1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016-2025 Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved. 6 */ 7 8 #include <assert.h> 9 #include <config.h> 10 #include <kernel/boot.h> 11 #include <kernel/dt.h> 12 #include <kernel/linker.h> 13 #include <kernel/panic.h> 14 #include <kernel/spinlock.h> 15 #include <kernel/tee_l2cc_mutex.h> 16 #include <kernel/tee_misc.h> 17 #include <kernel/tlb_helpers.h> 18 #include <kernel/user_mode_ctx.h> 19 #include <kernel/virtualization.h> 20 #include <libfdt.h> 21 #include <memtag.h> 22 #include <mm/core_memprot.h> 23 #include <mm/core_mmu.h> 24 #include <mm/mobj.h> 25 #include <mm/pgt_cache.h> 26 #include <mm/phys_mem.h> 27 #include <mm/tee_pager.h> 28 #include <mm/vm.h> 29 #include <platform_config.h> 30 #include <stdalign.h> 31 #include <string.h> 32 #include <trace.h> 33 #include <util.h> 34 35 #ifndef DEBUG_XLAT_TABLE 36 #define DEBUG_XLAT_TABLE 0 37 #endif 38 39 #define SHM_VASPACE_SIZE (1024 * 1024 * 32) 40 41 /* Virtual memory pool for core mappings */ 42 tee_mm_pool_t core_virt_mem_pool; 43 44 /* Virtual memory pool for shared memory mappings */ 45 tee_mm_pool_t core_virt_shm_pool; 46 47 #ifdef CFG_CORE_PHYS_RELOCATABLE 48 unsigned long core_mmu_tee_load_pa __nex_bss; 49 #else 50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR; 51 #endif 52 53 /* 54 * These variables are initialized before .bss is cleared. To avoid 55 * resetting them when .bss is cleared we're storing them in .data instead, 56 * even if they initially are zero. 57 */ 58 59 #ifdef CFG_CORE_RESERVED_SHM 60 /* Default NSec shared memory allocated from NSec world */ 61 unsigned long default_nsec_shm_size __nex_bss; 62 unsigned long default_nsec_shm_paddr __nex_bss; 63 #endif 64 65 static struct memory_map static_memory_map __nex_bss; 66 void (*memory_map_realloc_func)(struct memory_map *mem_map) __nex_bss; 67 68 /* Offset of the first TEE RAM mapping from start of secure RAM */ 69 static size_t tee_ram_initial_offs __nex_bss; 70 71 /* Define the platform's memory layout. */ 72 struct memaccess_area { 73 paddr_t paddr; 74 size_t size; 75 }; 76 77 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } 78 79 static struct memaccess_area secure_only[] __nex_data = { 80 #ifdef CFG_CORE_PHYS_RELOCATABLE 81 MEMACCESS_AREA(0, 0), 82 #else 83 #ifdef TRUSTED_SRAM_BASE 84 MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), 85 #endif 86 MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), 87 #endif 88 }; 89 90 static struct memaccess_area nsec_shared[] __nex_data = { 91 #ifdef CFG_CORE_RESERVED_SHM 92 MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), 93 #endif 94 }; 95 96 #if defined(CFG_SECURE_DATA_PATH) 97 static const char *tz_sdp_match = "linaro,secure-heap"; 98 static struct memaccess_area sec_sdp; 99 #ifdef CFG_TEE_SDP_MEM_BASE 100 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); 101 #endif 102 #ifdef TEE_SDP_TEST_MEM_BASE 103 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); 104 #endif 105 #endif 106 107 #ifdef CFG_CORE_RESERVED_SHM 108 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); 109 #endif 110 static unsigned int mmu_spinlock; 111 112 static uint32_t mmu_lock(void) 113 { 114 return cpu_spin_lock_xsave(&mmu_spinlock); 115 } 116 117 static void mmu_unlock(uint32_t exceptions) 118 { 119 cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); 120 } 121 122 static void heap_realloc_memory_map(struct memory_map *mem_map) 123 { 124 struct tee_mmap_region *m = NULL; 125 struct tee_mmap_region *old = mem_map->map; 126 size_t old_sz = sizeof(*old) * mem_map->alloc_count; 127 size_t sz = old_sz + sizeof(*m); 128 129 assert(nex_malloc_buffer_is_within_alloced(old, old_sz)); 130 m = nex_realloc(old, sz); 131 if (!m) 132 panic(); 133 mem_map->map = m; 134 mem_map->alloc_count++; 135 } 136 137 static void boot_mem_realloc_memory_map(struct memory_map *mem_map) 138 { 139 struct tee_mmap_region *m = NULL; 140 struct tee_mmap_region *old = mem_map->map; 141 size_t old_sz = sizeof(*old) * mem_map->alloc_count; 142 size_t sz = old_sz * 2; 143 144 m = boot_mem_alloc_tmp(sz, alignof(*m)); 145 memcpy(m, old, old_sz); 146 mem_map->map = m; 147 mem_map->alloc_count *= 2; 148 } 149 150 static void grow_mem_map(struct memory_map *mem_map) 151 { 152 if (mem_map->count == mem_map->alloc_count) { 153 if (!memory_map_realloc_func) { 154 EMSG("Out of entries (%zu) in mem_map", 155 mem_map->alloc_count); 156 panic(); 157 } 158 memory_map_realloc_func(mem_map); 159 } 160 mem_map->count++; 161 } 162 163 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size) 164 { 165 /* 166 * The first range is always used to cover OP-TEE core memory, but 167 * depending on configuration it may cover more than that. 168 */ 169 *base = secure_only[0].paddr; 170 *size = secure_only[0].size; 171 } 172 173 void core_mmu_set_secure_memory(paddr_t base, size_t size) 174 { 175 #ifdef CFG_CORE_PHYS_RELOCATABLE 176 static_assert(ARRAY_SIZE(secure_only) == 1); 177 #endif 178 runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)); 179 assert(!secure_only[0].size); 180 assert(base && size); 181 182 DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size); 183 secure_only[0].paddr = base; 184 secure_only[0].size = size; 185 } 186 187 static struct memory_map *get_memory_map(void) 188 { 189 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 190 struct memory_map *map = virt_get_memory_map(); 191 192 if (map) 193 return map; 194 } 195 196 return &static_memory_map; 197 } 198 199 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, 200 paddr_t pa, size_t size) 201 { 202 size_t n; 203 204 for (n = 0; n < alen; n++) 205 if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) 206 return true; 207 return false; 208 } 209 210 #define pbuf_intersects(a, pa, size) \ 211 _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) 212 213 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, 214 paddr_t pa, size_t size) 215 { 216 size_t n; 217 218 for (n = 0; n < alen; n++) 219 if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) 220 return true; 221 return false; 222 } 223 224 #define pbuf_is_inside(a, pa, size) \ 225 _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) 226 227 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) 228 { 229 paddr_t end_pa = 0; 230 231 if (!map) 232 return false; 233 234 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 235 return false; 236 237 return (pa >= map->pa && end_pa <= map->pa + map->size - 1); 238 } 239 240 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) 241 { 242 if (!map) 243 return false; 244 return (va >= map->va && va <= (map->va + map->size - 1)); 245 } 246 247 /* check if target buffer fits in a core default map area */ 248 static bool pbuf_inside_map_area(unsigned long p, size_t l, 249 struct tee_mmap_region *map) 250 { 251 return core_is_buffer_inside(p, l, map->pa, map->size); 252 } 253 254 TEE_Result core_mmu_for_each_map(void *ptr, 255 TEE_Result (*fn)(struct tee_mmap_region *map, 256 void *ptr)) 257 { 258 struct memory_map *mem_map = get_memory_map(); 259 TEE_Result res = TEE_SUCCESS; 260 size_t n = 0; 261 262 for (n = 0; n < mem_map->count; n++) { 263 res = fn(mem_map->map + n, ptr); 264 if (res) 265 return res; 266 } 267 268 return TEE_SUCCESS; 269 } 270 271 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) 272 { 273 struct memory_map *mem_map = get_memory_map(); 274 size_t n = 0; 275 276 for (n = 0; n < mem_map->count; n++) { 277 if (mem_map->map[n].type == type) 278 return mem_map->map + n; 279 } 280 return NULL; 281 } 282 283 static struct tee_mmap_region * 284 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) 285 { 286 struct memory_map *mem_map = get_memory_map(); 287 size_t n = 0; 288 289 for (n = 0; n < mem_map->count; n++) { 290 if (mem_map->map[n].type != type) 291 continue; 292 if (pa_is_in_map(mem_map->map + n, pa, len)) 293 return mem_map->map + n; 294 } 295 return NULL; 296 } 297 298 static struct tee_mmap_region *find_map_by_va(void *va) 299 { 300 struct memory_map *mem_map = get_memory_map(); 301 vaddr_t a = (vaddr_t)va; 302 size_t n = 0; 303 304 for (n = 0; n < mem_map->count; n++) { 305 if (a >= mem_map->map[n].va && 306 a <= (mem_map->map[n].va - 1 + mem_map->map[n].size)) 307 return mem_map->map + n; 308 } 309 310 return NULL; 311 } 312 313 static struct tee_mmap_region *find_map_by_pa(unsigned long pa) 314 { 315 struct memory_map *mem_map = get_memory_map(); 316 size_t n = 0; 317 318 for (n = 0; n < mem_map->count; n++) { 319 /* Skip unmapped regions */ 320 if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) && 321 pa >= mem_map->map[n].pa && 322 pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size)) 323 return mem_map->map + n; 324 } 325 326 return NULL; 327 } 328 329 #if defined(CFG_SECURE_DATA_PATH) 330 static bool dtb_get_sdp_region(void) 331 { 332 void *fdt = NULL; 333 int node = 0; 334 int tmp_node = 0; 335 paddr_t tmp_addr = 0; 336 size_t tmp_size = 0; 337 338 if (!IS_ENABLED(CFG_EMBED_DTB)) 339 return false; 340 341 fdt = get_embedded_dt(); 342 if (!fdt) 343 panic("No DTB found"); 344 345 node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match); 346 if (node < 0) { 347 DMSG("No %s compatible node found", tz_sdp_match); 348 return false; 349 } 350 tmp_node = node; 351 while (tmp_node >= 0) { 352 tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node, 353 tz_sdp_match); 354 if (tmp_node >= 0) 355 DMSG("Ignore SDP pool node %s, supports only 1 node", 356 fdt_get_name(fdt, tmp_node, NULL)); 357 } 358 359 if (fdt_reg_info(fdt, node, &tmp_addr, &tmp_size)) { 360 EMSG("%s: Unable to get base addr or size from DT", 361 tz_sdp_match); 362 return false; 363 } 364 365 sec_sdp.paddr = tmp_addr; 366 sec_sdp.size = tmp_size; 367 368 return true; 369 } 370 #endif 371 372 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) 373 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, 374 const struct core_mmu_phys_mem *start, 375 const struct core_mmu_phys_mem *end) 376 { 377 const struct core_mmu_phys_mem *mem; 378 379 for (mem = start; mem < end; mem++) { 380 if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) 381 return true; 382 } 383 384 return false; 385 } 386 #endif 387 388 #ifdef CFG_CORE_DYN_SHM 389 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, 390 paddr_t pa, size_t size) 391 { 392 struct core_mmu_phys_mem *m = *mem; 393 size_t n = 0; 394 395 while (n < *nelems) { 396 if (!core_is_buffer_intersect(pa, size, m[n].addr, m[n].size)) { 397 n++; 398 continue; 399 } 400 401 if (core_is_buffer_inside(m[n].addr, m[n].size, pa, size)) { 402 /* m[n] is completely covered by pa:size */ 403 rem_array_elem(m, *nelems, sizeof(*m), n); 404 (*nelems)--; 405 m = nex_realloc(m, sizeof(*m) * *nelems); 406 if (!m) 407 panic(); 408 *mem = m; 409 continue; 410 } 411 412 if (pa > m[n].addr && 413 pa + size - 1 < m[n].addr + m[n].size - 1) { 414 /* 415 * pa:size is strictly inside m[n] range so split 416 * m[n] entry. 