xref: /optee_os/core/mm/core_mmu.c (revision dcf343a27c2823b9341988b82f353ae1676a99ff)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <mm/core_memprot.h>
22 #include <mm/core_mmu.h>
23 #include <mm/mobj.h>
24 #include <mm/pgt_cache.h>
25 #include <mm/tee_pager.h>
26 #include <mm/vm.h>
27 #include <platform_config.h>
28 #include <string.h>
29 #include <trace.h>
30 #include <util.h>
31 
32 #ifndef DEBUG_XLAT_TABLE
33 #define DEBUG_XLAT_TABLE 0
34 #endif
35 
36 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
37 
38 /* Physical Secure DDR pool */
39 tee_mm_pool_t tee_mm_sec_ddr;
40 
41 /* Virtual memory pool for core mappings */
42 tee_mm_pool_t core_virt_mem_pool;
43 
44 /* Virtual memory pool for shared memory mappings */
45 tee_mm_pool_t core_virt_shm_pool;
46 
47 #ifdef CFG_CORE_PHYS_RELOCATABLE
48 unsigned long core_mmu_tee_load_pa __nex_bss;
49 #else
50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
51 #endif
52 
53 /*
54  * These variables are initialized before .bss is cleared. To avoid
55  * resetting them when .bss is cleared we're storing them in .data instead,
56  * even if they initially are zero.
57  */
58 
59 #ifdef CFG_CORE_RESERVED_SHM
60 /* Default NSec shared memory allocated from NSec world */
61 unsigned long default_nsec_shm_size __nex_bss;
62 unsigned long default_nsec_shm_paddr __nex_bss;
63 #endif
64 
65 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS
66 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE)
67 						+ 1
68 #endif
69 						+ 1] __nex_bss;
70 
71 /* Define the platform's memory layout. */
72 struct memaccess_area {
73 	paddr_t paddr;
74 	size_t size;
75 };
76 
77 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
78 
79 static struct memaccess_area secure_only[] __nex_data = {
80 #ifdef CFG_CORE_PHYS_RELOCATABLE
81 	MEMACCESS_AREA(0, 0),
82 #else
83 #ifdef TRUSTED_SRAM_BASE
84 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
85 #endif
86 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
87 #endif
88 };
89 
90 static struct memaccess_area nsec_shared[] __nex_data = {
91 #ifdef CFG_CORE_RESERVED_SHM
92 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
93 #endif
94 };
95 
96 #if defined(CFG_SECURE_DATA_PATH)
97 static const char *tz_sdp_match = "linaro,secure-heap";
98 static struct memaccess_area sec_sdp;
99 #ifdef CFG_TEE_SDP_MEM_BASE
100 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
101 #endif
102 #ifdef TEE_SDP_TEST_MEM_BASE
103 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
104 #endif
105 #endif
106 
107 #ifdef CFG_CORE_RESERVED_SHM
108 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
109 #endif
110 static unsigned int mmu_spinlock;
111 
112 static uint32_t mmu_lock(void)
113 {
114 	return cpu_spin_lock_xsave(&mmu_spinlock);
115 }
116 
117 static void mmu_unlock(uint32_t exceptions)
118 {
119 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
120 }
121 
122 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
123 {
124 	/*
125 	 * The first range is always used to cover OP-TEE core memory, but
126 	 * depending on configuration it may cover more than that.
127 	 */
128 	*base = secure_only[0].paddr;
129 	*size = secure_only[0].size;
130 }
131 
132 void core_mmu_set_secure_memory(paddr_t base, size_t size)
133 {
134 #ifdef CFG_CORE_PHYS_RELOCATABLE
135 	static_assert(ARRAY_SIZE(secure_only) == 1);
136 #endif
137 	runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE));
138 	assert(!secure_only[0].size);
139 	assert(base && size);
140 
141 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
142 	secure_only[0].paddr = base;
143 	secure_only[0].size = size;
144 }
145 
146 void core_mmu_get_ta_range(paddr_t *base, size_t *size)
147 {
148 	paddr_t b = 0;
149 	size_t s = 0;
150 
151 	static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE));
152 #ifdef TA_RAM_START
153 	b = TA_RAM_START;
154 	s = TA_RAM_SIZE;
155 #else
156 	static_assert(ARRAY_SIZE(secure_only) <= 2);
157 	if (ARRAY_SIZE(secure_only) == 1) {
158 		vaddr_t load_offs = 0;
159 
160 		assert(core_mmu_tee_load_pa >= secure_only[0].paddr);
161 		load_offs = core_mmu_tee_load_pa - secure_only[0].paddr;
162 
163 		assert(secure_only[0].size >
164 		       load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE);
165 		b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE;
166 		s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE -
167 		    TEE_SDP_TEST_MEM_SIZE;
168 	} else {
169 		assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE);
170 		b = secure_only[1].paddr;
171 		s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE;
172 	}
173 #endif
174 	if (base)
175 		*base = b;
176 	if (size)
177 		*size = s;
178 }
179 
180 static struct tee_mmap_region *get_memory_map(void)
181 {
182 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
183 		struct tee_mmap_region *map = virt_get_memory_map();
184 
185 		if (map)
186 			return map;
187 	}
188 
189 	return static_memory_map;
190 }
191 
192 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
193 			     paddr_t pa, size_t size)
194 {
195 	size_t n;
196 
197 	for (n = 0; n < alen; n++)
198 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
199 			return true;
200 	return false;
201 }
202 
203 #define pbuf_intersects(a, pa, size) \
204 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
205 
206 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
207 			    paddr_t pa, size_t size)
208 {
209 	size_t n;
210 
211 	for (n = 0; n < alen; n++)
212 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
213 			return true;
214 	return false;
215 }
216 
217 #define pbuf_is_inside(a, pa, size) \
218 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
219 
220 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
221 {
222 	paddr_t end_pa = 0;
223 
224 	if (!map)
225 		return false;
226 
227 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
228 		return false;
229 
230 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
231 }
232 
233 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
234 {
235 	if (!map)
236 		return false;
237 	return (va >= map->va && va <= (map->va + map->size - 1));
238 }
239 
240 /* check if target buffer fits in a core default map area */
241 static bool pbuf_inside_map_area(unsigned long p, size_t l,
242 				 struct tee_mmap_region *map)
243 {
244 	return core_is_buffer_inside(p, l, map->pa, map->size);
245 }
246 
247 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
248 {
249 	struct tee_mmap_region *map;
250 
251 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++)
252 		if (map->type == type)
253 			return map;
254 	return NULL;
255 }
256 
257 static struct tee_mmap_region *
258 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
259 {
260 	struct tee_mmap_region *map;
261 
262 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
263 		if (map->type != type)
264 			continue;
265 		if (pa_is_in_map(map, pa, len))
266 			return map;
267 	}
268 	return NULL;
269 }
270 
271 static struct tee_mmap_region *find_map_by_va(void *va)
272 {
273 	struct tee_mmap_region *map = get_memory_map();
274 	unsigned long a = (unsigned long)va;
275 
276 	while (!core_mmap_is_end_of_table(map)) {
277 		if (a >= map->va && a <= (map->va - 1 + map->size))
278 			return map;
279 		map++;
280 	}
281 	return NULL;
282 }
283 
284 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
285 {
286 	struct tee_mmap_region *map = get_memory_map();
287 
288 	while (!core_mmap_is_end_of_table(map)) {
289 		/* Skip unmapped regions */
290 		if ((map->attr & TEE_MATTR_VALID_BLOCK) &&
291 		    pa >= map->pa && pa <= (map->pa + map->size - 1))
292 			return map;
293 		map++;
294 	}
295 	return NULL;
296 }
297 
298 #if defined(CFG_SECURE_DATA_PATH)
299 static bool dtb_get_sdp_region(void)
300 {
301 	void *fdt = NULL;
302 	int node = 0;
303 	int tmp_node = 0;
304 	paddr_t tmp_addr = 0;
305 	size_t tmp_size = 0;
306 
307 	if (!IS_ENABLED(CFG_EMBED_DTB))
308 		return false;
309 
310 	fdt = get_embedded_dt();
311 	if (!fdt)
312 		panic("No DTB found");
313 
314 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
315 	if (node < 0) {
316 		DMSG("No %s compatible node found", tz_sdp_match);
317 		return false;
318 	}
319 	tmp_node = node;
320 	while (tmp_node >= 0) {
321 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
322 							 tz_sdp_match);
323 		if (tmp_node >= 0)
324 			DMSG("Ignore SDP pool node %s, supports only 1 node",
325 			     fdt_get_name(fdt, tmp_node, NULL));
326 	}
327 
328 	tmp_addr = fdt_reg_base_address(fdt, node);
329 	if (tmp_addr == DT_INFO_INVALID_REG) {
330 		EMSG("%s: Unable to get base addr from DT", tz_sdp_match);
331 		return false;
332 	}
333 
334 	tmp_size = fdt_reg_size(fdt, node);
335 	if (tmp_size == DT_INFO_INVALID_REG_SIZE) {
336 		EMSG("%s: Unable to get size of base addr from DT",
337 		     tz_sdp_match);
338 		return false;
339 	}
340 
341 	sec_sdp.paddr = tmp_addr;
342 	sec_sdp.size = tmp_size;
343 
344 	return true;
345 }
346 #endif
347 
348 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
349 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
350 				const struct core_mmu_phys_mem *start,
351 				const struct core_mmu_phys_mem *end)
352 {
353 	const struct core_mmu_phys_mem *mem;
354 
355 	for (mem = start; mem < end; mem++) {
356 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
357 			return true;
358 	}
359 
360 	return false;
361 }
362 #endif
363 
364 #ifdef CFG_CORE_DYN_SHM
365 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
366 			       paddr_t pa, size_t size)
367 {
368 	struct core_mmu_phys_mem *m = *mem;
369 	size_t n = 0;
370 
371 	while (true) {
372 		if (n >= *nelems) {
373 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
374 			     pa, size);
375 			return;
376 		}
377 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
378 			break;
379 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
380 			panic();
381 		n++;
382 	}
383 
384 	if (pa == m[n].addr && size == m[n].size) {
385 		/* Remove this entry */
386 		(*nelems)--;
387 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
388 		m = nex_realloc(m, sizeof(*m) * *nelems);
389 		if (!m)
390 			panic();
391 		*mem = m;
392 	} else if (pa == m[n].addr) {
393 		m[n].addr += size;
394 		m[n].size -= size;
395 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
396 		m[n].size -= size;
397 	} else {
398 		/* Need to split the memory entry */
399 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
400 		if (!m)
401 			panic();
402 		*mem = m;
403 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
404 		(*nelems)++;
405 		m[n].size = pa - m[n].addr;
406 		m[n + 1].size -= size + m[n].size;
407 		m[n + 1].addr = pa + size;
408 	}
409 }
410 
411 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
412 				      size_t nelems,
413 				      struct tee_mmap_region *map)
414 {
415 	size_t n;
416 
417 	for (n = 0; n < nelems; n++) {
418 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
419 					    map->pa, map->size)) {
420 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
421 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
422 			     start[n].addr, start[n].size,
423 			     map->type, map->pa, map->size);
424 			panic();
425 		}
426 	}
427 }
428 
429 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
430 static size_t discovered_nsec_ddr_nelems __nex_bss;
431 
432 static int cmp_pmem_by_addr(const void *a, const void *b)
433 {
434 	const struct core_mmu_phys_mem *pmem_a = a;
435 	const struct core_mmu_phys_mem *pmem_b = b;
436 
437 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
438 }
439 
440 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
441 				      size_t nelems)
442 {
443 	struct core_mmu_phys_mem *m = start;
444 	size_t num_elems = nelems;
445 	struct tee_mmap_region *map = static_memory_map;
446 	const struct core_mmu_phys_mem __maybe_unused *pmem;
447 	size_t n = 0;
448 
449 	assert(!discovered_nsec_ddr_start);
450 	assert(m && num_elems);
451 
452 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
453 
454 	/*
455 	 * Non-secure shared memory and also secure data
456 	 * path memory are supposed to reside inside
457 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
458 	 * are used for a specific purpose make holes for
459 	 * those memory in the normal non-secure memory.
