1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016-2025 Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved. 6 */ 7 8 #include <assert.h> 9 #include <config.h> 10 #include <kernel/boot.h> 11 #include <kernel/dt.h> 12 #include <kernel/linker.h> 13 #include <kernel/panic.h> 14 #include <kernel/spinlock.h> 15 #include <kernel/tee_l2cc_mutex.h> 16 #include <kernel/tee_misc.h> 17 #include <kernel/tlb_helpers.h> 18 #include <kernel/user_mode_ctx.h> 19 #include <kernel/virtualization.h> 20 #include <libfdt.h> 21 #include <memtag.h> 22 #include <mm/core_memprot.h> 23 #include <mm/core_mmu.h> 24 #include <mm/mobj.h> 25 #include <mm/pgt_cache.h> 26 #include <mm/phys_mem.h> 27 #include <mm/tee_pager.h> 28 #include <mm/vm.h> 29 #include <platform_config.h> 30 #include <stdalign.h> 31 #include <string.h> 32 #include <trace.h> 33 #include <util.h> 34 35 #ifndef DEBUG_XLAT_TABLE 36 #define DEBUG_XLAT_TABLE 0 37 #endif 38 39 #define SHM_VASPACE_SIZE (1024 * 1024 * 32) 40 41 /* Virtual memory pool for core mappings */ 42 tee_mm_pool_t core_virt_mem_pool; 43 44 /* Virtual memory pool for shared memory mappings */ 45 tee_mm_pool_t core_virt_shm_pool; 46 47 #ifdef CFG_CORE_PHYS_RELOCATABLE 48 unsigned long core_mmu_tee_load_pa __nex_bss; 49 #else 50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR; 51 #endif 52 53 /* 54 * These variables are initialized before .bss is cleared. To avoid 55 * resetting them when .bss is cleared we're storing them in .data instead, 56 * even if they initially are zero. 57 */ 58 59 #ifdef CFG_CORE_RESERVED_SHM 60 /* Default NSec shared memory allocated from NSec world */ 61 unsigned long default_nsec_shm_size __nex_bss; 62 unsigned long default_nsec_shm_paddr __nex_bss; 63 #endif 64 65 static struct memory_map static_memory_map __nex_bss; 66 void (*memory_map_realloc_func)(struct memory_map *mem_map) __nex_bss; 67 68 /* Offset of the first TEE RAM mapping from start of secure RAM */ 69 static size_t tee_ram_initial_offs __nex_bss; 70 71 /* Define the platform's memory layout. */ 72 struct memaccess_area { 73 paddr_t paddr; 74 size_t size; 75 }; 76 77 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } 78 79 static struct memaccess_area secure_only[] __nex_data = { 80 #ifdef CFG_CORE_PHYS_RELOCATABLE 81 MEMACCESS_AREA(0, 0), 82 #else 83 #ifdef TRUSTED_SRAM_BASE 84 MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), 85 #endif 86 MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), 87 #endif 88 }; 89 90 static struct memaccess_area nsec_shared[] __nex_data = { 91 #ifdef CFG_CORE_RESERVED_SHM 92 MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), 93 #endif 94 }; 95 96 #if defined(CFG_SECURE_DATA_PATH) 97 static const char *tz_sdp_match = "linaro,secure-heap"; 98 static struct memaccess_area sec_sdp; 99 #ifdef CFG_TEE_SDP_MEM_BASE 100 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); 101 #endif 102 #ifdef TEE_SDP_TEST_MEM_BASE 103 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); 104 #endif 105 #endif 106 107 #ifdef CFG_CORE_RESERVED_SHM 108 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); 109 #endif 110 static unsigned int mmu_spinlock; 111 112 static uint32_t mmu_lock(void) 113 { 114 return cpu_spin_lock_xsave(&mmu_spinlock); 115 } 116 117 static void mmu_unlock(uint32_t exceptions) 118 { 119 cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); 120 } 121 122 static void heap_realloc_memory_map(struct memory_map *mem_map) 123 { 124 struct tee_mmap_region *m = NULL; 125 struct tee_mmap_region *old = mem_map->map; 126 size_t old_sz = sizeof(*old) * mem_map->alloc_count; 127 size_t sz = old_sz + sizeof(*m); 128 129 assert(nex_malloc_buffer_is_within_alloced(old, old_sz)); 130 m = nex_realloc(old, sz); 131 if (!m) 132 panic(); 133 mem_map->map = m; 134 mem_map->alloc_count++; 135 } 136 137 static void boot_mem_realloc_memory_map(struct memory_map *mem_map) 138 { 139 struct tee_mmap_region *m = NULL; 140 struct tee_mmap_region *old = mem_map->map; 141 size_t old_sz = sizeof(*old) * mem_map->alloc_count; 142 size_t sz = old_sz * 2; 143 144 m = boot_mem_alloc_tmp(sz, alignof(*m)); 145 memcpy(m, old, old_sz); 146 mem_map->map = m; 147 mem_map->alloc_count *= 2; 148 } 149 150 static void grow_mem_map(struct memory_map *mem_map) 151 { 152 if (mem_map->count == mem_map->alloc_count) { 153 if (!memory_map_realloc_func) { 154 EMSG("Out of entries (%zu) in mem_map", 155 mem_map->alloc_count); 156 panic(); 157 } 158 memory_map_realloc_func(mem_map); 159 } 160 mem_map->count++; 161 } 162 163 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size) 164 { 165 /* 166 * The first range is always used to cover OP-TEE core memory, but 167 * depending on configuration it may cover more than that. 168 */ 169 *base = secure_only[0].paddr; 170 *size = secure_only[0].size; 171 } 172 173 void core_mmu_set_secure_memory(paddr_t base, size_t size) 174 { 175 #ifdef CFG_CORE_PHYS_RELOCATABLE 176 static_assert(ARRAY_SIZE(secure_only) == 1); 177 #endif 178 runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)); 179 assert(!secure_only[0].size); 180 assert(base && size); 181 182 DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size); 183 secure_only[0].paddr = base; 184 secure_only[0].size = size; 185 } 186 187 static struct memory_map *get_memory_map(void) 188 { 189 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 190 struct memory_map *map = virt_get_memory_map(); 191 192 if (map) 193 return map; 194 } 195 196 return &static_memory_map; 197 } 198 199 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, 200 paddr_t pa, size_t size) 201 { 202 size_t n; 203 204 for (n = 0; n < alen; n++) 205 if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) 206 return true; 207 return false; 208 } 209 210 #define pbuf_intersects(a, pa, size) \ 211 _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) 212 213 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, 214 paddr_t pa, size_t size) 215 { 216 size_t n; 217 218 for (n = 0; n < alen; n++) 219 if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) 220 return true; 221 return false; 222 } 223 224 #define pbuf_is_inside(a, pa, size) \ 225 _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) 226 227 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) 228 { 229 paddr_t end_pa = 0; 230 231 if (!map) 232 return false; 233 234 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 235 return false; 236 237 return (pa >= map->pa && end_pa <= map->pa + map->size - 1); 238 } 239 240 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) 241 { 242 if (!map) 243 return false; 244 return (va >= map->va && va <= (map->va + map->size - 1)); 245 } 246 247 /* check if target buffer fits in a core default map area */ 248 static bool pbuf_inside_map_area(unsigned long p, size_t l, 249 struct tee_mmap_region *map) 250 { 251 return core_is_buffer_inside(p, l, map->pa, map->size); 252 } 253 254 TEE_Result core_mmu_for_each_map(void *ptr, 255 TEE_Result (*fn)(struct tee_mmap_region *map, 256 void *ptr)) 257 { 258 struct memory_map *mem_map = get_memory_map(); 259 TEE_Result res = TEE_SUCCESS; 260 size_t n = 0; 261 262 for (n = 0; n < mem_map->count; n++) { 263 res = fn(mem_map->map + n, ptr); 264 if (res) 265 return res; 266 } 267 268 return TEE_SUCCESS; 269 } 270 271 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) 272 { 273 struct memory_map *mem_map = get_memory_map(); 274 size_t n = 0; 275 276 for (n = 0; n < mem_map->count; n++) { 277 if (mem_map->map[n].type == type) 278 return mem_map->map + n; 279 } 280 return NULL; 281 } 282 283 static struct tee_mmap_region * 284 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) 285 { 286 struct memory_map *mem_map = get_memory_map(); 287 size_t n = 0; 288 289 for (n = 0; n < mem_map->count; n++) { 290 if (mem_map->map[n].type != type) 291 continue; 292 if (pa_is_in_map(mem_map->map + n, pa, len)) 293 return mem_map->map + n; 294 } 295 return NULL; 296 } 297 298 static struct tee_mmap_region *find_map_by_va(void *va) 299 { 300 struct memory_map *mem_map = get_memory_map(); 301 vaddr_t a = (vaddr_t)va; 302 size_t n = 0; 303 304 for (n = 0; n < mem_map->count; n++) { 305 if (a >= mem_map->map[n].va && 306 a <= (mem_map->map[n].va - 1 + mem_map->map[n].size)) 307 return mem_map->map + n; 308 } 309 310 return NULL; 311 } 312 313 static struct tee_mmap_region *find_map_by_pa(unsigned long pa) 314 { 315 struct memory_map *mem_map = get_memory_map(); 316 size_t n = 0; 317 318 for (n = 0; n < mem_map->count; n++) { 319 /* Skip unmapped regions */ 320 if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) && 321 pa >= mem_map->map[n].pa && 322 pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size)) 323 return mem_map->map + n; 324 } 325 326 return NULL; 327 } 328 329 #if defined(CFG_SECURE_DATA_PATH) 330 static bool dtb_get_sdp_region(void) 331 { 332 void *fdt = NULL; 333 int node = 0; 334 int tmp_node = 0; 335 paddr_t tmp_addr = 0; 336 size_t tmp_size = 0; 337 338 if (!IS_ENABLED(CFG_EMBED_DTB)) 339 return false; 340 341 fdt = get_embedded_dt(); 342 if (!fdt) 343 panic("No DTB found"); 344 345 node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match); 346 if (node < 0) { 347 DMSG("No %s compatible node found", tz_sdp_match); 348 return false; 349 } 350 tmp_node = node; 351 while (tmp_node >= 0) { 352 tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node, 353 tz_sdp_match); 354 if (tmp_node >= 0) 355 DMSG("Ignore SDP pool node %s, supports only 1 node", 356 fdt_get_name(fdt, tmp_node, NULL)); 357 } 358 359 if (fdt_reg_info(fdt, node, &tmp_addr, &tmp_size)) { 360 EMSG("%s: Unable to get base addr or size from DT", 361 tz_sdp_match); 362 return false; 363 } 364 365 sec_sdp.paddr = tmp_addr; 366 sec_sdp.size = tmp_size; 367 368 return true; 369 } 370 #endif 371 372 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) 373 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, 374 const struct core_mmu_phys_mem *start, 375 const struct core_mmu_phys_mem *end) 376 { 377 const struct core_mmu_phys_mem *mem; 378 379 for (mem = start; mem < end; mem++) { 380 if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) 381 return true; 382 } 383 384 return false; 385 } 386 #endif 387 388 #ifdef CFG_CORE_DYN_SHM 389 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, 390 paddr_t pa, size_t size) 391 { 392 struct core_mmu_phys_mem *m = *mem; 393 size_t n = 0; 394 395 while (n < *nelems) { 396 if (!core_is_buffer_intersect(pa, size, m[n].addr, m[n].size)) { 397 n++; 398 continue; 399 } 400 401 if (core_is_buffer_inside(m[n].addr, m[n].size, pa, size)) { 402 /* m[n] is completely covered by pa:size */ 403 rem_array_elem(m, *nelems, sizeof(*m), n); 404 (*nelems)--; 405 m = nex_realloc(m, sizeof(*m) * *nelems); 406 if (!m) 407 panic(); 408 *mem = m; 409 continue; 410 } 411 412 if (pa > m[n].addr && 413 pa + size - 1 < m[n].addr + m[n].size - 1) { 414 /* 415 * pa:size is strictly inside m[n] range so split 416 * m[n] entry. 