xref: /optee_os/core/mm/core_mmu.c (revision e1e6e2c6ffd64dc8a5ca649214c39cbad872c4d2)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016-2025 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <memtag.h>
22 #include <mm/core_memprot.h>
23 #include <mm/core_mmu.h>
24 #include <mm/mobj.h>
25 #include <mm/pgt_cache.h>
26 #include <mm/phys_mem.h>
27 #include <mm/tee_pager.h>
28 #include <mm/vm.h>
29 #include <platform_config.h>
30 #include <stdalign.h>
31 #include <string.h>
32 #include <trace.h>
33 #include <util.h>
34 
35 #ifndef DEBUG_XLAT_TABLE
36 #define DEBUG_XLAT_TABLE 0
37 #endif
38 
39 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
40 
41 /* Virtual memory pool for core mappings */
42 tee_mm_pool_t core_virt_mem_pool;
43 
44 /* Virtual memory pool for shared memory mappings */
45 tee_mm_pool_t core_virt_shm_pool;
46 
47 #ifdef CFG_CORE_PHYS_RELOCATABLE
48 unsigned long core_mmu_tee_load_pa __nex_bss;
49 #else
50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
51 #endif
52 
53 /*
54  * These variables are initialized before .bss is cleared. To avoid
55  * resetting them when .bss is cleared we're storing them in .data instead,
56  * even if they initially are zero.
57  */
58 
59 #ifdef CFG_CORE_RESERVED_SHM
60 /* Default NSec shared memory allocated from NSec world */
61 unsigned long default_nsec_shm_size __nex_bss;
62 unsigned long default_nsec_shm_paddr __nex_bss;
63 #endif
64 
65 static struct memory_map static_memory_map __nex_bss;
66 void (*memory_map_realloc_func)(struct memory_map *mem_map) __nex_bss;
67 
68 /* Offset of the first TEE RAM mapping from start of secure RAM */
69 static size_t tee_ram_initial_offs __nex_bss;
70 
71 /* Define the platform's memory layout. */
72 struct memaccess_area {
73 	paddr_t paddr;
74 	size_t size;
75 };
76 
77 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
78 
79 static struct memaccess_area secure_only[] __nex_data = {
80 #ifdef CFG_CORE_PHYS_RELOCATABLE
81 	MEMACCESS_AREA(0, 0),
82 #else
83 #ifdef TRUSTED_SRAM_BASE
84 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
85 #endif
86 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
87 #endif
88 };
89 
90 static struct memaccess_area nsec_shared[] __nex_data = {
91 #ifdef CFG_CORE_RESERVED_SHM
92 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
93 #endif
94 };
95 
96 #if defined(CFG_SECURE_DATA_PATH)
97 static const char *tz_sdp_match = "linaro,secure-heap";
98 static struct memaccess_area sec_sdp;
99 #ifdef CFG_TEE_SDP_MEM_BASE
100 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
101 #endif
102 #ifdef TEE_SDP_TEST_MEM_BASE
103 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
104 #endif
105 #endif
106 
107 #ifdef CFG_CORE_RESERVED_SHM
108 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
109 #endif
110 static unsigned int mmu_spinlock;
111 
112 static uint32_t mmu_lock(void)
113 {
114 	return cpu_spin_lock_xsave(&mmu_spinlock);
115 }
116 
117 static void mmu_unlock(uint32_t exceptions)
118 {
119 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
120 }
121 
122 static void heap_realloc_memory_map(struct memory_map *mem_map)
123 {
124 	struct tee_mmap_region *m = NULL;
125 	struct tee_mmap_region *old = mem_map->map;
126 	size_t old_sz = sizeof(*old) * mem_map->alloc_count;
127 	size_t sz = old_sz + sizeof(*m);
128 
129 	assert(nex_malloc_buffer_is_within_alloced(old, old_sz));
130 	m = nex_realloc(old, sz);
131 	if (!m)
132 		panic();
133 	mem_map->map = m;
134 	mem_map->alloc_count++;
135 }
136 
137 static void boot_mem_realloc_memory_map(struct memory_map *mem_map)
138 {
139 	struct tee_mmap_region *m = NULL;
140 	struct tee_mmap_region *old = mem_map->map;
141 	size_t old_sz = sizeof(*old) * mem_map->alloc_count;
142 	size_t sz = old_sz * 2;
143 
144 	m = boot_mem_alloc_tmp(sz, alignof(*m));
145 	memcpy(m, old, old_sz);
146 	mem_map->map = m;
147 	mem_map->alloc_count *= 2;
148 }
149 
150 static void grow_mem_map(struct memory_map *mem_map)
151 {
152 	if (mem_map->count == mem_map->alloc_count) {
153 		if (!memory_map_realloc_func) {
154 			EMSG("Out of entries (%zu) in mem_map",
155 			     mem_map->alloc_count);
156 			panic();
157 		}
158 		memory_map_realloc_func(mem_map);
159 	}
160 	mem_map->count++;
161 }
162 
163 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
164 {
165 	/*
166 	 * The first range is always used to cover OP-TEE core memory, but
167 	 * depending on configuration it may cover more than that.
168 	 */
169 	*base = secure_only[0].paddr;
170 	*size = secure_only[0].size;
171 }
172 
173 void core_mmu_set_secure_memory(paddr_t base, size_t size)
174 {
175 #ifdef CFG_CORE_PHYS_RELOCATABLE
176 	static_assert(ARRAY_SIZE(secure_only) == 1);
177 #endif
178 	runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE));
179 	assert(!secure_only[0].size);
180 	assert(base && size);
181 
182 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
183 	secure_only[0].paddr = base;
184 	secure_only[0].size = size;
185 }
186 
187 static struct memory_map *get_memory_map(void)
188 {
189 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
190 		struct memory_map *map = virt_get_memory_map();
191 
192 		if (map)
193 			return map;
194 	}
195 
196 	return &static_memory_map;
197 }
198 
199 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
200 			     paddr_t pa, size_t size)
201 {
202 	size_t n;
203 
204 	for (n = 0; n < alen; n++)
205 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
206 			return true;
207 	return false;
208 }
209 
210 #define pbuf_intersects(a, pa, size) \
211 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
212 
213 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
214 			    paddr_t pa, size_t size)
215 {
216 	size_t n;
217 
218 	for (n = 0; n < alen; n++)
219 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
220 			return true;
221 	return false;
222 }
223 
224 #define pbuf_is_inside(a, pa, size) \
225 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
226 
227 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
228 {
229 	paddr_t end_pa = 0;
230 
231 	if (!map)
232 		return false;
233 
234 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
235 		return false;
236 
237 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
238 }
239 
240 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
241 {
242 	if (!map)
243 		return false;
244 	return (va >= map->va && va <= (map->va + map->size - 1));
245 }
246 
247 /* check if target buffer fits in a core default map area */
248 static bool pbuf_inside_map_area(unsigned long p, size_t l,
249 				 struct tee_mmap_region *map)
250 {
251 	return core_is_buffer_inside(p, l, map->pa, map->size);
252 }
253 
254 TEE_Result core_mmu_for_each_map(void *ptr,
255 				 TEE_Result (*fn)(struct tee_mmap_region *map,
256 						  void *ptr))
257 {
258 	struct memory_map *mem_map = get_memory_map();
259 	TEE_Result res = TEE_SUCCESS;
260 	size_t n = 0;
261 
262 	for (n = 0; n < mem_map->count; n++) {
263 		res = fn(mem_map->map + n, ptr);
264 		if (res)
265 			return res;
266 	}
267 
268 	return TEE_SUCCESS;
269 }
270 
271 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
272 {
273 	struct memory_map *mem_map = get_memory_map();
274 	size_t n = 0;
275 
276 	for (n = 0; n < mem_map->count; n++) {
277 		if (mem_map->map[n].type == type)
278 			return mem_map->map + n;
279 	}
280 	return NULL;
281 }
282 
283 static struct tee_mmap_region *
284 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
285 {
286 	struct memory_map *mem_map = get_memory_map();
287 	size_t n = 0;
288 
289 	for (n = 0; n < mem_map->count; n++) {
290 		if (mem_map->map[n].type != type)
291 			continue;
292 		if (pa_is_in_map(mem_map->map + n, pa, len))
293 			return mem_map->map + n;
294 	}
295 	return NULL;
296 }
297 
298 static struct tee_mmap_region *find_map_by_va(void *va)
299 {
300 	struct memory_map *mem_map = get_memory_map();
301 	vaddr_t a = (vaddr_t)va;
302 	size_t n = 0;
303 
304 	for (n = 0; n < mem_map->count; n++) {
305 		if (a >= mem_map->map[n].va &&
306 		    a <= (mem_map->map[n].va - 1 + mem_map->map[n].size))
307 			return mem_map->map + n;
308 	}
309 
310 	return NULL;
311 }
312 
313 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
314 {
315 	struct memory_map *mem_map = get_memory_map();
316 	size_t n = 0;
317 
318 	for (n = 0; n < mem_map->count; n++) {
319 		/* Skip unmapped regions */
320 		if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) &&
321 		    pa >= mem_map->map[n].pa &&
322 		    pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size))
323 			return mem_map->map + n;
324 	}
325 
326 	return NULL;
327 }
328 
329 #if defined(CFG_SECURE_DATA_PATH)
330 static bool dtb_get_sdp_region(void)
331 {
332 	void *fdt = NULL;
333 	int node = 0;
334 	int tmp_node = 0;
335 	paddr_t tmp_addr = 0;
336 	size_t tmp_size = 0;
337 
338 	if (!IS_ENABLED(CFG_EMBED_DTB))
339 		return false;
340 
341 	fdt = get_embedded_dt();
342 	if (!fdt)
343 		panic("No DTB found");
344 
345 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
346 	if (node < 0) {
347 		DMSG("No %s compatible node found", tz_sdp_match);
348 		return false;
349 	}
350 	tmp_node = node;
351 	while (tmp_node >= 0) {
352 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
353 							 tz_sdp_match);
354 		if (tmp_node >= 0)
355 			DMSG("Ignore SDP pool node %s, supports only 1 node",
356 			     fdt_get_name(fdt, tmp_node, NULL));
357 	}
358 
359 	if (fdt_reg_info(fdt, node, &tmp_addr, &tmp_size)) {
360 		EMSG("%s: Unable to get base addr or size from DT",
361 		     tz_sdp_match);
362 		return false;
363 	}
364 
365 	sec_sdp.paddr = tmp_addr;
366 	sec_sdp.size = tmp_size;
367 
368 	return true;
369 }
370 #endif
371 
372 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
373 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
374 				const struct core_mmu_phys_mem *start,
375 				const struct core_mmu_phys_mem *end)
376 {
377 	const struct core_mmu_phys_mem *mem;
378 
379 	for (mem = start; mem < end; mem++) {
380 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
381 			return true;
382 	}
383 
384 	return false;
385 }
386 #endif
387 
388 #ifdef CFG_CORE_DYN_SHM
389 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
390 			       paddr_t pa, size_t size)
391 {
392 	struct core_mmu_phys_mem *m = *mem;
393 	size_t n = 0;
394 
395 	while (n < *nelems) {
396 		if (!core_is_buffer_intersect(pa, size, m[n].addr, m[n].size)) {
397 			n++;
398 			continue;
399 		}
400 
401 		if (core_is_buffer_inside(m[n].addr, m[n].size, pa, size)) {
402 			/* m[n] is completely covered by pa:size */
403 			rem_array_elem(m, *nelems, sizeof(*m), n);
404 			(*nelems)--;
405 			m = nex_realloc(m, sizeof(*m) * *nelems);
406 			if (!m)
407 				panic();
408 			*mem = m;
409 			continue;
410 		}
411 
412 		if (pa > m[n].addr &&
413 		    pa + size - 1 < m[n].addr + m[n].size - 1) {
414 			/*
415 			 * pa:size is strictly inside m[n] range so split
416 			 * m[n] entry.
