xref: /optee_os/core/mm/core_mmu.c (revision c1b98cec1f98561b2b5435edaad124631d671831)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <memtag.h>
22 #include <mm/core_memprot.h>
23 #include <mm/core_mmu.h>
24 #include <mm/mobj.h>
25 #include <mm/pgt_cache.h>
26 #include <mm/tee_pager.h>
27 #include <mm/vm.h>
28 #include <platform_config.h>
29 #include <stdalign.h>
30 #include <string.h>
31 #include <trace.h>
32 #include <util.h>
33 
34 #ifndef DEBUG_XLAT_TABLE
35 #define DEBUG_XLAT_TABLE 0
36 #endif
37 
38 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
39 
40 /* Physical Secure DDR pool */
41 tee_mm_pool_t tee_mm_sec_ddr;
42 
43 /* Virtual memory pool for core mappings */
44 tee_mm_pool_t core_virt_mem_pool;
45 
46 /* Virtual memory pool for shared memory mappings */
47 tee_mm_pool_t core_virt_shm_pool;
48 
49 #ifdef CFG_CORE_PHYS_RELOCATABLE
50 unsigned long core_mmu_tee_load_pa __nex_bss;
51 #else
52 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
53 #endif
54 
55 /*
56  * These variables are initialized before .bss is cleared. To avoid
57  * resetting them when .bss is cleared we're storing them in .data instead,
58  * even if they initially are zero.
59  */
60 
61 #ifdef CFG_CORE_RESERVED_SHM
62 /* Default NSec shared memory allocated from NSec world */
63 unsigned long default_nsec_shm_size __nex_bss;
64 unsigned long default_nsec_shm_paddr __nex_bss;
65 #endif
66 
67 static struct tee_mmap_region static_mmap_regions[CFG_MMAP_REGIONS
68 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE)
69 						+ 1
70 #endif
71 						+ 1] __nex_bss;
72 static struct memory_map static_memory_map __nex_data = {
73 	.map = static_mmap_regions,
74 	.alloc_count = ARRAY_SIZE(static_mmap_regions),
75 };
76 
77 /* Define the platform's memory layout. */
78 struct memaccess_area {
79 	paddr_t paddr;
80 	size_t size;
81 };
82 
83 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
84 
85 static struct memaccess_area secure_only[] __nex_data = {
86 #ifdef CFG_CORE_PHYS_RELOCATABLE
87 	MEMACCESS_AREA(0, 0),
88 #else
89 #ifdef TRUSTED_SRAM_BASE
90 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
91 #endif
92 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
93 #endif
94 };
95 
96 static struct memaccess_area nsec_shared[] __nex_data = {
97 #ifdef CFG_CORE_RESERVED_SHM
98 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
99 #endif
100 };
101 
102 #if defined(CFG_SECURE_DATA_PATH)
103 static const char *tz_sdp_match = "linaro,secure-heap";
104 static struct memaccess_area sec_sdp;
105 #ifdef CFG_TEE_SDP_MEM_BASE
106 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
107 #endif
108 #ifdef TEE_SDP_TEST_MEM_BASE
109 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
110 #endif
111 #endif
112 
113 #ifdef CFG_CORE_RESERVED_SHM
114 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
115 #endif
116 static unsigned int mmu_spinlock;
117 
118 static uint32_t mmu_lock(void)
119 {
120 	return cpu_spin_lock_xsave(&mmu_spinlock);
121 }
122 
123 static void mmu_unlock(uint32_t exceptions)
124 {
125 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
126 }
127 
128 static void grow_mem_map(struct memory_map *mem_map)
129 {
130 	if (mem_map->count == mem_map->alloc_count) {
131 		EMSG("Out of entries (%zu) in mem_map", mem_map->alloc_count);
132 		panic();
133 	}
134 	mem_map->count++;
135 }
136 
137 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
138 {
139 	/*
140 	 * The first range is always used to cover OP-TEE core memory, but
141 	 * depending on configuration it may cover more than that.
142 	 */
143 	*base = secure_only[0].paddr;
144 	*size = secure_only[0].size;
145 }
146 
147 void core_mmu_set_secure_memory(paddr_t base, size_t size)
148 {
149 #ifdef CFG_CORE_PHYS_RELOCATABLE
150 	static_assert(ARRAY_SIZE(secure_only) == 1);
151 #endif
152 	runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE));
153 	assert(!secure_only[0].size);
154 	assert(base && size);
155 
156 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
157 	secure_only[0].paddr = base;
158 	secure_only[0].size = size;
159 }
160 
161 void core_mmu_get_ta_range(paddr_t *base, size_t *size)
162 {
163 	paddr_t b = 0;
164 	size_t s = 0;
165 
166 	static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE));
167 #ifdef TA_RAM_START
168 	b = TA_RAM_START;
169 	s = TA_RAM_SIZE;
170 #else
171 	static_assert(ARRAY_SIZE(secure_only) <= 2);
172 	if (ARRAY_SIZE(secure_only) == 1) {
173 		vaddr_t load_offs = 0;
174 
175 		assert(core_mmu_tee_load_pa >= secure_only[0].paddr);
176 		load_offs = core_mmu_tee_load_pa - secure_only[0].paddr;
177 
178 		assert(secure_only[0].size >
179 		       load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE);
180 		b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE;
181 		s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE -
182 		    TEE_SDP_TEST_MEM_SIZE;
183 	} else {
184 		assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE);
185 		b = secure_only[1].paddr;
186 		s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE;
187 	}
188 #endif
189 	if (base)
190 		*base = b;
191 	if (size)
192 		*size = s;
193 }
194 
195 static struct memory_map *get_memory_map(void)
196 {
197 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
198 		struct memory_map *map = virt_get_memory_map();
199 
200 		if (map)
201 			return map;
202 	}
203 
204 	return &static_memory_map;
205 }
206 
207 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
208 			     paddr_t pa, size_t size)
209 {
210 	size_t n;
211 
212 	for (n = 0; n < alen; n++)
213 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
214 			return true;
215 	return false;
216 }
217 
218 #define pbuf_intersects(a, pa, size) \
219 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
220 
221 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
222 			    paddr_t pa, size_t size)
223 {
224 	size_t n;
225 
226 	for (n = 0; n < alen; n++)
227 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
228 			return true;
229 	return false;
230 }
231 
232 #define pbuf_is_inside(a, pa, size) \
233 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
234 
235 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
236 {
237 	paddr_t end_pa = 0;
238 
239 	if (!map)
240 		return false;
241 
242 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
243 		return false;
244 
245 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
246 }
247 
248 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
249 {
250 	if (!map)
251 		return false;
252 	return (va >= map->va && va <= (map->va + map->size - 1));
253 }
254 
255 /* check if target buffer fits in a core default map area */
256 static bool pbuf_inside_map_area(unsigned long p, size_t l,
257 				 struct tee_mmap_region *map)
258 {
259 	return core_is_buffer_inside(p, l, map->pa, map->size);
260 }
261 
262 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
263 {
264 	struct memory_map *mem_map = get_memory_map();
265 	size_t n = 0;
266 
267 	for (n = 0; n < mem_map->count; n++) {
268 		if (mem_map->map[n].type == type)
269 			return mem_map->map + n;
270 	}
271 	return NULL;
272 }
273 
274 static struct tee_mmap_region *
275 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
276 {
277 	struct memory_map *mem_map = get_memory_map();
278 	size_t n = 0;
279 
280 	for (n = 0; n < mem_map->count; n++) {
281 		if (mem_map->map[n].type != type)
282 			continue;
283 		if (pa_is_in_map(mem_map->map + n, pa, len))
284 			return mem_map->map + n;
285 	}
286 	return NULL;
287 }
288 
289 static struct tee_mmap_region *find_map_by_va(void *va)
290 {
291 	struct memory_map *mem_map = get_memory_map();
292 	vaddr_t a = (vaddr_t)va;
293 	size_t n = 0;
294 
295 	for (n = 0; n < mem_map->count; n++) {
296 		if (a >= mem_map->map[n].va &&
297 		    a <= (mem_map->map[n].va - 1 + mem_map->map[n].size))
298 			return mem_map->map + n;
299 	}
300 
301 	return NULL;
302 }
303 
304 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
305 {
306 	struct memory_map *mem_map = get_memory_map();
307 	size_t n = 0;
308 
309 	for (n = 0; n < mem_map->count; n++) {
310 		/* Skip unmapped regions */
311 		if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) &&
312 		    pa >= mem_map->map[n].pa &&
313 		    pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size))
314 			return mem_map->map + n;
315 	}
316 
317 	return NULL;
318 }
319 
320 #if defined(CFG_SECURE_DATA_PATH)
321 static bool dtb_get_sdp_region(void)
322 {
323 	void *fdt = NULL;
324 	int node = 0;
325 	int tmp_node = 0;
326 	paddr_t tmp_addr = 0;
327 	size_t tmp_size = 0;
328 
329 	if (!IS_ENABLED(CFG_EMBED_DTB))
330 		return false;
331 
332 	fdt = get_embedded_dt();
333 	if (!fdt)
334 		panic("No DTB found");
335 
336 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
337 	if (node < 0) {
338 		DMSG("No %s compatible node found", tz_sdp_match);
339 		return false;
340 	}
341 	tmp_node = node;
342 	while (tmp_node >= 0) {
343 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
344 							 tz_sdp_match);
345 		if (tmp_node >= 0)
346 			DMSG("Ignore SDP pool node %s, supports only 1 node",
347 			     fdt_get_name(fdt, tmp_node, NULL));
348 	}
349 
350 	tmp_addr = fdt_reg_base_address(fdt, node);
351 	if (tmp_addr == DT_INFO_INVALID_REG) {
352 		EMSG("%s: Unable to get base addr from DT", tz_sdp_match);
353 		return false;
354 	}
355 
356 	tmp_size = fdt_reg_size(fdt, node);
357 	if (tmp_size == DT_INFO_INVALID_REG_SIZE) {
358 		EMSG("%s: Unable to get size of base addr from DT",
359 		     tz_sdp_match);
360 		return false;
361 	}
362 
363 	sec_sdp.paddr = tmp_addr;
364 	sec_sdp.size = tmp_size;
365 
366 	return true;
367 }
368 #endif
369 
370 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
371 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
372 				const struct core_mmu_phys_mem *start,
373 				const struct core_mmu_phys_mem *end)
374 {
375 	const struct core_mmu_phys_mem *mem;
376 
377 	for (mem = start; mem < end; mem++) {
378 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
379 			return true;
380 	}
381 