460 	 *
461 	 * This has to be done since for instance QEMU
462 	 * isn't aware of which memory range in the
463 	 * non-secure memory is used for NSEC_SHM.
464 	 */
465 
466 #ifdef CFG_SECURE_DATA_PATH
467 	if (dtb_get_sdp_region())
468 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
469 
470 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
471 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
472 #endif
473 
474 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
475 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
476 				   secure_only[n].size);
477 
478 	for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) {
479 		switch (map->type) {
480 		case MEM_AREA_NSEC_SHM:
481 			carve_out_phys_mem(&m, &num_elems, map->pa, map->size);
482 			break;
483 		case MEM_AREA_EXT_DT:
484 		case MEM_AREA_MANIFEST_DT:
485 		case MEM_AREA_RAM_NSEC:
486 		case MEM_AREA_RES_VASPACE:
487 		case MEM_AREA_SHM_VASPACE:
488 		case MEM_AREA_TS_VASPACE:
489 		case MEM_AREA_PAGER_VASPACE:
490 			break;
491 		default:
492 			check_phys_mem_is_outside(m, num_elems, map);
493 		}
494 	}
495 
496 	discovered_nsec_ddr_start = m;
497 	discovered_nsec_ddr_nelems = num_elems;
498 
499 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
500 				   m[num_elems - 1].size))
501 		panic();
502 }
503 
504 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
505 				    const struct core_mmu_phys_mem **end)
506 {
507 	if (!discovered_nsec_ddr_start)
508 		return false;
509 
510 	*start = discovered_nsec_ddr_start;
511 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
512 
513 	return true;
514 }
515 
516 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
517 {
518 	const struct core_mmu_phys_mem *start;
519 	const struct core_mmu_phys_mem *end;
520 
521 	if (!get_discovered_nsec_ddr(&start, &end))
522 		return false;
523 
524 	return pbuf_is_special_mem(pbuf, len, start, end);
525 }
526 
527 bool core_mmu_nsec_ddr_is_defined(void)
528 {
529 	const struct core_mmu_phys_mem *start;
530 	const struct core_mmu_phys_mem *end;
531 
532 	if (!get_discovered_nsec_ddr(&start, &end))
533 		return false;
534 
535 	return start != end;
536 }
537 #else
538 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
539 {
540 	return false;
541 }
542 #endif /*CFG_CORE_DYN_SHM*/
543 
544 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
545 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
546 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
547 
548 #ifdef CFG_SECURE_DATA_PATH
549 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
550 {
551 	bool is_sdp_mem = false;
552 
553 	if (sec_sdp.size)
554 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
555 						   sec_sdp.size);
556 
557 	if (!is_sdp_mem)
558 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
559 						 phys_sdp_mem_end);
560 
561 	return is_sdp_mem;
562 }
563 
564 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
565 {
566 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
567 					    CORE_MEM_SDP_MEM);
568 
569 	if (!mobj)
570 		panic("can't create SDP physical memory object");
571 
572 	return mobj;
573 }
574 
575 struct mobj **core_sdp_mem_create_mobjs(void)
576 {
577 	const struct core_mmu_phys_mem *mem = NULL;
578 	struct mobj **mobj_base = NULL;
579 	struct mobj **mobj = NULL;
580 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
581 
582 	if (sec_sdp.size)
583 		cnt++;
584 
585 	/* SDP mobjs table must end with a NULL entry */
586 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
587 	if (!mobj_base)
588 		panic("Out of memory");
589 
590 	mobj = mobj_base;
591 
592 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
593 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
594 
595 	if (sec_sdp.size)
596 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
597 
598 	return mobj_base;
599 }
600 
601 #else /* CFG_SECURE_DATA_PATH */
602 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
603 {
604 	return false;
605 }
606 
607 #endif /* CFG_SECURE_DATA_PATH */
608 
609 /* Check special memories comply with registered memories */
610 static void verify_special_mem_areas(struct tee_mmap_region *mem_map,
611 				     const struct core_mmu_phys_mem *start,
612 				     const struct core_mmu_phys_mem *end,
613 				     const char *area_name __maybe_unused)
614 {
615 	const struct core_mmu_phys_mem *mem;
616 	const struct core_mmu_phys_mem *mem2;
617 	struct tee_mmap_region *mmap;
618 
619 	if (start == end) {
620 		DMSG("No %s memory area defined", area_name);
621 		return;
622 	}
623 
624 	for (mem = start; mem < end; mem++)
625 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
626 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
627 
628 	/* Check memories do not intersect each other */
629 	for (mem = start; mem + 1 < end; mem++) {
630 		for (mem2 = mem + 1; mem2 < end; mem2++) {
631 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
632 						     mem->addr, mem->size)) {
633 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
634 						   mem->addr, mem->size);
635 				panic("Special memory intersection");
636 			}
637 		}
638 	}
639 
640 	/*
641 	 * Check memories do not intersect any mapped memory.
642 	 * This is called before reserved VA space is loaded in mem_map.
643 	 */
644 	for (mem = start; mem < end; mem++) {
645 		for (mmap = mem_map; mmap->type != MEM_AREA_END; mmap++) {
646 			if (core_is_buffer_intersect(mem->addr, mem->size,
647 						     mmap->pa, mmap->size)) {
648 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
649 						   mmap->pa, mmap->size);
650 				panic("Special memory intersection");
651 			}
652 		}
653 	}
654 }
655 
656 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems,
657 			 const char *mem_name __maybe_unused,
658 			 enum teecore_memtypes mem_type,
659 			 paddr_t mem_addr, paddr_size_t mem_size, size_t *last)
660 {
661 	size_t n = 0;
662 	paddr_t pa;
663 	paddr_size_t size;
664 
665 	if (!mem_size)	/* Discard null size entries */
666 		return;
667 	/*
668 	 * If some ranges of memory of the same type do overlap
669 	 * each others they are coalesced into one entry. To help this
670 	 * added entries are sorted by increasing physical.
671 	 *
672 	 * Note that it's valid to have the same physical memory as several
673 	 * different memory types, for instance the same device memory
674 	 * mapped as both secure and non-secure. This will probably not
675 	 * happen often in practice.
