1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016, 2022 Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved. 6 */ 7 8 #include <assert.h> 9 #include <config.h> 10 #include <kernel/boot.h> 11 #include <kernel/dt.h> 12 #include <kernel/linker.h> 13 #include <kernel/panic.h> 14 #include <kernel/spinlock.h> 15 #include <kernel/tee_l2cc_mutex.h> 16 #include <kernel/tee_misc.h> 17 #include <kernel/tlb_helpers.h> 18 #include <kernel/user_mode_ctx.h> 19 #include <kernel/virtualization.h> 20 #include <libfdt.h> 21 #include <mm/core_memprot.h> 22 #include <mm/core_mmu.h> 23 #include <mm/mobj.h> 24 #include <mm/pgt_cache.h> 25 #include <mm/tee_pager.h> 26 #include <mm/vm.h> 27 #include <platform_config.h> 28 #include <string.h> 29 #include <trace.h> 30 #include <util.h> 31 32 #ifndef DEBUG_XLAT_TABLE 33 #define DEBUG_XLAT_TABLE 0 34 #endif 35 36 #define SHM_VASPACE_SIZE (1024 * 1024 * 32) 37 38 #ifdef CFG_CORE_PHYS_RELOCATABLE 39 unsigned long core_mmu_tee_load_pa __nex_bss; 40 #else 41 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR; 42 #endif 43 44 /* 45 * These variables are initialized before .bss is cleared. To avoid 46 * resetting them when .bss is cleared we're storing them in .data instead, 47 * even if they initially are zero. 48 */ 49 50 #ifdef CFG_CORE_RESERVED_SHM 51 /* Default NSec shared memory allocated from NSec world */ 52 unsigned long default_nsec_shm_size __nex_bss; 53 unsigned long default_nsec_shm_paddr __nex_bss; 54 #endif 55 56 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS 57 #ifdef CFG_CORE_ASLR 58 + 1 59 #endif 60 + 1] __nex_bss; 61 62 /* Define the platform's memory layout. */ 63 struct memaccess_area { 64 paddr_t paddr; 65 size_t size; 66 }; 67 68 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } 69 70 static struct memaccess_area secure_only[] __nex_data = { 71 #ifdef CFG_CORE_PHYS_RELOCATABLE 72 MEMACCESS_AREA(0, 0), 73 #else 74 #ifdef TRUSTED_SRAM_BASE 75 MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), 76 #endif 77 MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), 78 #endif 79 }; 80 81 static struct memaccess_area nsec_shared[] __nex_data = { 82 #ifdef CFG_CORE_RESERVED_SHM 83 MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), 84 #endif 85 }; 86 87 #if defined(CFG_SECURE_DATA_PATH) 88 static const char *tz_sdp_match = "linaro,secure-heap"; 89 static struct memaccess_area sec_sdp; 90 #ifdef CFG_TEE_SDP_MEM_BASE 91 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); 92 #endif 93 #ifdef TEE_SDP_TEST_MEM_BASE 94 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); 95 #endif 96 #endif 97 98 #ifdef CFG_CORE_RESERVED_SHM 99 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); 100 #endif 101 static unsigned int mmu_spinlock; 102 103 static uint32_t mmu_lock(void) 104 { 105 return cpu_spin_lock_xsave(&mmu_spinlock); 106 } 107 108 static void mmu_unlock(uint32_t exceptions) 109 { 110 cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); 111 } 112 113 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size) 114 { 115 /* 116 * The first range is always used to cover OP-TEE core memory, but 117 * depending on configuration it may cover more than that. 118 */ 119 *base = secure_only[0].paddr; 120 *size = secure_only[0].size; 121 } 122 123 #ifdef CFG_CORE_PHYS_RELOCATABLE 124 void core_mmu_set_secure_memory(paddr_t base, size_t size) 125 { 126 static_assert(ARRAY_SIZE(secure_only) == 1); 127 assert(!secure_only[0].size); 128 assert(base && size); 129 130 DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size); 131 secure_only[0].paddr = base; 132 secure_only[0].size = size; 133 } 134 #endif 135 136 void core_mmu_get_ta_range(paddr_t *base, size_t *size) 137 { 138 paddr_t b = 0; 139 size_t s = 0; 140 141 static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE)); 142 #ifdef TA_RAM_START 143 b = TA_RAM_START; 144 s = TA_RAM_SIZE; 145 #else 146 static_assert(ARRAY_SIZE(secure_only) <= 2); 147 if (ARRAY_SIZE(secure_only) == 1) { 148 vaddr_t load_offs = 0; 149 150 assert(core_mmu_tee_load_pa >= secure_only[0].paddr); 151 load_offs = core_mmu_tee_load_pa - secure_only[0].paddr; 152 153 assert(secure_only[0].size > 154 load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE); 155 b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE; 156 s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE - 157 TEE_SDP_TEST_MEM_SIZE; 158 } else { 159 assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE); 160 b = secure_only[1].paddr; 161 s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE; 162 } 163 #endif 164 if (base) 165 *base = b; 166 if (size) 167 *size = s; 168 } 169 170 static struct tee_mmap_region *get_memory_map(void) 171 { 172 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 173 struct tee_mmap_region *map = virt_get_memory_map(); 174 175 if (map) 176 return map; 177 } 178 179 return static_memory_map; 180 } 181 182 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, 183 paddr_t pa, size_t size) 184 { 185 size_t n; 186 187 for (n = 0; n < alen; n++) 188 if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) 189 return true; 190 return false; 191 } 192 193 #define pbuf_intersects(a, pa, size) \ 194 _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) 195 196 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, 197 paddr_t pa, size_t size) 198 { 199 size_t n; 200 201 for (n = 0; n < alen; n++) 202 if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) 203 return true; 204 return false; 205 } 206 207 #define pbuf_is_inside(a, pa, size) \ 208 _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) 209 210 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) 211 { 212 paddr_t end_pa = 0; 213 214 if (!map) 215 return false; 216 217 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 218 return false; 219 220 return (pa >= map->pa && end_pa <= map->pa + map->size - 1); 221 } 222 223 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) 224 { 225 if (!map) 226 return false; 227 return (va >= map->va && va <= (map->va + map->size - 1)); 228 } 229 230 /* check if target buffer fits in a core default map area */ 231 static bool pbuf_inside_map_area(unsigned long p, size_t l, 232 struct tee_mmap_region *map) 233 { 234 return core_is_buffer_inside(p, l, map->pa, map->size); 235 } 236 237 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) 238 { 239 struct tee_mmap_region *map; 240 241 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) 242 if (map->type == type) 243 return map; 244 return NULL; 245 } 246 247 static struct tee_mmap_region * 248 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) 249 { 250 struct tee_mmap_region *map; 251 252 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 253 if (map->type != type) 254 continue; 255 if (pa_is_in_map(map, pa, len)) 256 return map; 257 } 258 return NULL; 259 } 260 261 static struct tee_mmap_region *find_map_by_va(void *va) 262 { 263 struct tee_mmap_region *map = get_memory_map(); 264 unsigned long a = (unsigned long)va; 265 266 while (!core_mmap_is_end_of_table(map)) { 267 if (a >= map->va && a <= (map->va - 1 + map->size)) 268 return map; 269 map++; 270 } 271 return NULL; 272 } 273 274 static struct tee_mmap_region *find_map_by_pa(unsigned long pa) 275 { 276 struct tee_mmap_region *map = get_memory_map(); 277 278 while (!core_mmap_is_end_of_table(map)) { 279 if (pa >= map->pa && pa <= (map->pa + map->size - 1)) 280 return map; 281 map++; 282 } 283 return NULL; 284 } 285 286 #if defined(CFG_SECURE_DATA_PATH) 287 static bool dtb_get_sdp_region(void) 288 { 289 void *fdt = NULL; 290 int node = 0; 291 int tmp_node = 0; 292 paddr_t tmp_addr = 0; 293 size_t tmp_size = 0; 294 295 if (!IS_ENABLED(CFG_EMBED_DTB)) 296 return false; 297 298 fdt = get_embedded_dt(); 299 if (!fdt) 300 panic("No DTB found"); 301 302 node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match); 303 if (node < 0) { 304 DMSG("No %s compatible node found", tz_sdp_match); 305 return false; 306 } 307 tmp_node = node; 308 while (tmp_node >= 0) { 309 tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node, 310 tz_sdp_match); 311 if (tmp_node >= 0) 312 DMSG("Ignore SDP pool node %s, supports only 1 node", 313 fdt_get_name(fdt, tmp_node, NULL)); 314 } 315 316 tmp_addr = fdt_reg_base_address(fdt, node); 317 if (tmp_addr == DT_INFO_INVALID_REG) { 318 EMSG("%s: Unable to get base addr from DT", tz_sdp_match); 319 return false; 320 } 321 322 tmp_size = fdt_reg_size(fdt, node); 323 if (tmp_size == DT_INFO_INVALID_REG_SIZE) { 324 EMSG("%s: Unable to get size of base addr from DT", 325 tz_sdp_match); 326 return false; 327 } 328 329 sec_sdp.paddr = tmp_addr; 330 sec_sdp.size = tmp_size; 331 332 return true; 333 } 334 #endif 335 336 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) 337 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, 338 const struct core_mmu_phys_mem *start, 339 const struct core_mmu_phys_mem *end) 340 { 341 const struct core_mmu_phys_mem *mem; 342 343 for (mem = start; mem < end; mem++) { 344 if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) 345 return true; 346 } 347 348 return false; 349 } 350 #endif 351 352 #ifdef CFG_CORE_DYN_SHM 353 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, 354 paddr_t pa, size_t size) 355 { 356 struct core_mmu_phys_mem *m = *mem; 357 size_t n = 0; 358 359 while (true) { 360 if (n >= *nelems) { 361 DMSG("No need to carve out %#" PRIxPA " size %#zx", 362 pa, size); 363 return; 364 } 365 if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size)) 366 break; 367 if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size)) 368 panic(); 369 n++; 370 } 371 372 if (pa == m[n].addr && size == m[n].size) { 373 /* Remove this entry */ 374 (*nelems)--; 375 memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n)); 376 m = nex_realloc(m, sizeof(*m) * *nelems); 377 if (!m) 378 panic(); 379 *mem = m; 380 } else if (pa == m[n].addr) { 381 m[n].addr += size; 382 m[n].size -= size; 383 } else if ((pa + size) == (m[n].addr + m[n].size)) { 384 m[n].size -= size; 385 } else { 386 /* Need to split the memory entry */ 387 m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); 388 if (!m) 389 panic(); 390 *mem = m; 391 memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n)); 392 (*nelems)++; 393 m[n].size = pa - m[n].addr; 394 m[n + 1].size -= size + m[n].size; 395 m[n + 1].addr = pa + size; 396 } 397 } 398 399 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, 400 size_t nelems, 401 struct tee_mmap_region *map) 402 { 403 size_t n; 404 405 for (n = 0; n < nelems; n++) { 406 if (!core_is_buffer_outside(start[n].addr, start[n].size, 407 map->pa, map->size)) { 408 EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ 409 ") overlaps map (type %d %#" PRIxPA ":%#zx)", 410 start[n].addr, start[n].size, 411 map->type, map->pa, map->size); 412 panic(); 413 } 414 } 415 } 416 417 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; 418 static size_t discovered_nsec_ddr_nelems __nex_bss; 419 420 static int cmp_pmem_by_addr(const void *a, const void *b) 421 { 422 const struct core_mmu_phys_mem *pmem_a = a; 423 const struct core_mmu_phys_mem *pmem_b = b; 424 425 return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); 426 } 427 428 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 429 size_t nelems) 430 { 431 struct core_mmu_phys_mem *m = start; 432 size_t num_elems = nelems; 433 struct tee_mmap_region *map = static_memory_map; 434 const struct core_mmu_phys_mem __maybe_unused *pmem; 435 size_t n = 0; 436 437 assert(!discovered_nsec_ddr_start); 438 assert(m && num_elems); 439 440 qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); 441 442 /* 443 * Non-secure shared memory and also secure data 444 * path memory are supposed to reside inside 445 * non-secure memory. Since NSEC_SHM and SDP_MEM 446 * are used for a specific purpose make holes for 447 * those memory in the normal non-secure memory. 448 * 449 * This has to be done since for instance QEMU 450 * isn't aware of which memory range in the 451 * non-secure memory is used for NSEC_SHM. 452 */ 453 454 #ifdef CFG_SECURE_DATA_PATH 455 if (dtb_get_sdp_region()) 456 carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size); 457 458 for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) 459 carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); 460 #endif 461 462 for (n = 0; n < ARRAY_SIZE(secure_only); n++) 463 carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr, 464 secure_only[n].size); 465 466 for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) { 467 switch (map->type) { 468 case MEM_AREA_NSEC_SHM: 469 carve_out_phys_mem(&m, &num_elems, map->pa, map->size); 470 break; 471 case MEM_AREA_EXT_DT: 472 case MEM_AREA_RES_VASPACE: 473 case MEM_AREA_SHM_VASPACE: 474 case MEM_AREA_TS_VASPACE: 475 case MEM_AREA_PAGER_VASPACE: 476 break; 477 default: 478 check_phys_mem_is_outside(m, num_elems, map); 479 } 480 } 481 482 discovered_nsec_ddr_start = m; 483 discovered_nsec_ddr_nelems = num_elems; 484 485 if (!core_mmu_check_end_pa(m[num_elems - 1].addr, 486 m[num_elems - 1].size)) 487 panic(); 488 } 489 490 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, 491 const struct core_mmu_phys_mem **end) 492 { 493 if (!discovered_nsec_ddr_start) 494 return false; 495 496 *start = discovered_nsec_ddr_start; 497 *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; 498 499 return true; 500 } 501 502 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) 503 { 504 const struct core_mmu_phys_mem *start; 505 const struct core_mmu_phys_mem *end; 506 507 if (!get_discovered_nsec_ddr(&start, &end)) 508 return false; 509 510 return pbuf_is_special_mem(pbuf, len, start, end); 511 } 512 513 bool core_mmu_nsec_ddr_is_defined(void) 514 { 515 const struct core_mmu_phys_mem *start; 516 const struct core_mmu_phys_mem *end; 517 518 if (!get_discovered_nsec_ddr(&start, &end)) 519 return false; 520 521 return start != end; 522 } 523 #else 524 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) 525 { 526 return false; 527 } 528 #endif /*CFG_CORE_DYN_SHM*/ 529 530 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ 531 EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ 532 pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) 533 534 #ifdef CFG_SECURE_DATA_PATH 535 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) 536 { 537 bool is_sdp_mem = false; 538 539 if (sec_sdp.size) 540 is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr, 541 sec_sdp.size); 542 543 if (!is_sdp_mem) 544 is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, 545 phys_sdp_mem_end); 546 547 return is_sdp_mem; 548 } 549 550 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size) 551 { 552 struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED, 553 CORE_MEM_SDP_MEM); 554 555 if (!mobj) 556 panic("can't create SDP physical memory object"); 557 558 return mobj; 559 } 560 561 struct mobj **core_sdp_mem_create_mobjs(void) 562 { 563 const struct core_mmu_phys_mem *mem = NULL; 564 struct mobj **mobj_base = NULL; 565 struct mobj **mobj = NULL; 566 int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; 567 568 if (sec_sdp.size) 569 cnt++; 570 571 /* SDP mobjs table must end with a NULL entry */ 572 mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); 573 if (!mobj_base) 574 panic("Out of memory"); 575 576 mobj = mobj_base; 577 578 for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++) 579 *mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size); 580 581 if (sec_sdp.size) 582 *mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size); 583 584 return mobj_base; 585 } 586 587 #else /* CFG_SECURE_DATA_PATH */ 588 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) 589 { 590 return false; 591 } 592 593 #endif /* CFG_SECURE_DATA_PATH */ 594 595 /* Check special memories comply with registered memories */ 596 static void verify_special_mem_areas(struct tee_mmap_region *mem_map, 597 size_t len, 598 const struct core_mmu_phys_mem *start, 599 const struct core_mmu_phys_mem *end, 600 const char *area_name __maybe_unused) 601 { 602 const struct core_mmu_phys_mem *mem; 603 const struct core_mmu_phys_mem *mem2; 604 struct tee_mmap_region *mmap; 605 size_t n; 606 607 if (start == end) { 608 DMSG("No %s memory area defined", area_name); 609 return; 610 } 611 612 for (mem = start; mem < end; mem++) 613 DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", 614 area_name, mem->addr, (uint64_t)mem->addr + mem->size); 615 616 /* Check memories do not intersect each other */ 617 for (mem = start; mem + 1 < end; mem++) { 618 for (mem2 = mem + 1; mem2 < end; mem2++) { 619 if (core_is_buffer_intersect(mem2->addr, mem2->size, 620 mem->addr, mem->size)) { 621 MSG_MEM_INSTERSECT(mem2->addr, mem2->size, 622 mem->addr, mem->size); 623 panic("Special memory intersection"); 624 } 625 } 626 } 627 628 /* 629 * Check memories do not intersect any mapped memory. 630 * This is called before reserved VA space is loaded in mem_map. 631 */ 632 for (mem = start; mem < end; mem++) { 633 for (mmap = mem_map, n = 0; n < len; mmap++, n++) { 634 if (core_is_buffer_intersect(mem->addr, mem->size, 635 mmap->pa, mmap->size)) { 636 MSG_MEM_INSTERSECT(mem->addr, mem->size, 637 mmap->pa, mmap->size); 638 panic("Special memory intersection"); 639 } 640 } 641 } 642 } 643 644 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems, 645 const char *mem_name __maybe_unused, 646 enum teecore_memtypes mem_type, 647 paddr_t mem_addr, paddr_size_t mem_size, size_t *last) 648 { 649 size_t n = 0; 650 paddr_t pa; 651 paddr_size_t size; 652 653 if (!mem_size) /* Discard null size entries */ 654 return; 655 /* 656 * If some ranges of memory of the same type do overlap 657 * each others they are coalesced into one entry. To help this 658 * added entries are sorted by increasing physical. 