1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016, 2022 Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved. 6 */ 7 8 #include <assert.h> 9 #include <config.h> 10 #include <kernel/boot.h> 11 #include <kernel/dt.h> 12 #include <kernel/linker.h> 13 #include <kernel/panic.h> 14 #include <kernel/spinlock.h> 15 #include <kernel/tee_l2cc_mutex.h> 16 #include <kernel/tee_misc.h> 17 #include <kernel/tlb_helpers.h> 18 #include <kernel/user_mode_ctx.h> 19 #include <kernel/virtualization.h> 20 #include <libfdt.h> 21 #include <mm/core_memprot.h> 22 #include <mm/core_mmu.h> 23 #include <mm/mobj.h> 24 #include <mm/pgt_cache.h> 25 #include <mm/tee_pager.h> 26 #include <mm/vm.h> 27 #include <platform_config.h> 28 #include <string.h> 29 #include <trace.h> 30 #include <util.h> 31 32 #ifndef DEBUG_XLAT_TABLE 33 #define DEBUG_XLAT_TABLE 0 34 #endif 35 36 #define SHM_VASPACE_SIZE (1024 * 1024 * 32) 37 38 /* Physical Secure DDR pool */ 39 tee_mm_pool_t tee_mm_sec_ddr; 40 41 /* Virtual memory pool for core mappings */ 42 tee_mm_pool_t core_virt_mem_pool; 43 44 /* Virtual memory pool for shared memory mappings */ 45 tee_mm_pool_t core_virt_shm_pool; 46 47 #ifdef CFG_CORE_PHYS_RELOCATABLE 48 unsigned long core_mmu_tee_load_pa __nex_bss; 49 #else 50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR; 51 #endif 52 53 /* 54 * These variables are initialized before .bss is cleared. To avoid 55 * resetting them when .bss is cleared we're storing them in .data instead, 56 * even if they initially are zero. 57 */ 58 59 #ifdef CFG_CORE_RESERVED_SHM 60 /* Default NSec shared memory allocated from NSec world */ 61 unsigned long default_nsec_shm_size __nex_bss; 62 unsigned long default_nsec_shm_paddr __nex_bss; 63 #endif 64 65 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS 66 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE) 67 + 1 68 #endif 69 + 1] __nex_bss; 70 71 /* Define the platform's memory layout. */ 72 struct memaccess_area { 73 paddr_t paddr; 74 size_t size; 75 }; 76 77 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } 78 79 static struct memaccess_area secure_only[] __nex_data = { 80 #ifdef CFG_CORE_PHYS_RELOCATABLE 81 MEMACCESS_AREA(0, 0), 82 #else 83 #ifdef TRUSTED_SRAM_BASE 84 MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), 85 #endif 86 MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), 87 #endif 88 }; 89 90 static struct memaccess_area nsec_shared[] __nex_data = { 91 #ifdef CFG_CORE_RESERVED_SHM 92 MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), 93 #endif 94 }; 95 96 #if defined(CFG_SECURE_DATA_PATH) 97 static const char *tz_sdp_match = "linaro,secure-heap"; 98 static struct memaccess_area sec_sdp; 99 #ifdef CFG_TEE_SDP_MEM_BASE 100 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); 101 #endif 102 #ifdef TEE_SDP_TEST_MEM_BASE 103 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); 104 #endif 105 #endif 106 107 #ifdef CFG_CORE_RESERVED_SHM 108 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); 109 #endif 110 static unsigned int mmu_spinlock; 111 112 static uint32_t mmu_lock(void) 113 { 114 return cpu_spin_lock_xsave(&mmu_spinlock); 115 } 116 117 static void mmu_unlock(uint32_t exceptions) 118 { 119 cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); 120 } 121 122 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size) 123 { 124 /* 125 * The first range is always used to cover OP-TEE core memory, but 126 * depending on configuration it may cover more than that. 127 */ 128 *base = secure_only[0].paddr; 129 *size = secure_only[0].size; 130 } 131 132 void core_mmu_set_secure_memory(paddr_t base, size_t size) 133 { 134 #ifdef CFG_CORE_PHYS_RELOCATABLE 135 static_assert(ARRAY_SIZE(secure_only) == 1); 136 #endif 137 runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)); 138 assert(!secure_only[0].size); 139 assert(base && size); 140 141 DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size); 142 secure_only[0].paddr = base; 143 secure_only[0].size = size; 144 } 145 146 void core_mmu_get_ta_range(paddr_t *base, size_t *size) 147 { 148 paddr_t b = 0; 149 size_t s = 0; 150 151 static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE)); 152 #ifdef TA_RAM_START 153 b = TA_RAM_START; 154 s = TA_RAM_SIZE; 155 #else 156 static_assert(ARRAY_SIZE(secure_only) <= 2); 157 if (ARRAY_SIZE(secure_only) == 1) { 158 vaddr_t load_offs = 0; 159 160 assert(core_mmu_tee_load_pa >= secure_only[0].paddr); 161 load_offs = core_mmu_tee_load_pa - secure_only[0].paddr; 162 163 assert(secure_only[0].size > 164 load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE); 165 b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE; 166 s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE - 167 TEE_SDP_TEST_MEM_SIZE; 168 } else { 169 assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE); 170 b = secure_only[1].paddr; 171 s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE; 172 } 173 #endif 174 if (base) 175 *base = b; 176 if (size) 177 *size = s; 178 } 179 180 static struct tee_mmap_region *get_memory_map(void) 181 { 182 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 183 struct tee_mmap_region *map = virt_get_memory_map(); 184 185 if (map) 186 return map; 187 } 188 189 return static_memory_map; 190 } 191 192 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, 193 paddr_t pa, size_t size) 194 { 195 size_t n; 196 197 for (n = 0; n < alen; n++) 198 if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) 199 return true; 200 return false; 201 } 202 203 #define pbuf_intersects(a, pa, size) \ 204 _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) 205 206 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, 207 paddr_t pa, size_t size) 208 { 209 size_t n; 210 211 for (n = 0; n < alen; n++) 212 if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) 213 return true; 214 return false; 215 } 216 217 #define pbuf_is_inside(a, pa, size) \ 218 _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) 219 220 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) 221 { 222 paddr_t end_pa = 0; 223 224 if (!map) 225 return false; 226 227 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 228 return false; 229 230 return (pa >= map->pa && end_pa <= map->pa + map->size - 1); 231 } 232 233 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) 234 { 235 if (!map) 236 return false; 237 return (va >= map->va && va <= (map->va + map->size - 1)); 238 } 239 240 /* check if target buffer fits in a core default map area */ 241 static bool pbuf_inside_map_area(unsigned long p, size_t l, 242 struct tee_mmap_region *map) 243 { 244 return core_is_buffer_inside(p, l, map->pa, map->size); 245 } 246 247 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) 248 { 249 struct tee_mmap_region *map; 250 251 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) 252 if (map->type == type) 253 return map; 254 return NULL; 255 } 256 257 static struct tee_mmap_region * 258 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) 259 { 260 struct tee_mmap_region *map; 261 262 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 263 if (map->type != type) 264 continue; 265 if (pa_is_in_map(map, pa, len)) 266 return map; 267 } 268 return NULL; 269 } 270 271 static struct tee_mmap_region *find_map_by_va(void *va) 272 { 273 struct tee_mmap_region *map = get_memory_map(); 274 unsigned long a = (unsigned long)va; 275 276 while (!core_mmap_is_end_of_table(map)) { 277 if (a >= map->va && a <= (map->va - 1 + map->size)) 278 return map; 279 map++; 280 } 281 return NULL; 282 } 283 284 static struct tee_mmap_region *find_map_by_pa(unsigned long pa) 285 { 286 struct tee_mmap_region *map = get_memory_map(); 287 288 while (!core_mmap_is_end_of_table(map)) { 289 /* Skip unmapped regions */ 290 if ((map->attr & TEE_MATTR_VALID_BLOCK) && 291 pa >= map->pa && pa <= (map->pa + map->size - 1)) 292 return map; 293 map++; 294 } 295 return NULL; 296 } 297 298 #if defined(CFG_SECURE_DATA_PATH) 299 static bool dtb_get_sdp_region(void) 300 { 301 void *fdt = NULL; 302 int node = 0; 303 int tmp_node = 0; 304 paddr_t tmp_addr = 0; 305 size_t tmp_size = 0; 306 307 if (!IS_ENABLED(CFG_EMBED_DTB)) 308 return false; 309 310 fdt = get_embedded_dt(); 311 if (!fdt) 312 panic("No DTB found"); 313 314 node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match); 315 if (node < 0) { 316 DMSG("No %s compatible node found", tz_sdp_match); 317 return false; 318 } 319 tmp_node = node; 320 while (tmp_node >= 0) { 321 tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node, 322 tz_sdp_match); 323 if (tmp_node >= 0) 324 DMSG("Ignore SDP pool node %s, supports only 1 node", 325 fdt_get_name(fdt, tmp_node, NULL)); 326 } 327 328 tmp_addr = fdt_reg_base_address(fdt, node); 329 if (tmp_addr == DT_INFO_INVALID_REG) { 330 EMSG("%s: Unable to get base addr from DT", tz_sdp_match); 331 return false; 332 } 333 334 tmp_size = fdt_reg_size(fdt, node); 335 if (tmp_size == DT_INFO_INVALID_REG_SIZE) { 336 EMSG("%s: Unable to get size of base addr from DT", 337 tz_sdp_match); 338 return false; 339 } 340 341 sec_sdp.paddr = tmp_addr; 342 sec_sdp.size = tmp_size; 343 344 return true; 345 } 346 #endif 347 348 