676 	 */
677 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
678 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
679 	while (true) {
680 		if (n >= (num_elems - 1)) {
681 			EMSG("Out of entries (%zu) in memory_map", num_elems);
682 			panic();
683 		}
684 		if (n == *last)
685 			break;
686 		pa = memory_map[n].pa;
687 		size = memory_map[n].size;
688 		if (mem_type == memory_map[n].type &&
689 		    ((pa <= (mem_addr + (mem_size - 1))) &&
690 		    (mem_addr <= (pa + (size - 1))))) {
691 			DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr);
692 			memory_map[n].pa = MIN(pa, mem_addr);
693 			memory_map[n].size = MAX(size, mem_size) +
694 					     (pa - memory_map[n].pa);
695 			return;
696 		}
697 		if (mem_type < memory_map[n].type ||
698 		    (mem_type == memory_map[n].type && mem_addr < pa))
699 			break; /* found the spot where to insert this memory */
700 		n++;
701 	}
702 
703 	memmove(memory_map + n + 1, memory_map + n,
704 		sizeof(struct tee_mmap_region) * (*last - n));
705 	(*last)++;
706 	memset(memory_map + n, 0, sizeof(memory_map[0]));
707 	memory_map[n].type = mem_type;
708 	memory_map[n].pa = mem_addr;
709 	memory_map[n].size = mem_size;
710 }
711 
712 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems,
713 			 enum teecore_memtypes type, size_t size, size_t *last)
714 {
715 	size_t n = 0;
716 
717 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
718 	while (true) {
719 		if (n >= (num_elems - 1)) {
720 			EMSG("Out of entries (%zu) in memory_map", num_elems);
721 			panic();
722 		}
723 		if (n == *last)
724 			break;
725 		if (type < memory_map[n].type)
726 			break;
727 		n++;
728 	}
729 
730 	memmove(memory_map + n + 1, memory_map + n,
731 		sizeof(struct tee_mmap_region) * (*last - n));
732 	(*last)++;
733 	memset(memory_map + n, 0, sizeof(memory_map[0]));
734 	memory_map[n].type = type;
735 	memory_map[n].size = size;
736 }
737 
738 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
739 {
740 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
741 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
742 				TEE_MATTR_MEM_TYPE_SHIFT;
743 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
744 				TEE_MATTR_MEM_TYPE_SHIFT;
745 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
746 				  TEE_MATTR_MEM_TYPE_SHIFT;
747 
748 	switch (t) {
749 	case MEM_AREA_TEE_RAM:
750 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
751 	case MEM_AREA_TEE_RAM_RX:
752 	case MEM_AREA_INIT_RAM_RX:
753 	case MEM_AREA_IDENTITY_MAP_RX:
754 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
755 	case MEM_AREA_TEE_RAM_RO:
756 	case MEM_AREA_INIT_RAM_RO:
757 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
758 	case MEM_AREA_TEE_RAM_RW:
759 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
760 	case MEM_AREA_NEX_RAM_RW:
761 	case MEM_AREA_TEE_ASAN:
762 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
763 	case MEM_AREA_TEE_COHERENT:
764 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
765 	case MEM_AREA_TA_RAM:
766 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
767 	case MEM_AREA_NSEC_SHM:
768 	case MEM_AREA_NEX_NSEC_SHM:
769 		return attr | TEE_MATTR_PRW | cached;
770 	case MEM_AREA_MANIFEST_DT:
771 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
772 	case MEM_AREA_TRANSFER_LIST:
773 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
774 	case MEM_AREA_EXT_DT:
775 		/*
776 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
777 		 * tree as secure non-cached memory, otherwise, fall back to
778 		 * non-secure mapping.
779 		 */
780 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
781 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
782 			       noncache;
783 		fallthrough;
784 	case MEM_AREA_IO_NSEC:
785 		return attr | TEE_MATTR_PRW | noncache;
786 	case MEM_AREA_IO_SEC:
787 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
788 	case MEM_AREA_RAM_NSEC:
789 		return attr | TEE_MATTR_PRW | cached;
790 	case MEM_AREA_RAM_SEC:
791 	case MEM_AREA_SEC_RAM_OVERALL:
792 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
793 	case MEM_AREA_ROM_SEC:
794 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
795 	case MEM_AREA_RES_VASPACE:
796 	case MEM_AREA_SHM_VASPACE:
797 		return 0;
798 	case MEM_AREA_PAGER_VASPACE:
799 		return TEE_MATTR_SECURE;
800 	default:
801 		panic("invalid type");
802 	}
803 }
804 
805 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
806 {
807 	switch (mm->type) {
808 	case MEM_AREA_TEE_RAM:
809 	case MEM_AREA_TEE_RAM_RX:
810 	case MEM_AREA_TEE_RAM_RO:
811 	case MEM_AREA_TEE_RAM_RW:
812 	case MEM_AREA_INIT_RAM_RX:
813 	case MEM_AREA_INIT_RAM_RO:
814 	case MEM_AREA_NEX_RAM_RW:
815 	case MEM_AREA_NEX_RAM_RO:
816 	case MEM_AREA_TEE_ASAN:
817 		return true;
818 	default:
819 		return false;
820 	}
821 }
822 
823 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
824 {
825 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
826 }
827 
828 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
829 {
830 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
831 }
832 
833 static int cmp_mmap_by_lower_va(const void *a, const void *b)
834 {
835 	const struct tee_mmap_region *mm_a = a;
836 	const struct tee_mmap_region *mm_b = b;
837 
838 	return CMP_TRILEAN(mm_a->va, mm_b->va);
839 }
840 
841 static void dump_mmap_table(struct tee_mmap_region *memory_map)
842 {
843 	struct tee_mmap_region *map;
844 
845 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
846 		vaddr_t __maybe_unused vstart;
847 
848 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
849 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
850 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
851 		     teecore_memtype_name(map->type), vstart,
852 		     vstart + map->size - 1, map->pa,
853 		     (paddr_t)(map->pa + map->size - 1), map->size,
854 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
855 	}
856 }
857 
858 #if DEBUG_XLAT_TABLE
859 
860 static void dump_xlat_table(vaddr_t va, unsigned int level)
861 {
862 	struct core_mmu_table_info tbl_info;
863 	unsigned int idx = 0;
864 	paddr_t pa;
865 	uint32_t attr;
866 
867 	core_mmu_find_table(NULL, va, level, &tbl_info);
868 	va = tbl_info.va_base;
869 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
870 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
871 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
872 			const char *security_bit = "";
873 
874 			if (core_mmu_entry_have_security_bit(attr)) {
875 				if (attr & TEE_MATTR_SECURE)
876 					security_bit = "S";
877 				else
878 					security_bit = "NS";
879 			}
880 
881 			if (attr & TEE_MATTR_TABLE) {
882 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
883 					" TBL:0x%010" PRIxPA " %s",
884 					level * 2, "", level, va, pa,
885 					security_bit);
886 				dump_xlat_table(va, level + 1);
887 			} else if (attr) {
888 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
889 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
890 					level * 2, "", level, va, pa,
891 					mattr_is_cached(attr) ? "MEM" :
892 					"DEV",
893 					attr & TEE_MATTR_PW ? "RW" : "RO",
894 					attr & TEE_MATTR_PX ? "X " : "XN",
895 					security_bit);
896 			} else {
897 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
898 					    " INVALID\n",
899 					    level * 2, "", level, va);
900 			}
901 		}
902 		va += BIT64(tbl_info.shift);
903 	}
904 }
905 
906 #else
907 
908 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
909 {
910 }
911 
912 #endif
913 
914 /*
915  * Reserves virtual memory space for pager usage.
916  *
917  * From the start of the first memory used by the link script +
918  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
919  * mapping for pager usage. This adds translation tables as needed for the
920  * pager to operate.
921  */
922 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems,
923 			      size_t *last)
924 {
925 	paddr_t begin = 0;
926 	paddr_t end = 0;
927 	size_t size = 0;
928 	size_t pos = 0;
929 	size_t n = 0;
930 
931 	if (*last >= (num_elems - 1)) {
932 		EMSG("Out of entries (%zu) in memory map", num_elems);
933 		panic();
934 	}
935 
936 	for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) {
937 		if (map_is_tee_ram(mmap + n)) {
938 			if (!begin)
939 				begin = mmap[n].pa;
940 			pos = n + 1;
941 		}
942 	}
943 
944 	end = mmap[pos - 1].pa + mmap[pos - 1].size;
945 	assert(end - begin < TEE_RAM_VA_SIZE);
946 	size = TEE_RAM_VA_SIZE - (end - begin);
947 
948 	assert(pos <= *last);
949 	memmove(mmap + pos + 1, mmap + pos,
950 		sizeof(struct tee_mmap_region) * (*last - pos));
951 	(*last)++;
952 	memset(mmap + pos, 0, sizeof(mmap[0]));
953 	mmap[pos].type = MEM_AREA_PAGER_VASPACE;
954 	mmap[pos].va = 0;
955 	mmap[pos].size = size;
956 	mmap[pos].region_size = SMALL_PAGE_SIZE;
957 	mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE);
958 }
959 
960 static void check_sec_nsec_mem_config(void)
961 {
962 	size_t n = 0;
963 
964 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
965 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
966 				    secure_only[n].size))
967 			panic("Invalid memory access config: sec/nsec");
968 	}
969 }
970 
971 static void collect_device_mem_ranges(struct tee_mmap_region *memory_map,
972 				      size_t num_elems, size_t *last)
973 {
974 	const char *compatible = "arm,ffa-manifest-device-regions";
975 	void *fdt = get_manifest_dt();
976 	const char *name = NULL;
977 	uint64_t page_count = 0;
978 	uint64_t base = 0;
979 	int subnode = 0;
980 	int node = 0;
981 
982 	assert(fdt);
983 
984 	node = fdt_node_offset_by_compatible(fdt, 0, compatible);
985 	if (node < 0)
986 		return;
987 
988 	fdt_for_each_subnode(subnode, fdt, node) {
989 		name = fdt_get_name(fdt, subnode, NULL);
990 		if (!name)
991 			continue;
992 
993 		if (dt_getprop_as_number(fdt, subnode, "base-address",
994 					 &base)) {
995 			EMSG("Mandatory field is missing: base-address");
996 			continue;
997 		}
998 
999 		if (base & SMALL_PAGE_MASK) {
1000 			EMSG("base-address is not page aligned");
1001 			continue;
1002 		}
1003 
1004 		if (dt_getprop_as_number(fdt, subnode, "pages-count",
1005 					 &page_count)) {
1006 			EMSG("Mandatory field is missing: pages-count");
1007 			continue;
1008 		}
1009 
1010 		add_phys_mem(memory_map, num_elems, name, MEM_AREA_IO_SEC,
1011 			     base, page_count * SMALL_PAGE_SIZE, last);
1012 	}
1013 }
1014 
1015 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map,
1016 				 size_t num_elems)
1017 {
1018 	const struct core_mmu_phys_mem *mem = NULL;
1019 	vaddr_t ram_start = secure_only[0].paddr;
1020 	size_t last = 0;
1021 
1022 
1023 #define ADD_PHYS_MEM(_type, _addr, _size) \
1024 		add_phys_mem(memory_map, num_elems, #_addr, (_type), \
1025 			     (_addr), (_size),  &last)
1026 
1027 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
1028 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start,
1029 			     VCORE_UNPG_RX_PA - ram_start);
1030 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
1031 			     VCORE_UNPG_RX_SZ);
1032 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
1033 			     VCORE_UNPG_RO_SZ);
1034 
1035 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1036 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
1037 				     VCORE_UNPG_RW_SZ);
1038 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
1039 				     VCORE_NEX_RW_SZ);
1040 		} else {
1041 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
1042 				     VCORE_UNPG_RW_SZ);
1043 		}
1044 
1045 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1046 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
1047 				     VCORE_INIT_RX_SZ);
1048 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
1049 				     VCORE_INIT_RO_SZ);
1050 		}
1051 	} else {
1052 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
1053 	}
1054 
1055 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1056 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
1057 			     TRUSTED_DRAM_SIZE);
1058 	} else {
1059 		/*
1060 		 * Every guest will have own TA RAM if virtualization
1061 		 * support is enabled.