417 */ 418 m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); 419 if (!m) 420 panic(); 421 *mem = m; 422 (*nelems)++; 423 ins_array_elem(m, *nelems, sizeof(*m), n + 1, NULL); 424 m[n + 1].addr = pa + size; 425 m[n + 1].size = m[n].addr + m[n].size - pa - size; 426 m[n].size = pa - m[n].addr; 427 n++; 428 } else if (pa <= m[n].addr) { 429 /* 430 * pa:size is overlapping (possibly partially) at the 431 * beginning of m[n]. 432 */ 433 m[n].size = m[n].addr + m[n].size - pa - size; 434 m[n].addr = pa + size; 435 } else { 436 /* 437 * pa:size is overlapping (possibly partially) at 438 * the end of m[n]. 439 */ 440 m[n].size = pa - m[n].addr; 441 } 442 n++; 443 } 444 } 445 446 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, 447 size_t nelems, 448 struct tee_mmap_region *map) 449 { 450 size_t n; 451 452 for (n = 0; n < nelems; n++) { 453 if (!core_is_buffer_outside(start[n].addr, start[n].size, 454 map->pa, map->size)) { 455 EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ 456 ") overlaps map (type %d %#" PRIxPA ":%#zx)", 457 start[n].addr, start[n].size, 458 map->type, map->pa, map->size); 459 panic(); 460 } 461 } 462 } 463 464 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; 465 static size_t discovered_nsec_ddr_nelems __nex_bss; 466 467 static int cmp_pmem_by_addr(const void *a, const void *b) 468 { 469 const struct core_mmu_phys_mem *pmem_a = a; 470 const struct core_mmu_phys_mem *pmem_b = b; 471 472 return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); 473 } 474 475 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 476 size_t nelems) 477 { 478 struct core_mmu_phys_mem *m = start; 479 size_t num_elems = nelems; 480 struct memory_map *mem_map = &static_memory_map; 481 const struct core_mmu_phys_mem __maybe_unused *pmem; 482 size_t n = 0; 483 484 assert(!discovered_nsec_ddr_start); 485 assert(m && num_elems); 486 487 qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); 488 489 /* 490 * Non-secure shared memory and also secure data 491 * path memory are supposed to reside inside 492 * non-secure memory. Since NSEC_SHM and SDP_MEM 493 * are used for a specific purpose make holes for 494 * those memory in the normal non-secure memory. 495 * 496 * This has to be done since for instance QEMU 497 * isn't aware of which memory range in the 498 * non-secure memory is used for NSEC_SHM. 499 */ 500 501 #ifdef CFG_SECURE_DATA_PATH 502 if (dtb_get_sdp_region()) 503 carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size); 504 505 for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) 506 carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); 507 #endif 508 509 for (n = 0; n < ARRAY_SIZE(secure_only); n++) 510 carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr, 511 secure_only[n].size); 512 513 for (n = 0; n < mem_map->count; n++) { 514 switch (mem_map->map[n].type) { 515 case MEM_AREA_NSEC_SHM: 516 carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa, 517 mem_map->map[n].size); 518 break; 519 case MEM_AREA_EXT_DT: 520 case MEM_AREA_MANIFEST_DT: 521 case MEM_AREA_RAM_NSEC: 522 case MEM_AREA_RES_VASPACE: 523 case MEM_AREA_SHM_VASPACE: 524 case MEM_AREA_TS_VASPACE: 525 case MEM_AREA_PAGER_VASPACE: 526 case MEM_AREA_NEX_DYN_VASPACE: 527 case MEM_AREA_TEE_DYN_VASPACE: 528 break; 529 default: 530 check_phys_mem_is_outside(m, num_elems, 531 mem_map->map + n); 532 } 533 } 534 535 discovered_nsec_ddr_start = m; 536 discovered_nsec_ddr_nelems = num_elems; 537 538 DMSG("Non-secure RAM:"); 539 for (n = 0; n < num_elems; n++) 540 DMSG("%zu: pa %#"PRIxPA"..%#"PRIxPA" sz %#"PRIxPASZ, 541 n, m[n].addr, m[n].addr + m[n].size - 1, m[n].size); 542 543 if (!core_mmu_check_end_pa(m[num_elems - 1].addr, 544 m[num_elems - 1].size)) 545 panic(); 546 } 547 548 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, 549 const struct core_mmu_phys_mem **end) 550 { 551 if (!discovered_nsec_ddr_start) 552 return false; 553 554 *start = discovered_nsec_ddr_start; 555 *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; 556 557 return true; 558 } 559 560 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) 561 { 562 const struct core_mmu_phys_mem *start; 563 const struct core_mmu_phys_mem *end; 564 565 if (!get_discovered_nsec_ddr(&start, &end)) 566 return false; 567 568 return pbuf_is_special_mem(pbuf, len, start, end); 569 } 570 571 bool core_mmu_nsec_ddr_is_defined(void) 572 { 573 const struct core_mmu_phys_mem *start; 574 const struct core_mmu_phys_mem *end; 575 576 if (!get_discovered_nsec_ddr(&start, &end)) 577 return false; 578 579 return start != end; 580 } 581 #else 582 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) 583 { 584 return false; 585 } 586 #endif /*CFG_CORE_DYN_SHM*/ 587 588 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ 589 EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ 590 pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) 591 592 #ifdef CFG_SECURE_DATA_PATH 593 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) 594 { 595 bool is_sdp_mem = false; 596 597 if (sec_sdp.size) 598 is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr, 599 sec_sdp.size); 600 601 if (!is_sdp_mem) 602 is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, 603 phys_sdp_mem_end); 604 605 return is_sdp_mem; 606 } 607 608 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size) 609 { 610 struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED, 611 CORE_MEM_SDP_MEM); 612 613 if (!mobj) 614 panic("can't create SDP physical memory object"); 615 616 return mobj; 617 } 618 619 struct mobj **core_sdp_mem_create_mobjs(void) 620 { 621 const struct core_mmu_phys_mem *mem = NULL; 622 struct mobj **mobj_base = NULL; 623 struct mobj **mobj = NULL; 624 int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; 625 626 if (sec_sdp.size) 627 cnt++; 628 629 /* SDP mobjs table must end with a NULL entry */ 630 mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); 631 if (!mobj_base) 632 panic("Out of memory"); 633 634 mobj = mobj_base; 635 636 for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++) 637 *mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size); 638 639 if (sec_sdp.size) 640 *mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size); 641 642 return mobj_base; 643 } 644 645 #else /* CFG_SECURE_DATA_PATH */ 646 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) 647 { 648 return false; 649 } 650 651 #endif /* CFG_SECURE_DATA_PATH */ 652 653 /* Check special memories comply with registered memories */ 654 static void verify_special_mem_areas(struct memory_map *mem_map, 655 const struct core_mmu_phys_mem *start, 656 const struct core_mmu_phys_mem *end, 657 const char *area_name __maybe_unused) 658 { 659 const struct core_mmu_phys_mem *mem = NULL; 660 const struct core_mmu_phys_mem *mem2 = NULL; 661 size_t n = 0; 662 663 if (start == end) { 664 DMSG("No %s memory area defined", area_name); 665 return; 666 } 667 668 for (mem = start; mem < end; mem++) 669 DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", 670 area_name, mem->addr, (uint64_t)mem->addr + mem->size); 671 672 /* Check memories do not intersect each other */ 673 for (mem = start; mem + 1 < end; mem++) { 674 for (mem2 = mem + 1; mem2 < end; mem2++) { 675 if (core_is_buffer_intersect(mem2->addr, mem2->size, 676 mem->addr, mem->size)) { 677 MSG_MEM_INSTERSECT(mem2->addr, mem2->size, 678 mem->addr, mem->size); 679 panic("Special memory intersection"); 680 } 681 } 682 } 683 684 /* 685 * Check memories do not intersect any mapped memory. 686 * This is called before reserved VA space is loaded in mem_map. 687 */ 688 for (mem = start; mem < end; mem++) { 689 for (n = 0; n < mem_map->count; n++) { 690 #ifdef TEE_SDP_TEST_MEM_BASE 691 /* 692 * Ignore MEM_AREA_SEC_RAM_OVERALL since it covers 693 * TEE_SDP_TEST_MEM too. 694 */ 695 if (mem->addr == TEE_SDP_TEST_MEM_BASE && 696 mem->size == TEE_SDP_TEST_MEM_SIZE && 697 mem_map->map[n].type == MEM_AREA_SEC_RAM_OVERALL) 698 continue; 699 #endif 700 if (core_is_buffer_intersect(mem->addr, mem->size, 701 mem_map->map[n].pa, 702 mem_map->map[n].size)) { 703 MSG_MEM_INSTERSECT(mem->addr, mem->size, 704 mem_map->map[n].pa, 705 mem_map->map[n].size); 706 panic("Special memory intersection"); 707 } 708 } 709 } 710 } 711 712 static void merge_mmaps(struct tee_mmap_region *dst, 713 const struct tee_mmap_region *src) 714 { 715 paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1); 716 paddr_t pa = MIN(dst->pa, src->pa); 717 718 DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA, 719 dst->pa, dst->pa + dst->size - 1, src->pa, 720 src->pa + src->size - 1); 721 dst->pa = pa; 722 dst->size = end_pa - pa + 1; 723 } 724 725 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1, 726 const struct tee_mmap_region *r2) 727 { 728 if (r1->type != r2->type) 729 return false; 730 731 if (r1->pa == r2->pa) 732 return true; 733 734 if (r1->pa < r2->pa) 735 return r1->pa + r1->size >= r2->pa; 736 else 737 return r2->pa + r2->size >= r1->pa; 738 } 739 740 static void add_phys_mem(struct memory_map *mem_map, 741 const char *mem_name __maybe_unused, 742 enum teecore_memtypes mem_type, 743 paddr_t mem_addr, paddr_size_t mem_size) 744 { 745 size_t n = 0; 746 const struct tee_mmap_region m0 = { 747 .type = mem_type, 748 .pa = mem_addr, 749 .size = mem_size, 750 }; 751 752 if (!mem_size) /* Discard null size entries */ 753 return; 754 755 /* 756 * If some ranges of memory of the same type do overlap 757 * each others they are coalesced into one entry. To help this 758 * added entries are sorted by increasing physical. 