1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016, 2022 Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved. 6 */ 7 8 #include <assert.h> 9 #include <config.h> 10 #include <kernel/boot.h> 11 #include <kernel/dt.h> 12 #include <kernel/linker.h> 13 #include <kernel/panic.h> 14 #include <kernel/spinlock.h> 15 #include <kernel/tee_l2cc_mutex.h> 16 #include <kernel/tee_misc.h> 17 #include <kernel/tlb_helpers.h> 18 #include <kernel/user_mode_ctx.h> 19 #include <kernel/virtualization.h> 20 #include <libfdt.h> 21 #include <mm/core_memprot.h> 22 #include <mm/core_mmu.h> 23 #include <mm/mobj.h> 24 #include <mm/pgt_cache.h> 25 #include <mm/tee_pager.h> 26 #include <mm/vm.h> 27 #include <platform_config.h> 28 #include <string.h> 29 #include <trace.h> 30 #include <util.h> 31 32 #ifndef DEBUG_XLAT_TABLE 33 #define DEBUG_XLAT_TABLE 0 34 #endif 35 36 #define SHM_VASPACE_SIZE (1024 * 1024 * 32) 37 38 /* Physical Secure DDR pool */ 39 tee_mm_pool_t tee_mm_sec_ddr; 40 41 /* Virtual memory pool for core mappings */ 42 tee_mm_pool_t core_virt_mem_pool; 43 44 /* Virtual memory pool for shared memory mappings */ 45 tee_mm_pool_t core_virt_shm_pool; 46 47 #ifdef CFG_CORE_PHYS_RELOCATABLE 48 unsigned long core_mmu_tee_load_pa __nex_bss; 49 #else 50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR; 51 #endif 52 53 /* 54 * These variables are initialized before .bss is cleared. To avoid 55 * resetting them when .bss is cleared we're storing them in .data instead, 56 * even if they initially are zero. 57 */ 58 59 #ifdef CFG_CORE_RESERVED_SHM 60 /* Default NSec shared memory allocated from NSec world */ 61 unsigned long default_nsec_shm_size __nex_bss; 62 unsigned long default_nsec_shm_paddr __nex_bss; 63 #endif 64 65 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS 66 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE) 67 + 1 68 #endif 69 + 1] __nex_bss; 70 71 /* Define the platform's memory layout. */ 72 struct memaccess_area { 73 paddr_t paddr; 74 size_t size; 75 }; 76 77 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } 78 79 static struct memaccess_area secure_only[] __nex_data = { 80 #ifdef CFG_CORE_PHYS_RELOCATABLE 81 MEMACCESS_AREA(0, 0), 82 #else 83 #ifdef TRUSTED_SRAM_BASE 84 MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), 85 #endif 86 MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), 87 #endif 88 }; 89 90 static struct memaccess_area nsec_shared[] __nex_data = { 91 #ifdef CFG_CORE_RESERVED_SHM 92 MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), 93 #endif 94 }; 95 96 #if defined(CFG_SECURE_DATA_PATH) 97 static const char *tz_sdp_match = "linaro,secure-heap"; 98 static struct memaccess_area sec_sdp; 99 #ifdef CFG_TEE_SDP_MEM_BASE 100 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); 101 #endif 102 #ifdef TEE_SDP_TEST_MEM_BASE 103 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); 104 #endif 105 #endif 106 107 #ifdef CFG_CORE_RESERVED_SHM 108 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); 109 #endif 110 static unsigned int mmu_spinlock; 111 112 static uint32_t mmu_lock(void) 113 { 114 return cpu_spin_lock_xsave(&mmu_spinlock); 115 } 116 117 static void mmu_unlock(uint32_t exceptions) 118 { 119 cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); 120 } 121 122 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size) 123 { 124 /* 125 * The first range is always used to cover OP-TEE core memory, but 126 * depending on configuration it may cover more than that. 127 */ 128 *base = secure_only[0].paddr; 129 *size = secure_only[0].size; 130 } 131 132 void core_mmu_set_secure_memory(paddr_t base, size_t size) 133 { 134 #ifdef CFG_CORE_PHYS_RELOCATABLE 135 static_assert(ARRAY_SIZE(secure_only) == 1); 136 #endif 137 runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)); 138 assert(!secure_only[0].size); 139 assert(base && size); 140 141 DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size); 142 secure_only[0].paddr = base; 143 secure_only[0].size = size; 144 } 145 146 void core_mmu_get_ta_range(paddr_t *base, size_t *size) 147 { 148 paddr_t b = 0; 149 size_t s = 0; 150 151 static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE)); 152 #ifdef TA_RAM_START 153 b = TA_RAM_START; 154 s = TA_RAM_SIZE; 155 #else 156 static_assert(ARRAY_SIZE(secure_only) <= 2); 157 if (ARRAY_SIZE(secure_only) == 1) { 158 vaddr_t load_offs = 0; 159 160 assert(core_mmu_tee_load_pa >= secure_only[0].paddr); 161 load_offs = core_mmu_tee_load_pa - secure_only[0].paddr; 162 163 assert(secure_only[0].size > 164 load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE); 165 b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE; 166 s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE - 167 TEE_SDP_TEST_MEM_SIZE; 168 } else { 169 assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE); 170 b = secure_only[1].paddr; 171 s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE; 172 } 173 #endif 174 if (base) 175 *base = b; 176 if (size) 177 *size = s; 178 } 179 180 static struct tee_mmap_region *get_memory_map(void) 181 { 182 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 183 struct tee_mmap_region *map = virt_get_memory_map(); 184 185 if (map) 186 return map; 187 } 188 189 return static_memory_map; 190 } 191 192 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, 193 paddr_t pa, size_t size) 194 { 195 size_t n; 196 197 for (n = 0; n < alen; n++) 198 if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) 199 return true; 200 return false; 201 } 202 203 #define pbuf_intersects(a, pa, size) \ 204 _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) 205 206 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, 207 paddr_t pa, size_t size) 208 { 209 size_t n; 210 211 for (n = 0; n < alen; n++) 212 if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) 213 return true; 214 return false; 215 } 216 217 #define pbuf_is_inside(a, pa, size) \ 218 _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) 219 220 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) 221 { 222 paddr_t end_pa = 0; 223 224 if (!map) 225 return false; 226 227 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 228 return false; 229 230 return (pa >= map->pa && end_pa <= map->pa + map->size - 1); 231 } 232 233 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) 234 { 235 if (!map) 236 return false; 237 return (va >= map->va && va <= (map->va + map->size - 1)); 238 } 239 240 /* check if target buffer fits in a core default map area */ 241 static bool pbuf_inside_map_area(unsigned long p, size_t l, 242 struct tee_mmap_region *map) 243 { 244 return core_is_buffer_inside(p, l, map->pa, map->size); 245 } 246 247 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) 248 { 249 struct tee_mmap_region *map; 250 251 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) 252 if (map->type == type) 253 return map; 254 return NULL; 255 } 256 257 static struct tee_mmap_region * 258 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) 259 { 260 struct tee_mmap_region *map; 261 262 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 263 if (map->type != type) 264 continue; 265 if (pa_is_in_map(map, pa, len)) 266 return map; 267 } 268 return NULL; 269 } 270 271 static struct tee_mmap_region *find_map_by_va(void *va) 272 { 273 struct tee_mmap_region *map = get_memory_map(); 274 unsigned long a = (unsigned long)va; 275 276 while (!core_mmap_is_end_of_table(map)) { 277 if (a >= map->va && a <= (map->va - 1 + map->size)) 278 return map; 279 map++; 280 } 281 return NULL; 282 } 283 284 static struct tee_mmap_region *find_map_by_pa(unsigned long pa) 285 { 286 struct tee_mmap_region *map = get_memory_map(); 287 288 while (!core_mmap_is_end_of_table(map)) { 289 if (pa >= map->pa && pa <= (map->pa + map->size - 1)) 290 return map; 291 map++; 292 } 293 return NULL; 294 } 295 296 #if defined(CFG_SECURE_DATA_PATH) 297 static bool dtb_get_sdp_region(void) 298 { 299 void *fdt = NULL; 300 int node = 0; 301 int tmp_node = 0; 302 paddr_t tmp_addr = 0; 303 size_t tmp_size = 0; 304 305 if (!IS_ENABLED(CFG_EMBED_DTB)) 306 return false; 307 308 fdt = get_embedded_dt(); 309 if (!fdt) 310 panic("No DTB found"); 311 312 node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match); 313 if (node < 0) { 314 DMSG("No %s compatible node found", tz_sdp_match); 315 return false; 316 } 317 tmp_node = node; 318 while (tmp_node >= 0) { 319 tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node, 320 tz_sdp_match); 321 if (tmp_node >= 0) 322 DMSG("Ignore SDP pool node %s, supports only 1 node", 323 fdt_get_name(fdt, tmp_node, NULL)); 324 } 325 326 tmp_addr = fdt_reg_base_address(fdt, node); 327 if (tmp_addr == DT_INFO_INVALID_REG) { 328 EMSG("%s: Unable to get base addr from DT", tz_sdp_match); 329 return false; 330 } 331 332 tmp_size = fdt_reg_size(fdt, node); 333 if (tmp_size == DT_INFO_INVALID_REG_SIZE) { 334 EMSG("%s: Unable to get size of base addr from DT", 335 tz_sdp_match); 336 return false; 337 } 338 339 sec_sdp.paddr = tmp_addr; 340 sec_sdp.size = tmp_size; 341 342 return true; 343 } 344 #endif 345 346 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) 347 