382 	return false;
383 }
384 #endif
385 
386 #ifdef CFG_CORE_DYN_SHM
387 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
388 			       paddr_t pa, size_t size)
389 {
390 	struct core_mmu_phys_mem *m = *mem;
391 	size_t n = 0;
392 
393 	while (true) {
394 		if (n >= *nelems) {
395 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
396 			     pa, size);
397 			return;
398 		}
399 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
400 			break;
401 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
402 			panic();
403 		n++;
404 	}
405 
406 	if (pa == m[n].addr && size == m[n].size) {
407 		/* Remove this entry */
408 		(*nelems)--;
409 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
410 		m = nex_realloc(m, sizeof(*m) * *nelems);
411 		if (!m)
412 			panic();
413 		*mem = m;
414 	} else if (pa == m[n].addr) {
415 		m[n].addr += size;
416 		m[n].size -= size;
417 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
418 		m[n].size -= size;
419 	} else {
420 		/* Need to split the memory entry */
421 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
422 		if (!m)
423 			panic();
424 		*mem = m;
425 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
426 		(*nelems)++;
427 		m[n].size = pa - m[n].addr;
428 		m[n + 1].size -= size + m[n].size;
429 		m[n + 1].addr = pa + size;
430 	}
431 }
432 
433 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
434 				      size_t nelems,
435 				      struct tee_mmap_region *map)
436 {
437 	size_t n;
438 
439 	for (n = 0; n < nelems; n++) {
440 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
441 					    map->pa, map->size)) {
442 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
443 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
444 			     start[n].addr, start[n].size,
445 			     map->type, map->pa, map->size);
446 			panic();
447 		}
448 	}
449 }
450 
451 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
452 static size_t discovered_nsec_ddr_nelems __nex_bss;
453 
454 static int cmp_pmem_by_addr(const void *a, const void *b)
455 {
456 	const struct core_mmu_phys_mem *pmem_a = a;
457 	const struct core_mmu_phys_mem *pmem_b = b;
458 
459 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
460 }
461 
462 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
463 				      size_t nelems)
464 {
465 	struct core_mmu_phys_mem *m = start;
466 	size_t num_elems = nelems;
467 	struct memory_map *mem_map = &static_memory_map;
468 	const struct core_mmu_phys_mem __maybe_unused *pmem;
469 	size_t n = 0;
470 
471 	assert(!discovered_nsec_ddr_start);
472 	assert(m && num_elems);
473 
474 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
475 
476 	/*
477 	 * Non-secure shared memory and also secure data
478 	 * path memory are supposed to reside inside
479 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
480 	 * are used for a specific purpose make holes for
481 	 * those memory in the normal non-secure memory.
482 	 *
483 	 * This has to be done since for instance QEMU
484 	 * isn't aware of which memory range in the
485 	 * non-secure memory is used for NSEC_SHM.
486 	 */
487 
488 #ifdef CFG_SECURE_DATA_PATH
489 	if (dtb_get_sdp_region())
490 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
491 
492 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
493 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
494 #endif
495 
496 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
497 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
498 				   secure_only[n].size);
499 
500 	for  (n = 0; n < mem_map->count; n++) {
501 		switch (mem_map->map[n].type) {
502 		case MEM_AREA_NSEC_SHM:
503 			carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa,
504 					   mem_map->map[n].size);
505 			break;
506 		case MEM_AREA_EXT_DT:
507 		case MEM_AREA_MANIFEST_DT:
508 		case MEM_AREA_RAM_NSEC:
509 		case MEM_AREA_RES_VASPACE:
510 		case MEM_AREA_SHM_VASPACE:
511 		case MEM_AREA_TS_VASPACE:
512 		case MEM_AREA_PAGER_VASPACE:
513 			break;
514 		default:
515 			check_phys_mem_is_outside(m, num_elems,
516 						  mem_map->map + n);
517 		}
518 	}
519 
520 	discovered_nsec_ddr_start = m;
521 	discovered_nsec_ddr_nelems = num_elems;
522 
523 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
524 				   m[num_elems - 1].size))
525 		panic();
526 }
527 
528 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
529 				    const struct core_mmu_phys_mem **end)
530 {
531 	if (!discovered_nsec_ddr_start)
532 		return false;
533 
534 	*start = discovered_nsec_ddr_start;
535 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
536 
537 	return true;
538 }
539 
540 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
541 {
542 	const struct core_mmu_phys_mem *start;
543 	const struct core_mmu_phys_mem *end;
544 
545 	if (!get_discovered_nsec_ddr(&start, &end))
546 		return false;
547 
548 	return pbuf_is_special_mem(pbuf, len, start, end);
549 }
550 
551 bool core_mmu_nsec_ddr_is_defined(void)
552 {
553 	const struct core_mmu_phys_mem *start;
554 	const struct core_mmu_phys_mem *end;
555 
556 	if (!get_discovered_nsec_ddr(&start, &end))
557 		return false;
558 
559 	return start != end;
560 }
561 #else
562 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
563 {
564 	return false;
565 }
566 #endif /*CFG_CORE_DYN_SHM*/
567 
568 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
569 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
570 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
571 
572 #ifdef CFG_SECURE_DATA_PATH
573 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
574 {
575 	bool is_sdp_mem = false;
576 
577 	if (sec_sdp.size)
578 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
579 						   sec_sdp.size);
580 
581 	if (!is_sdp_mem)
582 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
583 						 phys_sdp_mem_end);
584 
585 	return is_sdp_mem;
586 }
587 
588 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
589 {
590 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
591 					    CORE_MEM_SDP_MEM);
592 
593 	if (!mobj)
594 		panic("can't create SDP physical memory object");
595 
596 	return mobj;
597 }
598 
599 struct mobj **core_sdp_mem_create_mobjs(void)
600 {
601 	const struct core_mmu_phys_mem *mem = NULL;
602 	struct mobj **mobj_base = NULL;
603 	struct mobj **mobj = NULL;
604 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
605 
606 	if (sec_sdp.size)
607 		cnt++;
608 
609 	/* SDP mobjs table must end with a NULL entry */
610 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
611 	if (!mobj_base)
612 		panic("Out of memory");
613 
614 	mobj = mobj_base;
615 
616 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
617 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
618 
619 	if (sec_sdp.size)
620 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
621 
622 	return mobj_base;
623 }
624 
625 #else /* CFG_SECURE_DATA_PATH */
626 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
627 {
628 	return false;
629 }
630 
631 #endif /* CFG_SECURE_DATA_PATH */
632 
633 /* Check special memories comply with registered memories */
634 static void verify_special_mem_areas(struct memory_map *mem_map,
635 				     const struct core_mmu_phys_mem *start,
636 				     const struct core_mmu_phys_mem *end,
637 				     const char *area_name __maybe_unused)
638 {
639 	const struct core_mmu_phys_mem *mem = NULL;
640 	const struct core_mmu_phys_mem *mem2 = NULL;
641 	size_t n = 0;
642 
643 	if (start == end) {
644 		DMSG("No %s memory area defined", area_name);
645 		return;
646 	}
647 
648 	for (mem = start; mem < end; mem++)
649 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
650 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
651 
652 	/* Check memories do not intersect each other */
653 	for (mem = start; mem + 1 < end; mem++) {
654 		for (mem2 = mem + 1; mem2 < end; mem2++) {
655 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
656 						     mem->addr, mem->size)) {
657 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
658 						   mem->addr, mem->size);
659 				panic("Special memory intersection");
660 			}
661 		}
662 	}
663 
664 	/*
665 	 * Check memories do not intersect any mapped memory.
666 	 * This is called before reserved VA space is loaded in mem_map.
667 	 */
668 	for (mem = start; mem < end; mem++) {
669 		for (n = 0; n < mem_map->count; n++) {
670 			if (core_is_buffer_intersect(mem->addr, mem->size,
671 						     mem_map->map[n].pa,
672 						     mem_map->map[n].size)) {
673 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
674 						   mem_map->map[n].pa,
675 						   mem_map->map[n].size);
676 				panic("Special memory intersection");
677 			}
678 		}
679 	}
680 }
681 
682 static void merge_mmaps(struct tee_mmap_region *dst,
683 			const struct tee_mmap_region *src)
684 {
685 	paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1);
686 	paddr_t pa = MIN(dst->pa, src->pa);
687 
688 	DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA,
689 	     dst->pa, dst->pa + dst->size - 1, src->pa,
690 	     src->pa + src->size - 1);
691 	dst->pa = pa;
692 	dst->size = end_pa - pa + 1;
693 }
694 
695 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1,
696 				const struct tee_mmap_region *r2)
697 {
698 	if (r1->type != r2->type)
699 		return false;
700 
701 	if (r1->pa == r2->pa)
702 		return true;
703 
704 	if (r1->pa < r2->pa)
705 		return r1->pa + r1->size >= r2->pa;
706 	else
707 		return r2->pa + r2->size >= r1->pa;
708 }
709 
710 static void add_phys_mem(struct memory_map *mem_map,
711 			 const char *mem_name __maybe_unused,
712 			 enum teecore_memtypes mem_type,
713 			 paddr_t mem_addr, paddr_size_t mem_size)
714 {
715 	size_t n = 0;
716 	const struct tee_mmap_region m0 = {
717 		.type = mem_type,
718 		.pa = mem_addr,
719 		.size = mem_size,
720 	};
721 
722 	if (!mem_size)	/* Discard null size entries */
723 		return;
724 
725 	/*
726 	 * If some ranges of memory of the same type do overlap
727 	 * each others they are coalesced into one entry. To help this
728 	 * added entries are sorted by increasing physical.