417 			 */
418 			m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
419 			if (!m)
420 				panic();
421 			*mem = m;
422 			(*nelems)++;
423 			ins_array_elem(m, *nelems, sizeof(*m), n + 1, NULL);
424 			m[n + 1].addr = pa + size;
425 			m[n + 1].size = m[n].addr + m[n].size - pa - size;
426 			m[n].size = pa - m[n].addr;
427 			n++;
428 		} else if (pa <= m[n].addr) {
429 			/*
430 			 * pa:size is overlapping (possibly partially) at the
431 			 * beginning of m[n].
432 			 */
433 			m[n].size = m[n].addr + m[n].size - pa - size;
434 			m[n].addr = pa + size;
435 		} else {
436 			/*
437 			 * pa:size is overlapping (possibly partially) at
438 			 * the end of m[n].
439 			 */
440 			m[n].size = pa - m[n].addr;
441 		}
442 		n++;
443 	}
444 }
445 
446 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
447 				      size_t nelems,
448 				      struct tee_mmap_region *map)
449 {
450 	size_t n;
451 
452 	for (n = 0; n < nelems; n++) {
453 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
454 					    map->pa, map->size)) {
455 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
456 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
457 			     start[n].addr, start[n].size,
458 			     map->type, map->pa, map->size);
459 			panic();
460 		}
461 	}
462 }
463 
464 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
465 static size_t discovered_nsec_ddr_nelems __nex_bss;
466 
467 static int cmp_pmem_by_addr(const void *a, const void *b)
468 {
469 	const struct core_mmu_phys_mem *pmem_a = a;
470 	const struct core_mmu_phys_mem *pmem_b = b;
471 
472 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
473 }
474 
475 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
476 				      size_t nelems)
477 {
478 	struct core_mmu_phys_mem *m = start;
479 	size_t num_elems = nelems;
480 	struct memory_map *mem_map = &static_memory_map;
481 	const struct core_mmu_phys_mem __maybe_unused *pmem;
482 	size_t n = 0;
483 
484 	assert(!discovered_nsec_ddr_start);
485 	assert(m && num_elems);
486 
487 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
488 
489 	/*
490 	 * Non-secure shared memory and also secure data
491 	 * path memory are supposed to reside inside
492 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
493 	 * are used for a specific purpose make holes for
494 	 * those memory in the normal non-secure memory.
495 	 *
496 	 * This has to be done since for instance QEMU
497 	 * isn't aware of which memory range in the
498 	 * non-secure memory is used for NSEC_SHM.
499 	 */
500 
501 #ifdef CFG_SECURE_DATA_PATH
502 	if (dtb_get_sdp_region())
503 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
504 
505 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
506 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
507 #endif
508 
509 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
510 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
511 				   secure_only[n].size);
512 
513 	for  (n = 0; n < mem_map->count; n++) {
514 		switch (mem_map->map[n].type) {
515 		case MEM_AREA_NSEC_SHM:
516 			carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa,
517 					   mem_map->map[n].size);
518 			break;
519 		case MEM_AREA_EXT_DT:
520 		case MEM_AREA_MANIFEST_DT:
521 		case MEM_AREA_RAM_NSEC:
522 		case MEM_AREA_RES_VASPACE:
523 		case MEM_AREA_SHM_VASPACE:
524 		case MEM_AREA_TS_VASPACE:
525 		case MEM_AREA_PAGER_VASPACE:
526 		case MEM_AREA_NEX_DYN_VASPACE:
527 		case MEM_AREA_TEE_DYN_VASPACE:
528 			break;
529 		default:
530 			check_phys_mem_is_outside(m, num_elems,
531 						  mem_map->map + n);
532 		}
533 	}
534 
535 	discovered_nsec_ddr_start = m;
536 	discovered_nsec_ddr_nelems = num_elems;
537 
538 	DMSG("Non-secure RAM:");
539 	for (n = 0; n < num_elems; n++)
540 		DMSG("%zu: pa %#"PRIxPA"..%#"PRIxPA" sz %#"PRIxPASZ,
541 		     n, m[n].addr, m[n].addr + m[n].size - 1, m[n].size);
542 
543 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
544 				   m[num_elems - 1].size))
545 		panic();
546 }
547 
548 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
549 				    const struct core_mmu_phys_mem **end)
550 {
551 	if (!discovered_nsec_ddr_start)
552 		return false;
553 
554 	*start = discovered_nsec_ddr_start;
555 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
556 
557 	return true;
558 }
559 
560 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
561 {
562 	const struct core_mmu_phys_mem *start;
563 	const struct core_mmu_phys_mem *end;
564 
565 	if (!get_discovered_nsec_ddr(&start, &end))
566 		return false;
567 
568 	return pbuf_is_special_mem(pbuf, len, start, end);
569 }
570 
571 bool core_mmu_nsec_ddr_is_defined(void)
572 {
573 	const struct core_mmu_phys_mem *start;
574 	const struct core_mmu_phys_mem *end;
575 
576 	if (!get_discovered_nsec_ddr(&start, &end))
577 		return false;
578 
579 	return start != end;
580 }
581 #else
582 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
583 {
584 	return false;
585 }
586 #endif /*CFG_CORE_DYN_SHM*/
587 
588 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
589 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
590 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
591 
592 #ifdef CFG_SECURE_DATA_PATH
593 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
594 {
595 	bool is_sdp_mem = false;
596 
597 	if (sec_sdp.size)
598 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
599 						   sec_sdp.size);
600 
601 	if (!is_sdp_mem)
602 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
603 						 phys_sdp_mem_end);
604 
605 	return is_sdp_mem;
606 }
607 
608 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
609 {
610 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
611 					    CORE_MEM_SDP_MEM);
612 
613 	if (!mobj)
614 		panic("can't create SDP physical memory object");
615 
616 	return mobj;
617 }
618 
619 struct mobj **core_sdp_mem_create_mobjs(void)
620 {
621 	const struct core_mmu_phys_mem *mem = NULL;
622 	struct mobj **mobj_base = NULL;
623 	struct mobj **mobj = NULL;
624 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
625 
626 	if (sec_sdp.size)
627 		cnt++;
628 
629 	/* SDP mobjs table must end with a NULL entry */
630 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
631 	if (!mobj_base)
632 		panic("Out of memory");
633 
634 	mobj = mobj_base;
635 
636 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
637 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
638 
639 	if (sec_sdp.size)
640 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
641 
642 	return mobj_base;
643 }
644 
645 #else /* CFG_SECURE_DATA_PATH */
646 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
647 {
648 	return false;
649 }
650 
651 #endif /* CFG_SECURE_DATA_PATH */
652 
653 /* Check special memories comply with registered memories */
654 static void verify_special_mem_areas(struct memory_map *mem_map,
655 				     const struct core_mmu_phys_mem *start,
656 				     const struct core_mmu_phys_mem *end,
657 				     const char *area_name __maybe_unused)
658 {
659 	const struct core_mmu_phys_mem *mem = NULL;
660 	const struct core_mmu_phys_mem *mem2 = NULL;
661 	size_t n = 0;
662 
663 	if (start == end) {
664 		DMSG("No %s memory area defined", area_name);
665 		return;
666 	}
667 
668 	for (mem = start; mem < end; mem++)
669 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
670 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
671 
672 	/* Check memories do not intersect each other */
673 	for (mem = start; mem + 1 < end; mem++) {
674 		for (mem2 = mem + 1; mem2 < end; mem2++) {
675 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
676 						     mem->addr, mem->size)) {
677 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
678 						   mem->addr, mem->size);
679 				panic("Special memory intersection");
680 			}
681 		}
682 	}
683 
684 	/*
685 	 * Check memories do not intersect any mapped memory.
686 	 * This is called before reserved VA space is loaded in mem_map.
687 	 */
688 	for (mem = start; mem < end; mem++) {
689 		for (n = 0; n < mem_map->count; n++) {
690 #ifdef TEE_SDP_TEST_MEM_BASE
691 			/*
692 			 * Ignore MEM_AREA_SEC_RAM_OVERALL since it covers
693 			 * TEE_SDP_TEST_MEM too.
694 			 */
695 			if (mem->addr == TEE_SDP_TEST_MEM_BASE &&
696 			    mem->size == TEE_SDP_TEST_MEM_SIZE &&
697 			    mem_map->map[n].type == MEM_AREA_SEC_RAM_OVERALL)
698 				continue;
699 #endif
700 			if (core_is_buffer_intersect(mem->addr, mem->size,
701 						     mem_map->map[n].pa,
702 						     mem_map->map[n].size)) {
703 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
704 						   mem_map->map[n].pa,
705 						   mem_map->map[n].size);
706 				panic("Special memory intersection");
707 			}
708 		}
709 	}
710 }
711 
712 static void merge_mmaps(struct tee_mmap_region *dst,
713 			const struct tee_mmap_region *src)
714 {
715 	paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1);
716 	paddr_t pa = MIN(dst->pa, src->pa);
717 
718 	DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA,
719 	     dst->pa, dst->pa + dst->size - 1, src->pa,
720 	     src->pa + src->size - 1);
721 	dst->pa = pa;
722 	dst->size = end_pa - pa + 1;
723 }
724 
725 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1,
726 				const struct tee_mmap_region *r2)
727 {
728 	if (r1->type != r2->type)
729 		return false;
730 
731 	if (r1->pa == r2->pa)
732 		return true;
733 
734 	if (r1->pa < r2->pa)
735 		return r1->pa + r1->size >= r2->pa;
736 	else
737 		return r2->pa + r2->size >= r1->pa;
738 }
739 
740 static void add_phys_mem(struct memory_map *mem_map,
741 			 const char *mem_name __maybe_unused,
742 			 enum teecore_memtypes mem_type,
743 			 paddr_t mem_addr, paddr_size_t mem_size)
744 {
745 	size_t n = 0;
746 	const struct tee_mmap_region m0 = {
747 		.type = mem_type,
748 		.pa = mem_addr,
749 		.size = mem_size,
750 	};
751 
752 	if (!mem_size)	/* Discard null size entries */
753 		return;
754 
755 	/*
756 	 * If some ranges of memory of the same type do overlap
757 	 * each others they are coalesced into one entry. To help this
758 	 * added entries are sorted by increasing physical.
759 	 *
760 	 * Note that it's valid to have the same physical memory as several
761 	 * different memory types, for instance the same device memory
762 	 * mapped as both secure and non-secure. This will probably not
763 	 * happen often in practice.