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, 348 const struct core_mmu_phys_mem *start, 349 const struct core_mmu_phys_mem *end) 350 { 351 const struct core_mmu_phys_mem *mem; 352 353 for (mem = start; mem < end; mem++) { 354 if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) 355 return true; 356 } 357 358 return false; 359 } 360 #endif 361 362 #ifdef CFG_CORE_DYN_SHM 363 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, 364 paddr_t pa, size_t size) 365 { 366 struct core_mmu_phys_mem *m = *mem; 367 size_t n = 0; 368 369 while (true) { 370 if (n >= *nelems) { 371 DMSG("No need to carve out %#" PRIxPA " size %#zx", 372 pa, size); 373 return; 374 } 375 if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size)) 376 break; 377 if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size)) 378 panic(); 379 n++; 380 } 381 382 if (pa == m[n].addr && size == m[n].size) { 383 /* Remove this entry */ 384 (*nelems)--; 385 memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n)); 386 m = nex_realloc(m, sizeof(*m) * *nelems); 387 if (!m) 388 panic(); 389 *mem = m; 390 } else if (pa == m[n].addr) { 391 m[n].addr += size; 392 m[n].size -= size; 393 } else if ((pa + size) == (m[n].addr + m[n].size)) { 394 m[n].size -= size; 395 } else { 396 /* Need to split the memory entry */ 397 m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); 398 if (!m) 399 panic(); 400 *mem = m; 401 memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n)); 402 (*nelems)++; 403 m[n].size = pa - m[n].addr; 404 m[n + 1].size -= size + m[n].size; 405 m[n + 1].addr = pa + size; 406 } 407 } 408 409 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, 410 size_t nelems, 411 struct tee_mmap_region *map) 412 { 413 size_t n; 414 415 for (n = 0; n < nelems; n++) { 416 if (!core_is_buffer_outside(start[n].addr, start[n].size, 417 map->pa, map->size)) { 418 EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ 419 ") overlaps map (type %d %#" PRIxPA ":%#zx)", 420 start[n].addr, start[n].size, 421 map->type, map->pa, map->size); 422 panic(); 423 } 424 } 425 } 426 427 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; 428 static size_t discovered_nsec_ddr_nelems __nex_bss; 429 430 static int cmp_pmem_by_addr(const void *a, const void *b) 431 { 432 const struct core_mmu_phys_mem *pmem_a = a; 433 const struct core_mmu_phys_mem *pmem_b = b; 434 435 return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); 436 } 437 438 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 439 size_t nelems) 440 { 441 struct core_mmu_phys_mem *m = start; 442 size_t num_elems = nelems; 443 struct tee_mmap_region *map = static_memory_map; 444 const struct core_mmu_phys_mem __maybe_unused *pmem; 445 size_t n = 0; 446 447 assert(!discovered_nsec_ddr_start); 448 assert(m && num_elems); 449 450 qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); 451 452 /* 453 * Non-secure shared memory and also secure data 454 * path memory are supposed to reside inside 455 * non-secure memory. Since NSEC_SHM and SDP_MEM 456 * are used for a specific purpose make holes for 457 * those memory in the normal non-secure memory. 458 * 459 * This has to be done since for instance QEMU 460 * isn't aware of which memory range in the 461 * non-secure memory is used for NSEC_SHM. 462 */ 463 464 #ifdef CFG_SECURE_DATA_PATH 465 if (dtb_get_sdp_region()) 466 carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size); 467 468 for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) 469 carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); 470 #endif 471 472 for (n = 0; n < ARRAY_SIZE(secure_only); n++) 473 carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr, 474 secure_only[n].size); 475 476 for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) { 477 switch (map->type) { 478 case MEM_AREA_NSEC_SHM: 479 carve_out_phys_mem(&m, &num_elems, map->pa, map->size); 480 break; 481 case MEM_AREA_EXT_DT: 482 case MEM_AREA_MANIFEST_DT: 483 case MEM_AREA_RAM_NSEC: 484 case MEM_AREA_RES_VASPACE: 485 case MEM_AREA_SHM_VASPACE: 486 case MEM_AREA_TS_VASPACE: 487 case MEM_AREA_PAGER_VASPACE: 488 break; 489 default: 490 check_phys_mem_is_outside(m, num_elems, map); 491 } 492 } 493 494 discovered_nsec_ddr_start = m; 495 discovered_nsec_ddr_nelems = num_elems; 496 497 if (!core_mmu_check_end_pa(m[num_elems - 1].addr, 498 m[num_elems - 1].size)) 499 panic(); 500 } 501 502 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, 503 const struct core_mmu_phys_mem **end) 504 { 505 if (!discovered_nsec_ddr_start) 506 return false; 507 508 *start = discovered_nsec_ddr_start; 509 *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; 510 511 return true; 512 } 513 514 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) 515 { 516 const struct core_mmu_phys_mem *start; 517 const struct core_mmu_phys_mem *end; 518 519 if (!get_discovered_nsec_ddr(&start, &end)) 520 return false; 521 522 return pbuf_is_special_mem(pbuf, len, start, end); 523 } 524 525 bool core_mmu_nsec_ddr_is_defined(void) 526 { 527 const struct core_mmu_phys_mem *start; 528 const struct core_mmu_phys_mem *end; 529 530 if (!get_discovered_nsec_ddr(&start, &end)) 531 return false; 532 533 return start != end; 534 } 535 #else 536 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) 537 { 538 return false; 539 } 540 #endif /*CFG_CORE_DYN_SHM*/ 541 542 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ 543 EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ 544 pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) 545 546 #ifdef CFG_SECURE_DATA_PATH 547 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) 548 { 549 bool is_sdp_mem = false; 550 551 if (sec_sdp.size) 552 is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr, 553 sec_sdp.size); 554 555 if (!is_sdp_mem) 556 is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, 557 phys_sdp_mem_end); 558 559 return is_sdp_mem; 560 } 561 562 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size) 563 { 564 struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED, 565 CORE_MEM_SDP_MEM); 566 567 if (!mobj) 568 panic("can't create SDP physical memory object"); 569 570 return mobj; 571 } 572 573 struct mobj **core_sdp_mem_create_mobjs(void) 574 { 575 const struct core_mmu_phys_mem *mem = NULL; 576 struct mobj **mobj_base = NULL; 577 struct mobj **mobj = NULL; 578 int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; 579 580 if (sec_sdp.size) 581 cnt++; 582 583 /* SDP mobjs table must end with a NULL entry */ 584 mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); 585 if (!mobj_base) 586 panic("Out of memory"); 587 588 mobj = mobj_base; 589 590 for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++) 591 *mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size); 592 593 if (sec_sdp.size) 594 *mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size); 595 596 return mobj_base; 597 } 598 599 #else /* CFG_SECURE_DATA_PATH */ 600 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) 601 { 602 return false; 603 } 604 605 #endif /* CFG_SECURE_DATA_PATH */ 606 607 /* Check special memories comply with registered memories */ 608 static void verify_special_mem_areas(struct tee_mmap_region *mem_map, 609 const struct core_mmu_phys_mem *start, 610 const struct core_mmu_phys_mem *end, 611 const char *area_name __maybe_unused) 612 { 613 const struct core_mmu_phys_mem *mem; 614 const struct core_mmu_phys_mem *mem2; 615 struct tee_mmap_region *mmap; 616 617 if (start == end) { 618 DMSG("No %s memory area defined", area_name); 619 return; 620 } 621 622 for (mem = start; mem < end; mem++) 623 DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", 624 area_name, mem->addr, (uint64_t)mem->addr + mem->size); 625 626 /* Check memories do not intersect each other */ 627 for (mem = start; mem + 1 < end; mem++) { 628 for (mem2 = mem + 1; mem2 < end; mem2++) { 629 if (core_is_buffer_intersect(mem2->addr, mem2->size, 630 mem->addr, mem->size)) { 631 MSG_MEM_INSTERSECT(mem2->addr, mem2->size, 632 mem->addr, mem->size); 633 panic("Special memory intersection"); 634 } 635 } 636 } 637 638 /* 639 * Check memories do not intersect any mapped memory. 640 * This is called before reserved VA space is loaded in mem_map. 641 */ 642 for (mem = start; mem < end; mem++) { 643 for (mmap = mem_map; mmap->type != MEM_AREA_END; mmap++) { 644 if (core_is_buffer_intersect(mem->addr, mem->size, 645 mmap->pa, mmap->size)) { 646 MSG_MEM_INSTERSECT(mem->addr, mem->size, 647 mmap->pa, mmap->size); 648 panic("Special memory intersection"); 649 } 650 } 651 } 652 } 653 654 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems, 655 const char *mem_name __maybe_unused, 656 enum teecore_memtypes mem_type, 657 paddr_t mem_addr, paddr_size_t mem_size, size_t *last) 658 { 659 size_t n = 0; 660 paddr_t pa; 661 paddr_size_t size; 662 663 if (!mem_size) /* Discard null size entries */ 664 return; 665 /* 666 * If some ranges of memory of the same type do overlap 667 * each others they are coalesced into one entry. To help this 668 * added entries are sorted by increasing physical. 