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) 349 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, 350 const struct core_mmu_phys_mem *start, 351 const struct core_mmu_phys_mem *end) 352 { 353 const struct core_mmu_phys_mem *mem; 354 355 for (mem = start; mem < end; mem++) { 356 if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) 357 return true; 358 } 359 360 return false; 361 } 362 #endif 363 364 #ifdef CFG_CORE_DYN_SHM 365 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, 366 paddr_t pa, size_t size) 367 { 368 struct core_mmu_phys_mem *m = *mem; 369 size_t n = 0; 370 371 while (true) { 372 if (n >= *nelems) { 373 DMSG("No need to carve out %#" PRIxPA " size %#zx", 374 pa, size); 375 return; 376 } 377 if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size)) 378 break; 379 if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size)) 380 panic(); 381 n++; 382 } 383 384 if (pa == m[n].addr && size == m[n].size) { 385 /* Remove this entry */ 386 (*nelems)--; 387 memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n)); 388 m = nex_realloc(m, sizeof(*m) * *nelems); 389 if (!m) 390 panic(); 391 *mem = m; 392 } else if (pa == m[n].addr) { 393 m[n].addr += size; 394 m[n].size -= size; 395 } else if ((pa + size) == (m[n].addr + m[n].size)) { 396 m[n].size -= size; 397 } else { 398 /* Need to split the memory entry */ 399 m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); 400 if (!m) 401 panic(); 402 *mem = m; 403 memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n)); 404 (*nelems)++; 405 m[n].size = pa - m[n].addr; 406 m[n + 1].size -= size + m[n].size; 407 m[n + 1].addr = pa + size; 408 } 409 } 410 411 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, 412 size_t nelems, 413 struct tee_mmap_region *map) 414 { 415 size_t n; 416 417 for (n = 0; n < nelems; n++) { 418 if (!core_is_buffer_outside(start[n].addr, start[n].size, 419 map->pa, map->size)) { 420 EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ 421 ") overlaps map (type %d %#" PRIxPA ":%#zx)", 422 start[n].addr, start[n].size, 423 map->type, map->pa, map->size); 424 panic(); 425 } 426 } 427 } 428 429 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; 430 static size_t discovered_nsec_ddr_nelems __nex_bss; 431 432 static int cmp_pmem_by_addr(const void *a, const void *b) 433 { 434 const struct core_mmu_phys_mem *pmem_a = a; 435 const struct core_mmu_phys_mem *pmem_b = b; 436 437 return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); 438 } 439 440 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 441 size_t nelems) 442 { 443 struct core_mmu_phys_mem *m = start; 444 size_t num_elems = nelems; 445 struct tee_mmap_region *map = static_memory_map; 446 const struct core_mmu_phys_mem __maybe_unused *pmem; 447 size_t n = 0; 448 449 assert(!discovered_nsec_ddr_start); 450 assert(m && num_elems); 451 452 qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); 453 454 /* 455 * Non-secure shared memory and also secure data 456 * path memory are supposed to reside inside 457 * non-secure memory. Since NSEC_SHM and SDP_MEM 458 * are used for a specific purpose make holes for 459 * those memory in the normal non-secure memory. 460 * 461 * This has to be done since for instance QEMU 462 * isn't aware of which memory range in the 463 * non-secure memory is used for NSEC_SHM. 464 */ 465 466 #ifdef CFG_SECURE_DATA_PATH 467 if (dtb_get_sdp_region()) 468 carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size); 469 470 for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) 471 carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); 472 #endif 473 474 for (n = 0; n < ARRAY_SIZE(secure_only); n++) 475 carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr, 476 secure_only[n].size); 477 478 for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) { 479 switch (map->type) { 480 case MEM_AREA_NSEC_SHM: 481 carve_out_phys_mem(&m, &num_elems, map->pa, map->size); 482 break; 483 case MEM_AREA_EXT_DT: 484 case MEM_AREA_MANIFEST_DT: 485 case MEM_AREA_RAM_NSEC: 486 case MEM_AREA_RES_VASPACE: 487 case MEM_AREA_SHM_VASPACE: 488 case MEM_AREA_TS_VASPACE: 489 case MEM_AREA_PAGER_VASPACE: 490 break; 491 default: 492 check_phys_mem_is_outside(m, num_elems, map); 493 } 494 } 495 496 discovered_nsec_ddr_start = m; 497 discovered_nsec_ddr_nelems = num_elems; 498 499 if (!core_mmu_check_end_pa(m[num_elems - 1].addr, 500 m[num_elems - 1].size)) 501 panic(); 502 } 503 504 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, 505 const struct core_mmu_phys_mem **end) 506 { 507 if (!discovered_nsec_ddr_start) 508 return false; 509 510 *start = discovered_nsec_ddr_start; 511 *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; 512 513 return true; 514 } 515 516 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) 517 { 518 const struct core_mmu_phys_mem *start; 519 const struct core_mmu_phys_mem *end; 520 521 if (!get_discovered_nsec_ddr(&start, &end)) 522 return false; 523 524 return pbuf_is_special_mem(pbuf, len, start, end); 525 } 526 527 bool core_mmu_nsec_ddr_is_defined(void) 528 { 529 const struct core_mmu_phys_mem *start; 530 const struct core_mmu_phys_mem *end; 531 532 if (!get_discovered_nsec_ddr(&start, &end)) 533 return false; 534 535 return start != end; 536 } 537 #else 538 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) 539 { 540 return false; 541 } 542 #endif /*CFG_CORE_DYN_SHM*/ 543 544 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ 545 EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ 546 pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) 547 548 #ifdef CFG_SECURE_DATA_PATH 549 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) 550 { 551 bool is_sdp_mem = false; 552 553 if (sec_sdp.size) 554 is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr, 555 sec_sdp.size); 556 557 if (!is_sdp_mem) 558 is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, 559 phys_sdp_mem_end); 560 561 return is_sdp_mem; 562 } 563 564 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size) 565 { 566 struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED, 567 CORE_MEM_SDP_MEM); 568 569 if (!mobj) 570 panic("can't create SDP physical memory object"); 571 572 return mobj; 573 } 574 575 struct mobj **core_sdp_mem_create_mobjs(void) 576 { 577 const struct core_mmu_phys_mem *mem = NULL; 578 struct mobj **mobj_base = NULL; 579 struct mobj **mobj = NULL; 580 int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; 581 582 if (sec_sdp.size) 583 cnt++; 584 585 /* SDP mobjs table must end with a NULL entry */ 586 mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); 587 if (!mobj_base) 588 panic("Out of memory"); 589 590 mobj = mobj_base; 591 592 for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++) 593 *mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size); 594 595 if (sec_sdp.size) 596 *mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size); 597 598 return mobj_base; 599 } 600 601 #else /* CFG_SECURE_DATA_PATH */ 602 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) 603 { 604 return false; 605 } 606 607 #endif /* CFG_SECURE_DATA_PATH */ 608 609 /* Check special memories comply with registered memories */ 610 static void verify_special_mem_areas(struct tee_mmap_region *mem_map, 611 const struct core_mmu_phys_mem *start, 612 const struct core_mmu_phys_mem *end, 613 const char *area_name __maybe_unused) 614 { 615 const struct core_mmu_phys_mem *mem; 616 const struct core_mmu_phys_mem *mem2; 617 struct tee_mmap_region *mmap; 618 619 if (start == end) { 620 DMSG("No %s memory area defined", area_name); 621 return; 622 } 623 624 for (mem = start; mem < end; mem++) 625 DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", 626 area_name, mem->addr, (uint64_t)mem->addr + mem->size); 627 628 /* Check memories do not intersect each other */ 629 for (mem = start; mem + 1 < end; mem++) { 630 for (mem2 = mem + 1; mem2 < end; mem2++) { 631 if (core_is_buffer_intersect(mem2->addr, mem2->size, 632 mem->addr, mem->size)) { 633 MSG_MEM_INSTERSECT(mem2->addr, mem2->size, 634 mem->addr, mem->size); 635 panic("Special memory intersection"); 636 } 637 } 638 } 639 640 /* 641 * Check memories do not intersect any mapped memory. 642 * This is called before reserved VA space is loaded in mem_map. 643 */ 644 for (mem = start; mem < end; mem++) { 645 for (mmap = mem_map; mmap->type != MEM_AREA_END; mmap++) { 646 if (core_is_buffer_intersect(mem->addr, mem->size, 647 mmap->pa, mmap->size)) { 648 MSG_MEM_INSTERSECT(mem->addr, mem->size, 649 mmap->pa, mmap->size); 650 panic("Special memory intersection"); 651 } 652 } 653 } 654 } 655 656 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems, 657 const char *mem_name __maybe_unused, 658 enum teecore_memtypes mem_type, 659 paddr_t mem_addr, paddr_size_t mem_size, size_t *last) 660 { 661 size_t n = 0; 662 paddr_t pa; 663 paddr_size_t size; 664 665 if (!mem_size) /* Discard null size entries */ 666 return; 667 /* 668 * If some ranges of memory of the same type do overlap 669 * each others they are coalesced into one entry. To help this 670 * added entries are sorted by increasing physical. 