659 * 660 * Note that it's valid to have the same physical memory as several 661 * different memory types, for instance the same device memory 662 * mapped as both secure and non-secure. This will probably not 663 * happen often in practice. 664 */ 665 DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, 666 mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size); 667 while (true) { 668 if (n >= (num_elems - 1)) { 669 EMSG("Out of entries (%zu) in memory_map", num_elems); 670 panic(); 671 } 672 if (n == *last) 673 break; 674 pa = memory_map[n].pa; 675 size = memory_map[n].size; 676 if (mem_type == memory_map[n].type && 677 ((pa <= (mem_addr + (mem_size - 1))) && 678 (mem_addr <= (pa + (size - 1))))) { 679 DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr); 680 memory_map[n].pa = MIN(pa, mem_addr); 681 memory_map[n].size = MAX(size, mem_size) + 682 (pa - memory_map[n].pa); 683 return; 684 } 685 if (mem_type < memory_map[n].type || 686 (mem_type == memory_map[n].type && mem_addr < pa)) 687 break; /* found the spot where to insert this memory */ 688 n++; 689 } 690 691 memmove(memory_map + n + 1, memory_map + n, 692 sizeof(struct tee_mmap_region) * (*last - n)); 693 (*last)++; 694 memset(memory_map + n, 0, sizeof(memory_map[0])); 695 memory_map[n].type = mem_type; 696 memory_map[n].pa = mem_addr; 697 memory_map[n].size = mem_size; 698 } 699 700 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems, 701 enum teecore_memtypes type, size_t size, size_t *last) 702 { 703 size_t n = 0; 704 705 DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); 706 while (true) { 707 if (n >= (num_elems - 1)) { 708 EMSG("Out of entries (%zu) in memory_map", num_elems); 709 panic(); 710 } 711 if (n == *last) 712 break; 713 if (type < memory_map[n].type) 714 break; 715 n++; 716 } 717 718 memmove(memory_map + n + 1, memory_map + n, 719 sizeof(struct tee_mmap_region) * (*last - n)); 720 (*last)++; 721 memset(memory_map + n, 0, sizeof(memory_map[0])); 722 memory_map[n].type = type; 723 memory_map[n].size = size; 724 } 725 726 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) 727 { 728 const uint32_t attr = TEE_MATTR_VALID_BLOCK; 729 const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED << 730 TEE_MATTR_MEM_TYPE_SHIFT; 731 const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << 732 TEE_MATTR_MEM_TYPE_SHIFT; 733 const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << 734 TEE_MATTR_MEM_TYPE_SHIFT; 735 736 switch (t) { 737 case MEM_AREA_TEE_RAM: 738 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged; 739 case MEM_AREA_TEE_RAM_RX: 740 case MEM_AREA_INIT_RAM_RX: 741 case MEM_AREA_IDENTITY_MAP_RX: 742 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged; 743 case MEM_AREA_TEE_RAM_RO: 744 case MEM_AREA_INIT_RAM_RO: 745 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged; 746 case MEM_AREA_TEE_RAM_RW: 747 case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ 748 case MEM_AREA_NEX_RAM_RW: 749 case MEM_AREA_TEE_ASAN: 750 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 751 case MEM_AREA_TEE_COHERENT: 752 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; 753 case MEM_AREA_TA_RAM: 754 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 755 case MEM_AREA_NSEC_SHM: 756 return attr | TEE_MATTR_PRW | cached; 757 case MEM_AREA_EXT_DT: 758 /* 759 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device 760 * tree as secure non-cached memory, otherwise, fall back to 761 * non-secure mapping. 762 */ 763 if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE)) 764 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | 765 noncache; 766 fallthrough; 767 case MEM_AREA_IO_NSEC: 768 return attr | TEE_MATTR_PRW | noncache; 769 case MEM_AREA_IO_SEC: 770 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; 771 case MEM_AREA_RAM_NSEC: 772 return attr | TEE_MATTR_PRW | cached; 773 case MEM_AREA_RAM_SEC: 774 case MEM_AREA_SEC_RAM_OVERALL: 775 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 776 case MEM_AREA_RES_VASPACE: 777 case MEM_AREA_SHM_VASPACE: 778 return 0; 779 case MEM_AREA_PAGER_VASPACE: 780 return TEE_MATTR_SECURE; 781 default: 782 panic("invalid type"); 783 } 784 } 785 786 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) 787 { 788 switch (mm->type) { 789 case MEM_AREA_TEE_RAM: 790 case MEM_AREA_TEE_RAM_RX: 791 case MEM_AREA_TEE_RAM_RO: 792 case MEM_AREA_TEE_RAM_RW: 793 case MEM_AREA_INIT_RAM_RX: 794 case MEM_AREA_INIT_RAM_RO: 795 case MEM_AREA_NEX_RAM_RW: 796 case MEM_AREA_NEX_RAM_RO: 797 case MEM_AREA_TEE_ASAN: 798 return true; 799 default: 800 return false; 801 } 802 } 803 804 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) 805 { 806 return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); 807 } 808 809 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) 810 { 811 return mm->region_size == CORE_MMU_PGDIR_SIZE; 812 } 813 814 static int cmp_mmap_by_lower_va(const void *a, const void *b) 815 { 816 const struct tee_mmap_region *mm_a = a; 817 const struct tee_mmap_region *mm_b = b; 818 819 return CMP_TRILEAN(mm_a->va, mm_b->va); 820 } 821 822 static void dump_mmap_table(struct tee_mmap_region *memory_map) 823 { 824 struct tee_mmap_region *map; 825 826 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 827 vaddr_t __maybe_unused vstart; 828 829 vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1)); 830 DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA 831 " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", 832 teecore_memtype_name(map->type), vstart, 833 vstart + map->size - 1, map->pa, 834 (paddr_t)(map->pa + map->size - 1), map->size, 835 map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); 836 } 837 } 838 839 #if DEBUG_XLAT_TABLE 840 841 static void dump_xlat_table(vaddr_t va, unsigned int level) 842 { 843 struct core_mmu_table_info tbl_info; 844 unsigned int idx = 0; 845 paddr_t pa; 846 uint32_t attr; 847 848 core_mmu_find_table(NULL, va, level, &tbl_info); 849 va = tbl_info.va_base; 850 for (idx = 0; idx < tbl_info.num_entries; idx++) { 851 core_mmu_get_entry(&tbl_info, idx, &pa, &attr); 852 if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { 853 const char *security_bit = ""; 854 855 if (core_mmu_entry_have_security_bit(attr)) { 856 if (attr & TEE_MATTR_SECURE) 857 security_bit = "S"; 858 else 859 security_bit = "NS"; 860 } 861 862 if (attr & TEE_MATTR_TABLE) { 863 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 864 " TBL:0x%010" PRIxPA " %s", 865 level * 2, "", level, va, pa, 866 security_bit); 867 dump_xlat_table(va, level + 1); 868 } else if (attr) { 869 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 870 " PA:0x%010" PRIxPA " %s-%s-%s-%s", 871 level * 2, "", level, va, pa, 872 mattr_is_cached(attr) ? "MEM" : 873 "DEV", 874 attr & TEE_MATTR_PW ? "RW" : "RO", 875 attr & TEE_MATTR_PX ? "X " : "XN", 876 security_bit); 877 } else { 878 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 879 " INVALID\n", 880 level * 2, "", level, va); 881 } 882 } 883 va += BIT64(tbl_info.shift); 884 } 885 } 886 887 #else 888 889 static void dump_xlat_table(vaddr_t va __unused, int level __unused) 890 { 891 } 892 893 #endif 894 895 /* 896 * Reserves virtual memory space for pager usage. 897 * 898 * From the start of the first memory used by the link script + 899 * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty 900 * mapping for pager usage. This adds translation tables as needed for the 901 * pager to operate. 