669 * 670 * Note that it's valid to have the same physical memory as several 671 * different memory types, for instance the same device memory 672 * mapped as both secure and non-secure. This will probably not 673 * happen often in practice. 674 */ 675 DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, 676 mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size); 677 while (true) { 678 if (n >= (num_elems - 1)) { 679 EMSG("Out of entries (%zu) in memory_map", num_elems); 680 panic(); 681 } 682 if (n == *last) 683 break; 684 pa = memory_map[n].pa; 685 size = memory_map[n].size; 686 if (mem_type == memory_map[n].type && 687 ((pa <= (mem_addr + (mem_size - 1))) && 688 (mem_addr <= (pa + (size - 1))))) { 689 DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr); 690 memory_map[n].pa = MIN(pa, mem_addr); 691 memory_map[n].size = MAX(size, mem_size) + 692 (pa - memory_map[n].pa); 693 return; 694 } 695 if (mem_type < memory_map[n].type || 696 (mem_type == memory_map[n].type && mem_addr < pa)) 697 break; /* found the spot where to insert this memory */ 698 n++; 699 } 700 701 memmove(memory_map + n + 1, memory_map + n, 702 sizeof(struct tee_mmap_region) * (*last - n)); 703 (*last)++; 704 memset(memory_map + n, 0, sizeof(memory_map[0])); 705 memory_map[n].type = mem_type; 706 memory_map[n].pa = mem_addr; 707 memory_map[n].size = mem_size; 708 } 709 710 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems, 711 enum teecore_memtypes type, size_t size, size_t *last) 712 { 713 size_t n = 0; 714 715 DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); 716 while (true) { 717 if (n >= (num_elems - 1)) { 718 EMSG("Out of entries (%zu) in memory_map", num_elems); 719 panic(); 720 } 721 if (n == *last) 722 break; 723 if (type < memory_map[n].type) 724 break; 725 n++; 726 } 727 728 memmove(memory_map + n + 1, memory_map + n, 729 sizeof(struct tee_mmap_region) * (*last - n)); 730 (*last)++; 731 memset(memory_map + n, 0, sizeof(memory_map[0])); 732 memory_map[n].type = type; 733 memory_map[n].size = size; 734 } 735 736 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) 737 { 738 const uint32_t attr = TEE_MATTR_VALID_BLOCK; 739 const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED << 740 TEE_MATTR_MEM_TYPE_SHIFT; 741 const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << 742 TEE_MATTR_MEM_TYPE_SHIFT; 743 const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << 744 TEE_MATTR_MEM_TYPE_SHIFT; 745 746 switch (t) { 747 case MEM_AREA_TEE_RAM: 748 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged; 749 case MEM_AREA_TEE_RAM_RX: 750 case MEM_AREA_INIT_RAM_RX: 751 case MEM_AREA_IDENTITY_MAP_RX: 752 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged; 753 case MEM_AREA_TEE_RAM_RO: 754 case MEM_AREA_INIT_RAM_RO: 755 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged; 756 case MEM_AREA_TEE_RAM_RW: 757 case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ 758 case MEM_AREA_NEX_RAM_RW: 759 case MEM_AREA_TEE_ASAN: 760 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 761 case MEM_AREA_TEE_COHERENT: 762 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; 763 case MEM_AREA_TA_RAM: 764 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 765 case MEM_AREA_NSEC_SHM: 766 case MEM_AREA_NEX_NSEC_SHM: 767 return attr | TEE_MATTR_PRW | cached; 768 case MEM_AREA_MANIFEST_DT: 769 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 770 case MEM_AREA_TRANSFER_LIST: 771 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 772 case MEM_AREA_EXT_DT: 773 /* 774 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device 775 * tree as secure non-cached memory, otherwise, fall back to 776 * non-secure mapping. 777 */ 778 if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE)) 779 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | 780 noncache; 781 fallthrough; 782 case MEM_AREA_IO_NSEC: 783 return attr | TEE_MATTR_PRW | noncache; 784 case MEM_AREA_IO_SEC: 785 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; 786 case MEM_AREA_RAM_NSEC: 787 return attr | TEE_MATTR_PRW | cached; 788 case MEM_AREA_RAM_SEC: 789 case MEM_AREA_SEC_RAM_OVERALL: 790 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 791 case MEM_AREA_ROM_SEC: 792 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 793 case MEM_AREA_RES_VASPACE: 794 case MEM_AREA_SHM_VASPACE: 795 return 0; 796 case MEM_AREA_PAGER_VASPACE: 797 return TEE_MATTR_SECURE; 798 default: 799 panic("invalid type"); 800 } 801 } 802 803 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) 804 { 805 switch (mm->type) { 806 case MEM_AREA_TEE_RAM: 807 case MEM_AREA_TEE_RAM_RX: 808 case MEM_AREA_TEE_RAM_RO: 809 case MEM_AREA_TEE_RAM_RW: 810 case MEM_AREA_INIT_RAM_RX: 811 case MEM_AREA_INIT_RAM_RO: 812 case MEM_AREA_NEX_RAM_RW: 813 case MEM_AREA_NEX_RAM_RO: 814 case MEM_AREA_TEE_ASAN: 815 return true; 816 default: 817 return false; 818 } 819 } 820 821 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) 822 { 823 return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); 824 } 825 826 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) 827 { 828 return mm->region_size == CORE_MMU_PGDIR_SIZE; 829 } 830 831 static int cmp_mmap_by_lower_va(const void *a, const void *b) 832 { 833 const struct tee_mmap_region *mm_a = a; 834 const struct tee_mmap_region *mm_b = b; 835 836 return CMP_TRILEAN(mm_a->va, mm_b->va); 837 } 838 839 static void dump_mmap_table(struct tee_mmap_region *memory_map) 840 { 841 struct tee_mmap_region *map; 842 843 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 844 vaddr_t __maybe_unused vstart; 845 846 vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1)); 847 DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA 848 " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", 849 teecore_memtype_name(map->type), vstart, 850 vstart + map->size - 1, map->pa, 851 (paddr_t)(map->pa + map->size - 1), map->size, 852 map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); 853 } 854 } 855 856 #if DEBUG_XLAT_TABLE 857 858 static void dump_xlat_table(vaddr_t va, unsigned int level) 859 { 860 struct core_mmu_table_info tbl_info; 861 unsigned int idx = 0; 862 paddr_t pa; 863 uint32_t attr; 864 865 core_mmu_find_table(NULL, va, level, &tbl_info); 866 va = tbl_info.va_base; 867 for (idx = 0; idx < tbl_info.num_entries; idx++) { 868 core_mmu_get_entry(&tbl_info, idx, &pa, &attr); 869 if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { 870 const char *security_bit = ""; 871 872 if (core_mmu_entry_have_security_bit(attr)) { 873 if (attr & TEE_MATTR_SECURE) 874 security_bit = "S"; 875 else 876 security_bit = "NS"; 877 } 878 879 if (attr & TEE_MATTR_TABLE) { 880 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 881 " TBL:0x%010" PRIxPA " %s", 882 level * 2, "", level, va, pa, 883 security_bit); 884 dump_xlat_table(va, level + 1); 885 } else if (attr) { 886 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 887 " PA:0x%010" PRIxPA " %s-%s-%s-%s", 888 level * 2, "", level, va, pa, 889 mattr_is_cached(attr) ? "MEM" : 890 "DEV", 891 attr & TEE_MATTR_PW ? "RW" : "RO", 892 attr & TEE_MATTR_PX ? "X " : "XN", 893 security_bit); 894 } else { 895 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 896 " INVALID\n", 897 level * 2, "", level, va); 898 } 899 } 900 va += BIT64(tbl_info.shift); 901 } 902 } 903 904 #else 905 906 static void dump_xlat_table(vaddr_t va __unused, int level __unused) 907 { 908 } 909 910 #endif 911 912 /* 913 * Reserves virtual memory space for pager usage. 914 * 915 * From the start of the first memory used by the link script + 916 * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty 917 * mapping for pager usage. This adds translation tables as needed for the 918 * pager to operate. 919 */ 920 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems, 921 size_t *last) 922 { 923 paddr_t begin = 0; 924 paddr_t end = 0; 925 size_t size = 0; 926 size_t pos = 0; 927 size_t n = 0; 928 929 if (*last >= (num_elems - 1)) { 930 EMSG("Out of entries (%zu) in memory map", num_elems); 931 panic(); 932 } 933 934 for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) { 935 if (map_is_tee_ram(mmap + n)) { 936 if (!begin) 937 begin = mmap[n].pa; 938 pos = n + 1; 939 } 940 } 941 942 end = mmap[pos - 1].pa + mmap[pos - 1].size; 943 assert(end - begin < TEE_RAM_VA_SIZE); 944 size = TEE_RAM_VA_SIZE - (end - begin); 945 946 assert(pos <= *last); 947 memmove(mmap + pos + 1, mmap + pos, 948 sizeof(struct tee_mmap_region) * (*last - pos)); 949 (*last)++; 950 memset(mmap + pos, 0, sizeof(mmap[0])); 951 mmap[pos].type = MEM_AREA_PAGER_VASPACE; 952 mmap[pos].va = 0; 953 mmap[pos].size = size; 954 mmap[pos].region_size = SMALL_PAGE_SIZE; 955 mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE); 956 } 957 958 static void check_sec_nsec_mem_config(void) 959 { 960 size_t n = 0; 961 962 for (n = 0; n < ARRAY_SIZE(secure_only); n++) { 963 if (pbuf_intersects(nsec_shared, secure_only[n].paddr, 964 secure_only[n].size)) 965 panic("Invalid memory access config: sec/nsec"); 966 } 967 } 968 969 static void collect_device_mem_ranges(struct tee_mmap_region *memory_map, 970 size_t num_elems, size_t *last) 971 { 972 const char *compatible = "arm,ffa-manifest-device-regions"; 973 void *fdt = get_manifest_dt(); 974 const char *name = NULL; 975 uint64_t page_count = 0; 976 uint64_t base = 0; 977 int subnode = 0; 978 int node = 0; 979 980 assert(fdt); 981 982 node = fdt_node_offset_by_compatible(fdt, 0, compatible); 983 if (node < 0) 984 return; 985 986 fdt_for_each_subnode(subnode, fdt, node) { 987 name = fdt_get_name(fdt, subnode, NULL); 988 if (!name) 989 continue; 990 991 if (dt_getprop_as_number(fdt, subnode, "base-address", 992 &base)) { 993 EMSG("Mandatory field is missing: base-address"); 994 continue; 995 } 996 997 if (base & SMALL_PAGE_MASK) { 998 EMSG("base-address is not page aligned"); 999 continue; 1000 } 1001 1002 if (dt_getprop_as_number(fdt, subnode, "pages-count", 1003 &page_count)) { 1004 EMSG("Mandatory field is missing: pages-count"); 1005 continue; 1006 } 1007 1008 add_phys_mem(memory_map, num_elems, name, MEM_AREA_IO_SEC, 1009 base, page_count * SMALL_PAGE_SIZE, last); 1010 } 1011 } 1012 1013 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map, 1014 size_t num_elems) 1015 { 1016 const struct core_mmu_phys_mem *mem = NULL; 1017 vaddr_t ram_start = secure_only[0].paddr; 1018 size_t last = 0; 1019 1020 1021 #define ADD_PHYS_MEM(_type, _addr, _size) \ 1022 add_phys_mem(memory_map, num_elems, #_addr, (_type), \ 1023 (_addr), (_size), &last) 1024 1025 if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) { 1026 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start, 1027 VCORE_UNPG_RX_PA - ram_start); 1028 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, 1029 VCORE_UNPG_RX_SZ); 1030 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, 1031 VCORE_UNPG_RO_SZ); 1032 1033 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1034 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, 1035 VCORE_UNPG_RW_SZ); 1036 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, 1037 VCORE_NEX_RW_SZ); 1038 } else { 1039 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, 1040 VCORE_UNPG_RW_SZ); 1041 } 1042 1043 if (IS_ENABLED(CFG_WITH_PAGER)) { 1044 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, 1045 VCORE_INIT_RX_SZ); 1046 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, 1047 VCORE_INIT_RO_SZ); 1048 } 1049 } else { 1050 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); 1051 } 1052 1053 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1054 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE, 1055 TRUSTED_DRAM_SIZE); 1056 } else { 1057 /* 1058 * Every guest will have own TA RAM if virtualization 1059 * support is enabled. 1060 */ 1061 paddr_t ta_base = 0; 1062 size_t ta_size = 0; 1063 1064 core_mmu_get_ta_range(&ta_base, &ta_size); 1065 ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size); 1066 } 1067 1068 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) && 1069 IS_ENABLED(CFG_WITH_PAGER)) { 1070 /* 1071 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is 1072 * disabled. 1073 */ 1074 ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); 1075 } 1076 1077 #undef ADD_PHYS_MEM 1078 1079 /* Collect device memory info from SP manifest */ 1080 if (IS_ENABLED(CFG_CORE_SEL2_SPMC)) 1081 collect_device_mem_ranges(memory_map, num_elems, &last); 1082 1083 for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { 1084 /* Only unmapped virtual range may have a null phys addr */ 1085 assert(mem->addr || !core_mmu_type_to_attr(mem->type)); 1086 1087 add_phys_mem(memory_map, num_elems, mem->name, mem->type, 1088 mem->addr, mem->size, &last); 1089 } 1090 1091 if (IS_ENABLED(CFG_SECURE_DATA_PATH)) 1092 verify_special_mem_areas(memory_map, phys_sdp_mem_begin, 1093 phys_sdp_mem_end, "SDP"); 1094 1095 add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE, 1096 CFG_RESERVED_VASPACE_SIZE, &last); 1097 1098 add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE, 1099 SHM_VASPACE_SIZE, &last); 1100 1101 memory_map[last].type = MEM_AREA_END; 1102 1103 return last; 1104 } 1105 1106 static void assign_mem_granularity(struct tee_mmap_region *memory_map) 1107 { 1108 struct tee_mmap_region *map = NULL; 1109 1110 /* 1111 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses 1112 * SMALL_PAGE_SIZE. 1113 */ 1114 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1115 paddr_t mask = map->pa | map->size; 1116 1117 if (!(mask & CORE_MMU_PGDIR_MASK)) 1118 map->region_size = CORE_MMU_PGDIR_SIZE; 1119 else if (!(mask & SMALL_PAGE_MASK)) 1120 map->region_size = SMALL_PAGE_SIZE; 1121 else 1122 panic("Impossible memory alignment"); 1123 1124 if (map_is_tee_ram(map)) 1125 map->region_size = SMALL_PAGE_SIZE; 1126 } 1127 } 1128 1129 static bool place_tee_ram_at_top(paddr_t paddr) 1130 { 1131 return paddr > BIT64(core_mmu_get_va_width()) / 2; 1132 } 1133 1134 /* 1135 * MMU arch driver shall override this function if it helps 1136 * optimizing the memory footprint of the address translation tables. 1137 */ 1138 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr) 1139 { 1140 return place_tee_ram_at_top(paddr); 1141 } 1142 1143 static bool assign_mem_va_dir(vaddr_t tee_ram_va, 1144 struct tee_mmap_region *memory_map, 1145 bool tee_ram_at_top) 1146 { 1147 struct tee_mmap_region *map = NULL; 1148 vaddr_t va = 0; 1149 bool va_is_secure = true; 1150 1151 /* 1152 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y. 1153 * 0 is by design an invalid va, so return false directly. 1154 */ 1155 if (!tee_ram_va) 1156 return false; 1157 1158 /* Clear eventual previous assignments */ 1159 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 1160 map->va = 0; 1161 1162 /* 1163 * TEE RAM regions are always aligned with region_size. 1164 * 1165 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here 1166 * since it handles virtual memory which covers the part of the ELF 1167 * that cannot fit directly into memory. 1168 */ 1169 va = tee_ram_va; 1170 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1171 if (map_is_tee_ram(map) || 1172 map->type == MEM_AREA_PAGER_VASPACE) { 1173 assert(!(va & (map->region_size - 1))); 1174 assert(!(map->size & (map->region_size - 1))); 1175 map->va = va; 1176 if (ADD_OVERFLOW(va, map->size, &va)) 1177 return false; 1178 if (va >= BIT64(core_mmu_get_va_width())) 1179 return false; 1180 } 1181 } 1182 1183 if (tee_ram_at_top) { 1184 /* 1185 * Map non-tee ram regions at addresses lower than the tee 1186 * ram region. 1187 */ 1188 va = tee_ram_va; 1189 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1190 map->attr = core_mmu_type_to_attr(map->type); 1191 if (map->va) 1192 continue; 1193 1194 if (!IS_ENABLED(CFG_WITH_LPAE) && 1195 va_is_secure != map_is_secure(map)) { 1196 va_is_secure = !va_is_secure; 1197 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1198 } 1199 1200 if (SUB_OVERFLOW(va, map->size, &va)) 1201 return false; 1202 va = ROUNDDOWN(va, map->region_size); 1203 /* 1204 * Make sure that va is aligned with pa for 1205 * efficient pgdir mapping. Basically pa & 1206 * pgdir_mask should be == va & pgdir_mask 1207 */ 1208 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1209 if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) 1210 return false; 1211 va += (map->pa - va) & CORE_MMU_PGDIR_MASK; 1212 } 1213 map->va = va; 1214 } 1215 } else { 1216 /* 1217 * Map non-tee ram regions at addresses higher than the tee 1218 * ram region. 1219 */ 1220 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1221 map->attr = core_mmu_type_to_attr(map->type); 1222 if (map->va) 1223 continue; 1224 1225 if (!IS_ENABLED(CFG_WITH_LPAE) && 1226 va_is_secure != map_is_secure(map)) { 1227 va_is_secure = !va_is_secure; 1228 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1229 &va)) 1230 return false; 1231 } 1232 1233 if (ROUNDUP_OVERFLOW(va, map->region_size, &va)) 1234 return false; 1235 /* 1236 * Make sure that va is aligned with pa for 1237 * efficient pgdir mapping. Basically pa & 1238 * pgdir_mask should be == va & pgdir_mask 1239 */ 1240 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1241 vaddr_t offs = (map->pa - va) & 1242 CORE_MMU_PGDIR_MASK; 1243 1244 if (ADD_OVERFLOW(va, offs, &va)) 1245 return false; 1246 } 1247 1248 map->va = va; 1249 if (ADD_OVERFLOW(va, map->size, &va)) 1250 return false; 1251 if (va >= BIT64(core_mmu_get_va_width())) 1252 return false; 1253 } 1254 } 1255 1256 return true; 1257 } 1258 1259 static bool assign_mem_va(vaddr_t tee_ram_va, 1260 struct tee_mmap_region *memory_map) 1261 { 1262 bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va); 1263 1264 /* 1265 * Check that we're not overlapping with the user VA range. 1266 */ 1267 if (IS_ENABLED(CFG_WITH_LPAE)) { 1268 /* 1269 * User VA range is supposed to be defined after these 1270 * mappings have been established. 