xref: /optee_os/core/mm/core_mmu.c (revision fa21a1fb4c6c7665a2760d85034b8cc0e072f5b2)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <mm/core_memprot.h>
22 #include <mm/core_mmu.h>
23 #include <mm/mobj.h>
24 #include <mm/pgt_cache.h>
25 #include <mm/tee_pager.h>
26 #include <mm/vm.h>
27 #include <platform_config.h>
28 #include <string.h>
29 #include <trace.h>
30 #include <util.h>
31 
32 #ifndef DEBUG_XLAT_TABLE
33 #define DEBUG_XLAT_TABLE 0
34 #endif
35 
36 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
37 
38 #ifdef CFG_CORE_PHYS_RELOCATABLE
39 unsigned long core_mmu_tee_load_pa __nex_bss;
40 #else
41 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
42 #endif
43 
44 /*
45  * These variables are initialized before .bss is cleared. To avoid
46  * resetting them when .bss is cleared we're storing them in .data instead,
47  * even if they initially are zero.
48  */
49 
50 #ifdef CFG_CORE_RESERVED_SHM
51 /* Default NSec shared memory allocated from NSec world */
52 unsigned long default_nsec_shm_size __nex_bss;
53 unsigned long default_nsec_shm_paddr __nex_bss;
54 #endif
55 
56 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS
57 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE)
58 						+ 1
59 #endif
60 						+ 1] __nex_bss;
61 
62 /* Define the platform's memory layout. */
63 struct memaccess_area {
64 	paddr_t paddr;
65 	size_t size;
66 };
67 
68 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
69 
70 static struct memaccess_area secure_only[] __nex_data = {
71 #ifdef CFG_CORE_PHYS_RELOCATABLE
72 	MEMACCESS_AREA(0, 0),
73 #else
74 #ifdef TRUSTED_SRAM_BASE
75 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
76 #endif
77 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
78 #endif
79 };
80 
81 static struct memaccess_area nsec_shared[] __nex_data = {
82 #ifdef CFG_CORE_RESERVED_SHM
83 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
84 #endif
85 };
86 
87 #if defined(CFG_SECURE_DATA_PATH)
88 static const char *tz_sdp_match = "linaro,secure-heap";
89 static struct memaccess_area sec_sdp;
90 #ifdef CFG_TEE_SDP_MEM_BASE
91 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
92 #endif
93 #ifdef TEE_SDP_TEST_MEM_BASE
94 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
95 #endif
96 #endif
97 
98 #ifdef CFG_CORE_RESERVED_SHM
99 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
100 #endif
101 static unsigned int mmu_spinlock;
102 
103 static uint32_t mmu_lock(void)
104 {
105 	return cpu_spin_lock_xsave(&mmu_spinlock);
106 }
107 
108 static void mmu_unlock(uint32_t exceptions)
109 {
110 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
111 }
112 
113 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
114 {
115 	/*
116 	 * The first range is always used to cover OP-TEE core memory, but
117 	 * depending on configuration it may cover more than that.
118 	 */
119 	*base = secure_only[0].paddr;
120 	*size = secure_only[0].size;
121 }
122 
123 void core_mmu_set_secure_memory(paddr_t base, size_t size)
124 {
125 #ifdef CFG_CORE_PHYS_RELOCATABLE
126 	static_assert(ARRAY_SIZE(secure_only) == 1);
127 #endif
128 	runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE));
129 	assert(!secure_only[0].size);
130 	assert(base && size);
131 
132 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
133 	secure_only[0].paddr = base;
134 	secure_only[0].size = size;
135 }
136 
137 void core_mmu_get_ta_range(paddr_t *base, size_t *size)
138 {
139 	paddr_t b = 0;
140 	size_t s = 0;
141 
142 	static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE));
143 #ifdef TA_RAM_START
144 	b = TA_RAM_START;
145 	s = TA_RAM_SIZE;
146 #else
147 	static_assert(ARRAY_SIZE(secure_only) <= 2);
148 	if (ARRAY_SIZE(secure_only) == 1) {
149 		vaddr_t load_offs = 0;
150 
151 		assert(core_mmu_tee_load_pa >= secure_only[0].paddr);
152 		load_offs = core_mmu_tee_load_pa - secure_only[0].paddr;
153 
154 		assert(secure_only[0].size >
155 		       load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE);
156 		b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE;
157 		s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE -
158 		    TEE_SDP_TEST_MEM_SIZE;
159 	} else {
160 		assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE);
161 		b = secure_only[1].paddr;
162 		s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE;
163 	}
164 #endif
165 	if (base)
166 		*base = b;
167 	if (size)
168 		*size = s;
169 }
170 
171 static struct tee_mmap_region *get_memory_map(void)
172 {
173 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
174 		struct tee_mmap_region *map = virt_get_memory_map();
175 
176 		if (map)
177 			return map;
178 	}
179 
180 	return static_memory_map;
181 }
182 
183 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
184 			     paddr_t pa, size_t size)
185 {
186 	size_t n;
187 
188 	for (n = 0; n < alen; n++)
189 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
190 			return true;
191 	return false;
192 }
193 
194 #define pbuf_intersects(a, pa, size) \
195 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
196 
197 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
198 			    paddr_t pa, size_t size)
199 {
200 	size_t n;
201 
202 	for (n = 0; n < alen; n++)
203 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
204 			return true;
205 	return false;
206 }
207 
208 #define pbuf_is_inside(a, pa, size) \
209 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
210 
211 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
212 {
213 	paddr_t end_pa = 0;
214 
215 	if (!map)
216 		return false;
217 
218 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
219 		return false;
220 
221 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
222 }
223 
224 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
225 {
226 	if (!map)
227 		return false;
228 	return (va >= map->va && va <= (map->va + map->size - 1));
229 }
230 
231 /* check if target buffer fits in a core default map area */
232 static bool pbuf_inside_map_area(unsigned long p, size_t l,
233 				 struct tee_mmap_region *map)
234 {
235 	return core_is_buffer_inside(p, l, map->pa, map->size);
236 }
237 
238 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
239 {
240 	struct tee_mmap_region *map;
241 
242 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++)
243 		if (map->type == type)
244 			return map;
245 	return NULL;
246 }
247 
248 static struct tee_mmap_region *
249 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
250 {
251 	struct tee_mmap_region *map;
252 
253 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
254 		if (map->type != type)
255 			continue;
256 		if (pa_is_in_map(map, pa, len))
257 			return map;
258 	}
259 	return NULL;
260 }
261 
262 static struct tee_mmap_region *find_map_by_va(void *va)
263 {
264 	struct tee_mmap_region *map = get_memory_map();
265 	unsigned long a = (unsigned long)va;
266 
267 	while (!core_mmap_is_end_of_table(map)) {
268 		if (a >= map->va && a <= (map->va - 1 + map->size))
269 			return map;
270 		map++;
271 	}
272 	return NULL;
273 }
274 
275 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
276 {
277 	struct tee_mmap_region *map = get_memory_map();
278 
279 	while (!core_mmap_is_end_of_table(map)) {
280 		if (pa >= map->pa && pa <= (map->pa + map->size - 1))
281 			return map;
282 		map++;
283 	}
284 	return NULL;
285 }
286 
287 #if defined(CFG_SECURE_DATA_PATH)
288 static bool dtb_get_sdp_region(void)
289 {
290 	void *fdt = NULL;
291 	int node = 0;
292 	int tmp_node = 0;
293 	paddr_t tmp_addr = 0;
294 	size_t tmp_size = 0;
295 
296 	if (!IS_ENABLED(CFG_EMBED_DTB))
297 		return false;
298 
299 	fdt = get_embedded_dt();
300 	if (!fdt)
301 		panic("No DTB found");
302 
303 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
304 	if (node < 0) {
305 		DMSG("No %s compatible node found", tz_sdp_match);
306 		return false;
307 	}
308 	tmp_node = node;
309 	while (tmp_node >= 0) {
310 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
311 							 tz_sdp_match);
312 		if (tmp_node >= 0)
313 			DMSG("Ignore SDP pool node %s, supports only 1 node",
314 			     fdt_get_name(fdt, tmp_node, NULL));
315 	}
316 
317 	tmp_addr = fdt_reg_base_address(fdt, node);
318 	if (tmp_addr == DT_INFO_INVALID_REG) {
319 		EMSG("%s: Unable to get base addr from DT", tz_sdp_match);
320 		return false;
321 	}
322 
323 	tmp_size = fdt_reg_size(fdt, node);
324 	if (tmp_size == DT_INFO_INVALID_REG_SIZE) {
325 		EMSG("%s: Unable to get size of base addr from DT",
326 		     tz_sdp_match);
327 		return false;
328 	}
329 
330 	sec_sdp.paddr = tmp_addr;
331 	sec_sdp.size = tmp_size;
332 
333 	return true;
334 }
335 #endif
336 
337 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
338 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
339 				const struct core_mmu_phys_mem *start,
340 				const struct core_mmu_phys_mem *end)
341 {
342 	const struct core_mmu_phys_mem *mem;
343 
344 	for (mem = start; mem < end; mem++) {
345 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
346 			return true;
347 	}
348 
349 	return false;
350 }
351 #endif
352 
353 #ifdef CFG_CORE_DYN_SHM
354 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
355 			       paddr_t pa, size_t size)
356 {
357 	struct core_mmu_phys_mem *m = *mem;
358 	size_t n = 0;
359 
360 	while (true) {
361 		if (n >= *nelems) {
362 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
363 			     pa, size);
364 			return;
365 		}
366 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
367 			break;
368 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
369 			panic();
370 		n++;
371 	}
372 
373 	if (pa == m[n].addr && size == m[n].size) {
374 		/* Remove this entry */
375 		(*nelems)--;
376 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
377 		m = nex_realloc(m, sizeof(*m) * *nelems);
378 		if (!m)
379 			panic();
380 		*mem = m;
381 	} else if (pa == m[n].addr) {
382 		m[n].addr += size;
383 		m[n].size -= size;
384 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
385 		m[n].size -= size;
386 	} else {
387 		/* Need to split the memory entry */
388 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
389 		if (!m)
390 			panic();
391 		*mem = m;
392 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
393 		(*nelems)++;
394 		m[n].size = pa - m[n].addr;
395 		m[n + 1].size -= size + m[n].size;
396 		m[n + 1].addr = pa + size;
397 	}
398 }
399 
400 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
401 				      size_t nelems,
402 				      struct tee_mmap_region *map)
403 {
404 	size_t n;
405 
406 	for (n = 0; n < nelems; n++) {
407 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
408 					    map->pa, map->size)) {
409 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
410 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
411 			     start[n].addr, start[n].size,
412 			     map->type, map->pa, map->size);
413 			panic();
414 		}
415 	}
416 }
417 
418 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
419 static size_t discovered_nsec_ddr_nelems __nex_bss;
420 
421 static int cmp_pmem_by_addr(const void *a, const void *b)
422 {
423 	const struct core_mmu_phys_mem *pmem_a = a;
424 	const struct core_mmu_phys_mem *pmem_b = b;
425 
426 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
427 }
428 
429 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
430 				      size_t nelems)
431 {
432 	struct core_mmu_phys_mem *m = start;
433 	size_t num_elems = nelems;
434 	struct tee_mmap_region *map = static_memory_map;
435 	const struct core_mmu_phys_mem __maybe_unused *pmem;
436 	size_t n = 0;
437 
438 	assert(!discovered_nsec_ddr_start);
439 	assert(m && num_elems);
440 
441 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
442 
443 	/*
444 	 * Non-secure shared memory and also secure data
445 	 * path memory are supposed to reside inside
446 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
447 	 * are used for a specific purpose make holes for
448 	 * those memory in the normal non-secure memory.
