xref: /optee_os/core/mm/core_mmu.c (revision c44d734b6366cbf4d12610310e809872db65f89d)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/linker.h>
12 #include <kernel/panic.h>
13 #include <kernel/spinlock.h>
14 #include <kernel/tee_l2cc_mutex.h>
15 #include <kernel/tee_misc.h>
16 #include <kernel/tlb_helpers.h>
17 #include <kernel/user_mode_ctx.h>
18 #include <kernel/virtualization.h>
19 #include <mm/core_memprot.h>
20 #include <mm/core_mmu.h>
21 #include <mm/mobj.h>
22 #include <mm/pgt_cache.h>
23 #include <mm/tee_pager.h>
24 #include <mm/vm.h>
25 #include <platform_config.h>
26 #include <string.h>
27 #include <trace.h>
28 #include <util.h>
29 
30 #ifndef DEBUG_XLAT_TABLE
31 #define DEBUG_XLAT_TABLE 0
32 #endif
33 
34 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
35 
36 /*
37  * These variables are initialized before .bss is cleared. To avoid
38  * resetting them when .bss is cleared we're storing them in .data instead,
39  * even if they initially are zero.
40  */
41 
42 #ifdef CFG_CORE_RESERVED_SHM
43 /* Default NSec shared memory allocated from NSec world */
44 unsigned long default_nsec_shm_size __nex_bss;
45 unsigned long default_nsec_shm_paddr __nex_bss;
46 #endif
47 
48 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS
49 #ifdef CFG_CORE_ASLR
50 						+ 1
51 #endif
52 						+ 1] __nex_bss;
53 
54 /* Define the platform's memory layout. */
55 struct memaccess_area {
56 	paddr_t paddr;
57 	size_t size;
58 };
59 
60 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
61 
62 static struct memaccess_area secure_only[] __nex_data = {
63 #ifdef TRUSTED_SRAM_BASE
64 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
65 #endif
66 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
67 };
68 
69 static struct memaccess_area nsec_shared[] __nex_data = {
70 #ifdef CFG_CORE_RESERVED_SHM
71 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
72 #endif
73 };
74 
75 #if defined(CFG_SECURE_DATA_PATH)
76 #ifdef CFG_TEE_SDP_MEM_BASE
77 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
78 #endif
79 #ifdef TEE_SDP_TEST_MEM_BASE
80 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
81 #endif
82 #endif
83 
84 #ifdef CFG_CORE_RWDATA_NOEXEC
85 register_phys_mem_ul(MEM_AREA_TEE_RAM_RO, TEE_RAM_START,
86 		     VCORE_UNPG_RX_PA - TEE_RAM_START);
87 register_phys_mem_ul(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
88 		     VCORE_UNPG_RX_SZ_UNSAFE);
89 register_phys_mem_ul(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
90 		     VCORE_UNPG_RO_SZ_UNSAFE);
91 
92 #ifdef CFG_VIRTUALIZATION
93 register_phys_mem_ul(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
94 		     VCORE_UNPG_RW_SZ_UNSAFE);
95 register_phys_mem_ul(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
96 		     VCORE_NEX_RW_SZ_UNSAFE);
97 #else
98 register_phys_mem_ul(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
99 		     VCORE_UNPG_RW_SZ_UNSAFE);
100 #endif
101 
102 #ifdef CFG_WITH_PAGER
103 register_phys_mem_ul(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
104 		     VCORE_INIT_RX_SZ_UNSAFE);
105 register_phys_mem_ul(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
106 		     VCORE_INIT_RO_SZ_UNSAFE);
107 #endif /*CFG_WITH_PAGER*/
108 #else /*!CFG_CORE_RWDATA_NOEXEC*/
109 register_phys_mem(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
110 #endif /*!CFG_CORE_RWDATA_NOEXEC*/
111 
112 #ifdef CFG_VIRTUALIZATION
113 register_phys_mem(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
114 		  TRUSTED_DRAM_SIZE);
115 #endif
116 
117 #if defined(CFG_CORE_SANITIZE_KADDRESS) && defined(CFG_WITH_PAGER)
118 /* Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is disabled */
119 register_phys_mem_ul(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
120 #endif
121 
122 #ifndef CFG_VIRTUALIZATION
123 /* Every guest will have own TA RAM if virtualization support is enabled */
124 register_phys_mem(MEM_AREA_TA_RAM, TA_RAM_START, TA_RAM_SIZE);
125 #endif
126 #ifdef CFG_CORE_RESERVED_SHM
127 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
128 #endif
129 
130 static unsigned int mmu_spinlock;
131 
132 static uint32_t mmu_lock(void)
133 {
134 	return cpu_spin_lock_xsave(&mmu_spinlock);
135 }
136 
137 static void mmu_unlock(uint32_t exceptions)
138 {
139 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
140 }
141 
142 static struct tee_mmap_region *get_memory_map(void)
143 {
144 	if (IS_ENABLED(CFG_VIRTUALIZATION)) {
145 		struct tee_mmap_region *map = virt_get_memory_map();
146 
147 		if (map)
148 			return map;
149 	}
150 
151 	return static_memory_map;
152 }
153 
154 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
155 			     paddr_t pa, size_t size)
156 {
157 	size_t n;
158 
159 	for (n = 0; n < alen; n++)
160 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
161 			return true;
162 	return false;
163 }
164 
165 #define pbuf_intersects(a, pa, size) \
166 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
167 
168 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
169 			    paddr_t pa, size_t size)
170 {
171 	size_t n;
172 
173 	for (n = 0; n < alen; n++)
174 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
175 			return true;
176 	return false;
177 }
178 
179 #define pbuf_is_inside(a, pa, size) \
180 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
181 
182 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
183 {
184 	paddr_t end_pa = 0;
185 
186 	if (!map)
187 		return false;
188 
189 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
190 		return false;
191 
192 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
193 }
194 
195 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
196 {
197 	if (!map)
198 		return false;
199 	return (va >= map->va && va <= (map->va + map->size - 1));
200 }
201 
202 /* check if target buffer fits in a core default map area */
203 static bool pbuf_inside_map_area(unsigned long p, size_t l,
204 				 struct tee_mmap_region *map)
205 {
206 	return core_is_buffer_inside(p, l, map->pa, map->size);
207 }
208 
209 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
210 {
211 	struct tee_mmap_region *map;
212 
213 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++)
214 		if (map->type == type)
215 			return map;
216 	return NULL;
217 }
218 
219 static struct tee_mmap_region *
220 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
221 {
222 	struct tee_mmap_region *map;
223 
224 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
225 		if (map->type != type)
226 			continue;
227 		if (pa_is_in_map(map, pa, len))
228 			return map;
229 	}
230 	return NULL;
231 }
232 
233 static struct tee_mmap_region *find_map_by_va(void *va)
234 {
235 	struct tee_mmap_region *map = get_memory_map();
236 	unsigned long a = (unsigned long)va;
237 
238 	while (!core_mmap_is_end_of_table(map)) {
239 		if (a >= map->va && a <= (map->va - 1 + map->size))
240 			return map;
241 		map++;
242 	}
243 	return NULL;
244 }
245 
246 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
247 {
248 	struct tee_mmap_region *map = get_memory_map();
249 
250 	while (!core_mmap_is_end_of_table(map)) {
251 		if (pa >= map->pa && pa <= (map->pa + map->size - 1))
252 			return map;
253 		map++;
254 	}
255 	return NULL;
256 }
257 
258 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
259 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
260 				const struct core_mmu_phys_mem *start,
261 				const struct core_mmu_phys_mem *end)
262 {
263 	const struct core_mmu_phys_mem *mem;
264 
265 	for (mem = start; mem < end; mem++) {
266 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
267 			return true;
268 	}
269 
270 	return false;
271 }
272 #endif
273 
274 #ifdef CFG_CORE_DYN_SHM
275 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
276 			       paddr_t pa, size_t size)
277 {
278 	struct core_mmu_phys_mem *m = *mem;
279 	size_t n = 0;
280 
281 	while (true) {
282 		if (n >= *nelems) {
283 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
284 			     pa, size);
285 			return;
286 		}
287 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
288 			break;
289 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
290 			panic();
291 		n++;
292 	}
293 
294 	if (pa == m[n].addr && size == m[n].size) {
295 		/* Remove this entry */
296 		(*nelems)--;
297 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
298 		m = nex_realloc(m, sizeof(*m) * *nelems);
299 		if (!m)
300 			panic();
301 		*mem = m;
302 	} else if (pa == m[n].addr) {
303 		m[n].addr += size;
304 		m[n].size -= size;
305 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
306 		m[n].size -= size;
307 	} else {
308 		/* Need to split the memory entry */
309 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
310 		if (!m)
311 			panic();
312 		*mem = m;
313 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
314 		(*nelems)++;
315 		m[n].size = pa - m[n].addr;
316 		m[n + 1].size -= size + m[n].size;
317 		m[n + 1].addr = pa + size;
318 	}
319 }
320 
321 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
322 				      size_t nelems,
323 				      struct tee_mmap_region *map)
324 {
325 	size_t n;
326 
327 	for (n = 0; n < nelems; n++) {
328 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
329 					    map->pa, map->size)) {
330 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
331 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
332 			     start[n].addr, start[n].size,
333 			     map->type, map->pa, map->size);
334 			panic();
335 		}
336 	}
337 }
338 
339 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
340 static size_t discovered_nsec_ddr_nelems __nex_bss;
341 
342 static int cmp_pmem_by_addr(const void *a, const void *b)
343 {
344 	const struct core_mmu_phys_mem *pmem_a = a;
345 	const struct core_mmu_phys_mem *pmem_b = b;
346 
347 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
348 }
349 
350 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
351 				      size_t nelems)
352 {
353 	struct core_mmu_phys_mem *m = start;
354 	size_t num_elems = nelems;
355 	struct tee_mmap_region *map = static_memory_map;
356 	const struct core_mmu_phys_mem __maybe_unused *pmem;
357 
358 	assert(!discovered_nsec_ddr_start);
359 	assert(m && num_elems);
360 
361 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
362 
363 	/*
364 	 * Non-secure shared memory and also secure data
365 	 * path memory are supposed to reside inside
366 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
367 	 * are used for a specific purpose make holes for
368 	 * those memory in the normal non-secure memory.
