xref: /optee_os/core/mm/core_mmu.c (revision be4e7607edcacea761f811acb5db9d9218151e2b)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016-2025 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <memtag.h>
22 #include <mm/core_memprot.h>
23 #include <mm/core_mmu.h>
24 #include <mm/mobj.h>
25 #include <mm/pgt_cache.h>
26 #include <mm/phys_mem.h>
27 #include <mm/tee_pager.h>
28 #include <mm/vm.h>
29 #include <platform_config.h>
30 #include <stdalign.h>
31 #include <string.h>
32 #include <trace.h>
33 #include <util.h>
34 
35 #ifndef DEBUG_XLAT_TABLE
36 #define DEBUG_XLAT_TABLE 0
37 #endif
38 
39 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
40 
41 /* Virtual memory pool for core mappings */
42 tee_mm_pool_t core_virt_mem_pool;
43 
44 /* Virtual memory pool for shared memory mappings */
45 tee_mm_pool_t core_virt_shm_pool;
46 
47 #ifdef CFG_CORE_PHYS_RELOCATABLE
48 unsigned long core_mmu_tee_load_pa __nex_bss;
49 #else
50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
51 #endif
52 
53 /*
54  * These variables are initialized before .bss is cleared. To avoid
55  * resetting them when .bss is cleared we're storing them in .data instead,
56  * even if they initially are zero.
57  */
58 
59 #ifdef CFG_CORE_RESERVED_SHM
60 /* Default NSec shared memory allocated from NSec world */
61 unsigned long default_nsec_shm_size __nex_bss;
62 unsigned long default_nsec_shm_paddr __nex_bss;
63 #endif
64 
65 #ifdef CFG_BOOT_MEM
66 static struct memory_map static_memory_map __nex_bss;
67 #else
68 static struct tee_mmap_region static_mmap_regions[CFG_MMAP_REGIONS
69 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE)
70 						+ 1
71 #endif
72 						+ 4] __nex_bss;
73 static struct memory_map static_memory_map __nex_data = {
74 	.map = static_mmap_regions,
75 	.alloc_count = ARRAY_SIZE(static_mmap_regions),
76 };
77 #endif
78 void (*memory_map_realloc_func)(struct memory_map *mem_map) __nex_bss;
79 
80 /* Offset of the first TEE RAM mapping from start of secure RAM */
81 static size_t tee_ram_initial_offs __nex_bss;
82 
83 /* Define the platform's memory layout. */
84 struct memaccess_area {
85 	paddr_t paddr;
86 	size_t size;
87 };
88 
89 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
90 
91 static struct memaccess_area secure_only[] __nex_data = {
92 #ifdef CFG_CORE_PHYS_RELOCATABLE
93 	MEMACCESS_AREA(0, 0),
94 #else
95 #ifdef TRUSTED_SRAM_BASE
96 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
97 #endif
98 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
99 #endif
100 };
101 
102 static struct memaccess_area nsec_shared[] __nex_data = {
103 #ifdef CFG_CORE_RESERVED_SHM
104 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
105 #endif
106 };
107 
108 #if defined(CFG_SECURE_DATA_PATH)
109 static const char *tz_sdp_match = "linaro,secure-heap";
110 static struct memaccess_area sec_sdp;
111 #ifdef CFG_TEE_SDP_MEM_BASE
112 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
113 #endif
114 #ifdef TEE_SDP_TEST_MEM_BASE
115 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
116 #endif
117 #endif
118 
119 #ifdef CFG_CORE_RESERVED_SHM
120 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
121 #endif
122 static unsigned int mmu_spinlock;
123 
124 static uint32_t mmu_lock(void)
125 {
126 	return cpu_spin_lock_xsave(&mmu_spinlock);
127 }
128 
129 static void mmu_unlock(uint32_t exceptions)
130 {
131 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
132 }
133 
134 static void heap_realloc_memory_map(struct memory_map *mem_map)
135 {
136 	struct tee_mmap_region *m = NULL;
137 	struct tee_mmap_region *old = mem_map->map;
138 	size_t old_sz = sizeof(*old) * mem_map->alloc_count;
139 	size_t sz = old_sz + sizeof(*m);
140 
141 	assert(nex_malloc_buffer_is_within_alloced(old, old_sz));
142 	m = nex_realloc(old, sz);
143 	if (!m)
144 		panic();
145 	mem_map->map = m;
146 	mem_map->alloc_count++;
147 }
148 
149 static void boot_mem_realloc_memory_map(struct memory_map *mem_map)
150 {
151 	struct tee_mmap_region *m = NULL;
152 	struct tee_mmap_region *old = mem_map->map;
153 	size_t old_sz = sizeof(*old) * mem_map->alloc_count;
154 	size_t sz = old_sz * 2;
155 
156 	m = boot_mem_alloc_tmp(sz, alignof(*m));
157 	memcpy(m, old, old_sz);
158 	mem_map->map = m;
159 	mem_map->alloc_count *= 2;
160 }
161 
162 static void grow_mem_map(struct memory_map *mem_map)
163 {
164 	if (mem_map->count == mem_map->alloc_count) {
165 		if (!memory_map_realloc_func) {
166 			EMSG("Out of entries (%zu) in mem_map",
167 			     mem_map->alloc_count);
168 			panic();
169 		}
170 		memory_map_realloc_func(mem_map);
171 	}
172 	mem_map->count++;
173 }
174 
175 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
176 {
177 	/*
178 	 * The first range is always used to cover OP-TEE core memory, but
179 	 * depending on configuration it may cover more than that.
180 	 */
181 	*base = secure_only[0].paddr;
182 	*size = secure_only[0].size;
183 }
184 
185 void core_mmu_set_secure_memory(paddr_t base, size_t size)
186 {
187 #ifdef CFG_CORE_PHYS_RELOCATABLE
188 	static_assert(ARRAY_SIZE(secure_only) == 1);
189 #endif
190 	runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE));
191 	assert(!secure_only[0].size);
192 	assert(base && size);
193 
194 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
195 	secure_only[0].paddr = base;
196 	secure_only[0].size = size;
197 }
198 
199 static struct memory_map *get_memory_map(void)
200 {
201 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
202 		struct memory_map *map = virt_get_memory_map();
203 
204 		if (map)
205 			return map;
206 	}
207 
208 	return &static_memory_map;
209 }
210 
211 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
212 			     paddr_t pa, size_t size)
213 {
214 	size_t n;
215 
216 	for (n = 0; n < alen; n++)
217 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
218 			return true;
219 	return false;
220 }
221 
222 #define pbuf_intersects(a, pa, size) \
223 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
224 
225 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
226 			    paddr_t pa, size_t size)
227 {
228 	size_t n;
229 
230 	for (n = 0; n < alen; n++)
231 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
232 			return true;
233 	return false;
234 }
235 
236 #define pbuf_is_inside(a, pa, size) \
237 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
238 
239 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
240 {
241 	paddr_t end_pa = 0;
242 
243 	if (!map)
244 		return false;
245 
246 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
247 		return false;
248 
249 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
250 }
251 
252 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
253 {
254 	if (!map)
255 		return false;
256 	return (va >= map->va && va <= (map->va + map->size - 1));
257 }
258 
259 /* check if target buffer fits in a core default map area */
260 static bool pbuf_inside_map_area(unsigned long p, size_t l,
261 				 struct tee_mmap_region *map)
262 {
263 	return core_is_buffer_inside(p, l, map->pa, map->size);
264 }
265 
266 TEE_Result core_mmu_for_each_map(void *ptr,
267 				 TEE_Result (*fn)(struct tee_mmap_region *map,
268 						  void *ptr))
269 {
270 	struct memory_map *mem_map = get_memory_map();
271 	TEE_Result res = TEE_SUCCESS;
272 	size_t n = 0;
273 
274 	for (n = 0; n < mem_map->count; n++) {
275 		res = fn(mem_map->map + n, ptr);
276 		if (res)
277 			return res;
278 	}
279 
280 	return TEE_SUCCESS;
281 }
282 
283 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
284 {
285 	struct memory_map *mem_map = get_memory_map();
286 	size_t n = 0;
287 
288 	for (n = 0; n < mem_map->count; n++) {
289 		if (mem_map->map[n].type == type)
290 			return mem_map->map + n;
291 	}
292 	return NULL;
293 }
294 
295 static struct tee_mmap_region *
296 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
297 {
298 	struct memory_map *mem_map = get_memory_map();
299 	size_t n = 0;
300 
301 	for (n = 0; n < mem_map->count; n++) {
302 		if (mem_map->map[n].type != type)
303 			continue;
304 		if (pa_is_in_map(mem_map->map + n, pa, len))
305 			return mem_map->map + n;
306 	}
307 	return NULL;
308 }
309 
310 static struct tee_mmap_region *find_map_by_va(void *va)
311 {
312 	struct memory_map *mem_map = get_memory_map();
313 	vaddr_t a = (vaddr_t)va;
314 	size_t n = 0;
315 
316 	for (n = 0; n < mem_map->count; n++) {
317 		if (a >= mem_map->map[n].va &&
318 		    a <= (mem_map->map[n].va - 1 + mem_map->map[n].size))
319 			return mem_map->map + n;
320 	}
321 
322 	return NULL;
323 }
324 
325 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
326 {
327 	struct memory_map *mem_map = get_memory_map();
328 	size_t n = 0;
329 
330 	for (n = 0; n < mem_map->count; n++) {
331 		/* Skip unmapped regions */
332 		if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) &&
333 		    pa >= mem_map->map[n].pa &&
334 		    pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size))
335 			return mem_map->map + n;
336 	}
337 
338 	return NULL;
339 }
340 
341 #if defined(CFG_SECURE_DATA_PATH)
342 static bool dtb_get_sdp_region(void)
343 {
344 	void *fdt = NULL;
345 	int node = 0;
346 	int tmp_node = 0;
347 	paddr_t tmp_addr = 0;
348 	size_t tmp_size = 0;
349 
350 	if (!IS_ENABLED(CFG_EMBED_DTB))
351 		return false;
352 
353 	fdt = get_embedded_dt();
354 	if (!fdt)
355 		panic("No DTB found");
356 
357 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
358 	if (node < 0) {
359 		DMSG("No %s compatible node found", tz_sdp_match);
360 		return false;
361 	}
362 	tmp_node = node;
363 	while (tmp_node >= 0) {
364 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
365 							 tz_sdp_match);
366 		if (tmp_node >= 0)
367 			DMSG("Ignore SDP pool node %s, supports only 1 node",
368 			     fdt_get_name(fdt, tmp_node, NULL));
369 	}
370 
371 	if (fdt_reg_info(fdt, node, &tmp_addr, &tmp_size)) {
372 		EMSG("%s: Unable to get base addr or size from DT",
373 		     tz_sdp_match);
374 		return false;
375 	}
376 
377 	sec_sdp.paddr = tmp_addr;
378 	sec_sdp.size = tmp_size;
379 
380 	return true;
381 }
382 #endif
383 
384 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
385 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
386 				const struct core_mmu_phys_mem *start,
387 				const struct core_mmu_phys_mem *end)
388 {
389 	const struct core_mmu_phys_mem *mem;
390 
391 	for (mem = start; mem < end; mem++) {
392 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
393 			return true;
394 	}
395 
396 	return false;
397 }
398 #endif
399 
400 #ifdef CFG_CORE_DYN_SHM
401 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
402 			       paddr_t pa, size_t size)
403 {
404 	struct core_mmu_phys_mem *m = *mem;
405 	size_t n = 0;
406 
407 	while (n < *nelems) {
408 		if (!core_is_buffer_intersect(pa, size, m[n].addr, m[n].size)) {
409 			n++;
410 			continue;
411 		}
412 
413 		if (core_is_buffer_inside(m[n].addr, m[n].size, pa, size)) {
414 			/* m[n] is completely covered by pa:size */
415 			rem_array_elem(m, *nelems, sizeof(*m), n);
416 			(*nelems)--;
417 			m = nex_realloc(m, sizeof(*m) * *nelems);
418 			if (!m)
419 				panic();
420 			*mem = m;
421 			continue;
422 		}
423 
424 		if (pa > m[n].addr &&
425 		    pa + size - 1 < m[n].addr + m[n].size - 1) {
426 			/*
427 			 * pa:size is strictly inside m[n] range so split
428 			 * m[n] entry.