449 	 *
450 	 * This has to be done since for instance QEMU
451 	 * isn't aware of which memory range in the
452 	 * non-secure memory is used for NSEC_SHM.
453 	 */
454 
455 #ifdef CFG_SECURE_DATA_PATH
456 	if (dtb_get_sdp_region())
457 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
458 
459 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
460 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
461 #endif
462 
463 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
464 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
465 				   secure_only[n].size);
466 
467 	for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) {
468 		switch (map->type) {
469 		case MEM_AREA_NSEC_SHM:
470 			carve_out_phys_mem(&m, &num_elems, map->pa, map->size);
471 			break;
472 		case MEM_AREA_EXT_DT:
473 		case MEM_AREA_MANIFEST_DT:
474 		case MEM_AREA_RAM_NSEC:
475 		case MEM_AREA_RES_VASPACE:
476 		case MEM_AREA_SHM_VASPACE:
477 		case MEM_AREA_TS_VASPACE:
478 		case MEM_AREA_PAGER_VASPACE:
479 			break;
480 		default:
481 			check_phys_mem_is_outside(m, num_elems, map);
482 		}
483 	}
484 
485 	discovered_nsec_ddr_start = m;
486 	discovered_nsec_ddr_nelems = num_elems;
487 
488 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
489 				   m[num_elems - 1].size))
490 		panic();
491 }
492 
493 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
494 				    const struct core_mmu_phys_mem **end)
495 {
496 	if (!discovered_nsec_ddr_start)
497 		return false;
498 
499 	*start = discovered_nsec_ddr_start;
500 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
501 
502 	return true;
503 }
504 
505 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
506 {
507 	const struct core_mmu_phys_mem *start;
508 	const struct core_mmu_phys_mem *end;
509 
510 	if (!get_discovered_nsec_ddr(&start, &end))
511 		return false;
512 
513 	return pbuf_is_special_mem(pbuf, len, start, end);
514 }
515 
516 bool core_mmu_nsec_ddr_is_defined(void)
517 {
518 	const struct core_mmu_phys_mem *start;
519 	const struct core_mmu_phys_mem *end;
520 
521 	if (!get_discovered_nsec_ddr(&start, &end))
522 		return false;
523 
524 	return start != end;
525 }
526 #else
527 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
528 {
529 	return false;
530 }
531 #endif /*CFG_CORE_DYN_SHM*/
532 
533 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
534 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
535 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
536 
537 #ifdef CFG_SECURE_DATA_PATH
538 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
539 {
540 	bool is_sdp_mem = false;
541 
542 	if (sec_sdp.size)
543 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
544 						   sec_sdp.size);
545 
546 	if (!is_sdp_mem)
547 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
548 						 phys_sdp_mem_end);
549 
550 	return is_sdp_mem;
551 }
552 
553 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
554 {
555 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
556 					    CORE_MEM_SDP_MEM);
557 
558 	if (!mobj)
559 		panic("can't create SDP physical memory object");
560 
561 	return mobj;
562 }
563 
564 struct mobj **core_sdp_mem_create_mobjs(void)
565 {
566 	const struct core_mmu_phys_mem *mem = NULL;
567 	struct mobj **mobj_base = NULL;
568 	struct mobj **mobj = NULL;
569 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
570 
571 	if (sec_sdp.size)
572 		cnt++;
573 
574 	/* SDP mobjs table must end with a NULL entry */
575 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
576 	if (!mobj_base)
577 		panic("Out of memory");
578 
579 	mobj = mobj_base;
580 
581 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
582 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
583 
584 	if (sec_sdp.size)
585 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
586 
587 	return mobj_base;
588 }
589 
590 #else /* CFG_SECURE_DATA_PATH */
591 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
592 {
593 	return false;
594 }
595 
596 #endif /* CFG_SECURE_DATA_PATH */
597 
598 /* Check special memories comply with registered memories */
599 static void verify_special_mem_areas(struct tee_mmap_region *mem_map,
600 				     const struct core_mmu_phys_mem *start,
601 				     const struct core_mmu_phys_mem *end,
602 				     const char *area_name __maybe_unused)
603 {
604 	const struct core_mmu_phys_mem *mem;
605 	const struct core_mmu_phys_mem *mem2;
606 	struct tee_mmap_region *mmap;
607 
608 	if (start == end) {
609 		DMSG("No %s memory area defined", area_name);
610 		return;
611 	}
612 
613 	for (mem = start; mem < end; mem++)
614 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
615 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
616 
617 	/* Check memories do not intersect each other */
618 	for (mem = start; mem + 1 < end; mem++) {
619 		for (mem2 = mem + 1; mem2 < end; mem2++) {
620 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
621 						     mem->addr, mem->size)) {
622 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
623 						   mem->addr, mem->size);
624 				panic("Special memory intersection");
625 			}
626 		}
627 	}
628 
629 	/*
630 	 * Check memories do not intersect any mapped memory.
631 	 * This is called before reserved VA space is loaded in mem_map.
632 	 */
633 	for (mem = start; mem < end; mem++) {
634 		for (mmap = mem_map; mmap->type != MEM_AREA_END; mmap++) {
635 			if (core_is_buffer_intersect(mem->addr, mem->size,
636 						     mmap->pa, mmap->size)) {
637 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
638 						   mmap->pa, mmap->size);
639 				panic("Special memory intersection");
640 			}
641 		}
642 	}
643 }
644 
645 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems,
646 			 const char *mem_name __maybe_unused,
647 			 enum teecore_memtypes mem_type,
648 			 paddr_t mem_addr, paddr_size_t mem_size, size_t *last)
649 {
650 	size_t n = 0;
651 	paddr_t pa;
652 	paddr_size_t size;
653 
654 	if (!mem_size)	/* Discard null size entries */
655 		return;
656 	/*
657 	 * If some ranges of memory of the same type do overlap
658 	 * each others they are coalesced into one entry. To help this
659 	 * added entries are sorted by increasing physical.
660 	 *
661 	 * Note that it's valid to have the same physical memory as several
662 	 * different memory types, for instance the same device memory
663 	 * mapped as both secure and non-secure. This will probably not
664 	 * happen often in practice.