369 	 *
370 	 * This has to be done since for instance QEMU
371 	 * isn't aware of which memory range in the
372 	 * non-secure memory is used for NSEC_SHM.
373 	 */
374 
375 #ifdef CFG_SECURE_DATA_PATH
376 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
377 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
378 #endif
379 
380 	carve_out_phys_mem(&m, &num_elems, TEE_RAM_START, TEE_RAM_PH_SIZE);
381 	carve_out_phys_mem(&m, &num_elems, TA_RAM_START, TA_RAM_SIZE);
382 
383 	for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) {
384 		switch (map->type) {
385 		case MEM_AREA_NSEC_SHM:
386 			carve_out_phys_mem(&m, &num_elems, map->pa, map->size);
387 			break;
388 		case MEM_AREA_EXT_DT:
389 		case MEM_AREA_RES_VASPACE:
390 		case MEM_AREA_SHM_VASPACE:
391 		case MEM_AREA_TS_VASPACE:
392 		case MEM_AREA_PAGER_VASPACE:
393 			break;
394 		default:
395 			check_phys_mem_is_outside(m, num_elems, map);
396 		}
397 	}
398 
399 	discovered_nsec_ddr_start = m;
400 	discovered_nsec_ddr_nelems = num_elems;
401 
402 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
403 				   m[num_elems - 1].size))
404 		panic();
405 }
406 
407 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
408 				    const struct core_mmu_phys_mem **end)
409 {
410 	if (!discovered_nsec_ddr_start)
411 		return false;
412 
413 	*start = discovered_nsec_ddr_start;
414 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
415 
416 	return true;
417 }
418 
419 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
420 {
421 	const struct core_mmu_phys_mem *start;
422 	const struct core_mmu_phys_mem *end;
423 
424 	if (!get_discovered_nsec_ddr(&start, &end))
425 		return false;
426 
427 	return pbuf_is_special_mem(pbuf, len, start, end);
428 }
429 
430 bool core_mmu_nsec_ddr_is_defined(void)
431 {
432 	const struct core_mmu_phys_mem *start;
433 	const struct core_mmu_phys_mem *end;
434 
435 	if (!get_discovered_nsec_ddr(&start, &end))
436 		return false;
437 
438 	return start != end;
439 }
440 #else
441 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
442 {
443 	return false;
444 }
445 #endif /*CFG_CORE_DYN_SHM*/
446 
447 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
448 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
449 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
450 
451 #ifdef CFG_SECURE_DATA_PATH
452 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
453 {
454 	return pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
455 				   phys_sdp_mem_end);
456 }
457 
458 struct mobj **core_sdp_mem_create_mobjs(void)
459 {
460 	const struct core_mmu_phys_mem *mem;
461 	struct mobj **mobj_base;
462 	struct mobj **mobj;
463 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
464 
465 	/* SDP mobjs table must end with a NULL entry */
466 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
467 	if (!mobj_base)
468 		panic("Out of memory");
469 
470 	for (mem = phys_sdp_mem_begin, mobj = mobj_base;
471 	     mem < phys_sdp_mem_end; mem++, mobj++) {
472 		*mobj = mobj_phys_alloc(mem->addr, mem->size,
473 					TEE_MATTR_MEM_TYPE_CACHED,
474 					CORE_MEM_SDP_MEM);
475 		if (!*mobj)
476 			panic("can't create SDP physical memory object");
477 	}
478 	return mobj_base;
479 }
480 
481 #else /* CFG_SECURE_DATA_PATH */
482 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
483 {
484 	return false;
485 }
486 
487 #endif /* CFG_SECURE_DATA_PATH */
488 
489 /* Check special memories comply with registered memories */
490 static void verify_special_mem_areas(struct tee_mmap_region *mem_map,
491 				     size_t len,
492 				     const struct core_mmu_phys_mem *start,
493 				     const struct core_mmu_phys_mem *end,
494 				     const char *area_name __maybe_unused)
495 {
496 	const struct core_mmu_phys_mem *mem;
497 	const struct core_mmu_phys_mem *mem2;
498 	struct tee_mmap_region *mmap;
499 	size_t n;
500 
501 	if (start == end) {
502 		DMSG("No %s memory area defined", area_name);
503 		return;
504 	}
505 
506 	for (mem = start; mem < end; mem++)
507 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
508 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
509 
510 	/* Check memories do not intersect each other */
511 	for (mem = start; mem + 1 < end; mem++) {
512 		for (mem2 = mem + 1; mem2 < end; mem2++) {
513 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
514 						     mem->addr, mem->size)) {
515 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
516 						   mem->addr, mem->size);
517 				panic("Special memory intersection");
518 			}
519 		}
520 	}
521 
522 	/*
523 	 * Check memories do not intersect any mapped memory.
524 	 * This is called before reserved VA space is loaded in mem_map.
525 	 */
526 	for (mem = start; mem < end; mem++) {
527 		for (mmap = mem_map, n = 0; n < len; mmap++, n++) {
528 			if (core_is_buffer_intersect(mem->addr, mem->size,
529 						     mmap->pa, mmap->size)) {
530 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
531 						   mmap->pa, mmap->size);
532 				panic("Special memory intersection");
533 			}
534 		}
535 	}
536 }
537 
538 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems,
539 			 const struct core_mmu_phys_mem *mem, size_t *last)
540 {
541 	size_t n = 0;
542 	paddr_t pa;
543 	paddr_size_t size;
544 
545 	/*
546 	 * If some ranges of memory of the same type do overlap
547 	 * each others they are coalesced into one entry. To help this
548 	 * added entries are sorted by increasing physical.
549 	 *
550 	 * Note that it's valid to have the same physical memory as several
551 	 * different memory types, for instance the same device memory
552 	 * mapped as both secure and non-secure. This will probably not
553 	 * happen often in practice.