671 * 672 * Note that it's valid to have the same physical memory as several 673 * different memory types, for instance the same device memory 674 * mapped as both secure and non-secure. This will probably not 675 * happen often in practice. 676 */ 677 DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, 678 mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size); 679 while (true) { 680 if (n >= (num_elems - 1)) { 681 EMSG("Out of entries (%zu) in memory_map", num_elems); 682 panic(); 683 } 684 if (n == *last) 685 break; 686 pa = memory_map[n].pa; 687 size = memory_map[n].size; 688 if (mem_type == memory_map[n].type && 689 ((pa <= (mem_addr + (mem_size - 1))) && 690 (mem_addr <= (pa + (size - 1))))) { 691 DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr); 692 memory_map[n].pa = MIN(pa, mem_addr); 693 memory_map[n].size = MAX(size, mem_size) + 694 (pa - memory_map[n].pa); 695 return; 696 } 697 if (mem_type < memory_map[n].type || 698 (mem_type == memory_map[n].type && mem_addr < pa)) 699 break; /* found the spot where to insert this memory */ 700 n++; 701 } 702 703 memmove(memory_map + n + 1, memory_map + n, 704 sizeof(struct tee_mmap_region) * (*last - n)); 705 (*last)++; 706 memset(memory_map + n, 0, sizeof(memory_map[0])); 707 memory_map[n].type = mem_type; 708 memory_map[n].pa = mem_addr; 709 memory_map[n].size = mem_size; 710 } 711 712 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems, 713 enum teecore_memtypes type, size_t size, size_t *last) 714 { 715 size_t n = 0; 716 717 DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); 718 while (true) { 719 if (n >= (num_elems - 1)) { 720 EMSG("Out of entries (%zu) in memory_map", num_elems); 721 panic(); 722 } 723 if (n == *last) 724 break; 725 if (type < memory_map[n].type) 726 break; 727 n++; 728 } 729 730 memmove(memory_map + n + 1, memory_map + n, 731 sizeof(struct tee_mmap_region) * (*last - n)); 732 (*last)++; 733 memset(memory_map + n, 0, sizeof(memory_map[0])); 734 memory_map[n].type = type; 735 memory_map[n].size = size; 736 } 737 738 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) 739 { 740 const uint32_t attr = TEE_MATTR_VALID_BLOCK; 741 const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED << 742 TEE_MATTR_MEM_TYPE_SHIFT; 743 const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << 744 TEE_MATTR_MEM_TYPE_SHIFT; 745 const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << 746 TEE_MATTR_MEM_TYPE_SHIFT; 747 748 switch (t) { 749 case MEM_AREA_TEE_RAM: 750 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged; 751 case MEM_AREA_TEE_RAM_RX: 752 case MEM_AREA_INIT_RAM_RX: 753 case MEM_AREA_IDENTITY_MAP_RX: 754 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged; 755 case MEM_AREA_TEE_RAM_RO: 756 case MEM_AREA_INIT_RAM_RO: 757 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged; 758 case MEM_AREA_TEE_RAM_RW: 759 case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ 760 case MEM_AREA_NEX_RAM_RW: 761 case MEM_AREA_TEE_ASAN: 762 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 763 case MEM_AREA_TEE_COHERENT: 764 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; 765 case MEM_AREA_TA_RAM: 766 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 767 case MEM_AREA_NSEC_SHM: 768 case MEM_AREA_NEX_NSEC_SHM: 769 return attr | TEE_MATTR_PRW | cached; 770 case MEM_AREA_MANIFEST_DT: 771 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 772 case MEM_AREA_TRANSFER_LIST: 773 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 774 case MEM_AREA_EXT_DT: 775 /* 776 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device 777 * tree as secure non-cached memory, otherwise, fall back to 778 * non-secure mapping. 779 */ 780 if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE)) 781 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | 782 noncache; 783 fallthrough; 784 case MEM_AREA_IO_NSEC: 785 return attr | TEE_MATTR_PRW | noncache; 786 case MEM_AREA_IO_SEC: 787 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; 788 case MEM_AREA_RAM_NSEC: 789 return attr | TEE_MATTR_PRW | cached; 790 case MEM_AREA_RAM_SEC: 791 case MEM_AREA_SEC_RAM_OVERALL: 792 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 793 case MEM_AREA_ROM_SEC: 794 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 795 case MEM_AREA_RES_VASPACE: 796 case MEM_AREA_SHM_VASPACE: 797 return 0; 798 case MEM_AREA_PAGER_VASPACE: 799 return TEE_MATTR_SECURE; 800 default: 801 panic("invalid type"); 802 } 803 } 804 805 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) 806 { 807 switch (mm->type) { 808 case MEM_AREA_TEE_RAM: 809 case MEM_AREA_TEE_RAM_RX: 810 case MEM_AREA_TEE_RAM_RO: 811 case MEM_AREA_TEE_RAM_RW: 812 case MEM_AREA_INIT_RAM_RX: 813 case MEM_AREA_INIT_RAM_RO: 814 case MEM_AREA_NEX_RAM_RW: 815 case MEM_AREA_NEX_RAM_RO: 816 case MEM_AREA_TEE_ASAN: 817 return true; 818 default: 819 return false; 820 } 821 } 822 823 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) 824 { 825 return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); 826 } 827 828 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) 829 { 830 return mm->region_size == CORE_MMU_PGDIR_SIZE; 831 } 832 833 static int cmp_mmap_by_lower_va(const void *a, const void *b) 834 { 835 const struct tee_mmap_region *mm_a = a; 836 const struct tee_mmap_region *mm_b = b; 837 838 return CMP_TRILEAN(mm_a->va, mm_b->va); 839 } 840 841 static void dump_mmap_table(struct tee_mmap_region *memory_map) 842 { 843 struct tee_mmap_region *map; 844 845 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 846 vaddr_t __maybe_unused vstart; 847 848 vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1)); 849 DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA 850 " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", 851 teecore_memtype_name(map->type), vstart, 852 vstart + map->size - 1, map->pa, 853 (paddr_t)(map->pa + map->size - 1), map->size, 854 map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); 855 } 856 } 857 858 #if DEBUG_XLAT_TABLE 859 860 static void dump_xlat_table(vaddr_t va, unsigned int level) 861 { 862 struct core_mmu_table_info tbl_info; 863 unsigned int idx = 0; 864 paddr_t pa; 865 uint32_t attr; 866 867 core_mmu_find_table(NULL, va, level, &tbl_info); 868 va = tbl_info.va_base; 869 for (idx = 0; idx < tbl_info.num_entries; idx++) { 870 core_mmu_get_entry(&tbl_info, idx, &pa, &attr); 871 if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { 872 const char *security_bit = ""; 873 874 if (core_mmu_entry_have_security_bit(attr)) { 875 if (attr & TEE_MATTR_SECURE) 876 security_bit = "S"; 877 else 878 security_bit = "NS"; 879 } 880 881 if (attr & TEE_MATTR_TABLE) { 882 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 883 " TBL:0x%010" PRIxPA " %s", 884 level * 2, "", level, va, pa, 885 security_bit); 886 dump_xlat_table(va, level + 1); 887 } else if (attr) { 888 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 889 " PA:0x%010" PRIxPA " %s-%s-%s-%s", 890 level * 2, "", level, va, pa, 891 mattr_is_cached(attr) ? "MEM" : 892 "DEV", 893 attr & TEE_MATTR_PW ? "RW" : "RO", 894 attr & TEE_MATTR_PX ? "X " : "XN", 895 security_bit); 896 } else { 897 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 898 " INVALID\n", 899 level * 2, "", level, va); 900 } 901 } 902 va += BIT64(tbl_info.shift); 903 } 904 } 905 906 #else 907 908 static void dump_xlat_table(vaddr_t va __unused, int level __unused) 909 { 910 } 911 912 #endif 913 914 /* 915 * Reserves virtual memory space for pager usage. 916 * 917 * From the start of the first memory used by the link script + 918 * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty 919 * mapping for pager usage. This adds translation tables as needed for the 920 * pager to operate. 921 */ 922 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems, 923 size_t *last) 924 { 925 paddr_t begin = 0; 926 paddr_t end = 0; 927 size_t size = 0; 928 size_t pos = 0; 929 size_t n = 0; 930 931 if (*last >= (num_elems - 1)) { 932 EMSG("Out of entries (%zu) in memory map", num_elems); 933 panic(); 934 } 935 936 for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) { 937 if (map_is_tee_ram(mmap + n)) { 938 if (!begin) 939 begin = mmap[n].pa; 940 pos = n + 1; 941 } 942 } 943 944 end = mmap[pos - 1].pa + mmap[pos - 1].size; 945 assert(end - begin < TEE_RAM_VA_SIZE); 946 size = TEE_RAM_VA_SIZE - (end - begin); 947 948 assert(pos <= *last); 949 memmove(mmap + pos + 1, mmap + pos, 950 sizeof(struct tee_mmap_region) * (*last - pos)); 951 (*last)++; 952 memset(mmap + pos, 0, sizeof(mmap[0])); 953 mmap[pos].type = MEM_AREA_PAGER_VASPACE; 954 mmap[pos].va = 0; 955 mmap[pos].size = size; 956 mmap[pos].region_size = SMALL_PAGE_SIZE; 957 mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE); 958 } 959 960 static void check_sec_nsec_mem_config(void) 961 { 962 size_t n = 0; 963 964 for (n = 0; n < ARRAY_SIZE(secure_only); n++) { 965 if (pbuf_intersects(nsec_shared, secure_only[n].paddr, 966 secure_only[n].size)) 967 panic("Invalid memory access config: sec/nsec"); 968 } 969 } 970 971 static void collect_device_mem_ranges(struct tee_mmap_region *memory_map, 972 size_t num_elems, size_t *last) 973 { 974 const char *compatible = "arm,ffa-manifest-device-regions"; 975 void *fdt = get_manifest_dt(); 976 const char *name = NULL; 977 uint64_t page_count = 0; 978 uint64_t base = 0; 979 int subnode = 0; 980 int node = 0; 981 982 assert(fdt); 983 984 node = fdt_node_offset_by_compatible(fdt, 0, compatible); 985 if (node < 0) 986 return; 987 988 fdt_for_each_subnode(subnode, fdt, node) { 989 name = fdt_get_name(fdt, subnode, NULL); 990 if (!name) 991 continue; 992 993 if (dt_getprop_as_number(fdt, subnode, "base-address", 994 &base)) { 995 EMSG("Mandatory field is missing: base-address"); 996 continue; 997 } 998 999 if (base & SMALL_PAGE_MASK) { 1000 EMSG("base-address is not page aligned"); 1001 continue; 1002 } 1003 1004 if (dt_getprop_as_number(fdt, subnode, "pages-count", 1005 &page_count)) { 1006 EMSG("Mandatory field is missing: pages-count"); 1007 continue; 1008 } 1009 1010 add_phys_mem(memory_map, num_elems, name, MEM_AREA_IO_SEC, 1011 base, page_count * SMALL_PAGE_SIZE, last); 1012 } 1013 } 1014 1015 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map, 1016 size_t num_elems) 1017 { 1018 const struct core_mmu_phys_mem *mem = NULL; 1019 vaddr_t ram_start = secure_only[0].paddr; 1020 size_t last = 0; 1021 1022 1023 #define ADD_PHYS_MEM(_type, _addr, _size) \ 1024 add_phys_mem(memory_map, num_elems, #_addr, (_type), \ 1025 (_addr), (_size), &last) 1026 1027 if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) { 1028 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start, 1029 VCORE_UNPG_RX_PA - ram_start); 1030 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, 1031 VCORE_UNPG_RX_SZ); 1032 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, 1033 VCORE_UNPG_RO_SZ); 1034 1035 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1036 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, 1037 VCORE_UNPG_RW_SZ); 1038 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, 1039 VCORE_NEX_RW_SZ); 1040 } else { 1041 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, 1042 VCORE_UNPG_RW_SZ); 1043 } 1044 1045 if (IS_ENABLED(CFG_WITH_PAGER)) { 1046 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, 1047 VCORE_INIT_RX_SZ); 1048 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, 1049 VCORE_INIT_RO_SZ); 1050 } 1051 } else { 1052 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); 1053 } 1054 1055 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1056 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE, 1057 TRUSTED_DRAM_SIZE); 1058 } else { 1059 /* 1060 * Every guest will have own TA RAM if virtualization 1061 * support is enabled. 1062 */ 1063 paddr_t ta_base = 0; 1064 size_t ta_size = 0; 1065 1066 core_mmu_get_ta_range(&ta_base, &ta_size); 1067 ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size); 1068 } 1069 1070 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) && 1071 IS_ENABLED(CFG_WITH_PAGER)) { 1072 /* 1073 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is 1074 * disabled. 1075 */ 1076 ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); 1077 } 1078 1079 #undef ADD_PHYS_MEM 1080 1081 /* Collect device memory info from SP manifest */ 1082 if (IS_ENABLED(CFG_CORE_SEL2_SPMC)) 1083 collect_device_mem_ranges(memory_map, num_elems, &last); 1084 1085 for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { 1086 /* Only unmapped virtual range may have a null phys addr */ 1087 assert(mem->addr || !core_mmu_type_to_attr(mem->type)); 1088 1089 add_phys_mem(memory_map, num_elems, mem->name, mem->type, 1090 mem->addr, mem->size, &last); 1091 } 1092 1093 if (IS_ENABLED(CFG_SECURE_DATA_PATH)) 1094 verify_special_mem_areas(memory_map, phys_sdp_mem_begin, 1095 phys_sdp_mem_end, "SDP"); 1096 1097 add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE, 1098 CFG_RESERVED_VASPACE_SIZE, &last); 1099 1100 add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE, 1101 SHM_VASPACE_SIZE, &last); 1102 1103 memory_map[last].type = MEM_AREA_END; 1104 1105 return last; 1106 } 1107 1108 static void assign_mem_granularity(struct tee_mmap_region *memory_map) 1109 { 1110 struct tee_mmap_region *map = NULL; 1111 1112 /* 1113 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses 1114 * SMALL_PAGE_SIZE. 1115 */ 1116 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1117 paddr_t mask = map->pa | map->size; 1118 1119 if (!(mask & CORE_MMU_PGDIR_MASK)) 1120 map->region_size = CORE_MMU_PGDIR_SIZE; 1121 else if (!(mask & SMALL_PAGE_MASK)) 1122 map->region_size = SMALL_PAGE_SIZE; 1123 else 1124 panic("Impossible memory alignment"); 1125 1126 if (map_is_tee_ram(map)) 1127 map->region_size = SMALL_PAGE_SIZE; 1128 } 1129 } 1130 1131 static bool place_tee_ram_at_top(paddr_t paddr) 1132 { 1133 return paddr > BIT64(core_mmu_get_va_width()) / 2; 1134 } 1135 1136 /* 1137 * MMU arch driver shall override this function if it helps 1138 * optimizing the memory footprint of the address translation tables. 1139 */ 1140 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr) 1141 { 1142 return place_tee_ram_at_top(paddr); 1143 } 1144 1145 static bool assign_mem_va_dir(vaddr_t tee_ram_va, 1146 struct tee_mmap_region *memory_map, 1147 bool tee_ram_at_top) 1148 { 1149 struct tee_mmap_region *map = NULL; 1150 vaddr_t va = 0; 1151 bool va_is_secure = true; 1152 1153 /* 1154 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y. 1155 * 0 is by design an invalid va, so return false directly. 1156 */ 1157 if (!tee_ram_va) 1158 return false; 1159 1160 /* Clear eventual previous assignments */ 1161 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 1162 map->va = 0; 1163 1164 /* 1165 * TEE RAM regions are always aligned with region_size. 1166 * 1167 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here 1168 * since it handles virtual memory which covers the part of the ELF 1169 * that cannot fit directly into memory. 1170 */ 1171 va = tee_ram_va; 1172 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1173 if (map_is_tee_ram(map) || 1174 map->type == MEM_AREA_PAGER_VASPACE) { 1175 assert(!(va & (map->region_size - 1))); 1176 assert(!(map->size & (map->region_size - 1))); 1177 map->va = va; 1178 if (ADD_OVERFLOW(va, map->size, &va)) 1179 return false; 1180 if (va >= BIT64(core_mmu_get_va_width())) 1181 return false; 1182 } 1183 } 1184 1185 if (tee_ram_at_top) { 1186 /* 1187 * Map non-tee ram regions at addresses lower than the tee 1188 * ram region. 1189 */ 1190 va = tee_ram_va; 1191 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1192 map->attr = core_mmu_type_to_attr(map->type); 1193 if (map->va) 1194 continue; 1195 1196 if (!IS_ENABLED(CFG_WITH_LPAE) && 1197 va_is_secure != map_is_secure(map)) { 1198 va_is_secure = !va_is_secure; 1199 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1200 } 1201 1202 if (SUB_OVERFLOW(va, map->size, &va)) 1203 return false; 1204 va = ROUNDDOWN(va, map->region_size); 1205 /* 1206 * Make sure that va is aligned with pa for 1207 * efficient pgdir mapping. Basically pa & 1208 * pgdir_mask should be == va & pgdir_mask 1209 */ 1210 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1211 if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) 1212 return false; 1213 va += (map->pa - va) & CORE_MMU_PGDIR_MASK; 1214 } 1215 map->va = va; 1216 } 1217 } else { 1218 /* 1219 * Map non-tee ram regions at addresses higher than the tee 1220 * ram region. 1221 */ 1222 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1223 map->attr = core_mmu_type_to_attr(map->type); 1224 if (map->va) 1225 continue; 1226 1227 if (!IS_ENABLED(CFG_WITH_LPAE) && 1228 va_is_secure != map_is_secure(map)) { 1229 va_is_secure = !va_is_secure; 1230 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1231 &va)) 1232 return false; 1233 } 1234 1235 if (ROUNDUP_OVERFLOW(va, map->region_size, &va)) 1236 return false; 1237 /* 1238 * Make sure that va is aligned with pa for 1239 * efficient pgdir mapping. Basically pa & 1240 * pgdir_mask should be == va & pgdir_mask 1241 */ 1242 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1243 vaddr_t offs = (map->pa - va) & 1244 CORE_MMU_PGDIR_MASK; 1245 1246 if (ADD_OVERFLOW(va, offs, &va)) 1247 return false; 1248 } 1249 1250 map->va = va; 1251 if (ADD_OVERFLOW(va, map->size, &va)) 1252 return false; 1253 if (va >= BIT64(core_mmu_get_va_width())) 1254 return false; 1255 } 1256 } 1257 1258 return true; 1259 } 1260 1261 static bool assign_mem_va(vaddr_t tee_ram_va, 1262 struct tee_mmap_region *memory_map) 1263 { 1264 bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va); 1265 1266 /* 1267 * Check that we're not overlapping with the user VA range. 1268 */ 1269 if (IS_ENABLED(CFG_WITH_LPAE)) { 1270 /* 1271 * User VA range is supposed to be defined after these 1272 * mappings have been established. 