xref: /optee_os/core/mm/core_mmu.c (revision e1602654765eb7a20e810fcf24440511a9bc22ca)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <mm/core_memprot.h>
22 #include <mm/core_mmu.h>
23 #include <mm/mobj.h>
24 #include <mm/pgt_cache.h>
25 #include <mm/tee_pager.h>
26 #include <mm/vm.h>
27 #include <platform_config.h>
28 #include <string.h>
29 #include <trace.h>
30 #include <util.h>
31 
32 #ifndef DEBUG_XLAT_TABLE
33 #define DEBUG_XLAT_TABLE 0
34 #endif
35 
36 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
37 
38 #ifdef CFG_CORE_PHYS_RELOCATABLE
39 unsigned long core_mmu_tee_load_pa __nex_bss;
40 #else
41 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
42 #endif
43 
44 /*
45  * These variables are initialized before .bss is cleared. To avoid
46  * resetting them when .bss is cleared we're storing them in .data instead,
47  * even if they initially are zero.
48  */
49 
50 #ifdef CFG_CORE_RESERVED_SHM
51 /* Default NSec shared memory allocated from NSec world */
52 unsigned long default_nsec_shm_size __nex_bss;
53 unsigned long default_nsec_shm_paddr __nex_bss;
54 #endif
55 
56 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS
57 #ifdef CFG_CORE_ASLR
58 						+ 1
59 #endif
60 						+ 1] __nex_bss;
61 
62 /* Define the platform's memory layout. */
63 struct memaccess_area {
64 	paddr_t paddr;
65 	size_t size;
66 };
67 
68 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
69 
70 static struct memaccess_area secure_only[] __nex_data = {
71 #ifdef CFG_CORE_PHYS_RELOCATABLE
72 	MEMACCESS_AREA(0, 0),
73 #else
74 #ifdef TRUSTED_SRAM_BASE
75 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
76 #endif
77 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
78 #endif
79 };
80 
81 static struct memaccess_area nsec_shared[] __nex_data = {
82 #ifdef CFG_CORE_RESERVED_SHM
83 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
84 #endif
85 };
86 
87 #if defined(CFG_SECURE_DATA_PATH)
88 static const char *tz_sdp_match = "linaro,secure-heap";
89 static struct memaccess_area sec_sdp;
90 #ifdef CFG_TEE_SDP_MEM_BASE
91 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
92 #endif
93 #ifdef TEE_SDP_TEST_MEM_BASE
94 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
95 #endif
96 #endif
97 
98 #ifdef CFG_CORE_RESERVED_SHM
99 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
100 #endif
101 static unsigned int mmu_spinlock;
102 
103 static uint32_t mmu_lock(void)
104 {
105 	return cpu_spin_lock_xsave(&mmu_spinlock);
106 }
107 
108 static void mmu_unlock(uint32_t exceptions)
109 {
110 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
111 }
112 
113 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
114 {
115 	/*
116 	 * The first range is always used to cover OP-TEE core memory, but
117 	 * depending on configuration it may cover more than that.
118 	 */
119 	*base = secure_only[0].paddr;
120 	*size = secure_only[0].size;
121 }
122 
123 #ifdef CFG_CORE_PHYS_RELOCATABLE
124 void core_mmu_set_secure_memory(paddr_t base, size_t size)
125 {
126 	static_assert(ARRAY_SIZE(secure_only) == 1);
127 	assert(!secure_only[0].size);
128 	assert(base && size);
129 
130 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
131 	secure_only[0].paddr = base;
132 	secure_only[0].size = size;
133 }
134 #endif
135 
136 void core_mmu_get_ta_range(paddr_t *base, size_t *size)
137 {
138 	paddr_t b = 0;
139 	size_t s = 0;
140 
141 	static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE));
142 #ifdef TA_RAM_START
143 	b = TA_RAM_START;
144 	s = TA_RAM_SIZE;
145 #else
146 	static_assert(ARRAY_SIZE(secure_only) <= 2);
147 	if (ARRAY_SIZE(secure_only) == 1) {
148 		vaddr_t load_offs = 0;
149 
150 		assert(core_mmu_tee_load_pa >= secure_only[0].paddr);
151 		load_offs = core_mmu_tee_load_pa - secure_only[0].paddr;
152 
153 		assert(secure_only[0].size >
154 		       load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE);
155 		b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE;
156 		s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE -
157 		    TEE_SDP_TEST_MEM_SIZE;
158 	} else {
159 		assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE);
160 		b = secure_only[1].paddr;
161 		s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE;
162 	}
163 #endif
164 	if (base)
165 		*base = b;
166 	if (size)
167 		*size = s;
168 }
169 
170 static struct tee_mmap_region *get_memory_map(void)
171 {
172 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
173 		struct tee_mmap_region *map = virt_get_memory_map();
174 
175 		if (map)
176 			return map;
177 	}
178 
179 	return static_memory_map;
180 }
181 
182 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
183 			     paddr_t pa, size_t size)
184 {
185 	size_t n;
186 
187 	for (n = 0; n < alen; n++)
188 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
189 			return true;
190 	return false;
191 }
192 
193 #define pbuf_intersects(a, pa, size) \
194 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
195 
196 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
197 			    paddr_t pa, size_t size)
198 {
199 	size_t n;
200 
201 	for (n = 0; n < alen; n++)
202 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
203 			return true;
204 	return false;
205 }
206 
207 #define pbuf_is_inside(a, pa, size) \
208 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
209 
210 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
211 {
212 	paddr_t end_pa = 0;
213 
214 	if (!map)
215 		return false;
216 
217 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
218 		return false;
219 
220 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
221 }
222 
223 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
224 {
225 	if (!map)
226 		return false;
227 	return (va >= map->va && va <= (map->va + map->size - 1));
228 }
229 
230 /* check if target buffer fits in a core default map area */
231 static bool pbuf_inside_map_area(unsigned long p, size_t l,
232 				 struct tee_mmap_region *map)
233 {
234 	return core_is_buffer_inside(p, l, map->pa, map->size);
235 }
236 
237 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
238 {
239 	struct tee_mmap_region *map;
240 
241 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++)
242 		if (map->type == type)
243 			return map;
244 	return NULL;
245 }
246 
247 static struct tee_mmap_region *
248 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
249 {
250 	struct tee_mmap_region *map;
251 
252 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
253 		if (map->type != type)
254 			continue;
255 		if (pa_is_in_map(map, pa, len))
256 			return map;
257 	}
258 	return NULL;
259 }
260 
261 static struct tee_mmap_region *find_map_by_va(void *va)
262 {
263 	struct tee_mmap_region *map = get_memory_map();
264 	unsigned long a = (unsigned long)va;
265 
266 	while (!core_mmap_is_end_of_table(map)) {
267 		if (a >= map->va && a <= (map->va - 1 + map->size))
268 			return map;
269 		map++;
270 	}
271 	return NULL;
272 }
273 
274 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
275 {
276 	struct tee_mmap_region *map = get_memory_map();
277 
278 	while (!core_mmap_is_end_of_table(map)) {
279 		if (pa >= map->pa && pa <= (map->pa + map->size - 1))
280 			return map;
281 		map++;
282 	}
283 	return NULL;
284 }
285 
286 #if defined(CFG_SECURE_DATA_PATH)
287 static bool dtb_get_sdp_region(void)
288 {
289 	void *fdt = NULL;
290 	int node = 0;
291 	int tmp_node = 0;
292 	paddr_t tmp_addr = 0;
293 	size_t tmp_size = 0;
294 
295 	if (!IS_ENABLED(CFG_EMBED_DTB))
296 		return false;
297 
298 	fdt = get_embedded_dt();
299 	if (!fdt)
300 		panic("No DTB found");
301 
302 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
303 	if (node < 0) {
304 		DMSG("No %s compatible node found", tz_sdp_match);
305 		return false;
306 	}
307 	tmp_node = node;
308 	while (tmp_node >= 0) {
309 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
310 							 tz_sdp_match);
311 		if (tmp_node >= 0)
312 			DMSG("Ignore SDP pool node %s, supports only 1 node",
313 			     fdt_get_name(fdt, tmp_node, NULL));
314 	}
315 
316 	tmp_addr = fdt_reg_base_address(fdt, node);
317 	if (tmp_addr == DT_INFO_INVALID_REG) {
318 		EMSG("%s: Unable to get base addr from DT", tz_sdp_match);
319 		return false;
320 	}
321 
322 	tmp_size = fdt_reg_size(fdt, node);
323 	if (tmp_size == DT_INFO_INVALID_REG_SIZE) {
324 		EMSG("%s: Unable to get size of base addr from DT",
325 		     tz_sdp_match);
326 		return false;
327 	}
328 
329 	sec_sdp.paddr = tmp_addr;
330 	sec_sdp.size = tmp_size;
331 
332 	return true;
333 }
334 #endif
335 
336 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
337 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
338 				const struct core_mmu_phys_mem *start,
339 				const struct core_mmu_phys_mem *end)
340 {
341 	const struct core_mmu_phys_mem *mem;
342 
343 	for (mem = start; mem < end; mem++) {
344 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
345 			return true;
346 	}
347 
348 	return false;
349 }
350 #endif
351 
352 #ifdef CFG_CORE_DYN_SHM
353 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
354 			       paddr_t pa, size_t size)
355 {
356 	struct core_mmu_phys_mem *m = *mem;
357 	size_t n = 0;
358 
359 	while (true) {
360 		if (n >= *nelems) {
361 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
362 			     pa, size);
363 			return;
364 		}
365 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
366 			break;
367 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
368 			panic();
369 		n++;
370 	}
371 
372 	if (pa == m[n].addr && size == m[n].size) {
373 		/* Remove this entry */
374 		(*nelems)--;
375 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
376 		m = nex_realloc(m, sizeof(*m) * *nelems);
377 		if (!m)
378 			panic();
379 		*mem = m;
380 	} else if (pa == m[n].addr) {
381 		m[n].addr += size;
382 		m[n].size -= size;
383 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
384 		m[n].size -= size;
385 	} else {
386 		/* Need to split the memory entry */
387 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
388 		if (!m)
389 			panic();
390 		*mem = m;
391 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
392 		(*nelems)++;
393 		m[n].size = pa - m[n].addr;
394 		m[n + 1].size -= size + m[n].size;
395 		m[n + 1].addr = pa + size;
396 	}
397 }
398 
399 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
400 				      size_t nelems,
401 				      struct tee_mmap_region *map)
402 {
403 	size_t n;
404 
405 	for (n = 0; n < nelems; n++) {
406 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
407 					    map->pa, map->size)) {
408 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
409 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
410 			     start[n].addr, start[n].size,
411 			     map->type, map->pa, map->size);
412 			panic();
413 		}
414 	}
415 }
416 
417 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
418 static size_t discovered_nsec_ddr_nelems __nex_bss;
419 
420 static int cmp_pmem_by_addr(const void *a, const void *b)
421 {
422 	const struct core_mmu_phys_mem *pmem_a = a;
423 	const struct core_mmu_phys_mem *pmem_b = b;
424 
425 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
426 }
427 
428 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
429 				      size_t nelems)
430 {
431 	struct core_mmu_phys_mem *m = start;
432 	size_t num_elems = nelems;
433 	struct tee_mmap_region *map = static_memory_map;
434 	const struct core_mmu_phys_mem __maybe_unused *pmem;
435 	size_t n = 0;
436 
437 	assert(!discovered_nsec_ddr_start);
438 	assert(m && num_elems);
439 
440 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
441 
442 	/*
443 	 * Non-secure shared memory and also secure data
444 	 * path memory are supposed to reside inside
445 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
446 	 * are used for a specific purpose make holes for
447 	 * those memory in the normal non-secure memory.