764 	 */
765 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
766 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
767 	for  (n = 0; n < mem_map->count; n++) {
768 		if (mmaps_are_mergeable(mem_map->map + n, &m0)) {
769 			merge_mmaps(mem_map->map + n, &m0);
770 			/*
771 			 * The merged result might be mergeable with the
772 			 * next or previous entry.
773 			 */
774 			if (n + 1 < mem_map->count &&
775 			    mmaps_are_mergeable(mem_map->map + n,
776 						mem_map->map + n + 1)) {
777 				merge_mmaps(mem_map->map + n,
778 					    mem_map->map + n + 1);
779 				rem_array_elem(mem_map->map, mem_map->count,
780 					       sizeof(*mem_map->map), n + 1);
781 				mem_map->count--;
782 			}
783 			if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1,
784 							 mem_map->map + n)) {
785 				merge_mmaps(mem_map->map + n - 1,
786 					    mem_map->map + n);
787 				rem_array_elem(mem_map->map, mem_map->count,
788 					       sizeof(*mem_map->map), n);
789 				mem_map->count--;
790 			}
791 			return;
792 		}
793 		if (mem_type < mem_map->map[n].type ||
794 		    (mem_type == mem_map->map[n].type &&
795 		     mem_addr < mem_map->map[n].pa))
796 			break; /* found the spot where to insert this memory */
797 	}
798 
799 	grow_mem_map(mem_map);
800 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
801 		       n, &m0);
802 }
803 
804 static void add_va_space(struct memory_map *mem_map,
805 			 enum teecore_memtypes type, size_t size)
806 {
807 	size_t n = 0;
808 
809 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
810 	for  (n = 0; n < mem_map->count; n++) {
811 		if (type < mem_map->map[n].type)
812 			break;
813 	}
814 
815 	grow_mem_map(mem_map);
816 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
817 		       n, NULL);
818 	mem_map->map[n] = (struct tee_mmap_region){
819 		.type = type,
820 		.size = size,
821 	};
822 }
823 
824 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
825 {
826 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
827 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
828 				TEE_MATTR_MEM_TYPE_SHIFT;
829 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
830 				TEE_MATTR_MEM_TYPE_SHIFT;
831 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
832 				  TEE_MATTR_MEM_TYPE_SHIFT;
833 
834 	switch (t) {
835 	case MEM_AREA_TEE_RAM:
836 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
837 	case MEM_AREA_TEE_RAM_RX:
838 	case MEM_AREA_INIT_RAM_RX:
839 	case MEM_AREA_IDENTITY_MAP_RX:
840 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
841 	case MEM_AREA_TEE_RAM_RO:
842 	case MEM_AREA_INIT_RAM_RO:
843 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
844 	case MEM_AREA_TEE_RAM_RW:
845 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
846 	case MEM_AREA_NEX_RAM_RW:
847 	case MEM_AREA_NEX_DYN_VASPACE:
848 	case MEM_AREA_TEE_DYN_VASPACE:
849 	case MEM_AREA_TEE_ASAN:
850 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
851 	case MEM_AREA_TEE_COHERENT:
852 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
853 	case MEM_AREA_NSEC_SHM:
854 	case MEM_AREA_NEX_NSEC_SHM:
855 		return attr | TEE_MATTR_PRW | cached;
856 	case MEM_AREA_MANIFEST_DT:
857 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
858 	case MEM_AREA_TRANSFER_LIST:
859 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
860 	case MEM_AREA_EXT_DT:
861 		/*
862 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
863 		 * tree as secure non-cached memory, otherwise, fall back to
864 		 * non-secure mapping.
865 		 */
866 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
867 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
868 			       noncache;
869 		fallthrough;
870 	case MEM_AREA_IO_NSEC:
871 		return attr | TEE_MATTR_PRW | noncache;
872 	case MEM_AREA_IO_SEC:
873 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
874 	case MEM_AREA_RAM_NSEC:
875 		return attr | TEE_MATTR_PRW | cached;
876 	case MEM_AREA_RAM_SEC:
877 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
878 	case MEM_AREA_SEC_RAM_OVERALL:
879 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
880 	case MEM_AREA_ROM_SEC:
881 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
882 	case MEM_AREA_RES_VASPACE:
883 	case MEM_AREA_SHM_VASPACE:
884 		return 0;
885 	case MEM_AREA_PAGER_VASPACE:
886 		return TEE_MATTR_SECURE;
887 	default:
888 		panic("invalid type");
889 	}
890 }
891 
892 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
893 {
894 	switch (mm->type) {
895 	case MEM_AREA_TEE_RAM:
896 	case MEM_AREA_TEE_RAM_RX:
897 	case MEM_AREA_TEE_RAM_RO:
898 	case MEM_AREA_TEE_RAM_RW:
899 	case MEM_AREA_INIT_RAM_RX:
900 	case MEM_AREA_INIT_RAM_RO:
901 	case MEM_AREA_NEX_RAM_RW:
902 	case MEM_AREA_NEX_RAM_RO:
903 	case MEM_AREA_TEE_ASAN:
904 		return true;
905 	default:
906 		return false;
907 	}
908 }
909 
910 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
911 {
912 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
913 }
914 
915 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
916 {
917 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
918 }
919 
920 static int cmp_mmap_by_lower_va(const void *a, const void *b)
921 {
922 	const struct tee_mmap_region *mm_a = a;
923 	const struct tee_mmap_region *mm_b = b;
924 
925 	return CMP_TRILEAN(mm_a->va, mm_b->va);
926 }
927 
928 static void dump_mmap_table(struct memory_map *mem_map)
929 {
930 	size_t n = 0;
931 
932 	for (n = 0; n < mem_map->count; n++) {
933 		struct tee_mmap_region *map __maybe_unused = mem_map->map + n;
934 
935 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
936 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
937 		     teecore_memtype_name(map->type), map->va,
938 		     map->va + map->size - 1, map->pa,
939 		     (paddr_t)(map->pa + map->size - 1), map->size,
940 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
941 	}
942 }
943 
944 #if DEBUG_XLAT_TABLE
945 
946 static void dump_xlat_table(vaddr_t va, unsigned int level)
947 {
948 	struct core_mmu_table_info tbl_info;
949 	unsigned int idx = 0;
950 	paddr_t pa;
951 	uint32_t attr;
952 
953 	core_mmu_find_table(NULL, va, level, &tbl_info);
954 	va = tbl_info.va_base;
955 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
956 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
957 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
958 			const char *security_bit = "";
959 
960 			if (core_mmu_entry_have_security_bit(attr)) {
961 				if (attr & TEE_MATTR_SECURE)
962 					security_bit = "S";
963 				else
964 					security_bit = "NS";
965 			}
966 
967 			if (attr & TEE_MATTR_TABLE) {
968 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
969 					" TBL:0x%010" PRIxPA " %s",
970 					level * 2, "", level, va, pa,
971 					security_bit);
972 				dump_xlat_table(va, level + 1);
973 			} else if (attr) {
974 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
975 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
976 					level * 2, "", level, va, pa,
977 					mattr_is_cached(attr) ? "MEM" :
978 					"DEV",
979 					attr & TEE_MATTR_PW ? "RW" : "RO",
980 					attr & TEE_MATTR_PX ? "X " : "XN",
981 					security_bit);
982 			} else {
983 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
984 					    " INVALID\n",
985 					    level * 2, "", level, va);
986 			}
987 		}
988 		va += BIT64(tbl_info.shift);
989 	}
990 }
991 
992 #else
993 
994 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
995 {
996 }
997 
998 #endif
999 
1000 /*
1001  * Reserves virtual memory space for pager usage.
1002  *
1003  * From the start of the first memory used by the link script +
1004  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
1005  * mapping for pager usage. This adds translation tables as needed for the
1006  * pager to operate.
1007  */
1008 static void add_pager_vaspace(struct memory_map *mem_map)
1009 {
1010 	paddr_t begin = 0;
1011 	paddr_t end = 0;
1012 	size_t size = 0;
1013 	size_t pos = 0;
1014 	size_t n = 0;
1015 
1016 
1017 	for (n = 0; n < mem_map->count; n++) {
1018 		if (map_is_tee_ram(mem_map->map + n)) {
1019 			if (!begin)
1020 				begin = mem_map->map[n].pa;
1021 			pos = n + 1;
1022 		}
1023 	}
1024 
1025 	end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size;
1026 	assert(end - begin < TEE_RAM_VA_SIZE);
1027 	size = TEE_RAM_VA_SIZE - (end - begin);
1028 
1029 	grow_mem_map(mem_map);
1030 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
1031 		       n, NULL);
1032 	mem_map->map[n] = (struct tee_mmap_region){
1033 		.type = MEM_AREA_PAGER_VASPACE,
1034 		.size = size,
1035 		.region_size = SMALL_PAGE_SIZE,
1036 		.attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE),
1037 	};
1038 }
1039 
1040 static void check_sec_nsec_mem_config(void)
1041 {
1042 	size_t n = 0;
1043 
1044 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
1045 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
1046 				    secure_only[n].size))
1047 			panic("Invalid memory access config: sec/nsec");
1048 	}
1049 }
1050 
1051 static void collect_device_mem_ranges(struct memory_map *mem_map)
1052 {
1053 	const char *compatible = "arm,ffa-manifest-device-regions";
1054 	void *fdt = get_manifest_dt();
1055 	const char *name = NULL;
1056 	uint64_t page_count = 0;
1057 	uint64_t base = 0;
1058 	int subnode = 0;
1059 	int node = 0;
1060 
1061 	assert(fdt);
1062 
1063 	node = fdt_node_offset_by_compatible(fdt, 0, compatible);
1064 	if (node < 0)
1065 		return;
1066 
1067 	fdt_for_each_subnode(subnode, fdt, node) {
1068 		name = fdt_get_name(fdt, subnode, NULL);
1069 		if (!name)
1070 			continue;
1071 
1072 		if (dt_getprop_as_number(fdt, subnode, "base-address",
1073 					 &base)) {
1074 			EMSG("Mandatory field is missing: base-address");
1075 			continue;
1076 		}
1077 
1078 		if (base & SMALL_PAGE_MASK) {
1079 			EMSG("base-address is not page aligned");
1080 			continue;
1081 		}
1082 
1083 		if (dt_getprop_as_number(fdt, subnode, "pages-count",
1084 					 &page_count)) {
1085 			EMSG("Mandatory field is missing: pages-count");
1086 			continue;
1087 		}
1088 
1089 		add_phys_mem(mem_map, name, MEM_AREA_IO_SEC,
1090 			     base, page_count * SMALL_PAGE_SIZE);
1091 	}
1092 }
1093 
1094 static void collect_mem_ranges(struct memory_map *mem_map)
1095 {
1096 	const struct core_mmu_phys_mem *mem = NULL;
1097 	vaddr_t ram_start = secure_only[0].paddr;
1098 	size_t n = 0;
1099 
1100 #define ADD_PHYS_MEM(_type, _addr, _size) \
1101 		add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size))
1102 
1103 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
1104 		paddr_t next_pa = 0;
1105 
1106 		/*
1107 		 * Read-only and read-execute physical memory areas must
1108 		 * not be mapped by MEM_AREA_SEC_RAM_OVERALL, but all the
1109 		 * read/write should.