429 			 */
430 			m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
431 			if (!m)
432 				panic();
433 			*mem = m;
434 			(*nelems)++;
435 			ins_array_elem(m, *nelems, sizeof(*m), n + 1, NULL);
436 			m[n + 1].addr = pa + size;
437 			m[n + 1].size = m[n].addr + m[n].size - pa - size;
438 			m[n].size = pa - m[n].addr;
439 			n++;
440 		} else if (pa <= m[n].addr) {
441 			/*
442 			 * pa:size is overlapping (possibly partially) at the
443 			 * beginning of m[n].
444 			 */
445 			m[n].size = m[n].addr + m[n].size - pa - size;
446 			m[n].addr = pa + size;
447 		} else {
448 			/*
449 			 * pa:size is overlapping (possibly partially) at
450 			 * the end of m[n].
451 			 */
452 			m[n].size = pa - m[n].addr;
453 		}
454 		n++;
455 	}
456 }
457 
458 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
459 				      size_t nelems,
460 				      struct tee_mmap_region *map)
461 {
462 	size_t n;
463 
464 	for (n = 0; n < nelems; n++) {
465 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
466 					    map->pa, map->size)) {
467 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
468 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
469 			     start[n].addr, start[n].size,
470 			     map->type, map->pa, map->size);
471 			panic();
472 		}
473 	}
474 }
475 
476 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
477 static size_t discovered_nsec_ddr_nelems __nex_bss;
478 
479 static int cmp_pmem_by_addr(const void *a, const void *b)
480 {
481 	const struct core_mmu_phys_mem *pmem_a = a;
482 	const struct core_mmu_phys_mem *pmem_b = b;
483 
484 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
485 }
486 
487 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
488 				      size_t nelems)
489 {
490 	struct core_mmu_phys_mem *m = start;
491 	size_t num_elems = nelems;
492 	struct memory_map *mem_map = &static_memory_map;
493 	const struct core_mmu_phys_mem __maybe_unused *pmem;
494 	size_t n = 0;
495 
496 	assert(!discovered_nsec_ddr_start);
497 	assert(m && num_elems);
498 
499 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
500 
501 	/*
502 	 * Non-secure shared memory and also secure data
503 	 * path memory are supposed to reside inside
504 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
505 	 * are used for a specific purpose make holes for
506 	 * those memory in the normal non-secure memory.
507 	 *
508 	 * This has to be done since for instance QEMU
509 	 * isn't aware of which memory range in the
510 	 * non-secure memory is used for NSEC_SHM.
511 	 */
512 
513 #ifdef CFG_SECURE_DATA_PATH
514 	if (dtb_get_sdp_region())
515 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
516 
517 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
518 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
519 #endif
520 
521 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
522 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
523 				   secure_only[n].size);
524 
525 	for  (n = 0; n < mem_map->count; n++) {
526 		switch (mem_map->map[n].type) {
527 		case MEM_AREA_NSEC_SHM:
528 			carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa,
529 					   mem_map->map[n].size);
530 			break;
531 		case MEM_AREA_EXT_DT:
532 		case MEM_AREA_MANIFEST_DT:
533 		case MEM_AREA_RAM_NSEC:
534 		case MEM_AREA_RES_VASPACE:
535 		case MEM_AREA_SHM_VASPACE:
536 		case MEM_AREA_TS_VASPACE:
537 		case MEM_AREA_PAGER_VASPACE:
538 			break;
539 		default:
540 			check_phys_mem_is_outside(m, num_elems,
541 						  mem_map->map + n);
542 		}
543 	}
544 
545 	discovered_nsec_ddr_start = m;
546 	discovered_nsec_ddr_nelems = num_elems;
547 
548 	DMSG("Non-secure RAM:");
549 	for (n = 0; n < num_elems; n++)
550 		DMSG("%zu: pa %#"PRIxPA"..%#"PRIxPA" sz %#"PRIxPASZ,
551 		     n, m[n].addr, m[n].addr + m[n].size - 1, m[n].size);
552 
553 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
554 				   m[num_elems - 1].size))
555 		panic();
556 }
557 
558 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
559 				    const struct core_mmu_phys_mem **end)
560 {
561 	if (!discovered_nsec_ddr_start)
562 		return false;
563 
564 	*start = discovered_nsec_ddr_start;
565 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
566 
567 	return true;
568 }
569 
570 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
571 {
572 	const struct core_mmu_phys_mem *start;
573 	const struct core_mmu_phys_mem *end;
574 
575 	if (!get_discovered_nsec_ddr(&start, &end))
576 		return false;
577 
578 	return pbuf_is_special_mem(pbuf, len, start, end);
579 }
580 
581 bool core_mmu_nsec_ddr_is_defined(void)
582 {
583 	const struct core_mmu_phys_mem *start;
584 	const struct core_mmu_phys_mem *end;
585 
586 	if (!get_discovered_nsec_ddr(&start, &end))
587 		return false;
588 
589 	return start != end;
590 }
591 #else
592 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
593 {
594 	return false;
595 }
596 #endif /*CFG_CORE_DYN_SHM*/
597 
598 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
599 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
600 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
601 
602 #ifdef CFG_SECURE_DATA_PATH
603 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
604 {
605 	bool is_sdp_mem = false;
606 
607 	if (sec_sdp.size)
608 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
609 						   sec_sdp.size);
610 
611 	if (!is_sdp_mem)
612 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
613 						 phys_sdp_mem_end);
614 
615 	return is_sdp_mem;
616 }
617 
618 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
619 {
620 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
621 					    CORE_MEM_SDP_MEM);
622 
623 	if (!mobj)
624 		panic("can't create SDP physical memory object");
625 
626 	return mobj;
627 }
628 
629 struct mobj **core_sdp_mem_create_mobjs(void)
630 {
631 	const struct core_mmu_phys_mem *mem = NULL;
632 	struct mobj **mobj_base = NULL;
633 	struct mobj **mobj = NULL;
634 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
635 
636 	if (sec_sdp.size)
637 		cnt++;
638 
639 	/* SDP mobjs table must end with a NULL entry */
640 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
641 	if (!mobj_base)
642 		panic("Out of memory");
643 
644 	mobj = mobj_base;
645 
646 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
647 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
648 
649 	if (sec_sdp.size)
650 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
651 
652 	return mobj_base;
653 }
654 
655 #else /* CFG_SECURE_DATA_PATH */
656 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
657 {
658 	return false;
659 }
660 
661 #endif /* CFG_SECURE_DATA_PATH */
662 
663 /* Check special memories comply with registered memories */
664 static void verify_special_mem_areas(struct memory_map *mem_map,
665 				     const struct core_mmu_phys_mem *start,
666 				     const struct core_mmu_phys_mem *end,
667 				     const char *area_name __maybe_unused)
668 {
669 	const struct core_mmu_phys_mem *mem = NULL;
670 	const struct core_mmu_phys_mem *mem2 = NULL;
671 	size_t n = 0;
672 
673 	if (start == end) {
674 		DMSG("No %s memory area defined", area_name);
675 		return;
676 	}
677 
678 	for (mem = start; mem < end; mem++)
679 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
680 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
681 
682 	/* Check memories do not intersect each other */
683 	for (mem = start; mem + 1 < end; mem++) {
684 		for (mem2 = mem + 1; mem2 < end; mem2++) {
685 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
686 						     mem->addr, mem->size)) {
687 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
688 						   mem->addr, mem->size);
689 				panic("Special memory intersection");
690 			}
691 		}
692 	}
693 
694 	/*
695 	 * Check memories do not intersect any mapped memory.
696 	 * This is called before reserved VA space is loaded in mem_map.
697 	 */
698 	for (mem = start; mem < end; mem++) {
699 		for (n = 0; n < mem_map->count; n++) {
700 #ifdef TEE_SDP_TEST_MEM_BASE
701 			/*
702 			 * Ignore MEM_AREA_SEC_RAM_OVERALL since it covers
703 			 * TEE_SDP_TEST_MEM too.
704 			 */
705 			if (mem->addr == TEE_SDP_TEST_MEM_BASE &&
706 			    mem->size == TEE_SDP_TEST_MEM_SIZE &&
707 			    mem_map->map[n].type == MEM_AREA_SEC_RAM_OVERALL)
708 				continue;
709 #endif
710 			if (core_is_buffer_intersect(mem->addr, mem->size,
711 						     mem_map->map[n].pa,
712 						     mem_map->map[n].size)) {
713 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
714 						   mem_map->map[n].pa,
715 						   mem_map->map[n].size);
716 				panic("Special memory intersection");
717 			}
718 		}
719 	}
720 }
721 
722 static void merge_mmaps(struct tee_mmap_region *dst,
723 			const struct tee_mmap_region *src)
724 {
725 	paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1);
726 	paddr_t pa = MIN(dst->pa, src->pa);
727 
728 	DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA,
729 	     dst->pa, dst->pa + dst->size - 1, src->pa,
730 	     src->pa + src->size - 1);
731 	dst->pa = pa;
732 	dst->size = end_pa - pa + 1;
733 }
734 
735 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1,
736 				const struct tee_mmap_region *r2)
737 {
738 	if (r1->type != r2->type)
739 		return false;
740 
741 	if (r1->pa == r2->pa)
742 		return true;
743 
744 	if (r1->pa < r2->pa)
745 		return r1->pa + r1->size >= r2->pa;
746 	else
747 		return r2->pa + r2->size >= r1->pa;
748 }
749 
750 static void add_phys_mem(struct memory_map *mem_map,
751 			 const char *mem_name __maybe_unused,
752 			 enum teecore_memtypes mem_type,
753 			 paddr_t mem_addr, paddr_size_t mem_size)
754 {
755 	size_t n = 0;
756 	const struct tee_mmap_region m0 = {
757 		.type = mem_type,
758 		.pa = mem_addr,
759 		.size = mem_size,
760 	};
761 
762 	if (!mem_size)	/* Discard null size entries */
763 		return;
764 
765 	/*
766 	 * If some ranges of memory of the same type do overlap
767 	 * each others they are coalesced into one entry. To help this
768 	 * added entries are sorted by increasing physical.
