xref: /optee_os/core/mm/core_mmu.c (revision ba2a6adb764f1310ad3c3091d89de84274f86b02)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <mm/core_memprot.h>
22 #include <mm/core_mmu.h>
23 #include <mm/mobj.h>
24 #include <mm/pgt_cache.h>
25 #include <mm/tee_pager.h>
26 #include <mm/vm.h>
27 #include <platform_config.h>
28 #include <string.h>
29 #include <trace.h>
30 #include <util.h>
31 
32 #ifndef DEBUG_XLAT_TABLE
33 #define DEBUG_XLAT_TABLE 0
34 #endif
35 
36 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
37 
38 #ifdef CFG_CORE_PHYS_RELOCATABLE
39 unsigned long core_mmu_tee_load_pa __nex_bss;
40 #else
41 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
42 #endif
43 
44 /*
45  * These variables are initialized before .bss is cleared. To avoid
46  * resetting them when .bss is cleared we're storing them in .data instead,
47  * even if they initially are zero.
48  */
49 
50 #ifdef CFG_CORE_RESERVED_SHM
51 /* Default NSec shared memory allocated from NSec world */
52 unsigned long default_nsec_shm_size __nex_bss;
53 unsigned long default_nsec_shm_paddr __nex_bss;
54 #endif
55 
56 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS
57 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE)
58 						+ 1
59 #endif
60 						+ 1] __nex_bss;
61 
62 /* Define the platform's memory layout. */
63 struct memaccess_area {
64 	paddr_t paddr;
65 	size_t size;
66 };
67 
68 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
69 
70 static struct memaccess_area secure_only[] __nex_data = {
71 #ifdef CFG_CORE_PHYS_RELOCATABLE
72 	MEMACCESS_AREA(0, 0),
73 #else
74 #ifdef TRUSTED_SRAM_BASE
75 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
76 #endif
77 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
78 #endif
79 };
80 
81 static struct memaccess_area nsec_shared[] __nex_data = {
82 #ifdef CFG_CORE_RESERVED_SHM
83 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
84 #endif
85 };
86 
87 #if defined(CFG_SECURE_DATA_PATH)
88 static const char *tz_sdp_match = "linaro,secure-heap";
89 static struct memaccess_area sec_sdp;
90 #ifdef CFG_TEE_SDP_MEM_BASE
91 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
92 #endif
93 #ifdef TEE_SDP_TEST_MEM_BASE
94 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
95 #endif
96 #endif
97 
98 #ifdef CFG_CORE_RESERVED_SHM
99 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
100 #endif
101 static unsigned int mmu_spinlock;
102 
103 static uint32_t mmu_lock(void)
104 {
105 	return cpu_spin_lock_xsave(&mmu_spinlock);
106 }
107 
108 static void mmu_unlock(uint32_t exceptions)
109 {
110 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
111 }
112 
113 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
114 {
115 	/*
116 	 * The first range is always used to cover OP-TEE core memory, but
117 	 * depending on configuration it may cover more than that.
118 	 */
119 	*base = secure_only[0].paddr;
120 	*size = secure_only[0].size;
121 }
122 
123 #ifdef CFG_CORE_PHYS_RELOCATABLE
124 void core_mmu_set_secure_memory(paddr_t base, size_t size)
125 {
126 	static_assert(ARRAY_SIZE(secure_only) == 1);
127 	assert(!secure_only[0].size);
128 	assert(base && size);
129 
130 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
131 	secure_only[0].paddr = base;
132 	secure_only[0].size = size;
133 }
134 #endif
135 
136 void core_mmu_get_ta_range(paddr_t *base, size_t *size)
137 {
138 	paddr_t b = 0;
139 	size_t s = 0;
140 
141 	static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE));
142 #ifdef TA_RAM_START
143 	b = TA_RAM_START;
144 	s = TA_RAM_SIZE;
145 #else
146 	static_assert(ARRAY_SIZE(secure_only) <= 2);
147 	if (ARRAY_SIZE(secure_only) == 1) {
148 		vaddr_t load_offs = 0;
149 
150 		assert(core_mmu_tee_load_pa >= secure_only[0].paddr);
151 		load_offs = core_mmu_tee_load_pa - secure_only[0].paddr;
152 
153 		assert(secure_only[0].size >
154 		       load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE);
155 		b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE;
156 		s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE -
157 		    TEE_SDP_TEST_MEM_SIZE;
158 	} else {
159 		assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE);
160 		b = secure_only[1].paddr;
161 		s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE;
162 	}
163 #endif
164 	if (base)
165 		*base = b;
166 	if (size)
167 		*size = s;
168 }
169 
170 static struct tee_mmap_region *get_memory_map(void)
171 {
172 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
173 		struct tee_mmap_region *map = virt_get_memory_map();
174 
175 		if (map)
176 			return map;
177 	}
178 
179 	return static_memory_map;
180 }
181 
182 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
183 			     paddr_t pa, size_t size)
184 {
185 	size_t n;
186 
187 	for (n = 0; n < alen; n++)
188 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
189 			return true;
190 	return false;
191 }
192 
193 #define pbuf_intersects(a, pa, size) \
194 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
195 
196 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
197 			    paddr_t pa, size_t size)
198 {
199 	size_t n;
200 
201 	for (n = 0; n < alen; n++)
202 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
203 			return true;
204 	return false;
205 }
206 
207 #define pbuf_is_inside(a, pa, size) \
208 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
209 
210 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
211 {
212 	paddr_t end_pa = 0;
213 
214 	if (!map)
215 		return false;
216 
217 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
218 		return false;
219 
220 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
221 }
222 
223 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
224 {
225 	if (!map)
226 		return false;
227 	return (va >= map->va && va <= (map->va + map->size - 1));
228 }
229 
230 /* check if target buffer fits in a core default map area */
231 static bool pbuf_inside_map_area(unsigned long p, size_t l,
232 				 struct tee_mmap_region *map)
233 {
234 	return core_is_buffer_inside(p, l, map->pa, map->size);
235 }
236 
237 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
238 {
239 	struct tee_mmap_region *map;
240 
241 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++)
242 		if (map->type == type)
243 			return map;
244 	return NULL;
245 }
246 
247 static struct tee_mmap_region *
248 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
249 {
250 	struct tee_mmap_region *map;
251 
252 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
253 		if (map->type != type)
254 			continue;
255 		if (pa_is_in_map(map, pa, len))
256 			return map;
257 	}
258 	return NULL;
259 }
260 
261 static struct tee_mmap_region *find_map_by_va(void *va)
262 {
263 	struct tee_mmap_region *map = get_memory_map();
264 	unsigned long a = (unsigned long)va;
265 
266 	while (!core_mmap_is_end_of_table(map)) {
267 		if (a >= map->va && a <= (map->va - 1 + map->size))
268 			return map;
269 		map++;
270 	}
271 	return NULL;
272 }
273 
274 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
275 {
276 	struct tee_mmap_region *map = get_memory_map();
277 
278 	while (!core_mmap_is_end_of_table(map)) {
279 		if (pa >= map->pa && pa <= (map->pa + map->size - 1))
280 			return map;
281 		map++;
282 	}
283 	return NULL;
284 }
285 
286 #if defined(CFG_SECURE_DATA_PATH)
287 static bool dtb_get_sdp_region(void)
288 {
289 	void *fdt = NULL;
290 	int node = 0;
291 	int tmp_node = 0;
292 	paddr_t tmp_addr = 0;
293 	size_t tmp_size = 0;
294 
295 	if (!IS_ENABLED(CFG_EMBED_DTB))
296 		return false;
297 
298 	fdt = get_embedded_dt();
299 	if (!fdt)
300 		panic("No DTB found");
301 
302 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
303 	if (node < 0) {
304 		DMSG("No %s compatible node found", tz_sdp_match);
305 		return false;
306 	}
307 	tmp_node = node;
308 	while (tmp_node >= 0) {
309 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
310 							 tz_sdp_match);
311 		if (tmp_node >= 0)
312 			DMSG("Ignore SDP pool node %s, supports only 1 node",
313 			     fdt_get_name(fdt, tmp_node, NULL));
314 	}
315 
316 	tmp_addr = fdt_reg_base_address(fdt, node);
317 	if (tmp_addr == DT_INFO_INVALID_REG) {
318 		EMSG("%s: Unable to get base addr from DT", tz_sdp_match);
319 		return false;
320 	}
321 
322 	tmp_size = fdt_reg_size(fdt, node);
323 	if (tmp_size == DT_INFO_INVALID_REG_SIZE) {
324 		EMSG("%s: Unable to get size of base addr from DT",
325 		     tz_sdp_match);
326 		return false;
327 	}
328 
329 	sec_sdp.paddr = tmp_addr;
330 	sec_sdp.size = tmp_size;
331 
332 	return true;
333 }
334 #endif
335 
336 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
337 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
338 				const struct core_mmu_phys_mem *start,
339 				const struct core_mmu_phys_mem *end)
340 {
341 	const struct core_mmu_phys_mem *mem;
342 
343 	for (mem = start; mem < end; mem++) {
344 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
345 			return true;
346 	}
347 
348 	return false;
349 }
350 #endif
351 
352 #ifdef CFG_CORE_DYN_SHM