1273 */ 1274 assert(!core_mmu_user_va_range_is_defined()); 1275 } else { 1276 vaddr_t user_va_base = 0; 1277 size_t user_va_size = 0; 1278 1279 assert(core_mmu_user_va_range_is_defined()); 1280 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 1281 if (tee_ram_va < (user_va_base + user_va_size)) 1282 return false; 1283 } 1284 1285 if (IS_ENABLED(CFG_WITH_PAGER)) { 1286 bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va); 1287 1288 /* Try whole mapping covered by a single base xlat entry */ 1289 if (prefered_dir != tee_ram_at_top && 1290 assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir)) 1291 return true; 1292 } 1293 1294 return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top); 1295 } 1296 1297 static int cmp_init_mem_map(const void *a, const void *b) 1298 { 1299 const struct tee_mmap_region *mm_a = a; 1300 const struct tee_mmap_region *mm_b = b; 1301 int rc = 0; 1302 1303 rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); 1304 if (!rc) 1305 rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); 1306 /* 1307 * 32bit MMU descriptors cannot mix secure and non-secure mapping in 1308 * the same level2 table. Hence sort secure mapping from non-secure 1309 * mapping. 1310 */ 1311 if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) 1312 rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); 1313 1314 return rc; 1315 } 1316 1317 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map, 1318 size_t num_elems, size_t *last, 1319 vaddr_t id_map_start, vaddr_t id_map_end) 1320 { 1321 struct tee_mmap_region *map = NULL; 1322 vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); 1323 vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); 1324 size_t len = end - start; 1325 1326 if (*last >= num_elems - 1) { 1327 EMSG("Out of entries (%zu) in memory map", num_elems); 1328 panic(); 1329 } 1330 1331 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 1332 if (core_is_buffer_intersect(map->va, map->size, start, len)) 1333 return false; 1334 1335 *map = (struct tee_mmap_region){ 1336 .type = MEM_AREA_IDENTITY_MAP_RX, 1337 /* 1338 * Could use CORE_MMU_PGDIR_SIZE to potentially save a 1339 * translation table, at the increased risk of clashes with 1340 * the rest of the memory map. 1341 */ 1342 .region_size = SMALL_PAGE_SIZE, 1343 .pa = start, 1344 .va = start, 1345 .size = len, 1346 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1347 }; 1348 1349 (*last)++; 1350 1351 return true; 1352 } 1353 1354 static unsigned long init_mem_map(struct tee_mmap_region *memory_map, 1355 size_t num_elems, unsigned long seed) 1356 { 1357 /* 1358 * @id_map_start and @id_map_end describes a physical memory range 1359 * that must be mapped Read-Only eXecutable at identical virtual 1360 * addresses. 1361 */ 1362 vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; 1363 vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; 1364 vaddr_t start_addr = secure_only[0].paddr; 1365 unsigned long offs = 0; 1366 size_t last = 0; 1367 1368 last = collect_mem_ranges(memory_map, num_elems); 1369 assign_mem_granularity(memory_map); 1370 1371 /* 1372 * To ease mapping and lower use of xlat tables, sort mapping 1373 * description moving small-page regions after the pgdir regions. 1374 */ 1375 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1376 cmp_init_mem_map); 1377 1378 if (IS_ENABLED(CFG_WITH_PAGER)) 1379 add_pager_vaspace(memory_map, num_elems, &last); 1380 1381 if (IS_ENABLED(CFG_CORE_ASLR) && seed) { 1382 vaddr_t base_addr = start_addr + seed; 1383 const unsigned int va_width = core_mmu_get_va_width(); 1384 const vaddr_t va_mask = GENMASK_64(va_width - 1, 1385 SMALL_PAGE_SHIFT); 1386 vaddr_t ba = base_addr; 1387 size_t n = 0; 1388 1389 for (n = 0; n < 3; n++) { 1390 if (n) 1391 ba = base_addr ^ BIT64(va_width - n); 1392 ba &= va_mask; 1393 if (assign_mem_va(ba, memory_map) && 1394 mem_map_add_id_map(memory_map, num_elems, &last, 1395 id_map_start, id_map_end)) { 1396 offs = ba - start_addr; 1397 DMSG("Mapping core at %#"PRIxVA" offs %#lx", 1398 ba, offs); 1399 goto out; 1400 } else { 1401 DMSG("Failed to map core at %#"PRIxVA, ba); 1402 } 1403 } 1404 EMSG("Failed to map core with seed %#lx", seed); 1405 } 1406 1407 if (!assign_mem_va(start_addr, memory_map)) 1408 panic(); 1409 1410 out: 1411 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1412 cmp_mmap_by_lower_va); 1413 1414 dump_mmap_table(memory_map); 1415 1416 return offs; 1417 } 1418 1419 static void check_mem_map(struct tee_mmap_region *map) 1420 { 1421 struct tee_mmap_region *m = NULL; 1422 1423 for (m = map; !core_mmap_is_end_of_table(m); m++) { 1424 switch (m->type) { 1425 case MEM_AREA_TEE_RAM: 1426 case MEM_AREA_TEE_RAM_RX: 1427 case MEM_AREA_TEE_RAM_RO: 1428 case MEM_AREA_TEE_RAM_RW: 1429 case MEM_AREA_INIT_RAM_RX: 1430 case MEM_AREA_INIT_RAM_RO: 1431 case MEM_AREA_NEX_RAM_RW: 1432 case MEM_AREA_NEX_RAM_RO: 1433 case MEM_AREA_IDENTITY_MAP_RX: 1434 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1435 panic("TEE_RAM can't fit in secure_only"); 1436 break; 1437 case MEM_AREA_TA_RAM: 1438 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1439 panic("TA_RAM can't fit in secure_only"); 1440 break; 1441 case MEM_AREA_NSEC_SHM: 1442 if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) 1443 panic("NS_SHM can't fit in nsec_shared"); 1444 break; 1445 case MEM_AREA_SEC_RAM_OVERALL: 1446 case MEM_AREA_TEE_COHERENT: 1447 case MEM_AREA_TEE_ASAN: 1448 case MEM_AREA_IO_SEC: 1449 case MEM_AREA_IO_NSEC: 1450 case MEM_AREA_EXT_DT: 1451 case MEM_AREA_MANIFEST_DT: 1452 case MEM_AREA_TRANSFER_LIST: 1453 case MEM_AREA_RAM_SEC: 1454 case MEM_AREA_RAM_NSEC: 1455 case MEM_AREA_ROM_SEC: 1456 case MEM_AREA_RES_VASPACE: 1457 case MEM_AREA_SHM_VASPACE: 1458 case MEM_AREA_PAGER_VASPACE: 1459 break; 1460 default: 1461 EMSG("Uhandled memtype %d", m->type); 1462 panic(); 1463 } 1464 } 1465 } 1466 1467 static struct tee_mmap_region *get_tmp_mmap(void) 1468 { 1469 struct tee_mmap_region *tmp_mmap = (void *)__heap1_start; 1470 1471 #ifdef CFG_WITH_PAGER 1472 if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map)) 1473 tmp_mmap = (void *)__heap2_start; 1474 #endif 1475 1476 memset(tmp_mmap, 0, sizeof(static_memory_map)); 1477 1478 return tmp_mmap; 1479 } 1480 1481 /* 1482 * core_init_mmu_map() - init tee core default memory mapping 1483 * 1484 * This routine sets the static default TEE core mapping. If @seed is > 0 1485 * and configured with CFG_CORE_ASLR it will map tee core at a location 1486 * based on the seed and return the offset from the link address. 1487 * 1488 * If an error happened: core_init_mmu_map is expected to panic. 1489 * 1490 * Note: this function is weak just to make it possible to exclude it from 1491 * the unpaged area. 1492 */ 1493 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) 1494 { 1495 #ifndef CFG_NS_VIRTUALIZATION 1496 vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); 1497 #else 1498 vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, 1499 SMALL_PAGE_SIZE); 1500 #endif 1501 vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; 1502 struct tee_mmap_region *tmp_mmap = get_tmp_mmap(); 1503 unsigned long offs = 0; 1504 1505 if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) && 1506 (core_mmu_tee_load_pa & SMALL_PAGE_MASK)) 1507 panic("OP-TEE load address is not page aligned"); 1508 1509 check_sec_nsec_mem_config(); 1510 1511 /* 1512 * Add a entry covering the translation tables which will be 1513 * involved in some virt_to_phys() and phys_to_virt() conversions. 1514 */ 1515 static_memory_map[0] = (struct tee_mmap_region){ 1516 .type = MEM_AREA_TEE_RAM, 1517 .region_size = SMALL_PAGE_SIZE, 1518 .pa = start, 1519 .va = start, 1520 .size = len, 1521 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1522 }; 1523 1524 COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13); 1525 offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed); 1526 1527 check_mem_map(tmp_mmap); 1528 core_init_mmu(tmp_mmap); 1529 dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); 1530 core_init_mmu_regs(cfg); 1531 cfg->map_offset = offs; 1532 memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map)); 1533 } 1534 1535 bool core_mmu_mattr_is_ok(uint32_t mattr) 1536 { 1537 /* 1538 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and 1539 * core_mmu_v7.c:mattr_to_texcb 1540 */ 1541 1542 switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { 1543 case TEE_MATTR_MEM_TYPE_DEV: 1544 case TEE_MATTR_MEM_TYPE_STRONGLY_O: 1545 case TEE_MATTR_MEM_TYPE_CACHED: 1546 case TEE_MATTR_MEM_TYPE_TAGGED: 1547 return true; 1548 default: 1549 return false; 1550 } 1551 } 1552 1553 /* 1554 * test attributes of target physical buffer 1555 * 1556 * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). 