769 	 *
770 	 * Note that it's valid to have the same physical memory as several
771 	 * different memory types, for instance the same device memory
772 	 * mapped as both secure and non-secure. This will probably not
773 	 * happen often in practice.
774 	 */
775 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
776 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
777 	for  (n = 0; n < mem_map->count; n++) {
778 		if (mmaps_are_mergeable(mem_map->map + n, &m0)) {
779 			merge_mmaps(mem_map->map + n, &m0);
780 			/*
781 			 * The merged result might be mergeable with the
782 			 * next or previous entry.
783 			 */
784 			if (n + 1 < mem_map->count &&
785 			    mmaps_are_mergeable(mem_map->map + n,
786 						mem_map->map + n + 1)) {
787 				merge_mmaps(mem_map->map + n,
788 					    mem_map->map + n + 1);
789 				rem_array_elem(mem_map->map, mem_map->count,
790 					       sizeof(*mem_map->map), n + 1);
791 				mem_map->count--;
792 			}
793 			if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1,
794 							 mem_map->map + n)) {
795 				merge_mmaps(mem_map->map + n - 1,
796 					    mem_map->map + n);
797 				rem_array_elem(mem_map->map, mem_map->count,
798 					       sizeof(*mem_map->map), n);
799 				mem_map->count--;
800 			}
801 			return;
802 		}
803 		if (mem_type < mem_map->map[n].type ||
804 		    (mem_type == mem_map->map[n].type &&
805 		     mem_addr < mem_map->map[n].pa))
806 			break; /* found the spot where to insert this memory */
807 	}
808 
809 	grow_mem_map(mem_map);
810 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
811 		       n, &m0);
812 }
813 
814 static void add_va_space(struct memory_map *mem_map,
815 			 enum teecore_memtypes type, size_t size)
816 {
817 	size_t n = 0;
818 
819 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
820 	for  (n = 0; n < mem_map->count; n++) {
821 		if (type < mem_map->map[n].type)
822 			break;
823 	}
824 
825 	grow_mem_map(mem_map);
826 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
827 		       n, NULL);
828 	mem_map->map[n] = (struct tee_mmap_region){
829 		.type = type,
830 		.size = size,
831 	};
832 }
833 
834 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
835 {
836 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
837 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
838 				TEE_MATTR_MEM_TYPE_SHIFT;
839 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
840 				TEE_MATTR_MEM_TYPE_SHIFT;
841 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
842 				  TEE_MATTR_MEM_TYPE_SHIFT;
843 
844 	switch (t) {
845 	case MEM_AREA_TEE_RAM:
846 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
847 	case MEM_AREA_TEE_RAM_RX:
848 	case MEM_AREA_INIT_RAM_RX:
849 	case MEM_AREA_IDENTITY_MAP_RX:
850 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
851 	case MEM_AREA_TEE_RAM_RO:
852 	case MEM_AREA_INIT_RAM_RO:
853 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
854 	case MEM_AREA_TEE_RAM_RW:
855 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
856 	case MEM_AREA_NEX_RAM_RW:
857 	case MEM_AREA_TEE_ASAN:
858 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
859 	case MEM_AREA_TEE_COHERENT:
860 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
861 	case MEM_AREA_NSEC_SHM:
862 	case MEM_AREA_NEX_NSEC_SHM:
863 		return attr | TEE_MATTR_PRW | cached;
864 	case MEM_AREA_MANIFEST_DT:
865 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
866 	case MEM_AREA_TRANSFER_LIST:
867 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
868 	case MEM_AREA_EXT_DT:
869 		/*
870 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
871 		 * tree as secure non-cached memory, otherwise, fall back to
872 		 * non-secure mapping.
873 		 */
874 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
875 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
876 			       noncache;
877 		fallthrough;
878 	case MEM_AREA_IO_NSEC:
879 		return attr | TEE_MATTR_PRW | noncache;
880 	case MEM_AREA_IO_SEC:
881 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
882 	case MEM_AREA_RAM_NSEC:
883 		return attr | TEE_MATTR_PRW | cached;
884 	case MEM_AREA_RAM_SEC:
885 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
886 	case MEM_AREA_SEC_RAM_OVERALL:
887 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
888 	case MEM_AREA_ROM_SEC:
889 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
890 	case MEM_AREA_RES_VASPACE:
891 	case MEM_AREA_SHM_VASPACE:
892 		return 0;
893 	case MEM_AREA_PAGER_VASPACE:
894 		return TEE_MATTR_SECURE;
895 	default:
896 		panic("invalid type");
897 	}
898 }
899 
900 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
901 {
902 	switch (mm->type) {
903 	case MEM_AREA_TEE_RAM:
904 	case MEM_AREA_TEE_RAM_RX:
905 	case MEM_AREA_TEE_RAM_RO:
906 	case MEM_AREA_TEE_RAM_RW:
907 	case MEM_AREA_INIT_RAM_RX:
908 	case MEM_AREA_INIT_RAM_RO:
909 	case MEM_AREA_NEX_RAM_RW:
910 	case MEM_AREA_NEX_RAM_RO:
911 	case MEM_AREA_TEE_ASAN:
912 		return true;
913 	default:
914 		return false;
915 	}
916 }
917 
918 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
919 {
920 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
921 }
922 
923 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
924 {
925 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
926 }
927 
928 static int cmp_mmap_by_lower_va(const void *a, const void *b)
929 {
930 	const struct tee_mmap_region *mm_a = a;
931 	const struct tee_mmap_region *mm_b = b;
932 
933 	return CMP_TRILEAN(mm_a->va, mm_b->va);
934 }
935 
936 static void dump_mmap_table(struct memory_map *mem_map)
937 {
938 	size_t n = 0;
939 
940 	for (n = 0; n < mem_map->count; n++) {
941 		struct tee_mmap_region *map __maybe_unused = mem_map->map + n;
942 
943 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
944 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
945 		     teecore_memtype_name(map->type), map->va,
946 		     map->va + map->size - 1, map->pa,
947 		     (paddr_t)(map->pa + map->size - 1), map->size,
948 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
949 	}
950 }
951 
952 #if DEBUG_XLAT_TABLE
953 
954 static void dump_xlat_table(vaddr_t va, unsigned int level)
955 {
956 	struct core_mmu_table_info tbl_info;
957 	unsigned int idx = 0;
958 	paddr_t pa;
959 	uint32_t attr;
960 
961 	core_mmu_find_table(NULL, va, level, &tbl_info);
962 	va = tbl_info.va_base;
963 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
964 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
965 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
966 			const char *security_bit = "";
967 
968 			if (core_mmu_entry_have_security_bit(attr)) {
969 				if (attr & TEE_MATTR_SECURE)
970 					security_bit = "S";
971 				else
972 					security_bit = "NS";
973 			}
974 
975 			if (attr & TEE_MATTR_TABLE) {
976 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
977 					" TBL:0x%010" PRIxPA " %s",
978 					level * 2, "", level, va, pa,
979 					security_bit);
980 				dump_xlat_table(va, level + 1);
981 			} else if (attr) {
982 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
983 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
984 					level * 2, "", level, va, pa,
985 					mattr_is_cached(attr) ? "MEM" :
986 					"DEV",
987 					attr & TEE_MATTR_PW ? "RW" : "RO",
988 					attr & TEE_MATTR_PX ? "X " : "XN",
989 					security_bit);
990 			} else {
991 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
992 					    " INVALID\n",
993 					    level * 2, "", level, va);
994 			}
995 		}
996 		va += BIT64(tbl_info.shift);
997 	}
998 }
999 
1000 #else
1001 
1002 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
1003 {
1004 }
1005 
1006 #endif
1007 
1008 /*
1009  * Reserves virtual memory space for pager usage.
1010  *
1011  * From the start of the first memory used by the link script +
1012  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
1013  * mapping for pager usage. This adds translation tables as needed for the
1014  * pager to operate.
1015  */
1016 static void add_pager_vaspace(struct memory_map *mem_map)
1017 {
1018 	paddr_t begin = 0;
1019 	paddr_t end = 0;
1020 	size_t size = 0;
1021 	size_t pos = 0;
1022 	size_t n = 0;
1023 
1024 
1025 	for (n = 0; n < mem_map->count; n++) {
1026 		if (map_is_tee_ram(mem_map->map + n)) {
1027 			if (!begin)
1028 				begin = mem_map->map[n].pa;
1029 			pos = n + 1;
1030 		}
1031 	}
1032 
1033 	end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size;
1034 	assert(end - begin < TEE_RAM_VA_SIZE);
1035 	size = TEE_RAM_VA_SIZE - (end - begin);
1036 
1037 	grow_mem_map(mem_map);
1038 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
1039 		       n, NULL);
1040 	mem_map->map[n] = (struct tee_mmap_region){
1041 		.type = MEM_AREA_PAGER_VASPACE,
1042 		.size = size,
1043 		.region_size = SMALL_PAGE_SIZE,
1044 		.attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE),
1045 	};
1046 }
1047 
1048 static void check_sec_nsec_mem_config(void)
1049 {
1050 	size_t n = 0;
1051 
1052 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
1053 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
1054 				    secure_only[n].size))
1055 			panic("Invalid memory access config: sec/nsec");
1056 	}
1057 }
1058 
1059 static void collect_device_mem_ranges(struct memory_map *mem_map)
1060 {
1061 	const char *compatible = "arm,ffa-manifest-device-regions";
1062 	void *fdt = get_manifest_dt();
1063 	const char *name = NULL;
1064 	uint64_t page_count = 0;
1065 	uint64_t base = 0;
1066 	int subnode = 0;
1067 	int node = 0;
1068 
1069 	assert(fdt);
1070 
1071 	node = fdt_node_offset_by_compatible(fdt, 0, compatible);
1072 	if (node < 0)
1073 		return;
1074 
1075 	fdt_for_each_subnode(subnode, fdt, node) {
1076 		name = fdt_get_name(fdt, subnode, NULL);
1077 		if (!name)
1078 			continue;
1079 
1080 		if (dt_getprop_as_number(fdt, subnode, "base-address",
1081 					 &base)) {
1082 			EMSG("Mandatory field is missing: base-address");
1083 			continue;
1084 		}
1085 
1086 		if (base & SMALL_PAGE_MASK) {
1087 			EMSG("base-address is not page aligned");
1088 			continue;
1089 		}
1090 
1091 		if (dt_getprop_as_number(fdt, subnode, "pages-count",
1092 					 &page_count)) {
1093 			EMSG("Mandatory field is missing: pages-count");
1094 			continue;
1095 		}
1096 
1097 		add_phys_mem(mem_map, name, MEM_AREA_IO_SEC,
1098 			     base, page_count * SMALL_PAGE_SIZE);
1099 	}
1100 }
1101 
1102 static void collect_mem_ranges(struct memory_map *mem_map)
1103 {
1104 	const struct core_mmu_phys_mem *mem = NULL;
1105 	vaddr_t ram_start = secure_only[0].paddr;
1106 	size_t n = 0;
1107 
1108 #define ADD_PHYS_MEM(_type, _addr, _size) \
1109 		add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size))
1110 
1111 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
1112 		paddr_t next_pa = 0;
1113 
1114 		/*
1115 		 * Read-only and read-execute physical memory areas must
1116 		 * not be mapped by MEM_AREA_SEC_RAM_OVERALL, but all the
1117 		 * read/write should.