1110 		 */
1111 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, ram_start,
1112 			     VCORE_UNPG_RX_PA - ram_start);
1113 		assert(VCORE_UNPG_RX_PA >= ram_start);
1114 		tee_ram_initial_offs = VCORE_UNPG_RX_PA - ram_start;
1115 		DMSG("tee_ram_initial_offs %#zx", tee_ram_initial_offs);
1116 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
1117 			     VCORE_UNPG_RX_SZ);
1118 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
1119 			     VCORE_UNPG_RO_SZ);
1120 
1121 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1122 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
1123 				     VCORE_UNPG_RW_SZ);
1124 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA,
1125 				     VCORE_UNPG_RW_SZ);
1126 
1127 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
1128 				     VCORE_NEX_RW_SZ);
1129 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_NEX_RW_PA,
1130 				     VCORE_NEX_RW_SZ);
1131 
1132 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_FREE_PA,
1133 				     VCORE_FREE_SZ);
1134 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA,
1135 				     VCORE_FREE_SZ);
1136 			next_pa = VCORE_FREE_PA + VCORE_FREE_SZ;
1137 		} else {
1138 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
1139 				     VCORE_UNPG_RW_SZ);
1140 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA,
1141 				     VCORE_UNPG_RW_SZ);
1142 
1143 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_FREE_PA,
1144 				     VCORE_FREE_SZ);
1145 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA,
1146 				     VCORE_FREE_SZ);
1147 			next_pa = VCORE_FREE_PA + VCORE_FREE_SZ;
1148 		}
1149 
1150 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1151 			paddr_t pa = 0;
1152 			size_t sz = 0;
1153 
1154 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
1155 				     VCORE_INIT_RX_SZ);
1156 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
1157 				     VCORE_INIT_RO_SZ);
1158 			/*
1159 			 * Core init mapping shall cover up to end of the
1160 			 * physical RAM.  This is required since the hash
1161 			 * table is appended to the binary data after the
1162 			 * firmware build sequence.
1163 			 */
1164 			pa = VCORE_INIT_RO_PA + VCORE_INIT_RO_SZ;
1165 			sz = TEE_RAM_START + TEE_RAM_PH_SIZE - pa;
1166 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM, pa, sz);
1167 		} else {
1168 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, next_pa,
1169 				     secure_only[0].paddr +
1170 				     secure_only[0].size - next_pa);
1171 		}
1172 	} else {
1173 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
1174 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr,
1175 			     secure_only[0].size);
1176 	}
1177 
1178 	for (n = 1; n < ARRAY_SIZE(secure_only); n++)
1179 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr,
1180 			     secure_only[n].size);
1181 
1182 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS))
1183 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1184 
1185 #undef ADD_PHYS_MEM
1186 
1187 	/* Collect device memory info from SP manifest */
1188 	if (IS_ENABLED(CFG_CORE_SEL2_SPMC))
1189 		collect_device_mem_ranges(mem_map);
1190 
1191 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1192 		/* Only unmapped virtual range may have a null phys addr */
1193 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1194 
1195 		add_phys_mem(mem_map, mem->name, mem->type,
1196 			     mem->addr, mem->size);
1197 	}
1198 
1199 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1200 		verify_special_mem_areas(mem_map, phys_sdp_mem_begin,
1201 					 phys_sdp_mem_end, "SDP");
1202 
1203 	add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE);
1204 	add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE);
1205 	if (IS_ENABLED(CFG_DYN_CONFIG)) {
1206 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
1207 			add_va_space(mem_map, MEM_AREA_NEX_DYN_VASPACE,
1208 				     ROUNDUP(CFG_NEX_DYN_VASPACE_SIZE,
1209 					     CORE_MMU_PGDIR_SIZE));
1210 		add_va_space(mem_map, MEM_AREA_TEE_DYN_VASPACE,
1211 			     CFG_TEE_DYN_VASPACE_SIZE);
1212 	}
1213 }
1214 
1215 static void assign_mem_granularity(struct memory_map *mem_map)
1216 {
1217 	size_t n = 0;
1218 
1219 	/*
1220 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1221 	 * SMALL_PAGE_SIZE.
1222 	 */
1223 	for  (n = 0; n < mem_map->count; n++) {
1224 		paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size;
1225 
1226 		if (mask & SMALL_PAGE_MASK)
1227 			panic("Impossible memory alignment");
1228 
1229 		if (map_is_tee_ram(mem_map->map + n))
1230 			mem_map->map[n].region_size = SMALL_PAGE_SIZE;
1231 		else
1232 			mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE;
1233 	}
1234 }
1235 
1236 static bool place_tee_ram_at_top(paddr_t paddr)
1237 {
1238 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1239 }
1240 
1241 /*
1242  * MMU arch driver shall override this function if it helps
1243  * optimizing the memory footprint of the address translation tables.
1244  */
1245 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1246 {
1247 	return place_tee_ram_at_top(paddr);
1248 }
1249 
1250 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map,
1251 			      bool tee_ram_at_top)
1252 {
1253 	struct tee_mmap_region *map = NULL;
1254 	bool va_is_nex_shared = false;
1255 	bool va_is_secure = true;
1256 	vaddr_t va = 0;
1257 	size_t n = 0;
1258 
1259 	/*
1260 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1261 	 * 0 is by design an invalid va, so return false directly.
1262 	 */
1263 	if (!tee_ram_va)
1264 		return false;
1265 
1266 	/* Clear eventual previous assignments */
1267 	for (n = 0; n < mem_map->count; n++)
1268 		mem_map->map[n].va = 0;
1269 
1270 	/*
1271 	 * TEE RAM regions are always aligned with region_size.
1272 	 *
1273 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1274 	 * since it handles virtual memory which covers the part of the ELF
1275 	 * that cannot fit directly into memory.
1276 	 */
1277 	va = tee_ram_va + tee_ram_initial_offs;
1278 	for (n = 0; n < mem_map->count; n++) {
1279 		map = mem_map->map + n;
1280 		if (map_is_tee_ram(map) ||
1281 		    map->type == MEM_AREA_PAGER_VASPACE) {
1282 			assert(!(va & (map->region_size - 1)));
1283 			assert(!(map->size & (map->region_size - 1)));
1284 			map->va = va;
1285 			if (ADD_OVERFLOW(va, map->size, &va))
1286 				return false;
1287 			if (!core_mmu_va_is_valid(va))
1288 				return false;
1289 		}
1290 	}
1291 
1292 	if (tee_ram_at_top) {
1293 		/*
1294 		 * Map non-tee ram regions at addresses lower than the tee
1295 		 * ram region.
1296 		 */
1297 		va = tee_ram_va;
1298 		for (n = 0; n < mem_map->count; n++) {
1299 			map = mem_map->map + n;
1300 			map->attr = core_mmu_type_to_attr(map->type);
1301 			if (map->va)
1302 				continue;
1303 
1304 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1305 			    va_is_secure != map_is_secure(map)) {
1306 				va_is_secure = !va_is_secure;
1307 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1308 			} else if (va_is_nex_shared !=
1309 				   core_mmu_type_is_nex_shared(map->type)) {
1310 				va_is_nex_shared = !va_is_nex_shared;
1311 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1312 			}
1313 
1314 			if (SUB_OVERFLOW(va, map->size, &va))
1315 				return false;
1316 			va = ROUNDDOWN2(va, map->region_size);
1317 			/*
1318 			 * Make sure that va is aligned with pa for
1319 			 * efficient pgdir mapping. Basically pa &
1320 			 * pgdir_mask should be == va & pgdir_mask
1321 			 */
1322 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1323 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1324 					return false;
1325 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1326 			}
1327 			map->va = va;
1328 		}
1329 	} else {
1330 		/*
1331 		 * Map non-tee ram regions at addresses higher than the tee
1332 		 * ram region.
1333 		 */
1334 		for (n = 0; n < mem_map->count; n++) {
1335 			map = mem_map->map + n;
1336 			map->attr = core_mmu_type_to_attr(map->type);
1337 			if (map->va)
1338 				continue;
1339 
1340 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1341 			    va_is_secure != map_is_secure(map)) {
1342 				va_is_secure = !va_is_secure;
1343 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1344 						     &va))
1345 					return false;
1346 			} else if (va_is_nex_shared !=
1347 				   core_mmu_type_is_nex_shared(map->type)) {
1348 				va_is_nex_shared = !va_is_nex_shared;
1349 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1350 						     &va))
1351 					return false;
1352 			}
1353 
1354 			if (ROUNDUP2_OVERFLOW(va, map->region_size, &va))
1355 				return false;
1356 			/*
1357 			 * Make sure that va is aligned with pa for
1358 			 * efficient pgdir mapping. Basically pa &
1359 			 * pgdir_mask should be == va & pgdir_mask
1360 			 */
1361 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1362 				vaddr_t offs = (map->pa - va) &
1363 					       CORE_MMU_PGDIR_MASK;
1364 
1365 				if (ADD_OVERFLOW(va, offs, &va))
1366 					return false;
1367 			}
1368 
1369 			map->va = va;
1370 			if (ADD_OVERFLOW(va, map->size, &va))
1371 				return false;
1372 			if (!core_mmu_va_is_valid(va))
1373 				return false;
1374 		}
1375 	}
1376 
1377 	return true;
1378 }
1379 
1380 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map)
1381 {
1382 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1383 
1384 	/*
1385 	 * Check that we're not overlapping with the user VA range.
1386 	 */
1387 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1388 		/*
1389 		 * User VA range is supposed to be defined after these
1390 		 * mappings have been established.
1391 		 */
1392 		assert(!core_mmu_user_va_range_is_defined());
1393 	} else {
1394 		vaddr_t user_va_base = 0;
1395 		size_t user_va_size = 0;
1396 
1397 		assert(core_mmu_user_va_range_is_defined());
1398 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1399 		if (tee_ram_va < (user_va_base + user_va_size))
1400 			return false;
1401 	}
1402 
1403 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1404 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1405 
1406 		/* Try whole mapping covered by a single base xlat entry */
1407 		if (prefered_dir != tee_ram_at_top &&
1408 		    assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir))
1409 			return true;
1410 	}
1411 
1412 	return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top);
1413 }
1414 
1415 static int cmp_init_mem_map(const void *a, const void *b)
1416 {
1417 	const struct tee_mmap_region *mm_a = a;
1418 	const struct tee_mmap_region *mm_b = b;
1419 	int rc = 0;
1420 
1421 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1422 	if (!rc)
1423 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1424 	/*
1425 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1426 	 * the same level2 table. Hence sort secure mapping from non-secure
1427 	 * mapping.
1428 	 */
1429 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1430 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1431 
1432 	/*
1433 	 * Nexus mappings shared between partitions should not be mixed
1434 	 * with other mappings in the same translation table. Hence sort
1435 	 * nexus shared mappings from other mappings.
