1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016-2025 Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved. 6 */ 7 8 #include <assert.h> 9 #include <config.h> 10 #include <kernel/boot.h> 11 #include <kernel/dt.h> 12 #include <kernel/linker.h> 13 #include <kernel/panic.h> 14 #include <kernel/spinlock.h> 15 #include <kernel/tee_l2cc_mutex.h> 16 #include <kernel/tee_misc.h> 17 #include <kernel/tlb_helpers.h> 18 #include <kernel/user_mode_ctx.h> 19 #include <kernel/virtualization.h> 20 #include <libfdt.h> 21 #include <memtag.h> 22 #include <mm/core_memprot.h> 23 #include <mm/core_mmu.h> 24 #include <mm/mobj.h> 25 #include <mm/pgt_cache.h> 26 #include <mm/phys_mem.h> 27 #include <mm/tee_pager.h> 28 #include <mm/vm.h> 29 #include <platform_config.h> 30 #include <stdalign.h> 31 #include <string.h> 32 #include <trace.h> 33 #include <util.h> 34 35 #ifndef DEBUG_XLAT_TABLE 36 #define DEBUG_XLAT_TABLE 0 37 #endif 38 39 #define SHM_VASPACE_SIZE (1024 * 1024 * 32) 40 41 /* Virtual memory pool for core mappings */ 42 tee_mm_pool_t core_virt_mem_pool; 43 44 /* Virtual memory pool for shared memory mappings */ 45 tee_mm_pool_t core_virt_shm_pool; 46 47 #ifdef CFG_CORE_PHYS_RELOCATABLE 48 unsigned long core_mmu_tee_load_pa __nex_bss; 49 #else 50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR; 51 #endif 52 53 /* 54 * These variables are initialized before .bss is cleared. To avoid 55 * resetting them when .bss is cleared we're storing them in .data instead, 56 * even if they initially are zero. 57 */ 58 59 #ifdef CFG_CORE_RESERVED_SHM 60 /* Default NSec shared memory allocated from NSec world */ 61 unsigned long default_nsec_shm_size __nex_bss; 62 unsigned long default_nsec_shm_paddr __nex_bss; 63 #endif 64 65 static struct memory_map static_memory_map __nex_bss; 66 void (*memory_map_realloc_func)(struct memory_map *mem_map) __nex_bss; 67 68 /* Offset of the first TEE RAM mapping from start of secure RAM */ 69 static size_t tee_ram_initial_offs __nex_bss; 70 71 /* Define the platform's memory layout. */ 72 struct memaccess_area { 73 paddr_t paddr; 74 size_t size; 75 }; 76 77 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } 78 79 static struct memaccess_area secure_only[] __nex_data = { 80 #ifdef CFG_CORE_PHYS_RELOCATABLE 81 MEMACCESS_AREA(0, 0), 82 #else 83 #ifdef TRUSTED_SRAM_BASE 84 MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), 85 #endif 86 MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), 87 #endif 88 }; 89 90 static struct memaccess_area nsec_shared[] __nex_data = { 91 #ifdef CFG_CORE_RESERVED_SHM 92 MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), 93 #endif 94 }; 95 96 #if defined(CFG_SECURE_DATA_PATH) 97 static const char *tz_sdp_match = "linaro,secure-heap"; 98 static struct memaccess_area sec_sdp; 99 #ifdef CFG_TEE_SDP_MEM_BASE 100 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); 101 #endif 102 #ifdef TEE_SDP_TEST_MEM_BASE 103 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); 104 #endif 105 #endif 106 107 #ifdef CFG_CORE_RESERVED_SHM 108 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); 109 #endif 110 static unsigned int mmu_spinlock; 111 112 static uint32_t mmu_lock(void) 113 { 114 return cpu_spin_lock_xsave(&mmu_spinlock); 115 } 116 117 static void mmu_unlock(uint32_t exceptions) 118 { 119 cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); 120 } 121 122 static void heap_realloc_memory_map(struct memory_map *mem_map) 123 { 124 struct tee_mmap_region *m = NULL; 125 struct tee_mmap_region *old = mem_map->map; 126 size_t old_sz = sizeof(*old) * mem_map->alloc_count; 127 size_t sz = old_sz + sizeof(*m); 128 129 assert(nex_malloc_buffer_is_within_alloced(old, old_sz)); 130 m = nex_realloc(old, sz); 131 if (!m) 132 panic(); 133 mem_map->map = m; 134 mem_map->alloc_count++; 135 } 136 137 static void boot_mem_realloc_memory_map(struct memory_map *mem_map) 138 { 139 struct tee_mmap_region *m = NULL; 140 struct tee_mmap_region *old = mem_map->map; 141 size_t old_sz = sizeof(*old) * mem_map->alloc_count; 142 size_t sz = old_sz * 2; 143 144 m = boot_mem_alloc_tmp(sz, alignof(*m)); 145 memcpy(m, old, old_sz); 146 mem_map->map = m; 147 mem_map->alloc_count *= 2; 148 } 149 150 static void grow_mem_map(struct memory_map *mem_map) 151 { 152 if (mem_map->count == mem_map->alloc_count) { 153 if (!memory_map_realloc_func) { 154 EMSG("Out of entries (%zu) in mem_map", 155 mem_map->alloc_count); 156 panic(); 157 } 158 memory_map_realloc_func(mem_map); 159 } 160 mem_map->count++; 161 } 162 163 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size) 164 { 165 /* 166 * The first range is always used to cover OP-TEE core memory, but 167 * depending on configuration it may cover more than that. 168 */ 169 *base = secure_only[0].paddr; 170 *size = secure_only[0].size; 171 } 172 173 void core_mmu_set_secure_memory(paddr_t base, size_t size) 174 { 175 #ifdef CFG_CORE_PHYS_RELOCATABLE 176 static_assert(ARRAY_SIZE(secure_only) == 1); 177 #endif 178 runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)); 179 assert(!secure_only[0].size); 180 assert(base && size); 181 182 DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size); 183 secure_only[0].paddr = base; 184 secure_only[0].size = size; 185 } 186 187 static struct memory_map *get_memory_map(void) 188 { 189 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 190 struct memory_map *map = virt_get_memory_map(); 191 192 if (map) 193 return map; 194 } 195 196 return &static_memory_map; 197 } 198 199 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, 200 paddr_t pa, size_t size) 201 { 202 size_t n; 203 204 for (n = 0; n < alen; n++) 205 if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) 206 return true; 207 return false; 208 } 209 210 #define pbuf_intersects(a, pa, size) \ 211 _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) 212 213 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, 214 paddr_t pa, size_t size) 215 { 216 size_t n; 217 218 for (n = 0; n < alen; n++) 219 if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) 220 return true; 221 return false; 222 } 223 224 #define pbuf_is_inside(a, pa, size) \ 225 _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) 226 227 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) 228 { 229 paddr_t end_pa = 0; 230 231 if (!map) 232 return false; 233 234 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 235 return false; 236 237 return (pa >= map->pa && end_pa <= map->pa + map->size - 1); 238 } 239 240 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) 241 { 242 if (!map) 243 return false; 244 return (va >= map->va && va <= (map->va + map->size - 1)); 245 } 246 247 /* check if target buffer fits in a core default map area */ 248 static bool pbuf_inside_map_area(unsigned long p, size_t l, 249 struct tee_mmap_region *map) 250 { 251 return core_is_buffer_inside(p, l, map->pa, map->size); 252 } 253 254 TEE_Result core_mmu_for_each_map(void *ptr, 255 TEE_Result (*fn)(struct tee_mmap_region *map, 256 void *ptr)) 257 { 258 struct memory_map *mem_map = get_memory_map(); 259 TEE_Result res = TEE_SUCCESS; 260 size_t n = 0; 261 262 for (n = 0; n < mem_map->count; n++) { 263 res = fn(mem_map->map + n, ptr); 264 if (res) 265 return res; 266 } 267 268 return TEE_SUCCESS; 269 } 270 271 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) 272 { 273 struct memory_map *mem_map = get_memory_map(); 274 size_t n = 0; 275 276 for (n = 0; n < mem_map->count; n++) { 277 if (mem_map->map[n].type == type) 278 return mem_map->map + n; 279 } 280 return NULL; 281 } 282 283 static struct tee_mmap_region * 284 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) 285 { 286 struct memory_map *mem_map = get_memory_map(); 287 size_t n = 0; 288 289 for (n = 0; n < mem_map->count; n++) { 290 if (mem_map->map[n].type != type) 291 continue; 292 if (pa_is_in_map(mem_map->map + n, pa, len)) 293 return mem_map->map + n; 294 } 295 return NULL; 296 } 297 298 static struct tee_mmap_region *find_map_by_va(void *va) 299 { 300 struct memory_map *mem_map = get_memory_map(); 301 vaddr_t a = (vaddr_t)va; 302 size_t n = 0; 303 304 for (n = 0; n < mem_map->count; n++) { 305 if (a >= mem_map->map[n].va && 306 a <= (mem_map->map[n].va - 1 + mem_map->map[n].size)) 307 return mem_map->map + n; 308 } 309 310 return NULL; 311 } 312 313 static struct tee_mmap_region *find_map_by_pa(unsigned long pa) 314 { 315 struct memory_map *mem_map = get_memory_map(); 316 size_t n = 0; 317 318 for (n = 0; n < mem_map->count; n++) { 319 /* Skip unmapped regions */ 320 if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) && 321 pa >= mem_map->map[n].pa && 322 pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size)) 323 return mem_map->map + n; 324 } 325 326 return NULL; 327 } 328 329 #if defined(CFG_SECURE_DATA_PATH) 330 static bool dtb_get_sdp_region(void) 331 { 332 void *fdt = NULL; 333 int node = 0; 334 int tmp_node = 0; 335 paddr_t tmp_addr = 0; 336 size_t tmp_size = 0; 337 338 if (!IS_ENABLED(CFG_EMBED_DTB)) 339 return false; 340 341 fdt = get_embedded_dt(); 342 if (!fdt) 343 panic("No DTB found"); 344 345 node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match); 346 if (node < 0) { 347 DMSG("No %s compatible node found", tz_sdp_match); 348 return false; 349 } 350 tmp_node = node; 351 while (tmp_node >= 0) { 352 tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node, 353 tz_sdp_match); 354 if (tmp_node >= 0) 355 DMSG("Ignore SDP pool node %s, supports only 1 node", 356 fdt_get_name(fdt, tmp_node, NULL)); 357 } 358 359 if (fdt_reg_info(fdt, node, &tmp_addr, &tmp_size)) { 360 EMSG("%s: Unable to get base addr or size from DT", 361 tz_sdp_match); 362 return false; 363 } 364 365 sec_sdp.paddr = tmp_addr; 366 sec_sdp.size = tmp_size; 367 368 return true; 369 } 370 #endif 371 372 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) 373 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, 374 const struct core_mmu_phys_mem *start, 375 const struct core_mmu_phys_mem *end) 376 { 377 const struct core_mmu_phys_mem *mem; 378 379 for (mem = start; mem < end; mem++) { 380 if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) 381 return true; 382 } 383 384 return false; 385 } 386 #endif 387 388 #ifdef CFG_CORE_DYN_SHM 389 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, 390 paddr_t pa, size_t size) 391 { 392 struct core_mmu_phys_mem *m = *mem; 393 size_t n = 0; 394 395 while (n < *nelems) { 396 if (!core_is_buffer_intersect(pa, size, m[n].addr, m[n].size)) { 397 n++; 398 continue; 399 } 400 401 if (core_is_buffer_inside(m[n].addr, m[n].size, pa, size)) { 402 /* m[n] is completely covered by pa:size */ 403 rem_array_elem(m, *nelems, sizeof(*m), n); 404 (*nelems)--; 405 m = nex_realloc(m, sizeof(*m) * *nelems); 406 if (!m) 407 panic(); 408 *mem = m; 409 continue; 410 } 411 412 if (pa > m[n].addr && 413 pa + size - 1 < m[n].addr + m[n].size - 1) { 414 /* 415 * pa:size is strictly inside m[n] range so split 416 * m[n] entry. 