xref: /optee_os/core/mm/core_mmu.c (revision d2e95293a92f3ecf49a418457ca6e1222c118876)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <memtag.h>
22 #include <mm/core_memprot.h>
23 #include <mm/core_mmu.h>
24 #include <mm/mobj.h>
25 #include <mm/pgt_cache.h>
26 #include <mm/phys_mem.h>
27 #include <mm/tee_pager.h>
28 #include <mm/vm.h>
29 #include <platform_config.h>
30 #include <stdalign.h>
31 #include <string.h>
32 #include <trace.h>
33 #include <util.h>
34 
35 #ifndef DEBUG_XLAT_TABLE
36 #define DEBUG_XLAT_TABLE 0
37 #endif
38 
39 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
40 
41 /* Virtual memory pool for core mappings */
42 tee_mm_pool_t core_virt_mem_pool;
43 
44 /* Virtual memory pool for shared memory mappings */
45 tee_mm_pool_t core_virt_shm_pool;
46 
47 #ifdef CFG_CORE_PHYS_RELOCATABLE
48 unsigned long core_mmu_tee_load_pa __nex_bss;
49 #else
50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
51 #endif
52 
53 /*
54  * These variables are initialized before .bss is cleared. To avoid
55  * resetting them when .bss is cleared we're storing them in .data instead,
56  * even if they initially are zero.
57  */
58 
59 #ifdef CFG_CORE_RESERVED_SHM
60 /* Default NSec shared memory allocated from NSec world */
61 unsigned long default_nsec_shm_size __nex_bss;
62 unsigned long default_nsec_shm_paddr __nex_bss;
63 #endif
64 
65 static struct tee_mmap_region static_mmap_regions[CFG_MMAP_REGIONS
66 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE)
67 						+ 1
68 #endif
69 						+ 4] __nex_bss;
70 static struct memory_map static_memory_map __nex_data = {
71 	.map = static_mmap_regions,
72 	.alloc_count = ARRAY_SIZE(static_mmap_regions),
73 };
74 
75 /* Offset of the first TEE RAM mapping from start of secure RAM */
76 static size_t tee_ram_initial_offs __nex_bss;
77 
78 /* Define the platform's memory layout. */
79 struct memaccess_area {
80 	paddr_t paddr;
81 	size_t size;
82 };
83 
84 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
85 
86 static struct memaccess_area secure_only[] __nex_data = {
87 #ifdef CFG_CORE_PHYS_RELOCATABLE
88 	MEMACCESS_AREA(0, 0),
89 #else
90 #ifdef TRUSTED_SRAM_BASE
91 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
92 #endif
93 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
94 #endif
95 };
96 
97 static struct memaccess_area nsec_shared[] __nex_data = {
98 #ifdef CFG_CORE_RESERVED_SHM
99 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
100 #endif
101 };
102 
103 #if defined(CFG_SECURE_DATA_PATH)
104 static const char *tz_sdp_match = "linaro,secure-heap";
105 static struct memaccess_area sec_sdp;
106 #ifdef CFG_TEE_SDP_MEM_BASE
107 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
108 #endif
109 #ifdef TEE_SDP_TEST_MEM_BASE
110 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
111 #endif
112 #endif
113 
114 #ifdef CFG_CORE_RESERVED_SHM
115 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
116 #endif
117 static unsigned int mmu_spinlock;
118 
119 static uint32_t mmu_lock(void)
120 {
121 	return cpu_spin_lock_xsave(&mmu_spinlock);
122 }
123 
124 static void mmu_unlock(uint32_t exceptions)
125 {
126 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
127 }
128 
129 static void grow_mem_map(struct memory_map *mem_map)
130 {
131 	if (mem_map->count == mem_map->alloc_count) {
132 		EMSG("Out of entries (%zu) in mem_map", mem_map->alloc_count);
133 		panic();
134 	}
135 	mem_map->count++;
136 }
137 
138 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
139 {
140 	/*
141 	 * The first range is always used to cover OP-TEE core memory, but
142 	 * depending on configuration it may cover more than that.
143 	 */
144 	*base = secure_only[0].paddr;
145 	*size = secure_only[0].size;
146 }
147 
148 void core_mmu_set_secure_memory(paddr_t base, size_t size)
149 {
150 #ifdef CFG_CORE_PHYS_RELOCATABLE
151 	static_assert(ARRAY_SIZE(secure_only) == 1);
152 #endif
153 	runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE));
154 	assert(!secure_only[0].size);
155 	assert(base && size);
156 
157 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
158 	secure_only[0].paddr = base;
159 	secure_only[0].size = size;
160 }
161 
162 void core_mmu_get_ta_range(paddr_t *base, size_t *size)
163 {
164 	paddr_t b = 0;
165 	size_t s = 0;
166 
167 	static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE));
168 #ifdef TA_RAM_START
169 	b = TA_RAM_START;
170 	s = TA_RAM_SIZE;
171 #else
172 	static_assert(ARRAY_SIZE(secure_only) <= 2);
173 	if (ARRAY_SIZE(secure_only) == 1) {
174 		vaddr_t load_offs = 0;
175 
176 		assert(core_mmu_tee_load_pa >= secure_only[0].paddr);
177 		load_offs = core_mmu_tee_load_pa - secure_only[0].paddr;
178 
179 		assert(secure_only[0].size >
180 		       load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE);
181 		b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE;
182 		s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE -
183 		    TEE_SDP_TEST_MEM_SIZE;
184 	} else {
185 		assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE);
186 		b = secure_only[1].paddr;
187 		s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE;
188 	}
189 #endif
190 	if (base)
191 		*base = b;
192 	if (size)
193 		*size = s;
194 }
195 
196 static struct memory_map *get_memory_map(void)
197 {
198 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
199 		struct memory_map *map = virt_get_memory_map();
200 
201 		if (map)
202 			return map;
203 	}
204 
205 	return &static_memory_map;
206 }
207 
208 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
209 			     paddr_t pa, size_t size)
210 {
211 	size_t n;
212 
213 	for (n = 0; n < alen; n++)
214 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
215 			return true;
216 	return false;
217 }
218 
219 #define pbuf_intersects(a, pa, size) \
220 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
221 
222 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
223 			    paddr_t pa, size_t size)
224 {
225 	size_t n;
226 
227 	for (n = 0; n < alen; n++)
228 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
229 			return true;
230 	return false;
231 }
232 
233 #define pbuf_is_inside(a, pa, size) \
234 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
235 
236 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
237 {
238 	paddr_t end_pa = 0;
239 
240 	if (!map)
241 		return false;
242 
243 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
244 		return false;
245 
246 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
247 }
248 
249 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
250 {
251 	if (!map)
252 		return false;
253 	return (va >= map->va && va <= (map->va + map->size - 1));
254 }
255 
256 /* check if target buffer fits in a core default map area */
257 static bool pbuf_inside_map_area(unsigned long p, size_t l,
258 				 struct tee_mmap_region *map)
259 {
260 	return core_is_buffer_inside(p, l, map->pa, map->size);
261 }
262 
263 TEE_Result core_mmu_for_each_map(void *ptr,
264 				 TEE_Result (*fn)(struct tee_mmap_region *map,
265 						  void *ptr))
266 {
267 	struct memory_map *mem_map = get_memory_map();
268 	TEE_Result res = TEE_SUCCESS;
269 	size_t n = 0;
270 
271 	for (n = 0; n < mem_map->count; n++) {
272 		res = fn(mem_map->map + n, ptr);
273 		if (res)
274 			return res;
275 	}
276 
277 	return TEE_SUCCESS;
278 }
279 
280 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
281 {
282 	struct memory_map *mem_map = get_memory_map();
283 	size_t n = 0;
284 
285 	for (n = 0; n < mem_map->count; n++) {
286 		if (mem_map->map[n].type == type)
287 			return mem_map->map + n;
288 	}
289 	return NULL;
290 }
291 
292 static struct tee_mmap_region *
293 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
294 {
295 	struct memory_map *mem_map = get_memory_map();
296 	size_t n = 0;
297 
298 	for (n = 0; n < mem_map->count; n++) {
299 		if (mem_map->map[n].type != type)
300 			continue;
301 		if (pa_is_in_map(mem_map->map + n, pa, len))
302 			return mem_map->map + n;
303 	}
304 	return NULL;
305 }
306 
307 static struct tee_mmap_region *find_map_by_va(void *va)
308 {
309 	struct memory_map *mem_map = get_memory_map();
310 	vaddr_t a = (vaddr_t)va;
311 	size_t n = 0;
312 
313 	for (n = 0; n < mem_map->count; n++) {
314 		if (a >= mem_map->map[n].va &&
315 		    a <= (mem_map->map[n].va - 1 + mem_map->map[n].size))
316 			return mem_map->map + n;
317 	}
318 
319 	return NULL;
320 }
321 
322 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
323 {
324 	struct memory_map *mem_map = get_memory_map();
325 	size_t n = 0;
326 
327 	for (n = 0; n < mem_map->count; n++) {
328 		/* Skip unmapped regions */
329 		if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) &&
330 		    pa >= mem_map->map[n].pa &&
331 		    pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size))
332 			return mem_map->map + n;
333 	}
334 
335 	return NULL;
336 }
337 
338 #if defined(CFG_SECURE_DATA_PATH)
339 static bool dtb_get_sdp_region(void)
340 {
341 	void *fdt = NULL;
342 	int node = 0;
343 	int tmp_node = 0;
344 	paddr_t tmp_addr = 0;
345 	size_t tmp_size = 0;
346 
347 	if (!IS_ENABLED(CFG_EMBED_DTB))
348 		return false;
349 
350 	fdt = get_embedded_dt();
351 	if (!fdt)
352 		panic("No DTB found");
353 
354 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
355 	if (node < 0) {
356 		DMSG("No %s compatible node found", tz_sdp_match);
357 		return false;
358 	}
359 	tmp_node = node;
360 	while (tmp_node >= 0) {
361 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
362 							 tz_sdp_match);
363 		if (tmp_node >= 0)
364 			DMSG("Ignore SDP pool node %s, supports only 1 node",
365 			     fdt_get_name(fdt, tmp_node, NULL));
366 	}
367 
368 	if (fdt_reg_info(fdt, node, &tmp_addr, &tmp_size)) {
369 		EMSG("%s: Unable to get base addr or size from DT",
370 		     tz_sdp_match);
371 		return false;
372 	}
373 
374 	sec_sdp.paddr = tmp_addr;
375 	sec_sdp.size = tmp_size;
376 
377 	return true;
378 }
379 #endif
380 
381 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
382 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
383 				const struct core_mmu_phys_mem *start,
384 				const struct core_mmu_phys_mem *end)
385 {
386 	const struct core_mmu_phys_mem *mem;
387 
388 	for (mem = start; mem < end; mem++) {
389 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
390 			return true;
391 	}