1062 		 */
1063 		paddr_t ta_base = 0;
1064 		size_t ta_size = 0;
1065 
1066 		core_mmu_get_ta_range(&ta_base, &ta_size);
1067 		ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size);
1068 	}
1069 
1070 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
1071 	    IS_ENABLED(CFG_WITH_PAGER)) {
1072 		/*
1073 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
1074 		 * disabled.
1075 		 */
1076 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1077 	}
1078 
1079 #undef ADD_PHYS_MEM
1080 
1081 	/* Collect device memory info from SP manifest */
1082 	if (IS_ENABLED(CFG_CORE_SEL2_SPMC))
1083 		collect_device_mem_ranges(memory_map, num_elems, &last);
1084 
1085 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1086 		/* Only unmapped virtual range may have a null phys addr */
1087 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1088 
1089 		add_phys_mem(memory_map, num_elems, mem->name, mem->type,
1090 			     mem->addr, mem->size, &last);
1091 	}
1092 
1093 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1094 		verify_special_mem_areas(memory_map, phys_sdp_mem_begin,
1095 					 phys_sdp_mem_end, "SDP");
1096 
1097 	add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE,
1098 		     CFG_RESERVED_VASPACE_SIZE, &last);
1099 
1100 	add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE,
1101 		     SHM_VASPACE_SIZE, &last);
1102 
1103 	memory_map[last].type = MEM_AREA_END;
1104 
1105 	return last;
1106 }
1107 
1108 static void assign_mem_granularity(struct tee_mmap_region *memory_map)
1109 {
1110 	struct tee_mmap_region *map = NULL;
1111 
1112 	/*
1113 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1114 	 * SMALL_PAGE_SIZE.
1115 	 */
1116 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1117 		paddr_t mask = map->pa | map->size;
1118 
1119 		if (!(mask & CORE_MMU_PGDIR_MASK))
1120 			map->region_size = CORE_MMU_PGDIR_SIZE;
1121 		else if (!(mask & SMALL_PAGE_MASK))
1122 			map->region_size = SMALL_PAGE_SIZE;
1123 		else
1124 			panic("Impossible memory alignment");
1125 
1126 		if (map_is_tee_ram(map))
1127 			map->region_size = SMALL_PAGE_SIZE;
1128 	}
1129 }
1130 
1131 static bool place_tee_ram_at_top(paddr_t paddr)
1132 {
1133 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1134 }
1135 
1136 /*
1137  * MMU arch driver shall override this function if it helps
1138  * optimizing the memory footprint of the address translation tables.
1139  */
1140 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1141 {
1142 	return place_tee_ram_at_top(paddr);
1143 }
1144 
1145 static bool assign_mem_va_dir(vaddr_t tee_ram_va,
1146 			      struct tee_mmap_region *memory_map,
1147 			      bool tee_ram_at_top)
1148 {
1149 	struct tee_mmap_region *map = NULL;
1150 	vaddr_t va = 0;
1151 	bool va_is_secure = true;
1152 
1153 	/*
1154 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1155 	 * 0 is by design an invalid va, so return false directly.
1156 	 */
1157 	if (!tee_ram_va)
1158 		return false;
1159 
1160 	/* Clear eventual previous assignments */
1161 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1162 		map->va = 0;
1163 
1164 	/*
1165 	 * TEE RAM regions are always aligned with region_size.
1166 	 *
1167 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1168 	 * since it handles virtual memory which covers the part of the ELF
1169 	 * that cannot fit directly into memory.
1170 	 */
1171 	va = tee_ram_va;
1172 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1173 		if (map_is_tee_ram(map) ||
1174 		    map->type == MEM_AREA_PAGER_VASPACE) {
1175 			assert(!(va & (map->region_size - 1)));
1176 			assert(!(map->size & (map->region_size - 1)));
1177 			map->va = va;
1178 			if (ADD_OVERFLOW(va, map->size, &va))
1179 				return false;
1180 			if (va >= BIT64(core_mmu_get_va_width()))
1181 				return false;
1182 		}
1183 	}
1184 
1185 	if (tee_ram_at_top) {
1186 		/*
1187 		 * Map non-tee ram regions at addresses lower than the tee
1188 		 * ram region.
1189 		 */
1190 		va = tee_ram_va;
1191 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1192 			map->attr = core_mmu_type_to_attr(map->type);
1193 			if (map->va)
1194 				continue;
1195 
1196 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1197 			    va_is_secure != map_is_secure(map)) {
1198 				va_is_secure = !va_is_secure;
1199 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1200 			}
1201 
1202 			if (SUB_OVERFLOW(va, map->size, &va))
1203 				return false;
1204 			va = ROUNDDOWN(va, map->region_size);
1205 			/*
1206 			 * Make sure that va is aligned with pa for
1207 			 * efficient pgdir mapping. Basically pa &
1208 			 * pgdir_mask should be == va & pgdir_mask
1209 			 */
1210 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1211 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1212 					return false;
1213 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1214 			}
1215 			map->va = va;
1216 		}
1217 	} else {
1218 		/*
1219 		 * Map non-tee ram regions at addresses higher than the tee
1220 		 * ram region.
1221 		 */
1222 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1223 			map->attr = core_mmu_type_to_attr(map->type);
1224 			if (map->va)
1225 				continue;
1226 
1227 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1228 			    va_is_secure != map_is_secure(map)) {
1229 				va_is_secure = !va_is_secure;
1230 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1231 						     &va))
1232 					return false;
1233 			}
1234 
1235 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1236 				return false;
1237 			/*
1238 			 * Make sure that va is aligned with pa for
1239 			 * efficient pgdir mapping. Basically pa &
1240 			 * pgdir_mask should be == va & pgdir_mask
1241 			 */
1242 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1243 				vaddr_t offs = (map->pa - va) &
1244 					       CORE_MMU_PGDIR_MASK;
1245 
1246 				if (ADD_OVERFLOW(va, offs, &va))
1247 					return false;
1248 			}
1249 
1250 			map->va = va;
1251 			if (ADD_OVERFLOW(va, map->size, &va))
1252 				return false;
1253 			if (va >= BIT64(core_mmu_get_va_width()))
1254 				return false;
1255 		}
1256 	}
1257 
1258 	return true;
1259 }
1260 
1261 static bool assign_mem_va(vaddr_t tee_ram_va,
1262 			  struct tee_mmap_region *memory_map)
1263 {
1264 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1265 
1266 	/*
1267 	 * Check that we're not overlapping with the user VA range.
1268 	 */
1269 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1270 		/*
1271 		 * User VA range is supposed to be defined after these
1272 		 * mappings have been established.
1273 		 */
1274 		assert(!core_mmu_user_va_range_is_defined());
1275 	} else {
1276 		vaddr_t user_va_base = 0;
1277 		size_t user_va_size = 0;
1278 
1279 		assert(core_mmu_user_va_range_is_defined());
1280 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1281 		if (tee_ram_va < (user_va_base + user_va_size))
1282 			return false;
1283 	}
1284 
1285 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1286 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1287 
1288 		/* Try whole mapping covered by a single base xlat entry */
1289 		if (prefered_dir != tee_ram_at_top &&
1290 		    assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir))
1291 			return true;
1292 	}
1293 
1294 	return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top);
1295 }
1296 
1297 static int cmp_init_mem_map(const void *a, const void *b)
1298 {
1299 	const struct tee_mmap_region *mm_a = a;
1300 	const struct tee_mmap_region *mm_b = b;
1301 	int rc = 0;
1302 
1303 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1304 	if (!rc)
1305 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1306 	/*
1307 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1308 	 * the same level2 table. Hence sort secure mapping from non-secure
1309 	 * mapping.