1557 * 1558 */ 1559 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) 1560 { 1561 paddr_t ta_base = 0; 1562 size_t ta_size = 0; 1563 struct tee_mmap_region *map; 1564 1565 /* Empty buffers complies with anything */ 1566 if (len == 0) 1567 return true; 1568 1569 switch (attr) { 1570 case CORE_MEM_SEC: 1571 return pbuf_is_inside(secure_only, pbuf, len); 1572 case CORE_MEM_NON_SEC: 1573 return pbuf_is_inside(nsec_shared, pbuf, len) || 1574 pbuf_is_nsec_ddr(pbuf, len); 1575 case CORE_MEM_TEE_RAM: 1576 return core_is_buffer_inside(pbuf, len, TEE_RAM_START, 1577 TEE_RAM_PH_SIZE); 1578 case CORE_MEM_TA_RAM: 1579 core_mmu_get_ta_range(&ta_base, &ta_size); 1580 return core_is_buffer_inside(pbuf, len, ta_base, ta_size); 1581 #ifdef CFG_CORE_RESERVED_SHM 1582 case CORE_MEM_NSEC_SHM: 1583 return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, 1584 TEE_SHMEM_SIZE); 1585 #endif 1586 case CORE_MEM_SDP_MEM: 1587 return pbuf_is_sdp_mem(pbuf, len); 1588 case CORE_MEM_CACHED: 1589 map = find_map_by_pa(pbuf); 1590 if (!map || !pbuf_inside_map_area(pbuf, len, map)) 1591 return false; 1592 return mattr_is_cached(map->attr); 1593 default: 1594 return false; 1595 } 1596 } 1597 1598 /* test attributes of target virtual buffer (in core mapping) */ 1599 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) 1600 { 1601 paddr_t p; 1602 1603 /* Empty buffers complies with anything */ 1604 if (len == 0) 1605 return true; 1606 1607 p = virt_to_phys((void *)vbuf); 1608 if (!p) 1609 return false; 1610 1611 return core_pbuf_is(attr, p, len); 1612 } 1613 1614 /* core_va2pa - teecore exported service */ 1615 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) 1616 { 1617 struct tee_mmap_region *map; 1618 1619 map = find_map_by_va(va); 1620 if (!va_is_in_map(map, (vaddr_t)va)) 1621 return -1; 1622 1623 /* 1624 * We can calculate PA for static map. Virtual address ranges 1625 * reserved to core dynamic mapping return a 'match' (return 0;) 1626 * together with an invalid null physical address. 1627 */ 1628 if (map->pa) 1629 *pa = map->pa + (vaddr_t)va - map->va; 1630 else 1631 *pa = 0; 1632 1633 return 0; 1634 } 1635 1636 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) 1637 { 1638 if (!pa_is_in_map(map, pa, len)) 1639 return NULL; 1640 1641 return (void *)(vaddr_t)(map->va + pa - map->pa); 1642 } 1643 1644 /* 1645 * teecore gets some memory area definitions 1646 */ 1647 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s, 1648 vaddr_t *e) 1649 { 1650 struct tee_mmap_region *map = find_map_by_type(type); 1651 1652 if (map) { 1653 *s = map->va; 1654 *e = map->va + map->size; 1655 } else { 1656 *s = 0; 1657 *e = 0; 1658 } 1659 } 1660 1661 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) 1662 { 1663 struct tee_mmap_region *map = find_map_by_pa(pa); 1664 1665 if (!map) 1666 return MEM_AREA_MAXTYPE; 1667 return map->type; 1668 } 1669 1670 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1671 paddr_t pa, uint32_t attr) 1672 { 1673 assert(idx < tbl_info->num_entries); 1674 core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, 1675 idx, pa, attr); 1676 } 1677 1678 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1679 paddr_t *pa, uint32_t *attr) 1680 { 1681 assert(idx < tbl_info->num_entries); 1682 core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, 1683 idx, pa, attr); 1684 } 1685 1686 static void clear_region(struct core_mmu_table_info *tbl_info, 1687 struct tee_mmap_region *region) 1688 { 1689 unsigned int end = 0; 1690 unsigned int idx = 0; 1691 1692 /* va, len and pa should be block aligned */ 1693 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1694 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1695 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1696 1697 idx = core_mmu_va2idx(tbl_info, region->va); 1698 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1699 1700 while (idx < end) { 1701 core_mmu_set_entry(tbl_info, idx, 0, 0); 1702 idx++; 1703 } 1704 } 1705 1706 static void set_region(struct core_mmu_table_info *tbl_info, 1707 struct tee_mmap_region *region) 1708 { 1709 unsigned int end; 1710 unsigned int idx; 1711 paddr_t pa; 1712 1713 /* va, len and pa should be block aligned */ 1714 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1715 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1716 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1717 1718 idx = core_mmu_va2idx(tbl_info, region->va); 1719 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1720 pa = region->pa; 1721 1722 while (idx < end) { 1723 core_mmu_set_entry(tbl_info, idx, pa, region->attr); 1724 idx++; 1725 pa += BIT64(tbl_info->shift); 1726 } 1727 } 1728 1729 static void set_pg_region(struct core_mmu_table_info *dir_info, 1730 struct vm_region *region, struct pgt **pgt, 1731 struct core_mmu_table_info *pg_info) 1732 { 1733 struct tee_mmap_region r = { 1734 .va = region->va, 1735 .size = region->size, 1736 .attr = region->attr, 1737 }; 1738 vaddr_t end = r.va + r.size; 1739 uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; 1740 1741 while (r.va < end) { 1742 if (!pg_info->table || 1743 r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { 1744 /* 1745 * We're assigning a new translation table. 1746 */ 1747 unsigned int idx; 1748 1749 /* Virtual addresses must grow */ 1750 assert(r.va > pg_info->va_base); 1751 1752 idx = core_mmu_va2idx(dir_info, r.va); 1753 pg_info->va_base = core_mmu_idx2va(dir_info, idx); 1754 1755 /* 1756 * Advance pgt to va_base, note that we may need to 1757 * skip multiple page tables if there are large 1758 * holes in the vm map. 1759 */ 1760 while ((*pgt)->vabase < pg_info->va_base) { 1761 *pgt = SLIST_NEXT(*pgt, link); 1762 /* We should have allocated enough */ 1763 assert(*pgt); 1764 } 1765 assert((*pgt)->vabase == pg_info->va_base); 1766 pg_info->table = (*pgt)->tbl; 1767 1768 core_mmu_set_entry(dir_info, idx, 1769 virt_to_phys(pg_info->table), 1770 pgt_attr); 1771 } 1772 1773 r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), 1774 end - r.va); 1775 1776 if (!(*pgt)->populated && !mobj_is_paged(region->mobj)) { 1777 size_t granule = BIT(pg_info->shift); 1778 size_t offset = r.va - region->va + region->offset; 1779 1780 r.size = MIN(r.size, 1781 mobj_get_phys_granule(region->mobj)); 1782 r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); 1783 1784 if (mobj_get_pa(region->mobj, offset, granule, 1785 &r.pa) != TEE_SUCCESS) 1786 panic("Failed to get PA of unpaged mobj"); 1787 set_region(pg_info, &r); 1788 } 1789 r.va += r.size; 1790 } 1791 } 1792 1793 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, 1794 size_t size_left, paddr_t block_size, 1795 struct tee_mmap_region *mm __maybe_unused) 1796 { 1797 /* VA and PA are aligned to block size at current level */ 1798 if ((vaddr | paddr) & (block_size - 1)) 1799 return false; 1800 1801 /* Remainder fits into block at current level */ 1802 if (size_left < block_size) 1803 return false; 1804 1805 #ifdef CFG_WITH_PAGER 1806 /* 1807 * If pager is enabled, we need to map tee ram 1808 * regions with small pages only 1809 */ 1810 if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE) 1811 return false; 1812 #endif 1813 1814 return true; 1815 } 1816 1817 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) 1818 { 1819 struct core_mmu_table_info tbl_info; 1820 unsigned int idx; 1821 vaddr_t vaddr = mm->va; 1822 paddr_t paddr = mm->pa; 1823 ssize_t size_left = mm->size; 1824 unsigned int level; 1825 bool table_found; 1826 uint32_t old_attr; 1827 1828 assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); 1829 1830 while (size_left > 0) { 1831 level = CORE_MMU_BASE_TABLE_LEVEL; 1832 1833 while (true) { 1834 paddr_t block_size = 0; 1835 1836 assert(core_mmu_level_in_range(level)); 1837 1838 table_found = core_mmu_find_table(prtn, vaddr, level, 1839 &tbl_info); 1840 if (!table_found) 1841 panic("can't find table for mapping"); 1842 1843 block_size = BIT64(tbl_info.shift); 1844 1845 idx = core_mmu_va2idx(&tbl_info, vaddr); 1846 if (!can_map_at_level(paddr, vaddr, size_left, 1847 block_size, mm)) { 1848 bool secure = mm->attr & TEE_MATTR_SECURE; 1849 1850 /* 1851 * This part of the region can't be mapped at 1852 * this level. Need to go deeper. 1853 */ 1854 if (!core_mmu_entry_to_finer_grained(&tbl_info, 1855 idx, 1856 secure)) 1857 panic("Can't divide MMU entry"); 1858 level = tbl_info.next_level; 1859 continue; 1860 } 1861 1862 /* We can map part of the region at current level */ 1863 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1864 if (old_attr) 1865 panic("Page is already mapped"); 1866 1867 core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr); 1868 paddr += block_size; 1869 vaddr += block_size; 1870 size_left -= block_size; 1871 1872 break; 1873 } 1874 } 1875 } 1876 1877 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 1878 enum teecore_memtypes memtype) 1879 { 1880 TEE_Result ret; 1881 struct core_mmu_table_info tbl_info; 1882 struct tee_mmap_region *mm; 1883 unsigned int idx; 1884 uint32_t old_attr; 1885 uint32_t exceptions; 1886 vaddr_t vaddr = vstart; 1887 size_t i; 1888 bool secure; 1889 1890 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1891 1892 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1893 1894 if (vaddr & SMALL_PAGE_MASK) 1895 return TEE_ERROR_BAD_PARAMETERS; 1896 1897 exceptions = mmu_lock(); 1898 1899 mm = find_map_by_va((void *)vaddr); 1900 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1901 panic("VA does not belong to any known mm region"); 1902 1903 if (!core_mmu_is_dynamic_vaspace(mm)) 1904 panic("Trying to map into static region"); 1905 1906 for (i = 0; i < num_pages; i++) { 1907 if (pages[i] & SMALL_PAGE_MASK) { 1908 ret = TEE_ERROR_BAD_PARAMETERS; 1909 goto err; 1910 } 1911 1912 while (true) { 1913 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1914 &tbl_info)) 1915 panic("Can't find pagetable for vaddr "); 1916 1917 idx = core_mmu_va2idx(&tbl_info, vaddr); 1918 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1919 break; 1920 1921 /* This is supertable. Need to divide it. */ 1922 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1923 secure)) 1924 panic("Failed to spread pgdir on small tables"); 1925 } 1926 1927 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1928 if (old_attr) 1929 panic("Page is already mapped"); 1930 1931 core_mmu_set_entry(&tbl_info, idx, pages[i], 1932 core_mmu_type_to_attr(memtype)); 1933 vaddr += SMALL_PAGE_SIZE; 1934 } 1935 1936 /* 1937 * Make sure all the changes to translation tables are visible 1938 * before returning. TLB doesn't need to be invalidated as we are 1939 * guaranteed that there's no valid mapping in this range. 