417 */ 418 m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); 419 if (!m) 420 panic(); 421 *mem = m; 422 (*nelems)++; 423 ins_array_elem(m, *nelems, sizeof(*m), n + 1, NULL); 424 m[n + 1].addr = pa + size; 425 m[n + 1].size = m[n].addr + m[n].size - pa - size; 426 m[n].size = pa - m[n].addr; 427 n++; 428 } else if (pa <= m[n].addr) { 429 /* 430 * pa:size is overlapping (possibly partially) at the 431 * beginning of m[n]. 432 */ 433 m[n].size = m[n].addr + m[n].size - pa - size; 434 m[n].addr = pa + size; 435 } else { 436 /* 437 * pa:size is overlapping (possibly partially) at 438 * the end of m[n]. 439 */ 440 m[n].size = pa - m[n].addr; 441 } 442 n++; 443 } 444 } 445 446 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, 447 size_t nelems, 448 struct tee_mmap_region *map) 449 { 450 size_t n; 451 452 for (n = 0; n < nelems; n++) { 453 if (!core_is_buffer_outside(start[n].addr, start[n].size, 454 map->pa, map->size)) { 455 EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ 456 ") overlaps map (type %d %#" PRIxPA ":%#zx)", 457 start[n].addr, start[n].size, 458 map->type, map->pa, map->size); 459 panic(); 460 } 461 } 462 } 463 464 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; 465 static size_t discovered_nsec_ddr_nelems __nex_bss; 466 467 static int cmp_pmem_by_addr(const void *a, const void *b) 468 { 469 const struct core_mmu_phys_mem *pmem_a = a; 470 const struct core_mmu_phys_mem *pmem_b = b; 471 472 return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); 473 } 474 475 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 476 size_t nelems) 477 { 478 struct core_mmu_phys_mem *m = start; 479 size_t num_elems = nelems; 480 struct memory_map *mem_map = &static_memory_map; 481 const struct core_mmu_phys_mem __maybe_unused *pmem; 482 size_t n = 0; 483 484 assert(!discovered_nsec_ddr_start); 485 assert(m && num_elems); 486 487 qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); 488 489 /* 490 * Non-secure shared memory and also secure data 491 * path memory are supposed to reside inside 492 * non-secure memory. Since NSEC_SHM and SDP_MEM 493 * are used for a specific purpose make holes for 494 * those memory in the normal non-secure memory. 495 * 496 * This has to be done since for instance QEMU 497 * isn't aware of which memory range in the 498 * non-secure memory is used for NSEC_SHM. 499 */ 500 501 #ifdef CFG_SECURE_DATA_PATH 502 if (dtb_get_sdp_region()) 503 carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size); 504 505 for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) 506 carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); 507 #endif 508 509 for (n = 0; n < ARRAY_SIZE(secure_only); n++) 510 carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr, 511 secure_only[n].size); 512 513 for (n = 0; n < mem_map->count; n++) { 514 switch (mem_map->map[n].type) { 515 case MEM_AREA_NSEC_SHM: 516 carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa, 517 mem_map->map[n].size); 518 break; 519 case MEM_AREA_EXT_DT: 520 case MEM_AREA_MANIFEST_DT: 521 case MEM_AREA_RAM_NSEC: 522 case MEM_AREA_RES_VASPACE: 523 case MEM_AREA_SHM_VASPACE: 524 case MEM_AREA_TS_VASPACE: 525 case MEM_AREA_PAGER_VASPACE: 526 case MEM_AREA_NEX_DYN_VASPACE: 527 case MEM_AREA_TEE_DYN_VASPACE: 528 break; 529 default: 530 check_phys_mem_is_outside(m, num_elems, 531 mem_map->map + n); 532 } 533 } 534 535 discovered_nsec_ddr_start = m; 536 discovered_nsec_ddr_nelems = num_elems; 537 538 DMSG("Non-secure RAM:"); 539 for (n = 0; n < num_elems; n++) 540 DMSG("%zu: pa %#"PRIxPA"..%#"PRIxPA" sz %#"PRIxPASZ, 541 n, m[n].addr, m[n].addr + m[n].size - 1, m[n].size); 542 543 if (!core_mmu_check_end_pa(m[num_elems - 1].addr, 544 m[num_elems - 1].size)) 545 panic(); 546 } 547 548 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, 549 const struct core_mmu_phys_mem **end) 550 { 551 if (!discovered_nsec_ddr_start) 552 return false; 553 554 *start = discovered_nsec_ddr_start; 555 *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; 556 557 return true; 558 } 559 560 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) 561 { 562 const struct core_mmu_phys_mem *start; 563 const struct core_mmu_phys_mem *end; 564 565 if (!get_discovered_nsec_ddr(&start, &end)) 566 return false; 567 568 return pbuf_is_special_mem(pbuf, len, start, end); 569 } 570 571 bool core_mmu_nsec_ddr_is_defined(void) 572 { 573 const struct core_mmu_phys_mem *start; 574 const struct core_mmu_phys_mem *end; 575 576 if (!get_discovered_nsec_ddr(&start, &end)) 577 return false; 578 579 return start != end; 580 } 581 #else 582 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) 583 { 584 return false; 585 } 586 #endif /*CFG_CORE_DYN_SHM*/ 587 588 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ 589 EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ 590 pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) 591 592 #ifdef CFG_SECURE_DATA_PATH 593 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) 594 { 595 bool is_sdp_mem = false; 596 597 if (sec_sdp.size) 598 is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr, 599 sec_sdp.size); 600 601 if (!is_sdp_mem) 602 is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, 603 phys_sdp_mem_end); 604 605 return is_sdp_mem; 606 } 607 608 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size) 609 { 610 struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED, 611 CORE_MEM_SDP_MEM); 612 613 if (!mobj) 614 panic("can't create SDP physical memory object"); 615 616 return mobj; 617 } 618 619 struct mobj **core_sdp_mem_create_mobjs(void) 620 { 621 const struct core_mmu_phys_mem *mem = NULL; 622 struct mobj **mobj_base = NULL; 623 struct mobj **mobj = NULL; 624 int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; 625 626 if (sec_sdp.size) 627 cnt++; 628 629 /* SDP mobjs table must end with a NULL entry */ 630 mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); 631 if (!mobj_base) 632 panic("Out of memory"); 633 634 mobj = mobj_base; 635 636 for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++) 637 *mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size); 638 639 if (sec_sdp.size) 640 *mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size); 641 642 return mobj_base; 643 } 644 645 #else /* CFG_SECURE_DATA_PATH */ 646 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) 647 { 648 return false; 649 } 650 651 #endif /* CFG_SECURE_DATA_PATH */ 652 653 /* Check special memories comply with registered memories */ 654 static void verify_special_mem_areas(struct memory_map *mem_map, 655 const struct core_mmu_phys_mem *start, 656 const struct core_mmu_phys_mem *end, 657 const char *area_name __maybe_unused) 658 { 659 const struct core_mmu_phys_mem *mem = NULL; 660 const struct core_mmu_phys_mem *mem2 = NULL; 661 size_t n = 0; 662 663 if (start == end) { 664 DMSG("No %s memory area defined", area_name); 665 return; 666 } 667 668 for (mem = start; mem < end; mem++) 669 DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", 670 area_name, mem->addr, (uint64_t)mem->addr + mem->size); 671 672 /* Check memories do not intersect each other */ 673 for (mem = start; mem + 1 < end; mem++) { 674 for (mem2 = mem + 1; mem2 < end; mem2++) { 675 if (core_is_buffer_intersect(mem2->addr, mem2->size, 676 mem->addr, mem->size)) { 677 MSG_MEM_INSTERSECT(mem2->addr, mem2->size, 678 mem->addr, mem->size); 679 panic("Special memory intersection"); 680 } 681 } 682 } 683 684 /* 685 * Check memories do not intersect any mapped memory. 686 * This is called before reserved VA space is loaded in mem_map. 687 */ 688 for (mem = start; mem < end; mem++) { 689 for (n = 0; n < mem_map->count; n++) { 690 #ifdef TEE_SDP_TEST_MEM_BASE 691 /* 692 * Ignore MEM_AREA_SEC_RAM_OVERALL since it covers 693 * TEE_SDP_TEST_MEM too. 694 */ 695 if (mem->addr == TEE_SDP_TEST_MEM_BASE && 696 mem->size == TEE_SDP_TEST_MEM_SIZE && 697 mem_map->map[n].type == MEM_AREA_SEC_RAM_OVERALL) 698 continue; 699 #endif 700 if (core_is_buffer_intersect(mem->addr, mem->size, 701 mem_map->map[n].pa, 702 mem_map->map[n].size)) { 703 MSG_MEM_INSTERSECT(mem->addr, mem->size, 704 mem_map->map[n].pa, 705 mem_map->map[n].size); 706 panic("Special memory intersection"); 707 } 708 } 709 } 710 } 711 712 static void merge_mmaps(struct tee_mmap_region *dst, 713 const struct tee_mmap_region *src) 714 { 715 paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1); 716 paddr_t pa = MIN(dst->pa, src->pa); 717 718 DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA, 719 dst->pa, dst->pa + dst->size - 1, src->pa, 720 src->pa + src->size - 1); 721 dst->pa = pa; 722 dst->size = end_pa - pa + 1; 723 } 724 725 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1, 726 const struct tee_mmap_region *r2) 727 { 728 if (r1->type != r2->type) 729 return false; 730 731 if (r1->pa == r2->pa) 732 return true; 733 734 if (r1->pa < r2->pa) 735 return r1->pa + r1->size >= r2->pa; 736 else 737 return r2->pa + r2->size >= r1->pa; 738 } 739 740 static void add_phys_mem(struct memory_map *mem_map, 741 const char *mem_name __maybe_unused, 742 enum teecore_memtypes mem_type, 743 paddr_t mem_addr, paddr_size_t mem_size) 744 { 745 size_t n = 0; 746 const struct tee_mmap_region m0 = { 747 .type = mem_type, 748 .pa = mem_addr, 749 .size = mem_size, 750 }; 751 752 if (!mem_size) /* Discard null size entries */ 753 return; 754 755 /* 756 * If some ranges of memory of the same type do overlap 757 * each others they are coalesced into one entry. To help this 758 * added entries are sorted by increasing physical. 