729 	 *
730 	 * Note that it's valid to have the same physical memory as several
731 	 * different memory types, for instance the same device memory
732 	 * mapped as both secure and non-secure. This will probably not
733 	 * happen often in practice.
734 	 */
735 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
736 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
737 	for  (n = 0; n < mem_map->count; n++) {
738 		if (mmaps_are_mergeable(mem_map->map + n, &m0)) {
739 			merge_mmaps(mem_map->map + n, &m0);
740 			/*
741 			 * The merged result might be mergeable with the
742 			 * next or previous entry.
743 			 */
744 			if (n + 1 < mem_map->count &&
745 			    mmaps_are_mergeable(mem_map->map + n,
746 						mem_map->map + n + 1)) {
747 				merge_mmaps(mem_map->map + n,
748 					    mem_map->map + n + 1);
749 				rem_array_elem(mem_map->map, mem_map->count,
750 					       sizeof(*mem_map->map), n + 1);
751 				mem_map->count--;
752 			}
753 			if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1,
754 							 mem_map->map + n)) {
755 				merge_mmaps(mem_map->map + n - 1,
756 					    mem_map->map + n);
757 				rem_array_elem(mem_map->map, mem_map->count,
758 					       sizeof(*mem_map->map), n);
759 				mem_map->count--;
760 			}
761 			return;
762 		}
763 		if (mem_type < mem_map->map[n].type ||
764 		    (mem_type == mem_map->map[n].type &&
765 		     mem_addr < mem_map->map[n].pa))
766 			break; /* found the spot where to insert this memory */
767 	}
768 
769 	grow_mem_map(mem_map);
770 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
771 		       n, &m0);
772 }
773 
774 static void add_va_space(struct memory_map *mem_map,
775 			 enum teecore_memtypes type, size_t size)
776 {
777 	size_t n = 0;
778 
779 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
780 	for  (n = 0; n < mem_map->count; n++) {
781 		if (type < mem_map->map[n].type)
782 			break;
783 	}
784 
785 	grow_mem_map(mem_map);
786 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
787 		       n, NULL);
788 	mem_map->map[n] = (struct tee_mmap_region){
789 		.type = type,
790 		.size = size,
791 	};
792 }
793 
794 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
795 {
796 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
797 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
798 				TEE_MATTR_MEM_TYPE_SHIFT;
799 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
800 				TEE_MATTR_MEM_TYPE_SHIFT;
801 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
802 				  TEE_MATTR_MEM_TYPE_SHIFT;
803 
804 	switch (t) {
805 	case MEM_AREA_TEE_RAM:
806 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
807 	case MEM_AREA_TEE_RAM_RX:
808 	case MEM_AREA_INIT_RAM_RX:
809 	case MEM_AREA_IDENTITY_MAP_RX:
810 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
811 	case MEM_AREA_TEE_RAM_RO:
812 	case MEM_AREA_INIT_RAM_RO:
813 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
814 	case MEM_AREA_TEE_RAM_RW:
815 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
816 	case MEM_AREA_NEX_RAM_RW:
817 	case MEM_AREA_TEE_ASAN:
818 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
819 	case MEM_AREA_TEE_COHERENT:
820 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
821 	case MEM_AREA_TA_RAM:
822 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
823 	case MEM_AREA_NSEC_SHM:
824 	case MEM_AREA_NEX_NSEC_SHM:
825 		return attr | TEE_MATTR_PRW | cached;
826 	case MEM_AREA_MANIFEST_DT:
827 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
828 	case MEM_AREA_TRANSFER_LIST:
829 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
830 	case MEM_AREA_EXT_DT:
831 		/*
832 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
833 		 * tree as secure non-cached memory, otherwise, fall back to
834 		 * non-secure mapping.
835 		 */
836 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
837 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
838 			       noncache;
839 		fallthrough;
840 	case MEM_AREA_IO_NSEC:
841 		return attr | TEE_MATTR_PRW | noncache;
842 	case MEM_AREA_IO_SEC:
843 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
844 	case MEM_AREA_RAM_NSEC:
845 		return attr | TEE_MATTR_PRW | cached;
846 	case MEM_AREA_RAM_SEC:
847 	case MEM_AREA_SEC_RAM_OVERALL:
848 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
849 	case MEM_AREA_ROM_SEC:
850 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
851 	case MEM_AREA_RES_VASPACE:
852 	case MEM_AREA_SHM_VASPACE:
853 		return 0;
854 	case MEM_AREA_PAGER_VASPACE:
855 		return TEE_MATTR_SECURE;
856 	default:
857 		panic("invalid type");
858 	}
859 }
860 
861 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
862 {
863 	switch (mm->type) {
864 	case MEM_AREA_TEE_RAM:
865 	case MEM_AREA_TEE_RAM_RX:
866 	case MEM_AREA_TEE_RAM_RO:
867 	case MEM_AREA_TEE_RAM_RW:
868 	case MEM_AREA_INIT_RAM_RX:
869 	case MEM_AREA_INIT_RAM_RO:
870 	case MEM_AREA_NEX_RAM_RW:
871 	case MEM_AREA_NEX_RAM_RO:
872 	case MEM_AREA_TEE_ASAN:
873 		return true;
874 	default:
875 		return false;
876 	}
877 }
878 
879 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
880 {
881 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
882 }
883 
884 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
885 {
886 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
887 }
888 
889 static int cmp_mmap_by_lower_va(const void *a, const void *b)
890 {
891 	const struct tee_mmap_region *mm_a = a;
892 	const struct tee_mmap_region *mm_b = b;
893 
894 	return CMP_TRILEAN(mm_a->va, mm_b->va);
895 }
896 
897 static void dump_mmap_table(struct memory_map *mem_map)
898 {
899 	size_t n = 0;
900 
901 	for (n = 0; n < mem_map->count; n++) {
902 		struct tee_mmap_region *map = mem_map->map + n;
903 		vaddr_t __maybe_unused vstart;
904 
905 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
906 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
907 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
908 		     teecore_memtype_name(map->type), vstart,
909 		     vstart + map->size - 1, map->pa,
910 		     (paddr_t)(map->pa + map->size - 1), map->size,
911 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
912 	}
913 }
914 
915 #if DEBUG_XLAT_TABLE
916 
917 static void dump_xlat_table(vaddr_t va, unsigned int level)
918 {
919 	struct core_mmu_table_info tbl_info;
920 	unsigned int idx = 0;
921 	paddr_t pa;
922 	uint32_t attr;
923 
924 	core_mmu_find_table(NULL, va, level, &tbl_info);
925 	va = tbl_info.va_base;
926 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
927 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
928 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
929 			const char *security_bit = "";
930 
931 			if (core_mmu_entry_have_security_bit(attr)) {
932 				if (attr & TEE_MATTR_SECURE)
933 					security_bit = "S";
934 				else
935 					security_bit = "NS";
936 			}
937 
938 			if (attr & TEE_MATTR_TABLE) {
939 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
940 					" TBL:0x%010" PRIxPA " %s",
941 					level * 2, "", level, va, pa,
942 					security_bit);
943 				dump_xlat_table(va, level + 1);
944 			} else if (attr) {
945 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
946 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
947 					level * 2, "", level, va, pa,
948 					mattr_is_cached(attr) ? "MEM" :
949 					"DEV",
950 					attr & TEE_MATTR_PW ? "RW" : "RO",
951 					attr & TEE_MATTR_PX ? "X " : "XN",
952 					security_bit);
953 			} else {
954 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
955 					    " INVALID\n",
956 					    level * 2, "", level, va);
957 			}
958 		}
959 		va += BIT64(tbl_info.shift);
960 	}
961 }
962 
963 #else
964 
965 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
966 {
967 }
968 
969 #endif
970 
971 /*
972  * Reserves virtual memory space for pager usage.
973  *
974  * From the start of the first memory used by the link script +
975  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
976  * mapping for pager usage. This adds translation tables as needed for the
977  * pager to operate.