665 	 */
666 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
667 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
668 	while (true) {
669 		if (n >= (num_elems - 1)) {
670 			EMSG("Out of entries (%zu) in memory_map", num_elems);
671 			panic();
672 		}
673 		if (n == *last)
674 			break;
675 		pa = memory_map[n].pa;
676 		size = memory_map[n].size;
677 		if (mem_type == memory_map[n].type &&
678 		    ((pa <= (mem_addr + (mem_size - 1))) &&
679 		    (mem_addr <= (pa + (size - 1))))) {
680 			DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr);
681 			memory_map[n].pa = MIN(pa, mem_addr);
682 			memory_map[n].size = MAX(size, mem_size) +
683 					     (pa - memory_map[n].pa);
684 			return;
685 		}
686 		if (mem_type < memory_map[n].type ||
687 		    (mem_type == memory_map[n].type && mem_addr < pa))
688 			break; /* found the spot where to insert this memory */
689 		n++;
690 	}
691 
692 	memmove(memory_map + n + 1, memory_map + n,
693 		sizeof(struct tee_mmap_region) * (*last - n));
694 	(*last)++;
695 	memset(memory_map + n, 0, sizeof(memory_map[0]));
696 	memory_map[n].type = mem_type;
697 	memory_map[n].pa = mem_addr;
698 	memory_map[n].size = mem_size;
699 }
700 
701 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems,
702 			 enum teecore_memtypes type, size_t size, size_t *last)
703 {
704 	size_t n = 0;
705 
706 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
707 	while (true) {
708 		if (n >= (num_elems - 1)) {
709 			EMSG("Out of entries (%zu) in memory_map", num_elems);
710 			panic();
711 		}
712 		if (n == *last)
713 			break;
714 		if (type < memory_map[n].type)
715 			break;
716 		n++;
717 	}
718 
719 	memmove(memory_map + n + 1, memory_map + n,
720 		sizeof(struct tee_mmap_region) * (*last - n));
721 	(*last)++;
722 	memset(memory_map + n, 0, sizeof(memory_map[0]));
723 	memory_map[n].type = type;
724 	memory_map[n].size = size;
725 }
726 
727 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
728 {
729 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
730 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
731 				TEE_MATTR_MEM_TYPE_SHIFT;
732 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
733 				TEE_MATTR_MEM_TYPE_SHIFT;
734 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
735 				  TEE_MATTR_MEM_TYPE_SHIFT;
736 
737 	switch (t) {
738 	case MEM_AREA_TEE_RAM:
739 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
740 	case MEM_AREA_TEE_RAM_RX:
741 	case MEM_AREA_INIT_RAM_RX:
742 	case MEM_AREA_IDENTITY_MAP_RX:
743 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
744 	case MEM_AREA_TEE_RAM_RO:
745 	case MEM_AREA_INIT_RAM_RO:
746 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
747 	case MEM_AREA_TEE_RAM_RW:
748 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
749 	case MEM_AREA_NEX_RAM_RW:
750 	case MEM_AREA_TEE_ASAN:
751 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
752 	case MEM_AREA_TEE_COHERENT:
753 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
754 	case MEM_AREA_TA_RAM:
755 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
756 	case MEM_AREA_NSEC_SHM:
757 	case MEM_AREA_NEX_NSEC_SHM:
758 		return attr | TEE_MATTR_PRW | cached;
759 	case MEM_AREA_MANIFEST_DT:
760 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
761 	case MEM_AREA_TRANSFER_LIST:
762 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
763 	case MEM_AREA_EXT_DT:
764 		/*
765 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
766 		 * tree as secure non-cached memory, otherwise, fall back to
767 		 * non-secure mapping.
768 		 */
769 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
770 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
771 			       noncache;
772 		fallthrough;
773 	case MEM_AREA_IO_NSEC:
774 		return attr | TEE_MATTR_PRW | noncache;
775 	case MEM_AREA_IO_SEC:
776 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
777 	case MEM_AREA_RAM_NSEC:
778 		return attr | TEE_MATTR_PRW | cached;
779 	case MEM_AREA_RAM_SEC:
780 	case MEM_AREA_SEC_RAM_OVERALL:
781 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
782 	case MEM_AREA_ROM_SEC:
783 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
784 	case MEM_AREA_RES_VASPACE:
785 	case MEM_AREA_SHM_VASPACE:
786 		return 0;
787 	case MEM_AREA_PAGER_VASPACE:
788 		return TEE_MATTR_SECURE;
789 	default:
790 		panic("invalid type");
791 	}
792 }
793 
794 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
795 {
796 	switch (mm->type) {
797 	case MEM_AREA_TEE_RAM:
798 	case MEM_AREA_TEE_RAM_RX:
799 	case MEM_AREA_TEE_RAM_RO:
800 	case MEM_AREA_TEE_RAM_RW:
801 	case MEM_AREA_INIT_RAM_RX:
802 	case MEM_AREA_INIT_RAM_RO:
803 	case MEM_AREA_NEX_RAM_RW:
804 	case MEM_AREA_NEX_RAM_RO:
805 	case MEM_AREA_TEE_ASAN:
806 		return true;
807 	default:
808 		return false;
809 	}
810 }
811 
812 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
813 {
814 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
815 }
816 
817 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
818 {
819 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
820 }
821 
822 static int cmp_mmap_by_lower_va(const void *a, const void *b)
823 {
824 	const struct tee_mmap_region *mm_a = a;
825 	const struct tee_mmap_region *mm_b = b;
826 
827 	return CMP_TRILEAN(mm_a->va, mm_b->va);
828 }
829 
830 static void dump_mmap_table(struct tee_mmap_region *memory_map)
831 {
832 	struct tee_mmap_region *map;
833 
834 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
835 		vaddr_t __maybe_unused vstart;
836 
837 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
838 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
839 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
840 		     teecore_memtype_name(map->type), vstart,
841 		     vstart + map->size - 1, map->pa,
842 		     (paddr_t)(map->pa + map->size - 1), map->size,
843 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
844 	}
845 }
846 
847 #if DEBUG_XLAT_TABLE
848 
849 static void dump_xlat_table(vaddr_t va, unsigned int level)
850 {
851 	struct core_mmu_table_info tbl_info;
852 	unsigned int idx = 0;
853 	paddr_t pa;
854 	uint32_t attr;
855 
856 	core_mmu_find_table(NULL, va, level, &tbl_info);
857 	va = tbl_info.va_base;
858 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
859 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
860 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
861 			const char *security_bit = "";
862 
863 			if (core_mmu_entry_have_security_bit(attr)) {
864 				if (attr & TEE_MATTR_SECURE)
865 					security_bit = "S";
866 				else
867 					security_bit = "NS";
868 			}
869 
870 			if (attr & TEE_MATTR_TABLE) {
871 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
872 					" TBL:0x%010" PRIxPA " %s",
873 					level * 2, "", level, va, pa,
874 					security_bit);
875 				dump_xlat_table(va, level + 1);
876 			} else if (attr) {
877 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
878 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
879 					level * 2, "", level, va, pa,
880 					mattr_is_cached(attr) ? "MEM" :
881 					"DEV",
882 					attr & TEE_MATTR_PW ? "RW" : "RO",
883 					attr & TEE_MATTR_PX ? "X " : "XN",
884 					security_bit);
885 			} else {
886 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
887 					    " INVALID\n",
888 					    level * 2, "", level, va);
889 			}
890 		}
891 		va += BIT64(tbl_info.shift);
892 	}
893 }
894 
895 #else
896 
897 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
898 {
899 }
900 
901 #endif
902 
903 /*
904  * Reserves virtual memory space for pager usage.
905  *
906  * From the start of the first memory used by the link script +
907  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
908  * mapping for pager usage. This adds translation tables as needed for the
909  * pager to operate.
910  */
911 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems,
912 			      size_t *last)
913 {
914 	paddr_t begin = 0;
915 	paddr_t end = 0;
916 	size_t size = 0;
917 	size_t pos = 0;
918 	size_t n = 0;
919 
920 	if (*last >= (num_elems - 1)) {
921 		EMSG("Out of entries (%zu) in memory map", num_elems);
922 		panic();
923 	}
924 
925 	for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) {
926 		if (map_is_tee_ram(mmap + n)) {
927 			if (!begin)
928 				begin = mmap[n].pa;
929 			pos = n + 1;
930 		}
931 	}
932 
933 	end = mmap[pos - 1].pa + mmap[pos - 1].size;
934 	assert(end - begin < TEE_RAM_VA_SIZE);
935 	size = TEE_RAM_VA_SIZE - (end - begin);
936 
937 	assert(pos <= *last);
938 	memmove(mmap + pos + 1, mmap + pos,
939 		sizeof(struct tee_mmap_region) * (*last - pos));
940 	(*last)++;
941 	memset(mmap + pos, 0, sizeof(mmap[0]));
942 	mmap[pos].type = MEM_AREA_PAGER_VASPACE;
943 	mmap[pos].va = 0;
944 	mmap[pos].size = size;
945 	mmap[pos].region_size = SMALL_PAGE_SIZE;
946 	mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE);
947 }
948 
949 static void check_sec_nsec_mem_config(void)
950 {
951 	size_t n = 0;
952 
953 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
954 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
955 				    secure_only[n].size))
956 			panic("Invalid memory access config: sec/nsec");
957 	}
958 }
959 
960 static void collect_device_mem_ranges(struct tee_mmap_region *memory_map,
961 				      size_t num_elems, size_t *last)
962 {
963 	const char *compatible = "arm,ffa-manifest-device-regions";
964 	void *fdt = get_manifest_dt();
965 	const char *name = NULL;
966 	uint64_t page_count = 0;
967 	uint64_t base = 0;
968 	int subnode = 0;
969 	int node = 0;
970 
971 	assert(fdt);
972 
973 	node = fdt_node_offset_by_compatible(fdt, 0, compatible);
974 	if (node < 0)
975 		return;
976 
977 	fdt_for_each_subnode(subnode, fdt, node) {
978 		name = fdt_get_name(fdt, subnode, NULL);
979 		if (!name)
980 			continue;
981 
982 		if (dt_getprop_as_number(fdt, subnode, "base-address",
983 					 &base)) {
984 			EMSG("Mandatory field is missing: base-address");
985 			continue;
986 		}
987 
988 		if (base & SMALL_PAGE_MASK) {
989 			EMSG("base-address is not page aligned");
990 			continue;
991 		}
992 
993 		if (dt_getprop_as_number(fdt, subnode, "pages-count",
994 					 &page_count)) {
995 			EMSG("Mandatory field is missing: pages-count");
996 			continue;
997 		}
998 
999 		add_phys_mem(memory_map, num_elems, name, MEM_AREA_IO_SEC,
1000 			     base, base + page_count * SMALL_PAGE_SIZE, last);
1001 	}
1002 }
1003 
1004 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map,
1005 				 size_t num_elems)
1006 {
1007 	const struct core_mmu_phys_mem *mem = NULL;
1008 	vaddr_t ram_start = secure_only[0].paddr;
1009 	size_t last = 0;
1010 
1011 
1012 #define ADD_PHYS_MEM(_type, _addr, _size) \
1013 		add_phys_mem(memory_map, num_elems, #_addr, (_type), \
1014 			     (_addr), (_size),  &last)
1015 
1016 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
1017 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start,
1018 			     VCORE_UNPG_RX_PA - ram_start);
1019 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
1020 			     VCORE_UNPG_RX_SZ);
1021 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
1022 			     VCORE_UNPG_RO_SZ);
1023 
1024 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1025 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
1026 				     VCORE_UNPG_RW_SZ);
1027 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
1028 				     VCORE_NEX_RW_SZ);
1029 		} else {
1030 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
1031 				     VCORE_UNPG_RW_SZ);
1032 		}
1033 
1034 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1035 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
1036 				     VCORE_INIT_RX_SZ);
1037 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
1038 				     VCORE_INIT_RO_SZ);
1039 		}
1040 	} else {
1041 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
1042 	}
1043 
1044 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1045 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
1046 			     TRUSTED_DRAM_SIZE);
1047 	} else {
1048 		/*
1049 		 * Every guest will have own TA RAM if virtualization
1050 		 * support is enabled.