1310 	 */
1311 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1312 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1313 
1314 	return rc;
1315 }
1316 
1317 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map,
1318 			       size_t num_elems, size_t *last,
1319 			       vaddr_t id_map_start, vaddr_t id_map_end)
1320 {
1321 	struct tee_mmap_region *map = NULL;
1322 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1323 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1324 	size_t len = end - start;
1325 
1326 	if (*last >= num_elems - 1) {
1327 		EMSG("Out of entries (%zu) in memory map", num_elems);
1328 		panic();
1329 	}
1330 
1331 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1332 		if (core_is_buffer_intersect(map->va, map->size, start, len))
1333 			return false;
1334 
1335 	*map = (struct tee_mmap_region){
1336 		.type = MEM_AREA_IDENTITY_MAP_RX,
1337 		/*
1338 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1339 		 * translation table, at the increased risk of clashes with
1340 		 * the rest of the memory map.
1341 		 */
1342 		.region_size = SMALL_PAGE_SIZE,
1343 		.pa = start,
1344 		.va = start,
1345 		.size = len,
1346 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1347 	};
1348 
1349 	(*last)++;
1350 
1351 	return true;
1352 }
1353 
1354 static unsigned long init_mem_map(struct tee_mmap_region *memory_map,
1355 				  size_t num_elems, unsigned long seed)
1356 {
1357 	/*
1358 	 * @id_map_start and @id_map_end describes a physical memory range
1359 	 * that must be mapped Read-Only eXecutable at identical virtual
1360 	 * addresses.
1361 	 */
1362 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1363 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1364 	vaddr_t start_addr = secure_only[0].paddr;
1365 	unsigned long offs = 0;
1366 	size_t last = 0;
1367 
1368 	last = collect_mem_ranges(memory_map, num_elems);
1369 	assign_mem_granularity(memory_map);
1370 
1371 	/*
1372 	 * To ease mapping and lower use of xlat tables, sort mapping
1373 	 * description moving small-page regions after the pgdir regions.
1374 	 */
1375 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1376 	      cmp_init_mem_map);
1377 
1378 	if (IS_ENABLED(CFG_WITH_PAGER))
1379 		add_pager_vaspace(memory_map, num_elems, &last);
1380 
1381 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1382 		vaddr_t base_addr = start_addr + seed;
1383 		const unsigned int va_width = core_mmu_get_va_width();
1384 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1385 						   SMALL_PAGE_SHIFT);
1386 		vaddr_t ba = base_addr;
1387 		size_t n = 0;
1388 
1389 		for (n = 0; n < 3; n++) {
1390 			if (n)
1391 				ba = base_addr ^ BIT64(va_width - n);
1392 			ba &= va_mask;
1393 			if (assign_mem_va(ba, memory_map) &&
1394 			    mem_map_add_id_map(memory_map, num_elems, &last,
1395 					       id_map_start, id_map_end)) {
1396 				offs = ba - start_addr;
1397 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1398 				     ba, offs);
1399 				goto out;
1400 			} else {
1401 				DMSG("Failed to map core at %#"PRIxVA, ba);
1402 			}
1403 		}
1404 		EMSG("Failed to map core with seed %#lx", seed);
1405 	}
1406 
1407 	if (!assign_mem_va(start_addr, memory_map))
1408 		panic();
1409 
1410 out:
1411 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1412 	      cmp_mmap_by_lower_va);
1413 
1414 	dump_mmap_table(memory_map);
1415 
1416 	return offs;
1417 }
1418 
1419 static void check_mem_map(struct tee_mmap_region *map)
1420 {
1421 	struct tee_mmap_region *m = NULL;
1422 
1423 	for (m = map; !core_mmap_is_end_of_table(m); m++) {
1424 		switch (m->type) {
1425 		case MEM_AREA_TEE_RAM:
1426 		case MEM_AREA_TEE_RAM_RX:
1427 		case MEM_AREA_TEE_RAM_RO:
1428 		case MEM_AREA_TEE_RAM_RW:
1429 		case MEM_AREA_INIT_RAM_RX:
1430 		case MEM_AREA_INIT_RAM_RO:
1431 		case MEM_AREA_NEX_RAM_RW:
1432 		case MEM_AREA_NEX_RAM_RO:
1433 		case MEM_AREA_IDENTITY_MAP_RX:
1434 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1435 				panic("TEE_RAM can't fit in secure_only");
1436 			break;
1437 		case MEM_AREA_TA_RAM:
1438 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1439 				panic("TA_RAM can't fit in secure_only");
1440 			break;
1441 		case MEM_AREA_NSEC_SHM:
1442 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1443 				panic("NS_SHM can't fit in nsec_shared");
1444 			break;
1445 		case MEM_AREA_SEC_RAM_OVERALL:
1446 		case MEM_AREA_TEE_COHERENT:
1447 		case MEM_AREA_TEE_ASAN:
1448 		case MEM_AREA_IO_SEC:
1449 		case MEM_AREA_IO_NSEC:
1450 		case MEM_AREA_EXT_DT:
1451 		case MEM_AREA_MANIFEST_DT:
1452 		case MEM_AREA_TRANSFER_LIST:
1453 		case MEM_AREA_RAM_SEC:
1454 		case MEM_AREA_RAM_NSEC:
1455 		case MEM_AREA_ROM_SEC:
1456 		case MEM_AREA_RES_VASPACE:
1457 		case MEM_AREA_SHM_VASPACE:
1458 		case MEM_AREA_PAGER_VASPACE:
1459 			break;
1460 		default:
1461 			EMSG("Uhandled memtype %d", m->type);
1462 			panic();
1463 		}
1464 	}
1465 }
1466 
1467 static struct tee_mmap_region *get_tmp_mmap(void)
1468 {
1469 	struct tee_mmap_region *tmp_mmap = (void *)__heap1_start;
1470 
1471 #ifdef CFG_WITH_PAGER
1472 	if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map))
1473 		tmp_mmap = (void *)__heap2_start;
1474 #endif
1475 
1476 	memset(tmp_mmap, 0, sizeof(static_memory_map));
1477 
1478 	return tmp_mmap;
1479 }
1480 
1481 /*
1482  * core_init_mmu_map() - init tee core default memory mapping
1483  *
1484  * This routine sets the static default TEE core mapping. If @seed is > 0
1485  * and configured with CFG_CORE_ASLR it will map tee core at a location
1486  * based on the seed and return the offset from the link address.
1487  *
1488  * If an error happened: core_init_mmu_map is expected to panic.
1489  *
1490  * Note: this function is weak just to make it possible to exclude it from
1491  * the unpaged area.
1492  */
1493 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1494 {
1495 #ifndef CFG_NS_VIRTUALIZATION
1496 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1497 #else
1498 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1499 				  SMALL_PAGE_SIZE);
1500 #endif
1501 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1502 	struct tee_mmap_region *tmp_mmap = get_tmp_mmap();
1503 	unsigned long offs = 0;
1504 
1505 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1506 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1507 		panic("OP-TEE load address is not page aligned");
1508 
1509 	check_sec_nsec_mem_config();
1510 
1511 	/*
1512 	 * Add a entry covering the translation tables which will be
1513 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1514 	 */
1515 	static_memory_map[0] = (struct tee_mmap_region){
1516 		.type = MEM_AREA_TEE_RAM,
1517 		.region_size = SMALL_PAGE_SIZE,
1518 		.pa = start,
1519 		.va = start,
1520 		.size = len,
1521 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1522 	};
1523 
1524 	COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13);
1525 	offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed);
1526 
1527 	check_mem_map(tmp_mmap);
1528 	core_init_mmu(tmp_mmap);
1529 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1530 	core_init_mmu_regs(cfg);
1531 	cfg->map_offset = offs;
1532 	memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map));
1533 }
1534 
1535 bool core_mmu_mattr_is_ok(uint32_t mattr)
1536 {
1537 	/*
1538 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1539 	 * core_mmu_v7.c:mattr_to_texcb
1540 	 */
1541 
1542 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1543 	case TEE_MATTR_MEM_TYPE_DEV:
1544 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1545 	case TEE_MATTR_MEM_TYPE_CACHED:
1546 	case TEE_MATTR_MEM_TYPE_TAGGED:
1547 		return true;
1548 	default:
1549 		return false;
1550 	}
1551 }
1552 
1553 /*
1554  * test attributes of target physical buffer
1555  *
1556  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1557  *
1558  */
1559 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1560 {
1561 	paddr_t ta_base = 0;
1562 	size_t ta_size = 0;
1563 	struct tee_mmap_region *map;
1564 
1565 	/* Empty buffers complies with anything */
1566 	if (len == 0)
1567 		return true;
1568 
1569 	switch (attr) {
1570 	case CORE_MEM_SEC:
1571 		return pbuf_is_inside(secure_only, pbuf, len);
1572 	case CORE_MEM_NON_SEC:
1573 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1574 			pbuf_is_nsec_ddr(pbuf, len);
1575 	case CORE_MEM_TEE_RAM:
1576 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1577 							TEE_RAM_PH_SIZE);
1578 	case CORE_MEM_TA_RAM:
1579 		core_mmu_get_ta_range(&ta_base, &ta_size);
1580 		return core_is_buffer_inside(pbuf, len, ta_base, ta_size);
1581 #ifdef CFG_CORE_RESERVED_SHM
1582 	case CORE_MEM_NSEC_SHM:
1583 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1584 							TEE_SHMEM_SIZE);
1585 #endif
1586 	case CORE_MEM_SDP_MEM:
1587 		return pbuf_is_sdp_mem(pbuf, len);
1588 	case CORE_MEM_CACHED:
1589 		map = find_map_by_pa(pbuf);
1590 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1591 			return false;
1592 		return mattr_is_cached(map->attr);
1593 	default:
1594 		return false;
1595 	}
1596 }
1597 
1598 /* test attributes of target virtual buffer (in core mapping) */
1599 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1600 {
1601 	paddr_t p;
1602 
1603 	/* Empty buffers complies with anything */
1604 	if (len == 0)
1605 		return true;
1606 
1607 	p = virt_to_phys((void *)vbuf);
1608 	if (!p)
1609 		return false;
1610 
1611 	return core_pbuf_is(attr, p, len);
1612 }
1613 
1614 /* core_va2pa - teecore exported service */
1615 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1616 {
1617 	struct tee_mmap_region *map;
1618 
1619 	map = find_map_by_va(va);
1620 	if (!va_is_in_map(map, (vaddr_t)va))
1621 		return -1;
1622 
1623 	/*
1624 	 * We can calculate PA for static map. Virtual address ranges
1625 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1626 	 * together with an invalid null physical address.