417 */ 418 m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); 419 if (!m) 420 panic(); 421 *mem = m; 422 (*nelems)++; 423 ins_array_elem(m, *nelems, sizeof(*m), n + 1, NULL); 424 m[n + 1].addr = pa + size; 425 m[n + 1].size = m[n].addr + m[n].size - pa - size; 426 m[n].size = pa - m[n].addr; 427 n++; 428 } else if (pa <= m[n].addr) { 429 /* 430 * pa:size is overlapping (possibly partially) at the 431 * beginning of m[n]. 432 */ 433 m[n].size = m[n].addr + m[n].size - pa - size; 434 m[n].addr = pa + size; 435 } else { 436 /* 437 * pa:size is overlapping (possibly partially) at 438 * the end of m[n]. 439 */ 440 m[n].size = pa - m[n].addr; 441 } 442 n++; 443 } 444 } 445 446 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, 447 size_t nelems, 448 struct tee_mmap_region *map) 449 { 450 size_t n; 451 452 for (n = 0; n < nelems; n++) { 453 if (!core_is_buffer_outside(start[n].addr, start[n].size, 454 map->pa, map->size)) { 455 EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ 456 ") overlaps map (type %d %#" PRIxPA ":%#zx)", 457 start[n].addr, start[n].size, 458 map->type, map->pa, map->size); 459 panic(); 460 } 461 } 462 } 463 464 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; 465 static size_t discovered_nsec_ddr_nelems __nex_bss; 466 467 static int cmp_pmem_by_addr(const void *a, const void *b) 468 { 469 const struct core_mmu_phys_mem *pmem_a = a; 470 const struct core_mmu_phys_mem *pmem_b = b; 471 472 return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); 473 } 474 475 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 476 size_t nelems) 477 { 478 struct core_mmu_phys_mem *m = start; 479 size_t num_elems = nelems; 480 struct memory_map *mem_map = &static_memory_map; 481 const struct core_mmu_phys_mem __maybe_unused *pmem; 482 size_t n = 0; 483 484 assert(!discovered_nsec_ddr_start); 485 assert(m && num_elems); 486 487 qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); 488 489 /* 490 * Non-secure shared memory and also secure data 491 * path memory are supposed to reside inside 492 * non-secure memory. Since NSEC_SHM and SDP_MEM 493 * are used for a specific purpose make holes for 494 * those memory in the normal non-secure memory. 495 * 496 * This has to be done since for instance QEMU 497 * isn't aware of which memory range in the 498 * non-secure memory is used for NSEC_SHM. 499 */ 500 501 #ifdef CFG_SECURE_DATA_PATH 502 if (dtb_get_sdp_region()) 503 carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size); 504 505 for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) 506 carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); 507 #endif 508 509 for (n = 0; n < ARRAY_SIZE(secure_only); n++) 510 carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr, 511 secure_only[n].size); 512 513 for (n = 0; n < mem_map->count; n++) { 514 switch (mem_map->map[n].type) { 515 case MEM_AREA_NSEC_SHM: 516 carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa, 517 mem_map->map[n].size); 518 break; 519 case MEM_AREA_EXT_DT: 520 case MEM_AREA_MANIFEST_DT: 521 case MEM_AREA_RAM_NSEC: 522 case MEM_AREA_RES_VASPACE: 523 case MEM_AREA_SHM_VASPACE: 524 case MEM_AREA_TS_VASPACE: 525 case MEM_AREA_PAGER_VASPACE: 526 break; 527 default: 528 check_phys_mem_is_outside(m, num_elems, 529 mem_map->map + n); 530 } 531 } 532 533 discovered_nsec_ddr_start = m; 534 discovered_nsec_ddr_nelems = num_elems; 535 536 DMSG("Non-secure RAM:"); 537 for (n = 0; n < num_elems; n++) 538 DMSG("%zu: pa %#"PRIxPA"..%#"PRIxPA" sz %#"PRIxPASZ, 539 n, m[n].addr, m[n].addr + m[n].size - 1, m[n].size); 540 541 if (!core_mmu_check_end_pa(m[num_elems - 1].addr, 542 m[num_elems - 1].size)) 543 panic(); 544 } 545 546 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, 547 const struct core_mmu_phys_mem **end) 548 { 549 if (!discovered_nsec_ddr_start) 550 return false; 551 552 *start = discovered_nsec_ddr_start; 553 *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; 554 555 return true; 556 } 557 558 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) 559 { 560 const struct core_mmu_phys_mem *start; 561 const struct core_mmu_phys_mem *end; 562 563 if (!get_discovered_nsec_ddr(&start, &end)) 564 return false; 565 566 return pbuf_is_special_mem(pbuf, len, start, end); 567 } 568 569 bool core_mmu_nsec_ddr_is_defined(void) 570 { 571 const struct core_mmu_phys_mem *start; 572 const struct core_mmu_phys_mem *end; 573 574 if (!get_discovered_nsec_ddr(&start, &end)) 575 return false; 576 577 return start != end; 578 } 579 #else 580 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) 581 { 582 return false; 583 } 584 #endif /*CFG_CORE_DYN_SHM*/ 585 586 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ 587 EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ 588 pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) 589 590 #ifdef CFG_SECURE_DATA_PATH 591 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) 592 { 593 bool is_sdp_mem = false; 594 595 if (sec_sdp.size) 596 is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr, 597 sec_sdp.size); 598 599 if (!is_sdp_mem) 600 is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, 601 phys_sdp_mem_end); 602 603 return is_sdp_mem; 604 } 605 606 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size) 607 { 608 struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED, 609 CORE_MEM_SDP_MEM); 610 611 if (!mobj) 612 panic("can't create SDP physical memory object"); 613 614 return mobj; 615 } 616 617 struct mobj **core_sdp_mem_create_mobjs(void) 618 { 619 const struct core_mmu_phys_mem *mem = NULL; 620 struct mobj **mobj_base = NULL; 621 struct mobj **mobj = NULL; 622 int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; 623 624 if (sec_sdp.size) 625 cnt++; 626 627 /* SDP mobjs table must end with a NULL entry */ 628 mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); 629 if (!mobj_base) 630 panic("Out of memory"); 631 632 mobj = mobj_base; 633 634 for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++) 635 *mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size); 636 637 if (sec_sdp.size) 638 *mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size); 639 640 return mobj_base; 641 } 642 643 #else /* CFG_SECURE_DATA_PATH */ 644 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) 645 { 646 return false; 647 } 648 649 #endif /* CFG_SECURE_DATA_PATH */ 650 651 /* Check special memories comply with registered memories */ 652 static void verify_special_mem_areas(struct memory_map *mem_map, 653 const struct core_mmu_phys_mem *start, 654 const struct core_mmu_phys_mem *end, 655 const char *area_name __maybe_unused) 656 { 657 const struct core_mmu_phys_mem *mem = NULL; 658 const struct core_mmu_phys_mem *mem2 = NULL; 659 size_t n = 0; 660 661 if (start == end) { 662 DMSG("No %s memory area defined", area_name); 663 return; 664 } 665 666 for (mem = start; mem < end; mem++) 667 DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", 668 area_name, mem->addr, (uint64_t)mem->addr + mem->size); 669 670 /* Check memories do not intersect each other */ 671 for (mem = start; mem + 1 < end; mem++) { 672 for (mem2 = mem + 1; mem2 < end; mem2++) { 673 if (core_is_buffer_intersect(mem2->addr, mem2->size, 674 mem->addr, mem->size)) { 675 MSG_MEM_INSTERSECT(mem2->addr, mem2->size, 676 mem->addr, mem->size); 677 panic("Special memory intersection"); 678 } 679 } 680 } 681 682 /* 683 * Check memories do not intersect any mapped memory. 684 * This is called before reserved VA space is loaded in mem_map. 685 */ 686 for (mem = start; mem < end; mem++) { 687 for (n = 0; n < mem_map->count; n++) { 688 #ifdef TEE_SDP_TEST_MEM_BASE 689 /* 690 * Ignore MEM_AREA_SEC_RAM_OVERALL since it covers 691 * TEE_SDP_TEST_MEM too. 692 */ 693 if (mem->addr == TEE_SDP_TEST_MEM_BASE && 694 mem->size == TEE_SDP_TEST_MEM_SIZE && 695 mem_map->map[n].type == MEM_AREA_SEC_RAM_OVERALL) 696 continue; 697 #endif 698 if (core_is_buffer_intersect(mem->addr, mem->size, 699 mem_map->map[n].pa, 700 mem_map->map[n].size)) { 701 MSG_MEM_INSTERSECT(mem->addr, mem->size, 702 mem_map->map[n].pa, 703 mem_map->map[n].size); 704 panic("Special memory intersection"); 705 } 706 } 707 } 708 } 709 710 static void merge_mmaps(struct tee_mmap_region *dst, 711 const struct tee_mmap_region *src) 712 { 713 paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1); 714 paddr_t pa = MIN(dst->pa, src->pa); 715 716 DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA, 717 dst->pa, dst->pa + dst->size - 1, src->pa, 718 src->pa + src->size - 1); 719 dst->pa = pa; 720 dst->size = end_pa - pa + 1; 721 } 722 723 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1, 724 const struct tee_mmap_region *r2) 725 { 726 if (r1->type != r2->type) 727 return false; 728 729 if (r1->pa == r2->pa) 730 return true; 731 732 if (r1->pa < r2->pa) 733 return r1->pa + r1->size >= r2->pa; 734 else 735 return r2->pa + r2->size >= r1->pa; 736 } 737 738 static void add_phys_mem(struct memory_map *mem_map, 739 const char *mem_name __maybe_unused, 740 enum teecore_memtypes mem_type, 741 paddr_t mem_addr, paddr_size_t mem_size) 742 { 743 size_t n = 0; 744 const struct tee_mmap_region m0 = { 745 .type = mem_type, 746 .pa = mem_addr, 747 .size = mem_size, 748 }; 749 750 if (!mem_size) /* Discard null size entries */ 751 return; 752 753 /* 754 * If some ranges of memory of the same type do overlap 755 * each others they are coalesced into one entry. To help this 756 * added entries are sorted by increasing physical. 