759 * 760 * Note that it's valid to have the same physical memory as several 761 * different memory types, for instance the same device memory 762 * mapped as both secure and non-secure. This will probably not 763 * happen often in practice. 764 */ 765 DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, 766 mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size); 767 for (n = 0; n < mem_map->count; n++) { 768 if (mmaps_are_mergeable(mem_map->map + n, &m0)) { 769 merge_mmaps(mem_map->map + n, &m0); 770 /* 771 * The merged result might be mergeable with the 772 * next or previous entry. 773 */ 774 if (n + 1 < mem_map->count && 775 mmaps_are_mergeable(mem_map->map + n, 776 mem_map->map + n + 1)) { 777 merge_mmaps(mem_map->map + n, 778 mem_map->map + n + 1); 779 rem_array_elem(mem_map->map, mem_map->count, 780 sizeof(*mem_map->map), n + 1); 781 mem_map->count--; 782 } 783 if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1, 784 mem_map->map + n)) { 785 merge_mmaps(mem_map->map + n - 1, 786 mem_map->map + n); 787 rem_array_elem(mem_map->map, mem_map->count, 788 sizeof(*mem_map->map), n); 789 mem_map->count--; 790 } 791 return; 792 } 793 if (mem_type < mem_map->map[n].type || 794 (mem_type == mem_map->map[n].type && 795 mem_addr < mem_map->map[n].pa)) 796 break; /* found the spot where to insert this memory */ 797 } 798 799 grow_mem_map(mem_map); 800 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 801 n, &m0); 802 } 803 804 static void add_va_space(struct memory_map *mem_map, 805 enum teecore_memtypes type, size_t size) 806 { 807 size_t n = 0; 808 809 DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); 810 for (n = 0; n < mem_map->count; n++) { 811 if (type < mem_map->map[n].type) 812 break; 813 } 814 815 grow_mem_map(mem_map); 816 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 817 n, NULL); 818 mem_map->map[n] = (struct tee_mmap_region){ 819 .type = type, 820 .size = size, 821 }; 822 } 823 824 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) 825 { 826 const uint32_t attr = TEE_MATTR_VALID_BLOCK; 827 const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED << 828 TEE_MATTR_MEM_TYPE_SHIFT; 829 const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << 830 TEE_MATTR_MEM_TYPE_SHIFT; 831 const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << 832 TEE_MATTR_MEM_TYPE_SHIFT; 833 834 switch (t) { 835 case MEM_AREA_TEE_RAM: 836 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged; 837 case MEM_AREA_TEE_RAM_RX: 838 case MEM_AREA_INIT_RAM_RX: 839 case MEM_AREA_IDENTITY_MAP_RX: 840 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged; 841 case MEM_AREA_TEE_RAM_RO: 842 case MEM_AREA_INIT_RAM_RO: 843 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged; 844 case MEM_AREA_TEE_RAM_RW: 845 case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ 846 case MEM_AREA_NEX_RAM_RW: 847 case MEM_AREA_NEX_DYN_VASPACE: 848 case MEM_AREA_TEE_DYN_VASPACE: 849 case MEM_AREA_TEE_ASAN: 850 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 851 case MEM_AREA_TEE_COHERENT: 852 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; 853 case MEM_AREA_NSEC_SHM: 854 case MEM_AREA_NEX_NSEC_SHM: 855 return attr | TEE_MATTR_PRW | cached; 856 case MEM_AREA_MANIFEST_DT: 857 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 858 case MEM_AREA_TRANSFER_LIST: 859 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 860 case MEM_AREA_EXT_DT: 861 /* 862 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device 863 * tree as secure non-cached memory, otherwise, fall back to 864 * non-secure mapping. 865 */ 866 if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE)) 867 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | 868 noncache; 869 fallthrough; 870 case MEM_AREA_IO_NSEC: 871 return attr | TEE_MATTR_PRW | noncache; 872 case MEM_AREA_IO_SEC: 873 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; 874 case MEM_AREA_RAM_NSEC: 875 return attr | TEE_MATTR_PRW | cached; 876 case MEM_AREA_RAM_SEC: 877 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 878 case MEM_AREA_SEC_RAM_OVERALL: 879 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 880 case MEM_AREA_ROM_SEC: 881 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 882 case MEM_AREA_RES_VASPACE: 883 case MEM_AREA_SHM_VASPACE: 884 return 0; 885 case MEM_AREA_PAGER_VASPACE: 886 return TEE_MATTR_SECURE; 887 default: 888 panic("invalid type"); 889 } 890 } 891 892 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) 893 { 894 switch (mm->type) { 895 case MEM_AREA_TEE_RAM: 896 case MEM_AREA_TEE_RAM_RX: 897 case MEM_AREA_TEE_RAM_RO: 898 case MEM_AREA_TEE_RAM_RW: 899 case MEM_AREA_INIT_RAM_RX: 900 case MEM_AREA_INIT_RAM_RO: 901 case MEM_AREA_NEX_RAM_RW: 902 case MEM_AREA_NEX_RAM_RO: 903 case MEM_AREA_TEE_ASAN: 904 return true; 905 default: 906 return false; 907 } 908 } 909 910 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) 911 { 912 return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); 913 } 914 915 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) 916 { 917 return mm->region_size == CORE_MMU_PGDIR_SIZE; 918 } 919 920 static int cmp_mmap_by_lower_va(const void *a, const void *b) 921 { 922 const struct tee_mmap_region *mm_a = a; 923 const struct tee_mmap_region *mm_b = b; 924 925 return CMP_TRILEAN(mm_a->va, mm_b->va); 926 } 927 928 static void dump_mmap_table(struct memory_map *mem_map) 929 { 930 size_t n = 0; 931 932 for (n = 0; n < mem_map->count; n++) { 933 struct tee_mmap_region *map __maybe_unused = mem_map->map + n; 934 935 DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA 936 " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", 937 teecore_memtype_name(map->type), map->va, 938 map->va + map->size - 1, map->pa, 939 (paddr_t)(map->pa + map->size - 1), map->size, 940 map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); 941 } 942 } 943 944 #if DEBUG_XLAT_TABLE 945 946 static void dump_xlat_table(vaddr_t va, unsigned int level) 947 { 948 struct core_mmu_table_info tbl_info; 949 unsigned int idx = 0; 950 paddr_t pa; 951 uint32_t attr; 952 953 core_mmu_find_table(NULL, va, level, &tbl_info); 954 va = tbl_info.va_base; 955 for (idx = 0; idx < tbl_info.num_entries; idx++) { 956 core_mmu_get_entry(&tbl_info, idx, &pa, &attr); 957 if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { 958 const char *security_bit = ""; 959 960 if (core_mmu_entry_have_security_bit(attr)) { 961 if (attr & TEE_MATTR_SECURE) 962 security_bit = "S"; 963 else 964 security_bit = "NS"; 965 } 966 967 if (attr & TEE_MATTR_TABLE) { 968 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 969 " TBL:0x%010" PRIxPA " %s", 970 level * 2, "", level, va, pa, 971 security_bit); 972 dump_xlat_table(va, level + 1); 973 } else if (attr) { 974 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 975 " PA:0x%010" PRIxPA " %s-%s-%s-%s", 976 level * 2, "", level, va, pa, 977 mattr_is_cached(attr) ? "MEM" : 978 "DEV", 979 attr & TEE_MATTR_PW ? "RW" : "RO", 980 attr & TEE_MATTR_PX ? "X " : "XN", 981 security_bit); 982 } else { 983 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 984 " INVALID\n", 985 level * 2, "", level, va); 986 } 987 } 988 va += BIT64(tbl_info.shift); 989 } 990 } 991 992 #else 993 994 static void dump_xlat_table(vaddr_t va __unused, int level __unused) 995 { 996 } 997 998 #endif 999 1000 /* 1001 * Reserves virtual memory space for pager usage. 1002 * 1003 * From the start of the first memory used by the link script + 1004 * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty 1005 * mapping for pager usage. This adds translation tables as needed for the 1006 * pager to operate. 1007 */ 1008 static void add_pager_vaspace(struct memory_map *mem_map) 1009 { 1010 paddr_t begin = 0; 1011 paddr_t end = 0; 1012 size_t size = 0; 1013 size_t pos = 0; 1014 size_t n = 0; 1015 1016 1017 for (n = 0; n < mem_map->count; n++) { 1018 if (map_is_tee_ram(mem_map->map + n)) { 1019 if (!begin) 1020 begin = mem_map->map[n].pa; 1021 pos = n + 1; 1022 } 1023 } 1024 1025 end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size; 1026 assert(end - begin < TEE_RAM_VA_SIZE); 1027 size = TEE_RAM_VA_SIZE - (end - begin); 1028 1029 grow_mem_map(mem_map); 1030 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 1031 n, NULL); 1032 mem_map->map[n] = (struct tee_mmap_region){ 1033 .type = MEM_AREA_PAGER_VASPACE, 1034 .size = size, 1035 .region_size = SMALL_PAGE_SIZE, 1036 .attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE), 1037 }; 1038 } 1039 1040 static void check_sec_nsec_mem_config(void) 1041 { 1042 size_t n = 0; 1043 1044 for (n = 0; n < ARRAY_SIZE(secure_only); n++) { 1045 if (pbuf_intersects(nsec_shared, secure_only[n].paddr, 1046 secure_only[n].size)) 1047 panic("Invalid memory access config: sec/nsec"); 1048 } 1049 } 1050 1051 static void collect_device_mem_ranges(struct memory_map *mem_map) 1052 { 1053 const char *compatible = "arm,ffa-manifest-device-regions"; 1054 void *fdt = get_manifest_dt(); 1055 const char *name = NULL; 1056 uint64_t page_count = 0; 1057 uint64_t base = 0; 1058 int subnode = 0; 1059 int node = 0; 1060 1061 assert(fdt); 1062 1063 node = fdt_node_offset_by_compatible(fdt, 0, compatible); 1064 if (node < 0) 1065 return; 1066 1067 fdt_for_each_subnode(subnode, fdt, node) { 1068 name = fdt_get_name(fdt, subnode, NULL); 1069 if (!name) 1070 continue; 1071 1072 if (dt_getprop_as_number(fdt, subnode, "base-address", 1073 &base)) { 1074 EMSG("Mandatory field is missing: base-address"); 1075 continue; 1076 } 1077 1078 if (base & SMALL_PAGE_MASK) { 1079 EMSG("base-address is not page aligned"); 1080 continue; 1081 } 1082 1083 if (dt_getprop_as_number(fdt, subnode, "pages-count", 1084 &page_count)) { 1085 EMSG("Mandatory field is missing: pages-count"); 1086 continue; 1087 } 1088 1089 add_phys_mem(mem_map, name, MEM_AREA_IO_SEC, 1090 base, page_count * SMALL_PAGE_SIZE); 1091 } 1092 } 1093 1094 static void collect_mem_ranges(struct memory_map *mem_map) 1095 { 1096 const struct core_mmu_phys_mem *mem = NULL; 1097 vaddr_t ram_start = secure_only[0].paddr; 1098 size_t n = 0; 1099 1100 #define ADD_PHYS_MEM(_type, _addr, _size) \ 1101 add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size)) 1102 1103 if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) { 1104 paddr_t next_pa = 0; 1105 1106 /* 1107 * Read-only and read-execute physical memory areas must 1108 * not be mapped by MEM_AREA_SEC_RAM_OVERALL, but all the 1109 * read/write should. 