554 	 */
555 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
556 	     mem->name, teecore_memtype_name(mem->type), mem->addr, mem->size);
557 	while (true) {
558 		if (n >= (num_elems - 1)) {
559 			EMSG("Out of entries (%zu) in memory_map", num_elems);
560 			panic();
561 		}
562 		if (n == *last)
563 			break;
564 		pa = memory_map[n].pa;
565 		size = memory_map[n].size;
566 		if (mem->type == memory_map[n].type &&
567 		    ((pa <= (mem->addr + (mem->size - 1))) &&
568 		    (mem->addr <= (pa + (size - 1))))) {
569 			DMSG("Physical mem map overlaps 0x%" PRIxPA, mem->addr);
570 			memory_map[n].pa = MIN(pa, mem->addr);
571 			memory_map[n].size = MAX(size, mem->size) +
572 					     (pa - memory_map[n].pa);
573 			return;
574 		}
575 		if (mem->type < memory_map[n].type ||
576 		    (mem->type == memory_map[n].type && mem->addr < pa))
577 			break; /* found the spot where to insert this memory */
578 		n++;
579 	}
580 
581 	memmove(memory_map + n + 1, memory_map + n,
582 		sizeof(struct tee_mmap_region) * (*last - n));
583 	(*last)++;
584 	memset(memory_map + n, 0, sizeof(memory_map[0]));
585 	memory_map[n].type = mem->type;
586 	memory_map[n].pa = mem->addr;
587 	memory_map[n].size = mem->size;
588 }
589 
590 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems,
591 			 enum teecore_memtypes type, size_t size, size_t *last)
592 {
593 	size_t n = 0;
594 
595 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
596 	while (true) {
597 		if (n >= (num_elems - 1)) {
598 			EMSG("Out of entries (%zu) in memory_map", num_elems);
599 			panic();
600 		}
601 		if (n == *last)
602 			break;
603 		if (type < memory_map[n].type)
604 			break;
605 		n++;
606 	}
607 
608 	memmove(memory_map + n + 1, memory_map + n,
609 		sizeof(struct tee_mmap_region) * (*last - n));
610 	(*last)++;
611 	memset(memory_map + n, 0, sizeof(memory_map[0]));
612 	memory_map[n].type = type;
613 	memory_map[n].size = size;
614 }
615 
616 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
617 {
618 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
619 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
620 				TEE_MATTR_MEM_TYPE_SHIFT;
621 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
622 				TEE_MATTR_MEM_TYPE_SHIFT;
623 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
624 				  TEE_MATTR_MEM_TYPE_SHIFT;
625 
626 	switch (t) {
627 	case MEM_AREA_TEE_RAM:
628 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
629 	case MEM_AREA_TEE_RAM_RX:
630 	case MEM_AREA_INIT_RAM_RX:
631 	case MEM_AREA_IDENTITY_MAP_RX:
632 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
633 	case MEM_AREA_TEE_RAM_RO:
634 	case MEM_AREA_INIT_RAM_RO:
635 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
636 	case MEM_AREA_TEE_RAM_RW:
637 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
638 	case MEM_AREA_NEX_RAM_RW:
639 	case MEM_AREA_TEE_ASAN:
640 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
641 	case MEM_AREA_TEE_COHERENT:
642 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
643 	case MEM_AREA_TA_RAM:
644 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
645 	case MEM_AREA_NSEC_SHM:
646 		return attr | TEE_MATTR_PRW | cached;
647 	case MEM_AREA_EXT_DT:
648 		/*
649 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
650 		 * tree as secure non-cached memory, otherwise, fall back to
651 		 * non-secure mapping.
652 		 */
653 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
654 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
655 			       noncache;
656 		fallthrough;
657 	case MEM_AREA_IO_NSEC:
658 		return attr | TEE_MATTR_PRW | noncache;
659 	case MEM_AREA_IO_SEC:
660 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
661 	case MEM_AREA_RAM_NSEC:
662 		return attr | TEE_MATTR_PRW | cached;
663 	case MEM_AREA_RAM_SEC:
664 	case MEM_AREA_SEC_RAM_OVERALL:
665 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
666 	case MEM_AREA_RES_VASPACE:
667 	case MEM_AREA_SHM_VASPACE:
668 		return 0;
669 	case MEM_AREA_PAGER_VASPACE:
670 		return TEE_MATTR_SECURE;
671 	default:
672 		panic("invalid type");
673 	}
674 }
675 
676 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
677 {
678 	switch (mm->type) {
679 	case MEM_AREA_TEE_RAM:
680 	case MEM_AREA_TEE_RAM_RX:
681 	case MEM_AREA_TEE_RAM_RO:
682 	case MEM_AREA_TEE_RAM_RW:
683 	case MEM_AREA_INIT_RAM_RX:
684 	case MEM_AREA_INIT_RAM_RO:
685 	case MEM_AREA_NEX_RAM_RW:
686 	case MEM_AREA_NEX_RAM_RO:
687 	case MEM_AREA_TEE_ASAN:
688 		return true;
689 	default:
690 		return false;
691 	}
692 }
693 
694 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
695 {
696 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
697 }
698 
699 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
700 {
701 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
702 }
703 
704 static int cmp_mmap_by_lower_va(const void *a, const void *b)
705 {
706 	const struct tee_mmap_region *mm_a = a;
707 	const struct tee_mmap_region *mm_b = b;
708 
709 	return CMP_TRILEAN(mm_a->va, mm_b->va);
710 }
711 
712 static void dump_mmap_table(struct tee_mmap_region *memory_map)
713 {
714 	struct tee_mmap_region *map;
715 
716 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
717 		vaddr_t __maybe_unused vstart;
718 
719 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
720 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
721 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
722 		     teecore_memtype_name(map->type), vstart,
723 		     vstart + map->size - 1, map->pa,
724 		     (paddr_t)(map->pa + map->size - 1), map->size,
725 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
726 	}
727 }
728 
729 #if DEBUG_XLAT_TABLE
730 
731 static void dump_xlat_table(vaddr_t va, unsigned int level)
732 {
733 	struct core_mmu_table_info tbl_info;
734 	unsigned int idx = 0;
735 	paddr_t pa;
736 	uint32_t attr;
737 
738 	core_mmu_find_table(NULL, va, level, &tbl_info);
739 	va = tbl_info.va_base;
740 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
741 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
742 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
743 			const char *security_bit = "";
744 
745 			if (core_mmu_entry_have_security_bit(attr)) {
746 				if (attr & TEE_MATTR_SECURE)
747 					security_bit = "S";
748 				else
749 					security_bit = "NS";
750 			}
751 
752 			if (attr & TEE_MATTR_TABLE) {
753 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
754 					" TBL:0x%010" PRIxPA " %s",
755 					level * 2, "", level, va, pa,
756 					security_bit);
757 				dump_xlat_table(va, level + 1);
758 			} else if (attr) {
759 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
760 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
761 					level * 2, "", level, va, pa,
762 					mattr_is_cached(attr) ? "MEM" :
763 					"DEV",
764 					attr & TEE_MATTR_PW ? "RW" : "RO",
765 					attr & TEE_MATTR_PX ? "X " : "XN",
766 					security_bit);
767 			} else {
768 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
769 					    " INVALID\n",
770 					    level * 2, "", level, va);
771 			}
772 		}
773 		va += BIT64(tbl_info.shift);
774 	}
775 }
776 
777 #else
778 
779 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
780 {
781 }
782 
783 #endif
784 
785 /*
786  * Reserves virtual memory space for pager usage.
787  *
788  * From the start of the first memory used by the link script +
789  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
790  * mapping for pager usage. This adds translation tables as needed for the
791  * pager to operate.
792  */
793 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems,
794 			      size_t *last)
795 {
796 	paddr_t begin = 0;
797 	paddr_t end = 0;
798 	size_t size = 0;
799 	size_t pos = 0;
800 	size_t n = 0;
801 
802 	if (*last >= (num_elems - 1)) {
803 		EMSG("Out of entries (%zu) in memory map", num_elems);
804 		panic();
805 	}
806 
807 	for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) {
808 		if (map_is_tee_ram(mmap + n)) {
809 			if (!begin)
810 				begin = mmap[n].pa;
811 			pos = n + 1;
812 		}
813 	}
814 
815 	end = mmap[pos - 1].pa + mmap[pos - 1].size;
816 	size = TEE_RAM_VA_SIZE - (end - begin);
817 	if (!size)
818 		return;
819 
820 	assert(pos <= *last);
821 	memmove(mmap + pos + 1, mmap + pos,
822 		sizeof(struct tee_mmap_region) * (*last - pos));
823 	(*last)++;
824 	memset(mmap + pos, 0, sizeof(mmap[0]));
825 	mmap[pos].type = MEM_AREA_PAGER_VASPACE;
826 	mmap[pos].va = 0;
827 	mmap[pos].size = size;
828 	mmap[pos].region_size = SMALL_PAGE_SIZE;
829 	mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE);
830 }
831 
832 static void check_sec_nsec_mem_config(void)
833 {
834 	size_t n = 0;
835 
836 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
837 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
838 				    secure_only[n].size))
839 			panic("Invalid memory access config: sec/nsec");
840 	}
841 }
842 
843 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map,
844 				 size_t num_elems)
845 {
846 	const struct core_mmu_phys_mem *mem = NULL;
847 	size_t last = 0;
848 
849 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
850 		struct core_mmu_phys_mem m = *mem;
851 
852 		/* Discard null size entries */
853 		if (!m.size)
854 			continue;
855 
856 		/* Only unmapped virtual range may have a null phys addr */
857 		assert(m.addr || !core_mmu_type_to_attr(m.type));
858 
859 		add_phys_mem(memory_map, num_elems, &m, &last);
860 	}
861 
862 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
863 		verify_special_mem_areas(memory_map, num_elems,
864 					 phys_sdp_mem_begin,
865 					 phys_sdp_mem_end, "SDP");
866 
867 	add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE,
868 		     CFG_RESERVED_VASPACE_SIZE, &last);
869 
870 	add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE,
871 		     SHM_VASPACE_SIZE, &last);
872 
873 	memory_map[last].type = MEM_AREA_END;
874 
875 	return last;
876 }
877 
878 static void assign_mem_granularity(struct tee_mmap_region *memory_map)
879 {
880 	struct tee_mmap_region *map = NULL;
881 
882 	/*
883 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
884 	 * SMALL_PAGE_SIZE.