978  */
979 static void add_pager_vaspace(struct memory_map *mem_map)
980 {
981 	paddr_t begin = 0;
982 	paddr_t end = 0;
983 	size_t size = 0;
984 	size_t pos = 0;
985 	size_t n = 0;
986 
987 
988 	for (n = 0; n < mem_map->count; n++) {
989 		if (map_is_tee_ram(mem_map->map + n)) {
990 			if (!begin)
991 				begin = mem_map->map[n].pa;
992 			pos = n + 1;
993 		}
994 	}
995 
996 	end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size;
997 	assert(end - begin < TEE_RAM_VA_SIZE);
998 	size = TEE_RAM_VA_SIZE - (end - begin);
999 
1000 	grow_mem_map(mem_map);
1001 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
1002 		       n, NULL);
1003 	mem_map->map[n] = (struct tee_mmap_region){
1004 		.type = MEM_AREA_PAGER_VASPACE,
1005 		.size = size,
1006 		.region_size = SMALL_PAGE_SIZE,
1007 		.attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE),
1008 	};
1009 }
1010 
1011 static void check_sec_nsec_mem_config(void)
1012 {
1013 	size_t n = 0;
1014 
1015 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
1016 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
1017 				    secure_only[n].size))
1018 			panic("Invalid memory access config: sec/nsec");
1019 	}
1020 }
1021 
1022 static void collect_device_mem_ranges(struct memory_map *mem_map)
1023 {
1024 	const char *compatible = "arm,ffa-manifest-device-regions";
1025 	void *fdt = get_manifest_dt();
1026 	const char *name = NULL;
1027 	uint64_t page_count = 0;
1028 	uint64_t base = 0;
1029 	int subnode = 0;
1030 	int node = 0;
1031 
1032 	assert(fdt);
1033 
1034 	node = fdt_node_offset_by_compatible(fdt, 0, compatible);
1035 	if (node < 0)
1036 		return;
1037 
1038 	fdt_for_each_subnode(subnode, fdt, node) {
1039 		name = fdt_get_name(fdt, subnode, NULL);
1040 		if (!name)
1041 			continue;
1042 
1043 		if (dt_getprop_as_number(fdt, subnode, "base-address",
1044 					 &base)) {
1045 			EMSG("Mandatory field is missing: base-address");
1046 			continue;
1047 		}
1048 
1049 		if (base & SMALL_PAGE_MASK) {
1050 			EMSG("base-address is not page aligned");
1051 			continue;
1052 		}
1053 
1054 		if (dt_getprop_as_number(fdt, subnode, "pages-count",
1055 					 &page_count)) {
1056 			EMSG("Mandatory field is missing: pages-count");
1057 			continue;
1058 		}
1059 
1060 		add_phys_mem(mem_map, name, MEM_AREA_IO_SEC,
1061 			     base, base + page_count * SMALL_PAGE_SIZE);
1062 	}
1063 }
1064 
1065 static void collect_mem_ranges(struct memory_map *mem_map)
1066 {
1067 	const struct core_mmu_phys_mem *mem = NULL;
1068 	vaddr_t ram_start = secure_only[0].paddr;
1069 
1070 #define ADD_PHYS_MEM(_type, _addr, _size) \
1071 		add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size))
1072 
1073 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
1074 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start,
1075 			     VCORE_UNPG_RX_PA - ram_start);
1076 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
1077 			     VCORE_UNPG_RX_SZ);
1078 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
1079 			     VCORE_UNPG_RO_SZ);
1080 
1081 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1082 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
1083 				     VCORE_UNPG_RW_SZ);
1084 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
1085 				     VCORE_NEX_RW_SZ);
1086 		} else {
1087 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
1088 				     VCORE_UNPG_RW_SZ);
1089 		}
1090 
1091 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1092 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
1093 				     VCORE_INIT_RX_SZ);
1094 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
1095 				     VCORE_INIT_RO_SZ);
1096 		}
1097 	} else {
1098 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
1099 	}
1100 
1101 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1102 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
1103 			     TRUSTED_DRAM_SIZE);
1104 	} else {
1105 		/*
1106 		 * Every guest will have own TA RAM if virtualization
1107 		 * support is enabled.
1108 		 */
1109 		paddr_t ta_base = 0;
1110 		size_t ta_size = 0;
1111 
1112 		core_mmu_get_ta_range(&ta_base, &ta_size);
1113 		ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size);
1114 	}
1115 
1116 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
1117 	    IS_ENABLED(CFG_WITH_PAGER)) {
1118 		/*
1119 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
1120 		 * disabled.
1121 		 */
1122 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1123 	}
1124 
1125 #undef ADD_PHYS_MEM
1126 
1127 	/* Collect device memory info from SP manifest */
1128 	if (IS_ENABLED(CFG_CORE_SEL2_SPMC))
1129 		collect_device_mem_ranges(mem_map);
1130 
1131 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1132 		/* Only unmapped virtual range may have a null phys addr */
1133 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1134 
1135 		add_phys_mem(mem_map, mem->name, mem->type,
1136 			     mem->addr, mem->size);
1137 	}
1138 
1139 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1140 		verify_special_mem_areas(mem_map, phys_sdp_mem_begin,
1141 					 phys_sdp_mem_end, "SDP");
1142 
1143 	add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE);
1144 	add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE);
1145 }
1146 
1147 static void assign_mem_granularity(struct memory_map *mem_map)
1148 {
1149 	size_t n = 0;
1150 
1151 	/*
1152 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1153 	 * SMALL_PAGE_SIZE.
1154 	 */
1155 	for  (n = 0; n < mem_map->count; n++) {
1156 		paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size;
1157 
1158 		if (!(mask & CORE_MMU_PGDIR_MASK))
1159 			mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE;
1160 		else if (!(mask & SMALL_PAGE_MASK))
1161 			mem_map->map[n].region_size = SMALL_PAGE_SIZE;
1162 		else
1163 			panic("Impossible memory alignment");
1164 
1165 		if (map_is_tee_ram(mem_map->map + n))
1166 			mem_map->map[n].region_size = SMALL_PAGE_SIZE;
1167 	}
1168 }
1169 
1170 static bool place_tee_ram_at_top(paddr_t paddr)
1171 {
1172 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1173 }
1174 
1175 /*
1176  * MMU arch driver shall override this function if it helps
1177  * optimizing the memory footprint of the address translation tables.
1178  */
1179 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1180 {
1181 	return place_tee_ram_at_top(paddr);
1182 }
1183 
1184 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map,
1185 			      bool tee_ram_at_top)
1186 {
1187 	struct tee_mmap_region *map = NULL;
1188 	vaddr_t va = 0;
1189 	bool va_is_secure = true;
1190 	size_t n = 0;
1191 
1192 	/*
1193 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1194 	 * 0 is by design an invalid va, so return false directly.
1195 	 */
1196 	if (!tee_ram_va)
1197 		return false;
1198 
1199 	/* Clear eventual previous assignments */
1200 	for (n = 0; n < mem_map->count; n++)
1201 		mem_map->map[n].va = 0;
1202 
1203 	/*
1204 	 * TEE RAM regions are always aligned with region_size.
1205 	 *
1206 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1207 	 * since it handles virtual memory which covers the part of the ELF
1208 	 * that cannot fit directly into memory.
1209 	 */
1210 	va = tee_ram_va;
1211 	for (n = 0; n < mem_map->count; n++) {
1212 		map = mem_map->map + n;
1213 		if (map_is_tee_ram(map) ||
1214 		    map->type == MEM_AREA_PAGER_VASPACE) {
1215 			assert(!(va & (map->region_size - 1)));
1216 			assert(!(map->size & (map->region_size - 1)));
1217 			map->va = va;
1218 			if (ADD_OVERFLOW(va, map->size, &va))
1219 				return false;
1220 			if (va >= BIT64(core_mmu_get_va_width()))
1221 				return false;
1222 		}
1223 	}
1224 
1225 	if (tee_ram_at_top) {
1226 		/*
1227 		 * Map non-tee ram regions at addresses lower than the tee
1228 		 * ram region.
1229 		 */
1230 		va = tee_ram_va;
1231 		for (n = 0; n < mem_map->count; n++) {
1232 			map = mem_map->map + n;
1233 			map->attr = core_mmu_type_to_attr(map->type);
1234 			if (map->va)
1235 				continue;
1236 
1237 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1238 			    va_is_secure != map_is_secure(map)) {
1239 				va_is_secure = !va_is_secure;
1240 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1241 			}
1242 
1243 			if (SUB_OVERFLOW(va, map->size, &va))
1244 				return false;
1245 			va = ROUNDDOWN(va, map->region_size);
1246 			/*
1247 			 * Make sure that va is aligned with pa for
1248 			 * efficient pgdir mapping. Basically pa &
1249 			 * pgdir_mask should be == va & pgdir_mask
1250 			 */
1251 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1252 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1253 					return false;
1254 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1255 			}
1256 			map->va = va;
1257 		}
1258 	} else {
1259 		/*
1260 		 * Map non-tee ram regions at addresses higher than the tee
1261 		 * ram region.
1262 		 */
1263 		for (n = 0; n < mem_map->count; n++) {
1264 			map = mem_map->map + n;
1265 			map->attr = core_mmu_type_to_attr(map->type);
1266 			if (map->va)
1267 				continue;
1268 
1269 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1270 			    va_is_secure != map_is_secure(map)) {
1271 				va_is_secure = !va_is_secure;
1272 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1273 						     &va))
1274 					return false;
1275 			}
1276 
1277 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1278 				return false;
1279 			/*
1280 			 * Make sure that va is aligned with pa for
1281 			 * efficient pgdir mapping. Basically pa &
1282 			 * pgdir_mask should be == va & pgdir_mask
1283 			 */
1284 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1285 				vaddr_t offs = (map->pa - va) &
1286 					       CORE_MMU_PGDIR_MASK;
1287 
1288 				if (ADD_OVERFLOW(va, offs, &va))
1289 					return false;
1290 			}
1291 
1292 			map->va = va;
1293 			if (ADD_OVERFLOW(va, map->size, &va))
1294 				return false;
1295 			if (va >= BIT64(core_mmu_get_va_width()))
1296 				return false;
1297 		}
1298 	}
1299 
1300 	return true;
1301 }
1302 
1303 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map)
1304 {
1305 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1306 
1307 	/*
1308 	 * Check that we're not overlapping with the user VA range.
1309 	 */
1310 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1311 		/*
1312 		 * User VA range is supposed to be defined after these
1313 		 * mappings have been established.
1314 		 */
1315 		assert(!core_mmu_user_va_range_is_defined());
1316 	} else {
1317 		vaddr_t user_va_base = 0;
1318 		size_t user_va_size = 0;
1319 
1320 		assert(core_mmu_user_va_range_is_defined());
1321 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1322 		if (tee_ram_va < (user_va_base + user_va_size))
1323 			return false;
1324 	}
1325 
1326 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1327 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1328 
1329 		/* Try whole mapping covered by a single base xlat entry */
1330 		if (prefered_dir != tee_ram_at_top &&
1331 		    assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir))
1332 			return true;
1333 	}
1334 
1335 	return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top);
1336 }
1337 
1338 static int cmp_init_mem_map(const void *a, const void *b)
1339 {
1340 	const struct tee_mmap_region *mm_a = a;
1341 	const struct tee_mmap_region *mm_b = b;
1342 	int rc = 0;
1343 
1344 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1345 	if (!rc)
1346 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1347 	/*
1348 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1349 	 * the same level2 table. Hence sort secure mapping from non-secure
1350 	 * mapping.