1051 		 */
1052 		paddr_t ta_base = 0;
1053 		size_t ta_size = 0;
1054 
1055 		core_mmu_get_ta_range(&ta_base, &ta_size);
1056 		ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size);
1057 	}
1058 
1059 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
1060 	    IS_ENABLED(CFG_WITH_PAGER)) {
1061 		/*
1062 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
1063 		 * disabled.
1064 		 */
1065 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1066 	}
1067 
1068 #undef ADD_PHYS_MEM
1069 
1070 	/* Collect device memory info from SP manifest */
1071 	if (IS_ENABLED(CFG_CORE_SEL2_SPMC))
1072 		collect_device_mem_ranges(memory_map, num_elems, &last);
1073 
1074 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1075 		/* Only unmapped virtual range may have a null phys addr */
1076 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1077 
1078 		add_phys_mem(memory_map, num_elems, mem->name, mem->type,
1079 			     mem->addr, mem->size, &last);
1080 	}
1081 
1082 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1083 		verify_special_mem_areas(memory_map, phys_sdp_mem_begin,
1084 					 phys_sdp_mem_end, "SDP");
1085 
1086 	add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE,
1087 		     CFG_RESERVED_VASPACE_SIZE, &last);
1088 
1089 	add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE,
1090 		     SHM_VASPACE_SIZE, &last);
1091 
1092 	memory_map[last].type = MEM_AREA_END;
1093 
1094 	return last;
1095 }
1096 
1097 static void assign_mem_granularity(struct tee_mmap_region *memory_map)
1098 {
1099 	struct tee_mmap_region *map = NULL;
1100 
1101 	/*
1102 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1103 	 * SMALL_PAGE_SIZE.
1104 	 */
1105 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1106 		paddr_t mask = map->pa | map->size;
1107 
1108 		if (!(mask & CORE_MMU_PGDIR_MASK))
1109 			map->region_size = CORE_MMU_PGDIR_SIZE;
1110 		else if (!(mask & SMALL_PAGE_MASK))
1111 			map->region_size = SMALL_PAGE_SIZE;
1112 		else
1113 			panic("Impossible memory alignment");
1114 
1115 		if (map_is_tee_ram(map))
1116 			map->region_size = SMALL_PAGE_SIZE;
1117 	}
1118 }
1119 
1120 static bool place_tee_ram_at_top(paddr_t paddr)
1121 {
1122 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1123 }
1124 
1125 /*
1126  * MMU arch driver shall override this function if it helps
1127  * optimizing the memory footprint of the address translation tables.
1128  */
1129 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1130 {
1131 	return place_tee_ram_at_top(paddr);
1132 }
1133 
1134 static bool assign_mem_va_dir(vaddr_t tee_ram_va,
1135 			      struct tee_mmap_region *memory_map,
1136 			      bool tee_ram_at_top)
1137 {
1138 	struct tee_mmap_region *map = NULL;
1139 	vaddr_t va = 0;
1140 	bool va_is_secure = true;
1141 
1142 	/*
1143 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1144 	 * 0 is by design an invalid va, so return false directly.
1145 	 */
1146 	if (!tee_ram_va)
1147 		return false;
1148 
1149 	/* Clear eventual previous assignments */
1150 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1151 		map->va = 0;
1152 
1153 	/*
1154 	 * TEE RAM regions are always aligned with region_size.
1155 	 *
1156 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1157 	 * since it handles virtual memory which covers the part of the ELF
1158 	 * that cannot fit directly into memory.
1159 	 */
1160 	va = tee_ram_va;
1161 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1162 		if (map_is_tee_ram(map) ||
1163 		    map->type == MEM_AREA_PAGER_VASPACE) {
1164 			assert(!(va & (map->region_size - 1)));
1165 			assert(!(map->size & (map->region_size - 1)));
1166 			map->va = va;
1167 			if (ADD_OVERFLOW(va, map->size, &va))
1168 				return false;
1169 			if (va >= BIT64(core_mmu_get_va_width()))
1170 				return false;
1171 		}
1172 	}
1173 
1174 	if (tee_ram_at_top) {
1175 		/*
1176 		 * Map non-tee ram regions at addresses lower than the tee
1177 		 * ram region.
1178 		 */
1179 		va = tee_ram_va;
1180 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1181 			map->attr = core_mmu_type_to_attr(map->type);
1182 			if (map->va)
1183 				continue;
1184 
1185 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1186 			    va_is_secure != map_is_secure(map)) {
1187 				va_is_secure = !va_is_secure;
1188 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1189 			}
1190 
1191 			if (SUB_OVERFLOW(va, map->size, &va))
1192 				return false;
1193 			va = ROUNDDOWN(va, map->region_size);
1194 			/*
1195 			 * Make sure that va is aligned with pa for
1196 			 * efficient pgdir mapping. Basically pa &
1197 			 * pgdir_mask should be == va & pgdir_mask
1198 			 */
1199 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1200 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1201 					return false;
1202 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1203 			}
1204 			map->va = va;
1205 		}
1206 	} else {
1207 		/*
1208 		 * Map non-tee ram regions at addresses higher than the tee
1209 		 * ram region.
1210 		 */
1211 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1212 			map->attr = core_mmu_type_to_attr(map->type);
1213 			if (map->va)
1214 				continue;
1215 
1216 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1217 			    va_is_secure != map_is_secure(map)) {
1218 				va_is_secure = !va_is_secure;
1219 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1220 						     &va))
1221 					return false;
1222 			}
1223 
1224 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1225 				return false;
1226 			/*
1227 			 * Make sure that va is aligned with pa for
1228 			 * efficient pgdir mapping. Basically pa &
1229 			 * pgdir_mask should be == va & pgdir_mask
1230 			 */
1231 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1232 				vaddr_t offs = (map->pa - va) &
1233 					       CORE_MMU_PGDIR_MASK;
1234 
1235 				if (ADD_OVERFLOW(va, offs, &va))
1236 					return false;
1237 			}
1238 
1239 			map->va = va;
1240 			if (ADD_OVERFLOW(va, map->size, &va))
1241 				return false;
1242 			if (va >= BIT64(core_mmu_get_va_width()))
1243 				return false;
1244 		}
1245 	}
1246 
1247 	return true;
1248 }
1249 
1250 static bool assign_mem_va(vaddr_t tee_ram_va,
1251 			  struct tee_mmap_region *memory_map)
1252 {
1253 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1254 
1255 	/*
1256 	 * Check that we're not overlapping with the user VA range.
1257 	 */
1258 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1259 		/*
1260 		 * User VA range is supposed to be defined after these
1261 		 * mappings have been established.
1262 		 */
1263 		assert(!core_mmu_user_va_range_is_defined());
1264 	} else {
1265 		vaddr_t user_va_base = 0;
1266 		size_t user_va_size = 0;
1267 
1268 		assert(core_mmu_user_va_range_is_defined());
1269 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1270 		if (tee_ram_va < (user_va_base + user_va_size))
1271 			return false;
1272 	}
1273 
1274 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1275 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1276 
1277 		/* Try whole mapping covered by a single base xlat entry */
1278 		if (prefered_dir != tee_ram_at_top &&
1279 		    assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir))
1280 			return true;
1281 	}
1282 
1283 	return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top);
1284 }
1285 
1286 static int cmp_init_mem_map(const void *a, const void *b)
1287 {
1288 	const struct tee_mmap_region *mm_a = a;
1289 	const struct tee_mmap_region *mm_b = b;
1290 	int rc = 0;
1291 
1292 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1293 	if (!rc)
1294 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1295 	/*
1296 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1297 	 * the same level2 table. Hence sort secure mapping from non-secure
1298 	 * mapping.
1299 	 */
1300 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1301 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1302 
1303 	return rc;
1304 }
1305 
1306 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map,
1307 			       size_t num_elems, size_t *last,
1308 			       vaddr_t id_map_start, vaddr_t id_map_end)
1309 {
1310 	struct tee_mmap_region *map = NULL;
1311 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1312 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1313 	size_t len = end - start;
1314 
1315 	if (*last >= num_elems - 1) {
1316 		EMSG("Out of entries (%zu) in memory map", num_elems);
1317 		panic();
1318 	}
1319 
1320 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1321 		if (core_is_buffer_intersect(map->va, map->size, start, len))
1322 			return false;
1323 
1324 	*map = (struct tee_mmap_region){
1325 		.type = MEM_AREA_IDENTITY_MAP_RX,
1326 		/*
1327 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1328 		 * translation table, at the increased risk of clashes with
1329 		 * the rest of the memory map.