1118 		 */
1119 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, ram_start,
1120 			     VCORE_UNPG_RX_PA - ram_start);
1121 		assert(VCORE_UNPG_RX_PA >= ram_start);
1122 		tee_ram_initial_offs = VCORE_UNPG_RX_PA - ram_start;
1123 		DMSG("tee_ram_initial_offs %#zx", tee_ram_initial_offs);
1124 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
1125 			     VCORE_UNPG_RX_SZ);
1126 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
1127 			     VCORE_UNPG_RO_SZ);
1128 
1129 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1130 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
1131 				     VCORE_UNPG_RW_SZ);
1132 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA,
1133 				     VCORE_UNPG_RW_SZ);
1134 
1135 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
1136 				     VCORE_NEX_RW_SZ);
1137 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_NEX_RW_PA,
1138 				     VCORE_NEX_RW_SZ);
1139 
1140 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_FREE_PA,
1141 				     VCORE_FREE_SZ);
1142 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA,
1143 				     VCORE_FREE_SZ);
1144 			next_pa = VCORE_FREE_PA + VCORE_FREE_SZ;
1145 		} else {
1146 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
1147 				     VCORE_UNPG_RW_SZ);
1148 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA,
1149 				     VCORE_UNPG_RW_SZ);
1150 
1151 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_FREE_PA,
1152 				     VCORE_FREE_SZ);
1153 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA,
1154 				     VCORE_FREE_SZ);
1155 			next_pa = VCORE_FREE_PA + VCORE_FREE_SZ;
1156 		}
1157 
1158 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1159 			paddr_t pa = 0;
1160 			size_t sz = 0;
1161 
1162 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
1163 				     VCORE_INIT_RX_SZ);
1164 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
1165 				     VCORE_INIT_RO_SZ);
1166 			/*
1167 			 * Core init mapping shall cover up to end of the
1168 			 * physical RAM.  This is required since the hash
1169 			 * table is appended to the binary data after the
1170 			 * firmware build sequence.
1171 			 */
1172 			pa = VCORE_INIT_RO_PA + VCORE_INIT_RO_SZ;
1173 			sz = TEE_RAM_START + TEE_RAM_PH_SIZE - pa;
1174 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM, pa, sz);
1175 		} else {
1176 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, next_pa,
1177 				     secure_only[0].paddr +
1178 				     secure_only[0].size - next_pa);
1179 		}
1180 	} else {
1181 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
1182 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr,
1183 			     secure_only[0].size);
1184 	}
1185 
1186 	for (n = 1; n < ARRAY_SIZE(secure_only); n++)
1187 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr,
1188 			     secure_only[n].size);
1189 
1190 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
1191 	    IS_ENABLED(CFG_WITH_PAGER)) {
1192 		/*
1193 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
1194 		 * disabled.
1195 		 */
1196 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1197 	}
1198 
1199 #undef ADD_PHYS_MEM
1200 
1201 	/* Collect device memory info from SP manifest */
1202 	if (IS_ENABLED(CFG_CORE_SEL2_SPMC))
1203 		collect_device_mem_ranges(mem_map);
1204 
1205 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1206 		/* Only unmapped virtual range may have a null phys addr */
1207 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1208 
1209 		add_phys_mem(mem_map, mem->name, mem->type,
1210 			     mem->addr, mem->size);
1211 	}
1212 
1213 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1214 		verify_special_mem_areas(mem_map, phys_sdp_mem_begin,
1215 					 phys_sdp_mem_end, "SDP");
1216 
1217 	add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE);
1218 	add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE);
1219 }
1220 
1221 static void assign_mem_granularity(struct memory_map *mem_map)
1222 {
1223 	size_t n = 0;
1224 
1225 	/*
1226 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1227 	 * SMALL_PAGE_SIZE.
1228 	 */
1229 	for  (n = 0; n < mem_map->count; n++) {
1230 		paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size;
1231 
1232 		if (mask & SMALL_PAGE_MASK)
1233 			panic("Impossible memory alignment");
1234 
1235 		if (map_is_tee_ram(mem_map->map + n))
1236 			mem_map->map[n].region_size = SMALL_PAGE_SIZE;
1237 		else
1238 			mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE;
1239 	}
1240 }
1241 
1242 static bool place_tee_ram_at_top(paddr_t paddr)
1243 {
1244 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1245 }
1246 
1247 /*
1248  * MMU arch driver shall override this function if it helps
1249  * optimizing the memory footprint of the address translation tables.
1250  */
1251 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1252 {
1253 	return place_tee_ram_at_top(paddr);
1254 }
1255 
1256 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map,
1257 			      bool tee_ram_at_top)
1258 {
1259 	struct tee_mmap_region *map = NULL;
1260 	vaddr_t va = 0;
1261 	bool va_is_secure = true;
1262 	size_t n = 0;
1263 
1264 	/*
1265 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1266 	 * 0 is by design an invalid va, so return false directly.
1267 	 */
1268 	if (!tee_ram_va)
1269 		return false;
1270 
1271 	/* Clear eventual previous assignments */
1272 	for (n = 0; n < mem_map->count; n++)
1273 		mem_map->map[n].va = 0;
1274 
1275 	/*
1276 	 * TEE RAM regions are always aligned with region_size.
1277 	 *
1278 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1279 	 * since it handles virtual memory which covers the part of the ELF
1280 	 * that cannot fit directly into memory.
1281 	 */
1282 	va = tee_ram_va + tee_ram_initial_offs;
1283 	for (n = 0; n < mem_map->count; n++) {
1284 		map = mem_map->map + n;
1285 		if (map_is_tee_ram(map) ||
1286 		    map->type == MEM_AREA_PAGER_VASPACE) {
1287 			assert(!(va & (map->region_size - 1)));
1288 			assert(!(map->size & (map->region_size - 1)));
1289 			map->va = va;
1290 			if (ADD_OVERFLOW(va, map->size, &va))
1291 				return false;
1292 			if (va >= BIT64(core_mmu_get_va_width()))
1293 				return false;
1294 		}
1295 	}
1296 
1297 	if (tee_ram_at_top) {
1298 		/*
1299 		 * Map non-tee ram regions at addresses lower than the tee
1300 		 * ram region.
1301 		 */
1302 		va = tee_ram_va;
1303 		for (n = 0; n < mem_map->count; n++) {
1304 			map = mem_map->map + n;
1305 			map->attr = core_mmu_type_to_attr(map->type);
1306 			if (map->va)
1307 				continue;
1308 
1309 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1310 			    va_is_secure != map_is_secure(map)) {
1311 				va_is_secure = !va_is_secure;
1312 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1313 			}
1314 
1315 			if (SUB_OVERFLOW(va, map->size, &va))
1316 				return false;
1317 			va = ROUNDDOWN2(va, map->region_size);
1318 			/*
1319 			 * Make sure that va is aligned with pa for
1320 			 * efficient pgdir mapping. Basically pa &
1321 			 * pgdir_mask should be == va & pgdir_mask
1322 			 */
1323 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1324 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1325 					return false;
1326 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1327 			}
1328 			map->va = va;
1329 		}
1330 	} else {
1331 		/*
1332 		 * Map non-tee ram regions at addresses higher than the tee
1333 		 * ram region.
1334 		 */
1335 		for (n = 0; n < mem_map->count; n++) {
1336 			map = mem_map->map + n;
1337 			map->attr = core_mmu_type_to_attr(map->type);
1338 			if (map->va)
1339 				continue;
1340 
1341 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1342 			    va_is_secure != map_is_secure(map)) {
1343 				va_is_secure = !va_is_secure;
1344 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1345 						     &va))
1346 					return false;
1347 			}
1348 
1349 			if (ROUNDUP2_OVERFLOW(va, map->region_size, &va))
1350 				return false;
1351 			/*
1352 			 * Make sure that va is aligned with pa for
1353 			 * efficient pgdir mapping. Basically pa &
1354 			 * pgdir_mask should be == va & pgdir_mask
1355 			 */
1356 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1357 				vaddr_t offs = (map->pa - va) &
1358 					       CORE_MMU_PGDIR_MASK;
1359 
1360 				if (ADD_OVERFLOW(va, offs, &va))
1361 					return false;
1362 			}
1363 
1364 			map->va = va;
1365 			if (ADD_OVERFLOW(va, map->size, &va))
1366 				return false;
1367 			if (va >= BIT64(core_mmu_get_va_width()))
1368 				return false;
1369 		}
1370 	}
1371 
1372 	return true;
1373 }
1374 
1375 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map)
1376 {
1377 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1378 
1379 	/*
1380 	 * Check that we're not overlapping with the user VA range.
1381 	 */
1382 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1383 		/*
1384 		 * User VA range is supposed to be defined after these
1385 		 * mappings have been established.
1386 		 */
1387 		assert(!core_mmu_user_va_range_is_defined());
1388 	} else {
1389 		vaddr_t user_va_base = 0;
1390 		size_t user_va_size = 0;
1391 
1392 		assert(core_mmu_user_va_range_is_defined());
1393 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1394 		if (tee_ram_va < (user_va_base + user_va_size))
1395 			return false;
1396 	}
1397 
1398 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1399 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1400 
1401 		/* Try whole mapping covered by a single base xlat entry */
1402 		if (prefered_dir != tee_ram_at_top &&
1403 		    assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir))
1404 			return true;
1405 	}
1406 
1407 	return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top);
1408 }
1409 
1410 static int cmp_init_mem_map(const void *a, const void *b)
1411 {
1412 	const struct tee_mmap_region *mm_a = a;
1413 	const struct tee_mmap_region *mm_b = b;
1414 	int rc = 0;
1415 
1416 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1417 	if (!rc)
1418 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1419 	/*
1420 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1421 	 * the same level2 table. Hence sort secure mapping from non-secure
1422 	 * mapping.
1423 	 */
1424 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1425 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1426 
1427 	return rc;
1428 }
1429 
1430 static bool mem_map_add_id_map(struct memory_map *mem_map,
1431 			       vaddr_t id_map_start, vaddr_t id_map_end)
1432 {
1433 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1434 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1435 	size_t len = end - start;
1436 	size_t n = 0;
1437 
1438 
1439 	for (n = 0; n < mem_map->count; n++)
1440 		if (core_is_buffer_intersect(mem_map->map[n].va,
1441 					     mem_map->map[n].size, start, len))
1442 			return false;
1443 
1444 	grow_mem_map(mem_map);
1445 	mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){
1446 		.type = MEM_AREA_IDENTITY_MAP_RX,
1447 		/*
1448 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1449 		 * translation table, at the increased risk of clashes with
1450 		 * the rest of the memory map.