1627 	 */
1628 	if (map->pa)
1629 		*pa = map->pa + (vaddr_t)va  - map->va;
1630 	else
1631 		*pa = 0;
1632 
1633 	return 0;
1634 }
1635 
1636 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1637 {
1638 	if (!pa_is_in_map(map, pa, len))
1639 		return NULL;
1640 
1641 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1642 }
1643 
1644 /*
1645  * teecore gets some memory area definitions
1646  */
1647 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1648 			      vaddr_t *e)
1649 {
1650 	struct tee_mmap_region *map = find_map_by_type(type);
1651 
1652 	if (map) {
1653 		*s = map->va;
1654 		*e = map->va + map->size;
1655 	} else {
1656 		*s = 0;
1657 		*e = 0;
1658 	}
1659 }
1660 
1661 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1662 {
1663 	struct tee_mmap_region *map = find_map_by_pa(pa);
1664 
1665 	if (!map)
1666 		return MEM_AREA_MAXTYPE;
1667 	return map->type;
1668 }
1669 
1670 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1671 			paddr_t pa, uint32_t attr)
1672 {
1673 	assert(idx < tbl_info->num_entries);
1674 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1675 				     idx, pa, attr);
1676 }
1677 
1678 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1679 			paddr_t *pa, uint32_t *attr)
1680 {
1681 	assert(idx < tbl_info->num_entries);
1682 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1683 				     idx, pa, attr);
1684 }
1685 
1686 static void clear_region(struct core_mmu_table_info *tbl_info,
1687 			 struct tee_mmap_region *region)
1688 {
1689 	unsigned int end = 0;
1690 	unsigned int idx = 0;
1691 
1692 	/* va, len and pa should be block aligned */
1693 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1694 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1695 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1696 
1697 	idx = core_mmu_va2idx(tbl_info, region->va);
1698 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1699 
1700 	while (idx < end) {
1701 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1702 		idx++;
1703 	}
1704 }
1705 
1706 static void set_region(struct core_mmu_table_info *tbl_info,
1707 		       struct tee_mmap_region *region)
1708 {
1709 	unsigned int end;
1710 	unsigned int idx;
1711 	paddr_t pa;
1712 
1713 	/* va, len and pa should be block aligned */
1714 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1715 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1716 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1717 
1718 	idx = core_mmu_va2idx(tbl_info, region->va);
1719 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1720 	pa = region->pa;
1721 
1722 	while (idx < end) {
1723 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1724 		idx++;
1725 		pa += BIT64(tbl_info->shift);
1726 	}
1727 }
1728 
1729 static void set_pg_region(struct core_mmu_table_info *dir_info,
1730 			  struct vm_region *region, struct pgt **pgt,
1731 			  struct core_mmu_table_info *pg_info)
1732 {
1733 	struct tee_mmap_region r = {
1734 		.va = region->va,
1735 		.size = region->size,
1736 		.attr = region->attr,
1737 	};
1738 	vaddr_t end = r.va + r.size;
1739 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1740 
1741 	while (r.va < end) {
1742 		if (!pg_info->table ||
1743 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1744 			/*
1745 			 * We're assigning a new translation table.
1746 			 */
1747 			unsigned int idx;
1748 
1749 			/* Virtual addresses must grow */
1750 			assert(r.va > pg_info->va_base);
1751 
1752 			idx = core_mmu_va2idx(dir_info, r.va);
1753 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1754 
1755 			/*
1756 			 * Advance pgt to va_base, note that we may need to
1757 			 * skip multiple page tables if there are large
1758 			 * holes in the vm map.
1759 			 */
1760 			while ((*pgt)->vabase < pg_info->va_base) {
1761 				*pgt = SLIST_NEXT(*pgt, link);
1762 				/* We should have allocated enough */
1763 				assert(*pgt);
1764 			}
1765 			assert((*pgt)->vabase == pg_info->va_base);
1766 			pg_info->table = (*pgt)->tbl;
1767 
1768 			core_mmu_set_entry(dir_info, idx,
1769 					   virt_to_phys(pg_info->table),
1770 					   pgt_attr);
1771 		}
1772 
1773 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1774 			     end - r.va);
1775 
1776 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1777 			size_t granule = BIT(pg_info->shift);
1778 			size_t offset = r.va - region->va + region->offset;
1779 
1780 			r.size = MIN(r.size,
1781 				     mobj_get_phys_granule(region->mobj));
1782 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1783 
1784 			if (mobj_get_pa(region->mobj, offset, granule,
1785 					&r.pa) != TEE_SUCCESS)
1786 				panic("Failed to get PA of unpaged mobj");
1787 			set_region(pg_info, &r);
1788 		}
1789 		r.va += r.size;
1790 	}
1791 }
1792 
1793 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1794 			     size_t size_left, paddr_t block_size,
1795 			     struct tee_mmap_region *mm __maybe_unused)
1796 {
1797 	/* VA and PA are aligned to block size at current level */
1798 	if ((vaddr | paddr) & (block_size - 1))
1799 		return false;
1800 
1801 	/* Remainder fits into block at current level */
1802 	if (size_left < block_size)
1803 		return false;
1804 
1805 #ifdef CFG_WITH_PAGER
1806 	/*
1807 	 * If pager is enabled, we need to map tee ram
1808 	 * regions with small pages only
1809 	 */
1810 	if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE)
1811 		return false;
1812 #endif
1813 
1814 	return true;
1815 }
1816 
1817 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1818 {
1819 	struct core_mmu_table_info tbl_info;
1820 	unsigned int idx;
1821 	vaddr_t vaddr = mm->va;
1822 	paddr_t paddr = mm->pa;
1823 	ssize_t size_left = mm->size;
1824 	unsigned int level;
1825 	bool table_found;
1826 	uint32_t old_attr;
1827 
1828 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1829 
1830 	while (size_left > 0) {
1831 		level = CORE_MMU_BASE_TABLE_LEVEL;
1832 
1833 		while (true) {
1834 			paddr_t block_size = 0;
1835 
1836 			assert(core_mmu_level_in_range(level));
1837 
1838 			table_found = core_mmu_find_table(prtn, vaddr, level,
1839 							  &tbl_info);
1840 			if (!table_found)
1841 				panic("can't find table for mapping");
1842 
1843 			block_size = BIT64(tbl_info.shift);
1844 
1845 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1846 			if (!can_map_at_level(paddr, vaddr, size_left,
1847 					      block_size, mm)) {
1848 				bool secure = mm->attr & TEE_MATTR_SECURE;
1849 
1850 				/*
1851 				 * This part of the region can't be mapped at
1852 				 * this level. Need to go deeper.
1853 				 */
1854 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1855 								     idx,
1856 								     secure))
1857 					panic("Can't divide MMU entry");
1858 				level = tbl_info.next_level;
1859 				continue;
1860 			}
1861 
1862 			/* We can map part of the region at current level */
1863 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1864 			if (old_attr)
1865 				panic("Page is already mapped");
1866 
1867 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1868 			paddr += block_size;
1869 			vaddr += block_size;
1870 			size_left -= block_size;
1871 
1872 			break;
1873 		}
1874 	}
1875 }
1876 
1877 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1878 			      enum teecore_memtypes memtype)
1879 {
1880 	TEE_Result ret;
1881 	struct core_mmu_table_info tbl_info;
1882 	struct tee_mmap_region *mm;
1883 	unsigned int idx;
1884 	uint32_t old_attr;
1885 	uint32_t exceptions;
1886 	vaddr_t vaddr = vstart;
1887 	size_t i;
1888 	bool secure;
1889 
1890 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1891 
1892 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1893 
1894 	if (vaddr & SMALL_PAGE_MASK)
1895 		return TEE_ERROR_BAD_PARAMETERS;
1896 
1897 	exceptions = mmu_lock();
1898 
1899 	mm = find_map_by_va((void *)vaddr);
1900 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1901 		panic("VA does not belong to any known mm region");
1902 
1903 	if (!core_mmu_is_dynamic_vaspace(mm))
1904 		panic("Trying to map into static region");
1905 
1906 	for (i = 0; i < num_pages; i++) {
1907 		if (pages[i] & SMALL_PAGE_MASK) {
1908 			ret = TEE_ERROR_BAD_PARAMETERS;
1909 			goto err;
1910 		}
1911 
1912 		while (true) {
1913 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1914 						 &tbl_info))
1915 				panic("Can't find pagetable for vaddr ");
1916 
1917 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1918 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1919 				break;
1920 
1921 			/* This is supertable. Need to divide it. */
1922 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1923 							     secure))
1924 				panic("Failed to spread pgdir on small tables");
1925 		}
1926 
1927 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1928 		if (old_attr)
1929 			panic("Page is already mapped");
1930 
1931 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1932 				   core_mmu_type_to_attr(memtype));
1933 		vaddr += SMALL_PAGE_SIZE;
1934 	}
1935 
1936 	/*
1937 	 * Make sure all the changes to translation tables are visible
1938 	 * before returning. TLB doesn't need to be invalidated as we are
1939 	 * guaranteed that there's no valid mapping in this range.