885 	 */
886 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
887 		paddr_t mask = map->pa | map->size;
888 
889 		if (!(mask & CORE_MMU_PGDIR_MASK))
890 			map->region_size = CORE_MMU_PGDIR_SIZE;
891 		else if (!(mask & SMALL_PAGE_MASK))
892 			map->region_size = SMALL_PAGE_SIZE;
893 		else
894 			panic("Impossible memory alignment");
895 
896 		if (map_is_tee_ram(map))
897 			map->region_size = SMALL_PAGE_SIZE;
898 	}
899 }
900 
901 static bool place_tee_ram_at_top(paddr_t paddr)
902 {
903 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
904 }
905 
906 /*
907  * MMU arch driver shall override this function if it helps
908  * optimizing the memory footprint of the address translation tables.
909  */
910 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
911 {
912 	return place_tee_ram_at_top(paddr);
913 }
914 
915 static bool assign_mem_va_dir(vaddr_t tee_ram_va,
916 			      struct tee_mmap_region *memory_map,
917 			      bool tee_ram_at_top)
918 {
919 	struct tee_mmap_region *map = NULL;
920 	vaddr_t va = 0;
921 	bool va_is_secure = true;
922 
923 	/* Clear eventual previous assignments */
924 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
925 		map->va = 0;
926 
927 	/*
928 	 * TEE RAM regions are always aligned with region_size.
929 	 *
930 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
931 	 * since it handles virtual memory which covers the part of the ELF
932 	 * that cannot fit directly into memory.
933 	 */
934 	va = tee_ram_va;
935 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
936 		if (map_is_tee_ram(map) ||
937 		    map->type == MEM_AREA_PAGER_VASPACE) {
938 			assert(!(va & (map->region_size - 1)));
939 			assert(!(map->size & (map->region_size - 1)));
940 			map->va = va;
941 			if (ADD_OVERFLOW(va, map->size, &va))
942 				return false;
943 			if (va >= BIT64(core_mmu_get_va_width()))
944 				return false;
945 		}
946 	}
947 
948 	if (tee_ram_at_top) {
949 		/*
950 		 * Map non-tee ram regions at addresses lower than the tee
951 		 * ram region.
952 		 */
953 		va = tee_ram_va;
954 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
955 			map->attr = core_mmu_type_to_attr(map->type);
956 			if (map->va)
957 				continue;
958 
959 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
960 			    va_is_secure != map_is_secure(map)) {
961 				va_is_secure = !va_is_secure;
962 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
963 			}
964 
965 			if (SUB_OVERFLOW(va, map->size, &va))
966 				return false;
967 			va = ROUNDDOWN(va, map->region_size);
968 			/*
969 			 * Make sure that va is aligned with pa for
970 			 * efficient pgdir mapping. Basically pa &
971 			 * pgdir_mask should be == va & pgdir_mask
972 			 */
973 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
974 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
975 					return false;
976 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
977 			}
978 			map->va = va;
979 		}
980 	} else {
981 		/*
982 		 * Map non-tee ram regions at addresses higher than the tee
983 		 * ram region.
984 		 */
985 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
986 			map->attr = core_mmu_type_to_attr(map->type);
987 			if (map->va)
988 				continue;
989 
990 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
991 			    va_is_secure != map_is_secure(map)) {
992 				va_is_secure = !va_is_secure;
993 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
994 						     &va))
995 					return false;
996 			}
997 
998 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
999 				return false;
1000 			/*
1001 			 * Make sure that va is aligned with pa for
1002 			 * efficient pgdir mapping. Basically pa &
1003 			 * pgdir_mask should be == va & pgdir_mask
1004 			 */
1005 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1006 				vaddr_t offs = (map->pa - va) &
1007 					       CORE_MMU_PGDIR_MASK;
1008 
1009 				if (ADD_OVERFLOW(va, offs, &va))
1010 					return false;
1011 			}
1012 
1013 			map->va = va;
1014 			if (ADD_OVERFLOW(va, map->size, &va))
1015 				return false;
1016 			if (va >= BIT64(core_mmu_get_va_width()))
1017 				return false;
1018 		}
1019 	}
1020 
1021 	return true;
1022 }
1023 
1024 static bool assign_mem_va(vaddr_t tee_ram_va,
1025 			  struct tee_mmap_region *memory_map)
1026 {
1027 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1028 
1029 	/*
1030 	 * Check that we're not overlapping with the user VA range.
1031 	 */
1032 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1033 		/*
1034 		 * User VA range is supposed to be defined after these
1035 		 * mappings have been established.
1036 		 */
1037 		assert(!core_mmu_user_va_range_is_defined());
1038 	} else {
1039 		vaddr_t user_va_base = 0;
1040 		size_t user_va_size = 0;
1041 
1042 		assert(core_mmu_user_va_range_is_defined());
1043 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1044 		if (tee_ram_va < (user_va_base + user_va_size))
1045 			return false;
1046 	}
1047 
1048 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1049 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1050 
1051 		/* Try whole mapping covered by a single base xlat entry */
1052 		if (prefered_dir != tee_ram_at_top &&
1053 		    assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir))
1054 			return true;
1055 	}
1056 
1057 	return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top);
1058 }
1059 
1060 static int cmp_init_mem_map(const void *a, const void *b)
1061 {
1062 	const struct tee_mmap_region *mm_a = a;
1063 	const struct tee_mmap_region *mm_b = b;
1064 	int rc = 0;
1065 
1066 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1067 	if (!rc)
1068 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1069 	/*
1070 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1071 	 * the same level2 table. Hence sort secure mapping from non-secure
1072 	 * mapping.
1073 	 */
1074 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1075 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1076 
1077 	return rc;
1078 }
1079 
1080 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map,
1081 			       size_t num_elems, size_t *last,
1082 			       vaddr_t id_map_start, vaddr_t id_map_end)
1083 {
1084 	struct tee_mmap_region *map = NULL;
1085 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1086 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1087 	size_t len = end - start;
1088 
1089 	if (*last >= num_elems - 1) {
1090 		EMSG("Out of entries (%zu) in memory map", num_elems);
1091 		panic();
1092 	}
1093 
1094 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1095 		if (core_is_buffer_intersect(map->va, map->size, start, len))
1096 			return false;
1097 
1098 	*map = (struct tee_mmap_region){
1099 		.type = MEM_AREA_IDENTITY_MAP_RX,
1100 		/*
1101 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1102 		 * translation table, at the increased risk of clashes with
1103 		 * the rest of the memory map.
1104 		 */
1105 		.region_size = SMALL_PAGE_SIZE,
1106 		.pa = start,
1107 		.va = start,
1108 		.size = len,
1109 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1110 	};
1111 
1112 	(*last)++;
1113 
1114 	return true;
1115 }
1116 
1117 static unsigned long init_mem_map(struct tee_mmap_region *memory_map,
1118 				  size_t num_elems, unsigned long seed)
1119 {
1120 	/*
1121 	 * @id_map_start and @id_map_end describes a physical memory range
1122 	 * that must be mapped Read-Only eXecutable at identical virtual
1123 	 * addresses.
1124 	 */
1125 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1126 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1127 	unsigned long offs = 0;
1128 	size_t last = 0;
1129 
1130 	last = collect_mem_ranges(memory_map, num_elems);
1131 	assign_mem_granularity(memory_map);
1132 
1133 	/*
1134 	 * To ease mapping and lower use of xlat tables, sort mapping
1135 	 * description moving small-page regions after the pgdir regions.