392 
393 	return false;
394 }
395 #endif
396 
397 #ifdef CFG_CORE_DYN_SHM
398 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
399 			       paddr_t pa, size_t size)
400 {
401 	struct core_mmu_phys_mem *m = *mem;
402 	size_t n = 0;
403 
404 	while (true) {
405 		if (n >= *nelems) {
406 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
407 			     pa, size);
408 			return;
409 		}
410 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
411 			break;
412 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
413 			panic();
414 		n++;
415 	}
416 
417 	if (pa == m[n].addr && size == m[n].size) {
418 		/* Remove this entry */
419 		(*nelems)--;
420 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
421 		m = nex_realloc(m, sizeof(*m) * *nelems);
422 		if (!m)
423 			panic();
424 		*mem = m;
425 	} else if (pa == m[n].addr) {
426 		m[n].addr += size;
427 		m[n].size -= size;
428 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
429 		m[n].size -= size;
430 	} else {
431 		/* Need to split the memory entry */
432 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
433 		if (!m)
434 			panic();
435 		*mem = m;
436 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
437 		(*nelems)++;
438 		m[n].size = pa - m[n].addr;
439 		m[n + 1].size -= size + m[n].size;
440 		m[n + 1].addr = pa + size;
441 	}
442 }
443 
444 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
445 				      size_t nelems,
446 				      struct tee_mmap_region *map)
447 {
448 	size_t n;
449 
450 	for (n = 0; n < nelems; n++) {
451 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
452 					    map->pa, map->size)) {
453 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
454 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
455 			     start[n].addr, start[n].size,
456 			     map->type, map->pa, map->size);
457 			panic();
458 		}
459 	}
460 }
461 
462 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
463 static size_t discovered_nsec_ddr_nelems __nex_bss;
464 
465 static int cmp_pmem_by_addr(const void *a, const void *b)
466 {
467 	const struct core_mmu_phys_mem *pmem_a = a;
468 	const struct core_mmu_phys_mem *pmem_b = b;
469 
470 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
471 }
472 
473 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
474 				      size_t nelems)
475 {
476 	struct core_mmu_phys_mem *m = start;
477 	size_t num_elems = nelems;
478 	struct memory_map *mem_map = &static_memory_map;
479 	const struct core_mmu_phys_mem __maybe_unused *pmem;
480 	size_t n = 0;
481 
482 	assert(!discovered_nsec_ddr_start);
483 	assert(m && num_elems);
484 
485 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
486 
487 	/*
488 	 * Non-secure shared memory and also secure data
489 	 * path memory are supposed to reside inside
490 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
491 	 * are used for a specific purpose make holes for
492 	 * those memory in the normal non-secure memory.
493 	 *
494 	 * This has to be done since for instance QEMU
495 	 * isn't aware of which memory range in the
496 	 * non-secure memory is used for NSEC_SHM.
497 	 */
498 
499 #ifdef CFG_SECURE_DATA_PATH
500 	if (dtb_get_sdp_region())
501 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
502 
503 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
504 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
505 #endif
506 
507 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
508 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
509 				   secure_only[n].size);
510 
511 	for  (n = 0; n < mem_map->count; n++) {
512 		switch (mem_map->map[n].type) {
513 		case MEM_AREA_NSEC_SHM:
514 			carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa,
515 					   mem_map->map[n].size);
516 			break;
517 		case MEM_AREA_EXT_DT:
518 		case MEM_AREA_MANIFEST_DT:
519 		case MEM_AREA_RAM_NSEC:
520 		case MEM_AREA_RES_VASPACE:
521 		case MEM_AREA_SHM_VASPACE:
522 		case MEM_AREA_TS_VASPACE:
523 		case MEM_AREA_PAGER_VASPACE:
524 			break;
525 		default:
526 			check_phys_mem_is_outside(m, num_elems,
527 						  mem_map->map + n);
528 		}
529 	}
530 
531 	discovered_nsec_ddr_start = m;
532 	discovered_nsec_ddr_nelems = num_elems;
533 
534 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
535 				   m[num_elems - 1].size))
536 		panic();
537 }
538 
539 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
540 				    const struct core_mmu_phys_mem **end)
541 {
542 	if (!discovered_nsec_ddr_start)
543 		return false;
544 
545 	*start = discovered_nsec_ddr_start;
546 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
547 
548 	return true;
549 }
550 
551 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
552 {
553 	const struct core_mmu_phys_mem *start;
554 	const struct core_mmu_phys_mem *end;
555 
556 	if (!get_discovered_nsec_ddr(&start, &end))
557 		return false;
558 
559 	return pbuf_is_special_mem(pbuf, len, start, end);
560 }
561 
562 bool core_mmu_nsec_ddr_is_defined(void)
563 {
564 	const struct core_mmu_phys_mem *start;
565 	const struct core_mmu_phys_mem *end;
566 
567 	if (!get_discovered_nsec_ddr(&start, &end))
568 		return false;
569 
570 	return start != end;
571 }
572 #else
573 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
574 {
575 	return false;
576 }
577 #endif /*CFG_CORE_DYN_SHM*/
578 
579 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
580 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
581 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
582 
583 #ifdef CFG_SECURE_DATA_PATH
584 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
585 {
586 	bool is_sdp_mem = false;
587 
588 	if (sec_sdp.size)
589 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
590 						   sec_sdp.size);
591 
592 	if (!is_sdp_mem)
593 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
594 						 phys_sdp_mem_end);
595 
596 	return is_sdp_mem;
597 }
598 
599 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
600 {
601 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
602 					    CORE_MEM_SDP_MEM);
603 
604 	if (!mobj)
605 		panic("can't create SDP physical memory object");
606 
607 	return mobj;
608 }
609 
610 struct mobj **core_sdp_mem_create_mobjs(void)
611 {
612 	const struct core_mmu_phys_mem *mem = NULL;
613 	struct mobj **mobj_base = NULL;
614 	struct mobj **mobj = NULL;
615 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
616 
617 	if (sec_sdp.size)
618 		cnt++;
619 
620 	/* SDP mobjs table must end with a NULL entry */
621 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
622 	if (!mobj_base)
623 		panic("Out of memory");
624 
625 	mobj = mobj_base;
626 
627 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
628 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
629 
630 	if (sec_sdp.size)
631 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
632 
633 	return mobj_base;
634 }
635 
636 #else /* CFG_SECURE_DATA_PATH */
637 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
638 {
639 	return false;
640 }
641 
642 #endif /* CFG_SECURE_DATA_PATH */
643 
644 /* Check special memories comply with registered memories */
645 static void verify_special_mem_areas(struct memory_map *mem_map,
646 				     const struct core_mmu_phys_mem *start,
647 				     const struct core_mmu_phys_mem *end,
648 				     const char *area_name __maybe_unused)
649 {
650 	const struct core_mmu_phys_mem *mem = NULL;
651 	const struct core_mmu_phys_mem *mem2 = NULL;
652 	size_t n = 0;
653 
654 	if (start == end) {
655 		DMSG("No %s memory area defined", area_name);
656 		return;
657 	}
658 
659 	for (mem = start; mem < end; mem++)
660 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
661 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
662 
663 	/* Check memories do not intersect each other */
664 	for (mem = start; mem + 1 < end; mem++) {
665 		for (mem2 = mem + 1; mem2 < end; mem2++) {
666 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
667 						     mem->addr, mem->size)) {
668 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
669 						   mem->addr, mem->size);
670 				panic("Special memory intersection");
671 			}
672 		}
673 	}
674 
675 	/*
676 	 * Check memories do not intersect any mapped memory.
677 	 * This is called before reserved VA space is loaded in mem_map.
678 	 */
679 	for (mem = start; mem < end; mem++) {
680 		for (n = 0; n < mem_map->count; n++) {
681 			if (core_is_buffer_intersect(mem->addr, mem->size,
682 						     mem_map->map[n].pa,
683 						     mem_map->map[n].size)) {
684 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
685 						   mem_map->map[n].pa,
686 						   mem_map->map[n].size);
687 				panic("Special memory intersection");
688 			}
689 		}
690 	}
691 }
692 
693 static void merge_mmaps(struct tee_mmap_region *dst,
694 			const struct tee_mmap_region *src)
695 {
696 	paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1);
697 	paddr_t pa = MIN(dst->pa, src->pa);
698 
699 	DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA,
700 	     dst->pa, dst->pa + dst->size - 1, src->pa,
701 	     src->pa + src->size - 1);
702 	dst->pa = pa;
703 	dst->size = end_pa - pa + 1;
704 }
705 
706 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1,
707 				const struct tee_mmap_region *r2)
708 {
709 	if (r1->type != r2->type)
710 		return false;
711 
712 	if (r1->pa == r2->pa)
713 		return true;
714 
715 	if (r1->pa < r2->pa)
716 		return r1->pa + r1->size >= r2->pa;
717 	else
718 		return r2->pa + r2->size >= r1->pa;
719 }
720 
721 static void add_phys_mem(struct memory_map *mem_map,
722 			 const char *mem_name __maybe_unused,
723 			 enum teecore_memtypes mem_type,
724 			 paddr_t mem_addr, paddr_size_t mem_size)
725 {
726 	size_t n = 0;
727 	const struct tee_mmap_region m0 = {
728 		.type = mem_type,
729 		.pa = mem_addr,
730 		.size = mem_size,
731 	};
732 
733 	if (!mem_size)	/* Discard null size entries */
734 		return;
735 
736 	/*
737 	 * If some ranges of memory of the same type do overlap
738 	 * each others they are coalesced into one entry. To help this
739 	 * added entries are sorted by increasing physical.
740 	 *
741 	 * Note that it's valid to have the same physical memory as several
742 	 * different memory types, for instance the same device memory
743 	 * mapped as both secure and non-secure. This will probably not
744 	 * happen often in practice.