1351 	 */
1352 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1353 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1354 
1355 	return rc;
1356 }
1357 
1358 static bool mem_map_add_id_map(struct memory_map *mem_map,
1359 			       vaddr_t id_map_start, vaddr_t id_map_end)
1360 {
1361 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1362 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1363 	size_t len = end - start;
1364 	size_t n = 0;
1365 
1366 
1367 	for (n = 0; n < mem_map->count; n++)
1368 		if (core_is_buffer_intersect(mem_map->map[n].va,
1369 					     mem_map->map[n].size, start, len))
1370 			return false;
1371 
1372 	grow_mem_map(mem_map);
1373 	mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){
1374 		.type = MEM_AREA_IDENTITY_MAP_RX,
1375 		/*
1376 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1377 		 * translation table, at the increased risk of clashes with
1378 		 * the rest of the memory map.
1379 		 */
1380 		.region_size = SMALL_PAGE_SIZE,
1381 		.pa = start,
1382 		.va = start,
1383 		.size = len,
1384 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1385 	};
1386 
1387 	return true;
1388 }
1389 
1390 static struct memory_map *init_mem_map(struct memory_map *mem_map,
1391 				       unsigned long seed,
1392 				       unsigned long *ret_offs)
1393 {
1394 	/*
1395 	 * @id_map_start and @id_map_end describes a physical memory range
1396 	 * that must be mapped Read-Only eXecutable at identical virtual
1397 	 * addresses.
1398 	 */
1399 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1400 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1401 	vaddr_t start_addr = secure_only[0].paddr;
1402 	unsigned long offs = 0;
1403 
1404 	collect_mem_ranges(mem_map);
1405 	assign_mem_granularity(mem_map);
1406 
1407 	/*
1408 	 * To ease mapping and lower use of xlat tables, sort mapping
1409 	 * description moving small-page regions after the pgdir regions.
1410 	 */
1411 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1412 	      cmp_init_mem_map);
1413 
1414 	if (IS_ENABLED(CFG_WITH_PAGER))
1415 		add_pager_vaspace(mem_map);
1416 
1417 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1418 		vaddr_t base_addr = start_addr + seed;
1419 		const unsigned int va_width = core_mmu_get_va_width();
1420 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1421 						   SMALL_PAGE_SHIFT);
1422 		vaddr_t ba = base_addr;
1423 		size_t n = 0;
1424 
1425 		for (n = 0; n < 3; n++) {
1426 			if (n)
1427 				ba = base_addr ^ BIT64(va_width - n);
1428 			ba &= va_mask;
1429 			if (assign_mem_va(ba, mem_map) &&
1430 			    mem_map_add_id_map(mem_map, id_map_start,
1431 					       id_map_end)) {
1432 				offs = ba - start_addr;
1433 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1434 				     ba, offs);
1435 				goto out;
1436 			} else {
1437 				DMSG("Failed to map core at %#"PRIxVA, ba);
1438 			}
1439 		}
1440 		EMSG("Failed to map core with seed %#lx", seed);
1441 	}
1442 
1443 	if (!assign_mem_va(start_addr, mem_map))
1444 		panic();
1445 
1446 out:
1447 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1448 	      cmp_mmap_by_lower_va);
1449 
1450 	dump_mmap_table(mem_map);
1451 
1452 	*ret_offs = offs;
1453 	return mem_map;
1454 }
1455 
1456 static void check_mem_map(struct memory_map *mem_map)
1457 {
1458 	struct tee_mmap_region *m = NULL;
1459 	size_t n = 0;
1460 
1461 	for (n = 0; n < mem_map->count; n++) {
1462 		m = mem_map->map + n;
1463 		switch (m->type) {
1464 		case MEM_AREA_TEE_RAM:
1465 		case MEM_AREA_TEE_RAM_RX:
1466 		case MEM_AREA_TEE_RAM_RO:
1467 		case MEM_AREA_TEE_RAM_RW:
1468 		case MEM_AREA_INIT_RAM_RX:
1469 		case MEM_AREA_INIT_RAM_RO:
1470 		case MEM_AREA_NEX_RAM_RW:
1471 		case MEM_AREA_NEX_RAM_RO:
1472 		case MEM_AREA_IDENTITY_MAP_RX:
1473 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1474 				panic("TEE_RAM can't fit in secure_only");
1475 			break;
1476 		case MEM_AREA_TA_RAM:
1477 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1478 				panic("TA_RAM can't fit in secure_only");
1479 			break;
1480 		case MEM_AREA_NSEC_SHM:
1481 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1482 				panic("NS_SHM can't fit in nsec_shared");
1483 			break;
1484 		case MEM_AREA_SEC_RAM_OVERALL:
1485 		case MEM_AREA_TEE_COHERENT:
1486 		case MEM_AREA_TEE_ASAN:
1487 		case MEM_AREA_IO_SEC:
1488 		case MEM_AREA_IO_NSEC:
1489 		case MEM_AREA_EXT_DT:
1490 		case MEM_AREA_MANIFEST_DT:
1491 		case MEM_AREA_TRANSFER_LIST:
1492 		case MEM_AREA_RAM_SEC:
1493 		case MEM_AREA_RAM_NSEC:
1494 		case MEM_AREA_ROM_SEC:
1495 		case MEM_AREA_RES_VASPACE:
1496 		case MEM_AREA_SHM_VASPACE:
1497 		case MEM_AREA_PAGER_VASPACE:
1498 			break;
1499 		default:
1500 			EMSG("Uhandled memtype %d", m->type);
1501 			panic();
1502 		}
1503 	}
1504 }
1505 
1506 /*
1507  * core_init_mmu_map() - init tee core default memory mapping
1508  *
1509  * This routine sets the static default TEE core mapping. If @seed is > 0
1510  * and configured with CFG_CORE_ASLR it will map tee core at a location
1511  * based on the seed and return the offset from the link address.
1512  *
1513  * If an error happened: core_init_mmu_map is expected to panic.
1514  *
1515  * Note: this function is weak just to make it possible to exclude it from
1516  * the unpaged area.
1517  */
1518 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1519 {
1520 #ifndef CFG_NS_VIRTUALIZATION
1521 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1522 #else
1523 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1524 				  SMALL_PAGE_SIZE);
1525 #endif
1526 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1527 	struct tee_mmap_region tmp_mmap_region = { };
1528 	struct memory_map mem_map = { };
1529 	unsigned long offs = 0;
1530 
1531 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1532 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1533 		panic("OP-TEE load address is not page aligned");
1534 
1535 	check_sec_nsec_mem_config();
1536 
1537 	mem_map = static_memory_map;
1538 	static_memory_map = (struct memory_map){
1539 		.map = &tmp_mmap_region,
1540 		.alloc_count = 1,
1541 		.count = 1,
1542 	};
1543 	/*
1544 	 * Add a entry covering the translation tables which will be
1545 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1546 	 */
1547 	static_memory_map.map[0] = (struct tee_mmap_region){
1548 		.type = MEM_AREA_TEE_RAM,
1549 		.region_size = SMALL_PAGE_SIZE,
1550 		.pa = start,
1551 		.va = start,
1552 		.size = len,
1553 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1554 	};
1555 
1556 	init_mem_map(&mem_map, seed, &offs);
1557 
1558 	check_mem_map(&mem_map);
1559 	core_init_mmu(&mem_map);
1560 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1561 	core_init_mmu_regs(cfg);
1562 	cfg->map_offset = offs;
1563 	static_memory_map = mem_map;
1564 }
1565 
1566 bool core_mmu_mattr_is_ok(uint32_t mattr)
1567 {
1568 	/*
1569 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1570 	 * core_mmu_v7.c:mattr_to_texcb
1571 	 */
1572 
1573 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1574 	case TEE_MATTR_MEM_TYPE_DEV:
1575 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1576 	case TEE_MATTR_MEM_TYPE_CACHED:
1577 	case TEE_MATTR_MEM_TYPE_TAGGED:
1578 		return true;
1579 	default:
1580 		return false;
1581 	}
1582 }
1583 
1584 /*
1585  * test attributes of target physical buffer
1586  *
1587  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1588  *
1589  */
1590 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1591 {
1592 	paddr_t ta_base = 0;
1593 	size_t ta_size = 0;
1594 	struct tee_mmap_region *map;
1595 
1596 	/* Empty buffers complies with anything */
1597 	if (len == 0)
1598 		return true;
1599 
1600 	switch (attr) {
1601 	case CORE_MEM_SEC:
1602 		return pbuf_is_inside(secure_only, pbuf, len);
1603 	case CORE_MEM_NON_SEC:
1604 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1605 			pbuf_is_nsec_ddr(pbuf, len);
1606 	case CORE_MEM_TEE_RAM:
1607 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1608 							TEE_RAM_PH_SIZE);
1609 	case CORE_MEM_TA_RAM:
1610 		core_mmu_get_ta_range(&ta_base, &ta_size);
1611 		return core_is_buffer_inside(pbuf, len, ta_base, ta_size);
1612 #ifdef CFG_CORE_RESERVED_SHM
1613 	case CORE_MEM_NSEC_SHM:
1614 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1615 							TEE_SHMEM_SIZE);
1616 #endif
1617 	case CORE_MEM_SDP_MEM:
1618 		return pbuf_is_sdp_mem(pbuf, len);
1619 	case CORE_MEM_CACHED:
1620 		map = find_map_by_pa(pbuf);
1621 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1622 			return false;
1623 		return mattr_is_cached(map->attr);
1624 	default:
1625 		return false;
1626 	}
1627 }
1628 
1629 /* test attributes of target virtual buffer (in core mapping) */
1630 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1631 {
1632 	paddr_t p;
1633 
1634 	/* Empty buffers complies with anything */
1635 	if (len == 0)
1636 		return true;
1637 
1638 	p = virt_to_phys((void *)vbuf);
1639 	if (!p)
1640 		return false;
1641 
1642 	return core_pbuf_is(attr, p, len);
1643 }
1644 
1645 /* core_va2pa - teecore exported service */
1646 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1647 {
1648 	struct tee_mmap_region *map;
1649 
1650 	map = find_map_by_va(va);
1651 	if (!va_is_in_map(map, (vaddr_t)va))
1652 		return -1;
1653 
1654 	/*
1655 	 * We can calculate PA for static map. Virtual address ranges
1656 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1657 	 * together with an invalid null physical address.