1136 	 */
1137 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1138 	      cmp_init_mem_map);
1139 
1140 	add_pager_vaspace(memory_map, num_elems, &last);
1141 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1142 		vaddr_t base_addr = TEE_RAM_START + seed;
1143 		const unsigned int va_width = core_mmu_get_va_width();
1144 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1145 						   SMALL_PAGE_SHIFT);
1146 		vaddr_t ba = base_addr;
1147 		size_t n = 0;
1148 
1149 		for (n = 0; n < 3; n++) {
1150 			if (n)
1151 				ba = base_addr ^ BIT64(va_width - n);
1152 			ba &= va_mask;
1153 			if (assign_mem_va(ba, memory_map) &&
1154 			    mem_map_add_id_map(memory_map, num_elems, &last,
1155 					       id_map_start, id_map_end)) {
1156 				offs = ba - TEE_RAM_START;
1157 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1158 				     ba, offs);
1159 				goto out;
1160 			} else {
1161 				DMSG("Failed to map core at %#"PRIxVA, ba);
1162 			}
1163 		}
1164 		EMSG("Failed to map core with seed %#lx", seed);
1165 	}
1166 
1167 	if (!assign_mem_va(TEE_RAM_START, memory_map))
1168 		panic();
1169 
1170 out:
1171 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1172 	      cmp_mmap_by_lower_va);
1173 
1174 	dump_mmap_table(memory_map);
1175 
1176 	return offs;
1177 }
1178 
1179 static void check_mem_map(struct tee_mmap_region *map)
1180 {
1181 	struct tee_mmap_region *m = NULL;
1182 
1183 	for (m = map; !core_mmap_is_end_of_table(m); m++) {
1184 		switch (m->type) {
1185 		case MEM_AREA_TEE_RAM:
1186 		case MEM_AREA_TEE_RAM_RX:
1187 		case MEM_AREA_TEE_RAM_RO:
1188 		case MEM_AREA_TEE_RAM_RW:
1189 		case MEM_AREA_INIT_RAM_RX:
1190 		case MEM_AREA_INIT_RAM_RO:
1191 		case MEM_AREA_NEX_RAM_RW:
1192 		case MEM_AREA_NEX_RAM_RO:
1193 		case MEM_AREA_IDENTITY_MAP_RX:
1194 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1195 				panic("TEE_RAM can't fit in secure_only");
1196 			break;
1197 		case MEM_AREA_TA_RAM:
1198 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1199 				panic("TA_RAM can't fit in secure_only");
1200 			break;
1201 		case MEM_AREA_NSEC_SHM:
1202 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1203 				panic("NS_SHM can't fit in nsec_shared");
1204 			break;
1205 		case MEM_AREA_SEC_RAM_OVERALL:
1206 		case MEM_AREA_TEE_COHERENT:
1207 		case MEM_AREA_TEE_ASAN:
1208 		case MEM_AREA_IO_SEC:
1209 		case MEM_AREA_IO_NSEC:
1210 		case MEM_AREA_EXT_DT:
1211 		case MEM_AREA_RAM_SEC:
1212 		case MEM_AREA_RAM_NSEC:
1213 		case MEM_AREA_RES_VASPACE:
1214 		case MEM_AREA_SHM_VASPACE:
1215 		case MEM_AREA_PAGER_VASPACE:
1216 			break;
1217 		default:
1218 			EMSG("Uhandled memtype %d", m->type);
1219 			panic();
1220 		}
1221 	}
1222 }
1223 
1224 static struct tee_mmap_region *get_tmp_mmap(void)
1225 {
1226 	struct tee_mmap_region *tmp_mmap = (void *)__heap1_start;
1227 
1228 #ifdef CFG_WITH_PAGER
1229 	if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map))
1230 		tmp_mmap = (void *)__heap2_start;
1231 #endif
1232 
1233 	memset(tmp_mmap, 0, sizeof(static_memory_map));
1234 
1235 	return tmp_mmap;
1236 }
1237 
1238 /*
1239  * core_init_mmu_map() - init tee core default memory mapping
1240  *
1241  * This routine sets the static default TEE core mapping. If @seed is > 0
1242  * and configured with CFG_CORE_ASLR it will map tee core at a location
1243  * based on the seed and return the offset from the link address.
1244  *
1245  * If an error happened: core_init_mmu_map is expected to panic.
1246  *
1247  * Note: this function is weak just to make it possible to exclude it from
1248  * the unpaged area.
1249  */
1250 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1251 {
1252 #ifndef CFG_VIRTUALIZATION
1253 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1254 #else
1255 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1256 				  SMALL_PAGE_SIZE);
1257 #endif
1258 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1259 	struct tee_mmap_region *tmp_mmap = get_tmp_mmap();
1260 	unsigned long offs = 0;
1261 
1262 	check_sec_nsec_mem_config();
1263 
1264 	/*
1265 	 * Add a entry covering the translation tables which will be
1266 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1267 	 */
1268 	static_memory_map[0] = (struct tee_mmap_region){
1269 		.type = MEM_AREA_TEE_RAM,
1270 		.region_size = SMALL_PAGE_SIZE,
1271 		.pa = start,
1272 		.va = start,
1273 		.size = len,
1274 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1275 	};
1276 
1277 	COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13);
1278 	offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed);
1279 
1280 	check_mem_map(tmp_mmap);
1281 	core_init_mmu(tmp_mmap);
1282 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1283 	core_init_mmu_regs(cfg);
1284 	cfg->load_offset = offs;
1285 	memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map));
1286 }
1287 
1288 bool core_mmu_mattr_is_ok(uint32_t mattr)
1289 {
1290 	/*
1291 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1292 	 * core_mmu_v7.c:mattr_to_texcb
1293 	 */
1294 
1295 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1296 	case TEE_MATTR_MEM_TYPE_DEV:
1297 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1298 	case TEE_MATTR_MEM_TYPE_CACHED:
1299 	case TEE_MATTR_MEM_TYPE_TAGGED:
1300 		return true;
1301 	default:
1302 		return false;
1303 	}
1304 }
1305 
1306 /*
1307  * test attributes of target physical buffer
1308  *
1309  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1310  *
1311  */
1312 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1313 {
1314 	struct tee_mmap_region *map;
1315 
1316 	/* Empty buffers complies with anything */
1317 	if (len == 0)
1318 		return true;
1319 
1320 	switch (attr) {
1321 	case CORE_MEM_SEC:
1322 		return pbuf_is_inside(secure_only, pbuf, len);
1323 	case CORE_MEM_NON_SEC:
1324 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1325 			pbuf_is_nsec_ddr(pbuf, len);
1326 	case CORE_MEM_TEE_RAM:
1327 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1328 							TEE_RAM_PH_SIZE);
1329 	case CORE_MEM_TA_RAM:
1330 		return core_is_buffer_inside(pbuf, len, TA_RAM_START,
1331 							TA_RAM_SIZE);
1332 #ifdef CFG_CORE_RESERVED_SHM
1333 	case CORE_MEM_NSEC_SHM:
1334 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1335 							TEE_SHMEM_SIZE);
1336 #endif
1337 	case CORE_MEM_SDP_MEM:
1338 		return pbuf_is_sdp_mem(pbuf, len);
1339 	case CORE_MEM_CACHED:
1340 		map = find_map_by_pa(pbuf);
1341 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1342 			return false;
1343 		return mattr_is_cached(map->attr);
1344 	default:
1345 		return false;
1346 	}
1347 }
1348 
1349 /* test attributes of target virtual buffer (in core mapping) */
1350 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1351 {
1352 	paddr_t p;
1353 
1354 	/* Empty buffers complies with anything */
1355 	if (len == 0)
1356 		return true;
1357 
1358 	p = virt_to_phys((void *)vbuf);
1359 	if (!p)
1360 		return false;
1361 
1362 	return core_pbuf_is(attr, p, len);
1363 }
1364 
1365 /* core_va2pa - teecore exported service */
1366 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1367 {
1368 	struct tee_mmap_region *map;
1369 
1370 	map = find_map_by_va(va);
1371 	if (!va_is_in_map(map, (vaddr_t)va))
1372 		return -1;
1373 
1374 	/*
1375 	 * We can calculate PA for static map. Virtual address ranges
1376 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1377 	 * together with an invalid null physical address.
1378 	 */
1379 	if (map->pa)
1380 		*pa = map->pa + (vaddr_t)va  - map->va;
1381 	else
1382 		*pa = 0;
1383 
1384 	return 0;
1385 }
1386 
1387 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1388 {
1389 	if (!pa_is_in_map(map, pa, len))
1390 		return NULL;
1391 
1392 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1393 }
1394 
1395 /*
1396  * teecore gets some memory area definitions
1397  */
1398 void core_mmu_get_mem_by_type(unsigned int type, vaddr_t *s, vaddr_t *e)
1399 {
1400 	struct tee_mmap_region *map = find_map_by_type(type);
1401 
1402 	if (map) {
1403 		*s = map->va;
1404 		*e = map->va + map->size;
1405 	} else {
1406 		*s = 0;
1407 		*e = 0;
1408 	}
1409 }
1410 
1411 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1412 {
1413 	struct tee_mmap_region *map = find_map_by_pa(pa);
1414 
1415 	if (!map)
1416 		return MEM_AREA_MAXTYPE;
1417 	return map->type;
1418 }
1419 
1420 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1421 			paddr_t pa, uint32_t attr)
1422 {
1423 	assert(idx < tbl_info->num_entries);
1424 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1425 				     idx, pa, attr);
1426 }
1427 
1428 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1429 			paddr_t *pa, uint32_t *attr)
1430 {
1431 	assert(idx < tbl_info->num_entries);
1432 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1433 				     idx, pa, attr);
1434 }
1435 
1436 static void clear_region(struct core_mmu_table_info *tbl_info,
1437 			 struct tee_mmap_region *region)
1438 {
1439 	unsigned int end = 0;
1440 	unsigned int idx = 0;
1441 
1442 	/* va, len and pa should be block aligned */
1443 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1444 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1445 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1446 
1447 	idx = core_mmu_va2idx(tbl_info, region->va);
1448 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1449 
1450 	while (idx < end) {
1451 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1452 		idx++;
1453 	}
1454 }
1455 
1456 static void set_region(struct core_mmu_table_info *tbl_info,
1457 		       struct tee_mmap_region *region)
1458 {
1459 	unsigned int end;
1460 	unsigned int idx;
1461 	paddr_t pa;
1462 
1463 	/* va, len and pa should be block aligned */
1464 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1465 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1466 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1467 
1468 	idx = core_mmu_va2idx(tbl_info, region->va);
1469 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1470 	pa = region->pa;
1471 
1472 	while (idx < end) {
1473 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1474 		idx++;
1475 		pa += BIT64(tbl_info->shift);
1476 	}
1477 }
1478 
1479 static void set_pg_region(struct core_mmu_table_info *dir_info,
1480 			  struct vm_region *region, struct pgt **pgt,
1481 			  struct core_mmu_table_info *pg_info)
1482 {
1483 	struct tee_mmap_region r = {
1484 		.va = region->va,
1485 		.size = region->size,
1486 		.attr = region->attr,
1487 	};
1488 	vaddr_t end = r.va + r.size;
1489 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1490 
1491 	while (r.va < end) {
1492 		if (!pg_info->table ||
1493 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1494 			/*
1495 			 * We're assigning a new translation table.