448 	 *
449 	 * This has to be done since for instance QEMU
450 	 * isn't aware of which memory range in the
451 	 * non-secure memory is used for NSEC_SHM.
452 	 */
453 
454 #ifdef CFG_SECURE_DATA_PATH
455 	if (dtb_get_sdp_region())
456 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
457 
458 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
459 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
460 #endif
461 
462 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
463 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
464 				   secure_only[n].size);
465 
466 	for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) {
467 		switch (map->type) {
468 		case MEM_AREA_NSEC_SHM:
469 			carve_out_phys_mem(&m, &num_elems, map->pa, map->size);
470 			break;
471 		case MEM_AREA_EXT_DT:
472 		case MEM_AREA_RES_VASPACE:
473 		case MEM_AREA_SHM_VASPACE:
474 		case MEM_AREA_TS_VASPACE:
475 		case MEM_AREA_PAGER_VASPACE:
476 			break;
477 		default:
478 			check_phys_mem_is_outside(m, num_elems, map);
479 		}
480 	}
481 
482 	discovered_nsec_ddr_start = m;
483 	discovered_nsec_ddr_nelems = num_elems;
484 
485 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
486 				   m[num_elems - 1].size))
487 		panic();
488 }
489 
490 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
491 				    const struct core_mmu_phys_mem **end)
492 {
493 	if (!discovered_nsec_ddr_start)
494 		return false;
495 
496 	*start = discovered_nsec_ddr_start;
497 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
498 
499 	return true;
500 }
501 
502 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
503 {
504 	const struct core_mmu_phys_mem *start;
505 	const struct core_mmu_phys_mem *end;
506 
507 	if (!get_discovered_nsec_ddr(&start, &end))
508 		return false;
509 
510 	return pbuf_is_special_mem(pbuf, len, start, end);
511 }
512 
513 bool core_mmu_nsec_ddr_is_defined(void)
514 {
515 	const struct core_mmu_phys_mem *start;
516 	const struct core_mmu_phys_mem *end;
517 
518 	if (!get_discovered_nsec_ddr(&start, &end))
519 		return false;
520 
521 	return start != end;
522 }
523 #else
524 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
525 {
526 	return false;
527 }
528 #endif /*CFG_CORE_DYN_SHM*/
529 
530 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
531 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
532 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
533 
534 #ifdef CFG_SECURE_DATA_PATH
535 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
536 {
537 	bool is_sdp_mem = false;
538 
539 	if (sec_sdp.size)
540 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
541 						   sec_sdp.size);
542 
543 	if (!is_sdp_mem)
544 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
545 						 phys_sdp_mem_end);
546 
547 	return is_sdp_mem;
548 }
549 
550 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
551 {
552 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
553 					    CORE_MEM_SDP_MEM);
554 
555 	if (!mobj)
556 		panic("can't create SDP physical memory object");
557 
558 	return mobj;
559 }
560 
561 struct mobj **core_sdp_mem_create_mobjs(void)
562 {
563 	const struct core_mmu_phys_mem *mem = NULL;
564 	struct mobj **mobj_base = NULL;
565 	struct mobj **mobj = NULL;
566 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
567 
568 	if (sec_sdp.size)
569 		cnt++;
570 
571 	/* SDP mobjs table must end with a NULL entry */
572 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
573 	if (!mobj_base)
574 		panic("Out of memory");
575 
576 	mobj = mobj_base;
577 
578 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
579 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
580 
581 	if (sec_sdp.size)
582 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
583 
584 	return mobj_base;
585 }
586 
587 #else /* CFG_SECURE_DATA_PATH */
588 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
589 {
590 	return false;
591 }
592 
593 #endif /* CFG_SECURE_DATA_PATH */
594 
595 /* Check special memories comply with registered memories */
596 static void verify_special_mem_areas(struct tee_mmap_region *mem_map,
597 				     size_t len,
598 				     const struct core_mmu_phys_mem *start,
599 				     const struct core_mmu_phys_mem *end,
600 				     const char *area_name __maybe_unused)
601 {
602 	const struct core_mmu_phys_mem *mem;
603 	const struct core_mmu_phys_mem *mem2;
604 	struct tee_mmap_region *mmap;
605 	size_t n;
606 
607 	if (start == end) {
608 		DMSG("No %s memory area defined", area_name);
609 		return;
610 	}
611 
612 	for (mem = start; mem < end; mem++)
613 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
614 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
615 
616 	/* Check memories do not intersect each other */
617 	for (mem = start; mem + 1 < end; mem++) {
618 		for (mem2 = mem + 1; mem2 < end; mem2++) {
619 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
620 						     mem->addr, mem->size)) {
621 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
622 						   mem->addr, mem->size);
623 				panic("Special memory intersection");
624 			}
625 		}
626 	}
627 
628 	/*
629 	 * Check memories do not intersect any mapped memory.
630 	 * This is called before reserved VA space is loaded in mem_map.
631 	 */
632 	for (mem = start; mem < end; mem++) {
633 		for (mmap = mem_map, n = 0; n < len; mmap++, n++) {
634 			if (core_is_buffer_intersect(mem->addr, mem->size,
635 						     mmap->pa, mmap->size)) {
636 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
637 						   mmap->pa, mmap->size);
638 				panic("Special memory intersection");
639 			}
640 		}
641 	}
642 }
643 
644 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems,
645 			 const char *mem_name __maybe_unused,
646 			 enum teecore_memtypes mem_type,
647 			 paddr_t mem_addr, paddr_size_t mem_size, size_t *last)
648 {
649 	size_t n = 0;
650 	paddr_t pa;
651 	paddr_size_t size;
652 
653 	if (!mem_size)	/* Discard null size entries */
654 		return;
655 	/*
656 	 * If some ranges of memory of the same type do overlap
657 	 * each others they are coalesced into one entry. To help this
658 	 * added entries are sorted by increasing physical.
659 	 *
660 	 * Note that it's valid to have the same physical memory as several
661 	 * different memory types, for instance the same device memory
662 	 * mapped as both secure and non-secure. This will probably not
663 	 * happen often in practice.