759 * 760 * Note that it's valid to have the same physical memory as several 761 * different memory types, for instance the same device memory 762 * mapped as both secure and non-secure. This will probably not 763 * happen often in practice. 764 */ 765 DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, 766 mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size); 767 for (n = 0; n < mem_map->count; n++) { 768 if (mmaps_are_mergeable(mem_map->map + n, &m0)) { 769 merge_mmaps(mem_map->map + n, &m0); 770 /* 771 * The merged result might be mergeable with the 772 * next or previous entry. 773 */ 774 if (n + 1 < mem_map->count && 775 mmaps_are_mergeable(mem_map->map + n, 776 mem_map->map + n + 1)) { 777 merge_mmaps(mem_map->map + n, 778 mem_map->map + n + 1); 779 rem_array_elem(mem_map->map, mem_map->count, 780 sizeof(*mem_map->map), n + 1); 781 mem_map->count--; 782 } 783 if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1, 784 mem_map->map + n)) { 785 merge_mmaps(mem_map->map + n - 1, 786 mem_map->map + n); 787 rem_array_elem(mem_map->map, mem_map->count, 788 sizeof(*mem_map->map), n); 789 mem_map->count--; 790 } 791 return; 792 } 793 if (mem_type < mem_map->map[n].type || 794 (mem_type == mem_map->map[n].type && 795 mem_addr < mem_map->map[n].pa)) 796 break; /* found the spot where to insert this memory */ 797 } 798 799 grow_mem_map(mem_map); 800 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 801 n, &m0); 802 } 803 804 static void add_va_space(struct memory_map *mem_map, 805 enum teecore_memtypes type, size_t size) 806 { 807 size_t n = 0; 808 809 DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); 810 for (n = 0; n < mem_map->count; n++) { 811 if (type < mem_map->map[n].type) 812 break; 813 } 814 815 grow_mem_map(mem_map); 816 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 817 n, NULL); 818 mem_map->map[n] = (struct tee_mmap_region){ 819 .type = type, 820 .size = size, 821 }; 822 } 823 824 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) 825 { 826 const uint32_t attr = TEE_MATTR_VALID_BLOCK; 827 const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED << 828 TEE_MATTR_MEM_TYPE_SHIFT; 829 const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << 830 TEE_MATTR_MEM_TYPE_SHIFT; 831 const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << 832 TEE_MATTR_MEM_TYPE_SHIFT; 833 834 switch (t) { 835 case MEM_AREA_TEE_RAM: 836 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged; 837 case MEM_AREA_TEE_RAM_RX: 838 case MEM_AREA_INIT_RAM_RX: 839 case MEM_AREA_IDENTITY_MAP_RX: 840 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged; 841 case MEM_AREA_TEE_RAM_RO: 842 case MEM_AREA_INIT_RAM_RO: 843 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged; 844 case MEM_AREA_TEE_RAM_RW: 845 case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ 846 case MEM_AREA_NEX_RAM_RW: 847 case MEM_AREA_NEX_DYN_VASPACE: 848 case MEM_AREA_TEE_DYN_VASPACE: 849 case MEM_AREA_TEE_ASAN: 850 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 851 case MEM_AREA_TEE_COHERENT: 852 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; 853 case MEM_AREA_NSEC_SHM: 854 case MEM_AREA_NEX_NSEC_SHM: 855 return attr | TEE_MATTR_PRW | cached; 856 case MEM_AREA_MANIFEST_DT: 857 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 858 case MEM_AREA_TRANSFER_LIST: 859 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 860 case MEM_AREA_EXT_DT: 861 /* 862 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device 863 * tree as secure non-cached memory, otherwise, fall back to 864 * non-secure mapping. 865 */ 866 if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE)) 867 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | 868 noncache; 869 fallthrough; 870 case MEM_AREA_IO_NSEC: 871 return attr | TEE_MATTR_PRW | noncache; 872 case MEM_AREA_IO_SEC: 873 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; 874 case MEM_AREA_RAM_NSEC: 875 return attr | TEE_MATTR_PRW | cached; 876 case MEM_AREA_RAM_SEC: 877 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 878 case MEM_AREA_SEC_RAM_OVERALL: 879 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 880 case MEM_AREA_ROM_SEC: 881 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 882 case MEM_AREA_RES_VASPACE: 883 case MEM_AREA_SHM_VASPACE: 884 return 0; 885 case MEM_AREA_PAGER_VASPACE: 886 return TEE_MATTR_SECURE; 887 default: 888 panic("invalid type"); 889 } 890 } 891 892 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) 893 { 894 switch (mm->type) { 895 case MEM_AREA_TEE_RAM: 896 case MEM_AREA_TEE_RAM_RX: 897 case MEM_AREA_TEE_RAM_RO: 898 case MEM_AREA_TEE_RAM_RW: 899 case MEM_AREA_INIT_RAM_RX: 900 case MEM_AREA_INIT_RAM_RO: 901 case MEM_AREA_NEX_RAM_RW: 902 case MEM_AREA_NEX_RAM_RO: 903 case MEM_AREA_TEE_ASAN: 904 return true; 905 default: 906 return false; 907 } 908 } 909 910 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) 911 { 912 return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); 913 } 914 915 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) 916 { 917 return mm->region_size == CORE_MMU_PGDIR_SIZE; 918 } 919 920 static int cmp_mmap_by_lower_va(const void *a, const void *b) 921 { 922 const struct tee_mmap_region *mm_a = a; 923 const struct tee_mmap_region *mm_b = b; 924 925 return CMP_TRILEAN(mm_a->va, mm_b->va); 926 } 927 928 static void dump_mmap_table(struct memory_map *mem_map) 929 { 930 size_t n = 0; 931 932 for (n = 0; n < mem_map->count; n++) { 933 struct tee_mmap_region *map __maybe_unused = mem_map->map + n; 934 935 DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA 936 " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", 937 teecore_memtype_name(map->type), map->va, 938 map->va + map->size - 1, map->pa, 939 (paddr_t)(map->pa + map->size - 1), map->size, 940 map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); 941 } 942 } 943 944 #if DEBUG_XLAT_TABLE 945 946 static void dump_xlat_table(vaddr_t va, unsigned int level) 947 { 948 struct core_mmu_table_info tbl_info; 949 unsigned int idx = 0; 950 paddr_t pa; 951 uint32_t attr; 952 953 core_mmu_find_table(NULL, va, level, &tbl_info); 954 va = tbl_info.va_base; 955 for (idx = 0; idx < tbl_info.num_entries; idx++) { 956 core_mmu_get_entry(&tbl_info, idx, &pa, &attr); 957 if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { 958 const char *security_bit = ""; 959 960 if (core_mmu_entry_have_security_bit(attr)) { 961 if (attr & TEE_MATTR_SECURE) 962 security_bit = "S"; 963 else 964 security_bit = "NS"; 965 } 966 967 if (attr & TEE_MATTR_TABLE) { 968 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 969 " TBL:0x%010" PRIxPA " %s", 970 level * 2, "", level, va, pa, 971 security_bit); 972 dump_xlat_table(va, level + 1); 973 } else if (attr) { 974 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 975 " PA:0x%010" PRIxPA " %s-%s-%s-%s", 976 level * 2, "", level, va, pa, 977 mattr_is_cached(attr) ? "MEM" : 978 "DEV", 979 attr & TEE_MATTR_PW ? "RW" : "RO", 980 attr & TEE_MATTR_PX ? "X " : "XN", 981 security_bit); 982 } else { 983 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 984 " INVALID\n", 985 level * 2, "", level, va); 986 } 987 } 988 va += BIT64(tbl_info.shift); 989 } 990 } 991 992 #else 993 994 static void dump_xlat_table(vaddr_t va __unused, int level __unused) 995 { 996 } 997 998 #endif 999 1000 /* 1001 * Reserves virtual memory space for pager usage. 1002 * 1003 * From the start of the first memory used by the link script + 1004 * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty 1005 * mapping for pager usage. This adds translation tables as needed for the 1006 * pager to operate. 1007 */ 1008 static void add_pager_vaspace(struct memory_map *mem_map) 1009 { 1010 paddr_t begin = 0; 1011 paddr_t end = 0; 1012 size_t size = 0; 1013 size_t pos = 0; 1014 size_t n = 0; 1015 1016 1017 for (n = 0; n < mem_map->count; n++) { 1018 if (map_is_tee_ram(mem_map->map + n)) { 1019 if (!begin) 1020 begin = mem_map->map[n].pa; 1021 pos = n + 1; 1022 } 1023 } 1024 1025 end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size; 1026 assert(end - begin < TEE_RAM_VA_SIZE); 1027 size = TEE_RAM_VA_SIZE - (end - begin); 1028 1029 grow_mem_map(mem_map); 1030 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 1031 n, NULL); 1032 mem_map->map[n] = (struct tee_mmap_region){ 1033 .type = MEM_AREA_PAGER_VASPACE, 1034 .size = size, 1035 .region_size = SMALL_PAGE_SIZE, 1036 .attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE), 1037 }; 1038 } 1039 1040 static void check_sec_nsec_mem_config(void) 1041 { 1042 size_t n = 0; 1043 1044 for (n = 0; n < ARRAY_SIZE(secure_only); n++) { 1045 if (pbuf_intersects(nsec_shared, secure_only[n].paddr, 1046 secure_only[n].size)) 1047 panic("Invalid memory access config: sec/nsec"); 1048 } 1049 } 1050 1051 static void collect_device_mem_ranges(struct memory_map *mem_map) 1052 { 1053 const char *compatible = "arm,ffa-manifest-device-regions"; 1054 void *fdt = get_manifest_dt(); 1055 const char *name = NULL; 1056 uint64_t page_count = 0; 1057 uint64_t base = 0; 1058 int subnode = 0; 1059 int node = 0; 1060 1061 assert(fdt); 1062 1063 node = fdt_node_offset_by_compatible(fdt, 0, compatible); 1064 if (node < 0) 1065 return; 1066 1067 fdt_for_each_subnode(subnode, fdt, node) { 1068 name = fdt_get_name(fdt, subnode, NULL); 1069 if (!name) 1070 continue; 1071 1072 if (dt_getprop_as_number(fdt, subnode, "base-address", 1073 &base)) { 1074 EMSG("Mandatory field is missing: base-address"); 1075 continue; 1076 } 1077 1078 if (base & SMALL_PAGE_MASK) { 1079 EMSG("base-address is not page aligned"); 1080 continue; 1081 } 1082 1083 if (dt_getprop_as_number(fdt, subnode, "pages-count", 1084 &page_count)) { 1085 EMSG("Mandatory field is missing: pages-count"); 1086 continue; 1087 } 1088 1089 add_phys_mem(mem_map, name, MEM_AREA_IO_SEC, 1090 base, page_count * SMALL_PAGE_SIZE); 1091 } 1092 } 1093 1094 static void collect_mem_ranges(struct memory_map *mem_map) 1095 { 1096 const struct core_mmu_phys_mem *mem = NULL; 1097 vaddr_t ram_start = secure_only[0].paddr; 1098 size_t n = 0; 1099 1100 #define ADD_PHYS_MEM(_type, _addr, _size) \ 1101 add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size)) 1102 1103 if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) { 1104 paddr_t next_pa = 0; 1105 1106 /* 1107 * Read-only and read-execute physical memory areas must 1108 * not be mapped by MEM_AREA_SEC_RAM_OVERALL, but all the 1109 * read/write should. 