1451 		 */
1452 		.region_size = SMALL_PAGE_SIZE,
1453 		.pa = start,
1454 		.va = start,
1455 		.size = len,
1456 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1457 	};
1458 
1459 	return true;
1460 }
1461 
1462 static struct memory_map *init_mem_map(struct memory_map *mem_map,
1463 				       unsigned long seed,
1464 				       unsigned long *ret_offs)
1465 {
1466 	/*
1467 	 * @id_map_start and @id_map_end describes a physical memory range
1468 	 * that must be mapped Read-Only eXecutable at identical virtual
1469 	 * addresses.
1470 	 */
1471 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1472 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1473 	vaddr_t start_addr = secure_only[0].paddr;
1474 	unsigned long offs = 0;
1475 
1476 	collect_mem_ranges(mem_map);
1477 	assign_mem_granularity(mem_map);
1478 
1479 	/*
1480 	 * To ease mapping and lower use of xlat tables, sort mapping
1481 	 * description moving small-page regions after the pgdir regions.
1482 	 */
1483 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1484 	      cmp_init_mem_map);
1485 
1486 	if (IS_ENABLED(CFG_WITH_PAGER))
1487 		add_pager_vaspace(mem_map);
1488 
1489 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1490 		vaddr_t base_addr = start_addr + seed;
1491 		const unsigned int va_width = core_mmu_get_va_width();
1492 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1493 						   SMALL_PAGE_SHIFT);
1494 		vaddr_t ba = base_addr;
1495 		size_t n = 0;
1496 
1497 		for (n = 0; n < 3; n++) {
1498 			if (n)
1499 				ba = base_addr ^ BIT64(va_width - n);
1500 			ba &= va_mask;
1501 			if (assign_mem_va(ba, mem_map) &&
1502 			    mem_map_add_id_map(mem_map, id_map_start,
1503 					       id_map_end)) {
1504 				offs = ba - start_addr;
1505 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1506 				     ba, offs);
1507 				goto out;
1508 			} else {
1509 				DMSG("Failed to map core at %#"PRIxVA, ba);
1510 			}
1511 		}
1512 		EMSG("Failed to map core with seed %#lx", seed);
1513 	}
1514 
1515 	if (!assign_mem_va(start_addr, mem_map))
1516 		panic();
1517 
1518 out:
1519 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1520 	      cmp_mmap_by_lower_va);
1521 
1522 	dump_mmap_table(mem_map);
1523 
1524 	*ret_offs = offs;
1525 	return mem_map;
1526 }
1527 
1528 static void check_mem_map(struct memory_map *mem_map)
1529 {
1530 	struct tee_mmap_region *m = NULL;
1531 	size_t n = 0;
1532 
1533 	for (n = 0; n < mem_map->count; n++) {
1534 		m = mem_map->map + n;
1535 		switch (m->type) {
1536 		case MEM_AREA_TEE_RAM:
1537 		case MEM_AREA_TEE_RAM_RX:
1538 		case MEM_AREA_TEE_RAM_RO:
1539 		case MEM_AREA_TEE_RAM_RW:
1540 		case MEM_AREA_INIT_RAM_RX:
1541 		case MEM_AREA_INIT_RAM_RO:
1542 		case MEM_AREA_NEX_RAM_RW:
1543 		case MEM_AREA_NEX_RAM_RO:
1544 		case MEM_AREA_IDENTITY_MAP_RX:
1545 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1546 				panic("TEE_RAM can't fit in secure_only");
1547 			break;
1548 		case MEM_AREA_SEC_RAM_OVERALL:
1549 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1550 				panic("SEC_RAM_OVERALL can't fit in secure_only");
1551 			break;
1552 		case MEM_AREA_NSEC_SHM:
1553 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1554 				panic("NS_SHM can't fit in nsec_shared");
1555 			break;
1556 		case MEM_AREA_TEE_COHERENT:
1557 		case MEM_AREA_TEE_ASAN:
1558 		case MEM_AREA_IO_SEC:
1559 		case MEM_AREA_IO_NSEC:
1560 		case MEM_AREA_EXT_DT:
1561 		case MEM_AREA_MANIFEST_DT:
1562 		case MEM_AREA_TRANSFER_LIST:
1563 		case MEM_AREA_RAM_SEC:
1564 		case MEM_AREA_RAM_NSEC:
1565 		case MEM_AREA_ROM_SEC:
1566 		case MEM_AREA_RES_VASPACE:
1567 		case MEM_AREA_SHM_VASPACE:
1568 		case MEM_AREA_PAGER_VASPACE:
1569 			break;
1570 		default:
1571 			EMSG("Uhandled memtype %d", m->type);
1572 			panic();
1573 		}
1574 	}
1575 }
1576 
1577 /*
1578  * core_init_mmu_map() - init tee core default memory mapping
1579  *
1580  * This routine sets the static default TEE core mapping. If @seed is > 0
1581  * and configured with CFG_CORE_ASLR it will map tee core at a location
1582  * based on the seed and return the offset from the link address.
1583  *
1584  * If an error happened: core_init_mmu_map is expected to panic.
1585  *
1586  * Note: this function is weak just to make it possible to exclude it from
1587  * the unpaged area.
1588  */
1589 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1590 {
1591 #ifndef CFG_NS_VIRTUALIZATION
1592 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1593 #else
1594 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1595 				  SMALL_PAGE_SIZE);
1596 #endif
1597 #ifdef CFG_DYN_CONFIG
1598 	vaddr_t len = ROUNDUP(VCORE_FREE_END_PA, SMALL_PAGE_SIZE) - start;
1599 #else
1600 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1601 #endif
1602 	struct tee_mmap_region tmp_mmap_region = { };
1603 	struct memory_map mem_map = { };
1604 	unsigned long offs = 0;
1605 
1606 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1607 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1608 		panic("OP-TEE load address is not page aligned");
1609 
1610 	check_sec_nsec_mem_config();
1611 
1612 	if (IS_ENABLED(CFG_BOOT_MEM)) {
1613 		mem_map.alloc_count = CFG_MMAP_REGIONS;
1614 		mem_map.map = boot_mem_alloc_tmp(mem_map.alloc_count *
1615 							sizeof(*mem_map.map),
1616 						 alignof(*mem_map.map));
1617 		memory_map_realloc_func = boot_mem_realloc_memory_map;
1618 	} else {
1619 		mem_map = static_memory_map;
1620 	}
1621 
1622 	static_memory_map = (struct memory_map){
1623 		.map = &tmp_mmap_region,
1624 		.alloc_count = 1,
1625 		.count = 1,
1626 	};
1627 	/*
1628 	 * Add a entry covering the translation tables which will be
1629 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1630 	 */
1631 	static_memory_map.map[0] = (struct tee_mmap_region){
1632 		.type = MEM_AREA_TEE_RAM,
1633 		.region_size = SMALL_PAGE_SIZE,
1634 		.pa = start,
1635 		.va = start,
1636 		.size = len,
1637 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1638 	};
1639 
1640 	init_mem_map(&mem_map, seed, &offs);
1641 
1642 	check_mem_map(&mem_map);
1643 	core_init_mmu(&mem_map);
1644 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1645 	core_init_mmu_regs(cfg);
1646 	cfg->map_offset = offs;
1647 	static_memory_map = mem_map;
1648 	boot_mem_add_reloc(&static_memory_map.map);
1649 }
1650 
1651 void core_mmu_save_mem_map(void)
1652 {
1653 	if (IS_ENABLED(CFG_BOOT_MEM)) {
1654 		size_t alloc_count = static_memory_map.count + 5;
1655 		size_t elem_sz = sizeof(*static_memory_map.map);
1656 		void *p = NULL;
1657 
1658 		p = nex_calloc(alloc_count, elem_sz);
1659 		if (!p)
1660 			panic();
1661 		memcpy(p, static_memory_map.map,
1662 		       static_memory_map.count * elem_sz);
1663 		static_memory_map.map = p;
1664 		static_memory_map.alloc_count = alloc_count;
1665 		memory_map_realloc_func = heap_realloc_memory_map;
1666 	}
1667 }
1668 
1669 bool core_mmu_mattr_is_ok(uint32_t mattr)
1670 {
1671 	/*
1672 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1673 	 * core_mmu_v7.c:mattr_to_texcb
1674 	 */
1675 
1676 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1677 	case TEE_MATTR_MEM_TYPE_DEV:
1678 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1679 	case TEE_MATTR_MEM_TYPE_CACHED:
1680 	case TEE_MATTR_MEM_TYPE_TAGGED:
1681 		return true;
1682 	default:
1683 		return false;
1684 	}
1685 }
1686 
1687 /*
1688  * test attributes of target physical buffer
1689  *
1690  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1691  *
1692  */
1693 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1694 {
1695 	struct tee_mmap_region *map;
1696 
1697 	/* Empty buffers complies with anything */
1698 	if (len == 0)
1699 		return true;
1700 
1701 	switch (attr) {
1702 	case CORE_MEM_SEC:
1703 		return pbuf_is_inside(secure_only, pbuf, len);
1704 	case CORE_MEM_NON_SEC:
1705 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1706 			pbuf_is_nsec_ddr(pbuf, len);
1707 	case CORE_MEM_TEE_RAM:
1708 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1709 							TEE_RAM_PH_SIZE);
1710 #ifdef CFG_CORE_RESERVED_SHM
1711 	case CORE_MEM_NSEC_SHM:
1712 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1713 							TEE_SHMEM_SIZE);
1714 #endif
1715 	case CORE_MEM_SDP_MEM:
1716 		return pbuf_is_sdp_mem(pbuf, len);
1717 	case CORE_MEM_CACHED:
1718 		map = find_map_by_pa(pbuf);
1719 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1720 			return false;
1721 		return mattr_is_cached(map->attr);
1722 	default:
1723 		return false;
1724 	}
1725 }
1726 
1727 /* test attributes of target virtual buffer (in core mapping) */
1728 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1729 {
1730 	paddr_t p;
1731 
1732 	/* Empty buffers complies with anything */
1733 	if (len == 0)
1734 		return true;
1735 
1736 	p = virt_to_phys((void *)vbuf);
1737 	if (!p)
1738 		return false;
1739 
1740 	return core_pbuf_is(attr, p, len);
1741 }
1742 
1743 /* core_va2pa - teecore exported service */
1744 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1745 {
1746 	struct tee_mmap_region *map;
1747 
1748 	map = find_map_by_va(va);
1749 	if (!va_is_in_map(map, (vaddr_t)va))
1750 		return -1;
1751 
1752 	/*
1753 	 * We can calculate PA for static map. Virtual address ranges
1754 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1755 	 * together with an invalid null physical address.