1940 	 */
1941 	core_mmu_table_write_barrier();
1942 	mmu_unlock(exceptions);
1943 
1944 	return TEE_SUCCESS;
1945 err:
1946 	mmu_unlock(exceptions);
1947 
1948 	if (i)
1949 		core_mmu_unmap_pages(vstart, i);
1950 
1951 	return ret;
1952 }
1953 
1954 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
1955 					 size_t num_pages,
1956 					 enum teecore_memtypes memtype)
1957 {
1958 	struct core_mmu_table_info tbl_info = { };
1959 	struct tee_mmap_region *mm = NULL;
1960 	unsigned int idx = 0;
1961 	uint32_t old_attr = 0;
1962 	uint32_t exceptions = 0;
1963 	vaddr_t vaddr = vstart;
1964 	paddr_t paddr = pstart;
1965 	size_t i = 0;
1966 	bool secure = false;
1967 
1968 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1969 
1970 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1971 
1972 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
1973 		return TEE_ERROR_BAD_PARAMETERS;
1974 
1975 	exceptions = mmu_lock();
1976 
1977 	mm = find_map_by_va((void *)vaddr);
1978 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1979 		panic("VA does not belong to any known mm region");
1980 
1981 	if (!core_mmu_is_dynamic_vaspace(mm))
1982 		panic("Trying to map into static region");
1983 
1984 	for (i = 0; i < num_pages; i++) {
1985 		while (true) {
1986 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1987 						 &tbl_info))
1988 				panic("Can't find pagetable for vaddr ");
1989 
1990 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1991 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1992 				break;
1993 
1994 			/* This is supertable. Need to divide it. */
1995 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1996 							     secure))
1997 				panic("Failed to spread pgdir on small tables");
1998 		}
1999 
2000 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2001 		if (old_attr)
2002 			panic("Page is already mapped");
2003 
2004 		core_mmu_set_entry(&tbl_info, idx, paddr,
2005 				   core_mmu_type_to_attr(memtype));
2006 		paddr += SMALL_PAGE_SIZE;
2007 		vaddr += SMALL_PAGE_SIZE;
2008 	}
2009 
2010 	/*
2011 	 * Make sure all the changes to translation tables are visible
2012 	 * before returning. TLB doesn't need to be invalidated as we are
2013 	 * guaranteed that there's no valid mapping in this range.
2014 	 */
2015 	core_mmu_table_write_barrier();
2016 	mmu_unlock(exceptions);
2017 
2018 	return TEE_SUCCESS;
2019 }
2020 
2021 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
2022 {
2023 	struct core_mmu_table_info tbl_info;
2024 	struct tee_mmap_region *mm;
2025 	size_t i;
2026 	unsigned int idx;
2027 	uint32_t exceptions;
2028 
2029 	exceptions = mmu_lock();
2030 
2031 	mm = find_map_by_va((void *)vstart);
2032 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
2033 		panic("VA does not belong to any known mm region");
2034 
2035 	if (!core_mmu_is_dynamic_vaspace(mm))
2036 		panic("Trying to unmap static region");
2037 
2038 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
2039 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
2040 			panic("Can't find pagetable");
2041 
2042 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
2043 			panic("Invalid pagetable level");
2044 
2045 		idx = core_mmu_va2idx(&tbl_info, vstart);
2046 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
2047 	}
2048 	tlbi_all();
2049 
2050 	mmu_unlock(exceptions);
2051 }
2052 
2053 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
2054 				struct user_mode_ctx *uctx)
2055 {
2056 	struct core_mmu_table_info pg_info = { };
2057 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
2058 	struct pgt *pgt = NULL;
2059 	struct pgt *p = NULL;
2060 	struct vm_region *r = NULL;
2061 
2062 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
2063 		return; /* Nothing to map */
2064 
2065 	/*
2066 	 * Allocate all page tables in advance.
2067 	 */
2068 	pgt_get_all(uctx);
2069 	pgt = SLIST_FIRST(pgt_cache);
2070 
2071 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2072 
2073 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2074 		set_pg_region(dir_info, r, &pgt, &pg_info);
2075 	/* Record that the translation tables now are populated. */
2076 	SLIST_FOREACH(p, pgt_cache, link) {
2077 		p->populated = true;
2078 		if (p == pgt)
2079 			break;
2080 	}
2081 	assert(p == pgt);
2082 }
2083 
2084 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2085 				   size_t len)
2086 {
2087 	struct core_mmu_table_info tbl_info = { };
2088 	struct tee_mmap_region *res_map = NULL;
2089 	struct tee_mmap_region *map = NULL;
2090 	paddr_t pa = virt_to_phys(addr);
2091 	size_t granule = 0;
2092 	ptrdiff_t i = 0;
2093 	paddr_t p = 0;
2094 	size_t l = 0;
2095 
2096 	map = find_map_by_type_and_pa(type, pa, len);
2097 	if (!map)
2098 		return TEE_ERROR_GENERIC;
2099 
2100 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2101 	if (!res_map)
2102 		return TEE_ERROR_GENERIC;
2103 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2104 		return TEE_ERROR_GENERIC;
2105 	granule = BIT(tbl_info.shift);
2106 
2107 	if (map < static_memory_map ||
2108 	    map >= static_memory_map + ARRAY_SIZE(static_memory_map))
2109 		return TEE_ERROR_GENERIC;
2110 	i = map - static_memory_map;
2111 
2112 	/* Check that we have a full match */
2113 	p = ROUNDDOWN(pa, granule);
2114 	l = ROUNDUP(len + pa - p, granule);
2115 	if (map->pa != p || map->size != l)
2116 		return TEE_ERROR_GENERIC;
2117 
2118 	clear_region(&tbl_info, map);
2119 	tlbi_all();
2120 
2121 	/* If possible remove the va range from res_map */
2122 	if (res_map->va - map->size == map->va) {
2123 		res_map->va -= map->size;
2124 		res_map->size += map->size;
2125 	}
2126 
2127 	/* Remove the entry. */
2128 	memmove(map, map + 1,
2129 		(ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map));
2130 
2131 	/* Clear the last new entry in case it was used */
2132 	memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1,
2133 	       0, sizeof(*map));
2134 
2135 	return TEE_SUCCESS;
2136 }
2137 
2138 struct tee_mmap_region *
2139 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2140 {
2141 	struct tee_mmap_region *map = NULL;
2142 	struct tee_mmap_region *map_found = NULL;
2143 
2144 	if (!len)
2145 		return NULL;
2146 
2147 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
2148 		if (map->type != type)
2149 			continue;
2150 
2151 		if (map_found)
2152 			return NULL;
2153 
2154 		map_found = map;
2155 	}
2156 
2157 	if (!map_found || map_found->size < len)
2158 		return NULL;
2159 
2160 	return map_found;
2161 }
2162 
2163 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2164 {
2165 	struct core_mmu_table_info tbl_info;
2166 	struct tee_mmap_region *map;
2167 	size_t n;
2168 	size_t granule;
2169 	paddr_t p;
2170 	size_t l;
2171 
2172 	if (!len)
2173 		return NULL;
2174 
2175 	if (!core_mmu_check_end_pa(addr, len))
2176 		return NULL;
2177 
2178 	/* Check if the memory is already mapped */
2179 	map = find_map_by_type_and_pa(type, addr, len);
2180 	if (map && pbuf_inside_map_area(addr, len, map))
2181 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2182 
2183 	/* Find the reserved va space used for late mappings */
2184 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2185 	if (!map)
2186 		return NULL;
2187 
2188 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2189 		return NULL;
2190 
2191 	granule = BIT64(tbl_info.shift);
2192 	p = ROUNDDOWN(addr, granule);
2193 	l = ROUNDUP(len + addr - p, granule);
2194 
2195 	/* Ban overflowing virtual addresses */
2196 	if (map->size < l)
2197 		return NULL;
2198 
2199 	/*
2200 	 * Something is wrong, we can't fit the va range into the selected
2201 	 * table. The reserved va range is possibly missaligned with
2202 	 * granule.
2203 	 */
2204 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2205 		return NULL;
2206 
2207 	/* Find end of the memory map */
2208 	n = 0;
2209 	while (!core_mmap_is_end_of_table(static_memory_map + n))
2210 		n++;
2211 
2212 	if (n < (ARRAY_SIZE(static_memory_map) - 1)) {
2213 		/* There's room for another entry */
2214 		static_memory_map[n].va = map->va;
2215 		static_memory_map[n].size = l;
2216 		static_memory_map[n + 1].type = MEM_AREA_END;
2217 		map->va += l;
2218 		map->size -= l;
2219 		map = static_memory_map + n;
2220 	} else {
2221 		/*
2222 		 * There isn't room for another entry, steal the reserved
2223 		 * entry as it's not useful for anything else any longer.