745 	 */
746 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
747 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
748 	for  (n = 0; n < mem_map->count; n++) {
749 		if (mmaps_are_mergeable(mem_map->map + n, &m0)) {
750 			merge_mmaps(mem_map->map + n, &m0);
751 			/*
752 			 * The merged result might be mergeable with the
753 			 * next or previous entry.
754 			 */
755 			if (n + 1 < mem_map->count &&
756 			    mmaps_are_mergeable(mem_map->map + n,
757 						mem_map->map + n + 1)) {
758 				merge_mmaps(mem_map->map + n,
759 					    mem_map->map + n + 1);
760 				rem_array_elem(mem_map->map, mem_map->count,
761 					       sizeof(*mem_map->map), n + 1);
762 				mem_map->count--;
763 			}
764 			if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1,
765 							 mem_map->map + n)) {
766 				merge_mmaps(mem_map->map + n - 1,
767 					    mem_map->map + n);
768 				rem_array_elem(mem_map->map, mem_map->count,
769 					       sizeof(*mem_map->map), n);
770 				mem_map->count--;
771 			}
772 			return;
773 		}
774 		if (mem_type < mem_map->map[n].type ||
775 		    (mem_type == mem_map->map[n].type &&
776 		     mem_addr < mem_map->map[n].pa))
777 			break; /* found the spot where to insert this memory */
778 	}
779 
780 	grow_mem_map(mem_map);
781 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
782 		       n, &m0);
783 }
784 
785 static void add_va_space(struct memory_map *mem_map,
786 			 enum teecore_memtypes type, size_t size)
787 {
788 	size_t n = 0;
789 
790 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
791 	for  (n = 0; n < mem_map->count; n++) {
792 		if (type < mem_map->map[n].type)
793 			break;
794 	}
795 
796 	grow_mem_map(mem_map);
797 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
798 		       n, NULL);
799 	mem_map->map[n] = (struct tee_mmap_region){
800 		.type = type,
801 		.size = size,
802 	};
803 }
804 
805 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
806 {
807 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
808 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
809 				TEE_MATTR_MEM_TYPE_SHIFT;
810 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
811 				TEE_MATTR_MEM_TYPE_SHIFT;
812 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
813 				  TEE_MATTR_MEM_TYPE_SHIFT;
814 
815 	switch (t) {
816 	case MEM_AREA_TEE_RAM:
817 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
818 	case MEM_AREA_TEE_RAM_RX:
819 	case MEM_AREA_INIT_RAM_RX:
820 	case MEM_AREA_IDENTITY_MAP_RX:
821 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
822 	case MEM_AREA_TEE_RAM_RO:
823 	case MEM_AREA_INIT_RAM_RO:
824 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
825 	case MEM_AREA_TEE_RAM_RW:
826 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
827 	case MEM_AREA_NEX_RAM_RW:
828 	case MEM_AREA_TEE_ASAN:
829 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
830 	case MEM_AREA_TEE_COHERENT:
831 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
832 	case MEM_AREA_NSEC_SHM:
833 	case MEM_AREA_NEX_NSEC_SHM:
834 		return attr | TEE_MATTR_PRW | cached;
835 	case MEM_AREA_MANIFEST_DT:
836 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
837 	case MEM_AREA_TRANSFER_LIST:
838 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
839 	case MEM_AREA_EXT_DT:
840 		/*
841 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
842 		 * tree as secure non-cached memory, otherwise, fall back to
843 		 * non-secure mapping.
844 		 */
845 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
846 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
847 			       noncache;
848 		fallthrough;
849 	case MEM_AREA_IO_NSEC:
850 		return attr | TEE_MATTR_PRW | noncache;
851 	case MEM_AREA_IO_SEC:
852 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
853 	case MEM_AREA_RAM_NSEC:
854 		return attr | TEE_MATTR_PRW | cached;
855 	case MEM_AREA_RAM_SEC:
856 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
857 	case MEM_AREA_SEC_RAM_OVERALL:
858 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
859 	case MEM_AREA_ROM_SEC:
860 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
861 	case MEM_AREA_RES_VASPACE:
862 	case MEM_AREA_SHM_VASPACE:
863 		return 0;
864 	case MEM_AREA_PAGER_VASPACE:
865 		return TEE_MATTR_SECURE;
866 	default:
867 		panic("invalid type");
868 	}
869 }
870 
871 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
872 {
873 	switch (mm->type) {
874 	case MEM_AREA_TEE_RAM:
875 	case MEM_AREA_TEE_RAM_RX:
876 	case MEM_AREA_TEE_RAM_RO:
877 	case MEM_AREA_TEE_RAM_RW:
878 	case MEM_AREA_INIT_RAM_RX:
879 	case MEM_AREA_INIT_RAM_RO:
880 	case MEM_AREA_NEX_RAM_RW:
881 	case MEM_AREA_NEX_RAM_RO:
882 	case MEM_AREA_TEE_ASAN:
883 		return true;
884 	default:
885 		return false;
886 	}
887 }
888 
889 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
890 {
891 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
892 }
893 
894 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
895 {
896 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
897 }
898 
899 static int cmp_mmap_by_lower_va(const void *a, const void *b)
900 {
901 	const struct tee_mmap_region *mm_a = a;
902 	const struct tee_mmap_region *mm_b = b;
903 
904 	return CMP_TRILEAN(mm_a->va, mm_b->va);
905 }
906 
907 static void dump_mmap_table(struct memory_map *mem_map)
908 {
909 	size_t n = 0;
910 
911 	for (n = 0; n < mem_map->count; n++) {
912 		struct tee_mmap_region *map __maybe_unused = mem_map->map + n;
913 
914 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
915 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
916 		     teecore_memtype_name(map->type), map->va,
917 		     map->va + map->size - 1, map->pa,
918 		     (paddr_t)(map->pa + map->size - 1), map->size,
919 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
920 	}
921 }
922 
923 #if DEBUG_XLAT_TABLE
924 
925 static void dump_xlat_table(vaddr_t va, unsigned int level)
926 {
927 	struct core_mmu_table_info tbl_info;
928 	unsigned int idx = 0;
929 	paddr_t pa;
930 	uint32_t attr;
931 
932 	core_mmu_find_table(NULL, va, level, &tbl_info);
933 	va = tbl_info.va_base;
934 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
935 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
936 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
937 			const char *security_bit = "";
938 
939 			if (core_mmu_entry_have_security_bit(attr)) {
940 				if (attr & TEE_MATTR_SECURE)
941 					security_bit = "S";
942 				else
943 					security_bit = "NS";
944 			}
945 
946 			if (attr & TEE_MATTR_TABLE) {
947 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
948 					" TBL:0x%010" PRIxPA " %s",
949 					level * 2, "", level, va, pa,
950 					security_bit);
951 				dump_xlat_table(va, level + 1);
952 			} else if (attr) {
953 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
954 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
955 					level * 2, "", level, va, pa,
956 					mattr_is_cached(attr) ? "MEM" :
957 					"DEV",
958 					attr & TEE_MATTR_PW ? "RW" : "RO",
959 					attr & TEE_MATTR_PX ? "X " : "XN",
960 					security_bit);
961 			} else {
962 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
963 					    " INVALID\n",
964 					    level * 2, "", level, va);
965 			}
966 		}
967 		va += BIT64(tbl_info.shift);
968 	}
969 }
970 
971 #else
972 
973 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
974 {
975 }
976 
977 #endif
978 
979 /*
980  * Reserves virtual memory space for pager usage.
981  *
982  * From the start of the first memory used by the link script +
983  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
984  * mapping for pager usage. This adds translation tables as needed for the
985  * pager to operate.
986  */
987 static void add_pager_vaspace(struct memory_map *mem_map)
988 {
989 	paddr_t begin = 0;
990 	paddr_t end = 0;
991 	size_t size = 0;
992 	size_t pos = 0;
993 	size_t n = 0;
994 
995 
996 	for (n = 0; n < mem_map->count; n++) {
997 		if (map_is_tee_ram(mem_map->map + n)) {
998 			if (!begin)
999 				begin = mem_map->map[n].pa;
1000 			pos = n + 1;
1001 		}
1002 	}
1003 
1004 	end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size;
1005 	assert(end - begin < TEE_RAM_VA_SIZE);
1006 	size = TEE_RAM_VA_SIZE - (end - begin);
1007 
1008 	grow_mem_map(mem_map);
1009 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
1010 		       n, NULL);
1011 	mem_map->map[n] = (struct tee_mmap_region){
1012 		.type = MEM_AREA_PAGER_VASPACE,
1013 		.size = size,
1014 		.region_size = SMALL_PAGE_SIZE,
1015 		.attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE),
1016 	};
1017 }
1018 
1019 static void check_sec_nsec_mem_config(void)
1020 {
1021 	size_t n = 0;
1022 
1023 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
1024 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
1025 				    secure_only[n].size))
1026 			panic("Invalid memory access config: sec/nsec");
1027 	}
1028 }
1029 
1030 static void collect_device_mem_ranges(struct memory_map *mem_map)
1031 {
1032 	const char *compatible = "arm,ffa-manifest-device-regions";
1033 	void *fdt = get_manifest_dt();
1034 	const char *name = NULL;
1035 	uint64_t page_count = 0;
1036 	uint64_t base = 0;
1037 	int subnode = 0;
1038 	int node = 0;
1039 
1040 	assert(fdt);
1041 
1042 	node = fdt_node_offset_by_compatible(fdt, 0, compatible);
1043 	if (node < 0)
1044 		return;
1045 
1046 	fdt_for_each_subnode(subnode, fdt, node) {
1047 		name = fdt_get_name(fdt, subnode, NULL);
1048 		if (!name)
1049 			continue;
1050 
1051 		if (dt_getprop_as_number(fdt, subnode, "base-address",
1052 					 &base)) {
1053 			EMSG("Mandatory field is missing: base-address");
1054 			continue;
1055 		}
1056 
1057 		if (base & SMALL_PAGE_MASK) {
1058 			EMSG("base-address is not page aligned");
1059 			continue;
1060 		}
1061 
1062 		if (dt_getprop_as_number(fdt, subnode, "pages-count",
1063 					 &page_count)) {
1064 			EMSG("Mandatory field is missing: pages-count");
1065 			continue;
1066 		}
1067 
1068 		add_phys_mem(mem_map, name, MEM_AREA_IO_SEC,
1069 			     base, base + page_count * SMALL_PAGE_SIZE);
1070 	}
1071 }
1072 
1073 static void collect_mem_ranges(struct memory_map *mem_map)
1074 {
1075 	const struct core_mmu_phys_mem *mem = NULL;
1076 	vaddr_t ram_start = secure_only[0].paddr;
1077 	size_t n = 0;
1078 
1079 #define ADD_PHYS_MEM(_type, _addr, _size) \
1080 		add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size))
1081 
1082 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
1083 		paddr_t next_pa = 0;
1084 
1085 		/*
1086 		 * Read-only and read-execute physical memory areas must
1087 		 * not be mapped by MEM_AREA_SEC_RAM_OVERALL, but all the
1088 		 * read/write should.