1110 */ 1111 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, ram_start, 1112 VCORE_UNPG_RX_PA - ram_start); 1113 assert(VCORE_UNPG_RX_PA >= ram_start); 1114 tee_ram_initial_offs = VCORE_UNPG_RX_PA - ram_start; 1115 DMSG("tee_ram_initial_offs %#zx", tee_ram_initial_offs); 1116 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, 1117 VCORE_UNPG_RX_SZ); 1118 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, 1119 VCORE_UNPG_RO_SZ); 1120 1121 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1122 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, 1123 VCORE_UNPG_RW_SZ); 1124 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA, 1125 VCORE_UNPG_RW_SZ); 1126 1127 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, 1128 VCORE_NEX_RW_SZ); 1129 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_NEX_RW_PA, 1130 VCORE_NEX_RW_SZ); 1131 1132 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_FREE_PA, 1133 VCORE_FREE_SZ); 1134 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA, 1135 VCORE_FREE_SZ); 1136 next_pa = VCORE_FREE_PA + VCORE_FREE_SZ; 1137 } else { 1138 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, 1139 VCORE_UNPG_RW_SZ); 1140 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA, 1141 VCORE_UNPG_RW_SZ); 1142 1143 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_FREE_PA, 1144 VCORE_FREE_SZ); 1145 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA, 1146 VCORE_FREE_SZ); 1147 next_pa = VCORE_FREE_PA + VCORE_FREE_SZ; 1148 } 1149 1150 if (IS_ENABLED(CFG_WITH_PAGER)) { 1151 paddr_t pa = 0; 1152 size_t sz = 0; 1153 1154 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, 1155 VCORE_INIT_RX_SZ); 1156 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, 1157 VCORE_INIT_RO_SZ); 1158 /* 1159 * Core init mapping shall cover up to end of the 1160 * physical RAM. This is required since the hash 1161 * table is appended to the binary data after the 1162 * firmware build sequence. 1163 */ 1164 pa = VCORE_INIT_RO_PA + VCORE_INIT_RO_SZ; 1165 sz = TEE_RAM_START + TEE_RAM_PH_SIZE - pa; 1166 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, pa, sz); 1167 } else { 1168 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, next_pa, 1169 secure_only[0].paddr + 1170 secure_only[0].size - next_pa); 1171 } 1172 } else { 1173 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); 1174 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr, 1175 secure_only[0].size); 1176 } 1177 1178 for (n = 1; n < ARRAY_SIZE(secure_only); n++) 1179 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr, 1180 secure_only[n].size); 1181 1182 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) && 1183 IS_ENABLED(CFG_WITH_PAGER)) { 1184 /* 1185 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is 1186 * disabled. 1187 */ 1188 ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); 1189 } 1190 1191 #undef ADD_PHYS_MEM 1192 1193 /* Collect device memory info from SP manifest */ 1194 if (IS_ENABLED(CFG_CORE_SEL2_SPMC)) 1195 collect_device_mem_ranges(mem_map); 1196 1197 for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { 1198 /* Only unmapped virtual range may have a null phys addr */ 1199 assert(mem->addr || !core_mmu_type_to_attr(mem->type)); 1200 1201 add_phys_mem(mem_map, mem->name, mem->type, 1202 mem->addr, mem->size); 1203 } 1204 1205 if (IS_ENABLED(CFG_SECURE_DATA_PATH)) 1206 verify_special_mem_areas(mem_map, phys_sdp_mem_begin, 1207 phys_sdp_mem_end, "SDP"); 1208 1209 add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE); 1210 add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE); 1211 if (IS_ENABLED(CFG_DYN_CONFIG)) { 1212 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) 1213 add_va_space(mem_map, MEM_AREA_NEX_DYN_VASPACE, 1214 ROUNDUP(CFG_NEX_DYN_VASPACE_SIZE, 1215 CORE_MMU_PGDIR_SIZE)); 1216 add_va_space(mem_map, MEM_AREA_TEE_DYN_VASPACE, 1217 CFG_TEE_DYN_VASPACE_SIZE); 1218 } 1219 } 1220 1221 static void assign_mem_granularity(struct memory_map *mem_map) 1222 { 1223 size_t n = 0; 1224 1225 /* 1226 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses 1227 * SMALL_PAGE_SIZE. 1228 */ 1229 for (n = 0; n < mem_map->count; n++) { 1230 paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size; 1231 1232 if (mask & SMALL_PAGE_MASK) 1233 panic("Impossible memory alignment"); 1234 1235 if (map_is_tee_ram(mem_map->map + n)) 1236 mem_map->map[n].region_size = SMALL_PAGE_SIZE; 1237 else 1238 mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE; 1239 } 1240 } 1241 1242 static bool place_tee_ram_at_top(paddr_t paddr) 1243 { 1244 return paddr > BIT64(core_mmu_get_va_width()) / 2; 1245 } 1246 1247 /* 1248 * MMU arch driver shall override this function if it helps 1249 * optimizing the memory footprint of the address translation tables. 1250 */ 1251 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr) 1252 { 1253 return place_tee_ram_at_top(paddr); 1254 } 1255 1256 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map, 1257 bool tee_ram_at_top) 1258 { 1259 struct tee_mmap_region *map = NULL; 1260 vaddr_t va = 0; 1261 bool va_is_secure = true; 1262 size_t n = 0; 1263 1264 /* 1265 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y. 1266 * 0 is by design an invalid va, so return false directly. 1267 */ 1268 if (!tee_ram_va) 1269 return false; 1270 1271 /* Clear eventual previous assignments */ 1272 for (n = 0; n < mem_map->count; n++) 1273 mem_map->map[n].va = 0; 1274 1275 /* 1276 * TEE RAM regions are always aligned with region_size. 1277 * 1278 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here 1279 * since it handles virtual memory which covers the part of the ELF 1280 * that cannot fit directly into memory. 1281 */ 1282 va = tee_ram_va + tee_ram_initial_offs; 1283 for (n = 0; n < mem_map->count; n++) { 1284 map = mem_map->map + n; 1285 if (map_is_tee_ram(map) || 1286 map->type == MEM_AREA_PAGER_VASPACE) { 1287 assert(!(va & (map->region_size - 1))); 1288 assert(!(map->size & (map->region_size - 1))); 1289 map->va = va; 1290 if (ADD_OVERFLOW(va, map->size, &va)) 1291 return false; 1292 if (va >= BIT64(core_mmu_get_va_width())) 1293 return false; 1294 } 1295 } 1296 1297 if (tee_ram_at_top) { 1298 /* 1299 * Map non-tee ram regions at addresses lower than the tee 1300 * ram region. 1301 */ 1302 va = tee_ram_va; 1303 for (n = 0; n < mem_map->count; n++) { 1304 map = mem_map->map + n; 1305 map->attr = core_mmu_type_to_attr(map->type); 1306 if (map->va) 1307 continue; 1308 1309 if (!IS_ENABLED(CFG_WITH_LPAE) && 1310 va_is_secure != map_is_secure(map)) { 1311 va_is_secure = !va_is_secure; 1312 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1313 } 1314 1315 if (SUB_OVERFLOW(va, map->size, &va)) 1316 return false; 1317 va = ROUNDDOWN2(va, map->region_size); 1318 /* 1319 * Make sure that va is aligned with pa for 1320 * efficient pgdir mapping. Basically pa & 1321 * pgdir_mask should be == va & pgdir_mask 1322 */ 1323 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1324 if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) 1325 return false; 1326 va += (map->pa - va) & CORE_MMU_PGDIR_MASK; 1327 } 1328 map->va = va; 1329 } 1330 } else { 1331 /* 1332 * Map non-tee ram regions at addresses higher than the tee 1333 * ram region. 1334 */ 1335 for (n = 0; n < mem_map->count; n++) { 1336 map = mem_map->map + n; 1337 map->attr = core_mmu_type_to_attr(map->type); 1338 if (map->va) 1339 continue; 1340 1341 if (!IS_ENABLED(CFG_WITH_LPAE) && 1342 va_is_secure != map_is_secure(map)) { 1343 va_is_secure = !va_is_secure; 1344 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1345 &va)) 1346 return false; 1347 } 1348 1349 if (ROUNDUP2_OVERFLOW(va, map->region_size, &va)) 1350 return false; 1351 /* 1352 * Make sure that va is aligned with pa for 1353 * efficient pgdir mapping. Basically pa & 1354 * pgdir_mask should be == va & pgdir_mask 1355 */ 1356 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1357 vaddr_t offs = (map->pa - va) & 1358 CORE_MMU_PGDIR_MASK; 1359 1360 if (ADD_OVERFLOW(va, offs, &va)) 1361 return false; 1362 } 1363 1364 map->va = va; 1365 if (ADD_OVERFLOW(va, map->size, &va)) 1366 return false; 1367 if (va >= BIT64(core_mmu_get_va_width())) 1368 return false; 1369 } 1370 } 1371 1372 return true; 1373 } 1374 1375 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map) 1376 { 1377 bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va); 1378 1379 /* 1380 * Check that we're not overlapping with the user VA range. 1381 */ 1382 if (IS_ENABLED(CFG_WITH_LPAE)) { 1383 /* 1384 * User VA range is supposed to be defined after these 1385 * mappings have been established. 1386 */ 1387 assert(!core_mmu_user_va_range_is_defined()); 1388 } else { 1389 vaddr_t user_va_base = 0; 1390 size_t user_va_size = 0; 1391 1392 assert(core_mmu_user_va_range_is_defined()); 1393 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 1394 if (tee_ram_va < (user_va_base + user_va_size)) 1395 return false; 1396 } 1397 1398 if (IS_ENABLED(CFG_WITH_PAGER)) { 1399 bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va); 1400 1401 /* Try whole mapping covered by a single base xlat entry */ 1402 if (prefered_dir != tee_ram_at_top && 1403 assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir)) 1404 return true; 1405 } 1406 1407 return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top); 1408 } 1409 1410 static int cmp_init_mem_map(const void *a, const void *b) 1411 { 1412 const struct tee_mmap_region *mm_a = a; 1413 const struct tee_mmap_region *mm_b = b; 1414 int rc = 0; 1415 1416 rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); 1417 if (!rc) 1418 rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); 1419 /* 1420 * 32bit MMU descriptors cannot mix secure and non-secure mapping in 1421 * the same level2 table. Hence sort secure mapping from non-secure 1422 * mapping. 