;
2416 	map = mem_map->map + mem_map->count;
2417 	mem_map->count++;
2418 
2419 	set_region(&tbl_info, map);
2420 
2421 	/* Make sure the new entry is visible before continuing. */
2422 	core_mmu_table_write_barrier();
2423 
2424 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2425 }
2426 
2427 #ifdef CFG_WITH_PAGER
2428 static vaddr_t get_linear_map_end_va(void)
2429 {
2430 	/* this is synced with the generic linker file kern.ld.S */
2431 	return (vaddr_t)__heap2_end;
2432 }
2433 
2434 static paddr_t get_linear_map_end_pa(void)
2435 {
2436 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2437 }
2438 #endif
2439 
2440 #if defined(CFG_TEE_CORE_DEBUG)
2441 static void check_pa_matches_va(void *va, paddr_t pa)
2442 {
2443 	TEE_Result res = TEE_ERROR_GENERIC;
2444 	vaddr_t v = (vaddr_t)va;
2445 	paddr_t p = 0;
2446 	struct core_mmu_table_info ti __maybe_unused = { };
2447 
2448 	if (core_mmu_user_va_range_is_defined()) {
2449 		vaddr_t user_va_base = 0;
2450 		size_t user_va_size = 0;
2451 
2452 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2453 		if (v >= user_va_base &&
2454 		    v <= (user_va_base - 1 + user_va_size)) {
2455 			if (!core_mmu_user_mapping_is_active()) {
2456 				if (pa)
2457 					panic("issue in linear address space");
2458 				return;
2459 			}
2460 
2461 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2462 				       va, &p);
2463 			if (res == TEE_ERROR_NOT_SUPPORTED)
2464 				return;
2465 			if (res == TEE_SUCCESS && pa != p)
2466 				panic("bad pa");
2467 			if (res != TEE_SUCCESS && pa)
2468 				panic("false pa");
2469 			return;
2470 		}
2471 	}
2472 #ifdef CFG_WITH_PAGER
2473 	if (is_unpaged(va)) {
2474 		if (v - boot_mmu_config.map_offset != pa)
2475 			panic("issue in linear address space");
2476 		return;
2477 	}
2478 
2479 	if (tee_pager_get_table_info(v, &ti)) {
2480 		uint32_t a;
2481 
2482 		/*
2483 		 * Lookups in the page table managed by the pager is
2484 		 * dangerous for addresses in the paged area as those pages
2485 		 * changes all the time. But some ranges are safe,
2486 		 * rw-locked areas when the page is populated for instance.
2487 		 */
2488 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2489 		if (a & TEE_MATTR_VALID_BLOCK) {
2490 			paddr_t mask = BIT64(ti.shift) - 1;
2491 
2492 			p |= v & mask;
2493 			if (pa != p)
2494 				panic();
2495 		} else {
2496 			if (pa)
2497 				panic();
2498 		}
2499 		return;
2500 	}
2501 #endif
2502 
2503 	if (!core_va2pa_helper(va, &p)) {
2504 		/* Verfiy only the static mapping (case non null phys addr) */
2505 		if (p && pa != p) {
2506 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2507 			     va, p, pa);
2508 			panic();
2509 		}
2510 	} else {
2511 		if (pa) {
2512 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2513 			panic();
2514 		}
2515 	}
2516 }
2517 #else
2518 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2519 {
2520 }
2521 #endif
2522 
2523 paddr_t virt_to_phys(void *va)
2524 {
2525 	paddr_t pa = 0;
2526 
2527 	if (!arch_va2pa_helper(va, &pa))
2528 		pa = 0;
2529 	check_pa_matches_va(memtag_strip_tag(va), pa);
2530 	return pa;
2531 }
2532 
2533 /*
2534  * Don't use check_va_matches_pa() for RISC-V, as its callee
2535  * arch_va2pa_helper() will call it eventually, this creates
2536  * indirect recursion and can lead to a stack overflow.
2537  * Moreover, if arch_va2pa_helper() returns true, it implies
2538  * the va2pa mapping is matched, no need to check it again.