1089 		 */
1090 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, ram_start,
1091 			     VCORE_UNPG_RX_PA - ram_start);
1092 		assert(VCORE_UNPG_RX_PA >= ram_start);
1093 		tee_ram_initial_offs = VCORE_UNPG_RX_PA - ram_start;
1094 		DMSG("tee_ram_initial_offs %#zx", tee_ram_initial_offs);
1095 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
1096 			     VCORE_UNPG_RX_SZ);
1097 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
1098 			     VCORE_UNPG_RO_SZ);
1099 
1100 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1101 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
1102 				     VCORE_UNPG_RW_SZ);
1103 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA,
1104 				     VCORE_UNPG_RW_SZ);
1105 
1106 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
1107 				     VCORE_NEX_RW_SZ);
1108 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_NEX_RW_PA,
1109 				     VCORE_NEX_RW_SZ);
1110 
1111 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_FREE_PA,
1112 				     VCORE_FREE_SZ);
1113 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA,
1114 				     VCORE_FREE_SZ);
1115 			next_pa = VCORE_FREE_PA + VCORE_FREE_SZ;
1116 		} else {
1117 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
1118 				     VCORE_UNPG_RW_SZ);
1119 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA,
1120 				     VCORE_UNPG_RW_SZ);
1121 
1122 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_FREE_PA,
1123 				     VCORE_FREE_SZ);
1124 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA,
1125 				     VCORE_FREE_SZ);
1126 			next_pa = VCORE_FREE_PA + VCORE_FREE_SZ;
1127 		}
1128 
1129 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1130 			paddr_t pa = 0;
1131 			size_t sz = 0;
1132 
1133 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
1134 				     VCORE_INIT_RX_SZ);
1135 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
1136 				     VCORE_INIT_RO_SZ);
1137 			/*
1138 			 * Core init mapping shall cover up to end of the
1139 			 * physical RAM.  This is required since the hash
1140 			 * table is appended to the binary data after the
1141 			 * firmware build sequence.
1142 			 */
1143 			pa = VCORE_INIT_RO_PA + VCORE_INIT_RO_SZ;
1144 			sz = TEE_RAM_START + TEE_RAM_PH_SIZE - pa;
1145 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM, pa, sz);
1146 		} else {
1147 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, next_pa,
1148 				     secure_only[0].paddr +
1149 				     secure_only[0].size - next_pa);
1150 		}
1151 	} else {
1152 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
1153 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr,
1154 			     secure_only[0].size);
1155 	}
1156 
1157 	for (n = 1; n < ARRAY_SIZE(secure_only); n++)
1158 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr,
1159 			     secure_only[n].size);
1160 
1161 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
1162 	    IS_ENABLED(CFG_WITH_PAGER)) {
1163 		/*
1164 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
1165 		 * disabled.
1166 		 */
1167 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1168 	}
1169 
1170 #undef ADD_PHYS_MEM
1171 
1172 	/* Collect device memory info from SP manifest */
1173 	if (IS_ENABLED(CFG_CORE_SEL2_SPMC))
1174 		collect_device_mem_ranges(mem_map);
1175 
1176 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1177 		/* Only unmapped virtual range may have a null phys addr */
1178 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1179 
1180 		add_phys_mem(mem_map, mem->name, mem->type,
1181 			     mem->addr, mem->size);
1182 	}
1183 
1184 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1185 		verify_special_mem_areas(mem_map, phys_sdp_mem_begin,
1186 					 phys_sdp_mem_end, "SDP");
1187 
1188 	add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE);
1189 	add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE);
1190 }
1191 
1192 static void assign_mem_granularity(struct memory_map *mem_map)
1193 {
1194 	size_t n = 0;
1195 
1196 	/*
1197 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1198 	 * SMALL_PAGE_SIZE.
1199 	 */
1200 	for  (n = 0; n < mem_map->count; n++) {
1201 		paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size;
1202 
1203 		if (mask & SMALL_PAGE_MASK)
1204 			panic("Impossible memory alignment");
1205 
1206 		if (map_is_tee_ram(mem_map->map + n))
1207 			mem_map->map[n].region_size = SMALL_PAGE_SIZE;
1208 		else
1209 			mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE;
1210 	}
1211 }
1212 
1213 static bool place_tee_ram_at_top(paddr_t paddr)
1214 {
1215 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1216 }
1217 
1218 /*
1219  * MMU arch driver shall override this function if it helps
1220  * optimizing the memory footprint of the address translation tables.
1221  */
1222 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1223 {
1224 	return place_tee_ram_at_top(paddr);
1225 }
1226 
1227 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map,
1228 			      bool tee_ram_at_top)
1229 {
1230 	struct tee_mmap_region *map = NULL;
1231 	vaddr_t va = 0;
1232 	bool va_is_secure = true;
1233 	size_t n = 0;
1234 
1235 	/*
1236 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1237 	 * 0 is by design an invalid va, so return false directly.
1238 	 */
1239 	if (!tee_ram_va)
1240 		return false;
1241 
1242 	/* Clear eventual previous assignments */
1243 	for (n = 0; n < mem_map->count; n++)
1244 		mem_map->map[n].va = 0;
1245 
1246 	/*
1247 	 * TEE RAM regions are always aligned with region_size.
1248 	 *
1249 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1250 	 * since it handles virtual memory which covers the part of the ELF
1251 	 * that cannot fit directly into memory.
1252 	 */
1253 	va = tee_ram_va + tee_ram_initial_offs;
1254 	for (n = 0; n < mem_map->count; n++) {
1255 		map = mem_map->map + n;
1256 		if (map_is_tee_ram(map) ||
1257 		    map->type == MEM_AREA_PAGER_VASPACE) {
1258 			assert(!(va & (map->region_size - 1)));
1259 			assert(!(map->size & (map->region_size - 1)));
1260 			map->va = va;
1261 			if (ADD_OVERFLOW(va, map->size, &va))
1262 				return false;
1263 			if (va >= BIT64(core_mmu_get_va_width()))
1264 				return false;
1265 		}
1266 	}
1267 
1268 	if (tee_ram_at_top) {
1269 		/*
1270 		 * Map non-tee ram regions at addresses lower than the tee
1271 		 * ram region.
1272 		 */
1273 		va = tee_ram_va;
1274 		for (n = 0; n < mem_map->count; n++) {
1275 			map = mem_map->map + n;
1276 			map->attr = core_mmu_type_to_attr(map->type);
1277 			if (map->va)
1278 				continue;
1279 
1280 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1281 			    va_is_secure != map_is_secure(map)) {
1282 				va_is_secure = !va_is_secure;
1283 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1284 			}
1285 
1286 			if (SUB_OVERFLOW(va, map->size, &va))
1287 				return false;
1288 			va = ROUNDDOWN(va, map->region_size);
1289 			/*
1290 			 * Make sure that va is aligned with pa for
1291 			 * efficient pgdir mapping. Basically pa &
1292 			 * pgdir_mask should be == va & pgdir_mask
1293 			 */
1294 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1295 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1296 					return false;
1297 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1298 			}
1299 			map->va = va;
1300 		}
1301 	} else {
1302 		/*
1303 		 * Map non-tee ram regions at addresses higher than the tee
1304 		 * ram region.
1305 		 */
1306 		for (n = 0; n < mem_map->count; n++) {
1307 			map = mem_map->map + n;
1308 			map->attr = core_mmu_type_to_attr(map->type);
1309 			if (map->va)
1310 				continue;
1311 
1312 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1313 			    va_is_secure != map_is_secure(map)) {
1314 				va_is_secure = !va_is_secure;
1315 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1316 						     &va))
1317 					return false;
1318 			}
1319 
1320 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1321 				return false;
1322 			/*
1323 			 * Make sure that va is aligned with pa for
1324 			 * efficient pgdir mapping. Basically pa &
1325 			 * pgdir_mask should be == va & pgdir_mask
1326 			 */
1327 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1328 				vaddr_t offs = (map->pa - va) &
1329 					       CORE_MMU_PGDIR_MASK;
1330 
1331 				if (ADD_OVERFLOW(va, offs, &va))
1332 					return false;
1333 			}
1334 
1335 			map->va = va;
1336 			if (ADD_OVERFLOW(va, map->size, &va))
1337 				return false;
1338 			if (va >= BIT64(core_mmu_get_va_width()))
1339 				return false;
1340 		}
1341 	}
1342 
1343 	return true;
1344 }
1345 
1346 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map)
1347 {
1348 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1349 
1350 	/*
1351 	 * Check that we're not overlapping with the user VA range.
1352 	 */
1353 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1354 		/*
1355 		 * User VA range is supposed to be defined after these
1356 		 * mappings have been established.
1357 		 */
1358 		assert(!core_mmu_user_va_range_is_defined());
1359 	} else {
1360 		vaddr_t user_va_base = 0;
1361 		size_t user_va_size = 0;
1362 
1363 		assert(core_mmu_user_va_range_is_defined());
1364 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1365 		if (tee_ram_va < (user_va_base + user_va_size))
1366 			return false;
1367 	}
1368 
1369 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1370 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1371 
1372 		/* Try whole mapping covered by a single base xlat entry */
1373 		if (prefered_dir != tee_ram_at_top &&
1374 		    assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir))
1375 			return true;
1376 	}
1377 
1378 	return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top);
1379 }
1380 
1381 static int cmp_init_mem_map(const void *a, const void *b)
1382 {
1383 	const struct tee_mmap_region *mm_a = a;
1384 	const struct tee_mmap_region *mm_b = b;
1385 	int rc = 0;
1386 
1387 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1388 	if (!rc)
1389 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1390 	/*
1391 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1392 	 * the same level2 table. Hence sort secure mapping from non-secure
1393 	 * mapping.