902 */ 903 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems, 904 size_t *last) 905 { 906 paddr_t begin = 0; 907 paddr_t end = 0; 908 size_t size = 0; 909 size_t pos = 0; 910 size_t n = 0; 911 912 if (*last >= (num_elems - 1)) { 913 EMSG("Out of entries (%zu) in memory map", num_elems); 914 panic(); 915 } 916 917 for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) { 918 if (map_is_tee_ram(mmap + n)) { 919 if (!begin) 920 begin = mmap[n].pa; 921 pos = n + 1; 922 } 923 } 924 925 end = mmap[pos - 1].pa + mmap[pos - 1].size; 926 assert(end - begin < TEE_RAM_VA_SIZE); 927 size = TEE_RAM_VA_SIZE - (end - begin); 928 929 assert(pos <= *last); 930 memmove(mmap + pos + 1, mmap + pos, 931 sizeof(struct tee_mmap_region) * (*last - pos)); 932 (*last)++; 933 memset(mmap + pos, 0, sizeof(mmap[0])); 934 mmap[pos].type = MEM_AREA_PAGER_VASPACE; 935 mmap[pos].va = 0; 936 mmap[pos].size = size; 937 mmap[pos].region_size = SMALL_PAGE_SIZE; 938 mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE); 939 } 940 941 static void check_sec_nsec_mem_config(void) 942 { 943 size_t n = 0; 944 945 for (n = 0; n < ARRAY_SIZE(secure_only); n++) { 946 if (pbuf_intersects(nsec_shared, secure_only[n].paddr, 947 secure_only[n].size)) 948 panic("Invalid memory access config: sec/nsec"); 949 } 950 } 951 952 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map, 953 size_t num_elems) 954 { 955 const struct core_mmu_phys_mem *mem = NULL; 956 vaddr_t ram_start = secure_only[0].paddr; 957 size_t last = 0; 958 959 960 #define ADD_PHYS_MEM(_type, _addr, _size) \ 961 add_phys_mem(memory_map, num_elems, #_addr, (_type), \ 962 (_addr), (_size), &last) 963 964 if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) { 965 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start, 966 VCORE_UNPG_RX_PA - ram_start); 967 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, 968 VCORE_UNPG_RX_SZ); 969 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, 970 VCORE_UNPG_RO_SZ); 971 972 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 973 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, 974 VCORE_UNPG_RW_SZ); 975 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, 976 VCORE_NEX_RW_SZ); 977 } else { 978 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, 979 VCORE_UNPG_RW_SZ); 980 } 981 982 if (IS_ENABLED(CFG_WITH_PAGER)) { 983 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, 984 VCORE_INIT_RX_SZ); 985 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, 986 VCORE_INIT_RO_SZ); 987 } 988 } else { 989 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); 990 } 991 992 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 993 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE, 994 TRUSTED_DRAM_SIZE); 995 } else { 996 /* 997 * Every guest will have own TA RAM if virtualization 998 * support is enabled. 999 */ 1000 paddr_t ta_base = 0; 1001 size_t ta_size = 0; 1002 1003 core_mmu_get_ta_range(&ta_base, &ta_size); 1004 ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size); 1005 } 1006 1007 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) && 1008 IS_ENABLED(CFG_WITH_PAGER)) { 1009 /* 1010 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is 1011 * disabled. 1012 */ 1013 ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); 1014 } 1015 1016 #undef ADD_PHYS_MEM 1017 1018 for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { 1019 /* Only unmapped virtual range may have a null phys addr */ 1020 assert(mem->addr || !core_mmu_type_to_attr(mem->type)); 1021 1022 add_phys_mem(memory_map, num_elems, mem->name, mem->type, 1023 mem->addr, mem->size, &last); 1024 } 1025 1026 if (IS_ENABLED(CFG_SECURE_DATA_PATH)) 1027 verify_special_mem_areas(memory_map, num_elems, 1028 phys_sdp_mem_begin, 1029 phys_sdp_mem_end, "SDP"); 1030 1031 add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE, 1032 CFG_RESERVED_VASPACE_SIZE, &last); 1033 1034 add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE, 1035 SHM_VASPACE_SIZE, &last); 1036 1037 memory_map[last].type = MEM_AREA_END; 1038 1039 return last; 1040 } 1041 1042 static void assign_mem_granularity(struct tee_mmap_region *memory_map) 1043 { 1044 struct tee_mmap_region *map = NULL; 1045 1046 /* 1047 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses 1048 * SMALL_PAGE_SIZE. 1049 */ 1050 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1051 paddr_t mask = map->pa | map->size; 1052 1053 if (!(mask & CORE_MMU_PGDIR_MASK)) 1054 map->region_size = CORE_MMU_PGDIR_SIZE; 1055 else if (!(mask & SMALL_PAGE_MASK)) 1056 map->region_size = SMALL_PAGE_SIZE; 1057 else 1058 panic("Impossible memory alignment"); 1059 1060 if (map_is_tee_ram(map)) 1061 map->region_size = SMALL_PAGE_SIZE; 1062 } 1063 } 1064 1065 static bool place_tee_ram_at_top(paddr_t paddr) 1066 { 1067 return paddr > BIT64(core_mmu_get_va_width()) / 2; 1068 } 1069 1070 /* 1071 * MMU arch driver shall override this function if it helps 1072 * optimizing the memory footprint of the address translation tables. 1073 */ 1074 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr) 1075 { 1076 return place_tee_ram_at_top(paddr); 1077 } 1078 1079 static bool assign_mem_va_dir(vaddr_t tee_ram_va, 1080 struct tee_mmap_region *memory_map, 1081 bool tee_ram_at_top) 1082 { 1083 struct tee_mmap_region *map = NULL; 1084 vaddr_t va = 0; 1085 bool va_is_secure = true; 1086 1087 /* 1088 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y. 1089 * 0 is by design an invalid va, so return false directly. 1090 */ 1091 if (!tee_ram_va) 1092 return false; 1093 1094 /* Clear eventual previous assignments */ 1095 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 1096 map->va = 0; 1097 1098 /* 1099 * TEE RAM regions are always aligned with region_size. 1100 * 1101 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here 1102 * since it handles virtual memory which covers the part of the ELF 1103 * that cannot fit directly into memory. 1104 */ 1105 va = tee_ram_va; 1106 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1107 if (map_is_tee_ram(map) || 1108 map->type == MEM_AREA_PAGER_VASPACE) { 1109 assert(!(va & (map->region_size - 1))); 1110 assert(!(map->size & (map->region_size - 1))); 1111 map->va = va; 1112 if (ADD_OVERFLOW(va, map->size, &va)) 1113 return false; 1114 if (va >= BIT64(core_mmu_get_va_width())) 1115 return false; 1116 } 1117 } 1118 1119 if (tee_ram_at_top) { 1120 /* 1121 * Map non-tee ram regions at addresses lower than the tee 1122 * ram region. 1123 */ 1124 va = tee_ram_va; 1125 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1126 map->attr = core_mmu_type_to_attr(map->type); 1127 if (map->va) 1128 continue; 1129 1130 if (!IS_ENABLED(CFG_WITH_LPAE) && 1131 va_is_secure != map_is_secure(map)) { 1132 va_is_secure = !va_is_secure; 1133 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1134 } 1135 1136 if (SUB_OVERFLOW(va, map->size, &va)) 1137 return false; 1138 va = ROUNDDOWN(va, map->region_size); 1139 /* 1140 * Make sure that va is aligned with pa for 1141 * efficient pgdir mapping. Basically pa & 1142 * pgdir_mask should be == va & pgdir_mask 1143 */ 1144 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1145 if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) 1146 return false; 1147 va += (map->pa - va) & CORE_MMU_PGDIR_MASK; 1148 } 1149 map->va = va; 1150 } 1151 } else { 1152 /* 1153 * Map non-tee ram regions at addresses higher than the tee 1154 * ram region. 1155 */ 1156 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1157 map->attr = core_mmu_type_to_attr(map->type); 1158 if (map->va) 1159 continue; 1160 1161 if (!IS_ENABLED(CFG_WITH_LPAE) && 1162 va_is_secure != map_is_secure(map)) { 1163 va_is_secure = !va_is_secure; 1164 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1165 &va)) 1166 return false; 1167 } 1168 1169 if (ROUNDUP_OVERFLOW(va, map->region_size, &va)) 1170 return false; 1171 /* 1172 * Make sure that va is aligned with pa for 1173 * efficient pgdir mapping. Basically pa & 1174 * pgdir_mask should be == va & pgdir_mask 1175 */ 1176 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1177 vaddr_t offs = (map->pa - va) & 1178 CORE_MMU_PGDIR_MASK; 1179 1180 if (ADD_OVERFLOW(va, offs, &va)) 1181 return false; 1182 } 1183 1184 map->va = va; 1185 if (ADD_OVERFLOW(va, map->size, &va)) 1186 return false; 1187 if (va >= BIT64(core_mmu_get_va_width())) 1188 return false; 1189 } 1190 } 1191 1192 return true; 1193 } 1194 1195 static bool assign_mem_va(vaddr_t tee_ram_va, 1196 struct tee_mmap_region *memory_map) 1197 { 1198 bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va); 1199 1200 /* 1201 * Check that we're not overlapping with the user VA range. 1202 */ 1203 if (IS_ENABLED(CFG_WITH_LPAE)) { 1204 /* 1205 * User VA range is supposed to be defined after these 1206 * mappings have been established. 1207 */ 1208 assert(!core_mmu_user_va_range_is_defined()); 1209 } else { 1210 vaddr_t user_va_base = 0; 1211 size_t user_va_size = 0; 1212 1213 assert(core_mmu_user_va_range_is_defined()); 1214 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 1215 if (tee_ram_va < (user_va_base + user_va_size)) 1216 return false; 1217 } 1218 1219 if (IS_ENABLED(CFG_WITH_PAGER)) { 1220 bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va); 1221 1222 /* Try whole mapping covered by a single base xlat entry */ 1223 if (prefered_dir != tee_ram_at_top && 1224 assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir)) 1225 return true; 1226 } 1227 1228 return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top); 1229 } 1230 1231 static int cmp_init_mem_map(const void *a, const void *b) 1232 { 1233 const struct tee_mmap_region *mm_a = a; 1234 const struct tee_mmap_region *mm_b = b; 1235 int rc = 0; 1236 1237 rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); 1238 if (!rc) 1239 rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); 1240 /* 1241 * 32bit MMU descriptors cannot mix secure and non-secure mapping in 1242 * the same level2 table. Hence sort secure mapping from non-secure 1243 * mapping. 