353 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
354 			       paddr_t pa, size_t size)
355 {
356 	struct core_mmu_phys_mem *m = *mem;
357 	size_t n = 0;
358 
359 	while (true) {
360 		if (n >= *nelems) {
361 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
362 			     pa, size);
363 			return;
364 		}
365 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
366 			break;
367 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
368 			panic();
369 		n++;
370 	}
371 
372 	if (pa == m[n].addr && size == m[n].size) {
373 		/* Remove this entry */
374 		(*nelems)--;
375 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
376 		m = nex_realloc(m, sizeof(*m) * *nelems);
377 		if (!m)
378 			panic();
379 		*mem = m;
380 	} else if (pa == m[n].addr) {
381 		m[n].addr += size;
382 		m[n].size -= size;
383 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
384 		m[n].size -= size;
385 	} else {
386 		/* Need to split the memory entry */
387 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
388 		if (!m)
389 			panic();
390 		*mem = m;
391 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
392 		(*nelems)++;
393 		m[n].size = pa - m[n].addr;
394 		m[n + 1].size -= size + m[n].size;
395 		m[n + 1].addr = pa + size;
396 	}
397 }
398 
399 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
400 				      size_t nelems,
401 				      struct tee_mmap_region *map)
402 {
403 	size_t n;
404 
405 	for (n = 0; n < nelems; n++) {
406 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
407 					    map->pa, map->size)) {
408 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
409 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
410 			     start[n].addr, start[n].size,
411 			     map->type, map->pa, map->size);
412 			panic();
413 		}
414 	}
415 }
416 
417 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
418 static size_t discovered_nsec_ddr_nelems __nex_bss;
419 
420 static int cmp_pmem_by_addr(const void *a, const void *b)
421 {
422 	const struct core_mmu_phys_mem *pmem_a = a;
423 	const struct core_mmu_phys_mem *pmem_b = b;
424 
425 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
426 }
427 
428 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
429 				      size_t nelems)
430 {
431 	struct core_mmu_phys_mem *m = start;
432 	size_t num_elems = nelems;
433 	struct tee_mmap_region *map = static_memory_map;
434 	const struct core_mmu_phys_mem __maybe_unused *pmem;
435 	size_t n = 0;
436 
437 	assert(!discovered_nsec_ddr_start);
438 	assert(m && num_elems);
439 
440 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
441 
442 	/*
443 	 * Non-secure shared memory and also secure data
444 	 * path memory are supposed to reside inside
445 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
446 	 * are used for a specific purpose make holes for
447 	 * those memory in the normal non-secure memory.
448 	 *
449 	 * This has to be done since for instance QEMU
450 	 * isn't aware of which memory range in the
451 	 * non-secure memory is used for NSEC_SHM.
452 	 */
453 
454 #ifdef CFG_SECURE_DATA_PATH
455 	if (dtb_get_sdp_region())
456 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
457 
458 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
459 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
460 #endif
461 
462 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
463 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
464 				   secure_only[n].size);
465 
466 	for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) {
467 		switch (map->type) {
468 		case MEM_AREA_NSEC_SHM:
469 			carve_out_phys_mem(&m, &num_elems, map->pa, map->size);
470 			break;
471 		case MEM_AREA_EXT_DT:
472 		case MEM_AREA_RES_VASPACE:
473 		case MEM_AREA_SHM_VASPACE:
474 		case MEM_AREA_TS_VASPACE:
475 		case MEM_AREA_PAGER_VASPACE:
476 			break;
477 		default:
478 			check_phys_mem_is_outside(m, num_elems, map);
479 		}
480 	}
481 
482 	discovered_nsec_ddr_start = m;
483 	discovered_nsec_ddr_nelems = num_elems;
484 
485 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
486 				   m[num_elems - 1].size))
487 		panic();
488 }
489 
490 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
491 				    const struct core_mmu_phys_mem **end)
492 {
493 	if (!discovered_nsec_ddr_start)
494 		return false;
495 
496 	*start = discovered_nsec_ddr_start;
497 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
498 
499 	return true;
500 }
501 
502 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
503 {
504 	const struct core_mmu_phys_mem *start;
505 	const struct core_mmu_phys_mem *end;
506 
507 	if (!get_discovered_nsec_ddr(&start, &end))
508 		return false;
509 
510 	return pbuf_is_special_mem(pbuf, len, start, end);
511 }
512 
513 bool core_mmu_nsec_ddr_is_defined(void)
514 {
515 	const struct core_mmu_phys_mem *start;
516 	const struct core_mmu_phys_mem *end;
517 
518 	if (!get_discovered_nsec_ddr(&start, &end))
519 		return false;
520 
521 	return start != end;
522 }
523 #else
524 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
525 {
526 	return false;
527 }
528 #endif /*CFG_CORE_DYN_SHM*/
529 
530 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
531 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
532 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
533 
534 #ifdef CFG_SECURE_DATA_PATH
535 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
536 {
537 	bool is_sdp_mem = false;
538 
539 	if (sec_sdp.size)
540 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
541 						   sec_sdp.size);
542 
543 	if (!is_sdp_mem)
544 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
545 						 phys_sdp_mem_end);
546 
547 	return is_sdp_mem;
548 }
549 
550 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
551 {
552 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
553 					    CORE_MEM_SDP_MEM);
554 
555 	if (!mobj)
556 		panic("can't create SDP physical memory object");
557 
558 	return mobj;
559 }
560 
561 struct mobj **core_sdp_mem_create_mobjs(void)
562 {
563 	const struct core_mmu_phys_mem *mem = NULL;
564 	struct mobj **mobj_base = NULL;
565 	struct mobj **mobj = NULL;
566 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
567 
568 	if (sec_sdp.size)
569 		cnt++;
570 
571 	/* SDP mobjs table must end with a NULL entry */
572 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
573 	if (!mobj_base)
574 		panic("Out of memory");
575 
576 	mobj = mobj_base;
577 
578 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
579 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
580 
581 	if (sec_sdp.size)
582 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
583 
584 	return mobj_base;
585 }
586 
587 #else /* CFG_SECURE_DATA_PATH */
588 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
589 {
590 	return false;
591 }
592 
593 #endif /* CFG_SECURE_DATA_PATH */
594 
595 /* Check special memories comply with registered memories */
596 static void verify_special_mem_areas(struct tee_mmap_region *mem_map,
597 				     size_t len,
598 				     const struct core_mmu_phys_mem *start,
599 				     const struct core_mmu_phys_mem *end,
600 				     const char *area_name __maybe_unused)
601 {
602 	const struct core_mmu_phys_mem *mem;
603 	const struct core_mmu_phys_mem *mem2;
604 	struct tee_mmap_region *mmap;
605 	size_t n;
606 
607 	if (start == end) {
608 		DMSG("No %s memory area defined", area_name);
609 		return;
610 	}
611 
612 	for (mem = start; mem < end; mem++)
613 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
614 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
615 
616 	/* Check memories do not intersect each other */
617 	for (mem = start; mem + 1 < end; mem++) {
618 		for (mem2 = mem + 1; mem2 < end; mem2++) {
619 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
620 						     mem->addr, mem->size)) {
621 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
622 						   mem->addr, mem->size);
623 				panic("Special memory intersection");
624 			}
625 		}
626 	}
627 
628 	/*
629 	 * Check memories do not intersect any mapped memory.
630 	 * This is called before reserved VA space is loaded in mem_map.
631 	 */
632 	for (mem = start; mem < end; mem++) {
633 		for (mmap = mem_map, n = 0; n < len; mmap++, n++) {
634 			if (core_is_buffer_intersect(mem->addr, mem->size,
635 						     mmap->pa, mmap->size)) {
636 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
637 						   mmap->pa, mmap->size);
638 				panic("Special memory intersection");
639 			}
640 		}
641 	}
642 }
643 
644 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems,
645 			 const char *mem_name __maybe_unused,
646 			 enum teecore_memtypes mem_type,
647 			 paddr_t mem_addr, paddr_size_t mem_size, size_t *last)
648 {
649 	size_t n = 0;
650 	paddr_t pa;
651 	paddr_size_t size;
652 
653 	if (!mem_size)	/* Discard null size entries */
654 		return;
655 	/*
656 	 * If some ranges of memory of the same type do overlap
657 	 * each others they are coalesced into one entry. To help this
658 	 * added entries are sorted by increasing physical.