1423 */ 1424 if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) 1425 rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); 1426 1427 return rc; 1428 } 1429 1430 static bool mem_map_add_id_map(struct memory_map *mem_map, 1431 vaddr_t id_map_start, vaddr_t id_map_end) 1432 { 1433 vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); 1434 vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); 1435 size_t len = end - start; 1436 size_t n = 0; 1437 1438 1439 for (n = 0; n < mem_map->count; n++) 1440 if (core_is_buffer_intersect(mem_map->map[n].va, 1441 mem_map->map[n].size, start, len)) 1442 return false; 1443 1444 grow_mem_map(mem_map); 1445 mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){ 1446 .type = MEM_AREA_IDENTITY_MAP_RX, 1447 /* 1448 * Could use CORE_MMU_PGDIR_SIZE to potentially save a 1449 * translation table, at the increased risk of clashes with 1450 * the rest of the memory map. 1451 */ 1452 .region_size = SMALL_PAGE_SIZE, 1453 .pa = start, 1454 .va = start, 1455 .size = len, 1456 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1457 }; 1458 1459 return true; 1460 } 1461 1462 static struct memory_map *init_mem_map(struct memory_map *mem_map, 1463 unsigned long seed, 1464 unsigned long *ret_offs) 1465 { 1466 /* 1467 * @id_map_start and @id_map_end describes a physical memory range 1468 * that must be mapped Read-Only eXecutable at identical virtual 1469 * addresses. 1470 */ 1471 vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; 1472 vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; 1473 vaddr_t start_addr = secure_only[0].paddr; 1474 unsigned long offs = 0; 1475 1476 collect_mem_ranges(mem_map); 1477 assign_mem_granularity(mem_map); 1478 1479 /* 1480 * To ease mapping and lower use of xlat tables, sort mapping 1481 * description moving small-page regions after the pgdir regions. 1482 */ 1483 qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), 1484 cmp_init_mem_map); 1485 1486 if (IS_ENABLED(CFG_WITH_PAGER)) 1487 add_pager_vaspace(mem_map); 1488 1489 if (IS_ENABLED(CFG_CORE_ASLR) && seed) { 1490 vaddr_t base_addr = start_addr + seed; 1491 const unsigned int va_width = core_mmu_get_va_width(); 1492 const vaddr_t va_mask = GENMASK_64(va_width - 1, 1493 SMALL_PAGE_SHIFT); 1494 vaddr_t ba = base_addr; 1495 size_t n = 0; 1496 1497 for (n = 0; n < 3; n++) { 1498 if (n) 1499 ba = base_addr ^ BIT64(va_width - n); 1500 ba &= va_mask; 1501 if (assign_mem_va(ba, mem_map) && 1502 mem_map_add_id_map(mem_map, id_map_start, 1503 id_map_end)) { 1504 offs = ba - start_addr; 1505 DMSG("Mapping core at %#"PRIxVA" offs %#lx", 1506 ba, offs); 1507 goto out; 1508 } else { 1509 DMSG("Failed to map core at %#"PRIxVA, ba); 1510 } 1511 } 1512 EMSG("Failed to map core with seed %#lx", seed); 1513 } 1514 1515 if (!assign_mem_va(start_addr, mem_map)) 1516 panic(); 1517 1518 out: 1519 qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), 1520 cmp_mmap_by_lower_va); 1521 1522 dump_mmap_table(mem_map); 1523 1524 *ret_offs = offs; 1525 return mem_map; 1526 } 1527 1528 static void check_mem_map(struct memory_map *mem_map) 1529 { 1530 struct tee_mmap_region *m = NULL; 1531 size_t n = 0; 1532 1533 for (n = 0; n < mem_map->count; n++) { 1534 m = mem_map->map + n; 1535 switch (m->type) { 1536 case MEM_AREA_TEE_RAM: 1537 case MEM_AREA_TEE_RAM_RX: 1538 case MEM_AREA_TEE_RAM_RO: 1539 case MEM_AREA_TEE_RAM_RW: 1540 case MEM_AREA_INIT_RAM_RX: 1541 case MEM_AREA_INIT_RAM_RO: 1542 case MEM_AREA_NEX_RAM_RW: 1543 case MEM_AREA_NEX_RAM_RO: 1544 case MEM_AREA_IDENTITY_MAP_RX: 1545 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1546 panic("TEE_RAM can't fit in secure_only"); 1547 break; 1548 case MEM_AREA_SEC_RAM_OVERALL: 1549 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1550 panic("SEC_RAM_OVERALL can't fit in secure_only"); 1551 break; 1552 case MEM_AREA_NSEC_SHM: 1553 if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) 1554 panic("NS_SHM can't fit in nsec_shared"); 1555 break; 1556 case MEM_AREA_TEE_COHERENT: 1557 case MEM_AREA_TEE_ASAN: 1558 case MEM_AREA_IO_SEC: 1559 case MEM_AREA_IO_NSEC: 1560 case MEM_AREA_EXT_DT: 1561 case MEM_AREA_MANIFEST_DT: 1562 case MEM_AREA_TRANSFER_LIST: 1563 case MEM_AREA_RAM_SEC: 1564 case MEM_AREA_RAM_NSEC: 1565 case MEM_AREA_ROM_SEC: 1566 case MEM_AREA_RES_VASPACE: 1567 case MEM_AREA_SHM_VASPACE: 1568 case MEM_AREA_PAGER_VASPACE: 1569 case MEM_AREA_NEX_DYN_VASPACE: 1570 case MEM_AREA_TEE_DYN_VASPACE: 1571 break; 1572 default: 1573 EMSG("Uhandled memtype %d", m->type); 1574 panic(); 1575 } 1576 } 1577 } 1578 1579 /* 1580 * core_init_mmu_map() - init tee core default memory mapping 1581 * 1582 * This routine sets the static default TEE core mapping. If @seed is > 0 1583 * and configured with CFG_CORE_ASLR it will map tee core at a location 1584 * based on the seed and return the offset from the link address. 1585 * 1586 * If an error happened: core_init_mmu_map is expected to panic. 1587 * 1588 * Note: this function is weak just to make it possible to exclude it from 1589 * the unpaged area. 1590 */ 1591 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) 1592 { 1593 #ifndef CFG_NS_VIRTUALIZATION 1594 vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); 1595 #else 1596 vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, 1597 SMALL_PAGE_SIZE); 1598 #endif 1599 #ifdef CFG_DYN_CONFIG 1600 vaddr_t len = ROUNDUP(VCORE_FREE_END_PA, SMALL_PAGE_SIZE) - start; 1601 #else 1602 vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; 1603 #endif 1604 struct tee_mmap_region tmp_mmap_region = { }; 1605 struct memory_map mem_map = { }; 1606 unsigned long offs = 0; 1607 1608 if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) && 1609 (core_mmu_tee_load_pa & SMALL_PAGE_MASK)) 1610 panic("OP-TEE load address is not page aligned"); 1611 1612 check_sec_nsec_mem_config(); 1613 1614 mem_map.alloc_count = CFG_MMAP_REGIONS; 1615 mem_map.map = boot_mem_alloc_tmp(mem_map.alloc_count * 1616 sizeof(*mem_map.map), 1617 alignof(*mem_map.map)); 1618 memory_map_realloc_func = boot_mem_realloc_memory_map; 1619 1620 static_memory_map = (struct memory_map){ 1621 .map = &tmp_mmap_region, 1622 .alloc_count = 1, 1623 .count = 1, 1624 }; 1625 /* 1626 * Add a entry covering the translation tables which will be 1627 * involved in some virt_to_phys() and phys_to_virt() conversions. 1628 */ 1629 static_memory_map.map[0] = (struct tee_mmap_region){ 1630 .type = MEM_AREA_TEE_RAM, 1631 .region_size = SMALL_PAGE_SIZE, 1632 .pa = start, 1633 .va = start, 1634 .size = len, 1635 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1636 }; 1637 1638 init_mem_map(&mem_map, seed, &offs); 1639 1640 check_mem_map(&mem_map); 1641 core_init_mmu(&mem_map); 1642 dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); 1643 core_init_mmu_regs(cfg); 1644 cfg->map_offset = offs; 1645 static_memory_map = mem_map; 1646 boot_mem_add_reloc(&static_memory_map.map); 1647 } 1648 1649 void core_mmu_save_mem_map(void) 1650 { 1651 size_t alloc_count = static_memory_map.count + 5; 1652 size_t elem_sz = sizeof(*static_memory_map.map); 1653 void *p = NULL; 1654 1655 p = nex_calloc(alloc_count, elem_sz); 1656 if (!p) 1657 panic(); 1658 memcpy(p, static_memory_map.map, static_memory_map.count * elem_sz); 1659 static_memory_map.map = p; 1660 static_memory_map.alloc_count = alloc_count; 1661 memory_map_realloc_func = heap_realloc_memory_map; 1662 } 1663 1664 bool core_mmu_mattr_is_ok(uint32_t mattr) 1665 { 1666 /* 1667 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and 1668 * core_mmu_v7.c:mattr_to_texcb 1669 */ 1670 1671 switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { 1672 case TEE_MATTR_MEM_TYPE_DEV: 1673 case TEE_MATTR_MEM_TYPE_STRONGLY_O: 1674 case TEE_MATTR_MEM_TYPE_CACHED: 1675 case TEE_MATTR_MEM_TYPE_TAGGED: 1676 return true; 1677 default: 1678 return false; 1679 } 1680 } 1681 1682 /* 1683 * test attributes of target physical buffer 1684 * 1685 * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). 1686 * 1687 */ 1688 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) 1689 { 1690 struct tee_mmap_region *map; 1691 1692 /* Empty buffers complies with anything */ 1693 if (len == 0) 1694 return true; 1695 1696 switch (attr) { 1697 case CORE_MEM_SEC: 1698 return pbuf_is_inside(secure_only, pbuf, len); 1699 case CORE_MEM_NON_SEC: 1700 return pbuf_is_inside(nsec_shared, pbuf, len) || 1701 pbuf_is_nsec_ddr(pbuf, len); 1702 case CORE_MEM_TEE_RAM: 1703 return core_is_buffer_inside(pbuf, len, TEE_RAM_START, 1704 TEE_RAM_PH_SIZE); 1705 #ifdef CFG_CORE_RESERVED_SHM 1706 case CORE_MEM_NSEC_SHM: 1707 return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, 1708 TEE_SHMEM_SIZE); 1709 #endif 1710 case CORE_MEM_SDP_MEM: 1711 return pbuf_is_sdp_mem(pbuf, len); 1712 case CORE_MEM_CACHED: 1713 map = find_map_by_pa(pbuf); 1714 if (!map || !pbuf_inside_map_area(pbuf, len, map)) 1715 return false; 1716 return mattr_is_cached(map->attr); 1717 default: 1718 return false; 1719 } 1720 } 1721 1722 /* test attributes of target virtual buffer (in core mapping) */ 1723 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) 1724 { 1725 paddr_t p; 1726 1727 /* Empty buffers complies with anything */ 1728 if (len == 0) 1729 return true; 1730 1731 p = virt_to_phys((void *)vbuf); 1732 if (!p) 1733 return false; 1734 1735 return core_pbuf_is(attr, p, len); 1736 } 1737 1738 /* core_va2pa - teecore exported service */ 1739 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) 1740 { 1741 struct tee_mmap_region *map; 1742 1743 map = find_map_by_va(va); 1744 if (!va_is_in_map(map, (vaddr_t)va)) 1745 return -1; 1746 1747 /* 1748 * We can calculate PA for static map. Virtual address ranges 1749 * reserved to core dynamic mapping return a 'match' (return 0;) 1750 * together with an invalid null physical address. 