1436 	 */
1437 	if (!rc)
1438 		rc = CMP_TRILEAN(core_mmu_type_is_nex_shared(mm_a->type),
1439 				 core_mmu_type_is_nex_shared(mm_b->type));
1440 
1441 	return rc;
1442 }
1443 
1444 static bool mem_map_add_id_map(struct memory_map *mem_map,
1445 			       vaddr_t id_map_start, vaddr_t id_map_end)
1446 {
1447 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1448 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1449 	size_t len = end - start;
1450 	size_t n = 0;
1451 
1452 
1453 	for (n = 0; n < mem_map->count; n++)
1454 		if (core_is_buffer_intersect(mem_map->map[n].va,
1455 					     mem_map->map[n].size, start, len))
1456 			return false;
1457 
1458 	grow_mem_map(mem_map);
1459 	mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){
1460 		.type = MEM_AREA_IDENTITY_MAP_RX,
1461 		/*
1462 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1463 		 * translation table, at the increased risk of clashes with
1464 		 * the rest of the memory map.
1465 		 */
1466 		.region_size = SMALL_PAGE_SIZE,
1467 		.pa = start,
1468 		.va = start,
1469 		.size = len,
1470 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1471 	};
1472 
1473 	return true;
1474 }
1475 
1476 static struct memory_map *init_mem_map(struct memory_map *mem_map,
1477 				       unsigned long seed,
1478 				       unsigned long *ret_offs)
1479 {
1480 	/*
1481 	 * @id_map_start and @id_map_end describes a physical memory range
1482 	 * that must be mapped Read-Only eXecutable at identical virtual
1483 	 * addresses.
1484 	 */
1485 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1486 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1487 	vaddr_t start_addr = secure_only[0].paddr;
1488 	unsigned long offs = 0;
1489 
1490 	collect_mem_ranges(mem_map);
1491 	assign_mem_granularity(mem_map);
1492 
1493 	/*
1494 	 * To ease mapping and lower use of xlat tables, sort mapping
1495 	 * description moving small-page regions after the pgdir regions.
1496 	 */
1497 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1498 	      cmp_init_mem_map);
1499 
1500 	if (IS_ENABLED(CFG_WITH_PAGER))
1501 		add_pager_vaspace(mem_map);
1502 
1503 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1504 		vaddr_t ba = 0;
1505 		size_t n = 0;
1506 
1507 		for (n = 0; n < 3; n++) {
1508 			ba = arch_aslr_base_addr(start_addr, seed, n);
1509 			if (assign_mem_va(ba, mem_map) &&
1510 			    mem_map_add_id_map(mem_map, id_map_start,
1511 					       id_map_end)) {
1512 				offs = ba - start_addr;
1513 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1514 				     ba, offs);
1515 				goto out;
1516 			} else {
1517 				DMSG("Failed to map core at %#"PRIxVA, ba);
1518 			}
1519 		}
1520 		EMSG("Failed to map core with seed %#lx", seed);
1521 	}
1522 
1523 	if (!assign_mem_va(start_addr, mem_map))
1524 		panic();
1525 
1526 out:
1527 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1528 	      cmp_mmap_by_lower_va);
1529 
1530 	dump_mmap_table(mem_map);
1531 
1532 	*ret_offs = offs;
1533 	return mem_map;
1534 }
1535 
1536 static void check_mem_map(struct memory_map *mem_map)
1537 {
1538 	struct tee_mmap_region *m = NULL;
1539 	size_t n = 0;
1540 
1541 	for (n = 0; n < mem_map->count; n++) {
1542 		m = mem_map->map + n;
1543 		switch (m->type) {
1544 		case MEM_AREA_TEE_RAM:
1545 		case MEM_AREA_TEE_RAM_RX:
1546 		case MEM_AREA_TEE_RAM_RO:
1547 		case MEM_AREA_TEE_RAM_RW:
1548 		case MEM_AREA_INIT_RAM_RX:
1549 		case MEM_AREA_INIT_RAM_RO:
1550 		case MEM_AREA_NEX_RAM_RW:
1551 		case MEM_AREA_NEX_RAM_RO:
1552 		case MEM_AREA_IDENTITY_MAP_RX:
1553 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1554 				panic("TEE_RAM can't fit in secure_only");
1555 			break;
1556 		case MEM_AREA_SEC_RAM_OVERALL:
1557 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1558 				panic("SEC_RAM_OVERALL can't fit in secure_only");
1559 			break;
1560 		case MEM_AREA_NSEC_SHM:
1561 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1562 				panic("NS_SHM can't fit in nsec_shared");
1563 			break;
1564 		case MEM_AREA_TEE_COHERENT:
1565 		case MEM_AREA_TEE_ASAN:
1566 		case MEM_AREA_IO_SEC:
1567 		case MEM_AREA_IO_NSEC:
1568 		case MEM_AREA_EXT_DT:
1569 		case MEM_AREA_MANIFEST_DT:
1570 		case MEM_AREA_TRANSFER_LIST:
1571 		case MEM_AREA_RAM_SEC:
1572 		case MEM_AREA_RAM_NSEC:
1573 		case MEM_AREA_ROM_SEC:
1574 		case MEM_AREA_RES_VASPACE:
1575 		case MEM_AREA_SHM_VASPACE:
1576 		case MEM_AREA_PAGER_VASPACE:
1577 		case MEM_AREA_NEX_DYN_VASPACE:
1578 		case MEM_AREA_TEE_DYN_VASPACE:
1579 			break;
1580 		default:
1581 			EMSG("Uhandled memtype %d", m->type);
1582 			panic();
1583 		}
1584 	}
1585 }
1586 
1587 /*
1588  * core_init_mmu_map() - init tee core default memory mapping
1589  *
1590  * This routine sets the static default TEE core mapping. If @seed is > 0
1591  * and configured with CFG_CORE_ASLR it will map tee core at a location
1592  * based on the seed and return the offset from the link address.
1593  *
1594  * If an error happened: core_init_mmu_map is expected to panic.
1595  *
1596  * Note: this function is weak just to make it possible to exclude it from
1597  * the unpaged area.
1598  */
1599 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1600 {
1601 #ifndef CFG_NS_VIRTUALIZATION
1602 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1603 #else
1604 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1605 				  SMALL_PAGE_SIZE);
1606 #endif
1607 #ifdef CFG_DYN_CONFIG
1608 	vaddr_t len = ROUNDUP(VCORE_FREE_END_PA, SMALL_PAGE_SIZE) - start;
1609 #else
1610 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1611 #endif
1612 	struct tee_mmap_region tmp_mmap_region = { };
1613 	struct memory_map mem_map = { };
1614 	unsigned long offs = 0;
1615 
1616 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1617 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1618 		panic("OP-TEE load address is not page aligned");
1619 
1620 	check_sec_nsec_mem_config();
1621 
1622 	mem_map.alloc_count = CFG_MMAP_REGIONS;
1623 	mem_map.map = boot_mem_alloc_tmp(mem_map.alloc_count *
1624 						sizeof(*mem_map.map),
1625 					 alignof(*mem_map.map));
1626 	memory_map_realloc_func = boot_mem_realloc_memory_map;
1627 
1628 	static_memory_map = (struct memory_map){
1629 		.map = &tmp_mmap_region,
1630 		.alloc_count = 1,
1631 		.count = 1,
1632 	};
1633 	/*
1634 	 * Add a entry covering the translation tables which will be
1635 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1636 	 */
1637 	static_memory_map.map[0] = (struct tee_mmap_region){
1638 		.type = MEM_AREA_TEE_RAM,
1639 		.region_size = SMALL_PAGE_SIZE,
1640 		.pa = start,
1641 		.va = start,
1642 		.size = len,
1643 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1644 	};
1645 
1646 	init_mem_map(&mem_map, seed, &offs);
1647 
1648 	check_mem_map(&mem_map);
1649 	core_init_mmu(&mem_map);
1650 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1651 	core_init_mmu_regs(cfg);
1652 	cfg->map_offset = offs;
1653 	static_memory_map = mem_map;
1654 	boot_mem_add_reloc(&static_memory_map.map);
1655 }
1656 
1657 void core_mmu_save_mem_map(void)
1658 {
1659 	size_t alloc_count = static_memory_map.count + 5;
1660 	size_t elem_sz = sizeof(*static_memory_map.map);
1661 	void *p = NULL;
1662 
1663 	p = nex_calloc(alloc_count, elem_sz);
1664 	if (!p)
1665 		panic();
1666 	memcpy(p, static_memory_map.map, static_memory_map.count * elem_sz);
1667 	static_memory_map.map = p;
1668 	static_memory_map.alloc_count = alloc_count;
1669 	memory_map_realloc_func = heap_realloc_memory_map;
1670 }
1671 
1672 bool core_mmu_mattr_is_ok(uint32_t mattr)
1673 {
1674 	/*
1675 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1676 	 * core_mmu_v7.c:mattr_to_texcb
1677 	 */
1678 
1679 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1680 	case TEE_MATTR_MEM_TYPE_DEV:
1681 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1682 	case TEE_MATTR_MEM_TYPE_CACHED:
1683 	case TEE_MATTR_MEM_TYPE_TAGGED:
1684 		return true;
1685 	default:
1686 		return false;
1687 	}
1688 }
1689 
1690 /*
1691  * test attributes of target physical buffer
1692  *
1693  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1694  *
1695  */
1696 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1697 {
1698 	struct tee_mmap_region *map;
1699 
1700 	/* Empty buffers complies with anything */
1701 	if (len == 0)
1702 		return true;
1703 
1704 	switch (attr) {
1705 	case CORE_MEM_SEC:
1706 		return pbuf_is_inside(secure_only, pbuf, len);
1707 	case CORE_MEM_NON_SEC:
1708 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1709 			pbuf_is_nsec_ddr(pbuf, len);
1710 	case CORE_MEM_TEE_RAM:
1711 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1712 							TEE_RAM_PH_SIZE);
1713 #ifdef CFG_CORE_RESERVED_SHM
1714 	case CORE_MEM_NSEC_SHM:
1715 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1716 							TEE_SHMEM_SIZE);
1717 #endif
1718 	case CORE_MEM_SDP_MEM:
1719 		return pbuf_is_sdp_mem(pbuf, len);
1720 	case CORE_MEM_CACHED:
1721 		map = find_map_by_pa(pbuf);
1722 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1723 			return false;
1724 		return mattr_is_cached(map->attr);
1725 	default:
1726 		return false;
1727 	}
1728 }
1729 
1730 /* test attributes of target virtual buffer (in core mapping) */
1731 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1732 {
1733 	paddr_t p;
1734 
1735 	/* Empty buffers complies with anything */
1736 	if (len == 0)
1737 		return true;
1738 
1739 	p = virt_to_phys((void *)vbuf);
1740 	if (!p)
1741 		return false;
1742 
1743 	return core_pbuf_is(attr, p, len);
1744 }
1745 
1746 /* core_va2pa - teecore exported service */
1747 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1748 {
1749 	struct tee_mmap_region *map;
1750 
1751 	map = find_map_by_va(va);
1752 	if (!va_is_in_map(map, (vaddr_t)va))
1753 		return -1;
1754 
1755 	/*
1756 	 * We can calculate PA for static map. Virtual address ranges
1757 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1758 	 * together with an invalid null physical address.