757 * 758 * Note that it's valid to have the same physical memory as several 759 * different memory types, for instance the same device memory 760 * mapped as both secure and non-secure. This will probably not 761 * happen often in practice. 762 */ 763 DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, 764 mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size); 765 for (n = 0; n < mem_map->count; n++) { 766 if (mmaps_are_mergeable(mem_map->map + n, &m0)) { 767 merge_mmaps(mem_map->map + n, &m0); 768 /* 769 * The merged result might be mergeable with the 770 * next or previous entry. 771 */ 772 if (n + 1 < mem_map->count && 773 mmaps_are_mergeable(mem_map->map + n, 774 mem_map->map + n + 1)) { 775 merge_mmaps(mem_map->map + n, 776 mem_map->map + n + 1); 777 rem_array_elem(mem_map->map, mem_map->count, 778 sizeof(*mem_map->map), n + 1); 779 mem_map->count--; 780 } 781 if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1, 782 mem_map->map + n)) { 783 merge_mmaps(mem_map->map + n - 1, 784 mem_map->map + n); 785 rem_array_elem(mem_map->map, mem_map->count, 786 sizeof(*mem_map->map), n); 787 mem_map->count--; 788 } 789 return; 790 } 791 if (mem_type < mem_map->map[n].type || 792 (mem_type == mem_map->map[n].type && 793 mem_addr < mem_map->map[n].pa)) 794 break; /* found the spot where to insert this memory */ 795 } 796 797 grow_mem_map(mem_map); 798 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 799 n, &m0); 800 } 801 802 static void add_va_space(struct memory_map *mem_map, 803 enum teecore_memtypes type, size_t size) 804 { 805 size_t n = 0; 806 807 DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); 808 for (n = 0; n < mem_map->count; n++) { 809 if (type < mem_map->map[n].type) 810 break; 811 } 812 813 grow_mem_map(mem_map); 814 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 815 n, NULL); 816 mem_map->map[n] = (struct tee_mmap_region){ 817 .type = type, 818 .size = size, 819 }; 820 } 821 822 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) 823 { 824 const uint32_t attr = TEE_MATTR_VALID_BLOCK; 825 const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED << 826 TEE_MATTR_MEM_TYPE_SHIFT; 827 const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << 828 TEE_MATTR_MEM_TYPE_SHIFT; 829 const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << 830 TEE_MATTR_MEM_TYPE_SHIFT; 831 832 switch (t) { 833 case MEM_AREA_TEE_RAM: 834 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged; 835 case MEM_AREA_TEE_RAM_RX: 836 case MEM_AREA_INIT_RAM_RX: 837 case MEM_AREA_IDENTITY_MAP_RX: 838 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged; 839 case MEM_AREA_TEE_RAM_RO: 840 case MEM_AREA_INIT_RAM_RO: 841 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged; 842 case MEM_AREA_TEE_RAM_RW: 843 case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ 844 case MEM_AREA_NEX_RAM_RW: 845 case MEM_AREA_TEE_ASAN: 846 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 847 case MEM_AREA_TEE_COHERENT: 848 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; 849 case MEM_AREA_NSEC_SHM: 850 case MEM_AREA_NEX_NSEC_SHM: 851 return attr | TEE_MATTR_PRW | cached; 852 case MEM_AREA_MANIFEST_DT: 853 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 854 case MEM_AREA_TRANSFER_LIST: 855 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 856 case MEM_AREA_EXT_DT: 857 /* 858 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device 859 * tree as secure non-cached memory, otherwise, fall back to 860 * non-secure mapping. 861 */ 862 if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE)) 863 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | 864 noncache; 865 fallthrough; 866 case MEM_AREA_IO_NSEC: 867 return attr | TEE_MATTR_PRW | noncache; 868 case MEM_AREA_IO_SEC: 869 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; 870 case MEM_AREA_RAM_NSEC: 871 return attr | TEE_MATTR_PRW | cached; 872 case MEM_AREA_RAM_SEC: 873 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 874 case MEM_AREA_SEC_RAM_OVERALL: 875 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 876 case MEM_AREA_ROM_SEC: 877 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 878 case MEM_AREA_RES_VASPACE: 879 case MEM_AREA_SHM_VASPACE: 880 return 0; 881 case MEM_AREA_PAGER_VASPACE: 882 return TEE_MATTR_SECURE; 883 default: 884 panic("invalid type"); 885 } 886 } 887 888 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) 889 { 890 switch (mm->type) { 891 case MEM_AREA_TEE_RAM: 892 case MEM_AREA_TEE_RAM_RX: 893 case MEM_AREA_TEE_RAM_RO: 894 case MEM_AREA_TEE_RAM_RW: 895 case MEM_AREA_INIT_RAM_RX: 896 case MEM_AREA_INIT_RAM_RO: 897 case MEM_AREA_NEX_RAM_RW: 898 case MEM_AREA_NEX_RAM_RO: 899 case MEM_AREA_TEE_ASAN: 900 return true; 901 default: 902 return false; 903 } 904 } 905 906 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) 907 { 908 return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); 909 } 910 911 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) 912 { 913 return mm->region_size == CORE_MMU_PGDIR_SIZE; 914 } 915 916 static int cmp_mmap_by_lower_va(const void *a, const void *b) 917 { 918 const struct tee_mmap_region *mm_a = a; 919 const struct tee_mmap_region *mm_b = b; 920 921 return CMP_TRILEAN(mm_a->va, mm_b->va); 922 } 923 924 static void dump_mmap_table(struct memory_map *mem_map) 925 { 926 size_t n = 0; 927 928 for (n = 0; n < mem_map->count; n++) { 929 struct tee_mmap_region *map __maybe_unused = mem_map->map + n; 930 931 DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA 932 " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", 933 teecore_memtype_name(map->type), map->va, 934 map->va + map->size - 1, map->pa, 935 (paddr_t)(map->pa + map->size - 1), map->size, 936 map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); 937 } 938 } 939 940 #if DEBUG_XLAT_TABLE 941 942 static void dump_xlat_table(vaddr_t va, unsigned int level) 943 { 944 struct core_mmu_table_info tbl_info; 945 unsigned int idx = 0; 946 paddr_t pa; 947 uint32_t attr; 948 949 core_mmu_find_table(NULL, va, level, &tbl_info); 950 va = tbl_info.va_base; 951 for (idx = 0; idx < tbl_info.num_entries; idx++) { 952 core_mmu_get_entry(&tbl_info, idx, &pa, &attr); 953 if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { 954 const char *security_bit = ""; 955 956 if (core_mmu_entry_have_security_bit(attr)) { 957 if (attr & TEE_MATTR_SECURE) 958 security_bit = "S"; 959 else 960 security_bit = "NS"; 961 } 962 963 if (attr & TEE_MATTR_TABLE) { 964 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 965 " TBL:0x%010" PRIxPA " %s", 966 level * 2, "", level, va, pa, 967 security_bit); 968 dump_xlat_table(va, level + 1); 969 } else if (attr) { 970 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 971 " PA:0x%010" PRIxPA " %s-%s-%s-%s", 972 level * 2, "", level, va, pa, 973 mattr_is_cached(attr) ? "MEM" : 974 "DEV", 975 attr & TEE_MATTR_PW ? "RW" : "RO", 976 attr & TEE_MATTR_PX ? "X " : "XN", 977 security_bit); 978 } else { 979 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 980 " INVALID\n", 981 level * 2, "", level, va); 982 } 983 } 984 va += BIT64(tbl_info.shift); 985 } 986 } 987 988 #else 989 990 static void dump_xlat_table(vaddr_t va __unused, int level __unused) 991 { 992 } 993 994 #endif 995 996 /* 997 * Reserves virtual memory space for pager usage. 998 * 999 * From the start of the first memory used by the link script + 1000 * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty 1001 * mapping for pager usage. This adds translation tables as needed for the 1002 * pager to operate. 1003 */ 1004 static void add_pager_vaspace(struct memory_map *mem_map) 1005 { 1006 paddr_t begin = 0; 1007 paddr_t end = 0; 1008 size_t size = 0; 1009 size_t pos = 0; 1010 size_t n = 0; 1011 1012 1013 for (n = 0; n < mem_map->count; n++) { 1014 if (map_is_tee_ram(mem_map->map + n)) { 1015 if (!begin) 1016 begin = mem_map->map[n].pa; 1017 pos = n + 1; 1018 } 1019 } 1020 1021 end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size; 1022 assert(end - begin < TEE_RAM_VA_SIZE); 1023 size = TEE_RAM_VA_SIZE - (end - begin); 1024 1025 grow_mem_map(mem_map); 1026 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 1027 n, NULL); 1028 mem_map->map[n] = (struct tee_mmap_region){ 1029 .type = MEM_AREA_PAGER_VASPACE, 1030 .size = size, 1031 .region_size = SMALL_PAGE_SIZE, 1032 .attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE), 1033 }; 1034 } 1035 1036 static void check_sec_nsec_mem_config(void) 1037 { 1038 size_t n = 0; 1039 1040 for (n = 0; n < ARRAY_SIZE(secure_only); n++) { 1041 if (pbuf_intersects(nsec_shared, secure_only[n].paddr, 1042 secure_only[n].size)) 1043 panic("Invalid memory access config: sec/nsec"); 1044 } 1045 } 1046 1047 static void collect_device_mem_ranges(struct memory_map *mem_map) 1048 { 1049 const char *compatible = "arm,ffa-manifest-device-regions"; 1050 void *fdt = get_manifest_dt(); 1051 const char *name = NULL; 1052 uint64_t page_count = 0; 1053 uint64_t base = 0; 1054 int subnode = 0; 1055 int node = 0; 1056 1057 assert(fdt); 1058 1059 node = fdt_node_offset_by_compatible(fdt, 0, compatible); 1060 if (node < 0) 1061 return; 1062 1063 fdt_for_each_subnode(subnode, fdt, node) { 1064 name = fdt_get_name(fdt, subnode, NULL); 1065 if (!name) 1066 continue; 1067 1068 if (dt_getprop_as_number(fdt, subnode, "base-address", 1069 &base)) { 1070 EMSG("Mandatory field is missing: base-address"); 1071 continue; 1072 } 1073 1074 if (base & SMALL_PAGE_MASK) { 1075 EMSG("base-address is not page aligned"); 1076 continue; 1077 } 1078 1079 if (dt_getprop_as_number(fdt, subnode, "pages-count", 1080 &page_count)) { 1081 EMSG("Mandatory field is missing: pages-count"); 1082 continue; 1083 } 1084 1085 add_phys_mem(mem_map, name, MEM_AREA_IO_SEC, 1086 base, page_count * SMALL_PAGE_SIZE); 1087 } 1088 } 1089 1090 static void collect_mem_ranges(struct memory_map *mem_map) 1091 { 1092 const struct core_mmu_phys_mem *mem = NULL; 1093 vaddr_t ram_start = secure_only[0].paddr; 1094 size_t n = 0; 1095 1096 #define ADD_PHYS_MEM(_type, _addr, _size) \ 1097 add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size)) 1098 1099 if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) { 1100 paddr_t next_pa = 0; 1101 1102 /* 1103 * Read-only and read-execute physical memory areas must 1104 * not be mapped by MEM_AREA_SEC_RAM_OVERALL, but all the 1105 * read/write should. 