2539  */
2540 #if defined(CFG_TEE_CORE_DEBUG) && !defined(__riscv)
2541 static void check_va_matches_pa(paddr_t pa, void *va)
2542 {
2543 	paddr_t p = 0;
2544 
2545 	if (!va)
2546 		return;
2547 
2548 	p = virt_to_phys(va);
2549 	if (p != pa) {
2550 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2551 		panic();
2552 	}
2553 }
2554 #else
2555 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2556 {
2557 }
2558 #endif
2559 
2560 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2561 {
2562 	if (!core_mmu_user_mapping_is_active())
2563 		return NULL;
2564 
2565 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2566 }
2567 
2568 #ifdef CFG_WITH_PAGER
2569 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2570 {
2571 	paddr_t end_pa = 0;
2572 
2573 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2574 		return NULL;
2575 
2576 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2577 		if (end_pa > get_linear_map_end_pa())
2578 			return NULL;
2579 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2580 	}
2581 
2582 	return tee_pager_phys_to_virt(pa, len);
2583 }
2584 #else
2585 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2586 {
2587 	struct tee_mmap_region *mmap = NULL;
2588 
2589 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2590 	if (!mmap)
2591 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2592 	if (!mmap)
2593 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2594 	if (!mmap)
2595 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2596 	if (!mmap)
2597 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2598 	if (!mmap)
2599 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2600 
2601 	/*
2602 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2603 	 * used with pager and not needed here.
2604 	 */
2605 	return map_pa2va(mmap, pa, len);
2606 }
2607 #endif
2608 
2609 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2610 {
2611 	void *va = NULL;
2612 
2613 	switch (m) {
2614 	case MEM_AREA_TS_VASPACE:
2615 		va = phys_to_virt_ts_vaspace(pa, len);
2616 		break;
2617 	case MEM_AREA_TEE_RAM:
2618 	case MEM_AREA_TEE_RAM_RX:
2619 	case MEM_AREA_TEE_RAM_RO:
2620 	case MEM_AREA_TEE_RAM_RW:
2621 	case MEM_AREA_NEX_RAM_RO:
2622 	case MEM_AREA_NEX_RAM_RW:
2623 		va = phys_to_virt_tee_ram(pa, len);
2624 		break;
2625 	case MEM_AREA_SHM_VASPACE:
2626 	case MEM_AREA_NEX_DYN_VASPACE:
2627 	case MEM_AREA_TEE_DYN_VASPACE:
2628 		/* Find VA from PA in dynamic SHM is not yet supported */
2629 		va = NULL;
2630 		break;
2631 	default:
2632 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2633 	}
2634 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2635 		check_va_matches_pa(pa, va);
2636 	return va;
2637 }
2638 
2639 void *phys_to_virt_io(paddr_t pa, size_t len)
2640 {
2641 	struct tee_mmap_region *map = NULL;
2642 	void *va = NULL;
2643 
2644 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2645 	if (!map)
2646 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2647 	if (!map)
2648 		return NULL;
2649 	va = map_pa2va(map, pa, len);
2650 	check_va_matches_pa(pa, va);
2651 	return va;
2652 }
2653 
2654 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2655 {
2656 	if (cpu_mmu_enabled())
2657 		return (vaddr_t)phys_to_virt(pa, type, len);
2658 
2659 	return (vaddr_t)pa;
2660 }
2661 
2662 #ifdef CFG_WITH_PAGER
2663 bool is_unpaged(const void *va)
2664 {
2665 	vaddr_t v = (vaddr_t)va;
2666 
2667 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2668 }
2669 #endif
2670 
2671 #ifdef CFG_NS_VIRTUALIZATION
2672 bool is_nexus(const void *va)
2673 {
2674 	vaddr_t v = (vaddr_t)va;
2675 
2676 	return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ;
2677 }
2678 #endif
2679 
2680 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2681 {
2682 	assert(p->pa);
2683 	if (cpu_mmu_enabled()) {
2684 		if (!p->va)
2685 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2686 		assert(p->va);