1751 */ 1752 if (map->pa) 1753 *pa = map->pa + (vaddr_t)va - map->va; 1754 else 1755 *pa = 0; 1756 1757 return 0; 1758 } 1759 1760 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) 1761 { 1762 if (!pa_is_in_map(map, pa, len)) 1763 return NULL; 1764 1765 return (void *)(vaddr_t)(map->va + pa - map->pa); 1766 } 1767 1768 /* 1769 * teecore gets some memory area definitions 1770 */ 1771 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s, 1772 vaddr_t *e) 1773 { 1774 struct tee_mmap_region *map = find_map_by_type(type); 1775 1776 if (map) { 1777 *s = map->va; 1778 *e = map->va + map->size; 1779 } else { 1780 *s = 0; 1781 *e = 0; 1782 } 1783 } 1784 1785 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) 1786 { 1787 struct tee_mmap_region *map = find_map_by_pa(pa); 1788 1789 if (!map) 1790 return MEM_AREA_MAXTYPE; 1791 return map->type; 1792 } 1793 1794 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1795 paddr_t pa, uint32_t attr) 1796 { 1797 assert(idx < tbl_info->num_entries); 1798 core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, 1799 idx, pa, attr); 1800 } 1801 1802 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1803 paddr_t *pa, uint32_t *attr) 1804 { 1805 assert(idx < tbl_info->num_entries); 1806 core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, 1807 idx, pa, attr); 1808 } 1809 1810 static void clear_region(struct core_mmu_table_info *tbl_info, 1811 struct tee_mmap_region *region) 1812 { 1813 unsigned int end = 0; 1814 unsigned int idx = 0; 1815 1816 /* va, len and pa should be block aligned */ 1817 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1818 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1819 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1820 1821 idx = core_mmu_va2idx(tbl_info, region->va); 1822 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1823 1824 while (idx < end) { 1825 core_mmu_set_entry(tbl_info, idx, 0, 0); 1826 idx++; 1827 } 1828 } 1829 1830 static void set_region(struct core_mmu_table_info *tbl_info, 1831 struct tee_mmap_region *region) 1832 { 1833 unsigned int end; 1834 unsigned int idx; 1835 paddr_t pa; 1836 1837 /* va, len and pa should be block aligned */ 1838 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1839 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1840 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1841 1842 idx = core_mmu_va2idx(tbl_info, region->va); 1843 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1844 pa = region->pa; 1845 1846 while (idx < end) { 1847 core_mmu_set_entry(tbl_info, idx, pa, region->attr); 1848 idx++; 1849 pa += BIT64(tbl_info->shift); 1850 } 1851 } 1852 1853 static void set_pg_region(struct core_mmu_table_info *dir_info, 1854 struct vm_region *region, struct pgt **pgt, 1855 struct core_mmu_table_info *pg_info) 1856 { 1857 struct tee_mmap_region r = { 1858 .va = region->va, 1859 .size = region->size, 1860 .attr = region->attr, 1861 }; 1862 vaddr_t end = r.va + r.size; 1863 uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; 1864 1865 while (r.va < end) { 1866 if (!pg_info->table || 1867 r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { 1868 /* 1869 * We're assigning a new translation table. 1870 */ 1871 unsigned int idx; 1872 1873 /* Virtual addresses must grow */ 1874 assert(r.va > pg_info->va_base); 1875 1876 idx = core_mmu_va2idx(dir_info, r.va); 1877 pg_info->va_base = core_mmu_idx2va(dir_info, idx); 1878 1879 /* 1880 * Advance pgt to va_base, note that we may need to 1881 * skip multiple page tables if there are large 1882 * holes in the vm map. 1883 */ 1884 while ((*pgt)->vabase < pg_info->va_base) { 1885 *pgt = SLIST_NEXT(*pgt, link); 1886 /* We should have allocated enough */ 1887 assert(*pgt); 1888 } 1889 assert((*pgt)->vabase == pg_info->va_base); 1890 pg_info->table = (*pgt)->tbl; 1891 1892 core_mmu_set_entry(dir_info, idx, 1893 virt_to_phys(pg_info->table), 1894 pgt_attr); 1895 } 1896 1897 r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), 1898 end - r.va); 1899 1900 if (!(*pgt)->populated && !mobj_is_paged(region->mobj)) { 1901 size_t granule = BIT(pg_info->shift); 1902 size_t offset = r.va - region->va + region->offset; 1903 1904 r.size = MIN(r.size, 1905 mobj_get_phys_granule(region->mobj)); 1906 r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); 1907 1908 if (mobj_get_pa(region->mobj, offset, granule, 1909 &r.pa) != TEE_SUCCESS) 1910 panic("Failed to get PA of unpaged mobj"); 1911 set_region(pg_info, &r); 1912 } 1913 r.va += r.size; 1914 } 1915 } 1916 1917 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, 1918 size_t size_left, paddr_t block_size, 1919 struct tee_mmap_region *mm) 1920 { 1921 /* VA and PA are aligned to block size at current level */ 1922 if ((vaddr | paddr) & (block_size - 1)) 1923 return false; 1924 1925 /* Remainder fits into block at current level */ 1926 if (size_left < block_size) 1927 return false; 1928 1929 /* 1930 * The required block size of the region is compatible with the 1931 * block size of the current level. 1932 */ 1933 if (mm->region_size < block_size) 1934 return false; 1935 1936 #ifdef CFG_WITH_PAGER 1937 /* 1938 * If pager is enabled, we need to map TEE RAM and the whole pager 1939 * regions with small pages only 1940 */ 1941 if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) && 1942 block_size != SMALL_PAGE_SIZE) 1943 return false; 1944 #endif 1945 1946 return true; 1947 } 1948 1949 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) 1950 { 1951 struct core_mmu_table_info tbl_info = { }; 1952 unsigned int idx = 0; 1953 vaddr_t vaddr = mm->va; 1954 paddr_t paddr = mm->pa; 1955 ssize_t size_left = mm->size; 1956 uint32_t attr = mm->attr; 1957 unsigned int level = 0; 1958 bool table_found = false; 1959 uint32_t old_attr = 0; 1960 1961 assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); 1962 if (!paddr) 1963 attr = 0; 1964 1965 while (size_left > 0) { 1966 level = CORE_MMU_BASE_TABLE_LEVEL; 1967 1968 while (true) { 1969 paddr_t block_size = 0; 1970 1971 assert(core_mmu_level_in_range(level)); 1972 1973 table_found = core_mmu_find_table(prtn, vaddr, level, 1974 &tbl_info); 1975 if (!table_found) 1976 panic("can't find table for mapping"); 1977 1978 block_size = BIT64(tbl_info.shift); 1979 1980 idx = core_mmu_va2idx(&tbl_info, vaddr); 1981 if (!can_map_at_level(paddr, vaddr, size_left, 1982 block_size, mm)) { 1983 bool secure = mm->attr & TEE_MATTR_SECURE; 1984 1985 /* 1986 * This part of the region can't be mapped at 1987 * this level. Need to go deeper. 1988 */ 1989 if (!core_mmu_entry_to_finer_grained(&tbl_info, 1990 idx, 1991 secure)) 1992 panic("Can't divide MMU entry"); 1993 level = tbl_info.next_level; 1994 continue; 1995 } 1996 1997 /* We can map part of the region at current level */ 1998 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1999 if (old_attr) 2000 panic("Page is already mapped"); 2001 2002 core_mmu_set_entry(&tbl_info, idx, paddr, attr); 2003 /* 2004 * Dynamic vaspace regions don't have a physical 2005 * address initially but we need to allocate and 2006 * initialize the translation tables now for later 2007 * updates to work properly. 2008 */ 2009 if (paddr) 2010 paddr += block_size; 2011 vaddr += block_size; 2012 size_left -= block_size; 2013 2014 break; 2015 } 2016 } 2017 } 2018 2019 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 2020 enum teecore_memtypes memtype) 2021 { 2022 TEE_Result ret; 2023 struct core_mmu_table_info tbl_info; 2024 struct tee_mmap_region *mm; 2025 unsigned int idx; 2026 uint32_t old_attr; 2027 uint32_t exceptions; 2028 vaddr_t vaddr = vstart; 2029 size_t i; 2030 bool secure; 2031 2032 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 2033 2034 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 2035 2036 if (vaddr & SMALL_PAGE_MASK) 2037 return TEE_ERROR_BAD_PARAMETERS; 2038 2039 exceptions = mmu_lock(); 2040 2041 mm = find_map_by_va((void *)vaddr); 2042 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 2043 panic("VA does not belong to any known mm region"); 2044 2045 if (!core_mmu_is_dynamic_vaspace(mm)) 2046 panic("Trying to map into static region"); 2047 2048 for (i = 0; i < num_pages; i++) { 2049 if (pages[i] & SMALL_PAGE_MASK) { 2050 ret = TEE_ERROR_BAD_PARAMETERS; 2051 goto err; 2052 } 2053 2054 while (true) { 2055 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 2056 &tbl_info)) 2057 panic("Can't find pagetable for vaddr "); 2058 2059 idx = core_mmu_va2idx(&tbl_info, vaddr); 2060 if (tbl_info.shift == SMALL_PAGE_SHIFT) 2061 break; 2062 2063 /* This is supertable. Need to divide it. */ 2064 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 2065 secure)) 2066 panic("Failed to spread pgdir on small tables"); 2067 } 2068 2069 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2070 if (old_attr) 2071 panic("Page is already mapped"); 2072 2073 core_mmu_set_entry(&tbl_info, idx, pages[i], 2074 core_mmu_type_to_attr(memtype)); 2075 vaddr += SMALL_PAGE_SIZE; 2076 } 2077 2078 /* 2079 * Make sure all the changes to translation tables are visible 2080 * before returning. TLB doesn't need to be invalidated as we are 2081 * guaranteed that there's no valid mapping in this range. 