1106 */ 1107 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, ram_start, 1108 VCORE_UNPG_RX_PA - ram_start); 1109 assert(VCORE_UNPG_RX_PA >= ram_start); 1110 tee_ram_initial_offs = VCORE_UNPG_RX_PA - ram_start; 1111 DMSG("tee_ram_initial_offs %#zx", tee_ram_initial_offs); 1112 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, 1113 VCORE_UNPG_RX_SZ); 1114 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, 1115 VCORE_UNPG_RO_SZ); 1116 1117 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1118 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, 1119 VCORE_UNPG_RW_SZ); 1120 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA, 1121 VCORE_UNPG_RW_SZ); 1122 1123 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, 1124 VCORE_NEX_RW_SZ); 1125 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_NEX_RW_PA, 1126 VCORE_NEX_RW_SZ); 1127 1128 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_FREE_PA, 1129 VCORE_FREE_SZ); 1130 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA, 1131 VCORE_FREE_SZ); 1132 next_pa = VCORE_FREE_PA + VCORE_FREE_SZ; 1133 } else { 1134 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, 1135 VCORE_UNPG_RW_SZ); 1136 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA, 1137 VCORE_UNPG_RW_SZ); 1138 1139 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_FREE_PA, 1140 VCORE_FREE_SZ); 1141 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA, 1142 VCORE_FREE_SZ); 1143 next_pa = VCORE_FREE_PA + VCORE_FREE_SZ; 1144 } 1145 1146 if (IS_ENABLED(CFG_WITH_PAGER)) { 1147 paddr_t pa = 0; 1148 size_t sz = 0; 1149 1150 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, 1151 VCORE_INIT_RX_SZ); 1152 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, 1153 VCORE_INIT_RO_SZ); 1154 /* 1155 * Core init mapping shall cover up to end of the 1156 * physical RAM. This is required since the hash 1157 * table is appended to the binary data after the 1158 * firmware build sequence. 1159 */ 1160 pa = VCORE_INIT_RO_PA + VCORE_INIT_RO_SZ; 1161 sz = TEE_RAM_START + TEE_RAM_PH_SIZE - pa; 1162 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, pa, sz); 1163 } else { 1164 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, next_pa, 1165 secure_only[0].paddr + 1166 secure_only[0].size - next_pa); 1167 } 1168 } else { 1169 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); 1170 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr, 1171 secure_only[0].size); 1172 } 1173 1174 for (n = 1; n < ARRAY_SIZE(secure_only); n++) 1175 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr, 1176 secure_only[n].size); 1177 1178 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) && 1179 IS_ENABLED(CFG_WITH_PAGER)) { 1180 /* 1181 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is 1182 * disabled. 1183 */ 1184 ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); 1185 } 1186 1187 #undef ADD_PHYS_MEM 1188 1189 /* Collect device memory info from SP manifest */ 1190 if (IS_ENABLED(CFG_CORE_SEL2_SPMC)) 1191 collect_device_mem_ranges(mem_map); 1192 1193 for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { 1194 /* Only unmapped virtual range may have a null phys addr */ 1195 assert(mem->addr || !core_mmu_type_to_attr(mem->type)); 1196 1197 add_phys_mem(mem_map, mem->name, mem->type, 1198 mem->addr, mem->size); 1199 } 1200 1201 if (IS_ENABLED(CFG_SECURE_DATA_PATH)) 1202 verify_special_mem_areas(mem_map, phys_sdp_mem_begin, 1203 phys_sdp_mem_end, "SDP"); 1204 1205 add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE); 1206 add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE); 1207 } 1208 1209 static void assign_mem_granularity(struct memory_map *mem_map) 1210 { 1211 size_t n = 0; 1212 1213 /* 1214 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses 1215 * SMALL_PAGE_SIZE. 1216 */ 1217 for (n = 0; n < mem_map->count; n++) { 1218 paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size; 1219 1220 if (mask & SMALL_PAGE_MASK) 1221 panic("Impossible memory alignment"); 1222 1223 if (map_is_tee_ram(mem_map->map + n)) 1224 mem_map->map[n].region_size = SMALL_PAGE_SIZE; 1225 else 1226 mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE; 1227 } 1228 } 1229 1230 static bool place_tee_ram_at_top(paddr_t paddr) 1231 { 1232 return paddr > BIT64(core_mmu_get_va_width()) / 2; 1233 } 1234 1235 /* 1236 * MMU arch driver shall override this function if it helps 1237 * optimizing the memory footprint of the address translation tables. 1238 */ 1239 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr) 1240 { 1241 return place_tee_ram_at_top(paddr); 1242 } 1243 1244 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map, 1245 bool tee_ram_at_top) 1246 { 1247 struct tee_mmap_region *map = NULL; 1248 vaddr_t va = 0; 1249 bool va_is_secure = true; 1250 size_t n = 0; 1251 1252 /* 1253 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y. 1254 * 0 is by design an invalid va, so return false directly. 1255 */ 1256 if (!tee_ram_va) 1257 return false; 1258 1259 /* Clear eventual previous assignments */ 1260 for (n = 0; n < mem_map->count; n++) 1261 mem_map->map[n].va = 0; 1262 1263 /* 1264 * TEE RAM regions are always aligned with region_size. 1265 * 1266 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here 1267 * since it handles virtual memory which covers the part of the ELF 1268 * that cannot fit directly into memory. 1269 */ 1270 va = tee_ram_va + tee_ram_initial_offs; 1271 for (n = 0; n < mem_map->count; n++) { 1272 map = mem_map->map + n; 1273 if (map_is_tee_ram(map) || 1274 map->type == MEM_AREA_PAGER_VASPACE) { 1275 assert(!(va & (map->region_size - 1))); 1276 assert(!(map->size & (map->region_size - 1))); 1277 map->va = va; 1278 if (ADD_OVERFLOW(va, map->size, &va)) 1279 return false; 1280 if (va >= BIT64(core_mmu_get_va_width())) 1281 return false; 1282 } 1283 } 1284 1285 if (tee_ram_at_top) { 1286 /* 1287 * Map non-tee ram regions at addresses lower than the tee 1288 * ram region. 1289 */ 1290 va = tee_ram_va; 1291 for (n = 0; n < mem_map->count; n++) { 1292 map = mem_map->map + n; 1293 map->attr = core_mmu_type_to_attr(map->type); 1294 if (map->va) 1295 continue; 1296 1297 if (!IS_ENABLED(CFG_WITH_LPAE) && 1298 va_is_secure != map_is_secure(map)) { 1299 va_is_secure = !va_is_secure; 1300 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1301 } 1302 1303 if (SUB_OVERFLOW(va, map->size, &va)) 1304 return false; 1305 va = ROUNDDOWN2(va, map->region_size); 1306 /* 1307 * Make sure that va is aligned with pa for 1308 * efficient pgdir mapping. Basically pa & 1309 * pgdir_mask should be == va & pgdir_mask 1310 */ 1311 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1312 if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) 1313 return false; 1314 va += (map->pa - va) & CORE_MMU_PGDIR_MASK; 1315 } 1316 map->va = va; 1317 } 1318 } else { 1319 /* 1320 * Map non-tee ram regions at addresses higher than the tee 1321 * ram region. 1322 */ 1323 for (n = 0; n < mem_map->count; n++) { 1324 map = mem_map->map + n; 1325 map->attr = core_mmu_type_to_attr(map->type); 1326 if (map->va) 1327 continue; 1328 1329 if (!IS_ENABLED(CFG_WITH_LPAE) && 1330 va_is_secure != map_is_secure(map)) { 1331 va_is_secure = !va_is_secure; 1332 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1333 &va)) 1334 return false; 1335 } 1336 1337 if (ROUNDUP2_OVERFLOW(va, map->region_size, &va)) 1338 return false; 1339 /* 1340 * Make sure that va is aligned with pa for 1341 * efficient pgdir mapping. Basically pa & 1342 * pgdir_mask should be == va & pgdir_mask 1343 */ 1344 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1345 vaddr_t offs = (map->pa - va) & 1346 CORE_MMU_PGDIR_MASK; 1347 1348 if (ADD_OVERFLOW(va, offs, &va)) 1349 return false; 1350 } 1351 1352 map->va = va; 1353 if (ADD_OVERFLOW(va, map->size, &va)) 1354 return false; 1355 if (va >= BIT64(core_mmu_get_va_width())) 1356 return false; 1357 } 1358 } 1359 1360 return true; 1361 } 1362 1363 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map) 1364 { 1365 bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va); 1366 1367 /* 1368 * Check that we're not overlapping with the user VA range. 1369 */ 1370 if (IS_ENABLED(CFG_WITH_LPAE)) { 1371 /* 1372 * User VA range is supposed to be defined after these 1373 * mappings have been established. 1374 */ 1375 assert(!core_mmu_user_va_range_is_defined()); 1376 } else { 1377 vaddr_t user_va_base = 0; 1378 size_t user_va_size = 0; 1379 1380 assert(core_mmu_user_va_range_is_defined()); 1381 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 1382 if (tee_ram_va < (user_va_base + user_va_size)) 1383 return false; 1384 } 1385 1386 if (IS_ENABLED(CFG_WITH_PAGER)) { 1387 bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va); 1388 1389 /* Try whole mapping covered by a single base xlat entry */ 1390 if (prefered_dir != tee_ram_at_top && 1391 assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir)) 1392 return true; 1393 } 1394 1395 return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top); 1396 } 1397 1398 static int cmp_init_mem_map(const void *a, const void *b) 1399 { 1400 const struct tee_mmap_region *mm_a = a; 1401 const struct tee_mmap_region *mm_b = b; 1402 int rc = 0; 1403 1404 rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); 1405 if (!rc) 1406 rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); 1407 /* 1408 * 32bit MMU descriptors cannot mix secure and non-secure mapping in 1409 * the same level2 table. Hence sort secure mapping from non-secure 1410 * mapping. 