2224 		 */
2225 		map->size = l;
2226 	}
2227 	map->type = type;
2228 	map->region_size = granule;
2229 	map->attr = core_mmu_type_to_attr(type);
2230 	map->pa = p;
2231 
2232 	set_region(&tbl_info, map);
2233 
2234 	/* Make sure the new entry is visible before continuing. */
2235 	core_mmu_table_write_barrier();
2236 
2237 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2238 }
2239 
2240 #ifdef CFG_WITH_PAGER
2241 static vaddr_t get_linear_map_end_va(void)
2242 {
2243 	/* this is synced with the generic linker file kern.ld.S */
2244 	return (vaddr_t)__heap2_end;
2245 }
2246 
2247 static paddr_t get_linear_map_end_pa(void)
2248 {
2249 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2250 }
2251 #endif
2252 
2253 #if defined(CFG_TEE_CORE_DEBUG)
2254 static void check_pa_matches_va(void *va, paddr_t pa)
2255 {
2256 	TEE_Result res = TEE_ERROR_GENERIC;
2257 	vaddr_t v = (vaddr_t)va;
2258 	paddr_t p = 0;
2259 	struct core_mmu_table_info ti __maybe_unused = { };
2260 
2261 	if (core_mmu_user_va_range_is_defined()) {
2262 		vaddr_t user_va_base = 0;
2263 		size_t user_va_size = 0;
2264 
2265 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2266 		if (v >= user_va_base &&
2267 		    v <= (user_va_base - 1 + user_va_size)) {
2268 			if (!core_mmu_user_mapping_is_active()) {
2269 				if (pa)
2270 					panic("issue in linear address space");
2271 				return;
2272 			}
2273 
2274 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2275 				       va, &p);
2276 			if (res == TEE_ERROR_NOT_SUPPORTED)
2277 				return;
2278 			if (res == TEE_SUCCESS && pa != p)
2279 				panic("bad pa");
2280 			if (res != TEE_SUCCESS && pa)
2281 				panic("false pa");
2282 			return;
2283 		}
2284 	}
2285 #ifdef CFG_WITH_PAGER
2286 	if (is_unpaged(va)) {
2287 		if (v - boot_mmu_config.map_offset != pa)
2288 			panic("issue in linear address space");
2289 		return;
2290 	}
2291 
2292 	if (tee_pager_get_table_info(v, &ti)) {
2293 		uint32_t a;
2294 
2295 		/*
2296 		 * Lookups in the page table managed by the pager is
2297 		 * dangerous for addresses in the paged area as those pages
2298 		 * changes all the time. But some ranges are safe,
2299 		 * rw-locked areas when the page is populated for instance.
2300 		 */
2301 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2302 		if (a & TEE_MATTR_VALID_BLOCK) {
2303 			paddr_t mask = BIT64(ti.shift) - 1;
2304 
2305 			p |= v & mask;
2306 			if (pa != p)
2307 				panic();
2308 		} else {
2309 			if (pa)
2310 				panic();
2311 		}
2312 		return;
2313 	}
2314 #endif
2315 
2316 	if (!core_va2pa_helper(va, &p)) {
2317 		/* Verfiy only the static mapping (case non null phys addr) */
2318 		if (p && pa != p) {
2319 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2320 			     va, p, pa);
2321 			panic();
2322 		}
2323 	} else {
2324 		if (pa) {
2325 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2326 			panic();
2327 		}
2328 	}
2329 }
2330 #else
2331 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2332 {
2333 }
2334 #endif
2335 
2336 paddr_t virt_to_phys(void *va)
2337 {
2338 	paddr_t pa = 0;
2339 
2340 	if (!arch_va2pa_helper(va, &pa))
2341 		pa = 0;
2342 	check_pa_matches_va(va, pa);
2343 	return pa;
2344 }
2345 
2346 #if defined(CFG_TEE_CORE_DEBUG)
2347 static void check_va_matches_pa(paddr_t pa, void *va)
2348 {
2349 	paddr_t p = 0;
2350 
2351 	if (!va)
2352 		return;
2353 
2354 	p = virt_to_phys(va);
2355 	if (p != pa) {
2356 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2357 		panic();
2358 	}
2359 }
2360 #else
2361 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2362 {
2363 }
2364 #endif
2365 
2366 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2367 {
2368 	if (!core_mmu_user_mapping_is_active())
2369 		return NULL;
2370 
2371 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2372 }
2373 
2374 #ifdef CFG_WITH_PAGER
2375 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2376 {
2377 	paddr_t end_pa = 0;
2378 
2379 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2380 		return NULL;
2381 
2382 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2383 		if (end_pa > get_linear_map_end_pa())
2384 			return NULL;
2385 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2386 	}
2387 
2388 	return tee_pager_phys_to_virt(pa, len);
2389 }
2390 #else
2391 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2392 {
2393 	struct tee_mmap_region *mmap = NULL;
2394 
2395 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2396 	if (!mmap)
2397 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2398 	if (!mmap)
2399 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2400 	if (!mmap)
2401 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2402 	if (!mmap)
2403 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2404 	if (!mmap)
2405 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2406 	/*
2407 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2408 	 * used with pager and not needed here.
2409 	 */
2410 	return map_pa2va(mmap, pa, len);
2411 }
2412 #endif
2413 
2414 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2415 {
2416 	void *va = NULL;
2417 
2418 	switch (m) {
2419 	case MEM_AREA_TS_VASPACE:
2420 		va = phys_to_virt_ts_vaspace(pa, len);
2421 		break;
2422 	case MEM_AREA_TEE_RAM:
2423 	case MEM_AREA_TEE_RAM_RX:
2424 	case MEM_AREA_TEE_RAM_RO:
2425 	case MEM_AREA_TEE_RAM_RW:
2426 	case MEM_AREA_NEX_RAM_RO:
2427 	case MEM_AREA_NEX_RAM_RW:
2428 		va = phys_to_virt_tee_ram(pa, len);
2429 		break;
2430 	case MEM_AREA_SHM_VASPACE:
2431 		/* Find VA from PA in dynamic SHM is not yet supported */
2432 		va = NULL;
2433 		break;
2434 	default:
2435 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2436 	}
2437 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2438 		check_va_matches_pa(pa, va);
2439 	return va;
2440 }
2441 
2442 void *phys_to_virt_io(paddr_t pa, size_t len)
2443 {
2444 	struct tee_mmap_region *map = NULL;
2445 	void *va = NULL;
2446 
2447 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2448 	if (!map)
2449 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2450 	if (!map)
2451 		return NULL;
2452 	va = map_pa2va(map, pa, len);
2453 	check_va_matches_pa(pa, va);
2454 	return va;
2455 }
2456 
2457 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2458 {
2459 	if (cpu_mmu_enabled())
2460 		return (vaddr_t)phys_to_virt(pa, type, len);
2461 
2462 	return (vaddr_t)pa;
2463 }
2464 
2465 #ifdef CFG_WITH_PAGER
2466 bool is_unpaged(const void *va)
2467 {
2468 	vaddr_t v = (vaddr_t)va;
2469 
2470 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2471 }
2472 #endif
2473 
2474 #ifdef CFG_NS_VIRTUALIZATION
2475 bool is_nexus(const void *va)
2476 {
2477 	vaddr_t v = (vaddr_t)va;
2478 
2479 	return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ;
2480 }
2481 #endif
2482 
2483 void core_mmu_init_virtualization(void)
2484 {
2485 	paddr_t b1 = 0;
2486 	paddr_size_t s1 = 0;
2487 
2488 	static_assert(ARRAY_SIZE(secure_only) <= 2);
2489 	if (ARRAY_SIZE(secure_only) == 2) {
2490 		b1 = secure_only[1].paddr;
2491 		s1 = secure_only[1].size;
2492 	}
2493 	virt_init_memory(static_memory_map, secure_only[0].paddr,
2494 			 secure_only[0].size, b1, s1);
2495 }
2496 
2497 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2498 {
2499 	assert(p->pa);
2500 	if (cpu_mmu_enabled()) {
2501 		if (!p->va)
2502 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2503 		assert(p->va);
2504 		return p->va;
2505 	}
2506 	return p->pa;
2507 }
2508 
2509 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2510 {
2511 	assert(p->pa);
2512 	if (cpu_mmu_enabled()) {
2513 		if (!p->va)
2514 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2515 						      len);
2516 		assert(p->va);
2517 		return p->va;
2518 	}
2519 	return p->pa;
2520 }
2521 
2522 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2523 {
2524 	assert(p->pa);
2525 	if (cpu_mmu_enabled()) {
2526 		if (!p->va)
2527 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2528 						      len);
2529 		assert(p->va);
2530 		return p->va;
2531 	}
2532 	return p->pa;
2533 }
2534 
2535 #ifdef CFG_CORE_RESERVED_SHM
2536 static TEE_Result teecore_init_pub_ram(void)
2537 {
2538 	vaddr_t s = 0;
2539 	vaddr_t e = 0;
2540 
2541 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2542 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2543 
2544 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2545 		panic("invalid PUB RAM");
2546 
2547 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2548 	if (!tee_vbuf_is_non_sec(s, e - s))
2549 		panic("PUB RAM is not non-secure");
2550 
2551 #ifdef CFG_PL310
2552 	/* Allocate statically the l2cc mutex */
2553 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2554 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2555 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2556 #endif
2557 
2558 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2559 	default_nsec_shm_size = e - s;
2560 
2561 	return TEE_SUCCESS;
2562 }
2563 early_init(teecore_init_pub_ram);
2564 #endif /*CFG_CORE_RESERVED_SHM*/
2565 
2566 void core_mmu_init_ta_ram(void)
2567 {
2568 	vaddr_t s = 0;
2569 	vaddr_t e = 0;
2570 	paddr_t ps = 0;
2571 	size_t size = 0;
2572 
2573 	/*
2574 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2575 	 * shared mem allocated from teecore.
2576 	 */
2577 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
2578 		virt_get_ta_ram(&s, &e);
2579 	else
2580 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2581 
2582 	ps = virt_to_phys((void *)s);
2583 	size = e - s;
2584 
2585 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2586 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2587 		panic("invalid TA RAM");
2588 
2589 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2590 	if (!tee_pbuf_is_sec(ps, size))
2591 		panic("TA RAM is not secure");
2592 
2593 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2594 		panic("TA RAM pool is not empty");
2595 
2596 	/* remove previous config and init TA ddr memory pool */
2597 	tee_mm_final(&tee_mm_sec_ddr);
2598 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2599 		    TEE_MM_POOL_NO_FLAGS);
2600 }
2601