1244 */ 1245 if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) 1246 rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); 1247 1248 return rc; 1249 } 1250 1251 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map, 1252 size_t num_elems, size_t *last, 1253 vaddr_t id_map_start, vaddr_t id_map_end) 1254 { 1255 struct tee_mmap_region *map = NULL; 1256 vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); 1257 vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); 1258 size_t len = end - start; 1259 1260 if (*last >= num_elems - 1) { 1261 EMSG("Out of entries (%zu) in memory map", num_elems); 1262 panic(); 1263 } 1264 1265 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 1266 if (core_is_buffer_intersect(map->va, map->size, start, len)) 1267 return false; 1268 1269 *map = (struct tee_mmap_region){ 1270 .type = MEM_AREA_IDENTITY_MAP_RX, 1271 /* 1272 * Could use CORE_MMU_PGDIR_SIZE to potentially save a 1273 * translation table, at the increased risk of clashes with 1274 * the rest of the memory map. 1275 */ 1276 .region_size = SMALL_PAGE_SIZE, 1277 .pa = start, 1278 .va = start, 1279 .size = len, 1280 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1281 }; 1282 1283 (*last)++; 1284 1285 return true; 1286 } 1287 1288 static unsigned long init_mem_map(struct tee_mmap_region *memory_map, 1289 size_t num_elems, unsigned long seed) 1290 { 1291 /* 1292 * @id_map_start and @id_map_end describes a physical memory range 1293 * that must be mapped Read-Only eXecutable at identical virtual 1294 * addresses. 1295 */ 1296 vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; 1297 vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; 1298 vaddr_t start_addr = secure_only[0].paddr; 1299 unsigned long offs = 0; 1300 size_t last = 0; 1301 1302 last = collect_mem_ranges(memory_map, num_elems); 1303 assign_mem_granularity(memory_map); 1304 1305 /* 1306 * To ease mapping and lower use of xlat tables, sort mapping 1307 * description moving small-page regions after the pgdir regions. 1308 */ 1309 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1310 cmp_init_mem_map); 1311 1312 if (IS_ENABLED(CFG_WITH_PAGER)) 1313 add_pager_vaspace(memory_map, num_elems, &last); 1314 1315 if (IS_ENABLED(CFG_CORE_ASLR) && seed) { 1316 vaddr_t base_addr = start_addr + seed; 1317 const unsigned int va_width = core_mmu_get_va_width(); 1318 const vaddr_t va_mask = GENMASK_64(va_width - 1, 1319 SMALL_PAGE_SHIFT); 1320 vaddr_t ba = base_addr; 1321 size_t n = 0; 1322 1323 for (n = 0; n < 3; n++) { 1324 if (n) 1325 ba = base_addr ^ BIT64(va_width - n); 1326 ba &= va_mask; 1327 if (assign_mem_va(ba, memory_map) && 1328 mem_map_add_id_map(memory_map, num_elems, &last, 1329 id_map_start, id_map_end)) { 1330 offs = ba - start_addr; 1331 DMSG("Mapping core at %#"PRIxVA" offs %#lx", 1332 ba, offs); 1333 goto out; 1334 } else { 1335 DMSG("Failed to map core at %#"PRIxVA, ba); 1336 } 1337 } 1338 EMSG("Failed to map core with seed %#lx", seed); 1339 } 1340 1341 if (!assign_mem_va(start_addr, memory_map)) 1342 panic(); 1343 1344 out: 1345 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1346 cmp_mmap_by_lower_va); 1347 1348 dump_mmap_table(memory_map); 1349 1350 return offs; 1351 } 1352 1353 static void check_mem_map(struct tee_mmap_region *map) 1354 { 1355 struct tee_mmap_region *m = NULL; 1356 1357 for (m = map; !core_mmap_is_end_of_table(m); m++) { 1358 switch (m->type) { 1359 case MEM_AREA_TEE_RAM: 1360 case MEM_AREA_TEE_RAM_RX: 1361 case MEM_AREA_TEE_RAM_RO: 1362 case MEM_AREA_TEE_RAM_RW: 1363 case MEM_AREA_INIT_RAM_RX: 1364 case MEM_AREA_INIT_RAM_RO: 1365 case MEM_AREA_NEX_RAM_RW: 1366 case MEM_AREA_NEX_RAM_RO: 1367 case MEM_AREA_IDENTITY_MAP_RX: 1368 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1369 panic("TEE_RAM can't fit in secure_only"); 1370 break; 1371 case MEM_AREA_TA_RAM: 1372 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1373 panic("TA_RAM can't fit in secure_only"); 1374 break; 1375 case MEM_AREA_NSEC_SHM: 1376 if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) 1377 panic("NS_SHM can't fit in nsec_shared"); 1378 break; 1379 case MEM_AREA_SEC_RAM_OVERALL: 1380 case MEM_AREA_TEE_COHERENT: 1381 case MEM_AREA_TEE_ASAN: 1382 case MEM_AREA_IO_SEC: 1383 case MEM_AREA_IO_NSEC: 1384 case MEM_AREA_EXT_DT: 1385 case MEM_AREA_RAM_SEC: 1386 case MEM_AREA_RAM_NSEC: 1387 case MEM_AREA_RES_VASPACE: 1388 case MEM_AREA_SHM_VASPACE: 1389 case MEM_AREA_PAGER_VASPACE: 1390 break; 1391 default: 1392 EMSG("Uhandled memtype %d", m->type); 1393 panic(); 1394 } 1395 } 1396 } 1397 1398 static struct tee_mmap_region *get_tmp_mmap(void) 1399 { 1400 struct tee_mmap_region *tmp_mmap = (void *)__heap1_start; 1401 1402 #ifdef CFG_WITH_PAGER 1403 if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map)) 1404 tmp_mmap = (void *)__heap2_start; 1405 #endif 1406 1407 memset(tmp_mmap, 0, sizeof(static_memory_map)); 1408 1409 return tmp_mmap; 1410 } 1411 1412 /* 1413 * core_init_mmu_map() - init tee core default memory mapping 1414 * 1415 * This routine sets the static default TEE core mapping. If @seed is > 0 1416 * and configured with CFG_CORE_ASLR it will map tee core at a location 1417 * based on the seed and return the offset from the link address. 1418 * 1419 * If an error happened: core_init_mmu_map is expected to panic. 1420 * 1421 * Note: this function is weak just to make it possible to exclude it from 1422 * the unpaged area. 1423 */ 1424 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) 1425 { 1426 #ifndef CFG_NS_VIRTUALIZATION 1427 vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); 1428 #else 1429 vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, 1430 SMALL_PAGE_SIZE); 1431 #endif 1432 vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; 1433 struct tee_mmap_region *tmp_mmap = get_tmp_mmap(); 1434 unsigned long offs = 0; 1435 1436 check_sec_nsec_mem_config(); 1437 1438 /* 1439 * Add a entry covering the translation tables which will be 1440 * involved in some virt_to_phys() and phys_to_virt() conversions. 1441 */ 1442 static_memory_map[0] = (struct tee_mmap_region){ 1443 .type = MEM_AREA_TEE_RAM, 1444 .region_size = SMALL_PAGE_SIZE, 1445 .pa = start, 1446 .va = start, 1447 .size = len, 1448 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1449 }; 1450 1451 COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13); 1452 offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed); 1453 1454 check_mem_map(tmp_mmap); 1455 core_init_mmu(tmp_mmap); 1456 dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); 1457 core_init_mmu_regs(cfg); 1458 cfg->map_offset = offs; 1459 memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map)); 1460 } 1461 1462 bool core_mmu_mattr_is_ok(uint32_t mattr) 1463 { 1464 /* 1465 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and 1466 * core_mmu_v7.c:mattr_to_texcb 1467 */ 1468 1469 switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { 1470 case TEE_MATTR_MEM_TYPE_DEV: 1471 case TEE_MATTR_MEM_TYPE_STRONGLY_O: 1472 case TEE_MATTR_MEM_TYPE_CACHED: 1473 case TEE_MATTR_MEM_TYPE_TAGGED: 1474 return true; 1475 default: 1476 return false; 1477 } 1478 } 1479 1480 /* 1481 * test attributes of target physical buffer 1482 * 1483 * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). 1484 * 1485 */ 1486 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) 1487 { 1488 paddr_t ta_base = 0; 1489 size_t ta_size = 0; 1490 struct tee_mmap_region *map; 1491 1492 /* Empty buffers complies with anything */ 1493 if (len == 0) 1494 return true; 1495 1496 switch (attr) { 1497 case CORE_MEM_SEC: 1498 return pbuf_is_inside(secure_only, pbuf, len); 1499 case CORE_MEM_NON_SEC: 1500 return pbuf_is_inside(nsec_shared, pbuf, len) || 1501 pbuf_is_nsec_ddr(pbuf, len); 1502 case CORE_MEM_TEE_RAM: 1503 return core_is_buffer_inside(pbuf, len, TEE_RAM_START, 1504 TEE_RAM_PH_SIZE); 1505 case CORE_MEM_TA_RAM: 1506 core_mmu_get_ta_range(&ta_base, &ta_size); 1507 return core_is_buffer_inside(pbuf, len, ta_base, ta_size); 1508 #ifdef CFG_CORE_RESERVED_SHM 1509 case CORE_MEM_NSEC_SHM: 1510 return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, 1511 TEE_SHMEM_SIZE); 1512 #endif 1513 case CORE_MEM_SDP_MEM: 1514 return pbuf_is_sdp_mem(pbuf, len); 1515 case CORE_MEM_CACHED: 1516 map = find_map_by_pa(pbuf); 1517 if (!map || !pbuf_inside_map_area(pbuf, len, map)) 1518 return false; 1519 return mattr_is_cached(map->attr); 1520 default: 1521 return false; 1522 } 1523 } 1524 1525 /* test attributes of target virtual buffer (in core mapping) */ 1526 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) 1527 { 1528 paddr_t p; 1529 1530 /* Empty buffers complies with anything */ 1531 if (len == 0) 1532 return true; 1533 1534 p = virt_to_phys((void *)vbuf); 1535 if (!p) 1536 return false; 1537 1538 return core_pbuf_is(attr, p, len); 1539 } 1540 1541 /* core_va2pa - teecore exported service */ 1542 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) 1543 { 1544 struct tee_mmap_region *map; 1545 1546 map = find_map_by_va(va); 1547 if (!va_is_in_map(map, (vaddr_t)va)) 1548 return -1; 1549 1550 /* 1551 * We can calculate PA for static map. Virtual address ranges 1552 * reserved to core dynamic mapping return a 'match' (return 0;) 1553 * together with an invalid null physical address. 