1411 */ 1412 if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) 1413 rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); 1414 1415 return rc; 1416 } 1417 1418 static bool mem_map_add_id_map(struct memory_map *mem_map, 1419 vaddr_t id_map_start, vaddr_t id_map_end) 1420 { 1421 vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); 1422 vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); 1423 size_t len = end - start; 1424 size_t n = 0; 1425 1426 1427 for (n = 0; n < mem_map->count; n++) 1428 if (core_is_buffer_intersect(mem_map->map[n].va, 1429 mem_map->map[n].size, start, len)) 1430 return false; 1431 1432 grow_mem_map(mem_map); 1433 mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){ 1434 .type = MEM_AREA_IDENTITY_MAP_RX, 1435 /* 1436 * Could use CORE_MMU_PGDIR_SIZE to potentially save a 1437 * translation table, at the increased risk of clashes with 1438 * the rest of the memory map. 1439 */ 1440 .region_size = SMALL_PAGE_SIZE, 1441 .pa = start, 1442 .va = start, 1443 .size = len, 1444 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1445 }; 1446 1447 return true; 1448 } 1449 1450 static struct memory_map *init_mem_map(struct memory_map *mem_map, 1451 unsigned long seed, 1452 unsigned long *ret_offs) 1453 { 1454 /* 1455 * @id_map_start and @id_map_end describes a physical memory range 1456 * that must be mapped Read-Only eXecutable at identical virtual 1457 * addresses. 1458 */ 1459 vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; 1460 vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; 1461 vaddr_t start_addr = secure_only[0].paddr; 1462 unsigned long offs = 0; 1463 1464 collect_mem_ranges(mem_map); 1465 assign_mem_granularity(mem_map); 1466 1467 /* 1468 * To ease mapping and lower use of xlat tables, sort mapping 1469 * description moving small-page regions after the pgdir regions. 1470 */ 1471 qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), 1472 cmp_init_mem_map); 1473 1474 if (IS_ENABLED(CFG_WITH_PAGER)) 1475 add_pager_vaspace(mem_map); 1476 1477 if (IS_ENABLED(CFG_CORE_ASLR) && seed) { 1478 vaddr_t base_addr = start_addr + seed; 1479 const unsigned int va_width = core_mmu_get_va_width(); 1480 const vaddr_t va_mask = GENMASK_64(va_width - 1, 1481 SMALL_PAGE_SHIFT); 1482 vaddr_t ba = base_addr; 1483 size_t n = 0; 1484 1485 for (n = 0; n < 3; n++) { 1486 if (n) 1487 ba = base_addr ^ BIT64(va_width - n); 1488 ba &= va_mask; 1489 if (assign_mem_va(ba, mem_map) && 1490 mem_map_add_id_map(mem_map, id_map_start, 1491 id_map_end)) { 1492 offs = ba - start_addr; 1493 DMSG("Mapping core at %#"PRIxVA" offs %#lx", 1494 ba, offs); 1495 goto out; 1496 } else { 1497 DMSG("Failed to map core at %#"PRIxVA, ba); 1498 } 1499 } 1500 EMSG("Failed to map core with seed %#lx", seed); 1501 } 1502 1503 if (!assign_mem_va(start_addr, mem_map)) 1504 panic(); 1505 1506 out: 1507 qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), 1508 cmp_mmap_by_lower_va); 1509 1510 dump_mmap_table(mem_map); 1511 1512 *ret_offs = offs; 1513 return mem_map; 1514 } 1515 1516 static void check_mem_map(struct memory_map *mem_map) 1517 { 1518 struct tee_mmap_region *m = NULL; 1519 size_t n = 0; 1520 1521 for (n = 0; n < mem_map->count; n++) { 1522 m = mem_map->map + n; 1523 switch (m->type) { 1524 case MEM_AREA_TEE_RAM: 1525 case MEM_AREA_TEE_RAM_RX: 1526 case MEM_AREA_TEE_RAM_RO: 1527 case MEM_AREA_TEE_RAM_RW: 1528 case MEM_AREA_INIT_RAM_RX: 1529 case MEM_AREA_INIT_RAM_RO: 1530 case MEM_AREA_NEX_RAM_RW: 1531 case MEM_AREA_NEX_RAM_RO: 1532 case MEM_AREA_IDENTITY_MAP_RX: 1533 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1534 panic("TEE_RAM can't fit in secure_only"); 1535 break; 1536 case MEM_AREA_SEC_RAM_OVERALL: 1537 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1538 panic("SEC_RAM_OVERALL can't fit in secure_only"); 1539 break; 1540 case MEM_AREA_NSEC_SHM: 1541 if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) 1542 panic("NS_SHM can't fit in nsec_shared"); 1543 break; 1544 case MEM_AREA_TEE_COHERENT: 1545 case MEM_AREA_TEE_ASAN: 1546 case MEM_AREA_IO_SEC: 1547 case MEM_AREA_IO_NSEC: 1548 case MEM_AREA_EXT_DT: 1549 case MEM_AREA_MANIFEST_DT: 1550 case MEM_AREA_TRANSFER_LIST: 1551 case MEM_AREA_RAM_SEC: 1552 case MEM_AREA_RAM_NSEC: 1553 case MEM_AREA_ROM_SEC: 1554 case MEM_AREA_RES_VASPACE: 1555 case MEM_AREA_SHM_VASPACE: 1556 case MEM_AREA_PAGER_VASPACE: 1557 break; 1558 default: 1559 EMSG("Uhandled memtype %d", m->type); 1560 panic(); 1561 } 1562 } 1563 } 1564 1565 /* 1566 * core_init_mmu_map() - init tee core default memory mapping 1567 * 1568 * This routine sets the static default TEE core mapping. If @seed is > 0 1569 * and configured with CFG_CORE_ASLR it will map tee core at a location 1570 * based on the seed and return the offset from the link address. 1571 * 1572 * If an error happened: core_init_mmu_map is expected to panic. 1573 * 1574 * Note: this function is weak just to make it possible to exclude it from 1575 * the unpaged area. 1576 */ 1577 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) 1578 { 1579 #ifndef CFG_NS_VIRTUALIZATION 1580 vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); 1581 #else 1582 vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, 1583 SMALL_PAGE_SIZE); 1584 #endif 1585 #ifdef CFG_DYN_CONFIG 1586 vaddr_t len = ROUNDUP(VCORE_FREE_END_PA, SMALL_PAGE_SIZE) - start; 1587 #else 1588 vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; 1589 #endif 1590 struct tee_mmap_region tmp_mmap_region = { }; 1591 struct memory_map mem_map = { }; 1592 unsigned long offs = 0; 1593 1594 if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) && 1595 (core_mmu_tee_load_pa & SMALL_PAGE_MASK)) 1596 panic("OP-TEE load address is not page aligned"); 1597 1598 check_sec_nsec_mem_config(); 1599 1600 mem_map.alloc_count = CFG_MMAP_REGIONS; 1601 mem_map.map = boot_mem_alloc_tmp(mem_map.alloc_count * 1602 sizeof(*mem_map.map), 1603 alignof(*mem_map.map)); 1604 memory_map_realloc_func = boot_mem_realloc_memory_map; 1605 1606 static_memory_map = (struct memory_map){ 1607 .map = &tmp_mmap_region, 1608 .alloc_count = 1, 1609 .count = 1, 1610 }; 1611 /* 1612 * Add a entry covering the translation tables which will be 1613 * involved in some virt_to_phys() and phys_to_virt() conversions. 1614 */ 1615 static_memory_map.map[0] = (struct tee_mmap_region){ 1616 .type = MEM_AREA_TEE_RAM, 1617 .region_size = SMALL_PAGE_SIZE, 1618 .pa = start, 1619 .va = start, 1620 .size = len, 1621 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1622 }; 1623 1624 init_mem_map(&mem_map, seed, &offs); 1625 1626 check_mem_map(&mem_map); 1627 core_init_mmu(&mem_map); 1628 dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); 1629 core_init_mmu_regs(cfg); 1630 cfg->map_offset = offs; 1631 static_memory_map = mem_map; 1632 boot_mem_add_reloc(&static_memory_map.map); 1633 } 1634 1635 void core_mmu_save_mem_map(void) 1636 { 1637 size_t alloc_count = static_memory_map.count + 5; 1638 size_t elem_sz = sizeof(*static_memory_map.map); 1639 void *p = NULL; 1640 1641 p = nex_calloc(alloc_count, elem_sz); 1642 if (!p) 1643 panic(); 1644 memcpy(p, static_memory_map.map, static_memory_map.count * elem_sz); 1645 static_memory_map.map = p; 1646 static_memory_map.alloc_count = alloc_count; 1647 memory_map_realloc_func = heap_realloc_memory_map; 1648 } 1649 1650 bool core_mmu_mattr_is_ok(uint32_t mattr) 1651 { 1652 /* 1653 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and 1654 * core_mmu_v7.c:mattr_to_texcb 1655 */ 1656 1657 switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { 1658 case TEE_MATTR_MEM_TYPE_DEV: 1659 case TEE_MATTR_MEM_TYPE_STRONGLY_O: 1660 case TEE_MATTR_MEM_TYPE_CACHED: 1661 case TEE_MATTR_MEM_TYPE_TAGGED: 1662 return true; 1663 default: 1664 return false; 1665 } 1666 } 1667 1668 /* 1669 * test attributes of target physical buffer 1670 * 1671 * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). 1672 * 1673 */ 1674 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) 1675 { 1676 struct tee_mmap_region *map; 1677 1678 /* Empty buffers complies with anything */ 1679 if (len == 0) 1680 return true; 1681 1682 switch (attr) { 1683 case CORE_MEM_SEC: 1684 return pbuf_is_inside(secure_only, pbuf, len); 1685 case CORE_MEM_NON_SEC: 1686 return pbuf_is_inside(nsec_shared, pbuf, len) || 1687 pbuf_is_nsec_ddr(pbuf, len); 1688 case CORE_MEM_TEE_RAM: 1689 return core_is_buffer_inside(pbuf, len, TEE_RAM_START, 1690 TEE_RAM_PH_SIZE); 1691 #ifdef CFG_CORE_RESERVED_SHM 1692 case CORE_MEM_NSEC_SHM: 1693 return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, 1694 TEE_SHMEM_SIZE); 1695 #endif 1696 case CORE_MEM_SDP_MEM: 1697 return pbuf_is_sdp_mem(pbuf, len); 1698 case CORE_MEM_CACHED: 1699 map = find_map_by_pa(pbuf); 1700 if (!map || !pbuf_inside_map_area(pbuf, len, map)) 1701 return false; 1702 return mattr_is_cached(map->attr); 1703 default: 1704 return false; 1705 } 1706 } 1707 1708 /* test attributes of target virtual buffer (in core mapping) */ 1709 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) 1710 { 1711 paddr_t p; 1712 1713 /* Empty buffers complies with anything */ 1714 if (len == 0) 1715 return true; 1716 1717 p = virt_to_phys((void *)vbuf); 1718 if (!p) 1719 return false; 1720 1721 return core_pbuf_is(attr, p, len); 1722 } 1723 1724 /* core_va2pa - teecore exported service */ 1725 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) 1726 { 1727 struct tee_mmap_region *map; 1728 1729 map = find_map_by_va(va); 1730 if (!va_is_in_map(map, (vaddr_t)va)) 1731 return -1; 1732 1733 /* 1734 * We can calculate PA for static map. Virtual address ranges 1735 * reserved to core dynamic mapping return a 'match' (return 0;) 1736 * together with an invalid null physical address. 