664 	 */
665 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
666 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
667 	while (true) {
668 		if (n >= (num_elems - 1)) {
669 			EMSG("Out of entries (%zu) in memory_map", num_elems);
670 			panic();
671 		}
672 		if (n == *last)
673 			break;
674 		pa = memory_map[n].pa;
675 		size = memory_map[n].size;
676 		if (mem_type == memory_map[n].type &&
677 		    ((pa <= (mem_addr + (mem_size - 1))) &&
678 		    (mem_addr <= (pa + (size - 1))))) {
679 			DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr);
680 			memory_map[n].pa = MIN(pa, mem_addr);
681 			memory_map[n].size = MAX(size, mem_size) +
682 					     (pa - memory_map[n].pa);
683 			return;
684 		}
685 		if (mem_type < memory_map[n].type ||
686 		    (mem_type == memory_map[n].type && mem_addr < pa))
687 			break; /* found the spot where to insert this memory */
688 		n++;
689 	}
690 
691 	memmove(memory_map + n + 1, memory_map + n,
692 		sizeof(struct tee_mmap_region) * (*last - n));
693 	(*last)++;
694 	memset(memory_map + n, 0, sizeof(memory_map[0]));
695 	memory_map[n].type = mem_type;
696 	memory_map[n].pa = mem_addr;
697 	memory_map[n].size = mem_size;
698 }
699 
700 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems,
701 			 enum teecore_memtypes type, size_t size, size_t *last)
702 {
703 	size_t n = 0;
704 
705 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
706 	while (true) {
707 		if (n >= (num_elems - 1)) {
708 			EMSG("Out of entries (%zu) in memory_map", num_elems);
709 			panic();
710 		}
711 		if (n == *last)
712 			break;
713 		if (type < memory_map[n].type)
714 			break;
715 		n++;
716 	}
717 
718 	memmove(memory_map + n + 1, memory_map + n,
719 		sizeof(struct tee_mmap_region) * (*last - n));
720 	(*last)++;
721 	memset(memory_map + n, 0, sizeof(memory_map[0]));
722 	memory_map[n].type = type;
723 	memory_map[n].size = size;
724 }
725 
726 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
727 {
728 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
729 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
730 				TEE_MATTR_MEM_TYPE_SHIFT;
731 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
732 				TEE_MATTR_MEM_TYPE_SHIFT;
733 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
734 				  TEE_MATTR_MEM_TYPE_SHIFT;
735 
736 	switch (t) {
737 	case MEM_AREA_TEE_RAM:
738 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
739 	case MEM_AREA_TEE_RAM_RX:
740 	case MEM_AREA_INIT_RAM_RX:
741 	case MEM_AREA_IDENTITY_MAP_RX:
742 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
743 	case MEM_AREA_TEE_RAM_RO:
744 	case MEM_AREA_INIT_RAM_RO:
745 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
746 	case MEM_AREA_TEE_RAM_RW:
747 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
748 	case MEM_AREA_NEX_RAM_RW:
749 	case MEM_AREA_TEE_ASAN:
750 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
751 	case MEM_AREA_TEE_COHERENT:
752 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
753 	case MEM_AREA_TA_RAM:
754 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
755 	case MEM_AREA_NSEC_SHM:
756 		return attr | TEE_MATTR_PRW | cached;
757 	case MEM_AREA_EXT_DT:
758 		/*
759 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
760 		 * tree as secure non-cached memory, otherwise, fall back to
761 		 * non-secure mapping.
762 		 */
763 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
764 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
765 			       noncache;
766 		fallthrough;
767 	case MEM_AREA_IO_NSEC:
768 		return attr | TEE_MATTR_PRW | noncache;
769 	case MEM_AREA_IO_SEC:
770 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
771 	case MEM_AREA_RAM_NSEC:
772 		return attr | TEE_MATTR_PRW | cached;
773 	case MEM_AREA_RAM_SEC:
774 	case MEM_AREA_SEC_RAM_OVERALL:
775 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
776 	case MEM_AREA_RES_VASPACE:
777 	case MEM_AREA_SHM_VASPACE:
778 		return 0;
779 	case MEM_AREA_PAGER_VASPACE:
780 		return TEE_MATTR_SECURE;
781 	default:
782 		panic("invalid type");
783 	}
784 }
785 
786 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
787 {
788 	switch (mm->type) {
789 	case MEM_AREA_TEE_RAM:
790 	case MEM_AREA_TEE_RAM_RX:
791 	case MEM_AREA_TEE_RAM_RO:
792 	case MEM_AREA_TEE_RAM_RW:
793 	case MEM_AREA_INIT_RAM_RX:
794 	case MEM_AREA_INIT_RAM_RO:
795 	case MEM_AREA_NEX_RAM_RW:
796 	case MEM_AREA_NEX_RAM_RO:
797 	case MEM_AREA_TEE_ASAN:
798 		return true;
799 	default:
800 		return false;
801 	}
802 }
803 
804 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
805 {
806 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
807 }
808 
809 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
810 {
811 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
812 }
813 
814 static int cmp_mmap_by_lower_va(const void *a, const void *b)
815 {
816 	const struct tee_mmap_region *mm_a = a;
817 	const struct tee_mmap_region *mm_b = b;
818 
819 	return CMP_TRILEAN(mm_a->va, mm_b->va);
820 }
821 
822 static void dump_mmap_table(struct tee_mmap_region *memory_map)
823 {
824 	struct tee_mmap_region *map;
825 
826 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
827 		vaddr_t __maybe_unused vstart;
828 
829 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
830 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
831 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
832 		     teecore_memtype_name(map->type), vstart,
833 		     vstart + map->size - 1, map->pa,
834 		     (paddr_t)(map->pa + map->size - 1), map->size,
835 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
836 	}
837 }
838 
839 #if DEBUG_XLAT_TABLE
840 
841 static void dump_xlat_table(vaddr_t va, unsigned int level)
842 {
843 	struct core_mmu_table_info tbl_info;
844 	unsigned int idx = 0;
845 	paddr_t pa;
846 	uint32_t attr;
847 
848 	core_mmu_find_table(NULL, va, level, &tbl_info);
849 	va = tbl_info.va_base;
850 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
851 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
852 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
853 			const char *security_bit = "";
854 
855 			if (core_mmu_entry_have_security_bit(attr)) {
856 				if (attr & TEE_MATTR_SECURE)
857 					security_bit = "S";
858 				else
859 					security_bit = "NS";
860 			}
861 
862 			if (attr & TEE_MATTR_TABLE) {
863 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
864 					" TBL:0x%010" PRIxPA " %s",
865 					level * 2, "", level, va, pa,
866 					security_bit);
867 				dump_xlat_table(va, level + 1);
868 			} else if (attr) {
869 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
870 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
871 					level * 2, "", level, va, pa,
872 					mattr_is_cached(attr) ? "MEM" :
873 					"DEV",
874 					attr & TEE_MATTR_PW ? "RW" : "RO",
875 					attr & TEE_MATTR_PX ? "X " : "XN",
876 					security_bit);
877 			} else {
878 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
879 					    " INVALID\n",
880 					    level * 2, "", level, va);
881 			}
882 		}
883 		va += BIT64(tbl_info.shift);
884 	}
885 }
886 
887 #else
888 
889 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
890 {
891 }
892 
893 #endif
894 
895 /*
896  * Reserves virtual memory space for pager usage.
897  *
898  * From the start of the first memory used by the link script +
899  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
900  * mapping for pager usage. This adds translation tables as needed for the
901  * pager to operate.
902  */
903 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems,
904 			      size_t *last)
905 {
906 	paddr_t begin = 0;
907 	paddr_t end = 0;
908 	size_t size = 0;
909 	size_t pos = 0;
910 	size_t n = 0;
911 
912 	if (*last >= (num_elems - 1)) {
913 		EMSG("Out of entries (%zu) in memory map", num_elems);
914 		panic();
915 	}
916 
917 	for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) {
918 		if (map_is_tee_ram(mmap + n)) {
919 			if (!begin)
920 				begin = mmap[n].pa;
921 			pos = n + 1;
922 		}
923 	}
924 
925 	end = mmap[pos - 1].pa + mmap[pos - 1].size;
926 	assert(end - begin < TEE_RAM_VA_SIZE);
927 	size = TEE_RAM_VA_SIZE - (end - begin);
928 
929 	assert(pos <= *last);
930 	memmove(mmap + pos + 1, mmap + pos,
931 		sizeof(struct tee_mmap_region) * (*last - pos));
932 	(*last)++;
933 	memset(mmap + pos, 0, sizeof(mmap[0]));
934 	mmap[pos].type = MEM_AREA_PAGER_VASPACE;
935 	mmap[pos].va = 0;
936 	mmap[pos].size = size;
937 	mmap[pos].region_size = SMALL_PAGE_SIZE;
938 	mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE);
939 }
940 
941 static void check_sec_nsec_mem_config(void)
942 {
943 	size_t n = 0;
944 
945 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
946 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
947 				    secure_only[n].size))
948 			panic("Invalid memory access config: sec/nsec");
949 	}
950 }
951 
952 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map,
953 				 size_t num_elems)
954 {
955 	const struct core_mmu_phys_mem *mem = NULL;
956 	vaddr_t ram_start = secure_only[0].paddr;
957 	size_t last = 0;
958 
959 
960 #define ADD_PHYS_MEM(_type, _addr, _size) \
961 		add_phys_mem(memory_map, num_elems, #_addr, (_type), \
962 			     (_addr), (_size),  &last)
963 
964 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
965 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start,
966 			     VCORE_UNPG_RX_PA - ram_start);
967 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
968 			     VCORE_UNPG_RX_SZ);
969 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
970 			     VCORE_UNPG_RO_SZ);
971 
972 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
973 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
974 				     VCORE_UNPG_RW_SZ);
975 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
976 				     VCORE_NEX_RW_SZ);
977 		} else {
978 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
979 				     VCORE_UNPG_RW_SZ);
980 		}
981 
982 		if (IS_ENABLED(CFG_WITH_PAGER)) {
983 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
984 				     VCORE_INIT_RX_SZ);
985 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
986 				     VCORE_INIT_RO_SZ);
987 		}
988 	} else {
989 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
990 	}
991 
992 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
993 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
994 			     TRUSTED_DRAM_SIZE);
995 	} else {
996 		/*
997 		 * Every guest will have own TA RAM if virtualization
998 		 * support is enabled.