1110 */ 1111 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, ram_start, 1112 VCORE_UNPG_RX_PA - ram_start); 1113 assert(VCORE_UNPG_RX_PA >= ram_start); 1114 tee_ram_initial_offs = VCORE_UNPG_RX_PA - ram_start; 1115 DMSG("tee_ram_initial_offs %#zx", tee_ram_initial_offs); 1116 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, 1117 VCORE_UNPG_RX_SZ); 1118 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, 1119 VCORE_UNPG_RO_SZ); 1120 1121 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1122 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, 1123 VCORE_UNPG_RW_SZ); 1124 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA, 1125 VCORE_UNPG_RW_SZ); 1126 1127 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, 1128 VCORE_NEX_RW_SZ); 1129 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_NEX_RW_PA, 1130 VCORE_NEX_RW_SZ); 1131 1132 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_FREE_PA, 1133 VCORE_FREE_SZ); 1134 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA, 1135 VCORE_FREE_SZ); 1136 next_pa = VCORE_FREE_PA + VCORE_FREE_SZ; 1137 } else { 1138 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, 1139 VCORE_UNPG_RW_SZ); 1140 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA, 1141 VCORE_UNPG_RW_SZ); 1142 1143 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_FREE_PA, 1144 VCORE_FREE_SZ); 1145 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA, 1146 VCORE_FREE_SZ); 1147 next_pa = VCORE_FREE_PA + VCORE_FREE_SZ; 1148 } 1149 1150 if (IS_ENABLED(CFG_WITH_PAGER)) { 1151 paddr_t pa = 0; 1152 size_t sz = 0; 1153 1154 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, 1155 VCORE_INIT_RX_SZ); 1156 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, 1157 VCORE_INIT_RO_SZ); 1158 /* 1159 * Core init mapping shall cover up to end of the 1160 * physical RAM. This is required since the hash 1161 * table is appended to the binary data after the 1162 * firmware build sequence. 1163 */ 1164 pa = VCORE_INIT_RO_PA + VCORE_INIT_RO_SZ; 1165 sz = TEE_RAM_START + TEE_RAM_PH_SIZE - pa; 1166 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, pa, sz); 1167 } else { 1168 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, next_pa, 1169 secure_only[0].paddr + 1170 secure_only[0].size - next_pa); 1171 } 1172 } else { 1173 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); 1174 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr, 1175 secure_only[0].size); 1176 } 1177 1178 for (n = 1; n < ARRAY_SIZE(secure_only); n++) 1179 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr, 1180 secure_only[n].size); 1181 1182 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) 1183 ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); 1184 1185 #undef ADD_PHYS_MEM 1186 1187 /* Collect device memory info from SP manifest */ 1188 if (IS_ENABLED(CFG_CORE_SEL2_SPMC)) 1189 collect_device_mem_ranges(mem_map); 1190 1191 for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { 1192 /* Only unmapped virtual range may have a null phys addr */ 1193 assert(mem->addr || !core_mmu_type_to_attr(mem->type)); 1194 1195 add_phys_mem(mem_map, mem->name, mem->type, 1196 mem->addr, mem->size); 1197 } 1198 1199 if (IS_ENABLED(CFG_SECURE_DATA_PATH)) 1200 verify_special_mem_areas(mem_map, phys_sdp_mem_begin, 1201 phys_sdp_mem_end, "SDP"); 1202 1203 add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE); 1204 add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE); 1205 if (IS_ENABLED(CFG_DYN_CONFIG)) { 1206 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) 1207 add_va_space(mem_map, MEM_AREA_NEX_DYN_VASPACE, 1208 ROUNDUP(CFG_NEX_DYN_VASPACE_SIZE, 1209 CORE_MMU_PGDIR_SIZE)); 1210 add_va_space(mem_map, MEM_AREA_TEE_DYN_VASPACE, 1211 CFG_TEE_DYN_VASPACE_SIZE); 1212 } 1213 } 1214 1215 static void assign_mem_granularity(struct memory_map *mem_map) 1216 { 1217 size_t n = 0; 1218 1219 /* 1220 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses 1221 * SMALL_PAGE_SIZE. 1222 */ 1223 for (n = 0; n < mem_map->count; n++) { 1224 paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size; 1225 1226 if (mask & SMALL_PAGE_MASK) 1227 panic("Impossible memory alignment"); 1228 1229 if (map_is_tee_ram(mem_map->map + n)) 1230 mem_map->map[n].region_size = SMALL_PAGE_SIZE; 1231 else 1232 mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE; 1233 } 1234 } 1235 1236 static bool place_tee_ram_at_top(paddr_t paddr) 1237 { 1238 return paddr > BIT64(core_mmu_get_va_width()) / 2; 1239 } 1240 1241 /* 1242 * MMU arch driver shall override this function if it helps 1243 * optimizing the memory footprint of the address translation tables. 1244 */ 1245 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr) 1246 { 1247 return place_tee_ram_at_top(paddr); 1248 } 1249 1250 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map, 1251 bool tee_ram_at_top) 1252 { 1253 struct tee_mmap_region *map = NULL; 1254 bool va_is_nex_shared = false; 1255 bool va_is_secure = true; 1256 vaddr_t va = 0; 1257 size_t n = 0; 1258 1259 /* 1260 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y. 1261 * 0 is by design an invalid va, so return false directly. 1262 */ 1263 if (!tee_ram_va) 1264 return false; 1265 1266 /* Clear eventual previous assignments */ 1267 for (n = 0; n < mem_map->count; n++) 1268 mem_map->map[n].va = 0; 1269 1270 /* 1271 * TEE RAM regions are always aligned with region_size. 1272 * 1273 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here 1274 * since it handles virtual memory which covers the part of the ELF 1275 * that cannot fit directly into memory. 1276 */ 1277 va = tee_ram_va + tee_ram_initial_offs; 1278 for (n = 0; n < mem_map->count; n++) { 1279 map = mem_map->map + n; 1280 if (map_is_tee_ram(map) || 1281 map->type == MEM_AREA_PAGER_VASPACE) { 1282 assert(!(va & (map->region_size - 1))); 1283 assert(!(map->size & (map->region_size - 1))); 1284 map->va = va; 1285 if (ADD_OVERFLOW(va, map->size, &va)) 1286 return false; 1287 if (!core_mmu_va_is_valid(va)) 1288 return false; 1289 } 1290 } 1291 1292 if (tee_ram_at_top) { 1293 /* 1294 * Map non-tee ram regions at addresses lower than the tee 1295 * ram region. 1296 */ 1297 va = tee_ram_va; 1298 for (n = 0; n < mem_map->count; n++) { 1299 map = mem_map->map + n; 1300 map->attr = core_mmu_type_to_attr(map->type); 1301 if (map->va) 1302 continue; 1303 1304 if (!IS_ENABLED(CFG_WITH_LPAE) && 1305 va_is_secure != map_is_secure(map)) { 1306 va_is_secure = !va_is_secure; 1307 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1308 } else if (va_is_nex_shared != 1309 core_mmu_type_is_nex_shared(map->type)) { 1310 va_is_nex_shared = !va_is_nex_shared; 1311 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1312 } 1313 1314 if (SUB_OVERFLOW(va, map->size, &va)) 1315 return false; 1316 va = ROUNDDOWN2(va, map->region_size); 1317 /* 1318 * Make sure that va is aligned with pa for 1319 * efficient pgdir mapping. Basically pa & 1320 * pgdir_mask should be == va & pgdir_mask 1321 */ 1322 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1323 if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) 1324 return false; 1325 va += (map->pa - va) & CORE_MMU_PGDIR_MASK; 1326 } 1327 map->va = va; 1328 } 1329 } else { 1330 /* 1331 * Map non-tee ram regions at addresses higher than the tee 1332 * ram region. 1333 */ 1334 for (n = 0; n < mem_map->count; n++) { 1335 map = mem_map->map + n; 1336 map->attr = core_mmu_type_to_attr(map->type); 1337 if (map->va) 1338 continue; 1339 1340 if (!IS_ENABLED(CFG_WITH_LPAE) && 1341 va_is_secure != map_is_secure(map)) { 1342 va_is_secure = !va_is_secure; 1343 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1344 &va)) 1345 return false; 1346 } else if (va_is_nex_shared != 1347 core_mmu_type_is_nex_shared(map->type)) { 1348 va_is_nex_shared = !va_is_nex_shared; 1349 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1350 &va)) 1351 return false; 1352 } 1353 1354 if (ROUNDUP2_OVERFLOW(va, map->region_size, &va)) 1355 return false; 1356 /* 1357 * Make sure that va is aligned with pa for 1358 * efficient pgdir mapping. Basically pa & 1359 * pgdir_mask should be == va & pgdir_mask 1360 */ 1361 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1362 vaddr_t offs = (map->pa - va) & 1363 CORE_MMU_PGDIR_MASK; 1364 1365 if (ADD_OVERFLOW(va, offs, &va)) 1366 return false; 1367 } 1368 1369 map->va = va; 1370 if (ADD_OVERFLOW(va, map->size, &va)) 1371 return false; 1372 if (!core_mmu_va_is_valid(va)) 1373 return false; 1374 } 1375 } 1376 1377 return true; 1378 } 1379 1380 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map) 1381 { 1382 bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va); 1383 1384 /* 1385 * Check that we're not overlapping with the user VA range. 1386 */ 1387 if (IS_ENABLED(CFG_WITH_LPAE)) { 1388 /* 1389 * User VA range is supposed to be defined after these 1390 * mappings have been established. 