1737 */ 1738 if (map->pa) 1739 *pa = map->pa + (vaddr_t)va - map->va; 1740 else 1741 *pa = 0; 1742 1743 return 0; 1744 } 1745 1746 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) 1747 { 1748 if (!pa_is_in_map(map, pa, len)) 1749 return NULL; 1750 1751 return (void *)(vaddr_t)(map->va + pa - map->pa); 1752 } 1753 1754 /* 1755 * teecore gets some memory area definitions 1756 */ 1757 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s, 1758 vaddr_t *e) 1759 { 1760 struct tee_mmap_region *map = find_map_by_type(type); 1761 1762 if (map) { 1763 *s = map->va; 1764 *e = map->va + map->size; 1765 } else { 1766 *s = 0; 1767 *e = 0; 1768 } 1769 } 1770 1771 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) 1772 { 1773 struct tee_mmap_region *map = find_map_by_pa(pa); 1774 1775 if (!map) 1776 return MEM_AREA_MAXTYPE; 1777 return map->type; 1778 } 1779 1780 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1781 paddr_t pa, uint32_t attr) 1782 { 1783 assert(idx < tbl_info->num_entries); 1784 core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, 1785 idx, pa, attr); 1786 } 1787 1788 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1789 paddr_t *pa, uint32_t *attr) 1790 { 1791 assert(idx < tbl_info->num_entries); 1792 core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, 1793 idx, pa, attr); 1794 } 1795 1796 static void clear_region(struct core_mmu_table_info *tbl_info, 1797 struct tee_mmap_region *region) 1798 { 1799 unsigned int end = 0; 1800 unsigned int idx = 0; 1801 1802 /* va, len and pa should be block aligned */ 1803 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1804 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1805 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1806 1807 idx = core_mmu_va2idx(tbl_info, region->va); 1808 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1809 1810 while (idx < end) { 1811 core_mmu_set_entry(tbl_info, idx, 0, 0); 1812 idx++; 1813 } 1814 } 1815 1816 static void set_region(struct core_mmu_table_info *tbl_info, 1817 struct tee_mmap_region *region) 1818 { 1819 unsigned int end; 1820 unsigned int idx; 1821 paddr_t pa; 1822 1823 /* va, len and pa should be block aligned */ 1824 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1825 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1826 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1827 1828 idx = core_mmu_va2idx(tbl_info, region->va); 1829 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1830 pa = region->pa; 1831 1832 while (idx < end) { 1833 core_mmu_set_entry(tbl_info, idx, pa, region->attr); 1834 idx++; 1835 pa += BIT64(tbl_info->shift); 1836 } 1837 } 1838 1839 static void set_pg_region(struct core_mmu_table_info *dir_info, 1840 struct vm_region *region, struct pgt **pgt, 1841 struct core_mmu_table_info *pg_info) 1842 { 1843 struct tee_mmap_region r = { 1844 .va = region->va, 1845 .size = region->size, 1846 .attr = region->attr, 1847 }; 1848 vaddr_t end = r.va + r.size; 1849 uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; 1850 1851 while (r.va < end) { 1852 if (!pg_info->table || 1853 r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { 1854 /* 1855 * We're assigning a new translation table. 1856 */ 1857 unsigned int idx; 1858 1859 /* Virtual addresses must grow */ 1860 assert(r.va > pg_info->va_base); 1861 1862 idx = core_mmu_va2idx(dir_info, r.va); 1863 pg_info->va_base = core_mmu_idx2va(dir_info, idx); 1864 1865 /* 1866 * Advance pgt to va_base, note that we may need to 1867 * skip multiple page tables if there are large 1868 * holes in the vm map. 1869 */ 1870 while ((*pgt)->vabase < pg_info->va_base) { 1871 *pgt = SLIST_NEXT(*pgt, link); 1872 /* We should have allocated enough */ 1873 assert(*pgt); 1874 } 1875 assert((*pgt)->vabase == pg_info->va_base); 1876 pg_info->table = (*pgt)->tbl; 1877 1878 core_mmu_set_entry(dir_info, idx, 1879 virt_to_phys(pg_info->table), 1880 pgt_attr); 1881 } 1882 1883 r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), 1884 end - r.va); 1885 1886 if (!(*pgt)->populated && !mobj_is_paged(region->mobj)) { 1887 size_t granule = BIT(pg_info->shift); 1888 size_t offset = r.va - region->va + region->offset; 1889 1890 r.size = MIN(r.size, 1891 mobj_get_phys_granule(region->mobj)); 1892 r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); 1893 1894 if (mobj_get_pa(region->mobj, offset, granule, 1895 &r.pa) != TEE_SUCCESS) 1896 panic("Failed to get PA of unpaged mobj"); 1897 set_region(pg_info, &r); 1898 } 1899 r.va += r.size; 1900 } 1901 } 1902 1903 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, 1904 size_t size_left, paddr_t block_size, 1905 struct tee_mmap_region *mm) 1906 { 1907 /* VA and PA are aligned to block size at current level */ 1908 if ((vaddr | paddr) & (block_size - 1)) 1909 return false; 1910 1911 /* Remainder fits into block at current level */ 1912 if (size_left < block_size) 1913 return false; 1914 1915 /* 1916 * The required block size of the region is compatible with the 1917 * block size of the current level. 1918 */ 1919 if (mm->region_size < block_size) 1920 return false; 1921 1922 #ifdef CFG_WITH_PAGER 1923 /* 1924 * If pager is enabled, we need to map TEE RAM and the whole pager 1925 * regions with small pages only 1926 */ 1927 if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) && 1928 block_size != SMALL_PAGE_SIZE) 1929 return false; 1930 #endif 1931 1932 return true; 1933 } 1934 1935 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) 1936 { 1937 struct core_mmu_table_info tbl_info = { }; 1938 unsigned int idx = 0; 1939 vaddr_t vaddr = mm->va; 1940 paddr_t paddr = mm->pa; 1941 ssize_t size_left = mm->size; 1942 uint32_t attr = mm->attr; 1943 unsigned int level = 0; 1944 bool table_found = false; 1945 uint32_t old_attr = 0; 1946 1947 assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); 1948 if (!paddr) 1949 attr = 0; 1950 1951 while (size_left > 0) { 1952 level = CORE_MMU_BASE_TABLE_LEVEL; 1953 1954 while (true) { 1955 paddr_t block_size = 0; 1956 1957 assert(core_mmu_level_in_range(level)); 1958 1959 table_found = core_mmu_find_table(prtn, vaddr, level, 1960 &tbl_info); 1961 if (!table_found) 1962 panic("can't find table for mapping"); 1963 1964 block_size = BIT64(tbl_info.shift); 1965 1966 idx = core_mmu_va2idx(&tbl_info, vaddr); 1967 if (!can_map_at_level(paddr, vaddr, size_left, 1968 block_size, mm)) { 1969 bool secure = mm->attr & TEE_MATTR_SECURE; 1970 1971 /* 1972 * This part of the region can't be mapped at 1973 * this level. Need to go deeper. 1974 */ 1975 if (!core_mmu_entry_to_finer_grained(&tbl_info, 1976 idx, 1977 secure)) 1978 panic("Can't divide MMU entry"); 1979 level = tbl_info.next_level; 1980 continue; 1981 } 1982 1983 /* We can map part of the region at current level */ 1984 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1985 if (old_attr) 1986 panic("Page is already mapped"); 1987 1988 core_mmu_set_entry(&tbl_info, idx, paddr, attr); 1989 /* 1990 * Dynamic vaspace regions don't have a physical 1991 * address initially but we need to allocate and 1992 * initialize the translation tables now for later 1993 * updates to work properly. 1994 */ 1995 if (paddr) 1996 paddr += block_size; 1997 vaddr += block_size; 1998 size_left -= block_size; 1999 2000 break; 2001 } 2002 } 2003 } 2004 2005 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 2006 enum teecore_memtypes memtype) 2007 { 2008 TEE_Result ret; 2009 struct core_mmu_table_info tbl_info; 2010 struct tee_mmap_region *mm; 2011 unsigned int idx; 2012 uint32_t old_attr; 2013 uint32_t exceptions; 2014 vaddr_t vaddr = vstart; 2015 size_t i; 2016 bool secure; 2017 2018 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 2019 2020 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 2021 2022 if (vaddr & SMALL_PAGE_MASK) 2023 return TEE_ERROR_BAD_PARAMETERS; 2024 2025 exceptions = mmu_lock(); 2026 2027 mm = find_map_by_va((void *)vaddr); 2028 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 2029 panic("VA does not belong to any known mm region"); 2030 2031 if (!core_mmu_is_dynamic_vaspace(mm)) 2032 panic("Trying to map into static region"); 2033 2034 for (i = 0; i < num_pages; i++) { 2035 if (pages[i] & SMALL_PAGE_MASK) { 2036 ret = TEE_ERROR_BAD_PARAMETERS; 2037 goto err; 2038 } 2039 2040 while (true) { 2041 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 2042 &tbl_info)) 2043 panic("Can't find pagetable for vaddr "); 2044 2045 idx = core_mmu_va2idx(&tbl_info, vaddr); 2046 if (tbl_info.shift == SMALL_PAGE_SHIFT) 2047 break; 2048 2049 /* This is supertable. Need to divide it. */ 2050 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 2051 secure)) 2052 panic("Failed to spread pgdir on small tables"); 2053 } 2054 2055 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2056 if (old_attr) 2057 panic("Page is already mapped"); 2058 2059 core_mmu_set_entry(&tbl_info, idx, pages[i], 2060 core_mmu_type_to_attr(memtype)); 2061 vaddr += SMALL_PAGE_SIZE; 2062 } 2063 2064 /* 2065 * Make sure all the changes to translation tables are visible 2066 * before returning. TLB doesn't need to be invalidated as we are 2067 * guaranteed that there's no valid mapping in this range. 