1554 */ 1555 if (map->pa) 1556 *pa = map->pa + (vaddr_t)va - map->va; 1557 else 1558 *pa = 0; 1559 1560 return 0; 1561 } 1562 1563 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) 1564 { 1565 if (!pa_is_in_map(map, pa, len)) 1566 return NULL; 1567 1568 return (void *)(vaddr_t)(map->va + pa - map->pa); 1569 } 1570 1571 /* 1572 * teecore gets some memory area definitions 1573 */ 1574 void core_mmu_get_mem_by_type(unsigned int type, vaddr_t *s, vaddr_t *e) 1575 { 1576 struct tee_mmap_region *map = find_map_by_type(type); 1577 1578 if (map) { 1579 *s = map->va; 1580 *e = map->va + map->size; 1581 } else { 1582 *s = 0; 1583 *e = 0; 1584 } 1585 } 1586 1587 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) 1588 { 1589 struct tee_mmap_region *map = find_map_by_pa(pa); 1590 1591 if (!map) 1592 return MEM_AREA_MAXTYPE; 1593 return map->type; 1594 } 1595 1596 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1597 paddr_t pa, uint32_t attr) 1598 { 1599 assert(idx < tbl_info->num_entries); 1600 core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, 1601 idx, pa, attr); 1602 } 1603 1604 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1605 paddr_t *pa, uint32_t *attr) 1606 { 1607 assert(idx < tbl_info->num_entries); 1608 core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, 1609 idx, pa, attr); 1610 } 1611 1612 static void clear_region(struct core_mmu_table_info *tbl_info, 1613 struct tee_mmap_region *region) 1614 { 1615 unsigned int end = 0; 1616 unsigned int idx = 0; 1617 1618 /* va, len and pa should be block aligned */ 1619 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1620 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1621 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1622 1623 idx = core_mmu_va2idx(tbl_info, region->va); 1624 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1625 1626 while (idx < end) { 1627 core_mmu_set_entry(tbl_info, idx, 0, 0); 1628 idx++; 1629 } 1630 } 1631 1632 static void set_region(struct core_mmu_table_info *tbl_info, 1633 struct tee_mmap_region *region) 1634 { 1635 unsigned int end; 1636 unsigned int idx; 1637 paddr_t pa; 1638 1639 /* va, len and pa should be block aligned */ 1640 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1641 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1642 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1643 1644 idx = core_mmu_va2idx(tbl_info, region->va); 1645 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1646 pa = region->pa; 1647 1648 while (idx < end) { 1649 core_mmu_set_entry(tbl_info, idx, pa, region->attr); 1650 idx++; 1651 pa += BIT64(tbl_info->shift); 1652 } 1653 } 1654 1655 static void set_pg_region(struct core_mmu_table_info *dir_info, 1656 struct vm_region *region, struct pgt **pgt, 1657 struct core_mmu_table_info *pg_info) 1658 { 1659 struct tee_mmap_region r = { 1660 .va = region->va, 1661 .size = region->size, 1662 .attr = region->attr, 1663 }; 1664 vaddr_t end = r.va + r.size; 1665 uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; 1666 1667 while (r.va < end) { 1668 if (!pg_info->table || 1669 r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { 1670 /* 1671 * We're assigning a new translation table. 1672 */ 1673 unsigned int idx; 1674 1675 /* Virtual addresses must grow */ 1676 assert(r.va > pg_info->va_base); 1677 1678 idx = core_mmu_va2idx(dir_info, r.va); 1679 pg_info->va_base = core_mmu_idx2va(dir_info, idx); 1680 1681 /* 1682 * Advance pgt to va_base, note that we may need to 1683 * skip multiple page tables if there are large 1684 * holes in the vm map. 1685 */ 1686 while ((*pgt)->vabase < pg_info->va_base) { 1687 *pgt = SLIST_NEXT(*pgt, link); 1688 /* We should have allocated enough */ 1689 assert(*pgt); 1690 } 1691 assert((*pgt)->vabase == pg_info->va_base); 1692 pg_info->table = (*pgt)->tbl; 1693 1694 core_mmu_set_entry(dir_info, idx, 1695 virt_to_phys(pg_info->table), 1696 pgt_attr); 1697 } 1698 1699 r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), 1700 end - r.va); 1701 1702 if (!(*pgt)->populated && !mobj_is_paged(region->mobj)) { 1703 size_t granule = BIT(pg_info->shift); 1704 size_t offset = r.va - region->va + region->offset; 1705 1706 r.size = MIN(r.size, 1707 mobj_get_phys_granule(region->mobj)); 1708 r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); 1709 1710 if (mobj_get_pa(region->mobj, offset, granule, 1711 &r.pa) != TEE_SUCCESS) 1712 panic("Failed to get PA of unpaged mobj"); 1713 set_region(pg_info, &r); 1714 } 1715 r.va += r.size; 1716 } 1717 } 1718 1719 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, 1720 size_t size_left, paddr_t block_size, 1721 struct tee_mmap_region *mm __maybe_unused) 1722 { 1723 /* VA and PA are aligned to block size at current level */ 1724 if ((vaddr | paddr) & (block_size - 1)) 1725 return false; 1726 1727 /* Remainder fits into block at current level */ 1728 if (size_left < block_size) 1729 return false; 1730 1731 #ifdef CFG_WITH_PAGER 1732 /* 1733 * If pager is enabled, we need to map tee ram 1734 * regions with small pages only 1735 */ 1736 if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE) 1737 return false; 1738 #endif 1739 1740 return true; 1741 } 1742 1743 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) 1744 { 1745 struct core_mmu_table_info tbl_info; 1746 unsigned int idx; 1747 vaddr_t vaddr = mm->va; 1748 paddr_t paddr = mm->pa; 1749 ssize_t size_left = mm->size; 1750 unsigned int level; 1751 bool table_found; 1752 uint32_t old_attr; 1753 1754 assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); 1755 1756 while (size_left > 0) { 1757 level = CORE_MMU_BASE_TABLE_LEVEL; 1758 1759 while (true) { 1760 paddr_t block_size = 0; 1761 1762 assert(level <= CORE_MMU_PGDIR_LEVEL); 1763 1764 table_found = core_mmu_find_table(prtn, vaddr, level, 1765 &tbl_info); 1766 if (!table_found) 1767 panic("can't find table for mapping"); 1768 1769 block_size = BIT64(tbl_info.shift); 1770 1771 idx = core_mmu_va2idx(&tbl_info, vaddr); 1772 if (!can_map_at_level(paddr, vaddr, size_left, 1773 block_size, mm)) { 1774 bool secure = mm->attr & TEE_MATTR_SECURE; 1775 1776 /* 1777 * This part of the region can't be mapped at 1778 * this level. Need to go deeper. 1779 */ 1780 if (!core_mmu_entry_to_finer_grained(&tbl_info, 1781 idx, 1782 secure)) 1783 panic("Can't divide MMU entry"); 1784 level++; 1785 continue; 1786 } 1787 1788 /* We can map part of the region at current level */ 1789 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1790 if (old_attr) 1791 panic("Page is already mapped"); 1792 1793 core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr); 1794 paddr += block_size; 1795 vaddr += block_size; 1796 size_left -= block_size; 1797 1798 break; 1799 } 1800 } 1801 } 1802 1803 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 1804 enum teecore_memtypes memtype) 1805 { 1806 TEE_Result ret; 1807 struct core_mmu_table_info tbl_info; 1808 struct tee_mmap_region *mm; 1809 unsigned int idx; 1810 uint32_t old_attr; 1811 uint32_t exceptions; 1812 vaddr_t vaddr = vstart; 1813 size_t i; 1814 bool secure; 1815 1816 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1817 1818 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1819 1820 if (vaddr & SMALL_PAGE_MASK) 1821 return TEE_ERROR_BAD_PARAMETERS; 1822 1823 exceptions = mmu_lock(); 1824 1825 mm = find_map_by_va((void *)vaddr); 1826 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1827 panic("VA does not belong to any known mm region"); 1828 1829 if (!core_mmu_is_dynamic_vaspace(mm)) 1830 panic("Trying to map into static region"); 1831 1832 for (i = 0; i < num_pages; i++) { 1833 if (pages[i] & SMALL_PAGE_MASK) { 1834 ret = TEE_ERROR_BAD_PARAMETERS; 1835 goto err; 1836 } 1837 1838 while (true) { 1839 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1840 &tbl_info)) 1841 panic("Can't find pagetable for vaddr "); 1842 1843 idx = core_mmu_va2idx(&tbl_info, vaddr); 1844 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1845 break; 1846 1847 /* This is supertable. Need to divide it. */ 1848 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1849 secure)) 1850 panic("Failed to spread pgdir on small tables"); 1851 } 1852 1853 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1854 if (old_attr) 1855 panic("Page is already mapped"); 1856 1857 core_mmu_set_entry(&tbl_info, idx, pages[i], 1858 core_mmu_type_to_attr(memtype)); 1859 vaddr += SMALL_PAGE_SIZE; 1860 } 1861 1862 /* 1863 * Make sure all the changes to translation tables are visible 1864 * before returning. TLB doesn't need to be invalidated as we are 1865 * guaranteed that there's no valid mapping in this range. 