1759 	 */
1760 	if (map->pa)
1761 		*pa = map->pa + (vaddr_t)va  - map->va;
1762 	else
1763 		*pa = 0;
1764 
1765 	return 0;
1766 }
1767 
1768 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1769 {
1770 	if (!pa_is_in_map(map, pa, len))
1771 		return NULL;
1772 
1773 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1774 }
1775 
1776 /*
1777  * teecore gets some memory area definitions
1778  */
1779 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1780 			      vaddr_t *e)
1781 {
1782 	struct tee_mmap_region *map = find_map_by_type(type);
1783 
1784 	if (map) {
1785 		*s = map->va;
1786 		*e = map->va + map->size;
1787 	} else {
1788 		*s = 0;
1789 		*e = 0;
1790 	}
1791 }
1792 
1793 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1794 {
1795 	struct tee_mmap_region *map = find_map_by_pa(pa);
1796 
1797 	/* VA spaces have no valid PAs in the memory map */
1798 	if (!map || map->type == MEM_AREA_RES_VASPACE ||
1799 	    map->type == MEM_AREA_SHM_VASPACE)
1800 		return MEM_AREA_MAXTYPE;
1801 	return map->type;
1802 }
1803 
1804 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1805 			paddr_t pa, uint32_t attr)
1806 {
1807 	assert(idx < tbl_info->num_entries);
1808 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1809 				     idx, pa, attr);
1810 }
1811 
1812 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1813 			paddr_t *pa, uint32_t *attr)
1814 {
1815 	assert(idx < tbl_info->num_entries);
1816 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1817 				     idx, pa, attr);
1818 }
1819 
1820 static void clear_region(struct core_mmu_table_info *tbl_info,
1821 			 struct tee_mmap_region *region)
1822 {
1823 	unsigned int end = 0;
1824 	unsigned int idx = 0;
1825 
1826 	/* va, len and pa should be block aligned */
1827 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1828 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1829 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1830 
1831 	idx = core_mmu_va2idx(tbl_info, region->va);
1832 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1833 
1834 	while (idx < end) {
1835 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1836 		idx++;
1837 	}
1838 }
1839 
1840 static void set_region(struct core_mmu_table_info *tbl_info,
1841 		       struct tee_mmap_region *region)
1842 {
1843 	unsigned int end;
1844 	unsigned int idx;
1845 	paddr_t pa;
1846 
1847 	/* va, len and pa should be block aligned */
1848 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1849 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1850 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1851 
1852 	idx = core_mmu_va2idx(tbl_info, region->va);
1853 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1854 	pa = region->pa;
1855 
1856 	while (idx < end) {
1857 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1858 		idx++;
1859 		pa += BIT64(tbl_info->shift);
1860 	}
1861 }
1862 
1863 static void set_pg_region(struct core_mmu_table_info *dir_info,
1864 			  struct vm_region *region, struct pgt **pgt,
1865 			  struct core_mmu_table_info *pg_info)
1866 {
1867 	struct tee_mmap_region r = {
1868 		.va = region->va,
1869 		.size = region->size,
1870 		.attr = region->attr,
1871 	};
1872 	vaddr_t end = r.va + r.size;
1873 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1874 
1875 	while (r.va < end) {
1876 		if (!pg_info->table ||
1877 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1878 			/*
1879 			 * We're assigning a new translation table.
1880 			 */
1881 			unsigned int idx;
1882 
1883 			/* Virtual addresses must grow */
1884 			assert(r.va > pg_info->va_base);
1885 
1886 			idx = core_mmu_va2idx(dir_info, r.va);
1887 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1888 
1889 			/*
1890 			 * Advance pgt to va_base, note that we may need to
1891 			 * skip multiple page tables if there are large
1892 			 * holes in the vm map.
1893 			 */
1894 			while ((*pgt)->vabase < pg_info->va_base) {
1895 				*pgt = SLIST_NEXT(*pgt, link);
1896 				/* We should have allocated enough */
1897 				assert(*pgt);
1898 			}
1899 			assert((*pgt)->vabase == pg_info->va_base);
1900 			pg_info->table = (*pgt)->tbl;
1901 
1902 			core_mmu_set_entry(dir_info, idx,
1903 					   virt_to_phys(pg_info->table),
1904 					   pgt_attr);
1905 		}
1906 
1907 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1908 			     end - r.va);
1909 
1910 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1911 			size_t granule = BIT(pg_info->shift);
1912 			size_t offset = r.va - region->va + region->offset;
1913 
1914 			r.size = MIN(r.size,
1915 				     mobj_get_phys_granule(region->mobj));
1916 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1917 
1918 			if (mobj_get_pa(region->mobj, offset, granule,
1919 					&r.pa) != TEE_SUCCESS)
1920 				panic("Failed to get PA of unpaged mobj");
1921 			set_region(pg_info, &r);
1922 		}
1923 		r.va += r.size;
1924 	}
1925 }
1926 
1927 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1928 			     size_t size_left, paddr_t block_size,
1929 			     struct tee_mmap_region *mm)
1930 {
1931 	/* VA and PA are aligned to block size at current level */
1932 	if ((vaddr | paddr) & (block_size - 1))
1933 		return false;
1934 
1935 	/* Remainder fits into block at current level */
1936 	if (size_left < block_size)
1937 		return false;
1938 
1939 	/*
1940 	 * The required block size of the region is compatible with the
1941 	 * block size of the current level.
1942 	 */
1943 	if (mm->region_size < block_size)
1944 		return false;
1945 
1946 #ifdef CFG_WITH_PAGER
1947 	/*
1948 	 * If pager is enabled, we need to map TEE RAM and the whole pager
1949 	 * regions with small pages only
1950 	 */
1951 	if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) &&
1952 	    block_size != SMALL_PAGE_SIZE)
1953 		return false;
1954 #endif
1955 
1956 	return true;
1957 }
1958 
1959 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1960 {
1961 	struct core_mmu_table_info tbl_info = { };
1962 	unsigned int idx = 0;
1963 	vaddr_t vaddr = mm->va;
1964 	paddr_t paddr = mm->pa;
1965 	ssize_t size_left = mm->size;
1966 	uint32_t attr = mm->attr;
1967 	unsigned int level = 0;
1968 	bool table_found = false;
1969 	uint32_t old_attr = 0;
1970 
1971 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1972 	if (!paddr)
1973 		attr = 0;
1974 
1975 	while (size_left > 0) {
1976 		level = CORE_MMU_BASE_TABLE_LEVEL;
1977 
1978 		while (true) {
1979 			paddr_t block_size = 0;
1980 
1981 			assert(core_mmu_level_in_range(level));
1982 
1983 			table_found = core_mmu_find_table(prtn, vaddr, level,
1984 							  &tbl_info);
1985 			if (!table_found)
1986 				panic("can't find table for mapping");
1987 
1988 			block_size = BIT64(tbl_info.shift);
1989 
1990 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1991 			if (!can_map_at_level(paddr, vaddr, size_left,
1992 					      block_size, mm)) {
1993 				bool secure = mm->attr & TEE_MATTR_SECURE;
1994 
1995 				/*
1996 				 * This part of the region can't be mapped at
1997 				 * this level. Need to go deeper.
1998 				 */
1999 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
2000 								     idx,
2001 								     secure))
2002 					panic("Can't divide MMU entry");
2003 				level = tbl_info.next_level;
2004 				continue;
2005 			}
2006 
2007 			/* We can map part of the region at current level */
2008 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2009 			if (old_attr)
2010 				panic("Page is already mapped");
2011 
2012 			core_mmu_set_entry(&tbl_info, idx, paddr, attr);
2013 			/*
2014 			 * Dynamic vaspace regions don't have a physical
2015 			 * address initially but we need to allocate and
2016 			 * initialize the translation tables now for later
2017 			 * updates to work properly.
2018 			 */
2019 			if (paddr)
2020 				paddr += block_size;
2021 			vaddr += block_size;
2022 			size_left -= block_size;
2023 
2024 			break;
2025 		}
2026 	}
2027 }
2028 
2029 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
2030 			      enum teecore_memtypes memtype)
2031 {
2032 	TEE_Result ret;
2033 	struct core_mmu_table_info tbl_info;
2034 	struct tee_mmap_region *mm;
2035 	unsigned int idx;
2036 	uint32_t old_attr;
2037 	uint32_t exceptions;
2038 	vaddr_t vaddr = vstart;
2039 	size_t i;
2040 	bool secure;
2041 
2042 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
2043 
2044 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
2045 
2046 	if (vaddr & SMALL_PAGE_MASK)
2047 		return TEE_ERROR_BAD_PARAMETERS;
2048 
2049 	exceptions = mmu_lock();
2050 
2051 	mm = find_map_by_va((void *)vaddr);
2052 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
2053 		panic("VA does not belong to any known mm region");
2054 
2055 	if (!core_mmu_is_dynamic_vaspace(mm))
2056 		panic("Trying to map into static region");
2057 
2058 	for (i = 0; i < num_pages; i++) {
2059 		if (pages[i] & SMALL_PAGE_MASK) {
2060 			ret = TEE_ERROR_BAD_PARAMETERS;
2061 			goto err;
2062 		}
2063 
2064 		while (true) {
2065 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
2066 						 &tbl_info))
2067 				panic("Can't find pagetable for vaddr ");
2068 
2069 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2070 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
2071 				break;
2072 
2073 			/* This is supertable. Need to divide it. */
2074 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
2075 							     secure))
2076 				panic("Failed to spread pgdir on small tables");
2077 		}
2078 
2079 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2080 		if (old_attr)
2081 			panic("Page is already mapped");
2082 
2083 		core_mmu_set_entry(&tbl_info, idx, pages[i],
2084 				   core_mmu_type_to_attr(memtype));
2085 		vaddr += SMALL_PAGE_SIZE;
2086 	}
2087 
2088 	/*
2089 	 * Make sure all the changes to translation tables are visible
2090 	 * before returning. TLB doesn't need to be invalidated as we are
2091 	 * guaranteed that there's no valid mapping in this range.
2092 	 */
2093 	core_mmu_table_write_barrier();
2094 	mmu_unlock(exceptions);
2095 
2096 	return TEE_SUCCESS;
2097 err:
2098 	mmu_unlock(exceptions);
2099 
2100 	if (i)
2101 		core_mmu_unmap_pages(vstart, i);
2102 
2103 	return ret;
2104 }
2105 
2106 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
2107 					 size_t num_pages,
2108 					 enum teecore_memtypes memtype)
2109 {
2110 	struct core_mmu_table_info tbl_info = { };
2111 	struct tee_mmap_region *mm = NULL;
2112 	unsigned int idx = 0;
2113 	uint32_t old_attr = 0;
2114 	uint32_t exceptions = 0;
2115 	vaddr_t vaddr = vstart;
2116 	paddr_t paddr = pstart;
2117 	size_t i = 0;
2118 	bool secure = false;
2119 
2120 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
2121 
2122 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
2123 
2124 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
2125 		return TEE_ERROR_BAD_PARAMETERS;
2126 
2127 	exceptions = mmu_lock();
2128 
2129 	mm = find_map_by_va((void *)vaddr);
2130 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
2131 		panic("VA does not belong to any known mm region");
2132 
2133 	if (!core_mmu_is_dynamic_vaspace(mm))
2134 		panic("Trying to map into static region");
2135 
2136 	for (i = 0; i < num_pages; i++) {
2137 		while (true) {
2138 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
2139 						 &tbl_info))
2140 				panic("Can't find pagetable for vaddr ");
2141 
2142 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2143 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
2144 				break;
2145 
2146 			/* This is supertable. Need to divide it. */
2147 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
2148 							     secure))
2149 				panic("Failed to spread pgdir on small tables");
2150 		}
2151 
2152 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2153 		if (old_attr)
2154 			panic("Page is already mapped");
2155 
2156 		core_mmu_set_entry(&tbl_info, idx, paddr,
2157 				   core_mmu_type_to_attr(memtype));
2158 		paddr += SMALL_PAGE_SIZE;
2159 		vaddr += SMALL_PAGE_SIZE;
2160 	}
2161 
2162 	/*
2163 	 * Make sure all the changes to translation tables are visible
2164 	 * before returning. TLB doesn't need to be invalidated as we are
2165 	 * guaranteed that there's no valid mapping in this range.