999 		 */
1000 		paddr_t ta_base = 0;
1001 		size_t ta_size = 0;
1002 
1003 		core_mmu_get_ta_range(&ta_base, &ta_size);
1004 		ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size);
1005 	}
1006 
1007 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
1008 	    IS_ENABLED(CFG_WITH_PAGER)) {
1009 		/*
1010 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
1011 		 * disabled.
1012 		 */
1013 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1014 	}
1015 
1016 #undef ADD_PHYS_MEM
1017 
1018 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1019 		/* Only unmapped virtual range may have a null phys addr */
1020 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1021 
1022 		add_phys_mem(memory_map, num_elems, mem->name, mem->type,
1023 			     mem->addr, mem->size, &last);
1024 	}
1025 
1026 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1027 		verify_special_mem_areas(memory_map, num_elems,
1028 					 phys_sdp_mem_begin,
1029 					 phys_sdp_mem_end, "SDP");
1030 
1031 	add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE,
1032 		     CFG_RESERVED_VASPACE_SIZE, &last);
1033 
1034 	add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE,
1035 		     SHM_VASPACE_SIZE, &last);
1036 
1037 	memory_map[last].type = MEM_AREA_END;
1038 
1039 	return last;
1040 }
1041 
1042 static void assign_mem_granularity(struct tee_mmap_region *memory_map)
1043 {
1044 	struct tee_mmap_region *map = NULL;
1045 
1046 	/*
1047 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1048 	 * SMALL_PAGE_SIZE.
1049 	 */
1050 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1051 		paddr_t mask = map->pa | map->size;
1052 
1053 		if (!(mask & CORE_MMU_PGDIR_MASK))
1054 			map->region_size = CORE_MMU_PGDIR_SIZE;
1055 		else if (!(mask & SMALL_PAGE_MASK))
1056 			map->region_size = SMALL_PAGE_SIZE;
1057 		else
1058 			panic("Impossible memory alignment");
1059 
1060 		if (map_is_tee_ram(map))
1061 			map->region_size = SMALL_PAGE_SIZE;
1062 	}
1063 }
1064 
1065 static bool place_tee_ram_at_top(paddr_t paddr)
1066 {
1067 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1068 }
1069 
1070 /*
1071  * MMU arch driver shall override this function if it helps
1072  * optimizing the memory footprint of the address translation tables.
1073  */
1074 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1075 {
1076 	return place_tee_ram_at_top(paddr);
1077 }
1078 
1079 static bool assign_mem_va_dir(vaddr_t tee_ram_va,
1080 			      struct tee_mmap_region *memory_map,
1081 			      bool tee_ram_at_top)
1082 {
1083 	struct tee_mmap_region *map = NULL;
1084 	vaddr_t va = 0;
1085 	bool va_is_secure = true;
1086 
1087 	/*
1088 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1089 	 * 0 is by design an invalid va, so return false directly.
1090 	 */
1091 	if (!tee_ram_va)
1092 		return false;
1093 
1094 	/* Clear eventual previous assignments */
1095 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1096 		map->va = 0;
1097 
1098 	/*
1099 	 * TEE RAM regions are always aligned with region_size.
1100 	 *
1101 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1102 	 * since it handles virtual memory which covers the part of the ELF
1103 	 * that cannot fit directly into memory.
1104 	 */
1105 	va = tee_ram_va;
1106 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1107 		if (map_is_tee_ram(map) ||
1108 		    map->type == MEM_AREA_PAGER_VASPACE) {
1109 			assert(!(va & (map->region_size - 1)));
1110 			assert(!(map->size & (map->region_size - 1)));
1111 			map->va = va;
1112 			if (ADD_OVERFLOW(va, map->size, &va))
1113 				return false;
1114 			if (va >= BIT64(core_mmu_get_va_width()))
1115 				return false;
1116 		}
1117 	}
1118 
1119 	if (tee_ram_at_top) {
1120 		/*
1121 		 * Map non-tee ram regions at addresses lower than the tee
1122 		 * ram region.
1123 		 */
1124 		va = tee_ram_va;
1125 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1126 			map->attr = core_mmu_type_to_attr(map->type);
1127 			if (map->va)
1128 				continue;
1129 
1130 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1131 			    va_is_secure != map_is_secure(map)) {
1132 				va_is_secure = !va_is_secure;
1133 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1134 			}
1135 
1136 			if (SUB_OVERFLOW(va, map->size, &va))
1137 				return false;
1138 			va = ROUNDDOWN(va, map->region_size);
1139 			/*
1140 			 * Make sure that va is aligned with pa for
1141 			 * efficient pgdir mapping. Basically pa &
1142 			 * pgdir_mask should be == va & pgdir_mask
1143 			 */
1144 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1145 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1146 					return false;
1147 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1148 			}
1149 			map->va = va;
1150 		}
1151 	} else {
1152 		/*
1153 		 * Map non-tee ram regions at addresses higher than the tee
1154 		 * ram region.
1155 		 */
1156 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1157 			map->attr = core_mmu_type_to_attr(map->type);
1158 			if (map->va)
1159 				continue;
1160 
1161 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1162 			    va_is_secure != map_is_secure(map)) {
1163 				va_is_secure = !va_is_secure;
1164 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1165 						     &va))
1166 					return false;
1167 			}
1168 
1169 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1170 				return false;
1171 			/*
1172 			 * Make sure that va is aligned with pa for
1173 			 * efficient pgdir mapping. Basically pa &
1174 			 * pgdir_mask should be == va & pgdir_mask
1175 			 */
1176 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1177 				vaddr_t offs = (map->pa - va) &
1178 					       CORE_MMU_PGDIR_MASK;
1179 
1180 				if (ADD_OVERFLOW(va, offs, &va))
1181 					return false;
1182 			}
1183 
1184 			map->va = va;
1185 			if (ADD_OVERFLOW(va, map->size, &va))
1186 				return false;
1187 			if (va >= BIT64(core_mmu_get_va_width()))
1188 				return false;
1189 		}
1190 	}
1191 
1192 	return true;
1193 }
1194 
1195 static bool assign_mem_va(vaddr_t tee_ram_va,
1196 			  struct tee_mmap_region *memory_map)
1197 {
1198 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1199 
1200 	/*
1201 	 * Check that we're not overlapping with the user VA range.
1202 	 */
1203 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1204 		/*
1205 		 * User VA range is supposed to be defined after these
1206 		 * mappings have been established.
1207 		 */
1208 		assert(!core_mmu_user_va_range_is_defined());
1209 	} else {
1210 		vaddr_t user_va_base = 0;
1211 		size_t user_va_size = 0;
1212 
1213 		assert(core_mmu_user_va_range_is_defined());
1214 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1215 		if (tee_ram_va < (user_va_base + user_va_size))
1216 			return false;
1217 	}
1218 
1219 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1220 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1221 
1222 		/* Try whole mapping covered by a single base xlat entry */
1223 		if (prefered_dir != tee_ram_at_top &&
1224 		    assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir))
1225 			return true;
1226 	}
1227 
1228 	return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top);
1229 }
1230 
1231 static int cmp_init_mem_map(const void *a, const void *b)
1232 {
1233 	const struct tee_mmap_region *mm_a = a;
1234 	const struct tee_mmap_region *mm_b = b;
1235 	int rc = 0;
1236 
1237 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1238 	if (!rc)
1239 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1240 	/*
1241 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1242 	 * the same level2 table. Hence sort secure mapping from non-secure
1243 	 * mapping.
1244 	 */
1245 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1246 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1247 
1248 	return rc;
1249 }
1250 
1251 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map,
1252 			       size_t num_elems, size_t *last,
1253 			       vaddr_t id_map_start, vaddr_t id_map_end)
1254 {
1255 	struct tee_mmap_region *map = NULL;
1256 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1257 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1258 	size_t len = end - start;
1259 
1260 	if (*last >= num_elems - 1) {
1261 		EMSG("Out of entries (%zu) in memory map", num_elems);
1262 		panic();
1263 	}
1264 
1265 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1266 		if (core_is_buffer_intersect(map->va, map->size, start, len))
1267 			return false;
1268 
1269 	*map = (struct tee_mmap_region){
1270 		.type = MEM_AREA_IDENTITY_MAP_RX,
1271 		/*
1272 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1273 		 * translation table, at the increased risk of clashes with
1274 		 * the rest of the memory map.
1275 		 */
1276 		.region_size = SMALL_PAGE_SIZE,
1277 		.pa = start,
1278 		.va = start,
1279 		.size = len,
1280 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1281 	};
1282 
1283 	(*last)++;
1284 
1285 	return true;
1286 }
1287 
1288 static unsigned long init_mem_map(struct tee_mmap_region *memory_map,
1289 				  size_t num_elems, unsigned long seed)
1290 {
1291 	/*
1292 	 * @id_map_start and @id_map_end describes a physical memory range
1293 	 * that must be mapped Read-Only eXecutable at identical virtual
1294 	 * addresses.