1866 */ 1867 core_mmu_table_write_barrier(); 1868 mmu_unlock(exceptions); 1869 1870 return TEE_SUCCESS; 1871 err: 1872 mmu_unlock(exceptions); 1873 1874 if (i) 1875 core_mmu_unmap_pages(vstart, i); 1876 1877 return ret; 1878 } 1879 1880 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 1881 size_t num_pages, 1882 enum teecore_memtypes memtype) 1883 { 1884 struct core_mmu_table_info tbl_info = { }; 1885 struct tee_mmap_region *mm = NULL; 1886 unsigned int idx = 0; 1887 uint32_t old_attr = 0; 1888 uint32_t exceptions = 0; 1889 vaddr_t vaddr = vstart; 1890 paddr_t paddr = pstart; 1891 size_t i = 0; 1892 bool secure = false; 1893 1894 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1895 1896 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1897 1898 if ((vaddr | paddr) & SMALL_PAGE_MASK) 1899 return TEE_ERROR_BAD_PARAMETERS; 1900 1901 exceptions = mmu_lock(); 1902 1903 mm = find_map_by_va((void *)vaddr); 1904 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1905 panic("VA does not belong to any known mm region"); 1906 1907 if (!core_mmu_is_dynamic_vaspace(mm)) 1908 panic("Trying to map into static region"); 1909 1910 for (i = 0; i < num_pages; i++) { 1911 while (true) { 1912 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1913 &tbl_info)) 1914 panic("Can't find pagetable for vaddr "); 1915 1916 idx = core_mmu_va2idx(&tbl_info, vaddr); 1917 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1918 break; 1919 1920 /* This is supertable. Need to divide it. */ 1921 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1922 secure)) 1923 panic("Failed to spread pgdir on small tables"); 1924 } 1925 1926 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1927 if (old_attr) 1928 panic("Page is already mapped"); 1929 1930 core_mmu_set_entry(&tbl_info, idx, paddr, 1931 core_mmu_type_to_attr(memtype)); 1932 paddr += SMALL_PAGE_SIZE; 1933 vaddr += SMALL_PAGE_SIZE; 1934 } 1935 1936 /* 1937 * Make sure all the changes to translation tables are visible 1938 * before returning. TLB doesn't need to be invalidated as we are 1939 * guaranteed that there's no valid mapping in this range. 1940 */ 1941 core_mmu_table_write_barrier(); 1942 mmu_unlock(exceptions); 1943 1944 return TEE_SUCCESS; 1945 } 1946 1947 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) 1948 { 1949 struct core_mmu_table_info tbl_info; 1950 struct tee_mmap_region *mm; 1951 size_t i; 1952 unsigned int idx; 1953 uint32_t exceptions; 1954 1955 exceptions = mmu_lock(); 1956 1957 mm = find_map_by_va((void *)vstart); 1958 if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) 1959 panic("VA does not belong to any known mm region"); 1960 1961 if (!core_mmu_is_dynamic_vaspace(mm)) 1962 panic("Trying to unmap static region"); 1963 1964 for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { 1965 if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) 1966 panic("Can't find pagetable"); 1967 1968 if (tbl_info.shift != SMALL_PAGE_SHIFT) 1969 panic("Invalid pagetable level"); 1970 1971 idx = core_mmu_va2idx(&tbl_info, vstart); 1972 core_mmu_set_entry(&tbl_info, idx, 0, 0); 1973 } 1974 tlbi_all(); 1975 1976 mmu_unlock(exceptions); 1977 } 1978 1979 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 1980 struct user_mode_ctx *uctx) 1981 { 1982 struct core_mmu_table_info pg_info = { }; 1983 struct pgt_cache *pgt_cache = &uctx->pgt_cache; 1984 struct pgt *pgt = NULL; 1985 struct pgt *p = NULL; 1986 struct vm_region *r = NULL; 1987 1988 if (TAILQ_EMPTY(&uctx->vm_info.regions)) 1989 return; /* Nothing to map */ 1990 1991 /* 1992 * Allocate all page tables in advance. 1993 */ 1994 pgt_get_all(uctx); 1995 pgt = SLIST_FIRST(pgt_cache); 1996 1997 core_mmu_set_info_table(&pg_info, dir_info->level + 1, 0, NULL); 1998 1999 TAILQ_FOREACH(r, &uctx->vm_info.regions, link) 2000 set_pg_region(dir_info, r, &pgt, &pg_info); 2001 /* Record that the translation tables now are populated. */ 2002 SLIST_FOREACH(p, pgt_cache, link) { 2003 p->populated = true; 2004 if (p == pgt) 2005 break; 2006 } 2007 assert(p == pgt); 2008 } 2009 2010 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 2011 size_t len) 2012 { 2013 struct core_mmu_table_info tbl_info = { }; 2014 struct tee_mmap_region *res_map = NULL; 2015 struct tee_mmap_region *map = NULL; 2016 paddr_t pa = virt_to_phys(addr); 2017 size_t granule = 0; 2018 ptrdiff_t i = 0; 2019 paddr_t p = 0; 2020 size_t l = 0; 2021 2022 map = find_map_by_type_and_pa(type, pa, len); 2023 if (!map) 2024 return TEE_ERROR_GENERIC; 2025 2026 res_map = find_map_by_type(MEM_AREA_RES_VASPACE); 2027 if (!res_map) 2028 return TEE_ERROR_GENERIC; 2029 if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) 2030 return TEE_ERROR_GENERIC; 2031 granule = BIT(tbl_info.shift); 2032 2033 if (map < static_memory_map || 2034 map >= static_memory_map + ARRAY_SIZE(static_memory_map)) 2035 return TEE_ERROR_GENERIC; 2036 i = map - static_memory_map; 2037 2038 /* Check that we have a full match */ 2039 p = ROUNDDOWN(pa, granule); 2040 l = ROUNDUP(len + pa - p, granule); 2041 if (map->pa != p || map->size != l) 2042 return TEE_ERROR_GENERIC; 2043 2044 clear_region(&tbl_info, map); 2045 tlbi_all(); 2046 2047 /* If possible remove the va range from res_map */ 2048 if (res_map->va - map->size == map->va) { 2049 res_map->va -= map->size; 2050 res_map->size += map->size; 2051 } 2052 2053 /* Remove the entry. */ 2054 memmove(map, map + 1, 2055 (ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map)); 2056 2057 /* Clear the last new entry in case it was used */ 2058 memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1, 2059 0, sizeof(*map)); 2060 2061 return TEE_SUCCESS; 2062 } 2063 2064 struct tee_mmap_region * 2065 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) 2066 { 2067 struct tee_mmap_region *map = NULL; 2068 struct tee_mmap_region *map_found = NULL; 2069 2070 if (!len) 2071 return NULL; 2072 2073 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 2074 if (map->type != type) 2075 continue; 2076 2077 if (map_found) 2078 return NULL; 2079 2080 map_found = map; 2081 } 2082 2083 if (!map_found || map_found->size < len) 2084 return NULL; 2085 2086 return map_found; 2087 } 2088 2089 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) 2090 { 2091 struct core_mmu_table_info tbl_info; 2092 struct tee_mmap_region *map; 2093 size_t n; 2094 size_t granule; 2095 paddr_t p; 2096 size_t l; 2097 2098 if (!len) 2099 return NULL; 2100 2101 if (!core_mmu_check_end_pa(addr, len)) 2102 return NULL; 2103 2104 /* Check if the memory is already mapped */ 2105 map = find_map_by_type_and_pa(type, addr, len); 2106 if (map && pbuf_inside_map_area(addr, len, map)) 2107 return (void *)(vaddr_t)(map->va + addr - map->pa); 2108 2109 /* Find the reserved va space used for late mappings */ 2110 map = find_map_by_type(MEM_AREA_RES_VASPACE); 2111 if (!map) 2112 return NULL; 2113 2114 if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) 2115 return NULL; 2116 2117 granule = BIT64(tbl_info.shift); 2118 p = ROUNDDOWN(addr, granule); 2119 l = ROUNDUP(len + addr - p, granule); 2120 2121 /* Ban overflowing virtual addresses */ 2122 if (map->size < l) 2123 return NULL; 2124 2125 /* 2126 * Something is wrong, we can't fit the va range into the selected 2127 * table. The reserved va range is possibly missaligned with 2128 * granule. 2129 */ 2130 if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) 2131 return NULL; 2132 2133 /* Find end of the memory map */ 2134 n = 0; 2135 while (!core_mmap_is_end_of_table(static_memory_map + n)) 2136 n++; 2137 2138 if (n < (ARRAY_SIZE(static_memory_map) - 1)) { 2139 /* There's room for another entry */ 2140 static_memory_map[n].va = map->va; 2141 static_memory_map[n].size = l; 2142 static_memory_map[n + 1].type = MEM_AREA_END; 2143 map->va += l; 2144 map->size -= l; 2145 map = static_memory_map + n; 2146 } else { 2147 /* 2148 * There isn't room for another entry, steal the reserved 2149 * entry as it's not useful for anything else any longer. 