1496 			 */
1497 			unsigned int idx;
1498 
1499 			/* Virtual addresses must grow */
1500 			assert(r.va > pg_info->va_base);
1501 
1502 			idx = core_mmu_va2idx(dir_info, r.va);
1503 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1504 
1505 #ifdef CFG_PAGED_USER_TA
1506 			/*
1507 			 * Advance pgt to va_base, note that we may need to
1508 			 * skip multiple page tables if there are large
1509 			 * holes in the vm map.
1510 			 */
1511 			while ((*pgt)->vabase < pg_info->va_base) {
1512 				*pgt = SLIST_NEXT(*pgt, link);
1513 				/* We should have allocated enough */
1514 				assert(*pgt);
1515 			}
1516 			assert((*pgt)->vabase == pg_info->va_base);
1517 			pg_info->table = (*pgt)->tbl;
1518 #else
1519 			assert(*pgt); /* We should have allocated enough */
1520 			pg_info->table = (*pgt)->tbl;
1521 			*pgt = SLIST_NEXT(*pgt, link);
1522 #endif
1523 
1524 			core_mmu_set_entry(dir_info, idx,
1525 					   virt_to_phys(pg_info->table),
1526 					   pgt_attr);
1527 		}
1528 
1529 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1530 			     end - r.va);
1531 
1532 		if (!mobj_is_paged(region->mobj)) {
1533 			size_t granule = BIT(pg_info->shift);
1534 			size_t offset = r.va - region->va + region->offset;
1535 
1536 			r.size = MIN(r.size,
1537 				     mobj_get_phys_granule(region->mobj));
1538 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1539 
1540 			if (mobj_get_pa(region->mobj, offset, granule,
1541 					&r.pa) != TEE_SUCCESS)
1542 				panic("Failed to get PA of unpaged mobj");
1543 			set_region(pg_info, &r);
1544 		}
1545 		r.va += r.size;
1546 	}
1547 }
1548 
1549 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1550 			     size_t size_left, paddr_t block_size,
1551 			     struct tee_mmap_region *mm __maybe_unused)
1552 {
1553 	/* VA and PA are aligned to block size at current level */
1554 	if ((vaddr | paddr) & (block_size - 1))
1555 		return false;
1556 
1557 	/* Remainder fits into block at current level */
1558 	if (size_left < block_size)
1559 		return false;
1560 
1561 #ifdef CFG_WITH_PAGER
1562 	/*
1563 	 * If pager is enabled, we need to map tee ram
1564 	 * regions with small pages only
1565 	 */
1566 	if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE)
1567 		return false;
1568 #endif
1569 
1570 	return true;
1571 }
1572 
1573 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1574 {
1575 	struct core_mmu_table_info tbl_info;
1576 	unsigned int idx;
1577 	vaddr_t vaddr = mm->va;
1578 	paddr_t paddr = mm->pa;
1579 	ssize_t size_left = mm->size;
1580 	unsigned int level;
1581 	bool table_found;
1582 	uint32_t old_attr;
1583 
1584 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1585 
1586 	while (size_left > 0) {
1587 		level = CORE_MMU_BASE_TABLE_LEVEL;
1588 
1589 		while (true) {
1590 			paddr_t block_size = 0;
1591 
1592 			assert(level <= CORE_MMU_PGDIR_LEVEL);
1593 
1594 			table_found = core_mmu_find_table(prtn, vaddr, level,
1595 							  &tbl_info);
1596 			if (!table_found)
1597 				panic("can't find table for mapping");
1598 
1599 			block_size = BIT64(tbl_info.shift);
1600 
1601 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1602 			if (!can_map_at_level(paddr, vaddr, size_left,
1603 					      block_size, mm)) {
1604 				bool secure = mm->attr & TEE_MATTR_SECURE;
1605 
1606 				/*
1607 				 * This part of the region can't be mapped at
1608 				 * this level. Need to go deeper.
1609 				 */
1610 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1611 								     idx,
1612 								     secure))
1613 					panic("Can't divide MMU entry");
1614 				level++;
1615 				continue;
1616 			}
1617 
1618 			/* We can map part of the region at current level */
1619 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1620 			if (old_attr)
1621 				panic("Page is already mapped");
1622 
1623 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1624 			paddr += block_size;
1625 			vaddr += block_size;
1626 			size_left -= block_size;
1627 
1628 			break;
1629 		}
1630 	}
1631 }
1632 
1633 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1634 			      enum teecore_memtypes memtype)
1635 {
1636 	TEE_Result ret;
1637 	struct core_mmu_table_info tbl_info;
1638 	struct tee_mmap_region *mm;
1639 	unsigned int idx;
1640 	uint32_t old_attr;
1641 	uint32_t exceptions;
1642 	vaddr_t vaddr = vstart;
1643 	size_t i;
1644 	bool secure;
1645 
1646 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1647 
1648 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1649 
1650 	if (vaddr & SMALL_PAGE_MASK)
1651 		return TEE_ERROR_BAD_PARAMETERS;
1652 
1653 	exceptions = mmu_lock();
1654 
1655 	mm = find_map_by_va((void *)vaddr);
1656 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1657 		panic("VA does not belong to any known mm region");
1658 
1659 	if (!core_mmu_is_dynamic_vaspace(mm))
1660 		panic("Trying to map into static region");
1661 
1662 	for (i = 0; i < num_pages; i++) {
1663 		if (pages[i] & SMALL_PAGE_MASK) {
1664 			ret = TEE_ERROR_BAD_PARAMETERS;
1665 			goto err;
1666 		}
1667 
1668 		while (true) {
1669 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1670 						 &tbl_info))
1671 				panic("Can't find pagetable for vaddr ");
1672 
1673 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1674 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1675 				break;
1676 
1677 			/* This is supertable. Need to divide it. */
1678 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1679 							     secure))
1680 				panic("Failed to spread pgdir on small tables");
1681 		}
1682 
1683 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1684 		if (old_attr)
1685 			panic("Page is already mapped");
1686 
1687 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1688 				   core_mmu_type_to_attr(memtype));
1689 		vaddr += SMALL_PAGE_SIZE;
1690 	}
1691 
1692 	/*
1693 	 * Make sure all the changes to translation tables are visible
1694 	 * before returning. TLB doesn't need to be invalidated as we are
1695 	 * guaranteed that there's no valid mapping in this range.
1696 	 */
1697 	core_mmu_table_write_barrier();
1698 	mmu_unlock(exceptions);
1699 
1700 	return TEE_SUCCESS;
1701 err:
1702 	mmu_unlock(exceptions);
1703 
1704 	if (i)
1705 		core_mmu_unmap_pages(vstart, i);
1706 
1707 	return ret;
1708 }
1709 
1710 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
1711 					 size_t num_pages,
1712 					 enum teecore_memtypes memtype)
1713 {
1714 	struct core_mmu_table_info tbl_info = { };
1715 	struct tee_mmap_region *mm = NULL;
1716 	unsigned int idx = 0;
1717 	uint32_t old_attr = 0;
1718 	uint32_t exceptions = 0;
1719 	vaddr_t vaddr = vstart;
1720 	paddr_t paddr = pstart;
1721 	size_t i = 0;
1722 	bool secure = false;
1723 
1724 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1725 
1726 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1727 
1728 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
1729 		return TEE_ERROR_BAD_PARAMETERS;
1730 
1731 	exceptions = mmu_lock();
1732 
1733 	mm = find_map_by_va((void *)vaddr);
1734 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1735 		panic("VA does not belong to any known mm region");
1736 
1737 	if (!core_mmu_is_dynamic_vaspace(mm))
1738 		panic("Trying to map into static region");
1739 
1740 	for (i = 0; i < num_pages; i++) {
1741 		while (true) {
1742 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1743 						 &tbl_info))
1744 				panic("Can't find pagetable for vaddr ");
1745 
1746 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1747 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1748 				break;
1749 
1750 			/* This is supertable. Need to divide it. */
1751 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1752 							     secure))
1753 				panic("Failed to spread pgdir on small tables");
1754 		}
1755 
1756 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1757 		if (old_attr)
1758 			panic("Page is already mapped");
1759 
1760 		core_mmu_set_entry(&tbl_info, idx, paddr,
1761 				   core_mmu_type_to_attr(memtype));
1762 		paddr += SMALL_PAGE_SIZE;
1763 		vaddr += SMALL_PAGE_SIZE;
1764 	}
1765 
1766 	/*
1767 	 * Make sure all the changes to translation tables are visible
1768 	 * before returning. TLB doesn't need to be invalidated as we are
1769 	 * guaranteed that there's no valid mapping in this range.