1658 	 */
1659 	if (map->pa)
1660 		*pa = map->pa + (vaddr_t)va  - map->va;
1661 	else
1662 		*pa = 0;
1663 
1664 	return 0;
1665 }
1666 
1667 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1668 {
1669 	if (!pa_is_in_map(map, pa, len))
1670 		return NULL;
1671 
1672 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1673 }
1674 
1675 /*
1676  * teecore gets some memory area definitions
1677  */
1678 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1679 			      vaddr_t *e)
1680 {
1681 	struct tee_mmap_region *map = find_map_by_type(type);
1682 
1683 	if (map) {
1684 		*s = map->va;
1685 		*e = map->va + map->size;
1686 	} else {
1687 		*s = 0;
1688 		*e = 0;
1689 	}
1690 }
1691 
1692 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1693 {
1694 	struct tee_mmap_region *map = find_map_by_pa(pa);
1695 
1696 	if (!map)
1697 		return MEM_AREA_MAXTYPE;
1698 	return map->type;
1699 }
1700 
1701 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1702 			paddr_t pa, uint32_t attr)
1703 {
1704 	assert(idx < tbl_info->num_entries);
1705 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1706 				     idx, pa, attr);
1707 }
1708 
1709 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1710 			paddr_t *pa, uint32_t *attr)
1711 {
1712 	assert(idx < tbl_info->num_entries);
1713 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1714 				     idx, pa, attr);
1715 }
1716 
1717 static void clear_region(struct core_mmu_table_info *tbl_info,
1718 			 struct tee_mmap_region *region)
1719 {
1720 	unsigned int end = 0;
1721 	unsigned int idx = 0;
1722 
1723 	/* va, len and pa should be block aligned */
1724 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1725 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1726 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1727 
1728 	idx = core_mmu_va2idx(tbl_info, region->va);
1729 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1730 
1731 	while (idx < end) {
1732 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1733 		idx++;
1734 	}
1735 }
1736 
1737 static void set_region(struct core_mmu_table_info *tbl_info,
1738 		       struct tee_mmap_region *region)
1739 {
1740 	unsigned int end;
1741 	unsigned int idx;
1742 	paddr_t pa;
1743 
1744 	/* va, len and pa should be block aligned */
1745 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1746 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1747 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1748 
1749 	idx = core_mmu_va2idx(tbl_info, region->va);
1750 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1751 	pa = region->pa;
1752 
1753 	while (idx < end) {
1754 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1755 		idx++;
1756 		pa += BIT64(tbl_info->shift);
1757 	}
1758 }
1759 
1760 static void set_pg_region(struct core_mmu_table_info *dir_info,
1761 			  struct vm_region *region, struct pgt **pgt,
1762 			  struct core_mmu_table_info *pg_info)
1763 {
1764 	struct tee_mmap_region r = {
1765 		.va = region->va,
1766 		.size = region->size,
1767 		.attr = region->attr,
1768 	};
1769 	vaddr_t end = r.va + r.size;
1770 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1771 
1772 	while (r.va < end) {
1773 		if (!pg_info->table ||
1774 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1775 			/*
1776 			 * We're assigning a new translation table.
1777 			 */
1778 			unsigned int idx;
1779 
1780 			/* Virtual addresses must grow */
1781 			assert(r.va > pg_info->va_base);
1782 
1783 			idx = core_mmu_va2idx(dir_info, r.va);
1784 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1785 
1786 			/*
1787 			 * Advance pgt to va_base, note that we may need to
1788 			 * skip multiple page tables if there are large
1789 			 * holes in the vm map.
1790 			 */
1791 			while ((*pgt)->vabase < pg_info->va_base) {
1792 				*pgt = SLIST_NEXT(*pgt, link);
1793 				/* We should have allocated enough */
1794 				assert(*pgt);
1795 			}
1796 			assert((*pgt)->vabase == pg_info->va_base);
1797 			pg_info->table = (*pgt)->tbl;
1798 
1799 			core_mmu_set_entry(dir_info, idx,
1800 					   virt_to_phys(pg_info->table),
1801 					   pgt_attr);
1802 		}
1803 
1804 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1805 			     end - r.va);
1806 
1807 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1808 			size_t granule = BIT(pg_info->shift);
1809 			size_t offset = r.va - region->va + region->offset;
1810 
1811 			r.size = MIN(r.size,
1812 				     mobj_get_phys_granule(region->mobj));
1813 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1814 
1815 			if (mobj_get_pa(region->mobj, offset, granule,
1816 					&r.pa) != TEE_SUCCESS)
1817 				panic("Failed to get PA of unpaged mobj");
1818 			set_region(pg_info, &r);
1819 		}
1820 		r.va += r.size;
1821 	}
1822 }
1823 
1824 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1825 			     size_t size_left, paddr_t block_size,
1826 			     struct tee_mmap_region *mm __maybe_unused)
1827 {
1828 	/* VA and PA are aligned to block size at current level */
1829 	if ((vaddr | paddr) & (block_size - 1))
1830 		return false;
1831 
1832 	/* Remainder fits into block at current level */
1833 	if (size_left < block_size)
1834 		return false;
1835 
1836 #ifdef CFG_WITH_PAGER
1837 	/*
1838 	 * If pager is enabled, we need to map TEE RAM and the whole pager
1839 	 * regions with small pages only
1840 	 */
1841 	if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) &&
1842 	    block_size != SMALL_PAGE_SIZE)
1843 		return false;
1844 #endif
1845 
1846 	return true;
1847 }
1848 
1849 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1850 {
1851 	struct core_mmu_table_info tbl_info;
1852 	unsigned int idx;
1853 	vaddr_t vaddr = mm->va;
1854 	paddr_t paddr = mm->pa;
1855 	ssize_t size_left = mm->size;
1856 	unsigned int level;
1857 	bool table_found;
1858 	uint32_t old_attr;
1859 
1860 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1861 
1862 	while (size_left > 0) {
1863 		level = CORE_MMU_BASE_TABLE_LEVEL;
1864 
1865 		while (true) {
1866 			paddr_t block_size = 0;
1867 
1868 			assert(core_mmu_level_in_range(level));
1869 
1870 			table_found = core_mmu_find_table(prtn, vaddr, level,
1871 							  &tbl_info);
1872 			if (!table_found)
1873 				panic("can't find table for mapping");
1874 
1875 			block_size = BIT64(tbl_info.shift);
1876 
1877 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1878 			if (!can_map_at_level(paddr, vaddr, size_left,
1879 					      block_size, mm)) {
1880 				bool secure = mm->attr & TEE_MATTR_SECURE;
1881 
1882 				/*
1883 				 * This part of the region can't be mapped at
1884 				 * this level. Need to go deeper.
1885 				 */
1886 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1887 								     idx,
1888 								     secure))
1889 					panic("Can't divide MMU entry");
1890 				level = tbl_info.next_level;
1891 				continue;
1892 			}
1893 
1894 			/* We can map part of the region at current level */
1895 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1896 			if (old_attr)
1897 				panic("Page is already mapped");
1898 
1899 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1900 			paddr += block_size;
1901 			vaddr += block_size;
1902 			size_left -= block_size;
1903 
1904 			break;
1905 		}
1906 	}
1907 }
1908 
1909 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1910 			      enum teecore_memtypes memtype)
1911 {
1912 	TEE_Result ret;
1913 	struct core_mmu_table_info tbl_info;
1914 	struct tee_mmap_region *mm;
1915 	unsigned int idx;
1916 	uint32_t old_attr;
1917 	uint32_t exceptions;
1918 	vaddr_t vaddr = vstart;
1919 	size_t i;
1920 	bool secure;
1921 
1922 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1923 
1924 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1925 
1926 	if (vaddr & SMALL_PAGE_MASK)
1927 		return TEE_ERROR_BAD_PARAMETERS;
1928 
1929 	exceptions = mmu_lock();
1930 
1931 	mm = find_map_by_va((void *)vaddr);
1932 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1933 		panic("VA does not belong to any known mm region");
1934 
1935 	if (!core_mmu_is_dynamic_vaspace(mm))
1936 		panic("Trying to map into static region");
1937 
1938 	for (i = 0; i < num_pages; i++) {
1939 		if (pages[i] & SMALL_PAGE_MASK) {
1940 			ret = TEE_ERROR_BAD_PARAMETERS;
1941 			goto err;
1942 		}
1943 
1944 		while (true) {
1945 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1946 						 &tbl_info))
1947 				panic("Can't find pagetable for vaddr ");
1948 
1949 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1950 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1951 				break;
1952 
1953 			/* This is supertable. Need to divide it. */
1954 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1955 							     secure))
1956 				panic("Failed to spread pgdir on small tables");
1957 		}
1958 
1959 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1960 		if (old_attr)
1961 			panic("Page is already mapped");
1962 
1963 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1964 				   core_mmu_type_to_attr(memtype));
1965 		vaddr += SMALL_PAGE_SIZE;
1966 	}
1967 
1968 	/*
1969 	 * Make sure all the changes to translation tables are visible
1970 	 * before returning. TLB doesn't need to be invalidated as we are
1971 	 * guaranteed that there's no valid mapping in this range.