1940 */ 1941 core_mmu_table_write_barrier(); 1942 mmu_unlock(exceptions); 1943 1944 return TEE_SUCCESS; 1945 err: 1946 mmu_unlock(exceptions); 1947 1948 if (i) 1949 core_mmu_unmap_pages(vstart, i); 1950 1951 return ret; 1952 } 1953 1954 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 1955 size_t num_pages, 1956 enum teecore_memtypes memtype) 1957 { 1958 struct core_mmu_table_info tbl_info = { }; 1959 struct tee_mmap_region *mm = NULL; 1960 unsigned int idx = 0; 1961 uint32_t old_attr = 0; 1962 uint32_t exceptions = 0; 1963 vaddr_t vaddr = vstart; 1964 paddr_t paddr = pstart; 1965 size_t i = 0; 1966 bool secure = false; 1967 1968 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1969 1970 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1971 1972 if ((vaddr | paddr) & SMALL_PAGE_MASK) 1973 return TEE_ERROR_BAD_PARAMETERS; 1974 1975 exceptions = mmu_lock(); 1976 1977 mm = find_map_by_va((void *)vaddr); 1978 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1979 panic("VA does not belong to any known mm region"); 1980 1981 if (!core_mmu_is_dynamic_vaspace(mm)) 1982 panic("Trying to map into static region"); 1983 1984 for (i = 0; i < num_pages; i++) { 1985 while (true) { 1986 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1987 &tbl_info)) 1988 panic("Can't find pagetable for vaddr "); 1989 1990 idx = core_mmu_va2idx(&tbl_info, vaddr); 1991 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1992 break; 1993 1994 /* This is supertable. Need to divide it. */ 1995 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1996 secure)) 1997 panic("Failed to spread pgdir on small tables"); 1998 } 1999 2000 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2001 if (old_attr) 2002 panic("Page is already mapped"); 2003 2004 core_mmu_set_entry(&tbl_info, idx, paddr, 2005 core_mmu_type_to_attr(memtype)); 2006 paddr += SMALL_PAGE_SIZE; 2007 vaddr += SMALL_PAGE_SIZE; 2008 } 2009 2010 /* 2011 * Make sure all the changes to translation tables are visible 2012 * before returning. TLB doesn't need to be invalidated as we are 2013 * guaranteed that there's no valid mapping in this range. 2014 */ 2015 core_mmu_table_write_barrier(); 2016 mmu_unlock(exceptions); 2017 2018 return TEE_SUCCESS; 2019 } 2020 2021 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) 2022 { 2023 struct core_mmu_table_info tbl_info; 2024 struct tee_mmap_region *mm; 2025 size_t i; 2026 unsigned int idx; 2027 uint32_t exceptions; 2028 2029 exceptions = mmu_lock(); 2030 2031 mm = find_map_by_va((void *)vstart); 2032 if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) 2033 panic("VA does not belong to any known mm region"); 2034 2035 if (!core_mmu_is_dynamic_vaspace(mm)) 2036 panic("Trying to unmap static region"); 2037 2038 for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { 2039 if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) 2040 panic("Can't find pagetable"); 2041 2042 if (tbl_info.shift != SMALL_PAGE_SHIFT) 2043 panic("Invalid pagetable level"); 2044 2045 idx = core_mmu_va2idx(&tbl_info, vstart); 2046 core_mmu_set_entry(&tbl_info, idx, 0, 0); 2047 } 2048 tlbi_all(); 2049 2050 mmu_unlock(exceptions); 2051 } 2052 2053 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 2054 struct user_mode_ctx *uctx) 2055 { 2056 struct core_mmu_table_info pg_info = { }; 2057 struct pgt_cache *pgt_cache = &uctx->pgt_cache; 2058 struct pgt *pgt = NULL; 2059 struct pgt *p = NULL; 2060 struct vm_region *r = NULL; 2061 2062 if (TAILQ_EMPTY(&uctx->vm_info.regions)) 2063 return; /* Nothing to map */ 2064 2065 /* 2066 * Allocate all page tables in advance. 2067 */ 2068 pgt_get_all(uctx); 2069 pgt = SLIST_FIRST(pgt_cache); 2070 2071 core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL); 2072 2073 TAILQ_FOREACH(r, &uctx->vm_info.regions, link) 2074 set_pg_region(dir_info, r, &pgt, &pg_info); 2075 /* Record that the translation tables now are populated. */ 2076 SLIST_FOREACH(p, pgt_cache, link) { 2077 p->populated = true; 2078 if (p == pgt) 2079 break; 2080 } 2081 assert(p == pgt); 2082 } 2083 2084 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 2085 size_t len) 2086 { 2087 struct core_mmu_table_info tbl_info = { }; 2088 struct tee_mmap_region *res_map = NULL; 2089 struct tee_mmap_region *map = NULL; 2090 paddr_t pa = virt_to_phys(addr); 2091 size_t granule = 0; 2092 ptrdiff_t i = 0; 2093 paddr_t p = 0; 2094 size_t l = 0; 2095 2096 map = find_map_by_type_and_pa(type, pa, len); 2097 if (!map) 2098 return TEE_ERROR_GENERIC; 2099 2100 res_map = find_map_by_type(MEM_AREA_RES_VASPACE); 2101 if (!res_map) 2102 return TEE_ERROR_GENERIC; 2103 if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) 2104 return TEE_ERROR_GENERIC; 2105 granule = BIT(tbl_info.shift); 2106 2107 if (map < static_memory_map || 2108 map >= static_memory_map + ARRAY_SIZE(static_memory_map)) 2109 return TEE_ERROR_GENERIC; 2110 i = map - static_memory_map; 2111 2112 /* Check that we have a full match */ 2113 p = ROUNDDOWN(pa, granule); 2114 l = ROUNDUP(len + pa - p, granule); 2115 if (map->pa != p || map->size != l) 2116 return TEE_ERROR_GENERIC; 2117 2118 clear_region(&tbl_info, map); 2119 tlbi_all(); 2120 2121 /* If possible remove the va range from res_map */ 2122 if (res_map->va - map->size == map->va) { 2123 res_map->va -= map->size; 2124 res_map->size += map->size; 2125 } 2126 2127 /* Remove the entry. */ 2128 memmove(map, map + 1, 2129 (ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map)); 2130 2131 /* Clear the last new entry in case it was used */ 2132 memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1, 2133 0, sizeof(*map)); 2134 2135 return TEE_SUCCESS; 2136 } 2137 2138 struct tee_mmap_region * 2139 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) 2140 { 2141 struct tee_mmap_region *map = NULL; 2142 struct tee_mmap_region *map_found = NULL; 2143 2144 if (!len) 2145 return NULL; 2146 2147 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 2148 if (map->type != type) 2149 continue; 2150 2151 if (map_found) 2152 return NULL; 2153 2154 map_found = map; 2155 } 2156 2157 if (!map_found || map_found->size < len) 2158 return NULL; 2159 2160 return map_found; 2161 } 2162 2163 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) 2164 { 2165 struct core_mmu_table_info tbl_info; 2166 struct tee_mmap_region *map; 2167 size_t n; 2168 size_t granule; 2169 paddr_t p; 2170 size_t l; 2171 2172 if (!len) 2173 return NULL; 2174 2175 if (!core_mmu_check_end_pa(addr, len)) 2176 return NULL; 2177 2178 /* Check if the memory is already mapped */ 2179 map = find_map_by_type_and_pa(type, addr, len); 2180 if (map && pbuf_inside_map_area(addr, len, map)) 2181 return (void *)(vaddr_t)(map->va + addr - map->pa); 2182 2183 /* Find the reserved va space used for late mappings */ 2184 map = find_map_by_type(MEM_AREA_RES_VASPACE); 2185 if (!map) 2186 return NULL; 2187 2188 if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) 2189 return NULL; 2190 2191 granule = BIT64(tbl_info.shift); 2192 p = ROUNDDOWN(addr, granule); 2193 l = ROUNDUP(len + addr - p, granule); 2194 2195 /* Ban overflowing virtual addresses */ 2196 if (map->size < l) 2197 return NULL; 2198 2199 /* 2200 * Something is wrong, we can't fit the va range into the selected 2201 * table. The reserved va range is possibly missaligned with 2202 * granule. 2203 */ 2204 if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) 2205 return NULL; 2206 2207 /* Find end of the memory map */ 2208 n = 0; 2209 while (!core_mmap_is_end_of_table(static_memory_map + n)) 2210 n++; 2211 2212 if (n < (ARRAY_SIZE(static_memory_map) - 1)) { 2213 /* There's room for another entry */ 2214 static_memory_map[n].va = map->va; 2215 static_memory_map[n].size = l; 2216 static_memory_map[n + 1].type = MEM_AREA_END; 2217 map->va += l; 2218 map->size -= l; 2219 map = static_memory_map + n; 2220 } else { 2221 /* 2222 * There isn't room for another entry, steal the reserved 2223 * entry as it's not useful for anything else any longer. 