1271 */ 1272 assert(!core_mmu_user_va_range_is_defined()); 1273 } else { 1274 vaddr_t user_va_base = 0; 1275 size_t user_va_size = 0; 1276 1277 assert(core_mmu_user_va_range_is_defined()); 1278 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 1279 if (tee_ram_va < (user_va_base + user_va_size)) 1280 return false; 1281 } 1282 1283 if (IS_ENABLED(CFG_WITH_PAGER)) { 1284 bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va); 1285 1286 /* Try whole mapping covered by a single base xlat entry */ 1287 if (prefered_dir != tee_ram_at_top && 1288 assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir)) 1289 return true; 1290 } 1291 1292 return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top); 1293 } 1294 1295 static int cmp_init_mem_map(const void *a, const void *b) 1296 { 1297 const struct tee_mmap_region *mm_a = a; 1298 const struct tee_mmap_region *mm_b = b; 1299 int rc = 0; 1300 1301 rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); 1302 if (!rc) 1303 rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); 1304 /* 1305 * 32bit MMU descriptors cannot mix secure and non-secure mapping in 1306 * the same level2 table. Hence sort secure mapping from non-secure 1307 * mapping. 1308 */ 1309 if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) 1310 rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); 1311 1312 return rc; 1313 } 1314 1315 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map, 1316 size_t num_elems, size_t *last, 1317 vaddr_t id_map_start, vaddr_t id_map_end) 1318 { 1319 struct tee_mmap_region *map = NULL; 1320 vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); 1321 vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); 1322 size_t len = end - start; 1323 1324 if (*last >= num_elems - 1) { 1325 EMSG("Out of entries (%zu) in memory map", num_elems); 1326 panic(); 1327 } 1328 1329 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 1330 if (core_is_buffer_intersect(map->va, map->size, start, len)) 1331 return false; 1332 1333 *map = (struct tee_mmap_region){ 1334 .type = MEM_AREA_IDENTITY_MAP_RX, 1335 /* 1336 * Could use CORE_MMU_PGDIR_SIZE to potentially save a 1337 * translation table, at the increased risk of clashes with 1338 * the rest of the memory map. 1339 */ 1340 .region_size = SMALL_PAGE_SIZE, 1341 .pa = start, 1342 .va = start, 1343 .size = len, 1344 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1345 }; 1346 1347 (*last)++; 1348 1349 return true; 1350 } 1351 1352 static unsigned long init_mem_map(struct tee_mmap_region *memory_map, 1353 size_t num_elems, unsigned long seed) 1354 { 1355 /* 1356 * @id_map_start and @id_map_end describes a physical memory range 1357 * that must be mapped Read-Only eXecutable at identical virtual 1358 * addresses. 1359 */ 1360 vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; 1361 vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; 1362 vaddr_t start_addr = secure_only[0].paddr; 1363 unsigned long offs = 0; 1364 size_t last = 0; 1365 1366 last = collect_mem_ranges(memory_map, num_elems); 1367 assign_mem_granularity(memory_map); 1368 1369 /* 1370 * To ease mapping and lower use of xlat tables, sort mapping 1371 * description moving small-page regions after the pgdir regions. 1372 */ 1373 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1374 cmp_init_mem_map); 1375 1376 if (IS_ENABLED(CFG_WITH_PAGER)) 1377 add_pager_vaspace(memory_map, num_elems, &last); 1378 1379 if (IS_ENABLED(CFG_CORE_ASLR) && seed) { 1380 vaddr_t base_addr = start_addr + seed; 1381 const unsigned int va_width = core_mmu_get_va_width(); 1382 const vaddr_t va_mask = GENMASK_64(va_width - 1, 1383 SMALL_PAGE_SHIFT); 1384 vaddr_t ba = base_addr; 1385 size_t n = 0; 1386 1387 for (n = 0; n < 3; n++) { 1388 if (n) 1389 ba = base_addr ^ BIT64(va_width - n); 1390 ba &= va_mask; 1391 if (assign_mem_va(ba, memory_map) && 1392 mem_map_add_id_map(memory_map, num_elems, &last, 1393 id_map_start, id_map_end)) { 1394 offs = ba - start_addr; 1395 DMSG("Mapping core at %#"PRIxVA" offs %#lx", 1396 ba, offs); 1397 goto out; 1398 } else { 1399 DMSG("Failed to map core at %#"PRIxVA, ba); 1400 } 1401 } 1402 EMSG("Failed to map core with seed %#lx", seed); 1403 } 1404 1405 if (!assign_mem_va(start_addr, memory_map)) 1406 panic(); 1407 1408 out: 1409 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1410 cmp_mmap_by_lower_va); 1411 1412 dump_mmap_table(memory_map); 1413 1414 return offs; 1415 } 1416 1417 static void check_mem_map(struct tee_mmap_region *map) 1418 { 1419 struct tee_mmap_region *m = NULL; 1420 1421 for (m = map; !core_mmap_is_end_of_table(m); m++) { 1422 switch (m->type) { 1423 case MEM_AREA_TEE_RAM: 1424 case MEM_AREA_TEE_RAM_RX: 1425 case MEM_AREA_TEE_RAM_RO: 1426 case MEM_AREA_TEE_RAM_RW: 1427 case MEM_AREA_INIT_RAM_RX: 1428 case MEM_AREA_INIT_RAM_RO: 1429 case MEM_AREA_NEX_RAM_RW: 1430 case MEM_AREA_NEX_RAM_RO: 1431 case MEM_AREA_IDENTITY_MAP_RX: 1432 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1433 panic("TEE_RAM can't fit in secure_only"); 1434 break; 1435 case MEM_AREA_TA_RAM: 1436 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1437 panic("TA_RAM can't fit in secure_only"); 1438 break; 1439 case MEM_AREA_NSEC_SHM: 1440 if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) 1441 panic("NS_SHM can't fit in nsec_shared"); 1442 break; 1443 case MEM_AREA_SEC_RAM_OVERALL: 1444 case MEM_AREA_TEE_COHERENT: 1445 case MEM_AREA_TEE_ASAN: 1446 case MEM_AREA_IO_SEC: 1447 case MEM_AREA_IO_NSEC: 1448 case MEM_AREA_EXT_DT: 1449 case MEM_AREA_MANIFEST_DT: 1450 case MEM_AREA_TRANSFER_LIST: 1451 case MEM_AREA_RAM_SEC: 1452 case MEM_AREA_RAM_NSEC: 1453 case MEM_AREA_ROM_SEC: 1454 case MEM_AREA_RES_VASPACE: 1455 case MEM_AREA_SHM_VASPACE: 1456 case MEM_AREA_PAGER_VASPACE: 1457 break; 1458 default: 1459 EMSG("Uhandled memtype %d", m->type); 1460 panic(); 1461 } 1462 } 1463 } 1464 1465 static struct tee_mmap_region *get_tmp_mmap(void) 1466 { 1467 struct tee_mmap_region *tmp_mmap = (void *)__heap1_start; 1468 1469 #ifdef CFG_WITH_PAGER 1470 if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map)) 1471 tmp_mmap = (void *)__heap2_start; 1472 #endif 1473 1474 memset(tmp_mmap, 0, sizeof(static_memory_map)); 1475 1476 return tmp_mmap; 1477 } 1478 1479 /* 1480 * core_init_mmu_map() - init tee core default memory mapping 1481 * 1482 * This routine sets the static default TEE core mapping. If @seed is > 0 1483 * and configured with CFG_CORE_ASLR it will map tee core at a location 1484 * based on the seed and return the offset from the link address. 1485 * 1486 * If an error happened: core_init_mmu_map is expected to panic. 1487 * 1488 * Note: this function is weak just to make it possible to exclude it from 1489 * the unpaged area. 1490 */ 1491 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) 1492 { 1493 #ifndef CFG_NS_VIRTUALIZATION 1494 vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); 1495 #else 1496 vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, 1497 SMALL_PAGE_SIZE); 1498 #endif 1499 vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; 1500 struct tee_mmap_region *tmp_mmap = get_tmp_mmap(); 1501 unsigned long offs = 0; 1502 1503 if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) && 1504 (core_mmu_tee_load_pa & SMALL_PAGE_MASK)) 1505 panic("OP-TEE load address is not page aligned"); 1506 1507 check_sec_nsec_mem_config(); 1508 1509 /* 1510 * Add a entry covering the translation tables which will be 1511 * involved in some virt_to_phys() and phys_to_virt() conversions. 1512 */ 1513 static_memory_map[0] = (struct tee_mmap_region){ 1514 .type = MEM_AREA_TEE_RAM, 1515 .region_size = SMALL_PAGE_SIZE, 1516 .pa = start, 1517 .va = start, 1518 .size = len, 1519 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1520 }; 1521 1522 COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13); 1523 offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed); 1524 1525 check_mem_map(tmp_mmap); 1526 core_init_mmu(tmp_mmap); 1527 dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); 1528 core_init_mmu_regs(cfg); 1529 cfg->map_offset = offs; 1530 memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map)); 1531 } 1532 1533 bool core_mmu_mattr_is_ok(uint32_t mattr) 1534 { 1535 /* 1536 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and 1537 * core_mmu_v7.c:mattr_to_texcb 1538 */ 1539 1540 switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { 1541 case TEE_MATTR_MEM_TYPE_DEV: 1542 case TEE_MATTR_MEM_TYPE_STRONGLY_O: 1543 case TEE_MATTR_MEM_TYPE_CACHED: 1544 case TEE_MATTR_MEM_TYPE_TAGGED: 1545 return true; 1546 default: 1547 return false; 1548 } 1549 } 1550 1551 /* 1552 * test attributes of target physical buffer 1553 * 1554 * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). 