1394 	 */
1395 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1396 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1397 
1398 	return rc;
1399 }
1400 
1401 static bool mem_map_add_id_map(struct memory_map *mem_map,
1402 			       vaddr_t id_map_start, vaddr_t id_map_end)
1403 {
1404 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1405 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1406 	size_t len = end - start;
1407 	size_t n = 0;
1408 
1409 
1410 	for (n = 0; n < mem_map->count; n++)
1411 		if (core_is_buffer_intersect(mem_map->map[n].va,
1412 					     mem_map->map[n].size, start, len))
1413 			return false;
1414 
1415 	grow_mem_map(mem_map);
1416 	mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){
1417 		.type = MEM_AREA_IDENTITY_MAP_RX,
1418 		/*
1419 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1420 		 * translation table, at the increased risk of clashes with
1421 		 * the rest of the memory map.
1422 		 */
1423 		.region_size = SMALL_PAGE_SIZE,
1424 		.pa = start,
1425 		.va = start,
1426 		.size = len,
1427 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1428 	};
1429 
1430 	return true;
1431 }
1432 
1433 static struct memory_map *init_mem_map(struct memory_map *mem_map,
1434 				       unsigned long seed,
1435 				       unsigned long *ret_offs)
1436 {
1437 	/*
1438 	 * @id_map_start and @id_map_end describes a physical memory range
1439 	 * that must be mapped Read-Only eXecutable at identical virtual
1440 	 * addresses.
1441 	 */
1442 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1443 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1444 	vaddr_t start_addr = secure_only[0].paddr;
1445 	unsigned long offs = 0;
1446 
1447 	collect_mem_ranges(mem_map);
1448 	assign_mem_granularity(mem_map);
1449 
1450 	/*
1451 	 * To ease mapping and lower use of xlat tables, sort mapping
1452 	 * description moving small-page regions after the pgdir regions.
1453 	 */
1454 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1455 	      cmp_init_mem_map);
1456 
1457 	if (IS_ENABLED(CFG_WITH_PAGER))
1458 		add_pager_vaspace(mem_map);
1459 
1460 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1461 		vaddr_t base_addr = start_addr + seed;
1462 		const unsigned int va_width = core_mmu_get_va_width();
1463 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1464 						   SMALL_PAGE_SHIFT);
1465 		vaddr_t ba = base_addr;
1466 		size_t n = 0;
1467 
1468 		for (n = 0; n < 3; n++) {
1469 			if (n)
1470 				ba = base_addr ^ BIT64(va_width - n);
1471 			ba &= va_mask;
1472 			if (assign_mem_va(ba, mem_map) &&
1473 			    mem_map_add_id_map(mem_map, id_map_start,
1474 					       id_map_end)) {
1475 				offs = ba - start_addr;
1476 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1477 				     ba, offs);
1478 				goto out;
1479 			} else {
1480 				DMSG("Failed to map core at %#"PRIxVA, ba);
1481 			}
1482 		}
1483 		EMSG("Failed to map core with seed %#lx", seed);
1484 	}
1485 
1486 	if (!assign_mem_va(start_addr, mem_map))
1487 		panic();
1488 
1489 out:
1490 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1491 	      cmp_mmap_by_lower_va);
1492 
1493 	dump_mmap_table(mem_map);
1494 
1495 	*ret_offs = offs;
1496 	return mem_map;
1497 }
1498 
1499 static void check_mem_map(struct memory_map *mem_map)
1500 {
1501 	struct tee_mmap_region *m = NULL;
1502 	size_t n = 0;
1503 
1504 	for (n = 0; n < mem_map->count; n++) {
1505 		m = mem_map->map + n;
1506 		switch (m->type) {
1507 		case MEM_AREA_TEE_RAM:
1508 		case MEM_AREA_TEE_RAM_RX:
1509 		case MEM_AREA_TEE_RAM_RO:
1510 		case MEM_AREA_TEE_RAM_RW:
1511 		case MEM_AREA_INIT_RAM_RX:
1512 		case MEM_AREA_INIT_RAM_RO:
1513 		case MEM_AREA_NEX_RAM_RW:
1514 		case MEM_AREA_NEX_RAM_RO:
1515 		case MEM_AREA_IDENTITY_MAP_RX:
1516 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1517 				panic("TEE_RAM can't fit in secure_only");
1518 			break;
1519 		case MEM_AREA_SEC_RAM_OVERALL:
1520 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1521 				panic("SEC_RAM_OVERALL can't fit in secure_only");
1522 			break;
1523 		case MEM_AREA_NSEC_SHM:
1524 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1525 				panic("NS_SHM can't fit in nsec_shared");
1526 			break;
1527 		case MEM_AREA_TEE_COHERENT:
1528 		case MEM_AREA_TEE_ASAN:
1529 		case MEM_AREA_IO_SEC:
1530 		case MEM_AREA_IO_NSEC:
1531 		case MEM_AREA_EXT_DT:
1532 		case MEM_AREA_MANIFEST_DT:
1533 		case MEM_AREA_TRANSFER_LIST:
1534 		case MEM_AREA_RAM_SEC:
1535 		case MEM_AREA_RAM_NSEC:
1536 		case MEM_AREA_ROM_SEC:
1537 		case MEM_AREA_RES_VASPACE:
1538 		case MEM_AREA_SHM_VASPACE:
1539 		case MEM_AREA_PAGER_VASPACE:
1540 			break;
1541 		default:
1542 			EMSG("Uhandled memtype %d", m->type);
1543 			panic();
1544 		}
1545 	}
1546 }
1547 
1548 /*
1549  * core_init_mmu_map() - init tee core default memory mapping
1550  *
1551  * This routine sets the static default TEE core mapping. If @seed is > 0
1552  * and configured with CFG_CORE_ASLR it will map tee core at a location
1553  * based on the seed and return the offset from the link address.
1554  *
1555  * If an error happened: core_init_mmu_map is expected to panic.
1556  *
1557  * Note: this function is weak just to make it possible to exclude it from
1558  * the unpaged area.
1559  */
1560 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1561 {
1562 #ifndef CFG_NS_VIRTUALIZATION
1563 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1564 #else
1565 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1566 				  SMALL_PAGE_SIZE);
1567 #endif
1568 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1569 	struct tee_mmap_region tmp_mmap_region = { };
1570 	struct memory_map mem_map = { };
1571 	unsigned long offs = 0;
1572 
1573 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1574 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1575 		panic("OP-TEE load address is not page aligned");
1576 
1577 	check_sec_nsec_mem_config();
1578 
1579 	mem_map = static_memory_map;
1580 	static_memory_map = (struct memory_map){
1581 		.map = &tmp_mmap_region,
1582 		.alloc_count = 1,
1583 		.count = 1,
1584 	};
1585 	/*
1586 	 * Add a entry covering the translation tables which will be
1587 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1588 	 */
1589 	static_memory_map.map[0] = (struct tee_mmap_region){
1590 		.type = MEM_AREA_TEE_RAM,
1591 		.region_size = SMALL_PAGE_SIZE,
1592 		.pa = start,
1593 		.va = start,
1594 		.size = len,
1595 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1596 	};
1597 
1598 	init_mem_map(&mem_map, seed, &offs);
1599 
1600 	check_mem_map(&mem_map);
1601 	core_init_mmu(&mem_map);
1602 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1603 	core_init_mmu_regs(cfg);
1604 	cfg->map_offset = offs;
1605 	static_memory_map = mem_map;
1606 }
1607 
1608 bool core_mmu_mattr_is_ok(uint32_t mattr)
1609 {
1610 	/*
1611 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1612 	 * core_mmu_v7.c:mattr_to_texcb
1613 	 */
1614 
1615 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1616 	case TEE_MATTR_MEM_TYPE_DEV:
1617 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1618 	case TEE_MATTR_MEM_TYPE_CACHED:
1619 	case TEE_MATTR_MEM_TYPE_TAGGED:
1620 		return true;
1621 	default:
1622 		return false;
1623 	}
1624 }
1625 
1626 /*
1627  * test attributes of target physical buffer
1628  *
1629  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1630  *
1631  */
1632 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1633 {
1634 	struct tee_mmap_region *map;
1635 
1636 	/* Empty buffers complies with anything */
1637 	if (len == 0)
1638 		return true;
1639 
1640 	switch (attr) {
1641 	case CORE_MEM_SEC:
1642 		return pbuf_is_inside(secure_only, pbuf, len);
1643 	case CORE_MEM_NON_SEC:
1644 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1645 			pbuf_is_nsec_ddr(pbuf, len);
1646 	case CORE_MEM_TEE_RAM:
1647 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1648 							TEE_RAM_PH_SIZE);
1649 #ifdef CFG_CORE_RESERVED_SHM
1650 	case CORE_MEM_NSEC_SHM:
1651 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1652 							TEE_SHMEM_SIZE);
1653 #endif
1654 	case CORE_MEM_SDP_MEM:
1655 		return pbuf_is_sdp_mem(pbuf, len);
1656 	case CORE_MEM_CACHED:
1657 		map = find_map_by_pa(pbuf);
1658 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1659 			return false;
1660 		return mattr_is_cached(map->attr);
1661 	default:
1662 		return false;
1663 	}
1664 }
1665 
1666 /* test attributes of target virtual buffer (in core mapping) */
1667 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1668 {
1669 	paddr_t p;
1670 
1671 	/* Empty buffers complies with anything */
1672 	if (len == 0)
1673 		return true;
1674 
1675 	p = virt_to_phys((void *)vbuf);
1676 	if (!p)
1677 		return false;
1678 
1679 	return core_pbuf_is(attr, p, len);
1680 }
1681 
1682 /* core_va2pa - teecore exported service */
1683 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1684 {
1685 	struct tee_mmap_region *map;
1686 
1687 	map = find_map_by_va(va);
1688 	if (!va_is_in_map(map, (vaddr_t)va))
1689 		return -1;
1690 
1691 	/*
1692 	 * We can calculate PA for static map. Virtual address ranges
1693 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1694 	 * together with an invalid null physical address.