2150 */ 2151 map->size = l; 2152 } 2153 map->type = type; 2154 map->region_size = granule; 2155 map->attr = core_mmu_type_to_attr(type); 2156 map->pa = p; 2157 2158 set_region(&tbl_info, map); 2159 2160 /* Make sure the new entry is visible before continuing. */ 2161 core_mmu_table_write_barrier(); 2162 2163 return (void *)(vaddr_t)(map->va + addr - map->pa); 2164 } 2165 2166 #ifdef CFG_WITH_PAGER 2167 static vaddr_t get_linear_map_end_va(void) 2168 { 2169 /* this is synced with the generic linker file kern.ld.S */ 2170 return (vaddr_t)__heap2_end; 2171 } 2172 2173 static paddr_t get_linear_map_end_pa(void) 2174 { 2175 return get_linear_map_end_va() - boot_mmu_config.map_offset; 2176 } 2177 #endif 2178 2179 #if defined(CFG_TEE_CORE_DEBUG) 2180 static void check_pa_matches_va(void *va, paddr_t pa) 2181 { 2182 TEE_Result res = TEE_ERROR_GENERIC; 2183 vaddr_t v = (vaddr_t)va; 2184 paddr_t p = 0; 2185 struct core_mmu_table_info ti __maybe_unused = { }; 2186 2187 if (core_mmu_user_va_range_is_defined()) { 2188 vaddr_t user_va_base = 0; 2189 size_t user_va_size = 0; 2190 2191 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 2192 if (v >= user_va_base && 2193 v <= (user_va_base - 1 + user_va_size)) { 2194 if (!core_mmu_user_mapping_is_active()) { 2195 if (pa) 2196 panic("issue in linear address space"); 2197 return; 2198 } 2199 2200 res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), 2201 va, &p); 2202 if (res == TEE_ERROR_NOT_SUPPORTED) 2203 return; 2204 if (res == TEE_SUCCESS && pa != p) 2205 panic("bad pa"); 2206 if (res != TEE_SUCCESS && pa) 2207 panic("false pa"); 2208 return; 2209 } 2210 } 2211 #ifdef CFG_WITH_PAGER 2212 if (is_unpaged(va)) { 2213 if (v - boot_mmu_config.map_offset != pa) 2214 panic("issue in linear address space"); 2215 return; 2216 } 2217 2218 if (tee_pager_get_table_info(v, &ti)) { 2219 uint32_t a; 2220 2221 /* 2222 * Lookups in the page table managed by the pager is 2223 * dangerous for addresses in the paged area as those pages 2224 * changes all the time. But some ranges are safe, 2225 * rw-locked areas when the page is populated for instance. 2226 */ 2227 core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); 2228 if (a & TEE_MATTR_VALID_BLOCK) { 2229 paddr_t mask = BIT64(ti.shift) - 1; 2230 2231 p |= v & mask; 2232 if (pa != p) 2233 panic(); 2234 } else { 2235 if (pa) 2236 panic(); 2237 } 2238 return; 2239 } 2240 #endif 2241 2242 if (!core_va2pa_helper(va, &p)) { 2243 /* Verfiy only the static mapping (case non null phys addr) */ 2244 if (p && pa != p) { 2245 DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, 2246 va, p, pa); 2247 panic(); 2248 } 2249 } else { 2250 if (pa) { 2251 DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); 2252 panic(); 2253 } 2254 } 2255 } 2256 #else 2257 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) 2258 { 2259 } 2260 #endif 2261 2262 paddr_t virt_to_phys(void *va) 2263 { 2264 paddr_t pa = 0; 2265 2266 if (!arch_va2pa_helper(va, &pa)) 2267 pa = 0; 2268 check_pa_matches_va(va, pa); 2269 return pa; 2270 } 2271 2272 #if defined(CFG_TEE_CORE_DEBUG) 2273 static void check_va_matches_pa(paddr_t pa, void *va) 2274 { 2275 paddr_t p = 0; 2276 2277 if (!va) 2278 return; 2279 2280 p = virt_to_phys(va); 2281 if (p != pa) { 2282 DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); 2283 panic(); 2284 } 2285 } 2286 #else 2287 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) 2288 { 2289 } 2290 #endif 2291 2292 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) 2293 { 2294 if (!core_mmu_user_mapping_is_active()) 2295 return NULL; 2296 2297 return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); 2298 } 2299 2300 #ifdef CFG_WITH_PAGER 2301 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2302 { 2303 paddr_t end_pa = 0; 2304 2305 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 2306 return NULL; 2307 2308 if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) { 2309 if (end_pa > get_linear_map_end_pa()) 2310 return NULL; 2311 return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset); 2312 } 2313 2314 return tee_pager_phys_to_virt(pa, len); 2315 } 2316 #else 2317 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2318 { 2319 struct tee_mmap_region *mmap = NULL; 2320 2321 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); 2322 if (!mmap) 2323 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); 2324 if (!mmap) 2325 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); 2326 if (!mmap) 2327 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); 2328 if (!mmap) 2329 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); 2330 if (!mmap) 2331 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); 2332 /* 2333 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only 2334 * used with pager and not needed here. 2335 */ 2336 return map_pa2va(mmap, pa, len); 2337 } 2338 #endif 2339 2340 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) 2341 { 2342 void *va = NULL; 2343 2344 switch (m) { 2345 case MEM_AREA_TS_VASPACE: 2346 va = phys_to_virt_ts_vaspace(pa, len); 2347 break; 2348 case MEM_AREA_TEE_RAM: 2349 case MEM_AREA_TEE_RAM_RX: 2350 case MEM_AREA_TEE_RAM_RO: 2351 case MEM_AREA_TEE_RAM_RW: 2352 case MEM_AREA_NEX_RAM_RO: 2353 case MEM_AREA_NEX_RAM_RW: 2354 va = phys_to_virt_tee_ram(pa, len); 2355 break; 2356 case MEM_AREA_SHM_VASPACE: 2357 /* Find VA from PA in dynamic SHM is not yet supported */ 2358 va = NULL; 2359 break; 2360 default: 2361 va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); 2362 } 2363 if (m != MEM_AREA_SEC_RAM_OVERALL) 2364 check_va_matches_pa(pa, va); 2365 return va; 2366 } 2367 2368 void *phys_to_virt_io(paddr_t pa, size_t len) 2369 { 2370 struct tee_mmap_region *map = NULL; 2371 void *va = NULL; 2372 2373 map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); 2374 if (!map) 2375 map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); 2376 if (!map) 2377 return NULL; 2378 va = map_pa2va(map, pa, len); 2379 check_va_matches_pa(pa, va); 2380 return va; 2381 } 2382 2383 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) 2384 { 2385 if (cpu_mmu_enabled()) 2386 return (vaddr_t)phys_to_virt(pa, type, len); 2387 2388 return (vaddr_t)pa; 2389 } 2390 2391 #ifdef CFG_WITH_PAGER 2392 bool is_unpaged(void *va) 2393 { 2394 vaddr_t v = (vaddr_t)va; 2395 2396 return v >= VCORE_START_VA && v < get_linear_map_end_va(); 2397 } 2398 #else 2399 bool is_unpaged(void *va __unused) 2400 { 2401 return true; 2402 } 2403 #endif 2404 2405 void core_mmu_init_virtualization(void) 2406 { 2407 paddr_t b1 = 0; 2408 paddr_size_t s1 = 0; 2409 2410 static_assert(ARRAY_SIZE(secure_only) <= 2); 2411 if (ARRAY_SIZE(secure_only) == 2) { 2412 b1 = secure_only[1].paddr; 2413 s1 = secure_only[1].size; 2414 } 2415 virt_init_memory(static_memory_map, secure_only[0].paddr, 2416 secure_only[0].size, b1, s1); 2417 } 2418 2419 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) 2420 { 2421 assert(p->pa); 2422 if (cpu_mmu_enabled()) { 2423 if (!p->va) 2424 p->va = (vaddr_t)phys_to_virt_io(p->pa, len); 2425 assert(p->va); 2426 return p->va; 2427 } 2428 return p->pa; 2429 } 2430 2431 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) 2432 { 2433 assert(p->pa); 2434 if (cpu_mmu_enabled()) { 2435 if (!p->va) 2436 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, 2437 len); 2438 assert(p->va); 2439 return p->va; 2440 } 2441 return p->pa; 2442 } 2443 2444 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) 2445 { 2446 assert(p->pa); 2447 if (cpu_mmu_enabled()) { 2448 if (!p->va) 2449 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, 2450 len); 2451 assert(p->va); 2452 return p->va; 2453 } 2454 return p->pa; 2455 } 2456 2457 #ifdef CFG_CORE_RESERVED_SHM 2458 static TEE_Result teecore_init_pub_ram(void) 2459 { 2460 vaddr_t s = 0; 2461 vaddr_t e = 0; 2462 2463 /* get virtual addr/size of NSec shared mem allocated from teecore */ 2464 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); 2465 2466 if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) 2467 panic("invalid PUB RAM"); 2468 2469 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2470 if (!tee_vbuf_is_non_sec(s, e - s)) 2471 panic("PUB RAM is not non-secure"); 2472 2473 #ifdef CFG_PL310 2474 /* Allocate statically the l2cc mutex */ 2475 tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); 2476 s += sizeof(uint32_t); /* size of a pl310 mutex */ 2477 s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ 2478 #endif 2479 2480 default_nsec_shm_paddr = virt_to_phys((void *)s); 2481 default_nsec_shm_size = e - s; 2482 2483 return TEE_SUCCESS; 2484 } 2485 early_init(teecore_init_pub_ram); 2486 #endif /*CFG_CORE_RESERVED_SHM*/ 2487 2488 void core_mmu_init_ta_ram(void) 2489 { 2490 vaddr_t s = 0; 2491 vaddr_t e = 0; 2492 paddr_t ps = 0; 2493 size_t size = 0; 2494 2495 /* 2496 * Get virtual addr/size of RAM where TA are loaded/executedNSec 2497 * shared mem allocated from teecore. 2498 */ 2499 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) 2500 virt_get_ta_ram(&s, &e); 2501 else 2502 core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e); 2503 2504 ps = virt_to_phys((void *)s); 2505 size = e - s; 2506 2507 if (!ps || (ps & CORE_MMU_USER_CODE_MASK) || 2508 !size || (size & CORE_MMU_USER_CODE_MASK)) 2509 panic("invalid TA RAM"); 2510 2511 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2512 if (!tee_pbuf_is_sec(ps, size)) 2513 panic("TA RAM is not secure"); 2514 2515 if (!tee_mm_is_empty(&tee_mm_sec_ddr)) 2516 panic("TA RAM pool is not empty"); 2517 2518 /* remove previous config and init TA ddr memory pool */ 2519 tee_mm_final(&tee_mm_sec_ddr); 2520 tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT, 2521 TEE_MM_POOL_NO_FLAGS); 2522 } 2523