1555 * 1556 */ 1557 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) 1558 { 1559 paddr_t ta_base = 0; 1560 size_t ta_size = 0; 1561 struct tee_mmap_region *map; 1562 1563 /* Empty buffers complies with anything */ 1564 if (len == 0) 1565 return true; 1566 1567 switch (attr) { 1568 case CORE_MEM_SEC: 1569 return pbuf_is_inside(secure_only, pbuf, len); 1570 case CORE_MEM_NON_SEC: 1571 return pbuf_is_inside(nsec_shared, pbuf, len) || 1572 pbuf_is_nsec_ddr(pbuf, len); 1573 case CORE_MEM_TEE_RAM: 1574 return core_is_buffer_inside(pbuf, len, TEE_RAM_START, 1575 TEE_RAM_PH_SIZE); 1576 case CORE_MEM_TA_RAM: 1577 core_mmu_get_ta_range(&ta_base, &ta_size); 1578 return core_is_buffer_inside(pbuf, len, ta_base, ta_size); 1579 #ifdef CFG_CORE_RESERVED_SHM 1580 case CORE_MEM_NSEC_SHM: 1581 return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, 1582 TEE_SHMEM_SIZE); 1583 #endif 1584 case CORE_MEM_SDP_MEM: 1585 return pbuf_is_sdp_mem(pbuf, len); 1586 case CORE_MEM_CACHED: 1587 map = find_map_by_pa(pbuf); 1588 if (!map || !pbuf_inside_map_area(pbuf, len, map)) 1589 return false; 1590 return mattr_is_cached(map->attr); 1591 default: 1592 return false; 1593 } 1594 } 1595 1596 /* test attributes of target virtual buffer (in core mapping) */ 1597 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) 1598 { 1599 paddr_t p; 1600 1601 /* Empty buffers complies with anything */ 1602 if (len == 0) 1603 return true; 1604 1605 p = virt_to_phys((void *)vbuf); 1606 if (!p) 1607 return false; 1608 1609 return core_pbuf_is(attr, p, len); 1610 } 1611 1612 /* core_va2pa - teecore exported service */ 1613 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) 1614 { 1615 struct tee_mmap_region *map; 1616 1617 map = find_map_by_va(va); 1618 if (!va_is_in_map(map, (vaddr_t)va)) 1619 return -1; 1620 1621 /* 1622 * We can calculate PA for static map. Virtual address ranges 1623 * reserved to core dynamic mapping return a 'match' (return 0;) 1624 * together with an invalid null physical address. 1625 */ 1626 if (map->pa) 1627 *pa = map->pa + (vaddr_t)va - map->va; 1628 else 1629 *pa = 0; 1630 1631 return 0; 1632 } 1633 1634 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) 1635 { 1636 if (!pa_is_in_map(map, pa, len)) 1637 return NULL; 1638 1639 return (void *)(vaddr_t)(map->va + pa - map->pa); 1640 } 1641 1642 /* 1643 * teecore gets some memory area definitions 1644 */ 1645 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s, 1646 vaddr_t *e) 1647 { 1648 struct tee_mmap_region *map = find_map_by_type(type); 1649 1650 if (map) { 1651 *s = map->va; 1652 *e = map->va + map->size; 1653 } else { 1654 *s = 0; 1655 *e = 0; 1656 } 1657 } 1658 1659 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) 1660 { 1661 struct tee_mmap_region *map = find_map_by_pa(pa); 1662 1663 if (!map) 1664 return MEM_AREA_MAXTYPE; 1665 return map->type; 1666 } 1667 1668 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1669 paddr_t pa, uint32_t attr) 1670 { 1671 assert(idx < tbl_info->num_entries); 1672 core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, 1673 idx, pa, attr); 1674 } 1675 1676 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1677 paddr_t *pa, uint32_t *attr) 1678 { 1679 assert(idx < tbl_info->num_entries); 1680 core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, 1681 idx, pa, attr); 1682 } 1683 1684 static void clear_region(struct core_mmu_table_info *tbl_info, 1685 struct tee_mmap_region *region) 1686 { 1687 unsigned int end = 0; 1688 unsigned int idx = 0; 1689 1690 /* va, len and pa should be block aligned */ 1691 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1692 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1693 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1694 1695 idx = core_mmu_va2idx(tbl_info, region->va); 1696 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1697 1698 while (idx < end) { 1699 core_mmu_set_entry(tbl_info, idx, 0, 0); 1700 idx++; 1701 } 1702 } 1703 1704 static void set_region(struct core_mmu_table_info *tbl_info, 1705 struct tee_mmap_region *region) 1706 { 1707 unsigned int end; 1708 unsigned int idx; 1709 paddr_t pa; 1710 1711 /* va, len and pa should be block aligned */ 1712 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1713 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1714 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1715 1716 idx = core_mmu_va2idx(tbl_info, region->va); 1717 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1718 pa = region->pa; 1719 1720 while (idx < end) { 1721 core_mmu_set_entry(tbl_info, idx, pa, region->attr); 1722 idx++; 1723 pa += BIT64(tbl_info->shift); 1724 } 1725 } 1726 1727 static void set_pg_region(struct core_mmu_table_info *dir_info, 1728 struct vm_region *region, struct pgt **pgt, 1729 struct core_mmu_table_info *pg_info) 1730 { 1731 struct tee_mmap_region r = { 1732 .va = region->va, 1733 .size = region->size, 1734 .attr = region->attr, 1735 }; 1736 vaddr_t end = r.va + r.size; 1737 uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; 1738 1739 while (r.va < end) { 1740 if (!pg_info->table || 1741 r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { 1742 /* 1743 * We're assigning a new translation table. 1744 */ 1745 unsigned int idx; 1746 1747 /* Virtual addresses must grow */ 1748 assert(r.va > pg_info->va_base); 1749 1750 idx = core_mmu_va2idx(dir_info, r.va); 1751 pg_info->va_base = core_mmu_idx2va(dir_info, idx); 1752 1753 /* 1754 * Advance pgt to va_base, note that we may need to 1755 * skip multiple page tables if there are large 1756 * holes in the vm map. 1757 */ 1758 while ((*pgt)->vabase < pg_info->va_base) { 1759 *pgt = SLIST_NEXT(*pgt, link); 1760 /* We should have allocated enough */ 1761 assert(*pgt); 1762 } 1763 assert((*pgt)->vabase == pg_info->va_base); 1764 pg_info->table = (*pgt)->tbl; 1765 1766 core_mmu_set_entry(dir_info, idx, 1767 virt_to_phys(pg_info->table), 1768 pgt_attr); 1769 } 1770 1771 r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), 1772 end - r.va); 1773 1774 if (!(*pgt)->populated && !mobj_is_paged(region->mobj)) { 1775 size_t granule = BIT(pg_info->shift); 1776 size_t offset = r.va - region->va + region->offset; 1777 1778 r.size = MIN(r.size, 1779 mobj_get_phys_granule(region->mobj)); 1780 r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); 1781 1782 if (mobj_get_pa(region->mobj, offset, granule, 1783 &r.pa) != TEE_SUCCESS) 1784 panic("Failed to get PA of unpaged mobj"); 1785 set_region(pg_info, &r); 1786 } 1787 r.va += r.size; 1788 } 1789 } 1790 1791 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, 1792 size_t size_left, paddr_t block_size, 1793 struct tee_mmap_region *mm __maybe_unused) 1794 { 1795 /* VA and PA are aligned to block size at current level */ 1796 if ((vaddr | paddr) & (block_size - 1)) 1797 return false; 1798 1799 /* Remainder fits into block at current level */ 1800 if (size_left < block_size) 1801 return false; 1802 1803 #ifdef CFG_WITH_PAGER 1804 /* 1805 * If pager is enabled, we need to map tee ram 1806 * regions with small pages only 1807 */ 1808 if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE) 1809 return false; 1810 #endif 1811 1812 return true; 1813 } 1814 1815 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) 1816 { 1817 struct core_mmu_table_info tbl_info; 1818 unsigned int idx; 1819 vaddr_t vaddr = mm->va; 1820 paddr_t paddr = mm->pa; 1821 ssize_t size_left = mm->size; 1822 unsigned int level; 1823 bool table_found; 1824 uint32_t old_attr; 1825 1826 assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); 1827 1828 while (size_left > 0) { 1829 level = CORE_MMU_BASE_TABLE_LEVEL; 1830 1831 while (true) { 1832 paddr_t block_size = 0; 1833 1834 assert(core_mmu_level_in_range(level)); 1835 1836 table_found = core_mmu_find_table(prtn, vaddr, level, 1837 &tbl_info); 1838 if (!table_found) 1839 panic("can't find table for mapping"); 1840 1841 block_size = BIT64(tbl_info.shift); 1842 1843 idx = core_mmu_va2idx(&tbl_info, vaddr); 1844 if (!can_map_at_level(paddr, vaddr, size_left, 1845 block_size, mm)) { 1846 bool secure = mm->attr & TEE_MATTR_SECURE; 1847 1848 /* 1849 * This part of the region can't be mapped at 1850 * this level. Need to go deeper. 1851 */ 1852 if (!core_mmu_entry_to_finer_grained(&tbl_info, 1853 idx, 1854 secure)) 1855 panic("Can't divide MMU entry"); 1856 level = tbl_info.next_level; 1857 continue; 1858 } 1859 1860 /* We can map part of the region at current level */ 1861 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1862 if (old_attr) 1863 panic("Page is already mapped"); 1864 1865 core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr); 1866 paddr += block_size; 1867 vaddr += block_size; 1868 size_left -= block_size; 1869 1870 break; 1871 } 1872 } 1873 } 1874 1875 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 1876 enum teecore_memtypes memtype) 1877 { 1878 TEE_Result ret; 1879 struct core_mmu_table_info tbl_info; 1880 struct tee_mmap_region *mm; 1881 unsigned int idx; 1882 uint32_t old_attr; 1883 uint32_t exceptions; 1884 vaddr_t vaddr = vstart; 1885 size_t i; 1886 bool secure; 1887 1888 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1889 1890 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1891 1892 if (vaddr & SMALL_PAGE_MASK) 1893 return TEE_ERROR_BAD_PARAMETERS; 1894 1895 exceptions = mmu_lock(); 1896 1897 mm = find_map_by_va((void *)vaddr); 1898 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1899 panic("VA does not belong to any known mm region"); 1900 1901 if (!core_mmu_is_dynamic_vaspace(mm)) 1902 panic("Trying to map into static region"); 1903 1904 for (i = 0; i < num_pages; i++) { 1905 if (pages[i] & SMALL_PAGE_MASK) { 1906 ret = TEE_ERROR_BAD_PARAMETERS; 1907 goto err; 1908 } 1909 1910 while (true) { 1911 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1912 &tbl_info)) 1913 panic("Can't find pagetable for vaddr "); 1914 1915 idx = core_mmu_va2idx(&tbl_info, vaddr); 1916 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1917 break; 1918 1919 /* This is supertable. Need to divide it. */ 1920 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1921 secure)) 1922 panic("Failed to spread pgdir on small tables"); 1923 } 1924 1925 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1926 if (old_attr) 1927 panic("Page is already mapped"); 1928 1929 core_mmu_set_entry(&tbl_info, idx, pages[i], 1930 core_mmu_type_to_attr(memtype)); 1931 vaddr += SMALL_PAGE_SIZE; 1932 } 1933 1934 /* 1935 * Make sure all the changes to translation tables are visible 1936 * before returning. TLB doesn't need to be invalidated as we are 1937 * guaranteed that there's no valid mapping in this range. 