2082 */ 2083 core_mmu_table_write_barrier(); 2084 mmu_unlock(exceptions); 2085 2086 return TEE_SUCCESS; 2087 err: 2088 mmu_unlock(exceptions); 2089 2090 if (i) 2091 core_mmu_unmap_pages(vstart, i); 2092 2093 return ret; 2094 } 2095 2096 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 2097 size_t num_pages, 2098 enum teecore_memtypes memtype) 2099 { 2100 struct core_mmu_table_info tbl_info = { }; 2101 struct tee_mmap_region *mm = NULL; 2102 unsigned int idx = 0; 2103 uint32_t old_attr = 0; 2104 uint32_t exceptions = 0; 2105 vaddr_t vaddr = vstart; 2106 paddr_t paddr = pstart; 2107 size_t i = 0; 2108 bool secure = false; 2109 2110 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 2111 2112 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 2113 2114 if ((vaddr | paddr) & SMALL_PAGE_MASK) 2115 return TEE_ERROR_BAD_PARAMETERS; 2116 2117 exceptions = mmu_lock(); 2118 2119 mm = find_map_by_va((void *)vaddr); 2120 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 2121 panic("VA does not belong to any known mm region"); 2122 2123 if (!core_mmu_is_dynamic_vaspace(mm)) 2124 panic("Trying to map into static region"); 2125 2126 for (i = 0; i < num_pages; i++) { 2127 while (true) { 2128 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 2129 &tbl_info)) 2130 panic("Can't find pagetable for vaddr "); 2131 2132 idx = core_mmu_va2idx(&tbl_info, vaddr); 2133 if (tbl_info.shift == SMALL_PAGE_SHIFT) 2134 break; 2135 2136 /* This is supertable. Need to divide it. */ 2137 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 2138 secure)) 2139 panic("Failed to spread pgdir on small tables"); 2140 } 2141 2142 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2143 if (old_attr) 2144 panic("Page is already mapped"); 2145 2146 core_mmu_set_entry(&tbl_info, idx, paddr, 2147 core_mmu_type_to_attr(memtype)); 2148 paddr += SMALL_PAGE_SIZE; 2149 vaddr += SMALL_PAGE_SIZE; 2150 } 2151 2152 /* 2153 * Make sure all the changes to translation tables are visible 2154 * before returning. TLB doesn't need to be invalidated as we are 2155 * guaranteed that there's no valid mapping in this range. 2156 */ 2157 core_mmu_table_write_barrier(); 2158 mmu_unlock(exceptions); 2159 2160 return TEE_SUCCESS; 2161 } 2162 2163 static bool mem_range_is_in_vcore_free(vaddr_t vstart, size_t num_pages) 2164 { 2165 return core_is_buffer_inside(vstart, num_pages * SMALL_PAGE_SIZE, 2166 VCORE_FREE_PA, VCORE_FREE_SZ); 2167 } 2168 2169 static void maybe_remove_from_mem_map(vaddr_t vstart, size_t num_pages) 2170 { 2171 struct memory_map *mem_map = NULL; 2172 struct tee_mmap_region *mm = NULL; 2173 size_t idx = 0; 2174 vaddr_t va = 0; 2175 2176 mm = find_map_by_va((void *)vstart); 2177 if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) 2178 panic("VA does not belong to any known mm region"); 2179 2180 if (core_mmu_is_dynamic_vaspace(mm)) 2181 return; 2182 2183 if (!mem_range_is_in_vcore_free(vstart, num_pages)) 2184 panic("Trying to unmap static region"); 2185 2186 /* 2187 * We're going to remove a memory from the VCORE_FREE memory range. 2188 * Depending where the range is we may need to remove the matching 2189 * mm, peal of a bit from the start or end of the mm, or split it 2190 * into two with a whole in the middle. 2191 */ 2192 2193 va = ROUNDDOWN(vstart, SMALL_PAGE_SIZE); 2194 assert(mm->region_size == SMALL_PAGE_SIZE); 2195 2196 if (va == mm->va && mm->size == num_pages * SMALL_PAGE_SIZE) { 2197 mem_map = get_memory_map(); 2198 idx = mm - mem_map->map; 2199 assert(idx < mem_map->count); 2200 2201 rem_array_elem(mem_map->map, mem_map->count, 2202 sizeof(*mem_map->map), idx); 2203 mem_map->count--; 2204 } else if (va == mm->va) { 2205 mm->va += num_pages * SMALL_PAGE_SIZE; 2206 mm->pa += num_pages * SMALL_PAGE_SIZE; 2207 mm->size -= num_pages * SMALL_PAGE_SIZE; 2208 } else if (va + num_pages * SMALL_PAGE_SIZE == mm->va + mm->size) { 2209 mm->size -= num_pages * SMALL_PAGE_SIZE; 2210 } else { 2211 struct tee_mmap_region m = *mm; 2212 2213 mem_map = get_memory_map(); 2214 idx = mm - mem_map->map; 2215 assert(idx < mem_map->count); 2216 2217 mm->size = va - mm->va; 2218 m.va += mm->size + num_pages * SMALL_PAGE_SIZE; 2219 m.pa += mm->size + num_pages * SMALL_PAGE_SIZE; 2220 m.size -= mm->size + num_pages * SMALL_PAGE_SIZE; 2221 grow_mem_map(mem_map); 2222 ins_array_elem(mem_map->map, mem_map->count, 2223 sizeof(*mem_map->map), idx + 1, &m); 2224 } 2225 } 2226 2227 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) 2228 { 2229 struct core_mmu_table_info tbl_info; 2230 size_t i; 2231 unsigned int idx; 2232 uint32_t exceptions; 2233 2234 exceptions = mmu_lock(); 2235 2236 maybe_remove_from_mem_map(vstart, num_pages); 2237 2238 for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { 2239 if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) 2240 panic("Can't find pagetable"); 2241 2242 if (tbl_info.shift != SMALL_PAGE_SHIFT) 2243 panic("Invalid pagetable level"); 2244 2245 idx = core_mmu_va2idx(&tbl_info, vstart); 2246 core_mmu_set_entry(&tbl_info, idx, 0, 0); 2247 } 2248 tlbi_all(); 2249 2250 mmu_unlock(exceptions); 2251 } 2252 2253 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 2254 struct user_mode_ctx *uctx) 2255 { 2256 struct core_mmu_table_info pg_info = { }; 2257 struct pgt_cache *pgt_cache = &uctx->pgt_cache; 2258 struct pgt *pgt = NULL; 2259 struct pgt *p = NULL; 2260 struct vm_region *r = NULL; 2261 2262 if (TAILQ_EMPTY(&uctx->vm_info.regions)) 2263 return; /* Nothing to map */ 2264 2265 /* 2266 * Allocate all page tables in advance. 2267 */ 2268 pgt_get_all(uctx); 2269 pgt = SLIST_FIRST(pgt_cache); 2270 2271 core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL); 2272 2273 TAILQ_FOREACH(r, &uctx->vm_info.regions, link) 2274 set_pg_region(dir_info, r, &pgt, &pg_info); 2275 /* Record that the translation tables now are populated. */ 2276 SLIST_FOREACH(p, pgt_cache, link) { 2277 p->populated = true; 2278 if (p == pgt) 2279 break; 2280 } 2281 assert(p == pgt); 2282 } 2283 2284 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 2285 size_t len) 2286 { 2287 struct core_mmu_table_info tbl_info = { }; 2288 struct tee_mmap_region *res_map = NULL; 2289 struct tee_mmap_region *map = NULL; 2290 paddr_t pa = virt_to_phys(addr); 2291 size_t granule = 0; 2292 ptrdiff_t i = 0; 2293 paddr_t p = 0; 2294 size_t l = 0; 2295 2296 map = find_map_by_type_and_pa(type, pa, len); 2297 if (!map) 2298 return TEE_ERROR_GENERIC; 2299 2300 res_map = find_map_by_type(MEM_AREA_RES_VASPACE); 2301 if (!res_map) 2302 return TEE_ERROR_GENERIC; 2303 if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) 2304 return TEE_ERROR_GENERIC; 2305 granule = BIT(tbl_info.shift); 2306 2307 if (map < static_memory_map.map || 2308 map >= static_memory_map.map + static_memory_map.count) 2309 return TEE_ERROR_GENERIC; 2310 i = map - static_memory_map.map; 2311 2312 /* Check that we have a full match */ 2313 p = ROUNDDOWN2(pa, granule); 2314 l = ROUNDUP2(len + pa - p, granule); 2315 if (map->pa != p || map->size != l) 2316 return TEE_ERROR_GENERIC; 2317 2318 clear_region(&tbl_info, map); 2319 tlbi_all(); 2320 2321 /* If possible remove the va range from res_map */ 2322 if (res_map->va - map->size == map->va) { 2323 res_map->va -= map->size; 2324 res_map->size += map->size; 2325 } 2326 2327 /* Remove the entry. */ 2328 rem_array_elem(static_memory_map.map, static_memory_map.count, 2329 sizeof(*static_memory_map.map), i); 2330 static_memory_map.count--; 2331 2332 return TEE_SUCCESS; 2333 } 2334 2335 struct tee_mmap_region * 2336 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) 2337 { 2338 struct memory_map *mem_map = get_memory_map(); 2339 struct tee_mmap_region *map_found = NULL; 2340 size_t n = 0; 2341 2342 if (!len) 2343 return NULL; 2344 2345 for (n = 0; n < mem_map->count; n++) { 2346 if (mem_map->map[n].type != type) 2347 continue; 2348 2349 if (map_found) 2350 return NULL; 2351 2352 map_found = mem_map->map + n; 2353 } 2354 2355 if (!map_found || map_found->size < len) 2356 return NULL; 2357 2358 return map_found; 2359 } 2360 2361 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) 2362 { 2363 struct memory_map *mem_map = &static_memory_map; 2364 struct core_mmu_table_info tbl_info = { }; 2365 struct tee_mmap_region *map = NULL; 2366 size_t granule = 0; 2367 paddr_t p = 0; 2368 size_t l = 0; 2369 2370 if (!len) 2371 return NULL; 2372 2373 if (!core_mmu_check_end_pa(addr, len)) 2374 return NULL; 2375 2376 /* Check if the memory is already mapped */ 2377 map = find_map_by_type_and_pa(type, addr, len); 2378 if (map && pbuf_inside_map_area(addr, len, map)) 2379 return (void *)(vaddr_t)(map->va + addr - map->pa); 2380 2381 /* Find the reserved va space used for late mappings */ 2382 map = find_map_by_type(MEM_AREA_RES_VASPACE); 2383 if (!map) 2384 return NULL; 2385 2386 if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) 2387 return NULL; 2388 2389 granule = BIT64(tbl_info.shift); 2390 p = ROUNDDOWN2(addr, granule); 2391 l = ROUNDUP2(len + addr - p, granule); 2392 2393 /* Ban overflowing virtual addresses */ 2394 if (map->size < l) 2395 return NULL; 2396 2397 /* 2398 * Something is wrong, we can't fit the va range into the selected 2399 * table. The reserved va range is possibly missaligned with 2400 * granule. 2401 */ 2402 if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) 2403 return NULL; 2404 2405 if (static_memory_map.count >= static_memory_map.alloc_count) 2406 return NULL; 2407 2408 mem_map->map[mem_map->count] = (struct tee_mmap_region){ 2409 .va = map->va, 2410 .size = l, 2411 .type = type, 2412 .region_size = granule, 2413 .attr = core_mmu_type_to_attr(type), 2414 .pa = p, 2415 }; 2416 map->va += l; 2417 map->size -= l; 2418 map = mem_map->map + mem_map->count; 2419 mem_map->count++; 2420 2421 set_region(&tbl_info, map); 2422 2423 /* Make sure the new entry is visible before continuing. */ 2424 core_mmu_table_write_barrier(); 2425 2426 return (void *)(vaddr_t)(map->va + addr - map->pa); 2427 } 2428 2429 #ifdef CFG_WITH_PAGER 2430 static vaddr_t get_linear_map_end_va(void) 2431 { 2432 /* this is synced with the generic linker file kern.ld.S */ 2433 return (vaddr_t)__heap2_end; 2434 } 2435 2436 static paddr_t get_linear_map_end_pa(void) 2437 { 2438 return get_linear_map_end_va() - boot_mmu_config.map_offset; 2439 } 2440 #endif 2441 2442 #if defined(CFG_TEE_CORE_DEBUG) 2443 static void check_pa_matches_va(void *va, paddr_t pa) 2444 { 2445 TEE_Result res = TEE_ERROR_GENERIC; 2446 vaddr_t v = (vaddr_t)va; 2447 paddr_t p = 0; 2448 struct core_mmu_table_info ti __maybe_unused = { }; 2449 2450 if (core_mmu_user_va_range_is_defined()) { 2451 vaddr_t user_va_base = 0; 2452 size_t user_va_size = 0; 2453 2454 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 2455 if (v >= user_va_base && 2456 v <= (user_va_base - 1 + user_va_size)) { 2457 if (!core_mmu_user_mapping_is_active()) { 2458 if (pa) 2459 panic("issue in linear address space"); 2460 return; 2461 } 2462 2463 res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), 2464 va, &p); 2465 if (res == TEE_ERROR_NOT_SUPPORTED) 2466 return; 2467 if (res == TEE_SUCCESS && pa != p) 2468 panic("bad pa"); 2469 if (res != TEE_SUCCESS && pa) 2470 panic("false pa"); 2471 return; 2472 } 2473 } 2474 #ifdef CFG_WITH_PAGER 2475 if (is_unpaged(va)) { 2476 if (v - boot_mmu_config.map_offset != pa) 2477 panic("issue in linear address space"); 2478 return; 2479 } 2480 2481 if (tee_pager_get_table_info(v, &ti)) { 2482 uint32_t a; 2483 2484 /* 2485 * Lookups in the page table managed by the pager is 2486 * dangerous for addresses in the paged area as those pages 2487 * changes all the time. But some ranges are safe, 2488 * rw-locked areas when the page is populated for instance. 