2166 	 */
2167 	core_mmu_table_write_barrier();
2168 	mmu_unlock(exceptions);
2169 
2170 	return TEE_SUCCESS;
2171 }
2172 
2173 static bool mem_range_is_in_vcore_free(vaddr_t vstart, size_t num_pages)
2174 {
2175 	return core_is_buffer_inside(vstart, num_pages * SMALL_PAGE_SIZE,
2176 				     VCORE_FREE_PA, VCORE_FREE_SZ);
2177 }
2178 
2179 static void maybe_remove_from_mem_map(vaddr_t vstart, size_t num_pages)
2180 {
2181 	struct memory_map *mem_map = NULL;
2182 	struct tee_mmap_region *mm = NULL;
2183 	size_t idx = 0;
2184 	vaddr_t va = 0;
2185 
2186 	mm = find_map_by_va((void *)vstart);
2187 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
2188 		panic("VA does not belong to any known mm region");
2189 
2190 	if (core_mmu_is_dynamic_vaspace(mm))
2191 		return;
2192 
2193 	if (!mem_range_is_in_vcore_free(vstart, num_pages))
2194 		panic("Trying to unmap static region");
2195 
2196 	/*
2197 	 * We're going to remove a memory from the VCORE_FREE memory range.
2198 	 * Depending where the range is we may need to remove the matching
2199 	 * mm, peal of a bit from the start or end of the mm, or split it
2200 	 * into two with a whole in the middle.
2201 	 */
2202 
2203 	va = ROUNDDOWN(vstart, SMALL_PAGE_SIZE);
2204 	assert(mm->region_size == SMALL_PAGE_SIZE);
2205 
2206 	if (va == mm->va && mm->size == num_pages * SMALL_PAGE_SIZE) {
2207 		mem_map = get_memory_map();
2208 		idx = mm - mem_map->map;
2209 		assert(idx < mem_map->count);
2210 
2211 		rem_array_elem(mem_map->map, mem_map->count,
2212 			       sizeof(*mem_map->map), idx);
2213 		mem_map->count--;
2214 	} else if (va == mm->va) {
2215 		mm->va += num_pages * SMALL_PAGE_SIZE;
2216 		mm->pa += num_pages * SMALL_PAGE_SIZE;
2217 		mm->size -= num_pages * SMALL_PAGE_SIZE;
2218 	} else if (va + num_pages * SMALL_PAGE_SIZE == mm->va + mm->size) {
2219 		mm->size -= num_pages * SMALL_PAGE_SIZE;
2220 	} else {
2221 		struct tee_mmap_region m = *mm;
2222 
2223 		mem_map = get_memory_map();
2224 		idx = mm - mem_map->map;
2225 		assert(idx < mem_map->count);
2226 
2227 		mm->size = va - mm->va;
2228 		m.va += mm->size + num_pages * SMALL_PAGE_SIZE;
2229 		m.pa += mm->size + num_pages * SMALL_PAGE_SIZE;
2230 		m.size -= mm->size + num_pages * SMALL_PAGE_SIZE;
2231 		grow_mem_map(mem_map);
2232 		ins_array_elem(mem_map->map, mem_map->count,
2233 			       sizeof(*mem_map->map), idx + 1, &m);
2234 	}
2235 }
2236 
2237 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
2238 {
2239 	struct core_mmu_table_info tbl_info;
2240 	size_t i;
2241 	unsigned int idx;
2242 	uint32_t exceptions;
2243 
2244 	exceptions = mmu_lock();
2245 
2246 	maybe_remove_from_mem_map(vstart, num_pages);
2247 
2248 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
2249 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
2250 			panic("Can't find pagetable");
2251 
2252 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
2253 			panic("Invalid pagetable level");
2254 
2255 		idx = core_mmu_va2idx(&tbl_info, vstart);
2256 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
2257 	}
2258 	tlbi_all();
2259 
2260 	mmu_unlock(exceptions);
2261 }
2262 
2263 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
2264 				struct user_mode_ctx *uctx)
2265 {
2266 	struct core_mmu_table_info pg_info = { };
2267 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
2268 	struct pgt *pgt = NULL;
2269 	struct pgt *p = NULL;
2270 	struct vm_region *r = NULL;
2271 
2272 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
2273 		return; /* Nothing to map */
2274 
2275 	/*
2276 	 * Allocate all page tables in advance.
2277 	 */
2278 	pgt_get_all(uctx);
2279 	pgt = SLIST_FIRST(pgt_cache);
2280 
2281 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2282 
2283 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2284 		set_pg_region(dir_info, r, &pgt, &pg_info);
2285 	/* Record that the translation tables now are populated. */
2286 	SLIST_FOREACH(p, pgt_cache, link) {
2287 		p->populated = true;
2288 		if (p == pgt)
2289 			break;
2290 	}
2291 	assert(p == pgt);
2292 }
2293 
2294 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2295 				   size_t len)
2296 {
2297 	struct core_mmu_table_info tbl_info = { };
2298 	struct tee_mmap_region *res_map = NULL;
2299 	struct tee_mmap_region *map = NULL;
2300 	paddr_t pa = virt_to_phys(addr);
2301 	size_t granule = 0;
2302 	ptrdiff_t i = 0;
2303 	paddr_t p = 0;
2304 	size_t l = 0;
2305 
2306 	map = find_map_by_type_and_pa(type, pa, len);
2307 	if (!map)
2308 		return TEE_ERROR_GENERIC;
2309 
2310 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2311 	if (!res_map)
2312 		return TEE_ERROR_GENERIC;
2313 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2314 		return TEE_ERROR_GENERIC;
2315 	granule = BIT(tbl_info.shift);
2316 
2317 	if (map < static_memory_map.map ||
2318 	    map >= static_memory_map.map + static_memory_map.count)
2319 		return TEE_ERROR_GENERIC;
2320 	i = map - static_memory_map.map;
2321 
2322 	/* Check that we have a full match */
2323 	p = ROUNDDOWN2(pa, granule);
2324 	l = ROUNDUP2(len + pa - p, granule);
2325 	if (map->pa != p || map->size != l)
2326 		return TEE_ERROR_GENERIC;
2327 
2328 	clear_region(&tbl_info, map);
2329 	tlbi_all();
2330 
2331 	/* If possible remove the va range from res_map */
2332 	if (res_map->va - map->size == map->va) {
2333 		res_map->va -= map->size;
2334 		res_map->size += map->size;
2335 	}
2336 
2337 	/* Remove the entry. */
2338 	rem_array_elem(static_memory_map.map, static_memory_map.count,
2339 		       sizeof(*static_memory_map.map), i);
2340 	static_memory_map.count--;
2341 
2342 	return TEE_SUCCESS;
2343 }
2344 
2345 struct tee_mmap_region *
2346 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2347 {
2348 	struct memory_map *mem_map = get_memory_map();
2349 	struct tee_mmap_region *map_found = NULL;
2350 	size_t n = 0;
2351 
2352 	if (!len)
2353 		return NULL;
2354 
2355 	for (n = 0; n < mem_map->count; n++) {
2356 		if (mem_map->map[n].type != type)
2357 			continue;
2358 
2359 		if (map_found)
2360 			return NULL;
2361 
2362 		map_found = mem_map->map + n;
2363 	}
2364 
2365 	if (!map_found || map_found->size < len)
2366 		return NULL;
2367 
2368 	return map_found;
2369 }
2370 
2371 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2372 {
2373 	struct memory_map *mem_map = &static_memory_map;
2374 	struct core_mmu_table_info tbl_info = { };
2375 	struct tee_mmap_region *map = NULL;
2376 	size_t granule = 0;
2377 	paddr_t p = 0;
2378 	size_t l = 0;
2379 
2380 	if (!len)
2381 		return NULL;
2382 
2383 	if (!core_mmu_check_end_pa(addr, len))
2384 		return NULL;
2385 
2386 	/* Check if the memory is already mapped */
2387 	map = find_map_by_type_and_pa(type, addr, len);
2388 	if (map && pbuf_inside_map_area(addr, len, map))
2389 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2390 
2391 	/* Find the reserved va space used for late mappings */
2392 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2393 	if (!map)
2394 		return NULL;
2395 
2396 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2397 		return NULL;
2398 
2399 	granule = BIT64(tbl_info.shift);
2400 	p = ROUNDDOWN2(addr, granule);
2401 	l = ROUNDUP2(len + addr - p, granule);
2402 
2403 	/* Ban overflowing virtual addresses */
2404 	if (map->size < l)
2405 		return NULL;
2406 
2407 	/*
2408 	 * Something is wrong, we can't fit the va range into the selected
2409 	 * table. The reserved va range is possibly missaligned with
2410 	 * granule.
2411 	 */
2412 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2413 		return NULL;
2414 
2415 	if (static_memory_map.count >= static_memory_map.alloc_count)
2416 		return NULL;
2417 
2418 	mem_map->map[mem_map->count] = (struct tee_mmap_region){
2419 		.va = map->va,
2420 		.size = l,
2421 		.type = type,
2422 		.region_size = granule,
2423 		.attr = core_mmu_type_to_attr(type),
2424 		.pa = p,
2425 	};
2426 	map->va += l;
2427 	map->size -= l;
2428 	map = mem_map->map + mem_map->count;
2429 	mem_map->count++;
2430 
2431 	set_region(&tbl_info, map);
2432 
2433 	/* Make sure the new entry is visible before continuing. */
2434 	core_mmu_table_write_barrier();
2435 
2436 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2437 }
2438 
2439 #ifdef CFG_WITH_PAGER
2440 static vaddr_t get_linear_map_end_va(void)
2441 {
2442 	/* this is synced with the generic linker file kern.ld.S */
2443 	return (vaddr_t)__heap2_end;
2444 }
2445 
2446 static paddr_t get_linear_map_end_pa(void)
2447 {
2448 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2449 }
2450 #endif
2451 
2452 #if defined(CFG_TEE_CORE_DEBUG)
2453 static void check_pa_matches_va(void *va, paddr_t pa)
2454 {
2455 	TEE_Result res = TEE_ERROR_GENERIC;
2456 	vaddr_t v = (vaddr_t)va;
2457 	paddr_t p = 0;
2458 	struct core_mmu_table_info ti __maybe_unused = { };
2459 
2460 	if (core_mmu_user_va_range_is_defined()) {
2461 		vaddr_t user_va_base = 0;
2462 		size_t user_va_size = 0;
2463 
2464 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2465 		if (v >= user_va_base &&
2466 		    v <= (user_va_base - 1 + user_va_size)) {
2467 			if (!core_mmu_user_mapping_is_active()) {
2468 				if (pa)
2469 					panic("issue in linear address space");
2470 				return;
2471 			}
2472 
2473 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2474 				       va, &p);
2475 			if (res == TEE_ERROR_NOT_SUPPORTED)
2476 				return;
2477 			if (res == TEE_SUCCESS && pa != p)
2478 				panic("bad pa");
2479 			if (res != TEE_SUCCESS && pa)
2480 				panic("false pa");
2481 			return;
2482 		}
2483 	}
2484 #ifdef CFG_WITH_PAGER
2485 	if (is_unpaged(va)) {
2486 		if (v - boot_mmu_config.map_offset != pa)
2487 			panic("issue in linear address space");
2488 		return;
2489 	}
2490 
2491 	if (tee_pager_get_table_info(v, &ti)) {
2492 		uint32_t a;
2493 
2494 		/*
2495 		 * Lookups in the page table managed by the pager is
2496 		 * dangerous for addresses in the paged area as those pages
2497 		 * changes all the time. But some ranges are safe,
2498 		 * rw-locked areas when the page is populated for instance.