1938 */ 1939 core_mmu_table_write_barrier(); 1940 mmu_unlock(exceptions); 1941 1942 return TEE_SUCCESS; 1943 err: 1944 mmu_unlock(exceptions); 1945 1946 if (i) 1947 core_mmu_unmap_pages(vstart, i); 1948 1949 return ret; 1950 } 1951 1952 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 1953 size_t num_pages, 1954 enum teecore_memtypes memtype) 1955 { 1956 struct core_mmu_table_info tbl_info = { }; 1957 struct tee_mmap_region *mm = NULL; 1958 unsigned int idx = 0; 1959 uint32_t old_attr = 0; 1960 uint32_t exceptions = 0; 1961 vaddr_t vaddr = vstart; 1962 paddr_t paddr = pstart; 1963 size_t i = 0; 1964 bool secure = false; 1965 1966 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1967 1968 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1969 1970 if ((vaddr | paddr) & SMALL_PAGE_MASK) 1971 return TEE_ERROR_BAD_PARAMETERS; 1972 1973 exceptions = mmu_lock(); 1974 1975 mm = find_map_by_va((void *)vaddr); 1976 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1977 panic("VA does not belong to any known mm region"); 1978 1979 if (!core_mmu_is_dynamic_vaspace(mm)) 1980 panic("Trying to map into static region"); 1981 1982 for (i = 0; i < num_pages; i++) { 1983 while (true) { 1984 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1985 &tbl_info)) 1986 panic("Can't find pagetable for vaddr "); 1987 1988 idx = core_mmu_va2idx(&tbl_info, vaddr); 1989 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1990 break; 1991 1992 /* This is supertable. Need to divide it. */ 1993 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1994 secure)) 1995 panic("Failed to spread pgdir on small tables"); 1996 } 1997 1998 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1999 if (old_attr) 2000 panic("Page is already mapped"); 2001 2002 core_mmu_set_entry(&tbl_info, idx, paddr, 2003 core_mmu_type_to_attr(memtype)); 2004 paddr += SMALL_PAGE_SIZE; 2005 vaddr += SMALL_PAGE_SIZE; 2006 } 2007 2008 /* 2009 * Make sure all the changes to translation tables are visible 2010 * before returning. TLB doesn't need to be invalidated as we are 2011 * guaranteed that there's no valid mapping in this range. 2012 */ 2013 core_mmu_table_write_barrier(); 2014 mmu_unlock(exceptions); 2015 2016 return TEE_SUCCESS; 2017 } 2018 2019 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) 2020 { 2021 struct core_mmu_table_info tbl_info; 2022 struct tee_mmap_region *mm; 2023 size_t i; 2024 unsigned int idx; 2025 uint32_t exceptions; 2026 2027 exceptions = mmu_lock(); 2028 2029 mm = find_map_by_va((void *)vstart); 2030 if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) 2031 panic("VA does not belong to any known mm region"); 2032 2033 if (!core_mmu_is_dynamic_vaspace(mm)) 2034 panic("Trying to unmap static region"); 2035 2036 for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { 2037 if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) 2038 panic("Can't find pagetable"); 2039 2040 if (tbl_info.shift != SMALL_PAGE_SHIFT) 2041 panic("Invalid pagetable level"); 2042 2043 idx = core_mmu_va2idx(&tbl_info, vstart); 2044 core_mmu_set_entry(&tbl_info, idx, 0, 0); 2045 } 2046 tlbi_all(); 2047 2048 mmu_unlock(exceptions); 2049 } 2050 2051 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 2052 struct user_mode_ctx *uctx) 2053 { 2054 struct core_mmu_table_info pg_info = { }; 2055 struct pgt_cache *pgt_cache = &uctx->pgt_cache; 2056 struct pgt *pgt = NULL; 2057 struct pgt *p = NULL; 2058 struct vm_region *r = NULL; 2059 2060 if (TAILQ_EMPTY(&uctx->vm_info.regions)) 2061 return; /* Nothing to map */ 2062 2063 /* 2064 * Allocate all page tables in advance. 2065 */ 2066 pgt_get_all(uctx); 2067 pgt = SLIST_FIRST(pgt_cache); 2068 2069 core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL); 2070 2071 TAILQ_FOREACH(r, &uctx->vm_info.regions, link) 2072 set_pg_region(dir_info, r, &pgt, &pg_info); 2073 /* Record that the translation tables now are populated. */ 2074 SLIST_FOREACH(p, pgt_cache, link) { 2075 p->populated = true; 2076 if (p == pgt) 2077 break; 2078 } 2079 assert(p == pgt); 2080 } 2081 2082 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 2083 size_t len) 2084 { 2085 struct core_mmu_table_info tbl_info = { }; 2086 struct tee_mmap_region *res_map = NULL; 2087 struct tee_mmap_region *map = NULL; 2088 paddr_t pa = virt_to_phys(addr); 2089 size_t granule = 0; 2090 ptrdiff_t i = 0; 2091 paddr_t p = 0; 2092 size_t l = 0; 2093 2094 map = find_map_by_type_and_pa(type, pa, len); 2095 if (!map) 2096 return TEE_ERROR_GENERIC; 2097 2098 res_map = find_map_by_type(MEM_AREA_RES_VASPACE); 2099 if (!res_map) 2100 return TEE_ERROR_GENERIC; 2101 if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) 2102 return TEE_ERROR_GENERIC; 2103 granule = BIT(tbl_info.shift); 2104 2105 if (map < static_memory_map || 2106 map >= static_memory_map + ARRAY_SIZE(static_memory_map)) 2107 return TEE_ERROR_GENERIC; 2108 i = map - static_memory_map; 2109 2110 /* Check that we have a full match */ 2111 p = ROUNDDOWN(pa, granule); 2112 l = ROUNDUP(len + pa - p, granule); 2113 if (map->pa != p || map->size != l) 2114 return TEE_ERROR_GENERIC; 2115 2116 clear_region(&tbl_info, map); 2117 tlbi_all(); 2118 2119 /* If possible remove the va range from res_map */ 2120 if (res_map->va - map->size == map->va) { 2121 res_map->va -= map->size; 2122 res_map->size += map->size; 2123 } 2124 2125 /* Remove the entry. */ 2126 memmove(map, map + 1, 2127 (ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map)); 2128 2129 /* Clear the last new entry in case it was used */ 2130 memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1, 2131 0, sizeof(*map)); 2132 2133 return TEE_SUCCESS; 2134 } 2135 2136 struct tee_mmap_region * 2137 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) 2138 { 2139 struct tee_mmap_region *map = NULL; 2140 struct tee_mmap_region *map_found = NULL; 2141 2142 if (!len) 2143 return NULL; 2144 2145 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 2146 if (map->type != type) 2147 continue; 2148 2149 if (map_found) 2150 return NULL; 2151 2152 map_found = map; 2153 } 2154 2155 if (!map_found || map_found->size < len) 2156 return NULL; 2157 2158 return map_found; 2159 } 2160 2161 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) 2162 { 2163 struct core_mmu_table_info tbl_info; 2164 struct tee_mmap_region *map; 2165 size_t n; 2166 size_t granule; 2167 paddr_t p; 2168 size_t l; 2169 2170 if (!len) 2171 return NULL; 2172 2173 if (!core_mmu_check_end_pa(addr, len)) 2174 return NULL; 2175 2176 /* Check if the memory is already mapped */ 2177 map = find_map_by_type_and_pa(type, addr, len); 2178 if (map && pbuf_inside_map_area(addr, len, map)) 2179 return (void *)(vaddr_t)(map->va + addr - map->pa); 2180 2181 /* Find the reserved va space used for late mappings */ 2182 map = find_map_by_type(MEM_AREA_RES_VASPACE); 2183 if (!map) 2184 return NULL; 2185 2186 if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) 2187 return NULL; 2188 2189 granule = BIT64(tbl_info.shift); 2190 p = ROUNDDOWN(addr, granule); 2191 l = ROUNDUP(len + addr - p, granule); 2192 2193 /* Ban overflowing virtual addresses */ 2194 if (map->size < l) 2195 return NULL; 2196 2197 /* 2198 * Something is wrong, we can't fit the va range into the selected 2199 * table. The reserved va range is possibly missaligned with 2200 * granule. 2201 */ 2202 if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) 2203 return NULL; 2204 2205 /* Find end of the memory map */ 2206 n = 0; 2207 while (!core_mmap_is_end_of_table(static_memory_map + n)) 2208 n++; 2209 2210 if (n < (ARRAY_SIZE(static_memory_map) - 1)) { 2211 /* There's room for another entry */ 2212 static_memory_map[n].va = map->va; 2213 static_memory_map[n].size = l; 2214 static_memory_map[n + 1].type = MEM_AREA_END; 2215 map->va += l; 2216 map->size -= l; 2217 map = static_memory_map + n; 2218 } else { 2219 /* 2220 * There isn't room for another entry, steal the reserved 2221 * entry as it's not useful for anything else any longer. 