1330 		 */
1331 		.region_size = SMALL_PAGE_SIZE,
1332 		.pa = start,
1333 		.va = start,
1334 		.size = len,
1335 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1336 	};
1337 
1338 	(*last)++;
1339 
1340 	return true;
1341 }
1342 
1343 static unsigned long init_mem_map(struct tee_mmap_region *memory_map,
1344 				  size_t num_elems, unsigned long seed)
1345 {
1346 	/*
1347 	 * @id_map_start and @id_map_end describes a physical memory range
1348 	 * that must be mapped Read-Only eXecutable at identical virtual
1349 	 * addresses.
1350 	 */
1351 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1352 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1353 	vaddr_t start_addr = secure_only[0].paddr;
1354 	unsigned long offs = 0;
1355 	size_t last = 0;
1356 
1357 	last = collect_mem_ranges(memory_map, num_elems);
1358 	assign_mem_granularity(memory_map);
1359 
1360 	/*
1361 	 * To ease mapping and lower use of xlat tables, sort mapping
1362 	 * description moving small-page regions after the pgdir regions.
1363 	 */
1364 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1365 	      cmp_init_mem_map);
1366 
1367 	if (IS_ENABLED(CFG_WITH_PAGER))
1368 		add_pager_vaspace(memory_map, num_elems, &last);
1369 
1370 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1371 		vaddr_t base_addr = start_addr + seed;
1372 		const unsigned int va_width = core_mmu_get_va_width();
1373 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1374 						   SMALL_PAGE_SHIFT);
1375 		vaddr_t ba = base_addr;
1376 		size_t n = 0;
1377 
1378 		for (n = 0; n < 3; n++) {
1379 			if (n)
1380 				ba = base_addr ^ BIT64(va_width - n);
1381 			ba &= va_mask;
1382 			if (assign_mem_va(ba, memory_map) &&
1383 			    mem_map_add_id_map(memory_map, num_elems, &last,
1384 					       id_map_start, id_map_end)) {
1385 				offs = ba - start_addr;
1386 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1387 				     ba, offs);
1388 				goto out;
1389 			} else {
1390 				DMSG("Failed to map core at %#"PRIxVA, ba);
1391 			}
1392 		}
1393 		EMSG("Failed to map core with seed %#lx", seed);
1394 	}
1395 
1396 	if (!assign_mem_va(start_addr, memory_map))
1397 		panic();
1398 
1399 out:
1400 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1401 	      cmp_mmap_by_lower_va);
1402 
1403 	dump_mmap_table(memory_map);
1404 
1405 	return offs;
1406 }
1407 
1408 static void check_mem_map(struct tee_mmap_region *map)
1409 {
1410 	struct tee_mmap_region *m = NULL;
1411 
1412 	for (m = map; !core_mmap_is_end_of_table(m); m++) {
1413 		switch (m->type) {
1414 		case MEM_AREA_TEE_RAM:
1415 		case MEM_AREA_TEE_RAM_RX:
1416 		case MEM_AREA_TEE_RAM_RO:
1417 		case MEM_AREA_TEE_RAM_RW:
1418 		case MEM_AREA_INIT_RAM_RX:
1419 		case MEM_AREA_INIT_RAM_RO:
1420 		case MEM_AREA_NEX_RAM_RW:
1421 		case MEM_AREA_NEX_RAM_RO:
1422 		case MEM_AREA_IDENTITY_MAP_RX:
1423 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1424 				panic("TEE_RAM can't fit in secure_only");
1425 			break;
1426 		case MEM_AREA_TA_RAM:
1427 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1428 				panic("TA_RAM can't fit in secure_only");
1429 			break;
1430 		case MEM_AREA_NSEC_SHM:
1431 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1432 				panic("NS_SHM can't fit in nsec_shared");
1433 			break;
1434 		case MEM_AREA_SEC_RAM_OVERALL:
1435 		case MEM_AREA_TEE_COHERENT:
1436 		case MEM_AREA_TEE_ASAN:
1437 		case MEM_AREA_IO_SEC:
1438 		case MEM_AREA_IO_NSEC:
1439 		case MEM_AREA_EXT_DT:
1440 		case MEM_AREA_MANIFEST_DT:
1441 		case MEM_AREA_TRANSFER_LIST:
1442 		case MEM_AREA_RAM_SEC:
1443 		case MEM_AREA_RAM_NSEC:
1444 		case MEM_AREA_RES_VASPACE:
1445 		case MEM_AREA_SHM_VASPACE:
1446 		case MEM_AREA_PAGER_VASPACE:
1447 			break;
1448 		default:
1449 			EMSG("Uhandled memtype %d", m->type);
1450 			panic();
1451 		}
1452 	}
1453 }
1454 
1455 static struct tee_mmap_region *get_tmp_mmap(void)
1456 {
1457 	struct tee_mmap_region *tmp_mmap = (void *)__heap1_start;
1458 
1459 #ifdef CFG_WITH_PAGER
1460 	if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map))
1461 		tmp_mmap = (void *)__heap2_start;
1462 #endif
1463 
1464 	memset(tmp_mmap, 0, sizeof(static_memory_map));
1465 
1466 	return tmp_mmap;
1467 }
1468 
1469 /*
1470  * core_init_mmu_map() - init tee core default memory mapping
1471  *
1472  * This routine sets the static default TEE core mapping. If @seed is > 0
1473  * and configured with CFG_CORE_ASLR it will map tee core at a location
1474  * based on the seed and return the offset from the link address.
1475  *
1476  * If an error happened: core_init_mmu_map is expected to panic.
1477  *
1478  * Note: this function is weak just to make it possible to exclude it from
1479  * the unpaged area.
1480  */
1481 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1482 {
1483 #ifndef CFG_NS_VIRTUALIZATION
1484 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1485 #else
1486 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1487 				  SMALL_PAGE_SIZE);
1488 #endif
1489 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1490 	struct tee_mmap_region *tmp_mmap = get_tmp_mmap();
1491 	unsigned long offs = 0;
1492 
1493 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1494 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1495 		panic("OP-TEE load address is not page aligned");
1496 
1497 	check_sec_nsec_mem_config();
1498 
1499 	/*
1500 	 * Add a entry covering the translation tables which will be
1501 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1502 	 */
1503 	static_memory_map[0] = (struct tee_mmap_region){
1504 		.type = MEM_AREA_TEE_RAM,
1505 		.region_size = SMALL_PAGE_SIZE,
1506 		.pa = start,
1507 		.va = start,
1508 		.size = len,
1509 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1510 	};
1511 
1512 	COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13);
1513 	offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed);
1514 
1515 	check_mem_map(tmp_mmap);
1516 	core_init_mmu(tmp_mmap);
1517 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1518 	core_init_mmu_regs(cfg);
1519 	cfg->map_offset = offs;
1520 	memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map));
1521 }
1522 
1523 bool core_mmu_mattr_is_ok(uint32_t mattr)
1524 {
1525 	/*
1526 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1527 	 * core_mmu_v7.c:mattr_to_texcb
1528 	 */
1529 
1530 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1531 	case TEE_MATTR_MEM_TYPE_DEV:
1532 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1533 	case TEE_MATTR_MEM_TYPE_CACHED:
1534 	case TEE_MATTR_MEM_TYPE_TAGGED:
1535 		return true;
1536 	default:
1537 		return false;
1538 	}
1539 }
1540 
1541 /*
1542  * test attributes of target physical buffer
1543  *
1544  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1545  *
1546  */
1547 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1548 {
1549 	paddr_t ta_base = 0;
1550 	size_t ta_size = 0;
1551 	struct tee_mmap_region *map;
1552 
1553 	/* Empty buffers complies with anything */
1554 	if (len == 0)
1555 		return true;
1556 
1557 	switch (attr) {
1558 	case CORE_MEM_SEC:
1559 		return pbuf_is_inside(secure_only, pbuf, len);
1560 	case CORE_MEM_NON_SEC:
1561 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1562 			pbuf_is_nsec_ddr(pbuf, len);
1563 	case CORE_MEM_TEE_RAM:
1564 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1565 							TEE_RAM_PH_SIZE);
1566 	case CORE_MEM_TA_RAM:
1567 		core_mmu_get_ta_range(&ta_base, &ta_size);
1568 		return core_is_buffer_inside(pbuf, len, ta_base, ta_size);
1569 #ifdef CFG_CORE_RESERVED_SHM
1570 	case CORE_MEM_NSEC_SHM:
1571 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1572 							TEE_SHMEM_SIZE);
1573 #endif
1574 	case CORE_MEM_SDP_MEM:
1575 		return pbuf_is_sdp_mem(pbuf, len);
1576 	case CORE_MEM_CACHED:
1577 		map = find_map_by_pa(pbuf);
1578 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1579 			return false;
1580 		return mattr_is_cached(map->attr);
1581 	default:
1582 		return false;
1583 	}
1584 }
1585 
1586 /* test attributes of target virtual buffer (in core mapping) */
1587 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1588 {
1589 	paddr_t p;
1590 
1591 	/* Empty buffers complies with anything */
1592 	if (len == 0)
1593 		return true;
1594 
1595 	p = virt_to_phys((void *)vbuf);
1596 	if (!p)
1597 		return false;
1598 
1599 	return core_pbuf_is(attr, p, len);
1600 }
1601 
1602 /* core_va2pa - teecore exported service */
1603 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1604 {
1605 	struct tee_mmap_region *map;
1606 
1607 	map = find_map_by_va(va);
1608 	if (!va_is_in_map(map, (vaddr_t)va))
1609 		return -1;
1610 
1611 	/*
1612 	 * We can calculate PA for static map. Virtual address ranges
1613 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1614 	 * together with an invalid null physical address.