659 	 *
660 	 * Note that it's valid to have the same physical memory as several
661 	 * different memory types, for instance the same device memory
662 	 * mapped as both secure and non-secure. This will probably not
663 	 * happen often in practice.
664 	 */
665 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
666 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
667 	while (true) {
668 		if (n >= (num_elems - 1)) {
669 			EMSG("Out of entries (%zu) in memory_map", num_elems);
670 			panic();
671 		}
672 		if (n == *last)
673 			break;
674 		pa = memory_map[n].pa;
675 		size = memory_map[n].size;
676 		if (mem_type == memory_map[n].type &&
677 		    ((pa <= (mem_addr + (mem_size - 1))) &&
678 		    (mem_addr <= (pa + (size - 1))))) {
679 			DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr);
680 			memory_map[n].pa = MIN(pa, mem_addr);
681 			memory_map[n].size = MAX(size, mem_size) +
682 					     (pa - memory_map[n].pa);
683 			return;
684 		}
685 		if (mem_type < memory_map[n].type ||
686 		    (mem_type == memory_map[n].type && mem_addr < pa))
687 			break; /* found the spot where to insert this memory */
688 		n++;
689 	}
690 
691 	memmove(memory_map + n + 1, memory_map + n,
692 		sizeof(struct tee_mmap_region) * (*last - n));
693 	(*last)++;
694 	memset(memory_map + n, 0, sizeof(memory_map[0]));
695 	memory_map[n].type = mem_type;
696 	memory_map[n].pa = mem_addr;
697 	memory_map[n].size = mem_size;
698 }
699 
700 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems,
701 			 enum teecore_memtypes type, size_t size, size_t *last)
702 {
703 	size_t n = 0;
704 
705 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
706 	while (true) {
707 		if (n >= (num_elems - 1)) {
708 			EMSG("Out of entries (%zu) in memory_map", num_elems);
709 			panic();
710 		}
711 		if (n == *last)
712 			break;
713 		if (type < memory_map[n].type)
714 			break;
715 		n++;
716 	}
717 
718 	memmove(memory_map + n + 1, memory_map + n,
719 		sizeof(struct tee_mmap_region) * (*last - n));
720 	(*last)++;
721 	memset(memory_map + n, 0, sizeof(memory_map[0]));
722 	memory_map[n].type = type;
723 	memory_map[n].size = size;
724 }
725 
726 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
727 {
728 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
729 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
730 				TEE_MATTR_MEM_TYPE_SHIFT;
731 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
732 				TEE_MATTR_MEM_TYPE_SHIFT;
733 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
734 				  TEE_MATTR_MEM_TYPE_SHIFT;
735 
736 	switch (t) {
737 	case MEM_AREA_TEE_RAM:
738 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
739 	case MEM_AREA_TEE_RAM_RX:
740 	case MEM_AREA_INIT_RAM_RX:
741 	case MEM_AREA_IDENTITY_MAP_RX:
742 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
743 	case MEM_AREA_TEE_RAM_RO:
744 	case MEM_AREA_INIT_RAM_RO:
745 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
746 	case MEM_AREA_TEE_RAM_RW:
747 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
748 	case MEM_AREA_NEX_RAM_RW:
749 	case MEM_AREA_TEE_ASAN:
750 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
751 	case MEM_AREA_TEE_COHERENT:
752 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
753 	case MEM_AREA_TA_RAM:
754 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
755 	case MEM_AREA_NSEC_SHM:
756 	case MEM_AREA_NEX_NSEC_SHM:
757 		return attr | TEE_MATTR_PRW | cached;
758 	case MEM_AREA_EXT_DT:
759 		/*
760 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
761 		 * tree as secure non-cached memory, otherwise, fall back to
762 		 * non-secure mapping.
763 		 */
764 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
765 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
766 			       noncache;
767 		fallthrough;
768 	case MEM_AREA_IO_NSEC:
769 		return attr | TEE_MATTR_PRW | noncache;
770 	case MEM_AREA_IO_SEC:
771 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
772 	case MEM_AREA_RAM_NSEC:
773 		return attr | TEE_MATTR_PRW | cached;
774 	case MEM_AREA_RAM_SEC:
775 	case MEM_AREA_SEC_RAM_OVERALL:
776 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
777 	case MEM_AREA_RES_VASPACE:
778 	case MEM_AREA_SHM_VASPACE:
779 		return 0;
780 	case MEM_AREA_PAGER_VASPACE:
781 		return TEE_MATTR_SECURE;
782 	default:
783 		panic("invalid type");
784 	}
785 }
786 
787 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
788 {
789 	switch (mm->type) {
790 	case MEM_AREA_TEE_RAM:
791 	case MEM_AREA_TEE_RAM_RX:
792 	case MEM_AREA_TEE_RAM_RO:
793 	case MEM_AREA_TEE_RAM_RW:
794 	case MEM_AREA_INIT_RAM_RX:
795 	case MEM_AREA_INIT_RAM_RO:
796 	case MEM_AREA_NEX_RAM_RW:
797 	case MEM_AREA_NEX_RAM_RO:
798 	case MEM_AREA_TEE_ASAN:
799 		return true;
800 	default:
801 		return false;
802 	}
803 }
804 
805 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
806 {
807 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
808 }
809 
810 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
811 {
812 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
813 }
814 
815 static int cmp_mmap_by_lower_va(const void *a, const void *b)
816 {
817 	const struct tee_mmap_region *mm_a = a;
818 	const struct tee_mmap_region *mm_b = b;
819 
820 	return CMP_TRILEAN(mm_a->va, mm_b->va);
821 }
822 
823 static void dump_mmap_table(struct tee_mmap_region *memory_map)
824 {
825 	struct tee_mmap_region *map;
826 
827 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
828 		vaddr_t __maybe_unused vstart;
829 
830 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
831 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
832 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
833 		     teecore_memtype_name(map->type), vstart,
834 		     vstart + map->size - 1, map->pa,
835 		     (paddr_t)(map->pa + map->size - 1), map->size,
836 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
837 	}
838 }
839 
840 #if DEBUG_XLAT_TABLE
841 
842 static void dump_xlat_table(vaddr_t va, unsigned int level)
843 {
844 	struct core_mmu_table_info tbl_info;
845 	unsigned int idx = 0;
846 	paddr_t pa;
847 	uint32_t attr;
848 
849 	core_mmu_find_table(NULL, va, level, &tbl_info);
850 	va = tbl_info.va_base;
851 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
852 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
853 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
854 			const char *security_bit = "";
855 
856 			if (core_mmu_entry_have_security_bit(attr)) {
857 				if (attr & TEE_MATTR_SECURE)
858 					security_bit = "S";
859 				else
860 					security_bit = "NS";
861 			}
862 
863 			if (attr & TEE_MATTR_TABLE) {
864 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
865 					" TBL:0x%010" PRIxPA " %s",
866 					level * 2, "", level, va, pa,
867 					security_bit);
868 				dump_xlat_table(va, level + 1);
869 			} else if (attr) {
870 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
871 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
872 					level * 2, "", level, va, pa,
873 					mattr_is_cached(attr) ? "MEM" :
874 					"DEV",
875 					attr & TEE_MATTR_PW ? "RW" : "RO",
876 					attr & TEE_MATTR_PX ? "X " : "XN",
877 					security_bit);
878 			} else {
879 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
880 					    " INVALID\n",
881 					    level * 2, "", level, va);
882 			}
883 		}
884 		va += BIT64(tbl_info.shift);
885 	}
886 }
887 
888 #else
889 
890 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
891 {
892 }
893 
894 #endif
895 
896 /*
897  * Reserves virtual memory space for pager usage.
898  *
899  * From the start of the first memory used by the link script +
900  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
901  * mapping for pager usage. This adds translation tables as needed for the
902  * pager to operate.