2222 */ 2223 map->size = l; 2224 } 2225 map->type = type; 2226 map->region_size = granule; 2227 map->attr = core_mmu_type_to_attr(type); 2228 map->pa = p; 2229 2230 set_region(&tbl_info, map); 2231 2232 /* Make sure the new entry is visible before continuing. */ 2233 core_mmu_table_write_barrier(); 2234 2235 return (void *)(vaddr_t)(map->va + addr - map->pa); 2236 } 2237 2238 #ifdef CFG_WITH_PAGER 2239 static vaddr_t get_linear_map_end_va(void) 2240 { 2241 /* this is synced with the generic linker file kern.ld.S */ 2242 return (vaddr_t)__heap2_end; 2243 } 2244 2245 static paddr_t get_linear_map_end_pa(void) 2246 { 2247 return get_linear_map_end_va() - boot_mmu_config.map_offset; 2248 } 2249 #endif 2250 2251 #if defined(CFG_TEE_CORE_DEBUG) 2252 static void check_pa_matches_va(void *va, paddr_t pa) 2253 { 2254 TEE_Result res = TEE_ERROR_GENERIC; 2255 vaddr_t v = (vaddr_t)va; 2256 paddr_t p = 0; 2257 struct core_mmu_table_info ti __maybe_unused = { }; 2258 2259 if (core_mmu_user_va_range_is_defined()) { 2260 vaddr_t user_va_base = 0; 2261 size_t user_va_size = 0; 2262 2263 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 2264 if (v >= user_va_base && 2265 v <= (user_va_base - 1 + user_va_size)) { 2266 if (!core_mmu_user_mapping_is_active()) { 2267 if (pa) 2268 panic("issue in linear address space"); 2269 return; 2270 } 2271 2272 res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), 2273 va, &p); 2274 if (res == TEE_ERROR_NOT_SUPPORTED) 2275 return; 2276 if (res == TEE_SUCCESS && pa != p) 2277 panic("bad pa"); 2278 if (res != TEE_SUCCESS && pa) 2279 panic("false pa"); 2280 return; 2281 } 2282 } 2283 #ifdef CFG_WITH_PAGER 2284 if (is_unpaged(va)) { 2285 if (v - boot_mmu_config.map_offset != pa) 2286 panic("issue in linear address space"); 2287 return; 2288 } 2289 2290 if (tee_pager_get_table_info(v, &ti)) { 2291 uint32_t a; 2292 2293 /* 2294 * Lookups in the page table managed by the pager is 2295 * dangerous for addresses in the paged area as those pages 2296 * changes all the time. But some ranges are safe, 2297 * rw-locked areas when the page is populated for instance. 2298 */ 2299 core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); 2300 if (a & TEE_MATTR_VALID_BLOCK) { 2301 paddr_t mask = BIT64(ti.shift) - 1; 2302 2303 p |= v & mask; 2304 if (pa != p) 2305 panic(); 2306 } else { 2307 if (pa) 2308 panic(); 2309 } 2310 return; 2311 } 2312 #endif 2313 2314 if (!core_va2pa_helper(va, &p)) { 2315 /* Verfiy only the static mapping (case non null phys addr) */ 2316 if (p && pa != p) { 2317 DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, 2318 va, p, pa); 2319 panic(); 2320 } 2321 } else { 2322 if (pa) { 2323 DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); 2324 panic(); 2325 } 2326 } 2327 } 2328 #else 2329 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) 2330 { 2331 } 2332 #endif 2333 2334 paddr_t virt_to_phys(void *va) 2335 { 2336 paddr_t pa = 0; 2337 2338 if (!arch_va2pa_helper(va, &pa)) 2339 pa = 0; 2340 check_pa_matches_va(va, pa); 2341 return pa; 2342 } 2343 2344 #if defined(CFG_TEE_CORE_DEBUG) 2345 static void check_va_matches_pa(paddr_t pa, void *va) 2346 { 2347 paddr_t p = 0; 2348 2349 if (!va) 2350 return; 2351 2352 p = virt_to_phys(va); 2353 if (p != pa) { 2354 DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); 2355 panic(); 2356 } 2357 } 2358 #else 2359 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) 2360 { 2361 } 2362 #endif 2363 2364 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) 2365 { 2366 if (!core_mmu_user_mapping_is_active()) 2367 return NULL; 2368 2369 return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); 2370 } 2371 2372 #ifdef CFG_WITH_PAGER 2373 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2374 { 2375 paddr_t end_pa = 0; 2376 2377 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 2378 return NULL; 2379 2380 if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) { 2381 if (end_pa > get_linear_map_end_pa()) 2382 return NULL; 2383 return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset); 2384 } 2385 2386 return tee_pager_phys_to_virt(pa, len); 2387 } 2388 #else 2389 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2390 { 2391 struct tee_mmap_region *mmap = NULL; 2392 2393 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); 2394 if (!mmap) 2395 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); 2396 if (!mmap) 2397 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); 2398 if (!mmap) 2399 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); 2400 if (!mmap) 2401 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); 2402 if (!mmap) 2403 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); 2404 /* 2405 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only 2406 * used with pager and not needed here. 2407 */ 2408 return map_pa2va(mmap, pa, len); 2409 } 2410 #endif 2411 2412 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) 2413 { 2414 void *va = NULL; 2415 2416 switch (m) { 2417 case MEM_AREA_TS_VASPACE: 2418 va = phys_to_virt_ts_vaspace(pa, len); 2419 break; 2420 case MEM_AREA_TEE_RAM: 2421 case MEM_AREA_TEE_RAM_RX: 2422 case MEM_AREA_TEE_RAM_RO: 2423 case MEM_AREA_TEE_RAM_RW: 2424 case MEM_AREA_NEX_RAM_RO: 2425 case MEM_AREA_NEX_RAM_RW: 2426 va = phys_to_virt_tee_ram(pa, len); 2427 break; 2428 case MEM_AREA_SHM_VASPACE: 2429 /* Find VA from PA in dynamic SHM is not yet supported */ 2430 va = NULL; 2431 break; 2432 default: 2433 va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); 2434 } 2435 if (m != MEM_AREA_SEC_RAM_OVERALL) 2436 check_va_matches_pa(pa, va); 2437 return va; 2438 } 2439 2440 void *phys_to_virt_io(paddr_t pa, size_t len) 2441 { 2442 struct tee_mmap_region *map = NULL; 2443 void *va = NULL; 2444 2445 map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); 2446 if (!map) 2447 map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); 2448 if (!map) 2449 return NULL; 2450 va = map_pa2va(map, pa, len); 2451 check_va_matches_pa(pa, va); 2452 return va; 2453 } 2454 2455 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) 2456 { 2457 if (cpu_mmu_enabled()) 2458 return (vaddr_t)phys_to_virt(pa, type, len); 2459 2460 return (vaddr_t)pa; 2461 } 2462 2463 #ifdef CFG_WITH_PAGER 2464 bool is_unpaged(const void *va) 2465 { 2466 vaddr_t v = (vaddr_t)va; 2467 2468 return v >= VCORE_START_VA && v < get_linear_map_end_va(); 2469 } 2470 #endif 2471 2472 #ifdef CFG_NS_VIRTUALIZATION 2473 bool is_nexus(const void *va) 2474 { 2475 vaddr_t v = (vaddr_t)va; 2476 2477 return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ; 2478 } 2479 #endif 2480 2481 void core_mmu_init_virtualization(void) 2482 { 2483 paddr_t b1 = 0; 2484 paddr_size_t s1 = 0; 2485 2486 static_assert(ARRAY_SIZE(secure_only) <= 2); 2487 if (ARRAY_SIZE(secure_only) == 2) { 2488 b1 = secure_only[1].paddr; 2489 s1 = secure_only[1].size; 2490 } 2491 virt_init_memory(static_memory_map, secure_only[0].paddr, 2492 secure_only[0].size, b1, s1); 2493 } 2494 2495 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) 2496 { 2497 assert(p->pa); 2498 if (cpu_mmu_enabled()) { 2499 if (!p->va) 2500 p->va = (vaddr_t)phys_to_virt_io(p->pa, len); 2501 assert(p->va); 2502 return p->va; 2503 } 2504 return p->pa; 2505 } 2506 2507 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) 2508 { 2509 assert(p->pa); 2510 if (cpu_mmu_enabled()) { 2511 if (!p->va) 2512 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, 2513 len); 2514 assert(p->va); 2515 return p->va; 2516 } 2517 return p->pa; 2518 } 2519 2520 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) 2521 { 2522 assert(p->pa); 2523 if (cpu_mmu_enabled()) { 2524 if (!p->va) 2525 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, 2526 len); 2527 assert(p->va); 2528 return p->va; 2529 } 2530 return p->pa; 2531 } 2532 2533 #ifdef CFG_CORE_RESERVED_SHM 2534 static TEE_Result teecore_init_pub_ram(void) 2535 { 2536 vaddr_t s = 0; 2537 vaddr_t e = 0; 2538 2539 /* get virtual addr/size of NSec shared mem allocated from teecore */ 2540 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); 2541 2542 if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) 2543 panic("invalid PUB RAM"); 2544 2545 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2546 if (!tee_vbuf_is_non_sec(s, e - s)) 2547 panic("PUB RAM is not non-secure"); 2548 2549 #ifdef CFG_PL310 2550 /* Allocate statically the l2cc mutex */ 2551 tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); 2552 s += sizeof(uint32_t); /* size of a pl310 mutex */ 2553 s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ 2554 #endif 2555 2556 default_nsec_shm_paddr = virt_to_phys((void *)s); 2557 default_nsec_shm_size = e - s; 2558 2559 return TEE_SUCCESS; 2560 } 2561 early_init(teecore_init_pub_ram); 2562 #endif /*CFG_CORE_RESERVED_SHM*/ 2563 2564 void core_mmu_init_ta_ram(void) 2565 { 2566 vaddr_t s = 0; 2567 vaddr_t e = 0; 2568 paddr_t ps = 0; 2569 size_t size = 0; 2570 2571 /* 2572 * Get virtual addr/size of RAM where TA are loaded/executedNSec 2573 * shared mem allocated from teecore. 2574 */ 2575 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) 2576 virt_get_ta_ram(&s, &e); 2577 else 2578 core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e); 2579 2580 ps = virt_to_phys((void *)s); 2581 size = e - s; 2582 2583 if (!ps || (ps & CORE_MMU_USER_CODE_MASK) || 2584 !size || (size & CORE_MMU_USER_CODE_MASK)) 2585 panic("invalid TA RAM"); 2586 2587 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2588 if (!tee_pbuf_is_sec(ps, size)) 2589 panic("TA RAM is not secure"); 2590 2591 if (!tee_mm_is_empty(&tee_mm_sec_ddr)) 2592 panic("TA RAM pool is not empty"); 2593 2594 /* remove previous config and init TA ddr memory pool */ 2595 tee_mm_final(&tee_mm_sec_ddr); 2596 tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT, 2597 TEE_MM_POOL_NO_FLAGS); 2598 } 2599