1615 	 */
1616 	if (map->pa)
1617 		*pa = map->pa + (vaddr_t)va  - map->va;
1618 	else
1619 		*pa = 0;
1620 
1621 	return 0;
1622 }
1623 
1624 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1625 {
1626 	if (!pa_is_in_map(map, pa, len))
1627 		return NULL;
1628 
1629 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1630 }
1631 
1632 /*
1633  * teecore gets some memory area definitions
1634  */
1635 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1636 			      vaddr_t *e)
1637 {
1638 	struct tee_mmap_region *map = find_map_by_type(type);
1639 
1640 	if (map) {
1641 		*s = map->va;
1642 		*e = map->va + map->size;
1643 	} else {
1644 		*s = 0;
1645 		*e = 0;
1646 	}
1647 }
1648 
1649 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1650 {
1651 	struct tee_mmap_region *map = find_map_by_pa(pa);
1652 
1653 	if (!map)
1654 		return MEM_AREA_MAXTYPE;
1655 	return map->type;
1656 }
1657 
1658 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1659 			paddr_t pa, uint32_t attr)
1660 {
1661 	assert(idx < tbl_info->num_entries);
1662 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1663 				     idx, pa, attr);
1664 }
1665 
1666 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1667 			paddr_t *pa, uint32_t *attr)
1668 {
1669 	assert(idx < tbl_info->num_entries);
1670 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1671 				     idx, pa, attr);
1672 }
1673 
1674 static void clear_region(struct core_mmu_table_info *tbl_info,
1675 			 struct tee_mmap_region *region)
1676 {
1677 	unsigned int end = 0;
1678 	unsigned int idx = 0;
1679 
1680 	/* va, len and pa should be block aligned */
1681 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1682 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1683 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1684 
1685 	idx = core_mmu_va2idx(tbl_info, region->va);
1686 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1687 
1688 	while (idx < end) {
1689 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1690 		idx++;
1691 	}
1692 }
1693 
1694 static void set_region(struct core_mmu_table_info *tbl_info,
1695 		       struct tee_mmap_region *region)
1696 {
1697 	unsigned int end;
1698 	unsigned int idx;
1699 	paddr_t pa;
1700 
1701 	/* va, len and pa should be block aligned */
1702 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1703 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1704 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1705 
1706 	idx = core_mmu_va2idx(tbl_info, region->va);
1707 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1708 	pa = region->pa;
1709 
1710 	while (idx < end) {
1711 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1712 		idx++;
1713 		pa += BIT64(tbl_info->shift);
1714 	}
1715 }
1716 
1717 static void set_pg_region(struct core_mmu_table_info *dir_info,
1718 			  struct vm_region *region, struct pgt **pgt,
1719 			  struct core_mmu_table_info *pg_info)
1720 {
1721 	struct tee_mmap_region r = {
1722 		.va = region->va,
1723 		.size = region->size,
1724 		.attr = region->attr,
1725 	};
1726 	vaddr_t end = r.va + r.size;
1727 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1728 
1729 	while (r.va < end) {
1730 		if (!pg_info->table ||
1731 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1732 			/*
1733 			 * We're assigning a new translation table.
1734 			 */
1735 			unsigned int idx;
1736 
1737 			/* Virtual addresses must grow */
1738 			assert(r.va > pg_info->va_base);
1739 
1740 			idx = core_mmu_va2idx(dir_info, r.va);
1741 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1742 
1743 			/*
1744 			 * Advance pgt to va_base, note that we may need to
1745 			 * skip multiple page tables if there are large
1746 			 * holes in the vm map.
1747 			 */
1748 			while ((*pgt)->vabase < pg_info->va_base) {
1749 				*pgt = SLIST_NEXT(*pgt, link);
1750 				/* We should have allocated enough */
1751 				assert(*pgt);
1752 			}
1753 			assert((*pgt)->vabase == pg_info->va_base);
1754 			pg_info->table = (*pgt)->tbl;
1755 
1756 			core_mmu_set_entry(dir_info, idx,
1757 					   virt_to_phys(pg_info->table),
1758 					   pgt_attr);
1759 		}
1760 
1761 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1762 			     end - r.va);
1763 
1764 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1765 			size_t granule = BIT(pg_info->shift);
1766 			size_t offset = r.va - region->va + region->offset;
1767 
1768 			r.size = MIN(r.size,
1769 				     mobj_get_phys_granule(region->mobj));
1770 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1771 
1772 			if (mobj_get_pa(region->mobj, offset, granule,
1773 					&r.pa) != TEE_SUCCESS)
1774 				panic("Failed to get PA of unpaged mobj");
1775 			set_region(pg_info, &r);
1776 		}
1777 		r.va += r.size;
1778 	}
1779 }
1780 
1781 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1782 			     size_t size_left, paddr_t block_size,
1783 			     struct tee_mmap_region *mm __maybe_unused)
1784 {
1785 	/* VA and PA are aligned to block size at current level */
1786 	if ((vaddr | paddr) & (block_size - 1))
1787 		return false;
1788 
1789 	/* Remainder fits into block at current level */
1790 	if (size_left < block_size)
1791 		return false;
1792 
1793 #ifdef CFG_WITH_PAGER
1794 	/*
1795 	 * If pager is enabled, we need to map tee ram
1796 	 * regions with small pages only
1797 	 */
1798 	if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE)
1799 		return false;
1800 #endif
1801 
1802 	return true;
1803 }
1804 
1805 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1806 {
1807 	struct core_mmu_table_info tbl_info;
1808 	unsigned int idx;
1809 	vaddr_t vaddr = mm->va;
1810 	paddr_t paddr = mm->pa;
1811 	ssize_t size_left = mm->size;
1812 	unsigned int level;
1813 	bool table_found;
1814 	uint32_t old_attr;
1815 
1816 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1817 
1818 	while (size_left > 0) {
1819 		level = CORE_MMU_BASE_TABLE_LEVEL;
1820 
1821 		while (true) {
1822 			paddr_t block_size = 0;
1823 
1824 			assert(core_mmu_level_in_range(level));
1825 
1826 			table_found = core_mmu_find_table(prtn, vaddr, level,
1827 							  &tbl_info);
1828 			if (!table_found)
1829 				panic("can't find table for mapping");
1830 
1831 			block_size = BIT64(tbl_info.shift);
1832 
1833 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1834 			if (!can_map_at_level(paddr, vaddr, size_left,
1835 					      block_size, mm)) {
1836 				bool secure = mm->attr & TEE_MATTR_SECURE;
1837 
1838 				/*
1839 				 * This part of the region can't be mapped at
1840 				 * this level. Need to go deeper.
1841 				 */
1842 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1843 								     idx,
1844 								     secure))
1845 					panic("Can't divide MMU entry");
1846 				level = tbl_info.next_level;
1847 				continue;
1848 			}
1849 
1850 			/* We can map part of the region at current level */
1851 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1852 			if (old_attr)
1853 				panic("Page is already mapped");
1854 
1855 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1856 			paddr += block_size;
1857 			vaddr += block_size;
1858 			size_left -= block_size;
1859 
1860 			break;
1861 		}
1862 	}
1863 }
1864 
1865 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1866 			      enum teecore_memtypes memtype)
1867 {
1868 	TEE_Result ret;
1869 	struct core_mmu_table_info tbl_info;
1870 	struct tee_mmap_region *mm;
1871 	unsigned int idx;
1872 	uint32_t old_attr;
1873 	uint32_t exceptions;
1874 	vaddr_t vaddr = vstart;
1875 	size_t i;
1876 	bool secure;
1877 
1878 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1879 
1880 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1881 
1882 	if (vaddr & SMALL_PAGE_MASK)
1883 		return TEE_ERROR_BAD_PARAMETERS;
1884 
1885 	exceptions = mmu_lock();
1886 
1887 	mm = find_map_by_va((void *)vaddr);
1888 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1889 		panic("VA does not belong to any known mm region");
1890 
1891 	if (!core_mmu_is_dynamic_vaspace(mm))
1892 		panic("Trying to map into static region");
1893 
1894 	for (i = 0; i < num_pages; i++) {
1895 		if (pages[i] & SMALL_PAGE_MASK) {
1896 			ret = TEE_ERROR_BAD_PARAMETERS;
1897 			goto err;
1898 		}
1899 
1900 		while (true) {
1901 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1902 						 &tbl_info))
1903 				panic("Can't find pagetable for vaddr ");
1904 
1905 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1906 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1907 				break;
1908 
1909 			/* This is supertable. Need to divide it. */
1910 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1911 							     secure))
1912 				panic("Failed to spread pgdir on small tables");
1913 		}
1914 
1915 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1916 		if (old_attr)
1917 			panic("Page is already mapped");
1918 
1919 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1920 				   core_mmu_type_to_attr(memtype));
1921 		vaddr += SMALL_PAGE_SIZE;
1922 	}
1923 
1924 	/*
1925 	 * Make sure all the changes to translation tables are visible
1926 	 * before returning. TLB doesn't need to be invalidated as we are
1927 	 * guaranteed that there's no valid mapping in this range.