2224 */ 2225 map->size = l; 2226 } 2227 map->type = type; 2228 map->region_size = granule; 2229 map->attr = core_mmu_type_to_attr(type); 2230 map->pa = p; 2231 2232 set_region(&tbl_info, map); 2233 2234 /* Make sure the new entry is visible before continuing. */ 2235 core_mmu_table_write_barrier(); 2236 2237 return (void *)(vaddr_t)(map->va + addr - map->pa); 2238 } 2239 2240 #ifdef CFG_WITH_PAGER 2241 static vaddr_t get_linear_map_end_va(void) 2242 { 2243 /* this is synced with the generic linker file kern.ld.S */ 2244 return (vaddr_t)__heap2_end; 2245 } 2246 2247 static paddr_t get_linear_map_end_pa(void) 2248 { 2249 return get_linear_map_end_va() - boot_mmu_config.map_offset; 2250 } 2251 #endif 2252 2253 #if defined(CFG_TEE_CORE_DEBUG) 2254 static void check_pa_matches_va(void *va, paddr_t pa) 2255 { 2256 TEE_Result res = TEE_ERROR_GENERIC; 2257 vaddr_t v = (vaddr_t)va; 2258 paddr_t p = 0; 2259 struct core_mmu_table_info ti __maybe_unused = { }; 2260 2261 if (core_mmu_user_va_range_is_defined()) { 2262 vaddr_t user_va_base = 0; 2263 size_t user_va_size = 0; 2264 2265 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 2266 if (v >= user_va_base && 2267 v <= (user_va_base - 1 + user_va_size)) { 2268 if (!core_mmu_user_mapping_is_active()) { 2269 if (pa) 2270 panic("issue in linear address space"); 2271 return; 2272 } 2273 2274 res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), 2275 va, &p); 2276 if (res == TEE_ERROR_NOT_SUPPORTED) 2277 return; 2278 if (res == TEE_SUCCESS && pa != p) 2279 panic("bad pa"); 2280 if (res != TEE_SUCCESS && pa) 2281 panic("false pa"); 2282 return; 2283 } 2284 } 2285 #ifdef CFG_WITH_PAGER 2286 if (is_unpaged(va)) { 2287 if (v - boot_mmu_config.map_offset != pa) 2288 panic("issue in linear address space"); 2289 return; 2290 } 2291 2292 if (tee_pager_get_table_info(v, &ti)) { 2293 uint32_t a; 2294 2295 /* 2296 * Lookups in the page table managed by the pager is 2297 * dangerous for addresses in the paged area as those pages 2298 * changes all the time. But some ranges are safe, 2299 * rw-locked areas when the page is populated for instance. 2300 */ 2301 core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); 2302 if (a & TEE_MATTR_VALID_BLOCK) { 2303 paddr_t mask = BIT64(ti.shift) - 1; 2304 2305 p |= v & mask; 2306 if (pa != p) 2307 panic(); 2308 } else { 2309 if (pa) 2310 panic(); 2311 } 2312 return; 2313 } 2314 #endif 2315 2316 if (!core_va2pa_helper(va, &p)) { 2317 /* Verfiy only the static mapping (case non null phys addr) */ 2318 if (p && pa != p) { 2319 DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, 2320 va, p, pa); 2321 panic(); 2322 } 2323 } else { 2324 if (pa) { 2325 DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); 2326 panic(); 2327 } 2328 } 2329 } 2330 #else 2331 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) 2332 { 2333 } 2334 #endif 2335 2336 paddr_t virt_to_phys(void *va) 2337 { 2338 paddr_t pa = 0; 2339 2340 if (!arch_va2pa_helper(va, &pa)) 2341 pa = 0; 2342 check_pa_matches_va(va, pa); 2343 return pa; 2344 } 2345 2346 #if defined(CFG_TEE_CORE_DEBUG) 2347 static void check_va_matches_pa(paddr_t pa, void *va) 2348 { 2349 paddr_t p = 0; 2350 2351 if (!va) 2352 return; 2353 2354 p = virt_to_phys(va); 2355 if (p != pa) { 2356 DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); 2357 panic(); 2358 } 2359 } 2360 #else 2361 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) 2362 { 2363 } 2364 #endif 2365 2366 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) 2367 { 2368 if (!core_mmu_user_mapping_is_active()) 2369 return NULL; 2370 2371 return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); 2372 } 2373 2374 #ifdef CFG_WITH_PAGER 2375 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2376 { 2377 paddr_t end_pa = 0; 2378 2379 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 2380 return NULL; 2381 2382 if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) { 2383 if (end_pa > get_linear_map_end_pa()) 2384 return NULL; 2385 return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset); 2386 } 2387 2388 return tee_pager_phys_to_virt(pa, len); 2389 } 2390 #else 2391 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2392 { 2393 struct tee_mmap_region *mmap = NULL; 2394 2395 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); 2396 if (!mmap) 2397 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); 2398 if (!mmap) 2399 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); 2400 if (!mmap) 2401 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); 2402 if (!mmap) 2403 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); 2404 if (!mmap) 2405 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); 2406 /* 2407 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only 2408 * used with pager and not needed here. 2409 */ 2410 return map_pa2va(mmap, pa, len); 2411 } 2412 #endif 2413 2414 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) 2415 { 2416 void *va = NULL; 2417 2418 switch (m) { 2419 case MEM_AREA_TS_VASPACE: 2420 va = phys_to_virt_ts_vaspace(pa, len); 2421 break; 2422 case MEM_AREA_TEE_RAM: 2423 case MEM_AREA_TEE_RAM_RX: 2424 case MEM_AREA_TEE_RAM_RO: 2425 case MEM_AREA_TEE_RAM_RW: 2426 case MEM_AREA_NEX_RAM_RO: 2427 case MEM_AREA_NEX_RAM_RW: 2428 va = phys_to_virt_tee_ram(pa, len); 2429 break; 2430 case MEM_AREA_SHM_VASPACE: 2431 /* Find VA from PA in dynamic SHM is not yet supported */ 2432 va = NULL; 2433 break; 2434 default: 2435 va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); 2436 } 2437 if (m != MEM_AREA_SEC_RAM_OVERALL) 2438 check_va_matches_pa(pa, va); 2439 return va; 2440 } 2441 2442 void *phys_to_virt_io(paddr_t pa, size_t len) 2443 { 2444 struct tee_mmap_region *map = NULL; 2445 void *va = NULL; 2446 2447 map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); 2448 if (!map) 2449 map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); 2450 if (!map) 2451 return NULL; 2452 va = map_pa2va(map, pa, len); 2453 check_va_matches_pa(pa, va); 2454 return va; 2455 } 2456 2457 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) 2458 { 2459 if (cpu_mmu_enabled()) 2460 return (vaddr_t)phys_to_virt(pa, type, len); 2461 2462 return (vaddr_t)pa; 2463 } 2464 2465 #ifdef CFG_WITH_PAGER 2466 bool is_unpaged(const void *va) 2467 { 2468 vaddr_t v = (vaddr_t)va; 2469 2470 return v >= VCORE_START_VA && v < get_linear_map_end_va(); 2471 } 2472 #endif 2473 2474 #ifdef CFG_NS_VIRTUALIZATION 2475 bool is_nexus(const void *va) 2476 { 2477 vaddr_t v = (vaddr_t)va; 2478 2479 return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ; 2480 } 2481 #endif 2482 2483 void core_mmu_init_virtualization(void) 2484 { 2485 paddr_t b1 = 0; 2486 paddr_size_t s1 = 0; 2487 2488 static_assert(ARRAY_SIZE(secure_only) <= 2); 2489 if (ARRAY_SIZE(secure_only) == 2) { 2490 b1 = secure_only[1].paddr; 2491 s1 = secure_only[1].size; 2492 } 2493 virt_init_memory(static_memory_map, secure_only[0].paddr, 2494 secure_only[0].size, b1, s1); 2495 } 2496 2497 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) 2498 { 2499 assert(p->pa); 2500 if (cpu_mmu_enabled()) { 2501 if (!p->va) 2502 p->va = (vaddr_t)phys_to_virt_io(p->pa, len); 2503 assert(p->va); 2504 return p->va; 2505 } 2506 return p->pa; 2507 } 2508 2509 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) 2510 { 2511 assert(p->pa); 2512 if (cpu_mmu_enabled()) { 2513 if (!p->va) 2514 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, 2515 len); 2516 assert(p->va); 2517 return p->va; 2518 } 2519 return p->pa; 2520 } 2521 2522 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) 2523 { 2524 assert(p->pa); 2525 if (cpu_mmu_enabled()) { 2526 if (!p->va) 2527 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, 2528 len); 2529 assert(p->va); 2530 return p->va; 2531 } 2532 return p->pa; 2533 } 2534 2535 #ifdef CFG_CORE_RESERVED_SHM 2536 static TEE_Result teecore_init_pub_ram(void) 2537 { 2538 vaddr_t s = 0; 2539 vaddr_t e = 0; 2540 2541 /* get virtual addr/size of NSec shared mem allocated from teecore */ 2542 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); 2543 2544 if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) 2545 panic("invalid PUB RAM"); 2546 2547 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2548 if (!tee_vbuf_is_non_sec(s, e - s)) 2549 panic("PUB RAM is not non-secure"); 2550 2551 #ifdef CFG_PL310 2552 /* Allocate statically the l2cc mutex */ 2553 tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); 2554 s += sizeof(uint32_t); /* size of a pl310 mutex */ 2555 s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ 2556 #endif 2557 2558 default_nsec_shm_paddr = virt_to_phys((void *)s); 2559 default_nsec_shm_size = e - s; 2560 2561 return TEE_SUCCESS; 2562 } 2563 early_init(teecore_init_pub_ram); 2564 #endif /*CFG_CORE_RESERVED_SHM*/ 2565 2566 void core_mmu_init_ta_ram(void) 2567 { 2568 vaddr_t s = 0; 2569 vaddr_t e = 0; 2570 paddr_t ps = 0; 2571 size_t size = 0; 2572 2573 /* 2574 * Get virtual addr/size of RAM where TA are loaded/executedNSec 2575 * shared mem allocated from teecore. 2576 */ 2577 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) 2578 virt_get_ta_ram(&s, &e); 2579 else 2580 core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e); 2581 2582 ps = virt_to_phys((void *)s); 2583 size = e - s; 2584 2585 if (!ps || (ps & CORE_MMU_USER_CODE_MASK) || 2586 !size || (size & CORE_MMU_USER_CODE_MASK)) 2587 panic("invalid TA RAM"); 2588 2589 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2590 if (!tee_pbuf_is_sec(ps, size)) 2591 panic("TA RAM is not secure"); 2592 2593 if (!tee_mm_is_empty(&tee_mm_sec_ddr)) 2594 panic("TA RAM pool is not empty"); 2595 2596 /* remove previous config and init TA ddr memory pool */ 2597 tee_mm_final(&tee_mm_sec_ddr); 2598 tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT, 2599 TEE_MM_POOL_NO_FLAGS); 2600 } 2601