2687 		return p->va;
2688 	}
2689 	return p->pa;
2690 }
2691 
2692 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2693 {
2694 	assert(p->pa);
2695 	if (cpu_mmu_enabled()) {
2696 		if (!p->va)
2697 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2698 						      len);
2699 		assert(p->va);
2700 		return p->va;
2701 	}
2702 	return p->pa;
2703 }
2704 
2705 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2706 {
2707 	assert(p->pa);
2708 	if (cpu_mmu_enabled()) {
2709 		if (!p->va)
2710 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2711 						      len);
2712 		assert(p->va);
2713 		return p->va;
2714 	}
2715 	return p->pa;
2716 }
2717 
2718 #ifdef CFG_CORE_RESERVED_SHM
2719 static TEE_Result teecore_init_pub_ram(void)
2720 {
2721 	vaddr_t s = 0;
2722 	vaddr_t e = 0;
2723 
2724 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2725 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2726 
2727 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2728 		panic("invalid PUB RAM");
2729 
2730 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2731 	if (!tee_vbuf_is_non_sec(s, e - s))
2732 		panic("PUB RAM is not non-secure");
2733 
2734 #ifdef CFG_PL310
2735 	/* Allocate statically the l2cc mutex */
2736 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2737 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2738 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2739 #endif
2740 
2741 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2742 	default_nsec_shm_size = e - s;
2743 
2744 	return TEE_SUCCESS;
2745 }
2746 early_init(teecore_init_pub_ram);
2747 #endif /*CFG_CORE_RESERVED_SHM*/
2748 
2749 static void __maybe_unused carve_out_core_mem(paddr_t pa, paddr_t end_pa)
2750 {
2751 	tee_mm_entry_t *mm __maybe_unused = NULL;
2752 
2753 	DMSG("%#"PRIxPA" .. %#"PRIxPA, pa, end_pa);
2754 	mm = phys_mem_alloc2(pa, end_pa - pa);
2755 	assert(mm);
2756 }
2757 
2758 void core_mmu_init_phys_mem(void)
2759 {
2760 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
2761 		paddr_t b1 = 0;
2762 		paddr_size_t s1 = 0;
2763 
2764 		static_assert(ARRAY_SIZE(secure_only) <= 2);
2765 
2766 		if (ARRAY_SIZE(secure_only) == 2) {
2767 			b1 = secure_only[1].paddr;
2768 			s1 = secure_only[1].size;
2769 		}
2770 		virt_init_memory(&static_memory_map, secure_only[0].paddr,
2771 				 secure_only[0].size, b1, s1);
2772 	} else {
2773 #ifdef CFG_WITH_PAGER
2774 		/*
2775 		 * The pager uses all core memory so there's no need to add
2776 		 * it to the pool.
2777 		 */
2778 		static_assert(ARRAY_SIZE(secure_only) == 2);
2779 		phys_mem_init(0, 0, secure_only[1].paddr, secure_only[1].size);
2780 #else /*!CFG_WITH_PAGER*/
2781 		size_t align = BIT(CORE_MMU_USER_CODE_SHIFT);
2782 		paddr_t end_pa = 0;
2783 		size_t size = 0;
2784 		paddr_t ps = 0;
2785 		paddr_t pa = 0;
2786 
2787 		static_assert(ARRAY_SIZE(secure_only) <= 2);
2788 		if (ARRAY_SIZE(secure_only) == 2) {
2789 			ps = secure_only[1].paddr;
2790 			size = secure_only[1].size;
2791 		}
2792 		phys_mem_init(secure_only[0].paddr, secure_only[0].size,
2793 			      ps, size);
2794 
2795 		/*
2796 		 * The VCORE macros are relocatable so we need to translate
2797 		 * the addresses now that the MMU is enabled.
2798 		 */
2799 		end_pa = vaddr_to_phys(ROUNDUP2(VCORE_FREE_END_PA,
2800 						align) - 1) + 1;
2801 		/* Carve out the part used by OP-TEE core */
2802 		carve_out_core_mem(vaddr_to_phys(VCORE_UNPG_RX_PA), end_pa);
2803 		if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) {
2804 			pa = vaddr_to_phys(ROUNDUP2(ASAN_MAP_PA, align));
2805 			carve_out_core_mem(pa, pa + ASAN_MAP_SZ);
2806 		}
2807 
2808 		/* Carve out test SDP memory */
2809 #ifdef TEE_SDP_TEST_MEM_BASE
2810 		if (TEE_SDP_TEST_MEM_SIZE) {
2811 			pa = TEE_SDP_TEST_MEM_BASE;
2812 			carve_out_core_mem(pa, pa + TEE_SDP_TEST_MEM_SIZE);
2813 		}
2814 #endif
2815 #endif /*!CFG_WITH_PAGER*/
2816 	}
2817 }
2818