1391 */ 1392 assert(!core_mmu_user_va_range_is_defined()); 1393 } else { 1394 vaddr_t user_va_base = 0; 1395 size_t user_va_size = 0; 1396 1397 assert(core_mmu_user_va_range_is_defined()); 1398 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 1399 if (tee_ram_va < (user_va_base + user_va_size)) 1400 return false; 1401 } 1402 1403 if (IS_ENABLED(CFG_WITH_PAGER)) { 1404 bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va); 1405 1406 /* Try whole mapping covered by a single base xlat entry */ 1407 if (prefered_dir != tee_ram_at_top && 1408 assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir)) 1409 return true; 1410 } 1411 1412 return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top); 1413 } 1414 1415 static int cmp_init_mem_map(const void *a, const void *b) 1416 { 1417 const struct tee_mmap_region *mm_a = a; 1418 const struct tee_mmap_region *mm_b = b; 1419 int rc = 0; 1420 1421 rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); 1422 if (!rc) 1423 rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); 1424 /* 1425 * 32bit MMU descriptors cannot mix secure and non-secure mapping in 1426 * the same level2 table. Hence sort secure mapping from non-secure 1427 * mapping. 1428 */ 1429 if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) 1430 rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); 1431 1432 /* 1433 * Nexus mappings shared between partitions should not be mixed 1434 * with other mappings in the same translation table. Hence sort 1435 * nexus shared mappings from other mappings. 1436 */ 1437 if (!rc) 1438 rc = CMP_TRILEAN(core_mmu_type_is_nex_shared(mm_a->type), 1439 core_mmu_type_is_nex_shared(mm_b->type)); 1440 1441 return rc; 1442 } 1443 1444 static bool mem_map_add_id_map(struct memory_map *mem_map, 1445 vaddr_t id_map_start, vaddr_t id_map_end) 1446 { 1447 vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); 1448 vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); 1449 size_t len = end - start; 1450 size_t n = 0; 1451 1452 1453 for (n = 0; n < mem_map->count; n++) 1454 if (core_is_buffer_intersect(mem_map->map[n].va, 1455 mem_map->map[n].size, start, len)) 1456 return false; 1457 1458 grow_mem_map(mem_map); 1459 mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){ 1460 .type = MEM_AREA_IDENTITY_MAP_RX, 1461 /* 1462 * Could use CORE_MMU_PGDIR_SIZE to potentially save a 1463 * translation table, at the increased risk of clashes with 1464 * the rest of the memory map. 1465 */ 1466 .region_size = SMALL_PAGE_SIZE, 1467 .pa = start, 1468 .va = start, 1469 .size = len, 1470 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1471 }; 1472 1473 return true; 1474 } 1475 1476 static struct memory_map *init_mem_map(struct memory_map *mem_map, 1477 unsigned long seed, 1478 unsigned long *ret_offs) 1479 { 1480 /* 1481 * @id_map_start and @id_map_end describes a physical memory range 1482 * that must be mapped Read-Only eXecutable at identical virtual 1483 * addresses. 1484 */ 1485 vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; 1486 vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; 1487 vaddr_t start_addr = secure_only[0].paddr; 1488 unsigned long offs = 0; 1489 1490 collect_mem_ranges(mem_map); 1491 assign_mem_granularity(mem_map); 1492 1493 /* 1494 * To ease mapping and lower use of xlat tables, sort mapping 1495 * description moving small-page regions after the pgdir regions. 1496 */ 1497 qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), 1498 cmp_init_mem_map); 1499 1500 if (IS_ENABLED(CFG_WITH_PAGER)) 1501 add_pager_vaspace(mem_map); 1502 1503 if (IS_ENABLED(CFG_CORE_ASLR) && seed) { 1504 vaddr_t ba = 0; 1505 size_t n = 0; 1506 1507 for (n = 0; n < 3; n++) { 1508 ba = arch_aslr_base_addr(start_addr, seed, n); 1509 if (assign_mem_va(ba, mem_map) && 1510 mem_map_add_id_map(mem_map, id_map_start, 1511 id_map_end)) { 1512 offs = ba - start_addr; 1513 DMSG("Mapping core at %#"PRIxVA" offs %#lx", 1514 ba, offs); 1515 goto out; 1516 } else { 1517 DMSG("Failed to map core at %#"PRIxVA, ba); 1518 } 1519 } 1520 EMSG("Failed to map core with seed %#lx", seed); 1521 } 1522 1523 if (!assign_mem_va(start_addr, mem_map)) 1524 panic(); 1525 1526 out: 1527 qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), 1528 cmp_mmap_by_lower_va); 1529 1530 dump_mmap_table(mem_map); 1531 1532 *ret_offs = offs; 1533 return mem_map; 1534 } 1535 1536 static void check_mem_map(struct memory_map *mem_map) 1537 { 1538 struct tee_mmap_region *m = NULL; 1539 size_t n = 0; 1540 1541 for (n = 0; n < mem_map->count; n++) { 1542 m = mem_map->map + n; 1543 switch (m->type) { 1544 case MEM_AREA_TEE_RAM: 1545 case MEM_AREA_TEE_RAM_RX: 1546 case MEM_AREA_TEE_RAM_RO: 1547 case MEM_AREA_TEE_RAM_RW: 1548 case MEM_AREA_INIT_RAM_RX: 1549 case MEM_AREA_INIT_RAM_RO: 1550 case MEM_AREA_NEX_RAM_RW: 1551 case MEM_AREA_NEX_RAM_RO: 1552 case MEM_AREA_IDENTITY_MAP_RX: 1553 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1554 panic("TEE_RAM can't fit in secure_only"); 1555 break; 1556 case MEM_AREA_SEC_RAM_OVERALL: 1557 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1558 panic("SEC_RAM_OVERALL can't fit in secure_only"); 1559 break; 1560 case MEM_AREA_NSEC_SHM: 1561 if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) 1562 panic("NS_SHM can't fit in nsec_shared"); 1563 break; 1564 case MEM_AREA_TEE_COHERENT: 1565 case MEM_AREA_TEE_ASAN: 1566 case MEM_AREA_IO_SEC: 1567 case MEM_AREA_IO_NSEC: 1568 case MEM_AREA_EXT_DT: 1569 case MEM_AREA_MANIFEST_DT: 1570 case MEM_AREA_TRANSFER_LIST: 1571 case MEM_AREA_RAM_SEC: 1572 case MEM_AREA_RAM_NSEC: 1573 case MEM_AREA_ROM_SEC: 1574 case MEM_AREA_RES_VASPACE: 1575 case MEM_AREA_SHM_VASPACE: 1576 case MEM_AREA_PAGER_VASPACE: 1577 case MEM_AREA_NEX_DYN_VASPACE: 1578 case MEM_AREA_TEE_DYN_VASPACE: 1579 break; 1580 default: 1581 EMSG("Uhandled memtype %d", m->type); 1582 panic(); 1583 } 1584 } 1585 } 1586 1587 /* 1588 * core_init_mmu_map() - init tee core default memory mapping 1589 * 1590 * This routine sets the static default TEE core mapping. If @seed is > 0 1591 * and configured with CFG_CORE_ASLR it will map tee core at a location 1592 * based on the seed and return the offset from the link address. 1593 * 1594 * If an error happened: core_init_mmu_map is expected to panic. 1595 * 1596 * Note: this function is weak just to make it possible to exclude it from 1597 * the unpaged area. 1598 */ 1599 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) 1600 { 1601 #ifndef CFG_NS_VIRTUALIZATION 1602 vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); 1603 #else 1604 vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, 1605 SMALL_PAGE_SIZE); 1606 #endif 1607 #ifdef CFG_DYN_CONFIG 1608 vaddr_t len = ROUNDUP(VCORE_FREE_END_PA, SMALL_PAGE_SIZE) - start; 1609 #else 1610 vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; 1611 #endif 1612 struct tee_mmap_region tmp_mmap_region = { }; 1613 struct memory_map mem_map = { }; 1614 unsigned long offs = 0; 1615 1616 if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) && 1617 (core_mmu_tee_load_pa & SMALL_PAGE_MASK)) 1618 panic("OP-TEE load address is not page aligned"); 1619 1620 check_sec_nsec_mem_config(); 1621 1622 mem_map.alloc_count = CFG_MMAP_REGIONS; 1623 mem_map.map = boot_mem_alloc_tmp(mem_map.alloc_count * 1624 sizeof(*mem_map.map), 1625 alignof(*mem_map.map)); 1626 memory_map_realloc_func = boot_mem_realloc_memory_map; 1627 1628 static_memory_map = (struct memory_map){ 1629 .map = &tmp_mmap_region, 1630 .alloc_count = 1, 1631 .count = 1, 1632 }; 1633 /* 1634 * Add a entry covering the translation tables which will be 1635 * involved in some virt_to_phys() and phys_to_virt() conversions. 1636 */ 1637 static_memory_map.map[0] = (struct tee_mmap_region){ 1638 .type = MEM_AREA_TEE_RAM, 1639 .region_size = SMALL_PAGE_SIZE, 1640 .pa = start, 1641 .va = start, 1642 .size = len, 1643 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1644 }; 1645 1646 init_mem_map(&mem_map, seed, &offs); 1647 1648 check_mem_map(&mem_map); 1649 core_init_mmu(&mem_map); 1650 dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); 1651 core_init_mmu_regs(cfg); 1652 cfg->map_offset = offs; 1653 static_memory_map = mem_map; 1654 boot_mem_add_reloc(&static_memory_map.map); 1655 } 1656 1657 void core_mmu_save_mem_map(void) 1658 { 1659 size_t alloc_count = static_memory_map.count + 5; 1660 size_t elem_sz = sizeof(*static_memory_map.map); 1661 void *p = NULL; 1662 1663 p = nex_calloc(alloc_count, elem_sz); 1664 if (!p) 1665 panic(); 1666 memcpy(p, static_memory_map.map, static_memory_map.count * elem_sz); 1667 static_memory_map.map = p; 1668 static_memory_map.alloc_count = alloc_count; 1669 memory_map_realloc_func = heap_realloc_memory_map; 1670 } 1671 1672 bool core_mmu_mattr_is_ok(uint32_t mattr) 1673 { 1674 /* 1675 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and 1676 * core_mmu_v7.c:mattr_to_texcb 1677 */ 1678 1679 switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { 1680 case TEE_MATTR_MEM_TYPE_DEV: 1681 case TEE_MATTR_MEM_TYPE_STRONGLY_O: 1682 case TEE_MATTR_MEM_TYPE_CACHED: 1683 case TEE_MATTR_MEM_TYPE_TAGGED: 1684 return true; 1685 default: 1686 return false; 1687 } 1688 } 1689 1690 /* 1691 * test attributes of target physical buffer 1692 * 1693 * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). 1694 * 1695 */ 1696 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) 1697 { 1698 struct tee_mmap_region *map; 1699 1700 /* Empty buffers complies with anything */ 1701 if (len == 0) 1702 return true; 1703 1704 switch (attr) { 1705 case CORE_MEM_SEC: 1706 return pbuf_is_inside(secure_only, pbuf, len); 1707 case CORE_MEM_NON_SEC: 1708 return pbuf_is_inside(nsec_shared, pbuf, len) || 1709 pbuf_is_nsec_ddr(pbuf, len); 1710 case CORE_MEM_TEE_RAM: 1711 return core_is_buffer_inside(pbuf, len, TEE_RAM_START, 1712 TEE_RAM_PH_SIZE); 1713 #ifdef CFG_CORE_RESERVED_SHM 1714 case CORE_MEM_NSEC_SHM: 1715 return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, 1716 TEE_SHMEM_SIZE); 1717 #endif 1718 case CORE_MEM_SDP_MEM: 1719 return pbuf_is_sdp_mem(pbuf, len); 1720 case CORE_MEM_CACHED: 1721 map = find_map_by_pa(pbuf); 1722 if (!map || !pbuf_inside_map_area(pbuf, len, map)) 1723 return false; 1724 return mattr_is_cached(map->attr); 1725 default: 1726 return false; 1727 } 1728 } 1729 1730 /* test attributes of target virtual buffer (in core mapping) */ 1731 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) 1732 { 1733 paddr_t p; 1734 1735 /* Empty buffers complies with anything */ 1736 if (len == 0) 1737 return true; 1738 1739 p = virt_to_phys((void *)vbuf); 1740 if (!p) 1741 return false; 1742 1743 return core_pbuf_is(attr, p, len); 1744 } 1745 1746 /* core_va2pa - teecore exported service */ 1747 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) 1748 { 1749 struct tee_mmap_region *map; 1750 1751 map = find_map_by_va(va); 1752 if (!va_is_in_map(map, (vaddr_t)va)) 1753 return -1; 1754 1755 /* 1756 * We can calculate PA for static map. Virtual address ranges 1757 * reserved to core dynamic mapping return a 'match' (return 0;) 1758 * together with an invalid null physical address. 