1756 	 */
1757 	if (map->pa)
1758 		*pa = map->pa + (vaddr_t)va  - map->va;
1759 	else
1760 		*pa = 0;
1761 
1762 	return 0;
1763 }
1764 
1765 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1766 {
1767 	if (!pa_is_in_map(map, pa, len))
1768 		return NULL;
1769 
1770 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1771 }
1772 
1773 /*
1774  * teecore gets some memory area definitions
1775  */
1776 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1777 			      vaddr_t *e)
1778 {
1779 	struct tee_mmap_region *map = find_map_by_type(type);
1780 
1781 	if (map) {
1782 		*s = map->va;
1783 		*e = map->va + map->size;
1784 	} else {
1785 		*s = 0;
1786 		*e = 0;
1787 	}
1788 }
1789 
1790 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1791 {
1792 	struct tee_mmap_region *map = find_map_by_pa(pa);
1793 
1794 	if (!map)
1795 		return MEM_AREA_MAXTYPE;
1796 	return map->type;
1797 }
1798 
1799 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1800 			paddr_t pa, uint32_t attr)
1801 {
1802 	assert(idx < tbl_info->num_entries);
1803 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1804 				     idx, pa, attr);
1805 }
1806 
1807 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1808 			paddr_t *pa, uint32_t *attr)
1809 {
1810 	assert(idx < tbl_info->num_entries);
1811 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1812 				     idx, pa, attr);
1813 }
1814 
1815 static void clear_region(struct core_mmu_table_info *tbl_info,
1816 			 struct tee_mmap_region *region)
1817 {
1818 	unsigned int end = 0;
1819 	unsigned int idx = 0;
1820 
1821 	/* va, len and pa should be block aligned */
1822 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1823 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1824 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1825 
1826 	idx = core_mmu_va2idx(tbl_info, region->va);
1827 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1828 
1829 	while (idx < end) {
1830 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1831 		idx++;
1832 	}
1833 }
1834 
1835 static void set_region(struct core_mmu_table_info *tbl_info,
1836 		       struct tee_mmap_region *region)
1837 {
1838 	unsigned int end;
1839 	unsigned int idx;
1840 	paddr_t pa;
1841 
1842 	/* va, len and pa should be block aligned */
1843 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1844 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1845 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1846 
1847 	idx = core_mmu_va2idx(tbl_info, region->va);
1848 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1849 	pa = region->pa;
1850 
1851 	while (idx < end) {
1852 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1853 		idx++;
1854 		pa += BIT64(tbl_info->shift);
1855 	}
1856 }
1857 
1858 static void set_pg_region(struct core_mmu_table_info *dir_info,
1859 			  struct vm_region *region, struct pgt **pgt,
1860 			  struct core_mmu_table_info *pg_info)
1861 {
1862 	struct tee_mmap_region r = {
1863 		.va = region->va,
1864 		.size = region->size,
1865 		.attr = region->attr,
1866 	};
1867 	vaddr_t end = r.va + r.size;
1868 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1869 
1870 	while (r.va < end) {
1871 		if (!pg_info->table ||
1872 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1873 			/*
1874 			 * We're assigning a new translation table.
1875 			 */
1876 			unsigned int idx;
1877 
1878 			/* Virtual addresses must grow */
1879 			assert(r.va > pg_info->va_base);
1880 
1881 			idx = core_mmu_va2idx(dir_info, r.va);
1882 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1883 
1884 			/*
1885 			 * Advance pgt to va_base, note that we may need to
1886 			 * skip multiple page tables if there are large
1887 			 * holes in the vm map.
1888 			 */
1889 			while ((*pgt)->vabase < pg_info->va_base) {
1890 				*pgt = SLIST_NEXT(*pgt, link);
1891 				/* We should have allocated enough */
1892 				assert(*pgt);
1893 			}
1894 			assert((*pgt)->vabase == pg_info->va_base);
1895 			pg_info->table = (*pgt)->tbl;
1896 
1897 			core_mmu_set_entry(dir_info, idx,
1898 					   virt_to_phys(pg_info->table),
1899 					   pgt_attr);
1900 		}
1901 
1902 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1903 			     end - r.va);
1904 
1905 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1906 			size_t granule = BIT(pg_info->shift);
1907 			size_t offset = r.va - region->va + region->offset;
1908 
1909 			r.size = MIN(r.size,
1910 				     mobj_get_phys_granule(region->mobj));
1911 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1912 
1913 			if (mobj_get_pa(region->mobj, offset, granule,
1914 					&r.pa) != TEE_SUCCESS)
1915 				panic("Failed to get PA of unpaged mobj");
1916 			set_region(pg_info, &r);
1917 		}
1918 		r.va += r.size;
1919 	}
1920 }
1921 
1922 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1923 			     size_t size_left, paddr_t block_size,
1924 			     struct tee_mmap_region *mm)
1925 {
1926 	/* VA and PA are aligned to block size at current level */
1927 	if ((vaddr | paddr) & (block_size - 1))
1928 		return false;
1929 
1930 	/* Remainder fits into block at current level */
1931 	if (size_left < block_size)
1932 		return false;
1933 
1934 	/*
1935 	 * The required block size of the region is compatible with the
1936 	 * block size of the current level.
1937 	 */
1938 	if (mm->region_size < block_size)
1939 		return false;
1940 
1941 #ifdef CFG_WITH_PAGER
1942 	/*
1943 	 * If pager is enabled, we need to map TEE RAM and the whole pager
1944 	 * regions with small pages only
1945 	 */
1946 	if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) &&
1947 	    block_size != SMALL_PAGE_SIZE)
1948 		return false;
1949 #endif
1950 
1951 	return true;
1952 }
1953 
1954 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1955 {
1956 	struct core_mmu_table_info tbl_info;
1957 	unsigned int idx;
1958 	vaddr_t vaddr = mm->va;
1959 	paddr_t paddr = mm->pa;
1960 	ssize_t size_left = mm->size;
1961 	unsigned int level;
1962 	bool table_found;
1963 	uint32_t old_attr;
1964 
1965 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1966 
1967 	while (size_left > 0) {
1968 		level = CORE_MMU_BASE_TABLE_LEVEL;
1969 
1970 		while (true) {
1971 			paddr_t block_size = 0;
1972 
1973 			assert(core_mmu_level_in_range(level));
1974 
1975 			table_found = core_mmu_find_table(prtn, vaddr, level,
1976 							  &tbl_info);
1977 			if (!table_found)
1978 				panic("can't find table for mapping");
1979 
1980 			block_size = BIT64(tbl_info.shift);
1981 
1982 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1983 			if (!can_map_at_level(paddr, vaddr, size_left,
1984 					      block_size, mm)) {
1985 				bool secure = mm->attr & TEE_MATTR_SECURE;
1986 
1987 				/*
1988 				 * This part of the region can't be mapped at
1989 				 * this level. Need to go deeper.
1990 				 */
1991 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1992 								     idx,
1993 								     secure))
1994 					panic("Can't divide MMU entry");
1995 				level = tbl_info.next_level;
1996 				continue;
1997 			}
1998 
1999 			/* We can map part of the region at current level */
2000 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2001 			if (old_attr)
2002 				panic("Page is already mapped");
2003 
2004 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
2005 			paddr += block_size;
2006 			vaddr += block_size;
2007 			size_left -= block_size;
2008 
2009 			break;
2010 		}
2011 	}
2012 }
2013 
2014 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
2015 			      enum teecore_memtypes memtype)
2016 {
2017 	TEE_Result ret;
2018 	struct core_mmu_table_info tbl_info;
2019 	struct tee_mmap_region *mm;
2020 	unsigned int idx;
2021 	uint32_t old_attr;
2022 	uint32_t exceptions;
2023 	vaddr_t vaddr = vstart;
2024 	size_t i;
2025 	bool secure;
2026 
2027 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
2028 
2029 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
2030 
2031 	if (vaddr & SMALL_PAGE_MASK)
2032 		return TEE_ERROR_BAD_PARAMETERS;
2033 
2034 	exceptions = mmu_lock();
2035 
2036 	mm = find_map_by_va((void *)vaddr);
2037 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
2038 		panic("VA does not belong to any known mm region");
2039 
2040 	if (!core_mmu_is_dynamic_vaspace(mm))
2041 		panic("Trying to map into static region");
2042 
2043 	for (i = 0; i < num_pages; i++) {
2044 		if (pages[i] & SMALL_PAGE_MASK) {
2045 			ret = TEE_ERROR_BAD_PARAMETERS;
2046 			goto err;
2047 		}
2048 
2049 		while (true) {
2050 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
2051 						 &tbl_info))
2052 				panic("Can't find pagetable for vaddr ");
2053 
2054 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2055 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
2056 				break;
2057 
2058 			/* This is supertable. Need to divide it. */
2059 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
2060 							     secure))
2061 				panic("Failed to spread pgdir on small tables");
2062 		}
2063 
2064 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2065 		if (old_attr)
2066 			panic("Page is already mapped");
2067 
2068 		core_mmu_set_entry(&tbl_info, idx, pages[i],
2069 				   core_mmu_type_to_attr(memtype));
2070 		vaddr += SMALL_PAGE_SIZE;
2071 	}
2072 
2073 	/*
2074 	 * Make sure all the changes to translation tables are visible
2075 	 * before returning. TLB doesn't need to be invalidated as we are
2076 	 * guaranteed that there's no valid mapping in this range.
2077 	 */
2078 	core_mmu_table_write_barrier();
2079 	mmu_unlock(exceptions);
2080 
2081 	return TEE_SUCCESS;
2082 err:
2083 	mmu_unlock(exceptions);
2084 
2085 	if (i)
2086 		core_mmu_unmap_pages(vstart, i);
2087 
2088 	return ret;
2089 }
2090 
2091 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
2092 					 size_t num_pages,
2093 					 enum teecore_memtypes memtype)
2094 {
2095 	struct core_mmu_table_info tbl_info = { };
2096 	struct tee_mmap_region *mm = NULL;
2097 	unsigned int idx = 0;
2098 	uint32_t old_attr = 0;
2099 	uint32_t exceptions = 0;
2100 	vaddr_t vaddr = vstart;
2101 	paddr_t paddr = pstart;
2102 	size_t i = 0;
2103 	bool secure = false;
2104 
2105 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
2106 
2107 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
2108 
2109 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
2110 		return TEE_ERROR_BAD_PARAMETERS;
2111 
2112 	exceptions = mmu_lock();
2113 
2114 	mm = find_map_by_va((void *)vaddr);
2115 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
2116 		panic("VA does not belong to any known mm region");
2117 
2118 	if (!core_mmu_is_dynamic_vaspace(mm))
2119 		panic("Trying to map into static region");
2120 
2121 	for (i = 0; i < num_pages; i++) {
2122 		while (true) {
2123 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
2124 						 &tbl_info))
2125 				panic("Can't find pagetable for vaddr ");
2126 
2127 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2128 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
2129 				break;
2130 
2131 			/* This is supertable. Need to divide it. */
2132 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
2133 							     secure))
2134 				panic("Failed to spread pgdir on small tables");
2135 		}
2136 
2137 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2138 		if (old_attr)
2139 			panic("Page is already mapped");
2140 
2141 		core_mmu_set_entry(&tbl_info, idx, paddr,
2142 				   core_mmu_type_to_attr(memtype));
2143 		paddr += SMALL_PAGE_SIZE;
2144 		vaddr += SMALL_PAGE_SIZE;
2145 	}
2146 
2147 	/*
2148 	 * Make sure all the changes to translation tables are visible
2149 	 * before returning. TLB doesn't need to be invalidated as we are
2150 	 * guaranteed that there's no valid mapping in this range.