1295 	 */
1296 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1297 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1298 	vaddr_t start_addr = secure_only[0].paddr;
1299 	unsigned long offs = 0;
1300 	size_t last = 0;
1301 
1302 	last = collect_mem_ranges(memory_map, num_elems);
1303 	assign_mem_granularity(memory_map);
1304 
1305 	/*
1306 	 * To ease mapping and lower use of xlat tables, sort mapping
1307 	 * description moving small-page regions after the pgdir regions.
1308 	 */
1309 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1310 	      cmp_init_mem_map);
1311 
1312 	if (IS_ENABLED(CFG_WITH_PAGER))
1313 		add_pager_vaspace(memory_map, num_elems, &last);
1314 
1315 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1316 		vaddr_t base_addr = start_addr + seed;
1317 		const unsigned int va_width = core_mmu_get_va_width();
1318 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1319 						   SMALL_PAGE_SHIFT);
1320 		vaddr_t ba = base_addr;
1321 		size_t n = 0;
1322 
1323 		for (n = 0; n < 3; n++) {
1324 			if (n)
1325 				ba = base_addr ^ BIT64(va_width - n);
1326 			ba &= va_mask;
1327 			if (assign_mem_va(ba, memory_map) &&
1328 			    mem_map_add_id_map(memory_map, num_elems, &last,
1329 					       id_map_start, id_map_end)) {
1330 				offs = ba - start_addr;
1331 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1332 				     ba, offs);
1333 				goto out;
1334 			} else {
1335 				DMSG("Failed to map core at %#"PRIxVA, ba);
1336 			}
1337 		}
1338 		EMSG("Failed to map core with seed %#lx", seed);
1339 	}
1340 
1341 	if (!assign_mem_va(start_addr, memory_map))
1342 		panic();
1343 
1344 out:
1345 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1346 	      cmp_mmap_by_lower_va);
1347 
1348 	dump_mmap_table(memory_map);
1349 
1350 	return offs;
1351 }
1352 
1353 static void check_mem_map(struct tee_mmap_region *map)
1354 {
1355 	struct tee_mmap_region *m = NULL;
1356 
1357 	for (m = map; !core_mmap_is_end_of_table(m); m++) {
1358 		switch (m->type) {
1359 		case MEM_AREA_TEE_RAM:
1360 		case MEM_AREA_TEE_RAM_RX:
1361 		case MEM_AREA_TEE_RAM_RO:
1362 		case MEM_AREA_TEE_RAM_RW:
1363 		case MEM_AREA_INIT_RAM_RX:
1364 		case MEM_AREA_INIT_RAM_RO:
1365 		case MEM_AREA_NEX_RAM_RW:
1366 		case MEM_AREA_NEX_RAM_RO:
1367 		case MEM_AREA_IDENTITY_MAP_RX:
1368 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1369 				panic("TEE_RAM can't fit in secure_only");
1370 			break;
1371 		case MEM_AREA_TA_RAM:
1372 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1373 				panic("TA_RAM can't fit in secure_only");
1374 			break;
1375 		case MEM_AREA_NSEC_SHM:
1376 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1377 				panic("NS_SHM can't fit in nsec_shared");
1378 			break;
1379 		case MEM_AREA_SEC_RAM_OVERALL:
1380 		case MEM_AREA_TEE_COHERENT:
1381 		case MEM_AREA_TEE_ASAN:
1382 		case MEM_AREA_IO_SEC:
1383 		case MEM_AREA_IO_NSEC:
1384 		case MEM_AREA_EXT_DT:
1385 		case MEM_AREA_RAM_SEC:
1386 		case MEM_AREA_RAM_NSEC:
1387 		case MEM_AREA_RES_VASPACE:
1388 		case MEM_AREA_SHM_VASPACE:
1389 		case MEM_AREA_PAGER_VASPACE:
1390 			break;
1391 		default:
1392 			EMSG("Uhandled memtype %d", m->type);
1393 			panic();
1394 		}
1395 	}
1396 }
1397 
1398 static struct tee_mmap_region *get_tmp_mmap(void)
1399 {
1400 	struct tee_mmap_region *tmp_mmap = (void *)__heap1_start;
1401 
1402 #ifdef CFG_WITH_PAGER
1403 	if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map))
1404 		tmp_mmap = (void *)__heap2_start;
1405 #endif
1406 
1407 	memset(tmp_mmap, 0, sizeof(static_memory_map));
1408 
1409 	return tmp_mmap;
1410 }
1411 
1412 /*
1413  * core_init_mmu_map() - init tee core default memory mapping
1414  *
1415  * This routine sets the static default TEE core mapping. If @seed is > 0
1416  * and configured with CFG_CORE_ASLR it will map tee core at a location
1417  * based on the seed and return the offset from the link address.
1418  *
1419  * If an error happened: core_init_mmu_map is expected to panic.
1420  *
1421  * Note: this function is weak just to make it possible to exclude it from
1422  * the unpaged area.
1423  */
1424 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1425 {
1426 #ifndef CFG_NS_VIRTUALIZATION
1427 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1428 #else
1429 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1430 				  SMALL_PAGE_SIZE);
1431 #endif
1432 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1433 	struct tee_mmap_region *tmp_mmap = get_tmp_mmap();
1434 	unsigned long offs = 0;
1435 
1436 	check_sec_nsec_mem_config();
1437 
1438 	/*
1439 	 * Add a entry covering the translation tables which will be
1440 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1441 	 */
1442 	static_memory_map[0] = (struct tee_mmap_region){
1443 		.type = MEM_AREA_TEE_RAM,
1444 		.region_size = SMALL_PAGE_SIZE,
1445 		.pa = start,
1446 		.va = start,
1447 		.size = len,
1448 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1449 	};
1450 
1451 	COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13);
1452 	offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed);
1453 
1454 	check_mem_map(tmp_mmap);
1455 	core_init_mmu(tmp_mmap);
1456 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1457 	core_init_mmu_regs(cfg);
1458 	cfg->map_offset = offs;
1459 	memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map));
1460 }
1461 
1462 bool core_mmu_mattr_is_ok(uint32_t mattr)
1463 {
1464 	/*
1465 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1466 	 * core_mmu_v7.c:mattr_to_texcb
1467 	 */
1468 
1469 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1470 	case TEE_MATTR_MEM_TYPE_DEV:
1471 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1472 	case TEE_MATTR_MEM_TYPE_CACHED:
1473 	case TEE_MATTR_MEM_TYPE_TAGGED:
1474 		return true;
1475 	default:
1476 		return false;
1477 	}
1478 }
1479 
1480 /*
1481  * test attributes of target physical buffer
1482  *
1483  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1484  *
1485  */
1486 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1487 {
1488 	paddr_t ta_base = 0;
1489 	size_t ta_size = 0;
1490 	struct tee_mmap_region *map;
1491 
1492 	/* Empty buffers complies with anything */
1493 	if (len == 0)
1494 		return true;
1495 
1496 	switch (attr) {
1497 	case CORE_MEM_SEC:
1498 		return pbuf_is_inside(secure_only, pbuf, len);
1499 	case CORE_MEM_NON_SEC:
1500 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1501 			pbuf_is_nsec_ddr(pbuf, len);
1502 	case CORE_MEM_TEE_RAM:
1503 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1504 							TEE_RAM_PH_SIZE);
1505 	case CORE_MEM_TA_RAM:
1506 		core_mmu_get_ta_range(&ta_base, &ta_size);
1507 		return core_is_buffer_inside(pbuf, len, ta_base, ta_size);
1508 #ifdef CFG_CORE_RESERVED_SHM
1509 	case CORE_MEM_NSEC_SHM:
1510 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1511 							TEE_SHMEM_SIZE);
1512 #endif
1513 	case CORE_MEM_SDP_MEM:
1514 		return pbuf_is_sdp_mem(pbuf, len);
1515 	case CORE_MEM_CACHED:
1516 		map = find_map_by_pa(pbuf);
1517 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1518 			return false;
1519 		return mattr_is_cached(map->attr);
1520 	default:
1521 		return false;
1522 	}
1523 }
1524 
1525 /* test attributes of target virtual buffer (in core mapping) */
1526 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1527 {
1528 	paddr_t p;
1529 
1530 	/* Empty buffers complies with anything */
1531 	if (len == 0)
1532 		return true;
1533 
1534 	p = virt_to_phys((void *)vbuf);
1535 	if (!p)
1536 		return false;
1537 
1538 	return core_pbuf_is(attr, p, len);
1539 }
1540 
1541 /* core_va2pa - teecore exported service */
1542 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1543 {
1544 	struct tee_mmap_region *map;
1545 
1546 	map = find_map_by_va(va);
1547 	if (!va_is_in_map(map, (vaddr_t)va))
1548 		return -1;
1549 
1550 	/*
1551 	 * We can calculate PA for static map. Virtual address ranges
1552 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1553 	 * together with an invalid null physical address.