1759 */ 1760 if (map->pa) 1761 *pa = map->pa + (vaddr_t)va - map->va; 1762 else 1763 *pa = 0; 1764 1765 return 0; 1766 } 1767 1768 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) 1769 { 1770 if (!pa_is_in_map(map, pa, len)) 1771 return NULL; 1772 1773 return (void *)(vaddr_t)(map->va + pa - map->pa); 1774 } 1775 1776 /* 1777 * teecore gets some memory area definitions 1778 */ 1779 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s, 1780 vaddr_t *e) 1781 { 1782 struct tee_mmap_region *map = find_map_by_type(type); 1783 1784 if (map) { 1785 *s = map->va; 1786 *e = map->va + map->size; 1787 } else { 1788 *s = 0; 1789 *e = 0; 1790 } 1791 } 1792 1793 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) 1794 { 1795 struct tee_mmap_region *map = find_map_by_pa(pa); 1796 1797 /* VA spaces have no valid PAs in the memory map */ 1798 if (!map || map->type == MEM_AREA_RES_VASPACE || 1799 map->type == MEM_AREA_SHM_VASPACE) 1800 return MEM_AREA_MAXTYPE; 1801 return map->type; 1802 } 1803 1804 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1805 paddr_t pa, uint32_t attr) 1806 { 1807 assert(idx < tbl_info->num_entries); 1808 core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, 1809 idx, pa, attr); 1810 } 1811 1812 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1813 paddr_t *pa, uint32_t *attr) 1814 { 1815 assert(idx < tbl_info->num_entries); 1816 core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, 1817 idx, pa, attr); 1818 } 1819 1820 static void clear_region(struct core_mmu_table_info *tbl_info, 1821 struct tee_mmap_region *region) 1822 { 1823 unsigned int end = 0; 1824 unsigned int idx = 0; 1825 1826 /* va, len and pa should be block aligned */ 1827 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1828 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1829 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1830 1831 idx = core_mmu_va2idx(tbl_info, region->va); 1832 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1833 1834 while (idx < end) { 1835 core_mmu_set_entry(tbl_info, idx, 0, 0); 1836 idx++; 1837 } 1838 } 1839 1840 static void set_region(struct core_mmu_table_info *tbl_info, 1841 struct tee_mmap_region *region) 1842 { 1843 unsigned int end; 1844 unsigned int idx; 1845 paddr_t pa; 1846 1847 /* va, len and pa should be block aligned */ 1848 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1849 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1850 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1851 1852 idx = core_mmu_va2idx(tbl_info, region->va); 1853 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1854 pa = region->pa; 1855 1856 while (idx < end) { 1857 core_mmu_set_entry(tbl_info, idx, pa, region->attr); 1858 idx++; 1859 pa += BIT64(tbl_info->shift); 1860 } 1861 } 1862 1863 static void set_pg_region(struct core_mmu_table_info *dir_info, 1864 struct vm_region *region, struct pgt **pgt, 1865 struct core_mmu_table_info *pg_info) 1866 { 1867 struct tee_mmap_region r = { 1868 .va = region->va, 1869 .size = region->size, 1870 .attr = region->attr, 1871 }; 1872 vaddr_t end = r.va + r.size; 1873 uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; 1874 1875 while (r.va < end) { 1876 if (!pg_info->table || 1877 r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { 1878 /* 1879 * We're assigning a new translation table. 1880 */ 1881 unsigned int idx; 1882 1883 /* Virtual addresses must grow */ 1884 assert(r.va > pg_info->va_base); 1885 1886 idx = core_mmu_va2idx(dir_info, r.va); 1887 pg_info->va_base = core_mmu_idx2va(dir_info, idx); 1888 1889 /* 1890 * Advance pgt to va_base, note that we may need to 1891 * skip multiple page tables if there are large 1892 * holes in the vm map. 1893 */ 1894 while ((*pgt)->vabase < pg_info->va_base) { 1895 *pgt = SLIST_NEXT(*pgt, link); 1896 /* We should have allocated enough */ 1897 assert(*pgt); 1898 } 1899 assert((*pgt)->vabase == pg_info->va_base); 1900 pg_info->table = (*pgt)->tbl; 1901 1902 core_mmu_set_entry(dir_info, idx, 1903 virt_to_phys(pg_info->table), 1904 pgt_attr); 1905 } 1906 1907 r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), 1908 end - r.va); 1909 1910 if (!(*pgt)->populated && !mobj_is_paged(region->mobj)) { 1911 size_t granule = BIT(pg_info->shift); 1912 size_t offset = r.va - region->va + region->offset; 1913 1914 r.size = MIN(r.size, 1915 mobj_get_phys_granule(region->mobj)); 1916 r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); 1917 1918 if (mobj_get_pa(region->mobj, offset, granule, 1919 &r.pa) != TEE_SUCCESS) 1920 panic("Failed to get PA of unpaged mobj"); 1921 set_region(pg_info, &r); 1922 } 1923 r.va += r.size; 1924 } 1925 } 1926 1927 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, 1928 size_t size_left, paddr_t block_size, 1929 struct tee_mmap_region *mm) 1930 { 1931 /* VA and PA are aligned to block size at current level */ 1932 if ((vaddr | paddr) & (block_size - 1)) 1933 return false; 1934 1935 /* Remainder fits into block at current level */ 1936 if (size_left < block_size) 1937 return false; 1938 1939 /* 1940 * The required block size of the region is compatible with the 1941 * block size of the current level. 1942 */ 1943 if (mm->region_size < block_size) 1944 return false; 1945 1946 #ifdef CFG_WITH_PAGER 1947 /* 1948 * If pager is enabled, we need to map TEE RAM and the whole pager 1949 * regions with small pages only 1950 */ 1951 if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) && 1952 block_size != SMALL_PAGE_SIZE) 1953 return false; 1954 #endif 1955 1956 return true; 1957 } 1958 1959 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) 1960 { 1961 struct core_mmu_table_info tbl_info = { }; 1962 unsigned int idx = 0; 1963 vaddr_t vaddr = mm->va; 1964 paddr_t paddr = mm->pa; 1965 ssize_t size_left = mm->size; 1966 uint32_t attr = mm->attr; 1967 unsigned int level = 0; 1968 bool table_found = false; 1969 uint32_t old_attr = 0; 1970 1971 assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); 1972 if (!paddr) 1973 attr = 0; 1974 1975 while (size_left > 0) { 1976 level = CORE_MMU_BASE_TABLE_LEVEL; 1977 1978 while (true) { 1979 paddr_t block_size = 0; 1980 1981 assert(core_mmu_level_in_range(level)); 1982 1983 table_found = core_mmu_find_table(prtn, vaddr, level, 1984 &tbl_info); 1985 if (!table_found) 1986 panic("can't find table for mapping"); 1987 1988 block_size = BIT64(tbl_info.shift); 1989 1990 idx = core_mmu_va2idx(&tbl_info, vaddr); 1991 if (!can_map_at_level(paddr, vaddr, size_left, 1992 block_size, mm)) { 1993 bool secure = mm->attr & TEE_MATTR_SECURE; 1994 1995 /* 1996 * This part of the region can't be mapped at 1997 * this level. Need to go deeper. 1998 */ 1999 if (!core_mmu_entry_to_finer_grained(&tbl_info, 2000 idx, 2001 secure)) 2002 panic("Can't divide MMU entry"); 2003 level = tbl_info.next_level; 2004 continue; 2005 } 2006 2007 /* We can map part of the region at current level */ 2008 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2009 if (old_attr) 2010 panic("Page is already mapped"); 2011 2012 core_mmu_set_entry(&tbl_info, idx, paddr, attr); 2013 /* 2014 * Dynamic vaspace regions don't have a physical 2015 * address initially but we need to allocate and 2016 * initialize the translation tables now for later 2017 * updates to work properly. 2018 */ 2019 if (paddr) 2020 paddr += block_size; 2021 vaddr += block_size; 2022 size_left -= block_size; 2023 2024 break; 2025 } 2026 } 2027 } 2028 2029 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 2030 enum teecore_memtypes memtype) 2031 { 2032 TEE_Result ret; 2033 struct core_mmu_table_info tbl_info; 2034 struct tee_mmap_region *mm; 2035 unsigned int idx; 2036 uint32_t old_attr; 2037 uint32_t exceptions; 2038 vaddr_t vaddr = vstart; 2039 size_t i; 2040 bool secure; 2041 2042 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 2043 2044 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 2045 2046 if (vaddr & SMALL_PAGE_MASK) 2047 return TEE_ERROR_BAD_PARAMETERS; 2048 2049 exceptions = mmu_lock(); 2050 2051 mm = find_map_by_va((void *)vaddr); 2052 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 2053 panic("VA does not belong to any known mm region"); 2054 2055 if (!core_mmu_is_dynamic_vaspace(mm)) 2056 panic("Trying to map into static region"); 2057 2058 for (i = 0; i < num_pages; i++) { 2059 if (pages[i] & SMALL_PAGE_MASK) { 2060 ret = TEE_ERROR_BAD_PARAMETERS; 2061 goto err; 2062 } 2063 2064 while (true) { 2065 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 2066 &tbl_info)) 2067 panic("Can't find pagetable for vaddr "); 2068 2069 idx = core_mmu_va2idx(&tbl_info, vaddr); 2070 if (tbl_info.shift == SMALL_PAGE_SHIFT) 2071 break; 2072 2073 /* This is supertable. Need to divide it. */ 2074 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 2075 secure)) 2076 panic("Failed to spread pgdir on small tables"); 2077 } 2078 2079 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2080 if (old_attr) 2081 panic("Page is already mapped"); 2082 2083 core_mmu_set_entry(&tbl_info, idx, pages[i], 2084 core_mmu_type_to_attr(memtype)); 2085 vaddr += SMALL_PAGE_SIZE; 2086 } 2087 2088 /* 2089 * Make sure all the changes to translation tables are visible 2090 * before returning. TLB doesn't need to be invalidated as we are 2091 * guaranteed that there's no valid mapping in this range. 