1695 	 */
1696 	if (map->pa)
1697 		*pa = map->pa + (vaddr_t)va  - map->va;
1698 	else
1699 		*pa = 0;
1700 
1701 	return 0;
1702 }
1703 
1704 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1705 {
1706 	if (!pa_is_in_map(map, pa, len))
1707 		return NULL;
1708 
1709 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1710 }
1711 
1712 /*
1713  * teecore gets some memory area definitions
1714  */
1715 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1716 			      vaddr_t *e)
1717 {
1718 	struct tee_mmap_region *map = find_map_by_type(type);
1719 
1720 	if (map) {
1721 		*s = map->va;
1722 		*e = map->va + map->size;
1723 	} else {
1724 		*s = 0;
1725 		*e = 0;
1726 	}
1727 }
1728 
1729 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1730 {
1731 	struct tee_mmap_region *map = find_map_by_pa(pa);
1732 
1733 	if (!map)
1734 		return MEM_AREA_MAXTYPE;
1735 	return map->type;
1736 }
1737 
1738 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1739 			paddr_t pa, uint32_t attr)
1740 {
1741 	assert(idx < tbl_info->num_entries);
1742 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1743 				     idx, pa, attr);
1744 }
1745 
1746 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1747 			paddr_t *pa, uint32_t *attr)
1748 {
1749 	assert(idx < tbl_info->num_entries);
1750 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1751 				     idx, pa, attr);
1752 }
1753 
1754 static void clear_region(struct core_mmu_table_info *tbl_info,
1755 			 struct tee_mmap_region *region)
1756 {
1757 	unsigned int end = 0;
1758 	unsigned int idx = 0;
1759 
1760 	/* va, len and pa should be block aligned */
1761 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1762 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1763 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1764 
1765 	idx = core_mmu_va2idx(tbl_info, region->va);
1766 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1767 
1768 	while (idx < end) {
1769 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1770 		idx++;
1771 	}
1772 }
1773 
1774 static void set_region(struct core_mmu_table_info *tbl_info,
1775 		       struct tee_mmap_region *region)
1776 {
1777 	unsigned int end;
1778 	unsigned int idx;
1779 	paddr_t pa;
1780 
1781 	/* va, len and pa should be block aligned */
1782 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1783 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1784 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1785 
1786 	idx = core_mmu_va2idx(tbl_info, region->va);
1787 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1788 	pa = region->pa;
1789 
1790 	while (idx < end) {
1791 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1792 		idx++;
1793 		pa += BIT64(tbl_info->shift);
1794 	}
1795 }
1796 
1797 static void set_pg_region(struct core_mmu_table_info *dir_info,
1798 			  struct vm_region *region, struct pgt **pgt,
1799 			  struct core_mmu_table_info *pg_info)
1800 {
1801 	struct tee_mmap_region r = {
1802 		.va = region->va,
1803 		.size = region->size,
1804 		.attr = region->attr,
1805 	};
1806 	vaddr_t end = r.va + r.size;
1807 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1808 
1809 	while (r.va < end) {
1810 		if (!pg_info->table ||
1811 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1812 			/*
1813 			 * We're assigning a new translation table.
1814 			 */
1815 			unsigned int idx;
1816 
1817 			/* Virtual addresses must grow */
1818 			assert(r.va > pg_info->va_base);
1819 
1820 			idx = core_mmu_va2idx(dir_info, r.va);
1821 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1822 
1823 			/*
1824 			 * Advance pgt to va_base, note that we may need to
1825 			 * skip multiple page tables if there are large
1826 			 * holes in the vm map.
1827 			 */
1828 			while ((*pgt)->vabase < pg_info->va_base) {
1829 				*pgt = SLIST_NEXT(*pgt, link);
1830 				/* We should have allocated enough */
1831 				assert(*pgt);
1832 			}
1833 			assert((*pgt)->vabase == pg_info->va_base);
1834 			pg_info->table = (*pgt)->tbl;
1835 
1836 			core_mmu_set_entry(dir_info, idx,
1837 					   virt_to_phys(pg_info->table),
1838 					   pgt_attr);
1839 		}
1840 
1841 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1842 			     end - r.va);
1843 
1844 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1845 			size_t granule = BIT(pg_info->shift);
1846 			size_t offset = r.va - region->va + region->offset;
1847 
1848 			r.size = MIN(r.size,
1849 				     mobj_get_phys_granule(region->mobj));
1850 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1851 
1852 			if (mobj_get_pa(region->mobj, offset, granule,
1853 					&r.pa) != TEE_SUCCESS)
1854 				panic("Failed to get PA of unpaged mobj");
1855 			set_region(pg_info, &r);
1856 		}
1857 		r.va += r.size;
1858 	}
1859 }
1860 
1861 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1862 			     size_t size_left, paddr_t block_size,
1863 			     struct tee_mmap_region *mm)
1864 {
1865 	/* VA and PA are aligned to block size at current level */
1866 	if ((vaddr | paddr) & (block_size - 1))
1867 		return false;
1868 
1869 	/* Remainder fits into block at current level */
1870 	if (size_left < block_size)
1871 		return false;
1872 
1873 	/*
1874 	 * The required block size of the region is compatible with the
1875 	 * block size of the current level.
1876 	 */
1877 	if (mm->region_size < block_size)
1878 		return false;
1879 
1880 #ifdef CFG_WITH_PAGER
1881 	/*
1882 	 * If pager is enabled, we need to map TEE RAM and the whole pager
1883 	 * regions with small pages only
1884 	 */
1885 	if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) &&
1886 	    block_size != SMALL_PAGE_SIZE)
1887 		return false;
1888 #endif
1889 
1890 	return true;
1891 }
1892 
1893 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1894 {
1895 	struct core_mmu_table_info tbl_info;
1896 	unsigned int idx;
1897 	vaddr_t vaddr = mm->va;
1898 	paddr_t paddr = mm->pa;
1899 	ssize_t size_left = mm->size;
1900 	unsigned int level;
1901 	bool table_found;
1902 	uint32_t old_attr;
1903 
1904 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1905 
1906 	while (size_left > 0) {
1907 		level = CORE_MMU_BASE_TABLE_LEVEL;
1908 
1909 		while (true) {
1910 			paddr_t block_size = 0;
1911 
1912 			assert(core_mmu_level_in_range(level));
1913 
1914 			table_found = core_mmu_find_table(prtn, vaddr, level,
1915 							  &tbl_info);
1916 			if (!table_found)
1917 				panic("can't find table for mapping");
1918 
1919 			block_size = BIT64(tbl_info.shift);
1920 
1921 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1922 			if (!can_map_at_level(paddr, vaddr, size_left,
1923 					      block_size, mm)) {
1924 				bool secure = mm->attr & TEE_MATTR_SECURE;
1925 
1926 				/*
1927 				 * This part of the region can't be mapped at
1928 				 * this level. Need to go deeper.
1929 				 */
1930 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1931 								     idx,
1932 								     secure))
1933 					panic("Can't divide MMU entry");
1934 				level = tbl_info.next_level;
1935 				continue;
1936 			}
1937 
1938 			/* We can map part of the region at current level */
1939 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1940 			if (old_attr)
1941 				panic("Page is already mapped");
1942 
1943 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1944 			paddr += block_size;
1945 			vaddr += block_size;
1946 			size_left -= block_size;
1947 
1948 			break;
1949 		}
1950 	}
1951 }
1952 
1953 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1954 			      enum teecore_memtypes memtype)
1955 {
1956 	TEE_Result ret;
1957 	struct core_mmu_table_info tbl_info;
1958 	struct tee_mmap_region *mm;
1959 	unsigned int idx;
1960 	uint32_t old_attr;
1961 	uint32_t exceptions;
1962 	vaddr_t vaddr = vstart;
1963 	size_t i;
1964 	bool secure;
1965 
1966 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1967 
1968 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1969 
1970 	if (vaddr & SMALL_PAGE_MASK)
1971 		return TEE_ERROR_BAD_PARAMETERS;
1972 
1973 	exceptions = mmu_lock();
1974 
1975 	mm = find_map_by_va((void *)vaddr);
1976 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1977 		panic("VA does not belong to any known mm region");
1978 
1979 	if (!core_mmu_is_dynamic_vaspace(mm))
1980 		panic("Trying to map into static region");
1981 
1982 	for (i = 0; i < num_pages; i++) {
1983 		if (pages[i] & SMALL_PAGE_MASK) {
1984 			ret = TEE_ERROR_BAD_PARAMETERS;
1985 			goto err;
1986 		}
1987 
1988 		while (true) {
1989 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1990 						 &tbl_info))
1991 				panic("Can't find pagetable for vaddr ");
1992 
1993 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1994 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1995 				break;
1996 
1997 			/* This is supertable. Need to divide it. */
1998 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1999 							     secure))
2000 				panic("Failed to spread pgdir on small tables");
2001 		}
2002 
2003 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2004 		if (old_attr)
2005 			panic("Page is already mapped");
2006 
2007 		core_mmu_set_entry(&tbl_info, idx, pages[i],
2008 				   core_mmu_type_to_attr(memtype));
2009 		vaddr += SMALL_PAGE_SIZE;
2010 	}
2011 
2012 	/*
2013 	 * Make sure all the changes to translation tables are visible
2014 	 * before returning. TLB doesn't need to be invalidated as we are
2015 	 * guaranteed that there's no valid mapping in this range.
2016 	 */
2017 	core_mmu_table_write_barrier();
2018 	mmu_unlock(exceptions);
2019 
2020 	return TEE_SUCCESS;
2021 err:
2022 	mmu_unlock(exceptions);
2023 
2024 	if (i)
2025 		core_mmu_unmap_pages(vstart, i);
2026 
2027 	return ret;
2028 }
2029 
2030 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
2031 					 size_t num_pages,
2032 					 enum teecore_memtypes memtype)
2033 {
2034 	struct core_mmu_table_info tbl_info = { };
2035 	struct tee_mmap_region *mm = NULL;
2036 	unsigned int idx = 0;
2037 	uint32_t old_attr = 0;
2038 	uint32_t exceptions = 0;
2039 	vaddr_t vaddr = vstart;
2040 	paddr_t paddr = pstart;
2041 	size_t i = 0;
2042 	bool secure = false;
2043 
2044 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
2045 
2046 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
2047 
2048 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
2049 		return TEE_ERROR_BAD_PARAMETERS;
2050 
2051 	exceptions = mmu_lock();
2052 
2053 	mm = find_map_by_va((void *)vaddr);
2054 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
2055 		panic("VA does not belong to any known mm region");
2056 
2057 	if (!core_mmu_is_dynamic_vaspace(mm))
2058 		panic("Trying to map into static region");
2059 
2060 	for (i = 0; i < num_pages; i++) {
2061 		while (true) {
2062 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
2063 						 &tbl_info))
2064 				panic("Can't find pagetable for vaddr ");
2065 
2066 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2067 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
2068 				break;
2069 
2070 			/* This is supertable. Need to divide it. */
2071 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
2072 							     secure))
2073 				panic("Failed to spread pgdir on small tables");
2074 		}
2075 
2076 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2077 		if (old_attr)
2078 			panic("Page is already mapped");
2079 
2080 		core_mmu_set_entry(&tbl_info, idx, paddr,
2081 				   core_mmu_type_to_attr(memtype));
2082 		paddr += SMALL_PAGE_SIZE;
2083 		vaddr += SMALL_PAGE_SIZE;
2084 	}
2085 
2086 	/*
2087 	 * Make sure all the changes to translation tables are visible
2088 	 * before returning. TLB doesn't need to be invalidated as we are
2089 	 * guaranteed that there's no valid mapping in this range.