903  */
904 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems,
905 			      size_t *last)
906 {
907 	paddr_t begin = 0;
908 	paddr_t end = 0;
909 	size_t size = 0;
910 	size_t pos = 0;
911 	size_t n = 0;
912 
913 	if (*last >= (num_elems - 1)) {
914 		EMSG("Out of entries (%zu) in memory map", num_elems);
915 		panic();
916 	}
917 
918 	for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) {
919 		if (map_is_tee_ram(mmap + n)) {
920 			if (!begin)
921 				begin = mmap[n].pa;
922 			pos = n + 1;
923 		}
924 	}
925 
926 	end = mmap[pos - 1].pa + mmap[pos - 1].size;
927 	assert(end - begin < TEE_RAM_VA_SIZE);
928 	size = TEE_RAM_VA_SIZE - (end - begin);
929 
930 	assert(pos <= *last);
931 	memmove(mmap + pos + 1, mmap + pos,
932 		sizeof(struct tee_mmap_region) * (*last - pos));
933 	(*last)++;
934 	memset(mmap + pos, 0, sizeof(mmap[0]));
935 	mmap[pos].type = MEM_AREA_PAGER_VASPACE;
936 	mmap[pos].va = 0;
937 	mmap[pos].size = size;
938 	mmap[pos].region_size = SMALL_PAGE_SIZE;
939 	mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE);
940 }
941 
942 static void check_sec_nsec_mem_config(void)
943 {
944 	size_t n = 0;
945 
946 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
947 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
948 				    secure_only[n].size))
949 			panic("Invalid memory access config: sec/nsec");
950 	}
951 }
952 
953 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map,
954 				 size_t num_elems)
955 {
956 	const struct core_mmu_phys_mem *mem = NULL;
957 	vaddr_t ram_start = secure_only[0].paddr;
958 	size_t last = 0;
959 
960 
961 #define ADD_PHYS_MEM(_type, _addr, _size) \
962 		add_phys_mem(memory_map, num_elems, #_addr, (_type), \
963 			     (_addr), (_size),  &last)
964 
965 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
966 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start,
967 			     VCORE_UNPG_RX_PA - ram_start);
968 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
969 			     VCORE_UNPG_RX_SZ);
970 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
971 			     VCORE_UNPG_RO_SZ);
972 
973 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
974 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
975 				     VCORE_UNPG_RW_SZ);
976 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
977 				     VCORE_NEX_RW_SZ);
978 		} else {
979 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
980 				     VCORE_UNPG_RW_SZ);
981 		}
982 
983 		if (IS_ENABLED(CFG_WITH_PAGER)) {
984 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
985 				     VCORE_INIT_RX_SZ);
986 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
987 				     VCORE_INIT_RO_SZ);
988 		}
989 	} else {
990 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
991 	}
992 
993 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
994 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
995 			     TRUSTED_DRAM_SIZE);
996 	} else {
997 		/*
998 		 * Every guest will have own TA RAM if virtualization
999 		 * support is enabled.
1000 		 */
1001 		paddr_t ta_base = 0;
1002 		size_t ta_size = 0;
1003 
1004 		core_mmu_get_ta_range(&ta_base, &ta_size);
1005 		ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size);
1006 	}
1007 
1008 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
1009 	    IS_ENABLED(CFG_WITH_PAGER)) {
1010 		/*
1011 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
1012 		 * disabled.
1013 		 */
1014 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1015 	}
1016 
1017 #undef ADD_PHYS_MEM
1018 
1019 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1020 		/* Only unmapped virtual range may have a null phys addr */
1021 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1022 
1023 		add_phys_mem(memory_map, num_elems, mem->name, mem->type,
1024 			     mem->addr, mem->size, &last);
1025 	}
1026 
1027 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1028 		verify_special_mem_areas(memory_map, num_elems,
1029 					 phys_sdp_mem_begin,
1030 					 phys_sdp_mem_end, "SDP");
1031 
1032 	add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE,
1033 		     CFG_RESERVED_VASPACE_SIZE, &last);
1034 
1035 	add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE,
1036 		     SHM_VASPACE_SIZE, &last);
1037 
1038 	memory_map[last].type = MEM_AREA_END;
1039 
1040 	return last;
1041 }
1042 
1043 static void assign_mem_granularity(struct tee_mmap_region *memory_map)
1044 {
1045 	struct tee_mmap_region *map = NULL;
1046 
1047 	/*
1048 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1049 	 * SMALL_PAGE_SIZE.
1050 	 */
1051 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1052 		paddr_t mask = map->pa | map->size;
1053 
1054 		if (!(mask & CORE_MMU_PGDIR_MASK))
1055 			map->region_size = CORE_MMU_PGDIR_SIZE;
1056 		else if (!(mask & SMALL_PAGE_MASK))
1057 			map->region_size = SMALL_PAGE_SIZE;
1058 		else
1059 			panic("Impossible memory alignment");
1060 
1061 		if (map_is_tee_ram(map))
1062 			map->region_size = SMALL_PAGE_SIZE;
1063 	}
1064 }
1065 
1066 static bool place_tee_ram_at_top(paddr_t paddr)
1067 {
1068 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1069 }
1070 
1071 /*
1072  * MMU arch driver shall override this function if it helps
1073  * optimizing the memory footprint of the address translation tables.
1074  */
1075 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1076 {
1077 	return place_tee_ram_at_top(paddr);
1078 }
1079 
1080 static bool assign_mem_va_dir(vaddr_t tee_ram_va,
1081 			      struct tee_mmap_region *memory_map,
1082 			      bool tee_ram_at_top)
1083 {
1084 	struct tee_mmap_region *map = NULL;
1085 	vaddr_t va = 0;
1086 	bool va_is_secure = true;
1087 
1088 	/*
1089 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1090 	 * 0 is by design an invalid va, so return false directly.
1091 	 */
1092 	if (!tee_ram_va)
1093 		return false;
1094 
1095 	/* Clear eventual previous assignments */
1096 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1097 		map->va = 0;
1098 
1099 	/*
1100 	 * TEE RAM regions are always aligned with region_size.
1101 	 *
1102 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1103 	 * since it handles virtual memory which covers the part of the ELF
1104 	 * that cannot fit directly into memory.
1105 	 */
1106 	va = tee_ram_va;
1107 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1108 		if (map_is_tee_ram(map) ||
1109 		    map->type == MEM_AREA_PAGER_VASPACE) {
1110 			assert(!(va & (map->region_size - 1)));
1111 			assert(!(map->size & (map->region_size - 1)));
1112 			map->va = va;
1113 			if (ADD_OVERFLOW(va, map->size, &va))
1114 				return false;
1115 			if (va >= BIT64(core_mmu_get_va_width()))
1116 				return false;
1117 		}
1118 	}
1119 
1120 	if (tee_ram_at_top) {
1121 		/*
1122 		 * Map non-tee ram regions at addresses lower than the tee
1123 		 * ram region.
1124 		 */
1125 		va = tee_ram_va;
1126 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1127 			map->attr = core_mmu_type_to_attr(map->type);
1128 			if (map->va)
1129 				continue;
1130 
1131 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1132 			    va_is_secure != map_is_secure(map)) {
1133 				va_is_secure = !va_is_secure;
1134 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1135 			}
1136 
1137 			if (SUB_OVERFLOW(va, map->size, &va))
1138 				return false;
1139 			va = ROUNDDOWN(va, map->region_size);
1140 			/*
1141 			 * Make sure that va is aligned with pa for
1142 			 * efficient pgdir mapping. Basically pa &
1143 			 * pgdir_mask should be == va & pgdir_mask
1144 			 */
1145 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1146 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1147 					return false;
1148 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1149 			}
1150 			map->va = va;
1151 		}
1152 	} else {
1153 		/*
1154 		 * Map non-tee ram regions at addresses higher than the tee
1155 		 * ram region.
1156 		 */
1157 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1158 			map->attr = core_mmu_type_to_attr(map->type);
1159 			if (map->va)
1160 				continue;
1161 
1162 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1163 			    va_is_secure != map_is_secure(map)) {
1164 				va_is_secure = !va_is_secure;
1165 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1166 						     &va))
1167 					return false;
1168 			}
1169 
1170 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1171 				return false;
1172 			/*
1173 			 * Make sure that va is aligned with pa for
1174 			 * efficient pgdir mapping. Basically pa &
1175 			 * pgdir_mask should be == va & pgdir_mask
1176 			 */
1177 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1178 				vaddr_t offs = (map->pa - va) &
1179 					       CORE_MMU_PGDIR_MASK;
1180 
1181 				if (ADD_OVERFLOW(va, offs, &va))
1182 					return false;
1183 			}
1184 
1185 			map->va = va;
1186 			if (ADD_OVERFLOW(va, map->size, &va))
1187 				return false;
1188 			if (va >= BIT64(core_mmu_get_va_width()))
1189 				return false;
1190 		}
1191 	}
1192 
1193 	return true;
1194 }
1195 
1196 static bool assign_mem_va(vaddr_t tee_ram_va,
1197 			  struct tee_mmap_region *memory_map)
1198 {
1199 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1200 
1201 	/*
1202 	 * Check that we're not overlapping with the user VA range.