2092 */ 2093 core_mmu_table_write_barrier(); 2094 mmu_unlock(exceptions); 2095 2096 return TEE_SUCCESS; 2097 err: 2098 mmu_unlock(exceptions); 2099 2100 if (i) 2101 core_mmu_unmap_pages(vstart, i); 2102 2103 return ret; 2104 } 2105 2106 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 2107 size_t num_pages, 2108 enum teecore_memtypes memtype) 2109 { 2110 struct core_mmu_table_info tbl_info = { }; 2111 struct tee_mmap_region *mm = NULL; 2112 unsigned int idx = 0; 2113 uint32_t old_attr = 0; 2114 uint32_t exceptions = 0; 2115 vaddr_t vaddr = vstart; 2116 paddr_t paddr = pstart; 2117 size_t i = 0; 2118 bool secure = false; 2119 2120 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 2121 2122 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 2123 2124 if ((vaddr | paddr) & SMALL_PAGE_MASK) 2125 return TEE_ERROR_BAD_PARAMETERS; 2126 2127 exceptions = mmu_lock(); 2128 2129 mm = find_map_by_va((void *)vaddr); 2130 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 2131 panic("VA does not belong to any known mm region"); 2132 2133 if (!core_mmu_is_dynamic_vaspace(mm)) 2134 panic("Trying to map into static region"); 2135 2136 for (i = 0; i < num_pages; i++) { 2137 while (true) { 2138 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 2139 &tbl_info)) 2140 panic("Can't find pagetable for vaddr "); 2141 2142 idx = core_mmu_va2idx(&tbl_info, vaddr); 2143 if (tbl_info.shift == SMALL_PAGE_SHIFT) 2144 break; 2145 2146 /* This is supertable. Need to divide it. */ 2147 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 2148 secure)) 2149 panic("Failed to spread pgdir on small tables"); 2150 } 2151 2152 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2153 if (old_attr) 2154 panic("Page is already mapped"); 2155 2156 core_mmu_set_entry(&tbl_info, idx, paddr, 2157 core_mmu_type_to_attr(memtype)); 2158 paddr += SMALL_PAGE_SIZE; 2159 vaddr += SMALL_PAGE_SIZE; 2160 } 2161 2162 /* 2163 * Make sure all the changes to translation tables are visible 2164 * before returning. TLB doesn't need to be invalidated as we are 2165 * guaranteed that there's no valid mapping in this range. 2166 */ 2167 core_mmu_table_write_barrier(); 2168 mmu_unlock(exceptions); 2169 2170 return TEE_SUCCESS; 2171 } 2172 2173 static bool mem_range_is_in_vcore_free(vaddr_t vstart, size_t num_pages) 2174 { 2175 return core_is_buffer_inside(vstart, num_pages * SMALL_PAGE_SIZE, 2176 VCORE_FREE_PA, VCORE_FREE_SZ); 2177 } 2178 2179 static void maybe_remove_from_mem_map(vaddr_t vstart, size_t num_pages) 2180 { 2181 struct memory_map *mem_map = NULL; 2182 struct tee_mmap_region *mm = NULL; 2183 size_t idx = 0; 2184 vaddr_t va = 0; 2185 2186 mm = find_map_by_va((void *)vstart); 2187 if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) 2188 panic("VA does not belong to any known mm region"); 2189 2190 if (core_mmu_is_dynamic_vaspace(mm)) 2191 return; 2192 2193 if (!mem_range_is_in_vcore_free(vstart, num_pages)) 2194 panic("Trying to unmap static region"); 2195 2196 /* 2197 * We're going to remove a memory from the VCORE_FREE memory range. 2198 * Depending where the range is we may need to remove the matching 2199 * mm, peal of a bit from the start or end of the mm, or split it 2200 * into two with a whole in the middle. 2201 */ 2202 2203 va = ROUNDDOWN(vstart, SMALL_PAGE_SIZE); 2204 assert(mm->region_size == SMALL_PAGE_SIZE); 2205 2206 if (va == mm->va && mm->size == num_pages * SMALL_PAGE_SIZE) { 2207 mem_map = get_memory_map(); 2208 idx = mm - mem_map->map; 2209 assert(idx < mem_map->count); 2210 2211 rem_array_elem(mem_map->map, mem_map->count, 2212 sizeof(*mem_map->map), idx); 2213 mem_map->count--; 2214 } else if (va == mm->va) { 2215 mm->va += num_pages * SMALL_PAGE_SIZE; 2216 mm->pa += num_pages * SMALL_PAGE_SIZE; 2217 mm->size -= num_pages * SMALL_PAGE_SIZE; 2218 } else if (va + num_pages * SMALL_PAGE_SIZE == mm->va + mm->size) { 2219 mm->size -= num_pages * SMALL_PAGE_SIZE; 2220 } else { 2221 struct tee_mmap_region m = *mm; 2222 2223 mem_map = get_memory_map(); 2224 idx = mm - mem_map->map; 2225 assert(idx < mem_map->count); 2226 2227 mm->size = va - mm->va; 2228 m.va += mm->size + num_pages * SMALL_PAGE_SIZE; 2229 m.pa += mm->size + num_pages * SMALL_PAGE_SIZE; 2230 m.size -= mm->size + num_pages * SMALL_PAGE_SIZE; 2231 grow_mem_map(mem_map); 2232 ins_array_elem(mem_map->map, mem_map->count, 2233 sizeof(*mem_map->map), idx + 1, &m); 2234 } 2235 } 2236 2237 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) 2238 { 2239 struct core_mmu_table_info tbl_info; 2240 size_t i; 2241 unsigned int idx; 2242 uint32_t exceptions; 2243 2244 exceptions = mmu_lock(); 2245 2246 maybe_remove_from_mem_map(vstart, num_pages); 2247 2248 for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { 2249 if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) 2250 panic("Can't find pagetable"); 2251 2252 if (tbl_info.shift != SMALL_PAGE_SHIFT) 2253 panic("Invalid pagetable level"); 2254 2255 idx = core_mmu_va2idx(&tbl_info, vstart); 2256 core_mmu_set_entry(&tbl_info, idx, 0, 0); 2257 } 2258 tlbi_all(); 2259 2260 mmu_unlock(exceptions); 2261 } 2262 2263 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 2264 struct user_mode_ctx *uctx) 2265 { 2266 struct core_mmu_table_info pg_info = { }; 2267 struct pgt_cache *pgt_cache = &uctx->pgt_cache; 2268 struct pgt *pgt = NULL; 2269 struct pgt *p = NULL; 2270 struct vm_region *r = NULL; 2271 2272 if (TAILQ_EMPTY(&uctx->vm_info.regions)) 2273 return; /* Nothing to map */ 2274 2275 /* 2276 * Allocate all page tables in advance. 2277 */ 2278 pgt_get_all(uctx); 2279 pgt = SLIST_FIRST(pgt_cache); 2280 2281 core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL); 2282 2283 TAILQ_FOREACH(r, &uctx->vm_info.regions, link) 2284 set_pg_region(dir_info, r, &pgt, &pg_info); 2285 /* Record that the translation tables now are populated. */ 2286 SLIST_FOREACH(p, pgt_cache, link) { 2287 p->populated = true; 2288 if (p == pgt) 2289 break; 2290 } 2291 assert(p == pgt); 2292 } 2293 2294 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 2295 size_t len) 2296 { 2297 struct core_mmu_table_info tbl_info = { }; 2298 struct tee_mmap_region *res_map = NULL; 2299 struct tee_mmap_region *map = NULL; 2300 paddr_t pa = virt_to_phys(addr); 2301 size_t granule = 0; 2302 ptrdiff_t i = 0; 2303 paddr_t p = 0; 2304 size_t l = 0; 2305 2306 map = find_map_by_type_and_pa(type, pa, len); 2307 if (!map) 2308 return TEE_ERROR_GENERIC; 2309 2310 res_map = find_map_by_type(MEM_AREA_RES_VASPACE); 2311 if (!res_map) 2312 return TEE_ERROR_GENERIC; 2313 if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) 2314 return TEE_ERROR_GENERIC; 2315 granule = BIT(tbl_info.shift); 2316 2317 if (map < static_memory_map.map || 2318 map >= static_memory_map.map + static_memory_map.count) 2319 return TEE_ERROR_GENERIC; 2320 i = map - static_memory_map.map; 2321 2322 /* Check that we have a full match */ 2323 p = ROUNDDOWN2(pa, granule); 2324 l = ROUNDUP2(len + pa - p, granule); 2325 if (map->pa != p || map->size != l) 2326 return TEE_ERROR_GENERIC; 2327 2328 clear_region(&tbl_info, map); 2329 tlbi_all(); 2330 2331 /* If possible remove the va range from res_map */ 2332 if (res_map->va - map->size == map->va) { 2333 res_map->va -= map->size; 2334 res_map->size += map->size; 2335 } 2336 2337 /* Remove the entry. */ 2338 rem_array_elem(static_memory_map.map, static_memory_map.count, 2339 sizeof(*static_memory_map.map), i); 2340 static_memory_map.count--; 2341 2342 return TEE_SUCCESS; 2343 } 2344 2345 struct tee_mmap_region * 2346 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) 2347 { 2348 struct memory_map *mem_map = get_memory_map(); 2349 struct tee_mmap_region *map_found = NULL; 2350 size_t n = 0; 2351 2352 if (!len) 2353 return NULL; 2354 2355 for (n = 0; n < mem_map->count; n++) { 2356 if (mem_map->map[n].type != type) 2357 continue; 2358 2359 if (map_found) 2360 return NULL; 2361 2362 map_found = mem_map->map + n; 2363 } 2364 2365 if (!map_found || map_found->size < len) 2366 return NULL; 2367 2368 return map_found; 2369 } 2370 2371 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) 2372 { 2373 struct memory_map *mem_map = &static_memory_map; 2374 struct core_mmu_table_info tbl_info = { }; 2375 struct tee_mmap_region *map = NULL; 2376 size_t granule = 0; 2377 paddr_t p = 0; 2378 size_t l = 0; 2379 2380 if (!len) 2381 return NULL; 2382 2383 if (!core_mmu_check_end_pa(addr, len)) 2384 return NULL; 2385 2386 /* Check if the memory is already mapped */ 2387 map = find_map_by_type_and_pa(type, addr, len); 2388 if (map && pbuf_inside_map_area(addr, len, map)) 2389 return (void *)(vaddr_t)(map->va + addr - map->pa); 2390 2391 /* Find the reserved va space used for late mappings */ 2392 map = find_map_by_type(MEM_AREA_RES_VASPACE); 2393 if (!map) 2394 return NULL; 2395 2396 if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) 2397 return NULL; 2398 2399 granule = BIT64(tbl_info.shift); 2400 p = ROUNDDOWN2(addr, granule); 2401 l = ROUNDUP2(len + addr - p, granule); 2402 2403 /* Ban overflowing virtual addresses */ 2404 if (map->size < l) 2405 return NULL; 2406 2407 /* 2408 * Something is wrong, we can't fit the va range into the selected 2409 * table. The reserved va range is possibly missaligned with 2410 * granule. 2411 */ 2412 if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) 2413 return NULL; 2414 2415 if (static_memory_map.count >= static_memory_map.alloc_count) 2416 return NULL; 2417 2418 mem_map->map[mem_map->count] = (struct tee_mmap_region){ 2419 .va = map->va, 2420 .size = l, 2421 .type = type, 2422 .region_size = granule, 2423 .attr = core_mmu_type_to_attr(type), 2424 .pa = p, 2425 }; 2426 map->va += l; 2427 map->size -= l; 2428 map = mem_map->map + mem_map->count; 2429 mem_map->count++; 2430 2431 set_region(&tbl_info, map); 2432 2433 /* Make sure the new entry is visible before continuing. */ 2434 core_mmu_table_write_barrier(); 2435 2436 return (void *)(vaddr_t)(map->va + addr - map->pa); 2437 } 2438 2439 #ifdef CFG_WITH_PAGER 2440 static vaddr_t get_linear_map_end_va(void) 2441 { 2442 /* this is synced with the generic linker file kern.ld.S */ 2443 return (vaddr_t)__heap2_end; 2444 } 2445 2446 static paddr_t get_linear_map_end_pa(void) 2447 { 2448 return get_linear_map_end_va() - boot_mmu_config.map_offset; 2449 } 2450 #endif 2451 2452 #if defined(CFG_TEE_CORE_DEBUG) 2453 static void check_pa_matches_va(void *va, paddr_t pa) 2454 { 2455 TEE_Result res = TEE_ERROR_GENERIC; 2456 vaddr_t v = (vaddr_t)va; 2457 paddr_t p = 0; 2458 struct core_mmu_table_info ti __maybe_unused = { }; 2459 2460 if (core_mmu_user_va_range_is_defined()) { 2461 vaddr_t user_va_base = 0; 2462 size_t user_va_size = 0; 2463 2464 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 2465 if (v >= user_va_base && 2466 v <= (user_va_base - 1 + user_va_size)) { 2467 if (!core_mmu_user_mapping_is_active()) { 2468 if (pa) 2469 panic("issue in linear address space"); 2470 return; 2471 } 2472 2473 res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), 2474 va, &p); 2475 if (res == TEE_ERROR_NOT_SUPPORTED) 2476 return; 2477 if (res == TEE_SUCCESS && pa != p) 2478 panic("bad pa"); 2479 if (res != TEE_SUCCESS && pa) 2480 panic("false pa"); 2481 return; 2482 } 2483 } 2484 #ifdef CFG_WITH_PAGER 2485 if (is_unpaged(va)) { 2486 if (v - boot_mmu_config.map_offset != pa) 2487 panic("issue in linear address space"); 2488 return; 2489 } 2490 2491 if (tee_pager_get_table_info(v, &ti)) { 2492 uint32_t a; 2493 2494 /* 2495 * Lookups in the page table managed by the pager is 2496 * dangerous for addresses in the paged area as those pages 2497 * changes all the time. But some ranges are safe, 2498 * rw-locked areas when the page is populated for instance. 