2151 	 */
2152 	core_mmu_table_write_barrier();
2153 	mmu_unlock(exceptions);
2154 
2155 	return TEE_SUCCESS;
2156 }
2157 
2158 static bool mem_range_is_in_vcore_free(vaddr_t vstart, size_t num_pages)
2159 {
2160 	return core_is_buffer_inside(vstart, num_pages * SMALL_PAGE_SIZE,
2161 				     VCORE_FREE_PA, VCORE_FREE_SZ);
2162 }
2163 
2164 static void maybe_remove_from_mem_map(vaddr_t vstart, size_t num_pages)
2165 {
2166 	struct memory_map *mem_map = NULL;
2167 	struct tee_mmap_region *mm = NULL;
2168 	size_t idx = 0;
2169 	vaddr_t va = 0;
2170 
2171 	mm = find_map_by_va((void *)vstart);
2172 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
2173 		panic("VA does not belong to any known mm region");
2174 
2175 	if (core_mmu_is_dynamic_vaspace(mm))
2176 		return;
2177 
2178 	if (!mem_range_is_in_vcore_free(vstart, num_pages))
2179 		panic("Trying to unmap static region");
2180 
2181 	/*
2182 	 * We're going to remove a memory from the VCORE_FREE memory range.
2183 	 * Depending where the range is we may need to remove the matching
2184 	 * mm, peal of a bit from the start or end of the mm, or split it
2185 	 * into two with a whole in the middle.
2186 	 */
2187 
2188 	va = ROUNDDOWN(vstart, SMALL_PAGE_SIZE);
2189 	assert(mm->region_size == SMALL_PAGE_SIZE);
2190 
2191 	if (va == mm->va && mm->size == num_pages * SMALL_PAGE_SIZE) {
2192 		mem_map = get_memory_map();
2193 		idx = mm - mem_map->map;
2194 		assert(idx < mem_map->count);
2195 
2196 		rem_array_elem(mem_map->map, mem_map->count,
2197 			       sizeof(*mem_map->map), idx);
2198 		mem_map->count--;
2199 	} else if (va == mm->va) {
2200 		mm->va += num_pages * SMALL_PAGE_SIZE;
2201 		mm->pa += num_pages * SMALL_PAGE_SIZE;
2202 		mm->size -= num_pages * SMALL_PAGE_SIZE;
2203 	} else if (va + num_pages * SMALL_PAGE_SIZE == mm->va + mm->size) {
2204 		mm->size -= num_pages * SMALL_PAGE_SIZE;
2205 	} else {
2206 		struct tee_mmap_region m = *mm;
2207 
2208 		mem_map = get_memory_map();
2209 		idx = mm - mem_map->map;
2210 		assert(idx < mem_map->count);
2211 
2212 		mm->size = va - mm->va;
2213 		m.va += mm->size + num_pages * SMALL_PAGE_SIZE;
2214 		m.pa += mm->size + num_pages * SMALL_PAGE_SIZE;
2215 		m.size -= mm->size + num_pages * SMALL_PAGE_SIZE;
2216 		grow_mem_map(mem_map);
2217 		ins_array_elem(mem_map->map, mem_map->count,
2218 			       sizeof(*mem_map->map), idx + 1, &m);
2219 	}
2220 }
2221 
2222 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
2223 {
2224 	struct core_mmu_table_info tbl_info;
2225 	size_t i;
2226 	unsigned int idx;
2227 	uint32_t exceptions;
2228 
2229 	exceptions = mmu_lock();
2230 
2231 	maybe_remove_from_mem_map(vstart, num_pages);
2232 
2233 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
2234 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
2235 			panic("Can't find pagetable");
2236 
2237 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
2238 			panic("Invalid pagetable level");
2239 
2240 		idx = core_mmu_va2idx(&tbl_info, vstart);
2241 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
2242 	}
2243 	tlbi_all();
2244 
2245 	mmu_unlock(exceptions);
2246 }
2247 
2248 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
2249 				struct user_mode_ctx *uctx)
2250 {
2251 	struct core_mmu_table_info pg_info = { };
2252 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
2253 	struct pgt *pgt = NULL;
2254 	struct pgt *p = NULL;
2255 	struct vm_region *r = NULL;
2256 
2257 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
2258 		return; /* Nothing to map */
2259 
2260 	/*
2261 	 * Allocate all page tables in advance.
2262 	 */
2263 	pgt_get_all(uctx);
2264 	pgt = SLIST_FIRST(pgt_cache);
2265 
2266 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2267 
2268 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2269 		set_pg_region(dir_info, r, &pgt, &pg_info);
2270 	/* Record that the translation tables now are populated. */
2271 	SLIST_FOREACH(p, pgt_cache, link) {
2272 		p->populated = true;
2273 		if (p == pgt)
2274 			break;
2275 	}
2276 	assert(p == pgt);
2277 }
2278 
2279 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2280 				   size_t len)
2281 {
2282 	struct core_mmu_table_info tbl_info = { };
2283 	struct tee_mmap_region *res_map = NULL;
2284 	struct tee_mmap_region *map = NULL;
2285 	paddr_t pa = virt_to_phys(addr);
2286 	size_t granule = 0;
2287 	ptrdiff_t i = 0;
2288 	paddr_t p = 0;
2289 	size_t l = 0;
2290 
2291 	map = find_map_by_type_and_pa(type, pa, len);
2292 	if (!map)
2293 		return TEE_ERROR_GENERIC;
2294 
2295 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2296 	if (!res_map)
2297 		return TEE_ERROR_GENERIC;
2298 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2299 		return TEE_ERROR_GENERIC;
2300 	granule = BIT(tbl_info.shift);
2301 
2302 	if (map < static_memory_map.map ||
2303 	    map >= static_memory_map.map + static_memory_map.count)
2304 		return TEE_ERROR_GENERIC;
2305 	i = map - static_memory_map.map;
2306 
2307 	/* Check that we have a full match */
2308 	p = ROUNDDOWN2(pa, granule);
2309 	l = ROUNDUP2(len + pa - p, granule);
2310 	if (map->pa != p || map->size != l)
2311 		return TEE_ERROR_GENERIC;
2312 
2313 	clear_region(&tbl_info, map);
2314 	tlbi_all();
2315 
2316 	/* If possible remove the va range from res_map */
2317 	if (res_map->va - map->size == map->va) {
2318 		res_map->va -= map->size;
2319 		res_map->size += map->size;
2320 	}
2321 
2322 	/* Remove the entry. */
2323 	rem_array_elem(static_memory_map.map, static_memory_map.count,
2324 		       sizeof(*static_memory_map.map), i);
2325 	static_memory_map.count--;
2326 
2327 	return TEE_SUCCESS;
2328 }
2329 
2330 struct tee_mmap_region *
2331 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2332 {
2333 	struct memory_map *mem_map = get_memory_map();
2334 	struct tee_mmap_region *map_found = NULL;
2335 	size_t n = 0;
2336 
2337 	if (!len)
2338 		return NULL;
2339 
2340 	for (n = 0; n < mem_map->count; n++) {
2341 		if (mem_map->map[n].type != type)
2342 			continue;
2343 
2344 		if (map_found)
2345 			return NULL;
2346 
2347 		map_found = mem_map->map + n;
2348 	}
2349 
2350 	if (!map_found || map_found->size < len)
2351 		return NULL;
2352 
2353 	return map_found;
2354 }
2355 
2356 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2357 {
2358 	struct memory_map *mem_map = &static_memory_map;
2359 	struct core_mmu_table_info tbl_info = { };
2360 	struct tee_mmap_region *map = NULL;
2361 	size_t granule = 0;
2362 	paddr_t p = 0;
2363 	size_t l = 0;
2364 
2365 	if (!len)
2366 		return NULL;
2367 
2368 	if (!core_mmu_check_end_pa(addr, len))
2369 		return NULL;
2370 
2371 	/* Check if the memory is already mapped */
2372 	map = find_map_by_type_and_pa(type, addr, len);
2373 	if (map && pbuf_inside_map_area(addr, len, map))
2374 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2375 
2376 	/* Find the reserved va space used for late mappings */
2377 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2378 	if (!map)
2379 		return NULL;
2380 
2381 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2382 		return NULL;
2383 
2384 	granule = BIT64(tbl_info.shift);
2385 	p = ROUNDDOWN2(addr, granule);
2386 	l = ROUNDUP2(len + addr - p, granule);
2387 
2388 	/* Ban overflowing virtual addresses */
2389 	if (map->size < l)
2390 		return NULL;
2391 
2392 	/*
2393 	 * Something is wrong, we can't fit the va range into the selected
2394 	 * table. The reserved va range is possibly missaligned with
2395 	 * granule.
2396 	 */
2397 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2398 		return NULL;
2399 
2400 	if (static_memory_map.count >= static_memory_map.alloc_count)
2401 		return NULL;
2402 
2403 	mem_map->map[mem_map->count] = (struct tee_mmap_region){
2404 		.va = map->va,
2405 		.size = l,
2406 		.type = type,
2407 		.region_size = granule,
2408 		.attr = core_mmu_type_to_attr(type),
2409 		.pa = p,
2410 	};
2411 	map->va += l;
2412 	map->size -= l;
2413 	map = mem_map->map + mem_map->count;
2414 	mem_map->count++;
2415 
2416 	set_region(&tbl_info, map);
2417 
2418 	/* Make sure the new entry is visible before continuing. */
2419 	core_mmu_table_write_barrier();
2420 
2421 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2422 }
2423 
2424 #ifdef CFG_WITH_PAGER
2425 static vaddr_t get_linear_map_end_va(void)
2426 {
2427 	/* this is synced with the generic linker file kern.ld.S */
2428 	return (vaddr_t)__heap2_end;
2429 }
2430 
2431 static paddr_t get_linear_map_end_pa(void)
2432 {
2433 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2434 }
2435 #endif
2436 
2437 #if defined(CFG_TEE_CORE_DEBUG)
2438 static void check_pa_matches_va(void *va, paddr_t pa)
2439 {
2440 	TEE_Result res = TEE_ERROR_GENERIC;
2441 	vaddr_t v = (vaddr_t)va;
2442 	paddr_t p = 0;
2443 	struct core_mmu_table_info ti __maybe_unused = { };
2444 
2445 	if (core_mmu_user_va_range_is_defined()) {
2446 		vaddr_t user_va_base = 0;
2447 		size_t user_va_size = 0;
2448 
2449 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2450 		if (v >= user_va_base &&
2451 		    v <= (user_va_base - 1 + user_va_size)) {
2452 			if (!core_mmu_user_mapping_is_active()) {
2453 				if (pa)
2454 					panic("issue in linear address space");
2455 				return;
2456 			}
2457 
2458 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2459 				       va, &p);
2460 			if (res == TEE_ERROR_NOT_SUPPORTED)
2461 				return;
2462 			if (res == TEE_SUCCESS && pa != p)
2463 				panic("bad pa");
2464 			if (res != TEE_SUCCESS && pa)
2465 				panic("false pa");
2466 			return;
2467 		}
2468 	}
2469 #ifdef CFG_WITH_PAGER
2470 	if (is_unpaged(va)) {
2471 		if (v - boot_mmu_config.map_offset != pa)
2472 			panic("issue in linear address space");
2473 		return;
2474 	}
2475 
2476 	if (tee_pager_get_table_info(v, &ti)) {
2477 		uint32_t a;
2478 
2479 		/*
2480 		 * Lookups in the page table managed by the pager is
2481 		 * dangerous for addresses in the paged area as those pages
2482 		 * changes all the time. But some ranges are safe,
2483 		 * rw-locked areas when the page is populated for instance.