2090 	 */
2091 	core_mmu_table_write_barrier();
2092 	mmu_unlock(exceptions);
2093 
2094 	return TEE_SUCCESS;
2095 }
2096 
2097 static bool mem_range_is_in_vcore_free(vaddr_t vstart, size_t num_pages)
2098 {
2099 	return core_is_buffer_inside(vstart, num_pages * SMALL_PAGE_SIZE,
2100 				     VCORE_FREE_PA, VCORE_FREE_SZ);
2101 }
2102 
2103 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
2104 {
2105 	struct core_mmu_table_info tbl_info;
2106 	struct tee_mmap_region *mm;
2107 	size_t i;
2108 	unsigned int idx;
2109 	uint32_t exceptions;
2110 
2111 	exceptions = mmu_lock();
2112 
2113 	mm = find_map_by_va((void *)vstart);
2114 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
2115 		panic("VA does not belong to any known mm region");
2116 
2117 	if (!core_mmu_is_dynamic_vaspace(mm) &&
2118 	    !mem_range_is_in_vcore_free(vstart, num_pages))
2119 		panic("Trying to unmap static region");
2120 
2121 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
2122 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
2123 			panic("Can't find pagetable");
2124 
2125 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
2126 			panic("Invalid pagetable level");
2127 
2128 		idx = core_mmu_va2idx(&tbl_info, vstart);
2129 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
2130 	}
2131 	tlbi_all();
2132 
2133 	mmu_unlock(exceptions);
2134 }
2135 
2136 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
2137 				struct user_mode_ctx *uctx)
2138 {
2139 	struct core_mmu_table_info pg_info = { };
2140 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
2141 	struct pgt *pgt = NULL;
2142 	struct pgt *p = NULL;
2143 	struct vm_region *r = NULL;
2144 
2145 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
2146 		return; /* Nothing to map */
2147 
2148 	/*
2149 	 * Allocate all page tables in advance.
2150 	 */
2151 	pgt_get_all(uctx);
2152 	pgt = SLIST_FIRST(pgt_cache);
2153 
2154 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2155 
2156 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2157 		set_pg_region(dir_info, r, &pgt, &pg_info);
2158 	/* Record that the translation tables now are populated. */
2159 	SLIST_FOREACH(p, pgt_cache, link) {
2160 		p->populated = true;
2161 		if (p == pgt)
2162 			break;
2163 	}
2164 	assert(p == pgt);
2165 }
2166 
2167 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2168 				   size_t len)
2169 {
2170 	struct core_mmu_table_info tbl_info = { };
2171 	struct tee_mmap_region *res_map = NULL;
2172 	struct tee_mmap_region *map = NULL;
2173 	paddr_t pa = virt_to_phys(addr);
2174 	size_t granule = 0;
2175 	ptrdiff_t i = 0;
2176 	paddr_t p = 0;
2177 	size_t l = 0;
2178 
2179 	map = find_map_by_type_and_pa(type, pa, len);
2180 	if (!map)
2181 		return TEE_ERROR_GENERIC;
2182 
2183 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2184 	if (!res_map)
2185 		return TEE_ERROR_GENERIC;
2186 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2187 		return TEE_ERROR_GENERIC;
2188 	granule = BIT(tbl_info.shift);
2189 
2190 	if (map < static_memory_map.map ||
2191 	    map >= static_memory_map.map + static_memory_map.count)
2192 		return TEE_ERROR_GENERIC;
2193 	i = map - static_memory_map.map;
2194 
2195 	/* Check that we have a full match */
2196 	p = ROUNDDOWN(pa, granule);
2197 	l = ROUNDUP(len + pa - p, granule);
2198 	if (map->pa != p || map->size != l)
2199 		return TEE_ERROR_GENERIC;
2200 
2201 	clear_region(&tbl_info, map);
2202 	tlbi_all();
2203 
2204 	/* If possible remove the va range from res_map */
2205 	if (res_map->va - map->size == map->va) {
2206 		res_map->va -= map->size;
2207 		res_map->size += map->size;
2208 	}
2209 
2210 	/* Remove the entry. */
2211 	rem_array_elem(static_memory_map.map, static_memory_map.count,
2212 		       sizeof(*static_memory_map.map), i);
2213 	static_memory_map.count--;
2214 
2215 	return TEE_SUCCESS;
2216 }
2217 
2218 struct tee_mmap_region *
2219 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2220 {
2221 	struct memory_map *mem_map = get_memory_map();
2222 	struct tee_mmap_region *map_found = NULL;
2223 	size_t n = 0;
2224 
2225 	if (!len)
2226 		return NULL;
2227 
2228 	for (n = 0; n < mem_map->count; n++) {
2229 		if (mem_map->map[n].type != type)
2230 			continue;
2231 
2232 		if (map_found)
2233 			return NULL;
2234 
2235 		map_found = mem_map->map + n;
2236 	}
2237 
2238 	if (!map_found || map_found->size < len)
2239 		return NULL;
2240 
2241 	return map_found;
2242 }
2243 
2244 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2245 {
2246 	struct memory_map *mem_map = &static_memory_map;
2247 	struct core_mmu_table_info tbl_info = { };
2248 	struct tee_mmap_region *map = NULL;
2249 	size_t granule = 0;
2250 	paddr_t p = 0;
2251 	size_t l = 0;
2252 
2253 	if (!len)
2254 		return NULL;
2255 
2256 	if (!core_mmu_check_end_pa(addr, len))
2257 		return NULL;
2258 
2259 	/* Check if the memory is already mapped */
2260 	map = find_map_by_type_and_pa(type, addr, len);
2261 	if (map && pbuf_inside_map_area(addr, len, map))
2262 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2263 
2264 	/* Find the reserved va space used for late mappings */
2265 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2266 	if (!map)
2267 		return NULL;
2268 
2269 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2270 		return NULL;
2271 
2272 	granule = BIT64(tbl_info.shift);
2273 	p = ROUNDDOWN(addr, granule);
2274 	l = ROUNDUP(len + addr - p, granule);
2275 
2276 	/* Ban overflowing virtual addresses */
2277 	if (map->size < l)
2278 		return NULL;
2279 
2280 	/*
2281 	 * Something is wrong, we can't fit the va range into the selected
2282 	 * table. The reserved va range is possibly missaligned with
2283 	 * granule.
2284 	 */
2285 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2286 		return NULL;
2287 
2288 	if (static_memory_map.count >= static_memory_map.alloc_count)
2289 		return NULL;
2290 
2291 	mem_map->map[mem_map->count] = (struct tee_mmap_region){
2292 		.va = map->va,
2293 		.size = l,
2294 		.type = type,
2295 		.region_size = granule,
2296 		.attr = core_mmu_type_to_attr(type),
2297 		.pa = p,
2298 	};
2299 	map->va += l;
2300 	map->size -= l;
2301 	map = mem_map->map + mem_map->count;
2302 	mem_map->count++;
2303 
2304 	set_region(&tbl_info, map);
2305 
2306 	/* Make sure the new entry is visible before continuing. */
2307 	core_mmu_table_write_barrier();
2308 
2309 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2310 }
2311 
2312 #ifdef CFG_WITH_PAGER
2313 static vaddr_t get_linear_map_end_va(void)
2314 {
2315 	/* this is synced with the generic linker file kern.ld.S */
2316 	return (vaddr_t)__heap2_end;
2317 }
2318 
2319 static paddr_t get_linear_map_end_pa(void)
2320 {
2321 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2322 }
2323 #endif
2324 
2325 #if defined(CFG_TEE_CORE_DEBUG)
2326 static void check_pa_matches_va(void *va, paddr_t pa)
2327 {
2328 	TEE_Result res = TEE_ERROR_GENERIC;
2329 	vaddr_t v = (vaddr_t)va;
2330 	paddr_t p = 0;
2331 	struct core_mmu_table_info ti __maybe_unused = { };
2332 
2333 	if (core_mmu_user_va_range_is_defined()) {
2334 		vaddr_t user_va_base = 0;
2335 		size_t user_va_size = 0;
2336 
2337 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2338 		if (v >= user_va_base &&
2339 		    v <= (user_va_base - 1 + user_va_size)) {
2340 			if (!core_mmu_user_mapping_is_active()) {
2341 				if (pa)
2342 					panic("issue in linear address space");
2343 				return;
2344 			}
2345 
2346 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2347 				       va, &p);
2348 			if (res == TEE_ERROR_NOT_SUPPORTED)
2349 				return;
2350 			if (res == TEE_SUCCESS && pa != p)
2351 				panic("bad pa");
2352 			if (res != TEE_SUCCESS && pa)
2353 				panic("false pa");
2354 			return;
2355 		}
2356 	}
2357 #ifdef CFG_WITH_PAGER
2358 	if (is_unpaged(va)) {
2359 		if (v - boot_mmu_config.map_offset != pa)
2360 			panic("issue in linear address space");
2361 		return;
2362 	}
2363 
2364 	if (tee_pager_get_table_info(v, &ti)) {
2365 		uint32_t a;
2366 
2367 		/*
2368 		 * Lookups in the page table managed by the pager is
2369 		 * dangerous for addresses in the paged area as those pages
2370 		 * changes all the time. But some ranges are safe,
2371 		 * rw-locked areas when the page is populated for instance.