2499 */ 2500 core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); 2501 if (a & TEE_MATTR_VALID_BLOCK) { 2502 paddr_t mask = BIT64(ti.shift) - 1; 2503 2504 p |= v & mask; 2505 if (pa != p) 2506 panic(); 2507 } else { 2508 if (pa) 2509 panic(); 2510 } 2511 return; 2512 } 2513 #endif 2514 2515 if (!core_va2pa_helper(va, &p)) { 2516 /* Verfiy only the static mapping (case non null phys addr) */ 2517 if (p && pa != p) { 2518 DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, 2519 va, p, pa); 2520 panic(); 2521 } 2522 } else { 2523 if (pa) { 2524 DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); 2525 panic(); 2526 } 2527 } 2528 } 2529 #else 2530 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) 2531 { 2532 } 2533 #endif 2534 2535 paddr_t virt_to_phys(void *va) 2536 { 2537 paddr_t pa = 0; 2538 2539 if (!arch_va2pa_helper(va, &pa)) 2540 pa = 0; 2541 check_pa_matches_va(memtag_strip_tag(va), pa); 2542 return pa; 2543 } 2544 2545 /* 2546 * Don't use check_va_matches_pa() for RISC-V, as its callee 2547 * arch_va2pa_helper() will call it eventually, this creates 2548 * indirect recursion and can lead to a stack overflow. 2549 * Moreover, if arch_va2pa_helper() returns true, it implies 2550 * the va2pa mapping is matched, no need to check it again. 2551 */ 2552 #if defined(CFG_TEE_CORE_DEBUG) && !defined(__riscv) 2553 static void check_va_matches_pa(paddr_t pa, void *va) 2554 { 2555 paddr_t p = 0; 2556 2557 if (!va) 2558 return; 2559 2560 p = virt_to_phys(va); 2561 if (p != pa) { 2562 DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); 2563 panic(); 2564 } 2565 } 2566 #else 2567 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) 2568 { 2569 } 2570 #endif 2571 2572 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) 2573 { 2574 if (!core_mmu_user_mapping_is_active()) 2575 return NULL; 2576 2577 return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); 2578 } 2579 2580 #ifdef CFG_WITH_PAGER 2581 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2582 { 2583 paddr_t end_pa = 0; 2584 2585 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 2586 return NULL; 2587 2588 if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) { 2589 if (end_pa > get_linear_map_end_pa()) 2590 return NULL; 2591 return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset); 2592 } 2593 2594 return tee_pager_phys_to_virt(pa, len); 2595 } 2596 #else 2597 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2598 { 2599 struct tee_mmap_region *mmap = NULL; 2600 2601 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); 2602 if (!mmap) 2603 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); 2604 if (!mmap) 2605 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); 2606 if (!mmap) 2607 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); 2608 if (!mmap) 2609 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); 2610 if (!mmap) 2611 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); 2612 2613 /* 2614 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only 2615 * used with pager and not needed here. 2616 */ 2617 return map_pa2va(mmap, pa, len); 2618 } 2619 #endif 2620 2621 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) 2622 { 2623 void *va = NULL; 2624 2625 switch (m) { 2626 case MEM_AREA_TS_VASPACE: 2627 va = phys_to_virt_ts_vaspace(pa, len); 2628 break; 2629 case MEM_AREA_TEE_RAM: 2630 case MEM_AREA_TEE_RAM_RX: 2631 case MEM_AREA_TEE_RAM_RO: 2632 case MEM_AREA_TEE_RAM_RW: 2633 case MEM_AREA_NEX_RAM_RO: 2634 case MEM_AREA_NEX_RAM_RW: 2635 va = phys_to_virt_tee_ram(pa, len); 2636 break; 2637 case MEM_AREA_SHM_VASPACE: 2638 case MEM_AREA_NEX_DYN_VASPACE: 2639 case MEM_AREA_TEE_DYN_VASPACE: 2640 /* Find VA from PA in dynamic SHM is not yet supported */ 2641 va = NULL; 2642 break; 2643 default: 2644 va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); 2645 } 2646 if (m != MEM_AREA_SEC_RAM_OVERALL) 2647 check_va_matches_pa(pa, va); 2648 return va; 2649 } 2650 2651 void *phys_to_virt_io(paddr_t pa, size_t len) 2652 { 2653 struct tee_mmap_region *map = NULL; 2654 void *va = NULL; 2655 2656 map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); 2657 if (!map) 2658 map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); 2659 if (!map) 2660 return NULL; 2661 va = map_pa2va(map, pa, len); 2662 check_va_matches_pa(pa, va); 2663 return va; 2664 } 2665 2666 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) 2667 { 2668 if (cpu_mmu_enabled()) 2669 return (vaddr_t)phys_to_virt(pa, type, len); 2670 2671 return (vaddr_t)pa; 2672 } 2673 2674 #ifdef CFG_WITH_PAGER 2675 bool is_unpaged(const void *va) 2676 { 2677 vaddr_t v = (vaddr_t)va; 2678 2679 return v >= VCORE_START_VA && v < get_linear_map_end_va(); 2680 } 2681 #endif 2682 2683 #ifdef CFG_NS_VIRTUALIZATION 2684 bool is_nexus(const void *va) 2685 { 2686 vaddr_t v = (vaddr_t)va; 2687 2688 return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ; 2689 } 2690 #endif 2691 2692 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) 2693 { 2694 assert(p->pa); 2695 if (cpu_mmu_enabled()) { 2696 if (!p->va) 2697 p->va = (vaddr_t)phys_to_virt_io(p->pa, len); 2698 assert(p->va); 2699 return p->va; 2700 } 2701 return p->pa; 2702 } 2703 2704 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) 2705 { 2706 assert(p->pa); 2707 if (cpu_mmu_enabled()) { 2708 if (!p->va) 2709 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, 2710 len); 2711 assert(p->va); 2712 return p->va; 2713 } 2714 return p->pa; 2715 } 2716 2717 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) 2718 { 2719 assert(p->pa); 2720 if (cpu_mmu_enabled()) { 2721 if (!p->va) 2722 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, 2723 len); 2724 assert(p->va); 2725 return p->va; 2726 } 2727 return p->pa; 2728 } 2729 2730 #ifdef CFG_CORE_RESERVED_SHM 2731 static TEE_Result teecore_init_pub_ram(void) 2732 { 2733 vaddr_t s = 0; 2734 vaddr_t e = 0; 2735 2736 /* get virtual addr/size of NSec shared mem allocated from teecore */ 2737 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); 2738 2739 if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) 2740 panic("invalid PUB RAM"); 2741 2742 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2743 if (!tee_vbuf_is_non_sec(s, e - s)) 2744 panic("PUB RAM is not non-secure"); 2745 2746 #ifdef CFG_PL310 2747 /* Allocate statically the l2cc mutex */ 2748 tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); 2749 s += sizeof(uint32_t); /* size of a pl310 mutex */ 2750 s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ 2751 #endif 2752 2753 default_nsec_shm_paddr = virt_to_phys((void *)s); 2754 default_nsec_shm_size = e - s; 2755 2756 return TEE_SUCCESS; 2757 } 2758 early_init(teecore_init_pub_ram); 2759 #endif /*CFG_CORE_RESERVED_SHM*/ 2760 2761 static void __maybe_unused carve_out_core_mem(paddr_t pa, paddr_t end_pa) 2762 { 2763 tee_mm_entry_t *mm __maybe_unused = NULL; 2764 2765 DMSG("%#"PRIxPA" .. %#"PRIxPA, pa, end_pa); 2766 mm = phys_mem_alloc2(pa, end_pa - pa); 2767 assert(mm); 2768 } 2769 2770 void core_mmu_init_phys_mem(void) 2771 { 2772 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 2773 paddr_t b1 = 0; 2774 paddr_size_t s1 = 0; 2775 2776 static_assert(ARRAY_SIZE(secure_only) <= 2); 2777 2778 if (ARRAY_SIZE(secure_only) == 2) { 2779 b1 = secure_only[1].paddr; 2780 s1 = secure_only[1].size; 2781 } 2782 virt_init_memory(&static_memory_map, secure_only[0].paddr, 2783 secure_only[0].size, b1, s1); 2784 } else { 2785 #ifdef CFG_WITH_PAGER 2786 /* 2787 * The pager uses all core memory so there's no need to add 2788 * it to the pool. 2789 */ 2790 static_assert(ARRAY_SIZE(secure_only) == 2); 2791 phys_mem_init(0, 0, secure_only[1].paddr, secure_only[1].size); 2792 #else /*!CFG_WITH_PAGER*/ 2793 size_t align = BIT(CORE_MMU_USER_CODE_SHIFT); 2794 paddr_t end_pa = 0; 2795 size_t size = 0; 2796 paddr_t ps = 0; 2797 paddr_t pa = 0; 2798 2799 static_assert(ARRAY_SIZE(secure_only) <= 2); 2800 if (ARRAY_SIZE(secure_only) == 2) { 2801 ps = secure_only[1].paddr; 2802 size = secure_only[1].size; 2803 } 2804 phys_mem_init(secure_only[0].paddr, secure_only[0].size, 2805 ps, size); 2806 2807 /* 2808 * The VCORE macros are relocatable so we need to translate 2809 * the addresses now that the MMU is enabled. 2810 */ 2811 end_pa = vaddr_to_phys(ROUNDUP2(VCORE_FREE_END_PA, 2812 align) - 1) + 1; 2813 /* Carve out the part used by OP-TEE core */ 2814 carve_out_core_mem(vaddr_to_phys(VCORE_UNPG_RX_PA), end_pa); 2815 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) { 2816 pa = vaddr_to_phys(ROUNDUP2(ASAN_MAP_PA, align)); 2817 carve_out_core_mem(pa, pa + ASAN_MAP_SZ); 2818 } 2819 2820 /* Carve out test SDP memory */ 2821 #ifdef TEE_SDP_TEST_MEM_BASE 2822 if (TEE_SDP_TEST_MEM_SIZE) { 2823 pa = TEE_SDP_TEST_MEM_BASE; 2824 carve_out_core_mem(pa, pa + TEE_SDP_TEST_MEM_SIZE); 2825 } 2826 #endif 2827 #endif /*!CFG_WITH_PAGER*/ 2828 } 2829 } 2830