2484 		 */
2485 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2486 		if (a & TEE_MATTR_VALID_BLOCK) {
2487 			paddr_t mask = BIT64(ti.shift) - 1;
2488 
2489 			p |= v & mask;
2490 			if (pa != p)
2491 				panic();
2492 		} else {
2493 			if (pa)
2494 				panic();
2495 		}
2496 		return;
2497 	}
2498 #endif
2499 
2500 	if (!core_va2pa_helper(va, &p)) {
2501 		/* Verfiy only the static mapping (case non null phys addr) */
2502 		if (p && pa != p) {
2503 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2504 			     va, p, pa);
2505 			panic();
2506 		}
2507 	} else {
2508 		if (pa) {
2509 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2510 			panic();
2511 		}
2512 	}
2513 }
2514 #else
2515 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2516 {
2517 }
2518 #endif
2519 
2520 paddr_t virt_to_phys(void *va)
2521 {
2522 	paddr_t pa = 0;
2523 
2524 	if (!arch_va2pa_helper(va, &pa))
2525 		pa = 0;
2526 	check_pa_matches_va(memtag_strip_tag(va), pa);
2527 	return pa;
2528 }
2529 
2530 /*
2531  * Don't use check_va_matches_pa() for RISC-V, as its callee
2532  * arch_va2pa_helper() will call it eventually, this creates
2533  * indirect recursion and can lead to a stack overflow.
2534  * Moreover, if arch_va2pa_helper() returns true, it implies
2535  * the va2pa mapping is matched, no need to check it again.
2536  */
2537 #if defined(CFG_TEE_CORE_DEBUG) && !defined(__riscv)
2538 static void check_va_matches_pa(paddr_t pa, void *va)
2539 {
2540 	paddr_t p = 0;
2541 
2542 	if (!va)
2543 		return;
2544 
2545 	p = virt_to_phys(va);
2546 	if (p != pa) {
2547 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2548 		panic();
2549 	}
2550 }
2551 #else
2552 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2553 {
2554 }
2555 #endif
2556 
2557 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2558 {
2559 	if (!core_mmu_user_mapping_is_active())
2560 		return NULL;
2561 
2562 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2563 }
2564 
2565 #ifdef CFG_WITH_PAGER
2566 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2567 {
2568 	paddr_t end_pa = 0;
2569 
2570 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2571 		return NULL;
2572 
2573 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2574 		if (end_pa > get_linear_map_end_pa())
2575 			return NULL;
2576 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2577 	}
2578 
2579 	return tee_pager_phys_to_virt(pa, len);
2580 }
2581 #else
2582 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2583 {
2584 	struct tee_mmap_region *mmap = NULL;
2585 
2586 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2587 	if (!mmap)
2588 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2589 	if (!mmap)
2590 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2591 	if (!mmap)
2592 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2593 	if (!mmap)
2594 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2595 	if (!mmap)
2596 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2597 	/*
2598 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2599 	 * used with pager and not needed here.
2600 	 */
2601 	return map_pa2va(mmap, pa, len);
2602 }
2603 #endif
2604 
2605 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2606 {
2607 	void *va = NULL;
2608 
2609 	switch (m) {
2610 	case MEM_AREA_TS_VASPACE:
2611 		va = phys_to_virt_ts_vaspace(pa, len);
2612 		break;
2613 	case MEM_AREA_TEE_RAM:
2614 	case MEM_AREA_TEE_RAM_RX:
2615 	case MEM_AREA_TEE_RAM_RO:
2616 	case MEM_AREA_TEE_RAM_RW:
2617 	case MEM_AREA_NEX_RAM_RO:
2618 	case MEM_AREA_NEX_RAM_RW:
2619 		va = phys_to_virt_tee_ram(pa, len);
2620 		break;
2621 	case MEM_AREA_SHM_VASPACE:
2622 		/* Find VA from PA in dynamic SHM is not yet supported */
2623 		va = NULL;
2624 		break;
2625 	default:
2626 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2627 	}
2628 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2629 		check_va_matches_pa(pa, va);
2630 	return va;
2631 }
2632 
2633 void *phys_to_virt_io(paddr_t pa, size_t len)
2634 {
2635 	struct tee_mmap_region *map = NULL;
2636 	void *va = NULL;
2637 
2638 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2639 	if (!map)
2640 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2641 	if (!map)
2642 		return NULL;
2643 	va = map_pa2va(map, pa, len);
2644 	check_va_matches_pa(pa, va);
2645 	return va;
2646 }
2647 
2648 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2649 {
2650 	if (cpu_mmu_enabled())
2651 		return (vaddr_t)phys_to_virt(pa, type, len);
2652 
2653 	return (vaddr_t)pa;
2654 }
2655 
2656 #ifdef CFG_WITH_PAGER
2657 bool is_unpaged(const void *va)
2658 {
2659 	vaddr_t v = (vaddr_t)va;
2660 
2661 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2662 }
2663 #endif
2664 
2665 #ifdef CFG_NS_VIRTUALIZATION
2666 bool is_nexus(const void *va)
2667 {
2668 	vaddr_t v = (vaddr_t)va;
2669 
2670 	return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ;
2671 }
2672 #endif
2673 
2674 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2675 {
2676 	assert(p->pa);
2677 	if (cpu_mmu_enabled()) {
2678 		if (!p->va)
2679 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2680 		assert(p->va);
2681 		return p->va;
2682 	}
2683 	return p->pa;
2684 }
2685 
2686 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2687 {
2688 	assert(p->pa);
2689 	if (cpu_mmu_enabled()) {
2690 		if (!p->va)
2691 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2692 						      len);
2693 		assert(p->va);
2694 		return p->va;
2695 	}
2696 	return p->pa;
2697 }
2698 
2699 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2700 {
2701 	assert(p->pa);
2702 	if (cpu_mmu_enabled()) {
2703 		if (!p->va)
2704 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2705 						      len);
2706 		assert(p->va);
2707 		return p->va;
2708 	}
2709 	return p->pa;
2710 }
2711 
2712 #ifdef CFG_CORE_RESERVED_SHM
2713 static TEE_Result teecore_init_pub_ram(void)
2714 {
2715 	vaddr_t s = 0;
2716 	vaddr_t e = 0;
2717 
2718 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2719 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2720 
2721 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2722 		panic("invalid PUB RAM");
2723 
2724 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2725 	if (!tee_vbuf_is_non_sec(s, e - s))
2726 		panic("PUB RAM is not non-secure");
2727 
2728 #ifdef CFG_PL310
2729 	/* Allocate statically the l2cc mutex */
2730 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2731 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2732 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2733 #endif
2734 
2735 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2736 	default_nsec_shm_size = e - s;
2737 
2738 	return TEE_SUCCESS;
2739 }
2740 early_init(teecore_init_pub_ram);
2741 #endif /*CFG_CORE_RESERVED_SHM*/
2742 
2743 static void __maybe_unused carve_out_core_mem(paddr_t pa, paddr_t end_pa)
2744 {
2745 	tee_mm_entry_t *mm __maybe_unused = NULL;
2746 
2747 	DMSG("%#"PRIxPA" .. %#"PRIxPA, pa, end_pa);
2748 	mm = phys_mem_alloc2(pa, end_pa - pa);
2749 	assert(mm);
2750 }
2751 
2752 void core_mmu_init_phys_mem(void)
2753 {
2754 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
2755 		paddr_t b1 = 0;
2756 		paddr_size_t s1 = 0;
2757 
2758 		static_assert(ARRAY_SIZE(secure_only) <= 2);
2759 
2760 		if (ARRAY_SIZE(secure_only) == 2) {
2761 			b1 = secure_only[1].paddr;
2762 			s1 = secure_only[1].size;
2763 		}
2764 		virt_init_memory(&static_memory_map, secure_only[0].paddr,
2765 				 secure_only[0].size, b1, s1);
2766 	} else {
2767 #ifdef CFG_WITH_PAGER
2768 		/*
2769 		 * The pager uses all core memory so there's no need to add
2770 		 * it to the pool.
2771 		 */
2772 		static_assert(ARRAY_SIZE(secure_only) == 2);
2773 		phys_mem_init(0, 0, secure_only[1].paddr, secure_only[1].size);
2774 #else /*!CFG_WITH_PAGER*/
2775 		size_t align = BIT(CORE_MMU_USER_CODE_SHIFT);
2776 		paddr_t end_pa = 0;
2777 		size_t size = 0;
2778 		paddr_t ps = 0;
2779 		paddr_t pa = 0;
2780 
2781 		static_assert(ARRAY_SIZE(secure_only) <= 2);
2782 		if (ARRAY_SIZE(secure_only) == 2) {
2783 			ps = secure_only[1].paddr;
2784 			size = secure_only[1].size;
2785 		}
2786 		phys_mem_init(secure_only[0].paddr, secure_only[0].size,
2787 			      ps, size);
2788 
2789 		/*
2790 		 * The VCORE macros are relocatable so we need to translate
2791 		 * the addresses now that the MMU is enabled.
2792 		 */
2793 		end_pa = vaddr_to_phys(ROUNDUP2(VCORE_FREE_END_PA,
2794 						align) - 1) + 1;
2795 		/* Carve out the part used by OP-TEE core */
2796 		carve_out_core_mem(vaddr_to_phys(VCORE_UNPG_RX_PA), end_pa);
2797 		if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) {
2798 			pa = vaddr_to_phys(ROUNDUP2(ASAN_MAP_PA, align));
2799 			carve_out_core_mem(pa, pa + ASAN_MAP_SZ);
2800 		}
2801 
2802 		/* Carve out test SDP memory */
2803 #ifdef TEE_SDP_TEST_MEM_BASE
2804 		if (TEE_SDP_TEST_MEM_SIZE) {
2805 			pa = TEE_SDP_TEST_MEM_BASE;
2806 			carve_out_core_mem(pa, pa + TEE_SDP_TEST_MEM_SIZE);
2807 		}
2808 #endif
2809 #endif /*!CFG_WITH_PAGER*/
2810 	}
2811 }
2812