1554 	 */
1555 	if (map->pa)
1556 		*pa = map->pa + (vaddr_t)va  - map->va;
1557 	else
1558 		*pa = 0;
1559 
1560 	return 0;
1561 }
1562 
1563 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1564 {
1565 	if (!pa_is_in_map(map, pa, len))
1566 		return NULL;
1567 
1568 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1569 }
1570 
1571 /*
1572  * teecore gets some memory area definitions
1573  */
1574 void core_mmu_get_mem_by_type(unsigned int type, vaddr_t *s, vaddr_t *e)
1575 {
1576 	struct tee_mmap_region *map = find_map_by_type(type);
1577 
1578 	if (map) {
1579 		*s = map->va;
1580 		*e = map->va + map->size;
1581 	} else {
1582 		*s = 0;
1583 		*e = 0;
1584 	}
1585 }
1586 
1587 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1588 {
1589 	struct tee_mmap_region *map = find_map_by_pa(pa);
1590 
1591 	if (!map)
1592 		return MEM_AREA_MAXTYPE;
1593 	return map->type;
1594 }
1595 
1596 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1597 			paddr_t pa, uint32_t attr)
1598 {
1599 	assert(idx < tbl_info->num_entries);
1600 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1601 				     idx, pa, attr);
1602 }
1603 
1604 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1605 			paddr_t *pa, uint32_t *attr)
1606 {
1607 	assert(idx < tbl_info->num_entries);
1608 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1609 				     idx, pa, attr);
1610 }
1611 
1612 static void clear_region(struct core_mmu_table_info *tbl_info,
1613 			 struct tee_mmap_region *region)
1614 {
1615 	unsigned int end = 0;
1616 	unsigned int idx = 0;
1617 
1618 	/* va, len and pa should be block aligned */
1619 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1620 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1621 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1622 
1623 	idx = core_mmu_va2idx(tbl_info, region->va);
1624 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1625 
1626 	while (idx < end) {
1627 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1628 		idx++;
1629 	}
1630 }
1631 
1632 static void set_region(struct core_mmu_table_info *tbl_info,
1633 		       struct tee_mmap_region *region)
1634 {
1635 	unsigned int end;
1636 	unsigned int idx;
1637 	paddr_t pa;
1638 
1639 	/* va, len and pa should be block aligned */
1640 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1641 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1642 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1643 
1644 	idx = core_mmu_va2idx(tbl_info, region->va);
1645 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1646 	pa = region->pa;
1647 
1648 	while (idx < end) {
1649 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1650 		idx++;
1651 		pa += BIT64(tbl_info->shift);
1652 	}
1653 }
1654 
1655 static void set_pg_region(struct core_mmu_table_info *dir_info,
1656 			  struct vm_region *region, struct pgt **pgt,
1657 			  struct core_mmu_table_info *pg_info)
1658 {
1659 	struct tee_mmap_region r = {
1660 		.va = region->va,
1661 		.size = region->size,
1662 		.attr = region->attr,
1663 	};
1664 	vaddr_t end = r.va + r.size;
1665 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1666 
1667 	while (r.va < end) {
1668 		if (!pg_info->table ||
1669 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1670 			/*
1671 			 * We're assigning a new translation table.
1672 			 */
1673 			unsigned int idx;
1674 
1675 			/* Virtual addresses must grow */
1676 			assert(r.va > pg_info->va_base);
1677 
1678 			idx = core_mmu_va2idx(dir_info, r.va);
1679 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1680 
1681 			/*
1682 			 * Advance pgt to va_base, note that we may need to
1683 			 * skip multiple page tables if there are large
1684 			 * holes in the vm map.
1685 			 */
1686 			while ((*pgt)->vabase < pg_info->va_base) {
1687 				*pgt = SLIST_NEXT(*pgt, link);
1688 				/* We should have allocated enough */
1689 				assert(*pgt);
1690 			}
1691 			assert((*pgt)->vabase == pg_info->va_base);
1692 			pg_info->table = (*pgt)->tbl;
1693 
1694 			core_mmu_set_entry(dir_info, idx,
1695 					   virt_to_phys(pg_info->table),
1696 					   pgt_attr);
1697 		}
1698 
1699 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1700 			     end - r.va);
1701 
1702 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1703 			size_t granule = BIT(pg_info->shift);
1704 			size_t offset = r.va - region->va + region->offset;
1705 
1706 			r.size = MIN(r.size,
1707 				     mobj_get_phys_granule(region->mobj));
1708 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1709 
1710 			if (mobj_get_pa(region->mobj, offset, granule,
1711 					&r.pa) != TEE_SUCCESS)
1712 				panic("Failed to get PA of unpaged mobj");
1713 			set_region(pg_info, &r);
1714 		}
1715 		r.va += r.size;
1716 	}
1717 }
1718 
1719 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1720 			     size_t size_left, paddr_t block_size,
1721 			     struct tee_mmap_region *mm __maybe_unused)
1722 {
1723 	/* VA and PA are aligned to block size at current level */
1724 	if ((vaddr | paddr) & (block_size - 1))
1725 		return false;
1726 
1727 	/* Remainder fits into block at current level */
1728 	if (size_left < block_size)
1729 		return false;
1730 
1731 #ifdef CFG_WITH_PAGER
1732 	/*
1733 	 * If pager is enabled, we need to map tee ram
1734 	 * regions with small pages only
1735 	 */
1736 	if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE)
1737 		return false;
1738 #endif
1739 
1740 	return true;
1741 }
1742 
1743 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1744 {
1745 	struct core_mmu_table_info tbl_info;
1746 	unsigned int idx;
1747 	vaddr_t vaddr = mm->va;
1748 	paddr_t paddr = mm->pa;
1749 	ssize_t size_left = mm->size;
1750 	unsigned int level;
1751 	bool table_found;
1752 	uint32_t old_attr;
1753 
1754 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1755 
1756 	while (size_left > 0) {
1757 		level = CORE_MMU_BASE_TABLE_LEVEL;
1758 
1759 		while (true) {
1760 			paddr_t block_size = 0;
1761 
1762 			assert(level <= CORE_MMU_PGDIR_LEVEL);
1763 
1764 			table_found = core_mmu_find_table(prtn, vaddr, level,
1765 							  &tbl_info);
1766 			if (!table_found)
1767 				panic("can't find table for mapping");
1768 
1769 			block_size = BIT64(tbl_info.shift);
1770 
1771 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1772 			if (!can_map_at_level(paddr, vaddr, size_left,
1773 					      block_size, mm)) {
1774 				bool secure = mm->attr & TEE_MATTR_SECURE;
1775 
1776 				/*
1777 				 * This part of the region can't be mapped at
1778 				 * this level. Need to go deeper.
1779 				 */
1780 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1781 								     idx,
1782 								     secure))
1783 					panic("Can't divide MMU entry");
1784 				level++;
1785 				continue;
1786 			}
1787 
1788 			/* We can map part of the region at current level */
1789 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1790 			if (old_attr)
1791 				panic("Page is already mapped");
1792 
1793 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1794 			paddr += block_size;
1795 			vaddr += block_size;
1796 			size_left -= block_size;
1797 
1798 			break;
1799 		}
1800 	}
1801 }
1802 
1803 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1804 			      enum teecore_memtypes memtype)
1805 {
1806 	TEE_Result ret;
1807 	struct core_mmu_table_info tbl_info;
1808 	struct tee_mmap_region *mm;
1809 	unsigned int idx;
1810 	uint32_t old_attr;
1811 	uint32_t exceptions;
1812 	vaddr_t vaddr = vstart;
1813 	size_t i;
1814 	bool secure;
1815 
1816 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1817 
1818 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1819 
1820 	if (vaddr & SMALL_PAGE_MASK)
1821 		return TEE_ERROR_BAD_PARAMETERS;
1822 
1823 	exceptions = mmu_lock();
1824 
1825 	mm = find_map_by_va((void *)vaddr);
1826 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1827 		panic("VA does not belong to any known mm region");
1828 
1829 	if (!core_mmu_is_dynamic_vaspace(mm))
1830 		panic("Trying to map into static region");
1831 
1832 	for (i = 0; i < num_pages; i++) {
1833 		if (pages[i] & SMALL_PAGE_MASK) {
1834 			ret = TEE_ERROR_BAD_PARAMETERS;
1835 			goto err;
1836 		}
1837 
1838 		while (true) {
1839 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1840 						 &tbl_info))
1841 				panic("Can't find pagetable for vaddr ");
1842 
1843 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1844 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1845 				break;
1846 
1847 			/* This is supertable. Need to divide it. */
1848 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1849 							     secure))
1850 				panic("Failed to spread pgdir on small tables");
1851 		}
1852 
1853 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1854 		if (old_attr)
1855 			panic("Page is already mapped");
1856 
1857 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1858 				   core_mmu_type_to_attr(memtype));
1859 		vaddr += SMALL_PAGE_SIZE;
1860 	}
1861 
1862 	/*
1863 	 * Make sure all the changes to translation tables are visible
1864 	 * before returning. TLB doesn't need to be invalidated as we are
1865 	 * guaranteed that there's no valid mapping in this range.