2372 		 */
2373 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2374 		if (a & TEE_MATTR_VALID_BLOCK) {
2375 			paddr_t mask = BIT64(ti.shift) - 1;
2376 
2377 			p |= v & mask;
2378 			if (pa != p)
2379 				panic();
2380 		} else {
2381 			if (pa)
2382 				panic();
2383 		}
2384 		return;
2385 	}
2386 #endif
2387 
2388 	if (!core_va2pa_helper(va, &p)) {
2389 		/* Verfiy only the static mapping (case non null phys addr) */
2390 		if (p && pa != p) {
2391 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2392 			     va, p, pa);
2393 			panic();
2394 		}
2395 	} else {
2396 		if (pa) {
2397 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2398 			panic();
2399 		}
2400 	}
2401 }
2402 #else
2403 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2404 {
2405 }
2406 #endif
2407 
2408 paddr_t virt_to_phys(void *va)
2409 {
2410 	paddr_t pa = 0;
2411 
2412 	if (!arch_va2pa_helper(va, &pa))
2413 		pa = 0;
2414 	check_pa_matches_va(memtag_strip_tag(va), pa);
2415 	return pa;
2416 }
2417 
2418 /*
2419  * Don't use check_va_matches_pa() for RISC-V, as its callee
2420  * arch_va2pa_helper() will call it eventually, this creates
2421  * indirect recursion and can lead to a stack overflow.
2422  * Moreover, if arch_va2pa_helper() returns true, it implies
2423  * the va2pa mapping is matched, no need to check it again.
2424  */
2425 #if defined(CFG_TEE_CORE_DEBUG) && !defined(__riscv)
2426 static void check_va_matches_pa(paddr_t pa, void *va)
2427 {
2428 	paddr_t p = 0;
2429 
2430 	if (!va)
2431 		return;
2432 
2433 	p = virt_to_phys(va);
2434 	if (p != pa) {
2435 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2436 		panic();
2437 	}
2438 }
2439 #else
2440 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2441 {
2442 }
2443 #endif
2444 
2445 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2446 {
2447 	if (!core_mmu_user_mapping_is_active())
2448 		return NULL;
2449 
2450 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2451 }
2452 
2453 #ifdef CFG_WITH_PAGER
2454 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2455 {
2456 	paddr_t end_pa = 0;
2457 
2458 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2459 		return NULL;
2460 
2461 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2462 		if (end_pa > get_linear_map_end_pa())
2463 			return NULL;
2464 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2465 	}
2466 
2467 	return tee_pager_phys_to_virt(pa, len);
2468 }
2469 #else
2470 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2471 {
2472 	struct tee_mmap_region *mmap = NULL;
2473 
2474 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2475 	if (!mmap)
2476 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2477 	if (!mmap)
2478 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2479 	if (!mmap)
2480 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2481 	if (!mmap)
2482 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2483 	if (!mmap)
2484 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2485 	/*
2486 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2487 	 * used with pager and not needed here.
2488 	 */
2489 	return map_pa2va(mmap, pa, len);
2490 }
2491 #endif
2492 
2493 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2494 {
2495 	void *va = NULL;
2496 
2497 	switch (m) {
2498 	case MEM_AREA_TS_VASPACE:
2499 		va = phys_to_virt_ts_vaspace(pa, len);
2500 		break;
2501 	case MEM_AREA_TEE_RAM:
2502 	case MEM_AREA_TEE_RAM_RX:
2503 	case MEM_AREA_TEE_RAM_RO:
2504 	case MEM_AREA_TEE_RAM_RW:
2505 	case MEM_AREA_NEX_RAM_RO:
2506 	case MEM_AREA_NEX_RAM_RW:
2507 		va = phys_to_virt_tee_ram(pa, len);
2508 		break;
2509 	case MEM_AREA_SHM_VASPACE:
2510 		/* Find VA from PA in dynamic SHM is not yet supported */
2511 		va = NULL;
2512 		break;
2513 	default:
2514 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2515 	}
2516 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2517 		check_va_matches_pa(pa, va);
2518 	return va;
2519 }
2520 
2521 void *phys_to_virt_io(paddr_t pa, size_t len)
2522 {
2523 	struct tee_mmap_region *map = NULL;
2524 	void *va = NULL;
2525 
2526 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2527 	if (!map)
2528 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2529 	if (!map)
2530 		return NULL;
2531 	va = map_pa2va(map, pa, len);
2532 	check_va_matches_pa(pa, va);
2533 	return va;
2534 }
2535 
2536 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2537 {
2538 	if (cpu_mmu_enabled())
2539 		return (vaddr_t)phys_to_virt(pa, type, len);
2540 
2541 	return (vaddr_t)pa;
2542 }
2543 
2544 #ifdef CFG_WITH_PAGER
2545 bool is_unpaged(const void *va)
2546 {
2547 	vaddr_t v = (vaddr_t)va;
2548 
2549 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2550 }
2551 #endif
2552 
2553 #ifdef CFG_NS_VIRTUALIZATION
2554 bool is_nexus(const void *va)
2555 {
2556 	vaddr_t v = (vaddr_t)va;
2557 
2558 	return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ;
2559 }
2560 #endif
2561 
2562 void core_mmu_init_virtualization(void)
2563 {
2564 	paddr_t b1 = 0;
2565 	paddr_size_t s1 = 0;
2566 
2567 	static_assert(ARRAY_SIZE(secure_only) <= 2);
2568 	if (ARRAY_SIZE(secure_only) == 2) {
2569 		b1 = secure_only[1].paddr;
2570 		s1 = secure_only[1].size;
2571 	}
2572 	virt_init_memory(&static_memory_map, secure_only[0].paddr,
2573 			 secure_only[0].size, b1, s1);
2574 }
2575 
2576 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2577 {
2578 	assert(p->pa);
2579 	if (cpu_mmu_enabled()) {
2580 		if (!p->va)
2581 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2582 		assert(p->va);
2583 		return p->va;
2584 	}
2585 	return p->pa;
2586 }
2587 
2588 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2589 {
2590 	assert(p->pa);
2591 	if (cpu_mmu_enabled()) {
2592 		if (!p->va)
2593 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2594 						      len);
2595 		assert(p->va);
2596 		return p->va;
2597 	}
2598 	return p->pa;
2599 }
2600 
2601 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2602 {
2603 	assert(p->pa);
2604 	if (cpu_mmu_enabled()) {
2605 		if (!p->va)
2606 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2607 						      len);
2608 		assert(p->va);
2609 		return p->va;
2610 	}
2611 	return p->pa;
2612 }
2613 
2614 #ifdef CFG_CORE_RESERVED_SHM
2615 static TEE_Result teecore_init_pub_ram(void)
2616 {
2617 	vaddr_t s = 0;
2618 	vaddr_t e = 0;
2619 
2620 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2621 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2622 
2623 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2624 		panic("invalid PUB RAM");
2625 
2626 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2627 	if (!tee_vbuf_is_non_sec(s, e - s))
2628 		panic("PUB RAM is not non-secure");
2629 
2630 #ifdef CFG_PL310
2631 	/* Allocate statically the l2cc mutex */
2632 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2633 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2634 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2635 #endif
2636 
2637 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2638 	default_nsec_shm_size = e - s;
2639 
2640 	return TEE_SUCCESS;
2641 }
2642 early_init(teecore_init_pub_ram);
2643 #endif /*CFG_CORE_RESERVED_SHM*/
2644 
2645 static void __maybe_unused carve_out_core_mem(paddr_t pa, paddr_t end_pa)
2646 {
2647 	tee_mm_entry_t *mm __maybe_unused = NULL;
2648 
2649 	DMSG("%#"PRIxPA" .. %#"PRIxPA, pa, end_pa);
2650 	mm = phys_mem_alloc2(pa, end_pa - pa);
2651 	assert(mm);
2652 }
2653 
2654 void core_mmu_init_phys_mem(void)
2655 {
2656 	paddr_t ps = 0;
2657 	size_t size = 0;
2658 
2659 	/*
2660 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2661 	 * shared mem allocated from teecore.
2662 	 */
2663 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
2664 		vaddr_t s = 0;
2665 		vaddr_t e = 0;
2666 
2667 		virt_get_ta_ram(&s, &e);
2668 		ps = virt_to_phys((void *)s);
2669 		size = e - s;
2670 		phys_mem_init(0, 0, ps, size);
2671 	} else {
2672 #ifdef CFG_WITH_PAGER
2673 		/*
2674 		 * The pager uses all core memory so there's no need to add
2675 		 * it to the pool.
2676 		 */
2677 		static_assert(ARRAY_SIZE(secure_only) == 2);
2678 		phys_mem_init(0, 0, secure_only[1].paddr, secure_only[1].size);
2679 #else /*!CFG_WITH_PAGER*/
2680 		size_t align = BIT(CORE_MMU_USER_CODE_SHIFT);
2681 		paddr_t end_pa = 0;
2682 		paddr_t pa = 0;
2683 
2684 		static_assert(ARRAY_SIZE(secure_only) <= 2);
2685 		if (ARRAY_SIZE(secure_only) == 2) {
2686 			ps = secure_only[1].paddr;
2687 			size = secure_only[1].size;
2688 		}
2689 		phys_mem_init(secure_only[0].paddr, secure_only[0].size,
2690 			      ps, size);
2691 
2692 		/*
2693 		 * The VCORE macros are relocatable so we need to translate
2694 		 * the addresses now that the MMU is enabled.
2695 		 */
2696 		end_pa = vaddr_to_phys(ROUNDUP(VCORE_FREE_END_PA,
2697 					       align) - 1) + 1;
2698 		/* Carve out the part used by OP-TEE core */
2699 		carve_out_core_mem(vaddr_to_phys(VCORE_UNPG_RX_PA), end_pa);
2700 		if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) {
2701 			pa = vaddr_to_phys(ROUNDUP(ASAN_MAP_PA, align));
2702 			carve_out_core_mem(pa, pa + ASAN_MAP_SZ);
2703 		}
2704 
2705 		/* Carve out test SDP memory */
2706 #ifdef TEE_SDP_TEST_MEM_BASE
2707 		if (TEE_SDP_TEST_MEM_SIZE) {
2708 			pa = vaddr_to_phys(TEE_SDP_TEST_MEM_BASE);
2709 			carve_out_core_mem(pa, pa + TEE_SDP_TEST_MEM_SIZE);
2710 		}
2711 #endif
2712 #endif /*!CFG_WITH_PAGER*/
2713 	}
2714 }
2715