1928 	 */
1929 	core_mmu_table_write_barrier();
1930 	mmu_unlock(exceptions);
1931 
1932 	return TEE_SUCCESS;
1933 err:
1934 	mmu_unlock(exceptions);
1935 
1936 	if (i)
1937 		core_mmu_unmap_pages(vstart, i);
1938 
1939 	return ret;
1940 }
1941 
1942 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
1943 					 size_t num_pages,
1944 					 enum teecore_memtypes memtype)
1945 {
1946 	struct core_mmu_table_info tbl_info = { };
1947 	struct tee_mmap_region *mm = NULL;
1948 	unsigned int idx = 0;
1949 	uint32_t old_attr = 0;
1950 	uint32_t exceptions = 0;
1951 	vaddr_t vaddr = vstart;
1952 	paddr_t paddr = pstart;
1953 	size_t i = 0;
1954 	bool secure = false;
1955 
1956 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1957 
1958 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1959 
1960 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
1961 		return TEE_ERROR_BAD_PARAMETERS;
1962 
1963 	exceptions = mmu_lock();
1964 
1965 	mm = find_map_by_va((void *)vaddr);
1966 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1967 		panic("VA does not belong to any known mm region");
1968 
1969 	if (!core_mmu_is_dynamic_vaspace(mm))
1970 		panic("Trying to map into static region");
1971 
1972 	for (i = 0; i < num_pages; i++) {
1973 		while (true) {
1974 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1975 						 &tbl_info))
1976 				panic("Can't find pagetable for vaddr ");
1977 
1978 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1979 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1980 				break;
1981 
1982 			/* This is supertable. Need to divide it. */
1983 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1984 							     secure))
1985 				panic("Failed to spread pgdir on small tables");
1986 		}
1987 
1988 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1989 		if (old_attr)
1990 			panic("Page is already mapped");
1991 
1992 		core_mmu_set_entry(&tbl_info, idx, paddr,
1993 				   core_mmu_type_to_attr(memtype));
1994 		paddr += SMALL_PAGE_SIZE;
1995 		vaddr += SMALL_PAGE_SIZE;
1996 	}
1997 
1998 	/*
1999 	 * Make sure all the changes to translation tables are visible
2000 	 * before returning. TLB doesn't need to be invalidated as we are
2001 	 * guaranteed that there's no valid mapping in this range.
2002 	 */
2003 	core_mmu_table_write_barrier();
2004 	mmu_unlock(exceptions);
2005 
2006 	return TEE_SUCCESS;
2007 }
2008 
2009 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
2010 {
2011 	struct core_mmu_table_info tbl_info;
2012 	struct tee_mmap_region *mm;
2013 	size_t i;
2014 	unsigned int idx;
2015 	uint32_t exceptions;
2016 
2017 	exceptions = mmu_lock();
2018 
2019 	mm = find_map_by_va((void *)vstart);
2020 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
2021 		panic("VA does not belong to any known mm region");
2022 
2023 	if (!core_mmu_is_dynamic_vaspace(mm))
2024 		panic("Trying to unmap static region");
2025 
2026 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
2027 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
2028 			panic("Can't find pagetable");
2029 
2030 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
2031 			panic("Invalid pagetable level");
2032 
2033 		idx = core_mmu_va2idx(&tbl_info, vstart);
2034 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
2035 	}
2036 	tlbi_all();
2037 
2038 	mmu_unlock(exceptions);
2039 }
2040 
2041 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
2042 				struct user_mode_ctx *uctx)
2043 {
2044 	struct core_mmu_table_info pg_info = { };
2045 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
2046 	struct pgt *pgt = NULL;
2047 	struct pgt *p = NULL;
2048 	struct vm_region *r = NULL;
2049 
2050 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
2051 		return; /* Nothing to map */
2052 
2053 	/*
2054 	 * Allocate all page tables in advance.
2055 	 */
2056 	pgt_get_all(uctx);
2057 	pgt = SLIST_FIRST(pgt_cache);
2058 
2059 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2060 
2061 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2062 		set_pg_region(dir_info, r, &pgt, &pg_info);
2063 	/* Record that the translation tables now are populated. */
2064 	SLIST_FOREACH(p, pgt_cache, link) {
2065 		p->populated = true;
2066 		if (p == pgt)
2067 			break;
2068 	}
2069 	assert(p == pgt);
2070 }
2071 
2072 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2073 				   size_t len)
2074 {
2075 	struct core_mmu_table_info tbl_info = { };
2076 	struct tee_mmap_region *res_map = NULL;
2077 	struct tee_mmap_region *map = NULL;
2078 	paddr_t pa = virt_to_phys(addr);
2079 	size_t granule = 0;
2080 	ptrdiff_t i = 0;
2081 	paddr_t p = 0;
2082 	size_t l = 0;
2083 
2084 	map = find_map_by_type_and_pa(type, pa, len);
2085 	if (!map)
2086 		return TEE_ERROR_GENERIC;
2087 
2088 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2089 	if (!res_map)
2090 		return TEE_ERROR_GENERIC;
2091 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2092 		return TEE_ERROR_GENERIC;
2093 	granule = BIT(tbl_info.shift);
2094 
2095 	if (map < static_memory_map ||
2096 	    map >= static_memory_map + ARRAY_SIZE(static_memory_map))
2097 		return TEE_ERROR_GENERIC;
2098 	i = map - static_memory_map;
2099 
2100 	/* Check that we have a full match */
2101 	p = ROUNDDOWN(pa, granule);
2102 	l = ROUNDUP(len + pa - p, granule);
2103 	if (map->pa != p || map->size != l)
2104 		return TEE_ERROR_GENERIC;
2105 
2106 	clear_region(&tbl_info, map);
2107 	tlbi_all();
2108 
2109 	/* If possible remove the va range from res_map */
2110 	if (res_map->va - map->size == map->va) {
2111 		res_map->va -= map->size;
2112 		res_map->size += map->size;
2113 	}
2114 
2115 	/* Remove the entry. */
2116 	memmove(map, map + 1,
2117 		(ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map));
2118 
2119 	/* Clear the last new entry in case it was used */
2120 	memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1,
2121 	       0, sizeof(*map));
2122 
2123 	return TEE_SUCCESS;
2124 }
2125 
2126 struct tee_mmap_region *
2127 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2128 {
2129 	struct tee_mmap_region *map = NULL;
2130 	struct tee_mmap_region *map_found = NULL;
2131 
2132 	if (!len)
2133 		return NULL;
2134 
2135 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
2136 		if (map->type != type)
2137 			continue;
2138 
2139 		if (map_found)
2140 			return NULL;
2141 
2142 		map_found = map;
2143 	}
2144 
2145 	if (!map_found || map_found->size < len)
2146 		return NULL;
2147 
2148 	return map_found;
2149 }
2150 
2151 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2152 {
2153 	struct core_mmu_table_info tbl_info;
2154 	struct tee_mmap_region *map;
2155 	size_t n;
2156 	size_t granule;
2157 	paddr_t p;
2158 	size_t l;
2159 
2160 	if (!len)
2161 		return NULL;
2162 
2163 	if (!core_mmu_check_end_pa(addr, len))
2164 		return NULL;
2165 
2166 	/* Check if the memory is already mapped */
2167 	map = find_map_by_type_and_pa(type, addr, len);
2168 	if (map && pbuf_inside_map_area(addr, len, map))
2169 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2170 
2171 	/* Find the reserved va space used for late mappings */
2172 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2173 	if (!map)
2174 		return NULL;
2175 
2176 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2177 		return NULL;
2178 
2179 	granule = BIT64(tbl_info.shift);
2180 	p = ROUNDDOWN(addr, granule);
2181 	l = ROUNDUP(len + addr - p, granule);
2182 
2183 	/* Ban overflowing virtual addresses */
2184 	if (map->size < l)
2185 		return NULL;
2186 
2187 	/*
2188 	 * Something is wrong, we can't fit the va range into the selected
2189 	 * table. The reserved va range is possibly missaligned with
2190 	 * granule.
2191 	 */
2192 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2193 		return NULL;
2194 
2195 	/* Find end of the memory map */
2196 	n = 0;
2197 	while (!core_mmap_is_end_of_table(static_memory_map + n))
2198 		n++;
2199 
2200 	if (n < (ARRAY_SIZE(static_memory_map) - 1)) {
2201 		/* There's room for another entry */
2202 		static_memory_map[n].va = map->va;
2203 		static_memory_map[n].size = l;
2204 		static_memory_map[n + 1].type = MEM_AREA_END;
2205 		map->va += l;
2206 		map->size -= l;
2207 		map = static_memory_map + n;
2208 	} else {
2209 		/*
2210 		 * There isn't room for another entry, steal the reserved
2211 		 * entry as it's not useful for anything else any longer.