1866 	 */
1867 	core_mmu_table_write_barrier();
1868 	mmu_unlock(exceptions);
1869 
1870 	return TEE_SUCCESS;
1871 err:
1872 	mmu_unlock(exceptions);
1873 
1874 	if (i)
1875 		core_mmu_unmap_pages(vstart, i);
1876 
1877 	return ret;
1878 }
1879 
1880 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
1881 					 size_t num_pages,
1882 					 enum teecore_memtypes memtype)
1883 {
1884 	struct core_mmu_table_info tbl_info = { };
1885 	struct tee_mmap_region *mm = NULL;
1886 	unsigned int idx = 0;
1887 	uint32_t old_attr = 0;
1888 	uint32_t exceptions = 0;
1889 	vaddr_t vaddr = vstart;
1890 	paddr_t paddr = pstart;
1891 	size_t i = 0;
1892 	bool secure = false;
1893 
1894 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1895 
1896 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1897 
1898 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
1899 		return TEE_ERROR_BAD_PARAMETERS;
1900 
1901 	exceptions = mmu_lock();
1902 
1903 	mm = find_map_by_va((void *)vaddr);
1904 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1905 		panic("VA does not belong to any known mm region");
1906 
1907 	if (!core_mmu_is_dynamic_vaspace(mm))
1908 		panic("Trying to map into static region");
1909 
1910 	for (i = 0; i < num_pages; i++) {
1911 		while (true) {
1912 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1913 						 &tbl_info))
1914 				panic("Can't find pagetable for vaddr ");
1915 
1916 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1917 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1918 				break;
1919 
1920 			/* This is supertable. Need to divide it. */
1921 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1922 							     secure))
1923 				panic("Failed to spread pgdir on small tables");
1924 		}
1925 
1926 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1927 		if (old_attr)
1928 			panic("Page is already mapped");
1929 
1930 		core_mmu_set_entry(&tbl_info, idx, paddr,
1931 				   core_mmu_type_to_attr(memtype));
1932 		paddr += SMALL_PAGE_SIZE;
1933 		vaddr += SMALL_PAGE_SIZE;
1934 	}
1935 
1936 	/*
1937 	 * Make sure all the changes to translation tables are visible
1938 	 * before returning. TLB doesn't need to be invalidated as we are
1939 	 * guaranteed that there's no valid mapping in this range.
1940 	 */
1941 	core_mmu_table_write_barrier();
1942 	mmu_unlock(exceptions);
1943 
1944 	return TEE_SUCCESS;
1945 }
1946 
1947 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
1948 {
1949 	struct core_mmu_table_info tbl_info;
1950 	struct tee_mmap_region *mm;
1951 	size_t i;
1952 	unsigned int idx;
1953 	uint32_t exceptions;
1954 
1955 	exceptions = mmu_lock();
1956 
1957 	mm = find_map_by_va((void *)vstart);
1958 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
1959 		panic("VA does not belong to any known mm region");
1960 
1961 	if (!core_mmu_is_dynamic_vaspace(mm))
1962 		panic("Trying to unmap static region");
1963 
1964 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
1965 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
1966 			panic("Can't find pagetable");
1967 
1968 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
1969 			panic("Invalid pagetable level");
1970 
1971 		idx = core_mmu_va2idx(&tbl_info, vstart);
1972 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
1973 	}
1974 	tlbi_all();
1975 
1976 	mmu_unlock(exceptions);
1977 }
1978 
1979 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
1980 				struct user_mode_ctx *uctx)
1981 {
1982 	struct core_mmu_table_info pg_info = { };
1983 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
1984 	struct pgt *pgt = NULL;
1985 	struct pgt *p = NULL;
1986 	struct vm_region *r = NULL;
1987 
1988 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
1989 		return; /* Nothing to map */
1990 
1991 	/*
1992 	 * Allocate all page tables in advance.
1993 	 */
1994 	pgt_get_all(uctx);
1995 	pgt = SLIST_FIRST(pgt_cache);
1996 
1997 	core_mmu_set_info_table(&pg_info, dir_info->level + 1, 0, NULL);
1998 
1999 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2000 		set_pg_region(dir_info, r, &pgt, &pg_info);
2001 	/* Record that the translation tables now are populated. */
2002 	SLIST_FOREACH(p, pgt_cache, link) {
2003 		p->populated = true;
2004 		if (p == pgt)
2005 			break;
2006 	}
2007 	assert(p == pgt);
2008 }
2009 
2010 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2011 				   size_t len)
2012 {
2013 	struct core_mmu_table_info tbl_info = { };
2014 	struct tee_mmap_region *res_map = NULL;
2015 	struct tee_mmap_region *map = NULL;
2016 	paddr_t pa = virt_to_phys(addr);
2017 	size_t granule = 0;
2018 	ptrdiff_t i = 0;
2019 	paddr_t p = 0;
2020 	size_t l = 0;
2021 
2022 	map = find_map_by_type_and_pa(type, pa, len);
2023 	if (!map)
2024 		return TEE_ERROR_GENERIC;
2025 
2026 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2027 	if (!res_map)
2028 		return TEE_ERROR_GENERIC;
2029 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2030 		return TEE_ERROR_GENERIC;
2031 	granule = BIT(tbl_info.shift);
2032 
2033 	if (map < static_memory_map ||
2034 	    map >= static_memory_map + ARRAY_SIZE(static_memory_map))
2035 		return TEE_ERROR_GENERIC;
2036 	i = map - static_memory_map;
2037 
2038 	/* Check that we have a full match */
2039 	p = ROUNDDOWN(pa, granule);
2040 	l = ROUNDUP(len + pa - p, granule);
2041 	if (map->pa != p || map->size != l)
2042 		return TEE_ERROR_GENERIC;
2043 
2044 	clear_region(&tbl_info, map);
2045 	tlbi_all();
2046 
2047 	/* If possible remove the va range from res_map */
2048 	if (res_map->va - map->size == map->va) {
2049 		res_map->va -= map->size;
2050 		res_map->size += map->size;
2051 	}
2052 
2053 	/* Remove the entry. */
2054 	memmove(map, map + 1,
2055 		(ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map));
2056 
2057 	/* Clear the last new entry in case it was used */
2058 	memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1,
2059 	       0, sizeof(*map));
2060 
2061 	return TEE_SUCCESS;
2062 }
2063 
2064 struct tee_mmap_region *
2065 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2066 {
2067 	struct tee_mmap_region *map = NULL;
2068 	struct tee_mmap_region *map_found = NULL;
2069 
2070 	if (!len)
2071 		return NULL;
2072 
2073 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
2074 		if (map->type != type)
2075 			continue;
2076 
2077 		if (map_found)
2078 			return NULL;
2079 
2080 		map_found = map;
2081 	}
2082 
2083 	if (!map_found || map_found->size < len)
2084 		return NULL;
2085 
2086 	return map_found;
2087 }
2088 
2089 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2090 {
2091 	struct core_mmu_table_info tbl_info;
2092 	struct tee_mmap_region *map;
2093 	size_t n;
2094 	size_t granule;
2095 	paddr_t p;
2096 	size_t l;
2097 
2098 	if (!len)
2099 		return NULL;
2100 
2101 	if (!core_mmu_check_end_pa(addr, len))
2102 		return NULL;
2103 
2104 	/* Check if the memory is already mapped */
2105 	map = find_map_by_type_and_pa(type, addr, len);
2106 	if (map && pbuf_inside_map_area(addr, len, map))
2107 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2108 
2109 	/* Find the reserved va space used for late mappings */
2110 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2111 	if (!map)
2112 		return NULL;
2113 
2114 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2115 		return NULL;
2116 
2117 	granule = BIT64(tbl_info.shift);
2118 	p = ROUNDDOWN(addr, granule);
2119 	l = ROUNDUP(len + addr - p, granule);
2120 
2121 	/* Ban overflowing virtual addresses */
2122 	if (map->size < l)
2123 		return NULL;
2124 
2125 	/*
2126 	 * Something is wrong, we can't fit the va range into the selected
2127 	 * table. The reserved va range is possibly missaligned with
2128 	 * granule.
2129 	 */
2130 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2131 		return NULL;
2132 
2133 	/* Find end of the memory map */
2134 	n = 0;
2135 	while (!core_mmap_is_end_of_table(static_memory_map + n))
2136 		n++;
2137 
2138 	if (n < (ARRAY_SIZE(static_memory_map) - 1)) {
2139 		/* There's room for another entry */
2140 		static_memory_map[n].va = map->va;
2141 		static_memory_map[n].size = l;
2142 		static_memory_map[n + 1].type = MEM_AREA_END;
2143 		map->va += l;
2144 		map->size -= l;
2145 		map = static_memory_map + n;
2146 	} else {
2147 		/*
2148 		 * There isn't room for another entry, steal the reserved
2149 		 * entry as it's not useful for anything else any longer.