1203 	 */
1204 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1205 		/*
1206 		 * User VA range is supposed to be defined after these
1207 		 * mappings have been established.
1208 		 */
1209 		assert(!core_mmu_user_va_range_is_defined());
1210 	} else {
1211 		vaddr_t user_va_base = 0;
1212 		size_t user_va_size = 0;
1213 
1214 		assert(core_mmu_user_va_range_is_defined());
1215 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1216 		if (tee_ram_va < (user_va_base + user_va_size))
1217 			return false;
1218 	}
1219 
1220 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1221 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1222 
1223 		/* Try whole mapping covered by a single base xlat entry */
1224 		if (prefered_dir != tee_ram_at_top &&
1225 		    assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir))
1226 			return true;
1227 	}
1228 
1229 	return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top);
1230 }
1231 
1232 static int cmp_init_mem_map(const void *a, const void *b)
1233 {
1234 	const struct tee_mmap_region *mm_a = a;
1235 	const struct tee_mmap_region *mm_b = b;
1236 	int rc = 0;
1237 
1238 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1239 	if (!rc)
1240 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1241 	/*
1242 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1243 	 * the same level2 table. Hence sort secure mapping from non-secure
1244 	 * mapping.
1245 	 */
1246 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1247 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1248 
1249 	return rc;
1250 }
1251 
1252 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map,
1253 			       size_t num_elems, size_t *last,
1254 			       vaddr_t id_map_start, vaddr_t id_map_end)
1255 {
1256 	struct tee_mmap_region *map = NULL;
1257 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1258 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1259 	size_t len = end - start;
1260 
1261 	if (*last >= num_elems - 1) {
1262 		EMSG("Out of entries (%zu) in memory map", num_elems);
1263 		panic();
1264 	}
1265 
1266 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1267 		if (core_is_buffer_intersect(map->va, map->size, start, len))
1268 			return false;
1269 
1270 	*map = (struct tee_mmap_region){
1271 		.type = MEM_AREA_IDENTITY_MAP_RX,
1272 		/*
1273 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1274 		 * translation table, at the increased risk of clashes with
1275 		 * the rest of the memory map.
1276 		 */
1277 		.region_size = SMALL_PAGE_SIZE,
1278 		.pa = start,
1279 		.va = start,
1280 		.size = len,
1281 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1282 	};
1283 
1284 	(*last)++;
1285 
1286 	return true;
1287 }
1288 
1289 static unsigned long init_mem_map(struct tee_mmap_region *memory_map,
1290 				  size_t num_elems, unsigned long seed)
1291 {
1292 	/*
1293 	 * @id_map_start and @id_map_end describes a physical memory range
1294 	 * that must be mapped Read-Only eXecutable at identical virtual
1295 	 * addresses.
1296 	 */
1297 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1298 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1299 	vaddr_t start_addr = secure_only[0].paddr;
1300 	unsigned long offs = 0;
1301 	size_t last = 0;
1302 
1303 	last = collect_mem_ranges(memory_map, num_elems);
1304 	assign_mem_granularity(memory_map);
1305 
1306 	/*
1307 	 * To ease mapping and lower use of xlat tables, sort mapping
1308 	 * description moving small-page regions after the pgdir regions.
1309 	 */
1310 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1311 	      cmp_init_mem_map);
1312 
1313 	if (IS_ENABLED(CFG_WITH_PAGER))
1314 		add_pager_vaspace(memory_map, num_elems, &last);
1315 
1316 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1317 		vaddr_t base_addr = start_addr + seed;
1318 		const unsigned int va_width = core_mmu_get_va_width();
1319 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1320 						   SMALL_PAGE_SHIFT);
1321 		vaddr_t ba = base_addr;
1322 		size_t n = 0;
1323 
1324 		for (n = 0; n < 3; n++) {
1325 			if (n)
1326 				ba = base_addr ^ BIT64(va_width - n);
1327 			ba &= va_mask;
1328 			if (assign_mem_va(ba, memory_map) &&
1329 			    mem_map_add_id_map(memory_map, num_elems, &last,
1330 					       id_map_start, id_map_end)) {
1331 				offs = ba - start_addr;
1332 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1333 				     ba, offs);
1334 				goto out;
1335 			} else {
1336 				DMSG("Failed to map core at %#"PRIxVA, ba);
1337 			}
1338 		}
1339 		EMSG("Failed to map core with seed %#lx", seed);
1340 	}
1341 
1342 	if (!assign_mem_va(start_addr, memory_map))
1343 		panic();
1344 
1345 out:
1346 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1347 	      cmp_mmap_by_lower_va);
1348 
1349 	dump_mmap_table(memory_map);
1350 
1351 	return offs;
1352 }
1353 
1354 static void check_mem_map(struct tee_mmap_region *map)
1355 {
1356 	struct tee_mmap_region *m = NULL;
1357 
1358 	for (m = map; !core_mmap_is_end_of_table(m); m++) {
1359 		switch (m->type) {
1360 		case MEM_AREA_TEE_RAM:
1361 		case MEM_AREA_TEE_RAM_RX:
1362 		case MEM_AREA_TEE_RAM_RO:
1363 		case MEM_AREA_TEE_RAM_RW:
1364 		case MEM_AREA_INIT_RAM_RX:
1365 		case MEM_AREA_INIT_RAM_RO:
1366 		case MEM_AREA_NEX_RAM_RW:
1367 		case MEM_AREA_NEX_RAM_RO:
1368 		case MEM_AREA_IDENTITY_MAP_RX:
1369 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1370 				panic("TEE_RAM can't fit in secure_only");
1371 			break;
1372 		case MEM_AREA_TA_RAM:
1373 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1374 				panic("TA_RAM can't fit in secure_only");
1375 			break;
1376 		case MEM_AREA_NSEC_SHM:
1377 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1378 				panic("NS_SHM can't fit in nsec_shared");
1379 			break;
1380 		case MEM_AREA_SEC_RAM_OVERALL:
1381 		case MEM_AREA_TEE_COHERENT:
1382 		case MEM_AREA_TEE_ASAN:
1383 		case MEM_AREA_IO_SEC:
1384 		case MEM_AREA_IO_NSEC:
1385 		case MEM_AREA_EXT_DT:
1386 		case MEM_AREA_RAM_SEC:
1387 		case MEM_AREA_RAM_NSEC:
1388 		case MEM_AREA_RES_VASPACE:
1389 		case MEM_AREA_SHM_VASPACE:
1390 		case MEM_AREA_PAGER_VASPACE:
1391 			break;
1392 		default:
1393 			EMSG("Uhandled memtype %d", m->type);
1394 			panic();
1395 		}
1396 	}
1397 }
1398 
1399 static struct tee_mmap_region *get_tmp_mmap(void)
1400 {
1401 	struct tee_mmap_region *tmp_mmap = (void *)__heap1_start;
1402 
1403 #ifdef CFG_WITH_PAGER
1404 	if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map))
1405 		tmp_mmap = (void *)__heap2_start;
1406 #endif
1407 
1408 	memset(tmp_mmap, 0, sizeof(static_memory_map));
1409 
1410 	return tmp_mmap;
1411 }
1412 
1413 /*
1414  * core_init_mmu_map() - init tee core default memory mapping
1415  *
1416  * This routine sets the static default TEE core mapping. If @seed is > 0
1417  * and configured with CFG_CORE_ASLR it will map tee core at a location
1418  * based on the seed and return the offset from the link address.
1419  *
1420  * If an error happened: core_init_mmu_map is expected to panic.
1421  *
1422  * Note: this function is weak just to make it possible to exclude it from
1423  * the unpaged area.