1770 	 */
1771 	core_mmu_table_write_barrier();
1772 	mmu_unlock(exceptions);
1773 
1774 	return TEE_SUCCESS;
1775 }
1776 
1777 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
1778 {
1779 	struct core_mmu_table_info tbl_info;
1780 	struct tee_mmap_region *mm;
1781 	size_t i;
1782 	unsigned int idx;
1783 	uint32_t exceptions;
1784 
1785 	exceptions = mmu_lock();
1786 
1787 	mm = find_map_by_va((void *)vstart);
1788 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
1789 		panic("VA does not belong to any known mm region");
1790 
1791 	if (!core_mmu_is_dynamic_vaspace(mm))
1792 		panic("Trying to unmap static region");
1793 
1794 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
1795 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
1796 			panic("Can't find pagetable");
1797 
1798 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
1799 			panic("Invalid pagetable level");
1800 
1801 		idx = core_mmu_va2idx(&tbl_info, vstart);
1802 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
1803 	}
1804 	tlbi_all();
1805 
1806 	mmu_unlock(exceptions);
1807 }
1808 
1809 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
1810 				struct user_mode_ctx *uctx)
1811 {
1812 	struct core_mmu_table_info pg_info = { };
1813 	struct pgt_cache *pgt_cache = &thread_get_tsd()->pgt_cache;
1814 	struct pgt *pgt = NULL;
1815 	struct vm_region *r = NULL;
1816 	struct vm_region *r_last = NULL;
1817 
1818 	/* Find the first and last valid entry */
1819 	r = TAILQ_FIRST(&uctx->vm_info.regions);
1820 	if (!r)
1821 		return; /* Nothing to map */
1822 	r_last = TAILQ_LAST(&uctx->vm_info.regions, vm_region_head);
1823 
1824 	/*
1825 	 * Allocate all page tables in advance.
1826 	 */
1827 	pgt_alloc(pgt_cache, uctx->ts_ctx, r->va,
1828 		  r_last->va + r_last->size - 1);
1829 	pgt = SLIST_FIRST(pgt_cache);
1830 
1831 	core_mmu_set_info_table(&pg_info, dir_info->level + 1, 0, NULL);
1832 
1833 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
1834 		set_pg_region(dir_info, r, &pgt, &pg_info);
1835 }
1836 
1837 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
1838 				   size_t len)
1839 {
1840 	struct core_mmu_table_info tbl_info = { };
1841 	struct tee_mmap_region *res_map = NULL;
1842 	struct tee_mmap_region *map = NULL;
1843 	paddr_t pa = virt_to_phys(addr);
1844 	size_t granule = 0;
1845 	ptrdiff_t i = 0;
1846 	paddr_t p = 0;
1847 	size_t l = 0;
1848 
1849 	map = find_map_by_type_and_pa(type, pa, len);
1850 	if (!map)
1851 		return TEE_ERROR_GENERIC;
1852 
1853 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
1854 	if (!res_map)
1855 		return TEE_ERROR_GENERIC;
1856 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
1857 		return TEE_ERROR_GENERIC;
1858 	granule = BIT(tbl_info.shift);
1859 
1860 	if (map < static_memory_map ||
1861 	    map >= static_memory_map + ARRAY_SIZE(static_memory_map))
1862 		return TEE_ERROR_GENERIC;
1863 	i = map - static_memory_map;
1864 
1865 	/* Check that we have a full match */
1866 	p = ROUNDDOWN(pa, granule);
1867 	l = ROUNDUP(len + pa - p, granule);
1868 	if (map->pa != p || map->size != l)
1869 		return TEE_ERROR_GENERIC;
1870 
1871 	clear_region(&tbl_info, map);
1872 	tlbi_all();
1873 
1874 	/* If possible remove the va range from res_map */
1875 	if (res_map->va - map->size == map->va) {
1876 		res_map->va -= map->size;
1877 		res_map->size += map->size;
1878 	}
1879 
1880 	/* Remove the entry. */
1881 	memmove(map, map + 1,
1882 		(ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map));
1883 
1884 	/* Clear the last new entry in case it was used */
1885 	memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1,
1886 	       0, sizeof(*map));
1887 
1888 	return TEE_SUCCESS;
1889 }
1890 
1891 struct tee_mmap_region *
1892 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
1893 {
1894 	struct tee_mmap_region *map = NULL;
1895 	struct tee_mmap_region *map_found = NULL;
1896 
1897 	if (!len)
1898 		return NULL;
1899 
1900 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
1901 		if (map->type != type)
1902 			continue;
1903 
1904 		if (map_found)
1905 			return NULL;
1906 
1907 		map_found = map;
1908 	}
1909 
1910 	if (!map_found || map_found->size < len)
1911 		return NULL;
1912 
1913 	return map_found;
1914 }
1915 
1916 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
1917 {
1918 	struct core_mmu_table_info tbl_info;
1919 	struct tee_mmap_region *map;
1920 	size_t n;
1921 	size_t granule;
1922 	paddr_t p;
1923 	size_t l;
1924 
1925 	if (!len)
1926 		return NULL;
1927 
1928 	if (!core_mmu_check_end_pa(addr, len))
1929 		return NULL;
1930 
1931 	/* Check if the memory is already mapped */
1932 	map = find_map_by_type_and_pa(type, addr, len);
1933 	if (map && pbuf_inside_map_area(addr, len, map))
1934 		return (void *)(vaddr_t)(map->va + addr - map->pa);
1935 
1936 	/* Find the reserved va space used for late mappings */
1937 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
1938 	if (!map)
1939 		return NULL;
1940 
1941 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
1942 		return NULL;
1943 
1944 	granule = BIT64(tbl_info.shift);
1945 	p = ROUNDDOWN(addr, granule);
1946 	l = ROUNDUP(len + addr - p, granule);
1947 
1948 	/* Ban overflowing virtual addresses */
1949 	if (map->size < l)
1950 		return NULL;
1951 
1952 	/*
1953 	 * Something is wrong, we can't fit the va range into the selected
1954 	 * table. The reserved va range is possibly missaligned with
1955 	 * granule.
1956 	 */
1957 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
1958 		return NULL;
1959 
1960 	/* Find end of the memory map */
1961 	n = 0;
1962 	while (!core_mmap_is_end_of_table(static_memory_map + n))
1963 		n++;
1964 
1965 	if (n < (ARRAY_SIZE(static_memory_map) - 1)) {
1966 		/* There's room for another entry */
1967 		static_memory_map[n].va = map->va;
1968 		static_memory_map[n].size = l;
1969 		static_memory_map[n + 1].type = MEM_AREA_END;
1970 		map->va += l;
1971 		map->size -= l;
1972 		map = static_memory_map + n;
1973 	} else {
1974 		/*
1975 		 * There isn't room for another entry, steal the reserved
1976 		 * entry as it's not useful for anything else any longer.
1977 		 */
1978 		map->size = l;
1979 	}
1980 	map->type = type;
1981 	map->region_size = granule;
1982 	map->attr = core_mmu_type_to_attr(type);
1983 	map->pa = p;
1984 
1985 	set_region(&tbl_info, map);
1986 
1987 	/* Make sure the new entry is visible before continuing. */
1988 	core_mmu_table_write_barrier();
1989 
1990 	return (void *)(vaddr_t)(map->va + addr - map->pa);
1991 }
1992 
1993 #ifdef CFG_WITH_PAGER
1994 static vaddr_t get_linear_map_end(void)
1995 {
1996 	/* this is synced with the generic linker file kern.ld.S */
1997 	return (vaddr_t)__heap2_end;
1998 }
1999 #endif
2000 
2001 #if defined(CFG_TEE_CORE_DEBUG)
2002 static void check_pa_matches_va(void *va, paddr_t pa)
2003 {
2004 	TEE_Result res = TEE_ERROR_GENERIC;
2005 	vaddr_t v = (vaddr_t)va;
2006 	paddr_t p = 0;
2007 	struct core_mmu_table_info ti __maybe_unused = { };
2008 
2009 	if (core_mmu_user_va_range_is_defined()) {
2010 		vaddr_t user_va_base = 0;
2011 		size_t user_va_size = 0;
2012 
2013 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2014 		if (v >= user_va_base &&
2015 		    v <= (user_va_base - 1 + user_va_size)) {
2016 			if (!core_mmu_user_mapping_is_active()) {
2017 				if (pa)
2018 					panic("issue in linear address space");
2019 				return;
2020 			}
2021 
2022 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2023 				       va, &p);
2024 			if (res == TEE_ERROR_NOT_SUPPORTED)
2025 				return;
2026 			if (res == TEE_SUCCESS && pa != p)
2027 				panic("bad pa");
2028 			if (res != TEE_SUCCESS && pa)
2029 				panic("false pa");
2030 			return;
2031 		}
2032 	}
2033 #ifdef CFG_WITH_PAGER
2034 	if (is_unpaged(va)) {
2035 		if (v - boot_mmu_config.load_offset != pa)
2036 			panic("issue in linear address space");
2037 		return;
2038 	}
2039 
2040 	if (tee_pager_get_table_info(v, &ti)) {
2041 		uint32_t a;
2042 
2043 		/*
2044 		 * Lookups in the page table managed by the pager is
2045 		 * dangerous for addresses in the paged area as those pages
2046 		 * changes all the time. But some ranges are safe,
2047 		 * rw-locked areas when the page is populated for instance.