2150 		 */
2151 		map->size = l;
2152 	}
2153 	map->type = type;
2154 	map->region_size = granule;
2155 	map->attr = core_mmu_type_to_attr(type);
2156 	map->pa = p;
2157 
2158 	set_region(&tbl_info, map);
2159 
2160 	/* Make sure the new entry is visible before continuing. */
2161 	core_mmu_table_write_barrier();
2162 
2163 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2164 }
2165 
2166 #ifdef CFG_WITH_PAGER
2167 static vaddr_t get_linear_map_end_va(void)
2168 {
2169 	/* this is synced with the generic linker file kern.ld.S */
2170 	return (vaddr_t)__heap2_end;
2171 }
2172 
2173 static paddr_t get_linear_map_end_pa(void)
2174 {
2175 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2176 }
2177 #endif
2178 
2179 #if defined(CFG_TEE_CORE_DEBUG)
2180 static void check_pa_matches_va(void *va, paddr_t pa)
2181 {
2182 	TEE_Result res = TEE_ERROR_GENERIC;
2183 	vaddr_t v = (vaddr_t)va;
2184 	paddr_t p = 0;
2185 	struct core_mmu_table_info ti __maybe_unused = { };
2186 
2187 	if (core_mmu_user_va_range_is_defined()) {
2188 		vaddr_t user_va_base = 0;
2189 		size_t user_va_size = 0;
2190 
2191 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2192 		if (v >= user_va_base &&
2193 		    v <= (user_va_base - 1 + user_va_size)) {
2194 			if (!core_mmu_user_mapping_is_active()) {
2195 				if (pa)
2196 					panic("issue in linear address space");
2197 				return;
2198 			}
2199 
2200 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2201 				       va, &p);
2202 			if (res == TEE_ERROR_NOT_SUPPORTED)
2203 				return;
2204 			if (res == TEE_SUCCESS && pa != p)
2205 				panic("bad pa");
2206 			if (res != TEE_SUCCESS && pa)
2207 				panic("false pa");
2208 			return;
2209 		}
2210 	}
2211 #ifdef CFG_WITH_PAGER
2212 	if (is_unpaged(va)) {
2213 		if (v - boot_mmu_config.map_offset != pa)
2214 			panic("issue in linear address space");
2215 		return;
2216 	}
2217 
2218 	if (tee_pager_get_table_info(v, &ti)) {
2219 		uint32_t a;
2220 
2221 		/*
2222 		 * Lookups in the page table managed by the pager is
2223 		 * dangerous for addresses in the paged area as those pages
2224 		 * changes all the time. But some ranges are safe,
2225 		 * rw-locked areas when the page is populated for instance.
2226 		 */
2227 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2228 		if (a & TEE_MATTR_VALID_BLOCK) {
2229 			paddr_t mask = BIT64(ti.shift) - 1;
2230 
2231 			p |= v & mask;
2232 			if (pa != p)
2233 				panic();
2234 		} else {
2235 			if (pa)
2236 				panic();
2237 		}
2238 		return;
2239 	}
2240 #endif
2241 
2242 	if (!core_va2pa_helper(va, &p)) {
2243 		/* Verfiy only the static mapping (case non null phys addr) */
2244 		if (p && pa != p) {
2245 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2246 			     va, p, pa);
2247 			panic();
2248 		}
2249 	} else {
2250 		if (pa) {
2251 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2252 			panic();
2253 		}
2254 	}
2255 }
2256 #else
2257 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2258 {
2259 }
2260 #endif
2261 
2262 paddr_t virt_to_phys(void *va)
2263 {
2264 	paddr_t pa = 0;
2265 
2266 	if (!arch_va2pa_helper(va, &pa))
2267 		pa = 0;
2268 	check_pa_matches_va(va, pa);
2269 	return pa;
2270 }
2271 
2272 #if defined(CFG_TEE_CORE_DEBUG)
2273 static void check_va_matches_pa(paddr_t pa, void *va)
2274 {
2275 	paddr_t p = 0;
2276 
2277 	if (!va)
2278 		return;
2279 
2280 	p = virt_to_phys(va);
2281 	if (p != pa) {
2282 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2283 		panic();
2284 	}
2285 }
2286 #else
2287 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2288 {
2289 }
2290 #endif
2291 
2292 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2293 {
2294 	if (!core_mmu_user_mapping_is_active())
2295 		return NULL;
2296 
2297 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2298 }
2299 
2300 #ifdef CFG_WITH_PAGER
2301 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2302 {
2303 	paddr_t end_pa = 0;
2304 
2305 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2306 		return NULL;
2307 
2308 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2309 		if (end_pa > get_linear_map_end_pa())
2310 			return NULL;
2311 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2312 	}
2313 
2314 	return tee_pager_phys_to_virt(pa, len);
2315 }
2316 #else
2317 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2318 {
2319 	struct tee_mmap_region *mmap = NULL;
2320 
2321 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2322 	if (!mmap)
2323 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2324 	if (!mmap)
2325 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2326 	if (!mmap)
2327 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2328 	if (!mmap)
2329 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2330 	if (!mmap)
2331 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2332 	/*
2333 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2334 	 * used with pager and not needed here.
2335 	 */
2336 	return map_pa2va(mmap, pa, len);
2337 }
2338 #endif
2339 
2340 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2341 {
2342 	void *va = NULL;
2343 
2344 	switch (m) {
2345 	case MEM_AREA_TS_VASPACE:
2346 		va = phys_to_virt_ts_vaspace(pa, len);
2347 		break;
2348 	case MEM_AREA_TEE_RAM:
2349 	case MEM_AREA_TEE_RAM_RX:
2350 	case MEM_AREA_TEE_RAM_RO:
2351 	case MEM_AREA_TEE_RAM_RW:
2352 	case MEM_AREA_NEX_RAM_RO:
2353 	case MEM_AREA_NEX_RAM_RW:
2354 		va = phys_to_virt_tee_ram(pa, len);
2355 		break;
2356 	case MEM_AREA_SHM_VASPACE:
2357 		/* Find VA from PA in dynamic SHM is not yet supported */
2358 		va = NULL;
2359 		break;
2360 	default:
2361 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2362 	}
2363 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2364 		check_va_matches_pa(pa, va);
2365 	return va;
2366 }
2367 
2368 void *phys_to_virt_io(paddr_t pa, size_t len)
2369 {
2370 	struct tee_mmap_region *map = NULL;
2371 	void *va = NULL;
2372 
2373 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2374 	if (!map)
2375 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2376 	if (!map)
2377 		return NULL;
2378 	va = map_pa2va(map, pa, len);
2379 	check_va_matches_pa(pa, va);
2380 	return va;
2381 }
2382 
2383 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2384 {
2385 	if (cpu_mmu_enabled())
2386 		return (vaddr_t)phys_to_virt(pa, type, len);
2387 
2388 	return (vaddr_t)pa;
2389 }
2390 
2391 #ifdef CFG_WITH_PAGER
2392 bool is_unpaged(void *va)
2393 {
2394 	vaddr_t v = (vaddr_t)va;
2395 
2396 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2397 }
2398 #else
2399 bool is_unpaged(void *va __unused)
2400 {
2401 	return true;
2402 }
2403 #endif
2404 
2405 void core_mmu_init_virtualization(void)
2406 {
2407 	paddr_t b1 = 0;
2408 	paddr_size_t s1 = 0;
2409 
2410 	static_assert(ARRAY_SIZE(secure_only) <= 2);
2411 	if (ARRAY_SIZE(secure_only) == 2) {
2412 		b1 = secure_only[1].paddr;
2413 		s1 = secure_only[1].size;
2414 	}
2415 	virt_init_memory(static_memory_map, secure_only[0].paddr,
2416 			 secure_only[0].size, b1, s1);
2417 }
2418 
2419 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2420 {
2421 	assert(p->pa);
2422 	if (cpu_mmu_enabled()) {
2423 		if (!p->va)
2424 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2425 		assert(p->va);
2426 		return p->va;
2427 	}
2428 	return p->pa;
2429 }
2430 
2431 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2432 {
2433 	assert(p->pa);
2434 	if (cpu_mmu_enabled()) {
2435 		if (!p->va)
2436 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2437 						      len);
2438 		assert(p->va);
2439 		return p->va;
2440 	}
2441 	return p->pa;
2442 }
2443 
2444 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2445 {
2446 	assert(p->pa);
2447 	if (cpu_mmu_enabled()) {
2448 		if (!p->va)
2449 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2450 						      len);
2451 		assert(p->va);
2452 		return p->va;
2453 	}
2454 	return p->pa;
2455 }
2456 
2457 #ifdef CFG_CORE_RESERVED_SHM
2458 static TEE_Result teecore_init_pub_ram(void)
2459 {
2460 	vaddr_t s = 0;
2461 	vaddr_t e = 0;
2462 
2463 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2464 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2465 
2466 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2467 		panic("invalid PUB RAM");
2468 
2469 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2470 	if (!tee_vbuf_is_non_sec(s, e - s))
2471 		panic("PUB RAM is not non-secure");
2472 
2473 #ifdef CFG_PL310
2474 	/* Allocate statically the l2cc mutex */
2475 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2476 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2477 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2478 #endif
2479 
2480 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2481 	default_nsec_shm_size = e - s;
2482 
2483 	return TEE_SUCCESS;
2484 }
2485 early_init(teecore_init_pub_ram);
2486 #endif /*CFG_CORE_RESERVED_SHM*/
2487 
2488 void core_mmu_init_ta_ram(void)
2489 {
2490 	vaddr_t s = 0;
2491 	vaddr_t e = 0;
2492 	paddr_t ps = 0;
2493 	size_t size = 0;
2494 
2495 	/*
2496 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2497 	 * shared mem allocated from teecore.
2498 	 */
2499 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
2500 		virt_get_ta_ram(&s, &e);
2501 	else
2502 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2503 
2504 	ps = virt_to_phys((void *)s);
2505 	size = e - s;
2506 
2507 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2508 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2509 		panic("invalid TA RAM");
2510 
2511 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2512 	if (!tee_pbuf_is_sec(ps, size))
2513 		panic("TA RAM is not secure");
2514 
2515 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2516 		panic("TA RAM pool is not empty");
2517 
2518 	/* remove previous config and init TA ddr memory pool */
2519 	tee_mm_final(&tee_mm_sec_ddr);
2520 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2521 		    TEE_MM_POOL_NO_FLAGS);
2522 }
2523