2068 */ 2069 core_mmu_table_write_barrier(); 2070 mmu_unlock(exceptions); 2071 2072 return TEE_SUCCESS; 2073 err: 2074 mmu_unlock(exceptions); 2075 2076 if (i) 2077 core_mmu_unmap_pages(vstart, i); 2078 2079 return ret; 2080 } 2081 2082 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 2083 size_t num_pages, 2084 enum teecore_memtypes memtype) 2085 { 2086 struct core_mmu_table_info tbl_info = { }; 2087 struct tee_mmap_region *mm = NULL; 2088 unsigned int idx = 0; 2089 uint32_t old_attr = 0; 2090 uint32_t exceptions = 0; 2091 vaddr_t vaddr = vstart; 2092 paddr_t paddr = pstart; 2093 size_t i = 0; 2094 bool secure = false; 2095 2096 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 2097 2098 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 2099 2100 if ((vaddr | paddr) & SMALL_PAGE_MASK) 2101 return TEE_ERROR_BAD_PARAMETERS; 2102 2103 exceptions = mmu_lock(); 2104 2105 mm = find_map_by_va((void *)vaddr); 2106 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 2107 panic("VA does not belong to any known mm region"); 2108 2109 if (!core_mmu_is_dynamic_vaspace(mm)) 2110 panic("Trying to map into static region"); 2111 2112 for (i = 0; i < num_pages; i++) { 2113 while (true) { 2114 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 2115 &tbl_info)) 2116 panic("Can't find pagetable for vaddr "); 2117 2118 idx = core_mmu_va2idx(&tbl_info, vaddr); 2119 if (tbl_info.shift == SMALL_PAGE_SHIFT) 2120 break; 2121 2122 /* This is supertable. Need to divide it. */ 2123 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 2124 secure)) 2125 panic("Failed to spread pgdir on small tables"); 2126 } 2127 2128 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2129 if (old_attr) 2130 panic("Page is already mapped"); 2131 2132 core_mmu_set_entry(&tbl_info, idx, paddr, 2133 core_mmu_type_to_attr(memtype)); 2134 paddr += SMALL_PAGE_SIZE; 2135 vaddr += SMALL_PAGE_SIZE; 2136 } 2137 2138 /* 2139 * Make sure all the changes to translation tables are visible 2140 * before returning. TLB doesn't need to be invalidated as we are 2141 * guaranteed that there's no valid mapping in this range. 2142 */ 2143 core_mmu_table_write_barrier(); 2144 mmu_unlock(exceptions); 2145 2146 return TEE_SUCCESS; 2147 } 2148 2149 static bool mem_range_is_in_vcore_free(vaddr_t vstart, size_t num_pages) 2150 { 2151 return core_is_buffer_inside(vstart, num_pages * SMALL_PAGE_SIZE, 2152 VCORE_FREE_PA, VCORE_FREE_SZ); 2153 } 2154 2155 static void maybe_remove_from_mem_map(vaddr_t vstart, size_t num_pages) 2156 { 2157 struct memory_map *mem_map = NULL; 2158 struct tee_mmap_region *mm = NULL; 2159 size_t idx = 0; 2160 vaddr_t va = 0; 2161 2162 mm = find_map_by_va((void *)vstart); 2163 if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) 2164 panic("VA does not belong to any known mm region"); 2165 2166 if (core_mmu_is_dynamic_vaspace(mm)) 2167 return; 2168 2169 if (!mem_range_is_in_vcore_free(vstart, num_pages)) 2170 panic("Trying to unmap static region"); 2171 2172 /* 2173 * We're going to remove a memory from the VCORE_FREE memory range. 2174 * Depending where the range is we may need to remove the matching 2175 * mm, peal of a bit from the start or end of the mm, or split it 2176 * into two with a whole in the middle. 2177 */ 2178 2179 va = ROUNDDOWN(vstart, SMALL_PAGE_SIZE); 2180 assert(mm->region_size == SMALL_PAGE_SIZE); 2181 2182 if (va == mm->va && mm->size == num_pages * SMALL_PAGE_SIZE) { 2183 mem_map = get_memory_map(); 2184 idx = mm - mem_map->map; 2185 assert(idx < mem_map->count); 2186 2187 rem_array_elem(mem_map->map, mem_map->count, 2188 sizeof(*mem_map->map), idx); 2189 mem_map->count--; 2190 } else if (va == mm->va) { 2191 mm->va += num_pages * SMALL_PAGE_SIZE; 2192 mm->pa += num_pages * SMALL_PAGE_SIZE; 2193 mm->size -= num_pages * SMALL_PAGE_SIZE; 2194 } else if (va + num_pages * SMALL_PAGE_SIZE == mm->va + mm->size) { 2195 mm->size -= num_pages * SMALL_PAGE_SIZE; 2196 } else { 2197 struct tee_mmap_region m = *mm; 2198 2199 mem_map = get_memory_map(); 2200 idx = mm - mem_map->map; 2201 assert(idx < mem_map->count); 2202 2203 mm->size = va - mm->va; 2204 m.va += mm->size + num_pages * SMALL_PAGE_SIZE; 2205 m.pa += mm->size + num_pages * SMALL_PAGE_SIZE; 2206 m.size -= mm->size + num_pages * SMALL_PAGE_SIZE; 2207 grow_mem_map(mem_map); 2208 ins_array_elem(mem_map->map, mem_map->count, 2209 sizeof(*mem_map->map), idx + 1, &m); 2210 } 2211 } 2212 2213 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) 2214 { 2215 struct core_mmu_table_info tbl_info; 2216 size_t i; 2217 unsigned int idx; 2218 uint32_t exceptions; 2219 2220 exceptions = mmu_lock(); 2221 2222 maybe_remove_from_mem_map(vstart, num_pages); 2223 2224 for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { 2225 if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) 2226 panic("Can't find pagetable"); 2227 2228 if (tbl_info.shift != SMALL_PAGE_SHIFT) 2229 panic("Invalid pagetable level"); 2230 2231 idx = core_mmu_va2idx(&tbl_info, vstart); 2232 core_mmu_set_entry(&tbl_info, idx, 0, 0); 2233 } 2234 tlbi_all(); 2235 2236 mmu_unlock(exceptions); 2237 } 2238 2239 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 2240 struct user_mode_ctx *uctx) 2241 { 2242 struct core_mmu_table_info pg_info = { }; 2243 struct pgt_cache *pgt_cache = &uctx->pgt_cache; 2244 struct pgt *pgt = NULL; 2245 struct pgt *p = NULL; 2246 struct vm_region *r = NULL; 2247 2248 if (TAILQ_EMPTY(&uctx->vm_info.regions)) 2249 return; /* Nothing to map */ 2250 2251 /* 2252 * Allocate all page tables in advance. 2253 */ 2254 pgt_get_all(uctx); 2255 pgt = SLIST_FIRST(pgt_cache); 2256 2257 core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL); 2258 2259 TAILQ_FOREACH(r, &uctx->vm_info.regions, link) 2260 set_pg_region(dir_info, r, &pgt, &pg_info); 2261 /* Record that the translation tables now are populated. */ 2262 SLIST_FOREACH(p, pgt_cache, link) { 2263 p->populated = true; 2264 if (p == pgt) 2265 break; 2266 } 2267 assert(p == pgt); 2268 } 2269 2270 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 2271 size_t len) 2272 { 2273 struct core_mmu_table_info tbl_info = { }; 2274 struct tee_mmap_region *res_map = NULL; 2275 struct tee_mmap_region *map = NULL; 2276 paddr_t pa = virt_to_phys(addr); 2277 size_t granule = 0; 2278 ptrdiff_t i = 0; 2279 paddr_t p = 0; 2280 size_t l = 0; 2281 2282 map = find_map_by_type_and_pa(type, pa, len); 2283 if (!map) 2284 return TEE_ERROR_GENERIC; 2285 2286 res_map = find_map_by_type(MEM_AREA_RES_VASPACE); 2287 if (!res_map) 2288 return TEE_ERROR_GENERIC; 2289 if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) 2290 return TEE_ERROR_GENERIC; 2291 granule = BIT(tbl_info.shift); 2292 2293 if (map < static_memory_map.map || 2294 map >= static_memory_map.map + static_memory_map.count) 2295 return TEE_ERROR_GENERIC; 2296 i = map - static_memory_map.map; 2297 2298 /* Check that we have a full match */ 2299 p = ROUNDDOWN2(pa, granule); 2300 l = ROUNDUP2(len + pa - p, granule); 2301 if (map->pa != p || map->size != l) 2302 return TEE_ERROR_GENERIC; 2303 2304 clear_region(&tbl_info, map); 2305 tlbi_all(); 2306 2307 /* If possible remove the va range from res_map */ 2308 if (res_map->va - map->size == map->va) { 2309 res_map->va -= map->size; 2310 res_map->size += map->size; 2311 } 2312 2313 /* Remove the entry. */ 2314 rem_array_elem(static_memory_map.map, static_memory_map.count, 2315 sizeof(*static_memory_map.map), i); 2316 static_memory_map.count--; 2317 2318 return TEE_SUCCESS; 2319 } 2320 2321 struct tee_mmap_region * 2322 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) 2323 { 2324 struct memory_map *mem_map = get_memory_map(); 2325 struct tee_mmap_region *map_found = NULL; 2326 size_t n = 0; 2327 2328 if (!len) 2329 return NULL; 2330 2331 for (n = 0; n < mem_map->count; n++) { 2332 if (mem_map->map[n].type != type) 2333 continue; 2334 2335 if (map_found) 2336 return NULL; 2337 2338 map_found = mem_map->map + n; 2339 } 2340 2341 if (!map_found || map_found->size < len) 2342 return NULL; 2343 2344 return map_found; 2345 } 2346 2347 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) 2348 { 2349 struct memory_map *mem_map = &static_memory_map; 2350 struct core_mmu_table_info tbl_info = { }; 2351 struct tee_mmap_region *map = NULL; 2352 size_t granule = 0; 2353 paddr_t p = 0; 2354 size_t l = 0; 2355 2356 if (!len) 2357 return NULL; 2358 2359 if (!core_mmu_check_end_pa(addr, len)) 2360 return NULL; 2361 2362 /* Check if the memory is already mapped */ 2363 map = find_map_by_type_and_pa(type, addr, len); 2364 if (map && pbuf_inside_map_area(addr, len, map)) 2365 return (void *)(vaddr_t)(map->va + addr - map->pa); 2366 2367 /* Find the reserved va space used for late mappings */ 2368 map = find_map_by_type(MEM_AREA_RES_VASPACE); 2369 if (!map) 2370 return NULL; 2371 2372 if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) 2373 return NULL; 2374 2375 granule = BIT64(tbl_info.shift); 2376 p = ROUNDDOWN2(addr, granule); 2377 l = ROUNDUP2(len + addr - p, granule); 2378 2379 /* Ban overflowing virtual addresses */ 2380 if (map->size < l) 2381 return NULL; 2382 2383 /* 2384 * Something is wrong, we can't fit the va range into the selected 2385 * table. The reserved va range is possibly missaligned with 2386 * granule. 2387 */ 2388 if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) 2389 return NULL; 2390 2391 if (static_memory_map.count >= static_memory_map.alloc_count) 2392 return NULL; 2393 2394 mem_map->map[mem_map->count] = (struct tee_mmap_region){ 2395 .va = map->va, 2396 .size = l, 2397 .type = type, 2398 .region_size = granule, 2399 .attr = core_mmu_type_to_attr(type), 2400 .pa = p, 2401 }; 2402 map->va += l; 2403 map->size -= l; 2404 map = mem_map->map + mem_map->count; 2405 mem_map->count++; 2406 2407 set_region(&tbl_info, map); 2408 2409 /* Make sure the new entry is visible before continuing. */ 2410 core_mmu_table_write_barrier(); 2411 2412 return (void *)(vaddr_t)(map->va + addr - map->pa); 2413 } 2414 2415 #ifdef CFG_WITH_PAGER 2416 static vaddr_t get_linear_map_end_va(void) 2417 { 2418 /* this is synced with the generic linker file kern.ld.S */ 2419 return (vaddr_t)__heap2_end; 2420 } 2421 2422 static paddr_t get_linear_map_end_pa(void) 2423 { 2424 return get_linear_map_end_va() - boot_mmu_config.map_offset; 2425 } 2426 #endif 2427 2428 #if defined(CFG_TEE_CORE_DEBUG) 2429 static void check_pa_matches_va(void *va, paddr_t pa) 2430 { 2431 TEE_Result res = TEE_ERROR_GENERIC; 2432 vaddr_t v = (vaddr_t)va; 2433 paddr_t p = 0; 2434 struct core_mmu_table_info ti __maybe_unused = { }; 2435 2436 if (core_mmu_user_va_range_is_defined()) { 2437 vaddr_t user_va_base = 0; 2438 size_t user_va_size = 0; 2439 2440 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 2441 if (v >= user_va_base && 2442 v <= (user_va_base - 1 + user_va_size)) { 2443 if (!core_mmu_user_mapping_is_active()) { 2444 if (pa) 2445 panic("issue in linear address space"); 2446 return; 2447 } 2448 2449 res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), 2450 va, &p); 2451 if (res == TEE_ERROR_NOT_SUPPORTED) 2452 return; 2453 if (res == TEE_SUCCESS && pa != p) 2454 panic("bad pa"); 2455 if (res != TEE_SUCCESS && pa) 2456 panic("false pa"); 2457 return; 2458 } 2459 } 2460 #ifdef CFG_WITH_PAGER 2461 if (is_unpaged(va)) { 2462 if (v - boot_mmu_config.map_offset != pa) 2463 panic("issue in linear address space"); 2464 return; 2465 } 2466 2467 if (tee_pager_get_table_info(v, &ti)) { 2468 uint32_t a; 2469 2470 /* 2471 * Lookups in the page table managed by the pager is 2472 * dangerous for addresses in the paged area as those pages 2473 * changes all the time. But some ranges are safe, 2474 * rw-locked areas when the page is populated for instance. 