2212 		 */
2213 		map->size = l;
2214 	}
2215 	map->type = type;
2216 	map->region_size = granule;
2217 	map->attr = core_mmu_type_to_attr(type);
2218 	map->pa = p;
2219 
2220 	set_region(&tbl_info, map);
2221 
2222 	/* Make sure the new entry is visible before continuing. */
2223 	core_mmu_table_write_barrier();
2224 
2225 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2226 }
2227 
2228 #ifdef CFG_WITH_PAGER
2229 static vaddr_t get_linear_map_end_va(void)
2230 {
2231 	/* this is synced with the generic linker file kern.ld.S */
2232 	return (vaddr_t)__heap2_end;
2233 }
2234 
2235 static paddr_t get_linear_map_end_pa(void)
2236 {
2237 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2238 }
2239 #endif
2240 
2241 #if defined(CFG_TEE_CORE_DEBUG)
2242 static void check_pa_matches_va(void *va, paddr_t pa)
2243 {
2244 	TEE_Result res = TEE_ERROR_GENERIC;
2245 	vaddr_t v = (vaddr_t)va;
2246 	paddr_t p = 0;
2247 	struct core_mmu_table_info ti __maybe_unused = { };
2248 
2249 	if (core_mmu_user_va_range_is_defined()) {
2250 		vaddr_t user_va_base = 0;
2251 		size_t user_va_size = 0;
2252 
2253 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2254 		if (v >= user_va_base &&
2255 		    v <= (user_va_base - 1 + user_va_size)) {
2256 			if (!core_mmu_user_mapping_is_active()) {
2257 				if (pa)
2258 					panic("issue in linear address space");
2259 				return;
2260 			}
2261 
2262 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2263 				       va, &p);
2264 			if (res == TEE_ERROR_NOT_SUPPORTED)
2265 				return;
2266 			if (res == TEE_SUCCESS && pa != p)
2267 				panic("bad pa");
2268 			if (res != TEE_SUCCESS && pa)
2269 				panic("false pa");
2270 			return;
2271 		}
2272 	}
2273 #ifdef CFG_WITH_PAGER
2274 	if (is_unpaged(va)) {
2275 		if (v - boot_mmu_config.map_offset != pa)
2276 			panic("issue in linear address space");
2277 		return;
2278 	}
2279 
2280 	if (tee_pager_get_table_info(v, &ti)) {
2281 		uint32_t a;
2282 
2283 		/*
2284 		 * Lookups in the page table managed by the pager is
2285 		 * dangerous for addresses in the paged area as those pages
2286 		 * changes all the time. But some ranges are safe,
2287 		 * rw-locked areas when the page is populated for instance.
2288 		 */
2289 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2290 		if (a & TEE_MATTR_VALID_BLOCK) {
2291 			paddr_t mask = BIT64(ti.shift) - 1;
2292 
2293 			p |= v & mask;
2294 			if (pa != p)
2295 				panic();
2296 		} else {
2297 			if (pa)
2298 				panic();
2299 		}
2300 		return;
2301 	}
2302 #endif
2303 
2304 	if (!core_va2pa_helper(va, &p)) {
2305 		/* Verfiy only the static mapping (case non null phys addr) */
2306 		if (p && pa != p) {
2307 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2308 			     va, p, pa);
2309 			panic();
2310 		}
2311 	} else {
2312 		if (pa) {
2313 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2314 			panic();
2315 		}
2316 	}
2317 }
2318 #else
2319 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2320 {
2321 }
2322 #endif
2323 
2324 paddr_t virt_to_phys(void *va)
2325 {
2326 	paddr_t pa = 0;
2327 
2328 	if (!arch_va2pa_helper(va, &pa))
2329 		pa = 0;
2330 	check_pa_matches_va(va, pa);
2331 	return pa;
2332 }
2333 
2334 #if defined(CFG_TEE_CORE_DEBUG)
2335 static void check_va_matches_pa(paddr_t pa, void *va)
2336 {
2337 	paddr_t p = 0;
2338 
2339 	if (!va)
2340 		return;
2341 
2342 	p = virt_to_phys(va);
2343 	if (p != pa) {
2344 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2345 		panic();
2346 	}
2347 }
2348 #else
2349 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2350 {
2351 }
2352 #endif
2353 
2354 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2355 {
2356 	if (!core_mmu_user_mapping_is_active())
2357 		return NULL;
2358 
2359 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2360 }
2361 
2362 #ifdef CFG_WITH_PAGER
2363 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2364 {
2365 	paddr_t end_pa = 0;
2366 
2367 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2368 		return NULL;
2369 
2370 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2371 		if (end_pa > get_linear_map_end_pa())
2372 			return NULL;
2373 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2374 	}
2375 
2376 	return tee_pager_phys_to_virt(pa, len);
2377 }
2378 #else
2379 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2380 {
2381 	struct tee_mmap_region *mmap = NULL;
2382 
2383 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2384 	if (!mmap)
2385 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2386 	if (!mmap)
2387 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2388 	if (!mmap)
2389 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2390 	if (!mmap)
2391 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2392 	if (!mmap)
2393 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2394 	/*
2395 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2396 	 * used with pager and not needed here.
2397 	 */
2398 	return map_pa2va(mmap, pa, len);
2399 }
2400 #endif
2401 
2402 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2403 {
2404 	void *va = NULL;
2405 
2406 	switch (m) {
2407 	case MEM_AREA_TS_VASPACE:
2408 		va = phys_to_virt_ts_vaspace(pa, len);
2409 		break;
2410 	case MEM_AREA_TEE_RAM:
2411 	case MEM_AREA_TEE_RAM_RX:
2412 	case MEM_AREA_TEE_RAM_RO:
2413 	case MEM_AREA_TEE_RAM_RW:
2414 	case MEM_AREA_NEX_RAM_RO:
2415 	case MEM_AREA_NEX_RAM_RW:
2416 		va = phys_to_virt_tee_ram(pa, len);
2417 		break;
2418 	case MEM_AREA_SHM_VASPACE:
2419 		/* Find VA from PA in dynamic SHM is not yet supported */
2420 		va = NULL;
2421 		break;
2422 	default:
2423 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2424 	}
2425 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2426 		check_va_matches_pa(pa, va);
2427 	return va;
2428 }
2429 
2430 void *phys_to_virt_io(paddr_t pa, size_t len)
2431 {
2432 	struct tee_mmap_region *map = NULL;
2433 	void *va = NULL;
2434 
2435 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2436 	if (!map)
2437 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2438 	if (!map)
2439 		return NULL;
2440 	va = map_pa2va(map, pa, len);
2441 	check_va_matches_pa(pa, va);
2442 	return va;
2443 }
2444 
2445 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2446 {
2447 	if (cpu_mmu_enabled())
2448 		return (vaddr_t)phys_to_virt(pa, type, len);
2449 
2450 	return (vaddr_t)pa;
2451 }
2452 
2453 #ifdef CFG_WITH_PAGER
2454 bool is_unpaged(void *va)
2455 {
2456 	vaddr_t v = (vaddr_t)va;
2457 
2458 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2459 }
2460 #else
2461 bool is_unpaged(void *va __unused)
2462 {
2463 	return true;
2464 }
2465 #endif
2466 
2467 void core_mmu_init_virtualization(void)
2468 {
2469 	paddr_t b1 = 0;
2470 	paddr_size_t s1 = 0;
2471 
2472 	static_assert(ARRAY_SIZE(secure_only) <= 2);
2473 	if (ARRAY_SIZE(secure_only) == 2) {
2474 		b1 = secure_only[1].paddr;
2475 		s1 = secure_only[1].size;
2476 	}
2477 	virt_init_memory(static_memory_map, secure_only[0].paddr,
2478 			 secure_only[0].size, b1, s1);
2479 }
2480 
2481 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2482 {
2483 	assert(p->pa);
2484 	if (cpu_mmu_enabled()) {
2485 		if (!p->va)
2486 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2487 		assert(p->va);
2488 		return p->va;
2489 	}
2490 	return p->pa;
2491 }
2492 
2493 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2494 {
2495 	assert(p->pa);
2496 	if (cpu_mmu_enabled()) {
2497 		if (!p->va)
2498 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2499 						      len);
2500 		assert(p->va);
2501 		return p->va;
2502 	}
2503 	return p->pa;
2504 }
2505 
2506 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2507 {
2508 	assert(p->pa);
2509 	if (cpu_mmu_enabled()) {
2510 		if (!p->va)
2511 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2512 						      len);
2513 		assert(p->va);
2514 		return p->va;
2515 	}
2516 	return p->pa;
2517 }
2518 
2519 #ifdef CFG_CORE_RESERVED_SHM
2520 static TEE_Result teecore_init_pub_ram(void)
2521 {
2522 	vaddr_t s = 0;
2523 	vaddr_t e = 0;
2524 
2525 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2526 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2527 
2528 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2529 		panic("invalid PUB RAM");
2530 
2531 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2532 	if (!tee_vbuf_is_non_sec(s, e - s))
2533 		panic("PUB RAM is not non-secure");
2534 
2535 #ifdef CFG_PL310
2536 	/* Allocate statically the l2cc mutex */
2537 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2538 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2539 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2540 #endif
2541 
2542 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2543 	default_nsec_shm_size = e - s;
2544 
2545 	return TEE_SUCCESS;
2546 }
2547 early_init(teecore_init_pub_ram);
2548 #endif /*CFG_CORE_RESERVED_SHM*/
2549 
2550 void core_mmu_init_ta_ram(void)
2551 {
2552 	vaddr_t s = 0;
2553 	vaddr_t e = 0;
2554 	paddr_t ps = 0;
2555 	size_t size = 0;
2556 
2557 	/*
2558 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2559 	 * shared mem allocated from teecore.
2560 	 */
2561 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
2562 		virt_get_ta_ram(&s, &e);
2563 	else
2564 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2565 
2566 	ps = virt_to_phys((void *)s);
2567 	size = e - s;
2568 
2569 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2570 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2571 		panic("invalid TA RAM");
2572 
2573 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2574 	if (!tee_pbuf_is_sec(ps, size))
2575 		panic("TA RAM is not secure");
2576 
2577 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2578 		panic("TA RAM pool is not empty");
2579 
2580 	/* remove previous config and init TA ddr memory pool */
2581 	tee_mm_final(&tee_mm_sec_ddr);
2582 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2583 		    TEE_MM_POOL_NO_FLAGS);
2584 }
2585