2489 */ 2490 core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); 2491 if (a & TEE_MATTR_VALID_BLOCK) { 2492 paddr_t mask = BIT64(ti.shift) - 1; 2493 2494 p |= v & mask; 2495 if (pa != p) 2496 panic(); 2497 } else { 2498 if (pa) 2499 panic(); 2500 } 2501 return; 2502 } 2503 #endif 2504 2505 if (!core_va2pa_helper(va, &p)) { 2506 /* Verfiy only the static mapping (case non null phys addr) */ 2507 if (p && pa != p) { 2508 DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, 2509 va, p, pa); 2510 panic(); 2511 } 2512 } else { 2513 if (pa) { 2514 DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); 2515 panic(); 2516 } 2517 } 2518 } 2519 #else 2520 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) 2521 { 2522 } 2523 #endif 2524 2525 paddr_t virt_to_phys(void *va) 2526 { 2527 paddr_t pa = 0; 2528 2529 if (!arch_va2pa_helper(va, &pa)) 2530 pa = 0; 2531 check_pa_matches_va(memtag_strip_tag(va), pa); 2532 return pa; 2533 } 2534 2535 /* 2536 * Don't use check_va_matches_pa() for RISC-V, as its callee 2537 * arch_va2pa_helper() will call it eventually, this creates 2538 * indirect recursion and can lead to a stack overflow. 2539 * Moreover, if arch_va2pa_helper() returns true, it implies 2540 * the va2pa mapping is matched, no need to check it again. 2541 */ 2542 #if defined(CFG_TEE_CORE_DEBUG) && !defined(__riscv) 2543 static void check_va_matches_pa(paddr_t pa, void *va) 2544 { 2545 paddr_t p = 0; 2546 2547 if (!va) 2548 return; 2549 2550 p = virt_to_phys(va); 2551 if (p != pa) { 2552 DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); 2553 panic(); 2554 } 2555 } 2556 #else 2557 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) 2558 { 2559 } 2560 #endif 2561 2562 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) 2563 { 2564 if (!core_mmu_user_mapping_is_active()) 2565 return NULL; 2566 2567 return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); 2568 } 2569 2570 #ifdef CFG_WITH_PAGER 2571 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2572 { 2573 paddr_t end_pa = 0; 2574 2575 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 2576 return NULL; 2577 2578 if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) { 2579 if (end_pa > get_linear_map_end_pa()) 2580 return NULL; 2581 return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset); 2582 } 2583 2584 return tee_pager_phys_to_virt(pa, len); 2585 } 2586 #else 2587 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2588 { 2589 struct tee_mmap_region *mmap = NULL; 2590 2591 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); 2592 if (!mmap) 2593 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); 2594 if (!mmap) 2595 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); 2596 if (!mmap) 2597 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); 2598 if (!mmap) 2599 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); 2600 if (!mmap) 2601 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); 2602 2603 /* 2604 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only 2605 * used with pager and not needed here. 2606 */ 2607 return map_pa2va(mmap, pa, len); 2608 } 2609 #endif 2610 2611 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) 2612 { 2613 void *va = NULL; 2614 2615 switch (m) { 2616 case MEM_AREA_TS_VASPACE: 2617 va = phys_to_virt_ts_vaspace(pa, len); 2618 break; 2619 case MEM_AREA_TEE_RAM: 2620 case MEM_AREA_TEE_RAM_RX: 2621 case MEM_AREA_TEE_RAM_RO: 2622 case MEM_AREA_TEE_RAM_RW: 2623 case MEM_AREA_NEX_RAM_RO: 2624 case MEM_AREA_NEX_RAM_RW: 2625 va = phys_to_virt_tee_ram(pa, len); 2626 break; 2627 case MEM_AREA_SHM_VASPACE: 2628 case MEM_AREA_NEX_DYN_VASPACE: 2629 case MEM_AREA_TEE_DYN_VASPACE: 2630 /* Find VA from PA in dynamic SHM is not yet supported */ 2631 va = NULL; 2632 break; 2633 default: 2634 va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); 2635 } 2636 if (m != MEM_AREA_SEC_RAM_OVERALL) 2637 check_va_matches_pa(pa, va); 2638 return va; 2639 } 2640 2641 void *phys_to_virt_io(paddr_t pa, size_t len) 2642 { 2643 struct tee_mmap_region *map = NULL; 2644 void *va = NULL; 2645 2646 map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); 2647 if (!map) 2648 map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); 2649 if (!map) 2650 return NULL; 2651 va = map_pa2va(map, pa, len); 2652 check_va_matches_pa(pa, va); 2653 return va; 2654 } 2655 2656 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) 2657 { 2658 if (cpu_mmu_enabled()) 2659 return (vaddr_t)phys_to_virt(pa, type, len); 2660 2661 return (vaddr_t)pa; 2662 } 2663 2664 #ifdef CFG_WITH_PAGER 2665 bool is_unpaged(const void *va) 2666 { 2667 vaddr_t v = (vaddr_t)va; 2668 2669 return v >= VCORE_START_VA && v < get_linear_map_end_va(); 2670 } 2671 #endif 2672 2673 #ifdef CFG_NS_VIRTUALIZATION 2674 bool is_nexus(const void *va) 2675 { 2676 vaddr_t v = (vaddr_t)va; 2677 2678 return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ; 2679 } 2680 #endif 2681 2682 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) 2683 { 2684 assert(p->pa); 2685 if (cpu_mmu_enabled()) { 2686 if (!p->va) 2687 p->va = (vaddr_t)phys_to_virt_io(p->pa, len); 2688 assert(p->va); 2689 return p->va; 2690 } 2691 return p->pa; 2692 } 2693 2694 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) 2695 { 2696 assert(p->pa); 2697 if (cpu_mmu_enabled()) { 2698 if (!p->va) 2699 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, 2700 len); 2701 assert(p->va); 2702 return p->va; 2703 } 2704 return p->pa; 2705 } 2706 2707 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) 2708 { 2709 assert(p->pa); 2710 if (cpu_mmu_enabled()) { 2711 if (!p->va) 2712 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, 2713 len); 2714 assert(p->va); 2715 return p->va; 2716 } 2717 return p->pa; 2718 } 2719 2720 #ifdef CFG_CORE_RESERVED_SHM 2721 static TEE_Result teecore_init_pub_ram(void) 2722 { 2723 vaddr_t s = 0; 2724 vaddr_t e = 0; 2725 2726 /* get virtual addr/size of NSec shared mem allocated from teecore */ 2727 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); 2728 2729 if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) 2730 panic("invalid PUB RAM"); 2731 2732 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2733 if (!tee_vbuf_is_non_sec(s, e - s)) 2734 panic("PUB RAM is not non-secure"); 2735 2736 #ifdef CFG_PL310 2737 /* Allocate statically the l2cc mutex */ 2738 tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); 2739 s += sizeof(uint32_t); /* size of a pl310 mutex */ 2740 s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ 2741 #endif 2742 2743 default_nsec_shm_paddr = virt_to_phys((void *)s); 2744 default_nsec_shm_size = e - s; 2745 2746 return TEE_SUCCESS; 2747 } 2748 early_init(teecore_init_pub_ram); 2749 #endif /*CFG_CORE_RESERVED_SHM*/ 2750 2751 static void __maybe_unused carve_out_core_mem(paddr_t pa, paddr_t end_pa) 2752 { 2753 tee_mm_entry_t *mm __maybe_unused = NULL; 2754 2755 DMSG("%#"PRIxPA" .. %#"PRIxPA, pa, end_pa); 2756 mm = phys_mem_alloc2(pa, end_pa - pa); 2757 assert(mm); 2758 } 2759 2760 void core_mmu_init_phys_mem(void) 2761 { 2762 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 2763 paddr_t b1 = 0; 2764 paddr_size_t s1 = 0; 2765 2766 static_assert(ARRAY_SIZE(secure_only) <= 2); 2767 2768 if (ARRAY_SIZE(secure_only) == 2) { 2769 b1 = secure_only[1].paddr; 2770 s1 = secure_only[1].size; 2771 } 2772 virt_init_memory(&static_memory_map, secure_only[0].paddr, 2773 secure_only[0].size, b1, s1); 2774 } else { 2775 #ifdef CFG_WITH_PAGER 2776 /* 2777 * The pager uses all core memory so there's no need to add 2778 * it to the pool. 2779 */ 2780 static_assert(ARRAY_SIZE(secure_only) == 2); 2781 phys_mem_init(0, 0, secure_only[1].paddr, secure_only[1].size); 2782 #else /*!CFG_WITH_PAGER*/ 2783 size_t align = BIT(CORE_MMU_USER_CODE_SHIFT); 2784 paddr_t end_pa = 0; 2785 size_t size = 0; 2786 paddr_t ps = 0; 2787 paddr_t pa = 0; 2788 2789 static_assert(ARRAY_SIZE(secure_only) <= 2); 2790 if (ARRAY_SIZE(secure_only) == 2) { 2791 ps = secure_only[1].paddr; 2792 size = secure_only[1].size; 2793 } 2794 phys_mem_init(secure_only[0].paddr, secure_only[0].size, 2795 ps, size); 2796 2797 /* 2798 * The VCORE macros are relocatable so we need to translate 2799 * the addresses now that the MMU is enabled. 2800 */ 2801 end_pa = vaddr_to_phys(ROUNDUP2(VCORE_FREE_END_PA, 2802 align) - 1) + 1; 2803 /* Carve out the part used by OP-TEE core */ 2804 carve_out_core_mem(vaddr_to_phys(VCORE_UNPG_RX_PA), end_pa); 2805 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) { 2806 pa = vaddr_to_phys(ROUNDUP2(ASAN_MAP_PA, align)); 2807 carve_out_core_mem(pa, pa + ASAN_MAP_SZ); 2808 } 2809 2810 /* Carve out test SDP memory */ 2811 #ifdef TEE_SDP_TEST_MEM_BASE 2812 if (TEE_SDP_TEST_MEM_SIZE) { 2813 pa = TEE_SDP_TEST_MEM_BASE; 2814 carve_out_core_mem(pa, pa + TEE_SDP_TEST_MEM_SIZE); 2815 } 2816 #endif 2817 #endif /*!CFG_WITH_PAGER*/ 2818 } 2819 } 2820