1972 	 */
1973 	core_mmu_table_write_barrier();
1974 	mmu_unlock(exceptions);
1975 
1976 	return TEE_SUCCESS;
1977 err:
1978 	mmu_unlock(exceptions);
1979 
1980 	if (i)
1981 		core_mmu_unmap_pages(vstart, i);
1982 
1983 	return ret;
1984 }
1985 
1986 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
1987 					 size_t num_pages,
1988 					 enum teecore_memtypes memtype)
1989 {
1990 	struct core_mmu_table_info tbl_info = { };
1991 	struct tee_mmap_region *mm = NULL;
1992 	unsigned int idx = 0;
1993 	uint32_t old_attr = 0;
1994 	uint32_t exceptions = 0;
1995 	vaddr_t vaddr = vstart;
1996 	paddr_t paddr = pstart;
1997 	size_t i = 0;
1998 	bool secure = false;
1999 
2000 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
2001 
2002 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
2003 
2004 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
2005 		return TEE_ERROR_BAD_PARAMETERS;
2006 
2007 	exceptions = mmu_lock();
2008 
2009 	mm = find_map_by_va((void *)vaddr);
2010 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
2011 		panic("VA does not belong to any known mm region");
2012 
2013 	if (!core_mmu_is_dynamic_vaspace(mm))
2014 		panic("Trying to map into static region");
2015 
2016 	for (i = 0; i < num_pages; i++) {
2017 		while (true) {
2018 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
2019 						 &tbl_info))
2020 				panic("Can't find pagetable for vaddr ");
2021 
2022 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2023 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
2024 				break;
2025 
2026 			/* This is supertable. Need to divide it. */
2027 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
2028 							     secure))
2029 				panic("Failed to spread pgdir on small tables");
2030 		}
2031 
2032 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2033 		if (old_attr)
2034 			panic("Page is already mapped");
2035 
2036 		core_mmu_set_entry(&tbl_info, idx, paddr,
2037 				   core_mmu_type_to_attr(memtype));
2038 		paddr += SMALL_PAGE_SIZE;
2039 		vaddr += SMALL_PAGE_SIZE;
2040 	}
2041 
2042 	/*
2043 	 * Make sure all the changes to translation tables are visible
2044 	 * before returning. TLB doesn't need to be invalidated as we are
2045 	 * guaranteed that there's no valid mapping in this range.
2046 	 */
2047 	core_mmu_table_write_barrier();
2048 	mmu_unlock(exceptions);
2049 
2050 	return TEE_SUCCESS;
2051 }
2052 
2053 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
2054 {
2055 	struct core_mmu_table_info tbl_info;
2056 	struct tee_mmap_region *mm;
2057 	size_t i;
2058 	unsigned int idx;
2059 	uint32_t exceptions;
2060 
2061 	exceptions = mmu_lock();
2062 
2063 	mm = find_map_by_va((void *)vstart);
2064 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
2065 		panic("VA does not belong to any known mm region");
2066 
2067 	if (!core_mmu_is_dynamic_vaspace(mm))
2068 		panic("Trying to unmap static region");
2069 
2070 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
2071 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
2072 			panic("Can't find pagetable");
2073 
2074 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
2075 			panic("Invalid pagetable level");
2076 
2077 		idx = core_mmu_va2idx(&tbl_info, vstart);
2078 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
2079 	}
2080 	tlbi_all();
2081 
2082 	mmu_unlock(exceptions);
2083 }
2084 
2085 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
2086 				struct user_mode_ctx *uctx)
2087 {
2088 	struct core_mmu_table_info pg_info = { };
2089 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
2090 	struct pgt *pgt = NULL;
2091 	struct pgt *p = NULL;
2092 	struct vm_region *r = NULL;
2093 
2094 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
2095 		return; /* Nothing to map */
2096 
2097 	/*
2098 	 * Allocate all page tables in advance.
2099 	 */
2100 	pgt_get_all(uctx);
2101 	pgt = SLIST_FIRST(pgt_cache);
2102 
2103 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2104 
2105 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2106 		set_pg_region(dir_info, r, &pgt, &pg_info);
2107 	/* Record that the translation tables now are populated. */
2108 	SLIST_FOREACH(p, pgt_cache, link) {
2109 		p->populated = true;
2110 		if (p == pgt)
2111 			break;
2112 	}
2113 	assert(p == pgt);
2114 }
2115 
2116 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2117 				   size_t len)
2118 {
2119 	struct core_mmu_table_info tbl_info = { };
2120 	struct tee_mmap_region *res_map = NULL;
2121 	struct tee_mmap_region *map = NULL;
2122 	paddr_t pa = virt_to_phys(addr);
2123 	size_t granule = 0;
2124 	ptrdiff_t i = 0;
2125 	paddr_t p = 0;
2126 	size_t l = 0;
2127 
2128 	map = find_map_by_type_and_pa(type, pa, len);
2129 	if (!map)
2130 		return TEE_ERROR_GENERIC;
2131 
2132 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2133 	if (!res_map)
2134 		return TEE_ERROR_GENERIC;
2135 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2136 		return TEE_ERROR_GENERIC;
2137 	granule = BIT(tbl_info.shift);
2138 
2139 	if (map < static_memory_map.map ||
2140 	    map >= static_memory_map.map + static_memory_map.count)
2141 		return TEE_ERROR_GENERIC;
2142 	i = map - static_memory_map.map;
2143 
2144 	/* Check that we have a full match */
2145 	p = ROUNDDOWN(pa, granule);
2146 	l = ROUNDUP(len + pa - p, granule);
2147 	if (map->pa != p || map->size != l)
2148 		return TEE_ERROR_GENERIC;
2149 
2150 	clear_region(&tbl_info, map);
2151 	tlbi_all();
2152 
2153 	/* If possible remove the va range from res_map */
2154 	if (res_map->va - map->size == map->va) {
2155 		res_map->va -= map->size;
2156 		res_map->size += map->size;
2157 	}
2158 
2159 	/* Remove the entry. */
2160 	rem_array_elem(static_memory_map.map, static_memory_map.count,
2161 		       sizeof(*static_memory_map.map), i);
2162 	static_memory_map.count--;
2163 
2164 	return TEE_SUCCESS;
2165 }
2166 
2167 struct tee_mmap_region *
2168 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2169 {
2170 	struct memory_map *mem_map = get_memory_map();
2171 	struct tee_mmap_region *map_found = NULL;
2172 	size_t n = 0;
2173 
2174 	if (!len)
2175 		return NULL;
2176 
2177 	for (n = 0; n < mem_map->count; n++) {
2178 		if (mem_map->map[n].type != type)
2179 			continue;
2180 
2181 		if (map_found)
2182 			return NULL;
2183 
2184 		map_found = mem_map->map + n;
2185 	}
2186 
2187 	if (!map_found || map_found->size < len)
2188 		return NULL;
2189 
2190 	return map_found;
2191 }
2192 
2193 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2194 {
2195 	struct memory_map *mem_map = &static_memory_map;
2196 	struct core_mmu_table_info tbl_info = { };
2197 	struct tee_mmap_region *map = NULL;
2198 	size_t granule = 0;
2199 	paddr_t p = 0;
2200 	size_t l = 0;
2201 
2202 	if (!len)
2203 		return NULL;
2204 
2205 	if (!core_mmu_check_end_pa(addr, len))
2206 		return NULL;
2207 
2208 	/* Check if the memory is already mapped */
2209 	map = find_map_by_type_and_pa(type, addr, len);
2210 	if (map && pbuf_inside_map_area(addr, len, map))
2211 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2212 
2213 	/* Find the reserved va space used for late mappings */
2214 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2215 	if (!map)
2216 		return NULL;
2217 
2218 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2219 		return NULL;
2220 
2221 	granule = BIT64(tbl_info.shift);
2222 	p = ROUNDDOWN(addr, granule);
2223 	l = ROUNDUP(len + addr - p, granule);
2224 
2225 	/* Ban overflowing virtual addresses */
2226 	if (map->size < l)
2227 		return NULL;
2228 
2229 	/*
2230 	 * Something is wrong, we can't fit the va range into the selected
2231 	 * table. The reserved va range is possibly missaligned with
2232 	 * granule.