1424  */
1425 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1426 {
1427 #ifndef CFG_NS_VIRTUALIZATION
1428 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1429 #else
1430 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1431 				  SMALL_PAGE_SIZE);
1432 #endif
1433 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1434 	struct tee_mmap_region *tmp_mmap = get_tmp_mmap();
1435 	unsigned long offs = 0;
1436 
1437 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1438 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1439 		panic("OP-TEE load address is not page aligned");
1440 
1441 	check_sec_nsec_mem_config();
1442 
1443 	/*
1444 	 * Add a entry covering the translation tables which will be
1445 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1446 	 */
1447 	static_memory_map[0] = (struct tee_mmap_region){
1448 		.type = MEM_AREA_TEE_RAM,
1449 		.region_size = SMALL_PAGE_SIZE,
1450 		.pa = start,
1451 		.va = start,
1452 		.size = len,
1453 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1454 	};
1455 
1456 	COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13);
1457 	offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed);
1458 
1459 	check_mem_map(tmp_mmap);
1460 	core_init_mmu(tmp_mmap);
1461 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1462 	core_init_mmu_regs(cfg);
1463 	cfg->map_offset = offs;
1464 	memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map));
1465 }
1466 
1467 bool core_mmu_mattr_is_ok(uint32_t mattr)
1468 {
1469 	/*
1470 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1471 	 * core_mmu_v7.c:mattr_to_texcb
1472 	 */
1473 
1474 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1475 	case TEE_MATTR_MEM_TYPE_DEV:
1476 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1477 	case TEE_MATTR_MEM_TYPE_CACHED:
1478 	case TEE_MATTR_MEM_TYPE_TAGGED:
1479 		return true;
1480 	default:
1481 		return false;
1482 	}
1483 }
1484 
1485 /*
1486  * test attributes of target physical buffer
1487  *
1488  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1489  *
1490  */
1491 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1492 {
1493 	paddr_t ta_base = 0;
1494 	size_t ta_size = 0;
1495 	struct tee_mmap_region *map;
1496 
1497 	/* Empty buffers complies with anything */
1498 	if (len == 0)
1499 		return true;
1500 
1501 	switch (attr) {
1502 	case CORE_MEM_SEC:
1503 		return pbuf_is_inside(secure_only, pbuf, len);
1504 	case CORE_MEM_NON_SEC:
1505 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1506 			pbuf_is_nsec_ddr(pbuf, len);
1507 	case CORE_MEM_TEE_RAM:
1508 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1509 							TEE_RAM_PH_SIZE);
1510 	case CORE_MEM_TA_RAM:
1511 		core_mmu_get_ta_range(&ta_base, &ta_size);
1512 		return core_is_buffer_inside(pbuf, len, ta_base, ta_size);
1513 #ifdef CFG_CORE_RESERVED_SHM
1514 	case CORE_MEM_NSEC_SHM:
1515 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1516 							TEE_SHMEM_SIZE);
1517 #endif
1518 	case CORE_MEM_SDP_MEM:
1519 		return pbuf_is_sdp_mem(pbuf, len);
1520 	case CORE_MEM_CACHED:
1521 		map = find_map_by_pa(pbuf);
1522 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1523 			return false;
1524 		return mattr_is_cached(map->attr);
1525 	default:
1526 		return false;
1527 	}
1528 }
1529 
1530 /* test attributes of target virtual buffer (in core mapping) */
1531 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1532 {
1533 	paddr_t p;
1534 
1535 	/* Empty buffers complies with anything */
1536 	if (len == 0)
1537 		return true;
1538 
1539 	p = virt_to_phys((void *)vbuf);
1540 	if (!p)
1541 		return false;
1542 
1543 	return core_pbuf_is(attr, p, len);
1544 }
1545 
1546 /* core_va2pa - teecore exported service */
1547 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1548 {
1549 	struct tee_mmap_region *map;
1550 
1551 	map = find_map_by_va(va);
1552 	if (!va_is_in_map(map, (vaddr_t)va))
1553 		return -1;
1554 
1555 	/*
1556 	 * We can calculate PA for static map. Virtual address ranges
1557 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1558 	 * together with an invalid null physical address.
1559 	 */
1560 	if (map->pa)
1561 		*pa = map->pa + (vaddr_t)va  - map->va;
1562 	else
1563 		*pa = 0;
1564 
1565 	return 0;
1566 }
1567 
1568 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1569 {
1570 	if (!pa_is_in_map(map, pa, len))
1571 		return NULL;
1572 
1573 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1574 }
1575 
1576 /*
1577  * teecore gets some memory area definitions
1578  */
1579 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1580 			      vaddr_t *e)
1581 {
1582 	struct tee_mmap_region *map = find_map_by_type(type);
1583 
1584 	if (map) {
1585 		*s = map->va;
1586 		*e = map->va + map->size;
1587 	} else {
1588 		*s = 0;
1589 		*e = 0;
1590 	}
1591 }
1592 
1593 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1594 {
1595 	struct tee_mmap_region *map = find_map_by_pa(pa);
1596 
1597 	if (!map)
1598 		return MEM_AREA_MAXTYPE;
1599 	return map->type;
1600 }
1601 
1602 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1603 			paddr_t pa, uint32_t attr)
1604 {
1605 	assert(idx < tbl_info->num_entries);
1606 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1607 				     idx, pa, attr);
1608 }
1609 
1610 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1611 			paddr_t *pa, uint32_t *attr)
1612 {
1613 	assert(idx < tbl_info->num_entries);
1614 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1615 				     idx, pa, attr);
1616 }
1617 
1618 static void clear_region(struct core_mmu_table_info *tbl_info,
1619 			 struct tee_mmap_region *region)
1620 {
1621 	unsigned int end = 0;
1622 	unsigned int idx = 0;
1623 
1624 	/* va, len and pa should be block aligned */
1625 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1626 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1627 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1628 
1629 	idx = core_mmu_va2idx(tbl_info, region->va);
1630 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1631 
1632 	while (idx < end) {
1633 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1634 		idx++;
1635 	}
1636 }
1637 
1638 static void set_region(struct core_mmu_table_info *tbl_info,
1639 		       struct tee_mmap_region *region)
1640 {
1641 	unsigned int end;
1642 	unsigned int idx;
1643 	paddr_t pa;
1644 
1645 	/* va, len and pa should be block aligned */
1646 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1647 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1648 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1649 
1650 	idx = core_mmu_va2idx(tbl_info, region->va);
1651 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1652 	pa = region->pa;
1653 
1654 	while (idx < end) {
1655 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1656 		idx++;
1657 		pa += BIT64(tbl_info->shift);
1658 	}
1659 }
1660 
1661 static void set_pg_region(struct core_mmu_table_info *dir_info,
1662 			  struct vm_region *region, struct pgt **pgt,
1663 			  struct core_mmu_table_info *pg_info)
1664 {
1665 	struct tee_mmap_region r = {
1666 		.va = region->va,
1667 		.size = region->size,
1668 		.attr = region->attr,
1669 	};
1670 	vaddr_t end = r.va + r.size;
1671 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1672 
1673 	while (r.va < end) {
1674 		if (!pg_info->table ||
1675 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1676 			/*
1677 			 * We're assigning a new translation table.
1678 			 */
1679 			unsigned int idx;
1680 
1681 			/* Virtual addresses must grow */
1682 			assert(r.va > pg_info->va_base);
1683 
1684 			idx = core_mmu_va2idx(dir_info, r.va);
1685 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1686 
1687 			/*
1688 			 * Advance pgt to va_base, note that we may need to
1689 			 * skip multiple page tables if there are large
1690 			 * holes in the vm map.
1691 			 */
1692 			while ((*pgt)->vabase < pg_info->va_base) {
1693 				*pgt = SLIST_NEXT(*pgt, link);
1694 				/* We should have allocated enough */
1695 				assert(*pgt);
1696 			}
1697 			assert((*pgt)->vabase == pg_info->va_base);
1698 			pg_info->table = (*pgt)->tbl;
1699 
1700 			core_mmu_set_entry(dir_info, idx,
1701 					   virt_to_phys(pg_info->table),
1702 					   pgt_attr);
1703 		}
1704 
1705 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1706 			     end - r.va);
1707 
1708 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1709 			size_t granule = BIT(pg_info->shift);
1710 			size_t offset = r.va - region->va + region->offset;
1711 
1712 			r.size = MIN(r.size,
1713 				     mobj_get_phys_granule(region->mobj));
1714 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1715 
1716 			if (mobj_get_pa(region->mobj, offset, granule,
1717 					&r.pa) != TEE_SUCCESS)
1718 				panic("Failed to get PA of unpaged mobj");
1719 			set_region(pg_info, &r);
1720 		}
1721 		r.va += r.size;
1722 	}
1723 }
1724 
1725 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1726 			     size_t size_left, paddr_t block_size,
1727 			     struct tee_mmap_region *mm __maybe_unused)
1728 {
1729 	/* VA and PA are aligned to block size at current level */
1730 	if ((vaddr | paddr) & (block_size - 1))
1731 		return false;
1732 
1733 	/* Remainder fits into block at current level */
1734 	if (size_left < block_size)
1735 		return false;
1736 
1737 #ifdef CFG_WITH_PAGER
1738 	/*
1739 	 * If pager is enabled, we need to map tee ram
1740 	 * regions with small pages only
1741 	 */
1742 	if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE)
1743 		return false;
1744 #endif
1745 
1746 	return true;
1747 }
1748 
1749 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1750 {
1751 	struct core_mmu_table_info tbl_info;
1752 	unsigned int idx;
1753 	vaddr_t vaddr = mm->va;
1754 	paddr_t paddr = mm->pa;
1755 	ssize_t size_left = mm->size;
1756 	unsigned int level;
1757 	bool table_found;
1758 	uint32_t old_attr;
1759 
1760 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1761 
1762 	while (size_left > 0) {
1763 		level = CORE_MMU_BASE_TABLE_LEVEL;
1764 
1765 		while (true) {
1766 			paddr_t block_size = 0;
1767 
1768 			assert(core_mmu_level_in_range(level));
1769 
1770 			table_found = core_mmu_find_table(prtn, vaddr, level,
1771 							  &tbl_info);
1772 			if (!table_found)
1773 				panic("can't find table for mapping");
1774 
1775 			block_size = BIT64(tbl_info.shift);
1776 
1777 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1778 			if (!can_map_at_level(paddr, vaddr, size_left,
1779 					      block_size, mm)) {
1780 				bool secure = mm->attr & TEE_MATTR_SECURE;
1781 
1782 				/*
1783 				 * This part of the region can't be mapped at
1784 				 * this level. Need to go deeper.