2048 		 */
2049 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2050 		if (a & TEE_MATTR_VALID_BLOCK) {
2051 			paddr_t mask = BIT64(ti.shift) - 1;
2052 
2053 			p |= v & mask;
2054 			if (pa != p)
2055 				panic();
2056 		} else {
2057 			if (pa)
2058 				panic();
2059 		}
2060 		return;
2061 	}
2062 #endif
2063 
2064 	if (!core_va2pa_helper(va, &p)) {
2065 		/* Verfiy only the static mapping (case non null phys addr) */
2066 		if (p && pa != p) {
2067 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2068 			     va, p, pa);
2069 			panic();
2070 		}
2071 	} else {
2072 		if (pa) {
2073 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2074 			panic();
2075 		}
2076 	}
2077 }
2078 #else
2079 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2080 {
2081 }
2082 #endif
2083 
2084 paddr_t virt_to_phys(void *va)
2085 {
2086 	paddr_t pa = 0;
2087 
2088 	if (!arch_va2pa_helper(va, &pa))
2089 		pa = 0;
2090 	check_pa_matches_va(va, pa);
2091 	return pa;
2092 }
2093 
2094 #if defined(CFG_TEE_CORE_DEBUG)
2095 static void check_va_matches_pa(paddr_t pa, void *va)
2096 {
2097 	paddr_t p = 0;
2098 
2099 	if (!va)
2100 		return;
2101 
2102 	p = virt_to_phys(va);
2103 	if (p != pa) {
2104 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2105 		panic();
2106 	}
2107 }
2108 #else
2109 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2110 {
2111 }
2112 #endif
2113 
2114 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2115 {
2116 	if (!core_mmu_user_mapping_is_active())
2117 		return NULL;
2118 
2119 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2120 }
2121 
2122 #ifdef CFG_WITH_PAGER
2123 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2124 {
2125 	paddr_t end_pa = 0;
2126 
2127 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2128 		return NULL;
2129 
2130 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end()) {
2131 		if (end_pa > get_linear_map_end())
2132 			return NULL;
2133 		return (void *)(vaddr_t)(pa + boot_mmu_config.load_offset);
2134 	}
2135 
2136 	return tee_pager_phys_to_virt(pa, len);
2137 }
2138 #else
2139 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2140 {
2141 	struct tee_mmap_region *mmap = NULL;
2142 
2143 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2144 	if (!mmap)
2145 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2146 	if (!mmap)
2147 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2148 	if (!mmap)
2149 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2150 	if (!mmap)
2151 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2152 	if (!mmap)
2153 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2154 	/*
2155 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2156 	 * used with pager and not needed here.
2157 	 */
2158 	return map_pa2va(mmap, pa, len);
2159 }
2160 #endif
2161 
2162 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2163 {
2164 	void *va = NULL;
2165 
2166 	switch (m) {
2167 	case MEM_AREA_TS_VASPACE:
2168 		va = phys_to_virt_ts_vaspace(pa, len);
2169 		break;
2170 	case MEM_AREA_TEE_RAM:
2171 	case MEM_AREA_TEE_RAM_RX:
2172 	case MEM_AREA_TEE_RAM_RO:
2173 	case MEM_AREA_TEE_RAM_RW:
2174 	case MEM_AREA_NEX_RAM_RO:
2175 	case MEM_AREA_NEX_RAM_RW:
2176 		va = phys_to_virt_tee_ram(pa, len);
2177 		break;
2178 	case MEM_AREA_SHM_VASPACE:
2179 		/* Find VA from PA in dynamic SHM is not yet supported */
2180 		va = NULL;
2181 		break;
2182 	default:
2183 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2184 	}
2185 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2186 		check_va_matches_pa(pa, va);
2187 	return va;
2188 }
2189 
2190 void *phys_to_virt_io(paddr_t pa, size_t len)
2191 {
2192 	struct tee_mmap_region *map = NULL;
2193 	void *va = NULL;
2194 
2195 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2196 	if (!map)
2197 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2198 	if (!map)
2199 		return NULL;
2200 	va = map_pa2va(map, pa, len);
2201 	check_va_matches_pa(pa, va);
2202 	return va;
2203 }
2204 
2205 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2206 {
2207 	if (cpu_mmu_enabled())
2208 		return (vaddr_t)phys_to_virt(pa, type, len);
2209 
2210 	return (vaddr_t)pa;
2211 }
2212 
2213 #ifdef CFG_WITH_PAGER
2214 bool is_unpaged(void *va)
2215 {
2216 	vaddr_t v = (vaddr_t)va;
2217 
2218 	return v >= VCORE_START_VA && v < get_linear_map_end();
2219 }
2220 #else
2221 bool is_unpaged(void *va __unused)
2222 {
2223 	return true;
2224 }
2225 #endif
2226 
2227 void core_mmu_init_virtualization(void)
2228 {
2229 	virt_init_memory(static_memory_map);
2230 }
2231 
2232 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2233 {
2234 	assert(p->pa);
2235 	if (cpu_mmu_enabled()) {
2236 		if (!p->va)
2237 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2238 		assert(p->va);
2239 		return p->va;
2240 	}
2241 	return p->pa;
2242 }
2243 
2244 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2245 {
2246 	assert(p->pa);
2247 	if (cpu_mmu_enabled()) {
2248 		if (!p->va)
2249 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2250 						      len);
2251 		assert(p->va);
2252 		return p->va;
2253 	}
2254 	return p->pa;
2255 }
2256 
2257 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2258 {
2259 	assert(p->pa);
2260 	if (cpu_mmu_enabled()) {
2261 		if (!p->va)
2262 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2263 						      len);
2264 		assert(p->va);
2265 		return p->va;
2266 	}
2267 	return p->pa;
2268 }
2269 
2270 #ifdef CFG_CORE_RESERVED_SHM
2271 static TEE_Result teecore_init_pub_ram(void)
2272 {
2273 	vaddr_t s = 0;
2274 	vaddr_t e = 0;
2275 
2276 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2277 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2278 
2279 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2280 		panic("invalid PUB RAM");
2281 
2282 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2283 	if (!tee_vbuf_is_non_sec(s, e - s))
2284 		panic("PUB RAM is not non-secure");
2285 
2286 #ifdef CFG_PL310
2287 	/* Allocate statically the l2cc mutex */
2288 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2289 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2290 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2291 #endif
2292 
2293 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2294 	default_nsec_shm_size = e - s;
2295 
2296 	return TEE_SUCCESS;
2297 }
2298 early_init(teecore_init_pub_ram);
2299 #endif /*CFG_CORE_RESERVED_SHM*/
2300 
2301 void core_mmu_init_ta_ram(void)
2302 {
2303 	vaddr_t s = 0;
2304 	vaddr_t e = 0;
2305 	paddr_t ps = 0;
2306 	size_t size = 0;
2307 
2308 	/*
2309 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2310 	 * shared mem allocated from teecore.
2311 	 */
2312 	if (IS_ENABLED(CFG_VIRTUALIZATION))
2313 		virt_get_ta_ram(&s, &e);
2314 	else
2315 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2316 
2317 	ps = virt_to_phys((void *)s);
2318 	size = e - s;
2319 
2320 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2321 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2322 		panic("invalid TA RAM");
2323 
2324 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2325 	if (!tee_pbuf_is_sec(ps, size))
2326 		panic("TA RAM is not secure");
2327 
2328 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2329 		panic("TA RAM pool is not empty");
2330 
2331 	/* remove previous config and init TA ddr memory pool */
2332 	tee_mm_final(&tee_mm_sec_ddr);
2333 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2334 		    TEE_MM_POOL_NO_FLAGS);
2335 }
2336