2233 	 */
2234 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2235 		return NULL;
2236 
2237 	if (static_memory_map.count >= static_memory_map.alloc_count)
2238 		return NULL;
2239 
2240 	mem_map->map[mem_map->count] = (struct tee_mmap_region){
2241 		.va = map->va,
2242 		.size = l,
2243 		.type = type,
2244 		.region_size = granule,
2245 		.attr = core_mmu_type_to_attr(type),
2246 		.pa = p,
2247 	};
2248 	map->va += l;
2249 	map->size -= l;
2250 	map = mem_map->map + mem_map->count;
2251 	mem_map->count++;
2252 
2253 	set_region(&tbl_info, map);
2254 
2255 	/* Make sure the new entry is visible before continuing. */
2256 	core_mmu_table_write_barrier();
2257 
2258 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2259 }
2260 
2261 #ifdef CFG_WITH_PAGER
2262 static vaddr_t get_linear_map_end_va(void)
2263 {
2264 	/* this is synced with the generic linker file kern.ld.S */
2265 	return (vaddr_t)__heap2_end;
2266 }
2267 
2268 static paddr_t get_linear_map_end_pa(void)
2269 {
2270 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2271 }
2272 #endif
2273 
2274 #if defined(CFG_TEE_CORE_DEBUG)
2275 static void check_pa_matches_va(void *va, paddr_t pa)
2276 {
2277 	TEE_Result res = TEE_ERROR_GENERIC;
2278 	vaddr_t v = (vaddr_t)va;
2279 	paddr_t p = 0;
2280 	struct core_mmu_table_info ti __maybe_unused = { };
2281 
2282 	if (core_mmu_user_va_range_is_defined()) {
2283 		vaddr_t user_va_base = 0;
2284 		size_t user_va_size = 0;
2285 
2286 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2287 		if (v >= user_va_base &&
2288 		    v <= (user_va_base - 1 + user_va_size)) {
2289 			if (!core_mmu_user_mapping_is_active()) {
2290 				if (pa)
2291 					panic("issue in linear address space");
2292 				return;
2293 			}
2294 
2295 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2296 				       va, &p);
2297 			if (res == TEE_ERROR_NOT_SUPPORTED)
2298 				return;
2299 			if (res == TEE_SUCCESS && pa != p)
2300 				panic("bad pa");
2301 			if (res != TEE_SUCCESS && pa)
2302 				panic("false pa");
2303 			return;
2304 		}
2305 	}
2306 #ifdef CFG_WITH_PAGER
2307 	if (is_unpaged(va)) {
2308 		if (v - boot_mmu_config.map_offset != pa)
2309 			panic("issue in linear address space");
2310 		return;
2311 	}
2312 
2313 	if (tee_pager_get_table_info(v, &ti)) {
2314 		uint32_t a;
2315 
2316 		/*
2317 		 * Lookups in the page table managed by the pager is
2318 		 * dangerous for addresses in the paged area as those pages
2319 		 * changes all the time. But some ranges are safe,
2320 		 * rw-locked areas when the page is populated for instance.
2321 		 */
2322 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2323 		if (a & TEE_MATTR_VALID_BLOCK) {
2324 			paddr_t mask = BIT64(ti.shift) - 1;
2325 
2326 			p |= v & mask;
2327 			if (pa != p)
2328 				panic();
2329 		} else {
2330 			if (pa)
2331 				panic();
2332 		}
2333 		return;
2334 	}
2335 #endif
2336 
2337 	if (!core_va2pa_helper(va, &p)) {
2338 		/* Verfiy only the static mapping (case non null phys addr) */
2339 		if (p && pa != p) {
2340 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2341 			     va, p, pa);
2342 			panic();
2343 		}
2344 	} else {
2345 		if (pa) {
2346 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2347 			panic();
2348 		}
2349 	}
2350 }
2351 #else
2352 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2353 {
2354 }
2355 #endif
2356 
2357 paddr_t virt_to_phys(void *va)
2358 {
2359 	paddr_t pa = 0;
2360 
2361 	if (!arch_va2pa_helper(va, &pa))
2362 		pa = 0;
2363 	check_pa_matches_va(memtag_strip_tag(va), pa);
2364 	return pa;
2365 }
2366 
2367 #if defined(CFG_TEE_CORE_DEBUG)
2368 static void check_va_matches_pa(paddr_t pa, void *va)
2369 {
2370 	paddr_t p = 0;
2371 
2372 	if (!va)
2373 		return;
2374 
2375 	p = virt_to_phys(va);
2376 	if (p != pa) {
2377 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2378 		panic();
2379 	}
2380 }
2381 #else
2382 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2383 {
2384 }
2385 #endif
2386 
2387 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2388 {
2389 	if (!core_mmu_user_mapping_is_active())
2390 		return NULL;
2391 
2392 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2393 }
2394 
2395 #ifdef CFG_WITH_PAGER
2396 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2397 {
2398 	paddr_t end_pa = 0;
2399 
2400 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2401 		return NULL;
2402 
2403 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2404 		if (end_pa > get_linear_map_end_pa())
2405 			return NULL;
2406 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2407 	}
2408 
2409 	return tee_pager_phys_to_virt(pa, len);
2410 }
2411 #else
2412 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2413 {
2414 	struct tee_mmap_region *mmap = NULL;
2415 
2416 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2417 	if (!mmap)
2418 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2419 	if (!mmap)
2420 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2421 	if (!mmap)
2422 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2423 	if (!mmap)
2424 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2425 	if (!mmap)
2426 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2427 	/*
2428 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2429 	 * used with pager and not needed here.
2430 	 */
2431 	return map_pa2va(mmap, pa, len);
2432 }
2433 #endif
2434 
2435 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2436 {
2437 	void *va = NULL;
2438 
2439 	switch (m) {
2440 	case MEM_AREA_TS_VASPACE:
2441 		va = phys_to_virt_ts_vaspace(pa, len);
2442 		break;
2443 	case MEM_AREA_TEE_RAM:
2444 	case MEM_AREA_TEE_RAM_RX:
2445 	case MEM_AREA_TEE_RAM_RO:
2446 	case MEM_AREA_TEE_RAM_RW:
2447 	case MEM_AREA_NEX_RAM_RO:
2448 	case MEM_AREA_NEX_RAM_RW:
2449 		va = phys_to_virt_tee_ram(pa, len);
2450 		break;
2451 	case MEM_AREA_SHM_VASPACE:
2452 		/* Find VA from PA in dynamic SHM is not yet supported */
2453 		va = NULL;
2454 		break;
2455 	default:
2456 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2457 	}
2458 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2459 		check_va_matches_pa(pa, va);
2460 	return va;
2461 }
2462 
2463 void *phys_to_virt_io(paddr_t pa, size_t len)
2464 {
2465 	struct tee_mmap_region *map = NULL;
2466 	void *va = NULL;
2467 
2468 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2469 	if (!map)
2470 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2471 	if (!map)
2472 		return NULL;
2473 	va = map_pa2va(map, pa, len);
2474 	check_va_matches_pa(pa, va);
2475 	return va;
2476 }
2477 
2478 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2479 {
2480 	if (cpu_mmu_enabled())
2481 		return (vaddr_t)phys_to_virt(pa, type, len);
2482 
2483 	return (vaddr_t)pa;
2484 }
2485 
2486 #ifdef CFG_WITH_PAGER
2487 bool is_unpaged(const void *va)
2488 {
2489 	vaddr_t v = (vaddr_t)va;
2490 
2491 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2492 }
2493 #endif
2494 
2495 #ifdef CFG_NS_VIRTUALIZATION
2496 bool is_nexus(const void *va)
2497 {
2498 	vaddr_t v = (vaddr_t)va;
2499 
2500 	return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ;
2501 }
2502 #endif
2503 
2504 void core_mmu_init_virtualization(void)
2505 {
2506 	paddr_t b1 = 0;
2507 	paddr_size_t s1 = 0;
2508 
2509 	static_assert(ARRAY_SIZE(secure_only) <= 2);
2510 	if (ARRAY_SIZE(secure_only) == 2) {
2511 		b1 = secure_only[1].paddr;
2512 		s1 = secure_only[1].size;
2513 	}
2514 	virt_init_memory(&static_memory_map, secure_only[0].paddr,
2515 			 secure_only[0].size, b1, s1);
2516 }
2517 
2518 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2519 {
2520 	assert(p->pa);
2521 	if (cpu_mmu_enabled()) {
2522 		if (!p->va)
2523 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2524 		assert(p->va);
2525 		return p->va;
2526 	}
2527 	return p->pa;
2528 }
2529 
2530 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2531 {
2532 	assert(p->pa);
2533 	if (cpu_mmu_enabled()) {
2534 		if (!p->va)
2535 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2536 						      len);
2537 		assert(p->va);
2538 		return p->va;
2539 	}
2540 	return p->pa;
2541 }
2542 
2543 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2544 {
2545 	assert(p->pa);
2546 	if (cpu_mmu_enabled()) {
2547 		if (!p->va)
2548 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2549 						      len);
2550 		assert(p->va);
2551 		return p->va;
2552 	}
2553 	return p->pa;
2554 }
2555 
2556 #ifdef CFG_CORE_RESERVED_SHM
2557 static TEE_Result teecore_init_pub_ram(void)
2558 {
2559 	vaddr_t s = 0;
2560 	vaddr_t e = 0;
2561 
2562 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2563 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2564 
2565 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2566 		panic("invalid PUB RAM");
2567 
2568 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2569 	if (!tee_vbuf_is_non_sec(s, e - s))
2570 		panic("PUB RAM is not non-secure");
2571 
2572 #ifdef CFG_PL310
2573 	/* Allocate statically the l2cc mutex */
2574 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2575 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2576 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2577 #endif
2578 
2579 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2580 	default_nsec_shm_size = e - s;
2581 
2582 	return TEE_SUCCESS;
2583 }
2584 early_init(teecore_init_pub_ram);
2585 #endif /*CFG_CORE_RESERVED_SHM*/
2586 
2587 void core_mmu_init_ta_ram(void)
2588 {
2589 	vaddr_t s = 0;
2590 	vaddr_t e = 0;
2591 	paddr_t ps = 0;
2592 	size_t size = 0;
2593 
2594 	/*
2595 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2596 	 * shared mem allocated from teecore.
2597 	 */
2598 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
2599 		virt_get_ta_ram(&s, &e);
2600 	else
2601 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2602 
2603 	ps = virt_to_phys((void *)s);
2604 	size = e - s;
2605 
2606 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2607 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2608 		panic("invalid TA RAM");
2609 
2610 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2611 	if (!tee_pbuf_is_sec(ps, size))
2612 		panic("TA RAM is not secure");
2613 
2614 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2615 		panic("TA RAM pool is not empty");
2616 
2617 	/* remove previous config and init TA ddr memory pool */
2618 	tee_mm_final(&tee_mm_sec_ddr);
2619 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2620 		    TEE_MM_POOL_NO_FLAGS);
2621 }
2622