1785 				 */
1786 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1787 								     idx,
1788 								     secure))
1789 					panic("Can't divide MMU entry");
1790 				level = tbl_info.next_level;
1791 				continue;
1792 			}
1793 
1794 			/* We can map part of the region at current level */
1795 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1796 			if (old_attr)
1797 				panic("Page is already mapped");
1798 
1799 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1800 			paddr += block_size;
1801 			vaddr += block_size;
1802 			size_left -= block_size;
1803 
1804 			break;
1805 		}
1806 	}
1807 }
1808 
1809 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1810 			      enum teecore_memtypes memtype)
1811 {
1812 	TEE_Result ret;
1813 	struct core_mmu_table_info tbl_info;
1814 	struct tee_mmap_region *mm;
1815 	unsigned int idx;
1816 	uint32_t old_attr;
1817 	uint32_t exceptions;
1818 	vaddr_t vaddr = vstart;
1819 	size_t i;
1820 	bool secure;
1821 
1822 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1823 
1824 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1825 
1826 	if (vaddr & SMALL_PAGE_MASK)
1827 		return TEE_ERROR_BAD_PARAMETERS;
1828 
1829 	exceptions = mmu_lock();
1830 
1831 	mm = find_map_by_va((void *)vaddr);
1832 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1833 		panic("VA does not belong to any known mm region");
1834 
1835 	if (!core_mmu_is_dynamic_vaspace(mm))
1836 		panic("Trying to map into static region");
1837 
1838 	for (i = 0; i < num_pages; i++) {
1839 		if (pages[i] & SMALL_PAGE_MASK) {
1840 			ret = TEE_ERROR_BAD_PARAMETERS;
1841 			goto err;
1842 		}
1843 
1844 		while (true) {
1845 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1846 						 &tbl_info))
1847 				panic("Can't find pagetable for vaddr ");
1848 
1849 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1850 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1851 				break;
1852 
1853 			/* This is supertable. Need to divide it. */
1854 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1855 							     secure))
1856 				panic("Failed to spread pgdir on small tables");
1857 		}
1858 
1859 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1860 		if (old_attr)
1861 			panic("Page is already mapped");
1862 
1863 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1864 				   core_mmu_type_to_attr(memtype));
1865 		vaddr += SMALL_PAGE_SIZE;
1866 	}
1867 
1868 	/*
1869 	 * Make sure all the changes to translation tables are visible
1870 	 * before returning. TLB doesn't need to be invalidated as we are
1871 	 * guaranteed that there's no valid mapping in this range.
1872 	 */
1873 	core_mmu_table_write_barrier();
1874 	mmu_unlock(exceptions);
1875 
1876 	return TEE_SUCCESS;
1877 err:
1878 	mmu_unlock(exceptions);
1879 
1880 	if (i)
1881 		core_mmu_unmap_pages(vstart, i);
1882 
1883 	return ret;
1884 }
1885 
1886 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
1887 					 size_t num_pages,
1888 					 enum teecore_memtypes memtype)
1889 {
1890 	struct core_mmu_table_info tbl_info = { };
1891 	struct tee_mmap_region *mm = NULL;
1892 	unsigned int idx = 0;
1893 	uint32_t old_attr = 0;
1894 	uint32_t exceptions = 0;
1895 	vaddr_t vaddr = vstart;
1896 	paddr_t paddr = pstart;
1897 	size_t i = 0;
1898 	bool secure = false;
1899 
1900 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1901 
1902 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1903 
1904 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
1905 		return TEE_ERROR_BAD_PARAMETERS;
1906 
1907 	exceptions = mmu_lock();
1908 
1909 	mm = find_map_by_va((void *)vaddr);
1910 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1911 		panic("VA does not belong to any known mm region");
1912 
1913 	if (!core_mmu_is_dynamic_vaspace(mm))
1914 		panic("Trying to map into static region");
1915 
1916 	for (i = 0; i < num_pages; i++) {
1917 		while (true) {
1918 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1919 						 &tbl_info))
1920 				panic("Can't find pagetable for vaddr ");
1921 
1922 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1923 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1924 				break;
1925 
1926 			/* This is supertable. Need to divide it. */
1927 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1928 							     secure))
1929 				panic("Failed to spread pgdir on small tables");
1930 		}
1931 
1932 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1933 		if (old_attr)
1934 			panic("Page is already mapped");
1935 
1936 		core_mmu_set_entry(&tbl_info, idx, paddr,
1937 				   core_mmu_type_to_attr(memtype));
1938 		paddr += SMALL_PAGE_SIZE;
1939 		vaddr += SMALL_PAGE_SIZE;
1940 	}
1941 
1942 	/*
1943 	 * Make sure all the changes to translation tables are visible
1944 	 * before returning. TLB doesn't need to be invalidated as we are
1945 	 * guaranteed that there's no valid mapping in this range.
1946 	 */
1947 	core_mmu_table_write_barrier();
1948 	mmu_unlock(exceptions);
1949 
1950 	return TEE_SUCCESS;
1951 }
1952 
1953 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
1954 {
1955 	struct core_mmu_table_info tbl_info;
1956 	struct tee_mmap_region *mm;
1957 	size_t i;
1958 	unsigned int idx;
1959 	uint32_t exceptions;
1960 
1961 	exceptions = mmu_lock();
1962 
1963 	mm = find_map_by_va((void *)vstart);
1964 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
1965 		panic("VA does not belong to any known mm region");
1966 
1967 	if (!core_mmu_is_dynamic_vaspace(mm))
1968 		panic("Trying to unmap static region");
1969 
1970 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
1971 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
1972 			panic("Can't find pagetable");
1973 
1974 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
1975 			panic("Invalid pagetable level");
1976 
1977 		idx = core_mmu_va2idx(&tbl_info, vstart);
1978 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
1979 	}
1980 	tlbi_all();
1981 
1982 	mmu_unlock(exceptions);
1983 }
1984 
1985 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
1986 				struct user_mode_ctx *uctx)
1987 {
1988 	struct core_mmu_table_info pg_info = { };
1989 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
1990 	struct pgt *pgt = NULL;
1991 	struct pgt *p = NULL;
1992 	struct vm_region *r = NULL;
1993 
1994 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
1995 		return; /* Nothing to map */
1996 
1997 	/*
1998 	 * Allocate all page tables in advance.