2499 		 */
2500 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2501 		if (a & TEE_MATTR_VALID_BLOCK) {
2502 			paddr_t mask = BIT64(ti.shift) - 1;
2503 
2504 			p |= v & mask;
2505 			if (pa != p)
2506 				panic();
2507 		} else {
2508 			if (pa)
2509 				panic();
2510 		}
2511 		return;
2512 	}
2513 #endif
2514 
2515 	if (!core_va2pa_helper(va, &p)) {
2516 		/* Verfiy only the static mapping (case non null phys addr) */
2517 		if (p && pa != p) {
2518 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2519 			     va, p, pa);
2520 			panic();
2521 		}
2522 	} else {
2523 		if (pa) {
2524 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2525 			panic();
2526 		}
2527 	}
2528 }
2529 #else
2530 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2531 {
2532 }
2533 #endif
2534 
2535 paddr_t virt_to_phys(void *va)
2536 {
2537 	paddr_t pa = 0;
2538 
2539 	if (!arch_va2pa_helper(va, &pa))
2540 		pa = 0;
2541 	check_pa_matches_va(memtag_strip_tag(va), pa);
2542 	return pa;
2543 }
2544 
2545 /*
2546  * Don't use check_va_matches_pa() for RISC-V, as its callee
2547  * arch_va2pa_helper() will call it eventually, this creates
2548  * indirect recursion and can lead to a stack overflow.
2549  * Moreover, if arch_va2pa_helper() returns true, it implies
2550  * the va2pa mapping is matched, no need to check it again.
2551  */
2552 #if defined(CFG_TEE_CORE_DEBUG) && !defined(__riscv)
2553 static void check_va_matches_pa(paddr_t pa, void *va)
2554 {
2555 	paddr_t p = 0;
2556 
2557 	if (!va)
2558 		return;
2559 
2560 	p = virt_to_phys(va);
2561 	if (p != pa) {
2562 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2563 		panic();
2564 	}
2565 }
2566 #else
2567 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2568 {
2569 }
2570 #endif
2571 
2572 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2573 {
2574 	if (!core_mmu_user_mapping_is_active())
2575 		return NULL;
2576 
2577 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2578 }
2579 
2580 #ifdef CFG_WITH_PAGER
2581 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2582 {
2583 	paddr_t end_pa = 0;
2584 
2585 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2586 		return NULL;
2587 
2588 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2589 		if (end_pa > get_linear_map_end_pa())
2590 			return NULL;
2591 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2592 	}
2593 
2594 	return tee_pager_phys_to_virt(pa, len);
2595 }
2596 #else
2597 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2598 {
2599 	struct tee_mmap_region *mmap = NULL;
2600 
2601 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2602 	if (!mmap)
2603 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2604 	if (!mmap)
2605 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2606 	if (!mmap)
2607 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2608 	if (!mmap)
2609 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2610 	if (!mmap)
2611 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2612 
2613 	/*
2614 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2615 	 * used with pager and not needed here.
2616 	 */
2617 	return map_pa2va(mmap, pa, len);
2618 }
2619 #endif
2620 
2621 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2622 {
2623 	void *va = NULL;
2624 
2625 	switch (m) {
2626 	case MEM_AREA_TS_VASPACE:
2627 		va = phys_to_virt_ts_vaspace(pa, len);
2628 		break;
2629 	case MEM_AREA_TEE_RAM:
2630 	case MEM_AREA_TEE_RAM_RX:
2631 	case MEM_AREA_TEE_RAM_RO:
2632 	case MEM_AREA_TEE_RAM_RW:
2633 	case MEM_AREA_NEX_RAM_RO:
2634 	case MEM_AREA_NEX_RAM_RW:
2635 		va = phys_to_virt_tee_ram(pa, len);
2636 		break;
2637 	case MEM_AREA_SHM_VASPACE:
2638 	case MEM_AREA_NEX_DYN_VASPACE:
2639 	case MEM_AREA_TEE_DYN_VASPACE:
2640 		/* Find VA from PA in dynamic SHM is not yet supported */
2641 		va = NULL;
2642 		break;
2643 	default:
2644 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2645 	}
2646 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2647 		check_va_matches_pa(pa, va);
2648 	return va;
2649 }
2650 
2651 void *phys_to_virt_io(paddr_t pa, size_t len)
2652 {
2653 	struct tee_mmap_region *map = NULL;
2654 	void *va = NULL;
2655 
2656 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2657 	if (!map)
2658 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2659 	if (!map)
2660 		return NULL;
2661 	va = map_pa2va(map, pa, len);
2662 	check_va_matches_pa(pa, va);
2663 	return va;
2664 }
2665 
2666 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2667 {
2668 	if (cpu_mmu_enabled())
2669 		return (vaddr_t)phys_to_virt(pa, type, len);
2670 
2671 	return (vaddr_t)pa;
2672 }
2673 
2674 #ifdef CFG_WITH_PAGER
2675 bool is_unpaged(const void *va)
2676 {
2677 	vaddr_t v = (vaddr_t)va;
2678 
2679 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2680 }
2681 #endif
2682 
2683 #ifdef CFG_NS_VIRTUALIZATION
2684 bool is_nexus(const void *va)
2685 {
2686 	vaddr_t v = (vaddr_t)va;
2687 
2688 	return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ;
2689 }
2690 #endif
2691 
2692 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2693 {
2694 	assert(p->pa);
2695 	if (cpu_mmu_enabled()) {
2696 		if (!p->va)
2697 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2698 		assert(p->va);
2699 		return p->va;
2700 	}
2701 	return p->pa;
2702 }
2703 
2704 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2705 {
2706 	assert(p->pa);
2707 	if (cpu_mmu_enabled()) {
2708 		if (!p->va)
2709 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2710 						      len);
2711 		assert(p->va);
2712 		return p->va;
2713 	}
2714 	return p->pa;
2715 }
2716 
2717 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2718 {
2719 	assert(p->pa);
2720 	if (cpu_mmu_enabled()) {
2721 		if (!p->va)
2722 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2723 						      len);
2724 		assert(p->va);
2725 		return p->va;
2726 	}
2727 	return p->pa;
2728 }
2729 
2730 #ifdef CFG_CORE_RESERVED_SHM
2731 static TEE_Result teecore_init_pub_ram(void)
2732 {
2733 	vaddr_t s = 0;
2734 	vaddr_t e = 0;
2735 
2736 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2737 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2738 
2739 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2740 		panic("invalid PUB RAM");
2741 
2742 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2743 	if (!tee_vbuf_is_non_sec(s, e - s))
2744 		panic("PUB RAM is not non-secure");
2745 
2746 #ifdef CFG_PL310
2747 	/* Allocate statically the l2cc mutex */
2748 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2749 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2750 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2751 #endif
2752 
2753 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2754 	default_nsec_shm_size = e - s;
2755 
2756 	return TEE_SUCCESS;
2757 }
2758 early_init(teecore_init_pub_ram);
2759 #endif /*CFG_CORE_RESERVED_SHM*/
2760 
2761 static void __maybe_unused carve_out_core_mem(paddr_t pa, paddr_t end_pa)
2762 {
2763 	tee_mm_entry_t *mm __maybe_unused = NULL;
2764 
2765 	DMSG("%#"PRIxPA" .. %#"PRIxPA, pa, end_pa);
2766 	mm = phys_mem_alloc2(pa, end_pa - pa);
2767 	assert(mm);
2768 }
2769 
2770 void core_mmu_init_phys_mem(void)
2771 {
2772 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
2773 		paddr_t b1 = 0;
2774 		paddr_size_t s1 = 0;
2775 
2776 		static_assert(ARRAY_SIZE(secure_only) <= 2);
2777 
2778 		if (ARRAY_SIZE(secure_only) == 2) {
2779 			b1 = secure_only[1].paddr;
2780 			s1 = secure_only[1].size;
2781 		}
2782 		virt_init_memory(&static_memory_map, secure_only[0].paddr,
2783 				 secure_only[0].size, b1, s1);
2784 	} else {
2785 #ifdef CFG_WITH_PAGER
2786 		/*
2787 		 * The pager uses all core memory so there's no need to add
2788 		 * it to the pool.
2789 		 */
2790 		static_assert(ARRAY_SIZE(secure_only) == 2);
2791 		phys_mem_init(0, 0, secure_only[1].paddr, secure_only[1].size);
2792 #else /*!CFG_WITH_PAGER*/
2793 		size_t align = BIT(CORE_MMU_USER_CODE_SHIFT);
2794 		paddr_t end_pa = 0;
2795 		size_t size = 0;
2796 		paddr_t ps = 0;
2797 		paddr_t pa = 0;
2798 
2799 		static_assert(ARRAY_SIZE(secure_only) <= 2);
2800 		if (ARRAY_SIZE(secure_only) == 2) {
2801 			ps = secure_only[1].paddr;
2802 			size = secure_only[1].size;
2803 		}
2804 		phys_mem_init(secure_only[0].paddr, secure_only[0].size,
2805 			      ps, size);
2806 
2807 		/*
2808 		 * The VCORE macros are relocatable so we need to translate
2809 		 * the addresses now that the MMU is enabled.
2810 		 */
2811 		end_pa = vaddr_to_phys(ROUNDUP2(VCORE_FREE_END_PA,
2812 						align) - 1) + 1;
2813 		/* Carve out the part used by OP-TEE core */
2814 		carve_out_core_mem(vaddr_to_phys(VCORE_UNPG_RX_PA), end_pa);
2815 		if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) {
2816 			pa = vaddr_to_phys(ROUNDUP2(ASAN_MAP_PA, align));
2817 			carve_out_core_mem(pa, pa + ASAN_MAP_SZ);
2818 		}
2819 
2820 		/* Carve out test SDP memory */
2821 #ifdef TEE_SDP_TEST_MEM_BASE
2822 		if (TEE_SDP_TEST_MEM_SIZE) {
2823 			pa = TEE_SDP_TEST_MEM_BASE;
2824 			carve_out_core_mem(pa, pa + TEE_SDP_TEST_MEM_SIZE);
2825 		}
2826 #endif
2827 #endif /*!CFG_WITH_PAGER*/
2828 	}
2829 }
2830