2475 */ 2476 core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); 2477 if (a & TEE_MATTR_VALID_BLOCK) { 2478 paddr_t mask = BIT64(ti.shift) - 1; 2479 2480 p |= v & mask; 2481 if (pa != p) 2482 panic(); 2483 } else { 2484 if (pa) 2485 panic(); 2486 } 2487 return; 2488 } 2489 #endif 2490 2491 if (!core_va2pa_helper(va, &p)) { 2492 /* Verfiy only the static mapping (case non null phys addr) */ 2493 if (p && pa != p) { 2494 DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, 2495 va, p, pa); 2496 panic(); 2497 } 2498 } else { 2499 if (pa) { 2500 DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); 2501 panic(); 2502 } 2503 } 2504 } 2505 #else 2506 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) 2507 { 2508 } 2509 #endif 2510 2511 paddr_t virt_to_phys(void *va) 2512 { 2513 paddr_t pa = 0; 2514 2515 if (!arch_va2pa_helper(va, &pa)) 2516 pa = 0; 2517 check_pa_matches_va(memtag_strip_tag(va), pa); 2518 return pa; 2519 } 2520 2521 /* 2522 * Don't use check_va_matches_pa() for RISC-V, as its callee 2523 * arch_va2pa_helper() will call it eventually, this creates 2524 * indirect recursion and can lead to a stack overflow. 2525 * Moreover, if arch_va2pa_helper() returns true, it implies 2526 * the va2pa mapping is matched, no need to check it again. 2527 */ 2528 #if defined(CFG_TEE_CORE_DEBUG) && !defined(__riscv) 2529 static void check_va_matches_pa(paddr_t pa, void *va) 2530 { 2531 paddr_t p = 0; 2532 2533 if (!va) 2534 return; 2535 2536 p = virt_to_phys(va); 2537 if (p != pa) { 2538 DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); 2539 panic(); 2540 } 2541 } 2542 #else 2543 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) 2544 { 2545 } 2546 #endif 2547 2548 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) 2549 { 2550 if (!core_mmu_user_mapping_is_active()) 2551 return NULL; 2552 2553 return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); 2554 } 2555 2556 #ifdef CFG_WITH_PAGER 2557 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2558 { 2559 paddr_t end_pa = 0; 2560 2561 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 2562 return NULL; 2563 2564 if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) { 2565 if (end_pa > get_linear_map_end_pa()) 2566 return NULL; 2567 return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset); 2568 } 2569 2570 return tee_pager_phys_to_virt(pa, len); 2571 } 2572 #else 2573 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2574 { 2575 struct tee_mmap_region *mmap = NULL; 2576 2577 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); 2578 if (!mmap) 2579 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); 2580 if (!mmap) 2581 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); 2582 if (!mmap) 2583 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); 2584 if (!mmap) 2585 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); 2586 if (!mmap) 2587 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); 2588 /* 2589 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only 2590 * used with pager and not needed here. 2591 */ 2592 return map_pa2va(mmap, pa, len); 2593 } 2594 #endif 2595 2596 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) 2597 { 2598 void *va = NULL; 2599 2600 switch (m) { 2601 case MEM_AREA_TS_VASPACE: 2602 va = phys_to_virt_ts_vaspace(pa, len); 2603 break; 2604 case MEM_AREA_TEE_RAM: 2605 case MEM_AREA_TEE_RAM_RX: 2606 case MEM_AREA_TEE_RAM_RO: 2607 case MEM_AREA_TEE_RAM_RW: 2608 case MEM_AREA_NEX_RAM_RO: 2609 case MEM_AREA_NEX_RAM_RW: 2610 va = phys_to_virt_tee_ram(pa, len); 2611 break; 2612 case MEM_AREA_SHM_VASPACE: 2613 /* Find VA from PA in dynamic SHM is not yet supported */ 2614 va = NULL; 2615 break; 2616 default: 2617 va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); 2618 } 2619 if (m != MEM_AREA_SEC_RAM_OVERALL) 2620 check_va_matches_pa(pa, va); 2621 return va; 2622 } 2623 2624 void *phys_to_virt_io(paddr_t pa, size_t len) 2625 { 2626 struct tee_mmap_region *map = NULL; 2627 void *va = NULL; 2628 2629 map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); 2630 if (!map) 2631 map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); 2632 if (!map) 2633 return NULL; 2634 va = map_pa2va(map, pa, len); 2635 check_va_matches_pa(pa, va); 2636 return va; 2637 } 2638 2639 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) 2640 { 2641 if (cpu_mmu_enabled()) 2642 return (vaddr_t)phys_to_virt(pa, type, len); 2643 2644 return (vaddr_t)pa; 2645 } 2646 2647 #ifdef CFG_WITH_PAGER 2648 bool is_unpaged(const void *va) 2649 { 2650 vaddr_t v = (vaddr_t)va; 2651 2652 return v >= VCORE_START_VA && v < get_linear_map_end_va(); 2653 } 2654 #endif 2655 2656 #ifdef CFG_NS_VIRTUALIZATION 2657 bool is_nexus(const void *va) 2658 { 2659 vaddr_t v = (vaddr_t)va; 2660 2661 return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ; 2662 } 2663 #endif 2664 2665 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) 2666 { 2667 assert(p->pa); 2668 if (cpu_mmu_enabled()) { 2669 if (!p->va) 2670 p->va = (vaddr_t)phys_to_virt_io(p->pa, len); 2671 assert(p->va); 2672 return p->va; 2673 } 2674 return p->pa; 2675 } 2676 2677 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) 2678 { 2679 assert(p->pa); 2680 if (cpu_mmu_enabled()) { 2681 if (!p->va) 2682 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, 2683 len); 2684 assert(p->va); 2685 return p->va; 2686 } 2687 return p->pa; 2688 } 2689 2690 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) 2691 { 2692 assert(p->pa); 2693 if (cpu_mmu_enabled()) { 2694 if (!p->va) 2695 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, 2696 len); 2697 assert(p->va); 2698 return p->va; 2699 } 2700 return p->pa; 2701 } 2702 2703 #ifdef CFG_CORE_RESERVED_SHM 2704 static TEE_Result teecore_init_pub_ram(void) 2705 { 2706 vaddr_t s = 0; 2707 vaddr_t e = 0; 2708 2709 /* get virtual addr/size of NSec shared mem allocated from teecore */ 2710 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); 2711 2712 if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) 2713 panic("invalid PUB RAM"); 2714 2715 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2716 if (!tee_vbuf_is_non_sec(s, e - s)) 2717 panic("PUB RAM is not non-secure"); 2718 2719 #ifdef CFG_PL310 2720 /* Allocate statically the l2cc mutex */ 2721 tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); 2722 s += sizeof(uint32_t); /* size of a pl310 mutex */ 2723 s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ 2724 #endif 2725 2726 default_nsec_shm_paddr = virt_to_phys((void *)s); 2727 default_nsec_shm_size = e - s; 2728 2729 return TEE_SUCCESS; 2730 } 2731 early_init(teecore_init_pub_ram); 2732 #endif /*CFG_CORE_RESERVED_SHM*/ 2733 2734 static void __maybe_unused carve_out_core_mem(paddr_t pa, paddr_t end_pa) 2735 { 2736 tee_mm_entry_t *mm __maybe_unused = NULL; 2737 2738 DMSG("%#"PRIxPA" .. %#"PRIxPA, pa, end_pa); 2739 mm = phys_mem_alloc2(pa, end_pa - pa); 2740 assert(mm); 2741 } 2742 2743 void core_mmu_init_phys_mem(void) 2744 { 2745 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 2746 paddr_t b1 = 0; 2747 paddr_size_t s1 = 0; 2748 2749 static_assert(ARRAY_SIZE(secure_only) <= 2); 2750 2751 if (ARRAY_SIZE(secure_only) == 2) { 2752 b1 = secure_only[1].paddr; 2753 s1 = secure_only[1].size; 2754 } 2755 virt_init_memory(&static_memory_map, secure_only[0].paddr, 2756 secure_only[0].size, b1, s1); 2757 } else { 2758 #ifdef CFG_WITH_PAGER 2759 /* 2760 * The pager uses all core memory so there's no need to add 2761 * it to the pool. 2762 */ 2763 static_assert(ARRAY_SIZE(secure_only) == 2); 2764 phys_mem_init(0, 0, secure_only[1].paddr, secure_only[1].size); 2765 #else /*!CFG_WITH_PAGER*/ 2766 size_t align = BIT(CORE_MMU_USER_CODE_SHIFT); 2767 paddr_t end_pa = 0; 2768 size_t size = 0; 2769 paddr_t ps = 0; 2770 paddr_t pa = 0; 2771 2772 static_assert(ARRAY_SIZE(secure_only) <= 2); 2773 if (ARRAY_SIZE(secure_only) == 2) { 2774 ps = secure_only[1].paddr; 2775 size = secure_only[1].size; 2776 } 2777 phys_mem_init(secure_only[0].paddr, secure_only[0].size, 2778 ps, size); 2779 2780 /* 2781 * The VCORE macros are relocatable so we need to translate 2782 * the addresses now that the MMU is enabled. 2783 */ 2784 end_pa = vaddr_to_phys(ROUNDUP2(VCORE_FREE_END_PA, 2785 align) - 1) + 1; 2786 /* Carve out the part used by OP-TEE core */ 2787 carve_out_core_mem(vaddr_to_phys(VCORE_UNPG_RX_PA), end_pa); 2788 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) { 2789 pa = vaddr_to_phys(ROUNDUP2(ASAN_MAP_PA, align)); 2790 carve_out_core_mem(pa, pa + ASAN_MAP_SZ); 2791 } 2792 2793 /* Carve out test SDP memory */ 2794 #ifdef TEE_SDP_TEST_MEM_BASE 2795 if (TEE_SDP_TEST_MEM_SIZE) { 2796 pa = TEE_SDP_TEST_MEM_BASE; 2797 carve_out_core_mem(pa, pa + TEE_SDP_TEST_MEM_SIZE); 2798 } 2799 #endif 2800 #endif /*!CFG_WITH_PAGER*/ 2801 } 2802 } 2803