1999 	 */
2000 	pgt_get_all(uctx);
2001 	pgt = SLIST_FIRST(pgt_cache);
2002 
2003 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2004 
2005 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2006 		set_pg_region(dir_info, r, &pgt, &pg_info);
2007 	/* Record that the translation tables now are populated. */
2008 	SLIST_FOREACH(p, pgt_cache, link) {
2009 		p->populated = true;
2010 		if (p == pgt)
2011 			break;
2012 	}
2013 	assert(p == pgt);
2014 }
2015 
2016 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2017 				   size_t len)
2018 {
2019 	struct core_mmu_table_info tbl_info = { };
2020 	struct tee_mmap_region *res_map = NULL;
2021 	struct tee_mmap_region *map = NULL;
2022 	paddr_t pa = virt_to_phys(addr);
2023 	size_t granule = 0;
2024 	ptrdiff_t i = 0;
2025 	paddr_t p = 0;
2026 	size_t l = 0;
2027 
2028 	map = find_map_by_type_and_pa(type, pa, len);
2029 	if (!map)
2030 		return TEE_ERROR_GENERIC;
2031 
2032 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2033 	if (!res_map)
2034 		return TEE_ERROR_GENERIC;
2035 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2036 		return TEE_ERROR_GENERIC;
2037 	granule = BIT(tbl_info.shift);
2038 
2039 	if (map < static_memory_map ||
2040 	    map >= static_memory_map + ARRAY_SIZE(static_memory_map))
2041 		return TEE_ERROR_GENERIC;
2042 	i = map - static_memory_map;
2043 
2044 	/* Check that we have a full match */
2045 	p = ROUNDDOWN(pa, granule);
2046 	l = ROUNDUP(len + pa - p, granule);
2047 	if (map->pa != p || map->size != l)
2048 		return TEE_ERROR_GENERIC;
2049 
2050 	clear_region(&tbl_info, map);
2051 	tlbi_all();
2052 
2053 	/* If possible remove the va range from res_map */
2054 	if (res_map->va - map->size == map->va) {
2055 		res_map->va -= map->size;
2056 		res_map->size += map->size;
2057 	}
2058 
2059 	/* Remove the entry. */
2060 	memmove(map, map + 1,
2061 		(ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map));
2062 
2063 	/* Clear the last new entry in case it was used */
2064 	memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1,
2065 	       0, sizeof(*map));
2066 
2067 	return TEE_SUCCESS;
2068 }
2069 
2070 struct tee_mmap_region *
2071 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2072 {
2073 	struct tee_mmap_region *map = NULL;
2074 	struct tee_mmap_region *map_found = NULL;
2075 
2076 	if (!len)
2077 		return NULL;
2078 
2079 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
2080 		if (map->type != type)
2081 			continue;
2082 
2083 		if (map_found)
2084 			return NULL;
2085 
2086 		map_found = map;
2087 	}
2088 
2089 	if (!map_found || map_found->size < len)
2090 		return NULL;
2091 
2092 	return map_found;
2093 }
2094 
2095 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2096 {
2097 	struct core_mmu_table_info tbl_info;
2098 	struct tee_mmap_region *map;
2099 	size_t n;
2100 	size_t granule;
2101 	paddr_t p;
2102 	size_t l;
2103 
2104 	if (!len)
2105 		return NULL;
2106 
2107 	if (!core_mmu_check_end_pa(addr, len))
2108 		return NULL;
2109 
2110 	/* Check if the memory is already mapped */
2111 	map = find_map_by_type_and_pa(type, addr, len);
2112 	if (map && pbuf_inside_map_area(addr, len, map))
2113 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2114 
2115 	/* Find the reserved va space used for late mappings */
2116 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2117 	if (!map)
2118 		return NULL;
2119 
2120 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2121 		return NULL;
2122 
2123 	granule = BIT64(tbl_info.shift);
2124 	p = ROUNDDOWN(addr, granule);
2125 	l = ROUNDUP(len + addr - p, granule);
2126 
2127 	/* Ban overflowing virtual addresses */
2128 	if (map->size < l)
2129 		return NULL;
2130 
2131 	/*
2132 	 * Something is wrong, we can't fit the va range into the selected
2133 	 * table. The reserved va range is possibly missaligned with
2134 	 * granule.
2135 	 */
2136 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2137 		return NULL;
2138 
2139 	/* Find end of the memory map */
2140 	n = 0;
2141 	while (!core_mmap_is_end_of_table(static_memory_map + n))
2142 		n++;
2143 
2144 	if (n < (ARRAY_SIZE(static_memory_map) - 1)) {
2145 		/* There's room for another entry */
2146 		static_memory_map[n].va = map->va;
2147 		static_memory_map[n].size = l;
2148 		static_memory_map[n + 1].type = MEM_AREA_END;
2149 		map->va += l;
2150 		map->size -= l;
2151 		map = static_memory_map + n;
2152 	} else {
2153 		/*
2154 		 * There isn't room for another entry, steal the reserved
2155 		 * entry as it's not useful for anything else any longer.
2156 		 */
2157 		map->size = l;
2158 	}
2159 	map->type = type;
2160 	map->region_size = granule;
2161 	map->attr = core_mmu_type_to_attr(type);
2162 	map->pa = p;
2163 
2164 	set_region(&tbl_info, map);
2165 
2166 	/* Make sure the new entry is visible before continuing. */
2167 	core_mmu_table_write_barrier();
2168 
2169 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2170 }
2171 
2172 #ifdef CFG_WITH_PAGER
2173 static vaddr_t get_linear_map_end_va(void)
2174 {
2175 	/* this is synced with the generic linker file kern.ld.S */
2176 	return (vaddr_t)__heap2_end;
2177 }
2178 
2179 static paddr_t get_linear_map_end_pa(void)
2180 {
2181 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2182 }
2183 #endif
2184 
2185 #if defined(CFG_TEE_CORE_DEBUG)
2186 static void check_pa_matches_va(void *va, paddr_t pa)
2187 {
2188 	TEE_Result res = TEE_ERROR_GENERIC;
2189 	vaddr_t v = (vaddr_t)va;
2190 	paddr_t p = 0;
2191 	struct core_mmu_table_info ti __maybe_unused = { };
2192 
2193 	if (core_mmu_user_va_range_is_defined()) {
2194 		vaddr_t user_va_base = 0;
2195 		size_t user_va_size = 0;
2196 
2197 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2198 		if (v >= user_va_base &&
2199 		    v <= (user_va_base - 1 + user_va_size)) {
2200 			if (!core_mmu_user_mapping_is_active()) {
2201 				if (pa)
2202 					panic("issue in linear address space");
2203 				return;
2204 			}
2205 
2206 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2207 				       va, &p);
2208 			if (res == TEE_ERROR_NOT_SUPPORTED)
2209 				return;
2210 			if (res == TEE_SUCCESS && pa != p)
2211 				panic("bad pa");
2212 			if (res != TEE_SUCCESS && pa)
2213 				panic("false pa");
2214 			return;
2215 		}
2216 	}
2217 #ifdef CFG_WITH_PAGER
2218 	if (is_unpaged(va)) {
2219 		if (v - boot_mmu_config.map_offset != pa)
2220 			panic("issue in linear address space");
2221 		return;
2222 	}
2223 
2224 	if (tee_pager_get_table_info(v, &ti)) {
2225 		uint32_t a;
2226 
2227 		/*
2228 		 * Lookups in the page table managed by the pager is
2229 		 * dangerous for addresses in the paged area as those pages
2230 		 * changes all the time. But some ranges are safe,
2231 		 * rw-locked areas when the page is populated for instance.
2232 		 */
2233 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2234 		if (a & TEE_MATTR_VALID_BLOCK) {
2235 			paddr_t mask = BIT64(ti.shift) - 1;
2236 
2237 			p |= v & mask;
2238 			if (pa != p)
2239 				panic();
2240 		} else {
2241 			if (pa)
2242 				panic();
2243 		}
2244 		return;
2245 	}
2246 #endif
2247 
2248 	if (!core_va2pa_helper(va, &p)) {
2249 		/* Verfiy only the static mapping (case non null phys addr) */
2250 		if (p && pa != p) {
2251 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2252 			     va, p, pa);
2253 			panic();
2254 		}
2255 	} else {
2256 		if (pa) {
2257 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2258 			panic();
2259 		}
2260 	}
2261 }
2262 #else
2263 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2264 {
2265 }
2266 #endif
2267 
2268 paddr_t virt_to_phys(void *va)
2269 {
2270 	paddr_t pa = 0;
2271 
2272 	if (!arch_va2pa_helper(va, &pa))
2273 		pa = 0;
2274 	check_pa_matches_va(va, pa);
2275 	return pa;
2276 }
2277 
2278 #if defined(CFG_TEE_CORE_DEBUG)
2279 static void check_va_matches_pa(paddr_t pa, void *va)
2280 {
2281 	paddr_t p = 0;
2282 
2283 	if (!va)
2284 		return;
2285 
2286 	p = virt_to_phys(va);
2287 	if (p != pa) {
2288 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2289 		panic();
2290 	}
2291 }
2292 #else
2293 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2294 {
2295 }
2296 #endif
2297 
2298 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2299 {
2300 	if (!core_mmu_user_mapping_is_active())
2301 		return NULL;
2302 
2303 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2304 }
2305 
2306 #ifdef CFG_WITH_PAGER
2307 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2308 {
2309 	paddr_t end_pa = 0;
2310 
2311 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2312 		return NULL;
2313 
2314 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2315 		if (end_pa > get_linear_map_end_pa())
2316 			return NULL;
2317 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2318 	}
2319 
2320 	return tee_pager_phys_to_virt(pa, len);
2321 }
2322 #else
2323 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2324 {
2325 	struct tee_mmap_region *mmap = NULL;
2326 
2327 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2328 	if (!mmap)
2329 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2330 	if (!mmap)
2331 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2332 	if (!mmap)
2333 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2334 	if (!mmap)
2335 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2336 	if (!mmap)
2337 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2338 	/*
2339 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2340 	 * used with pager and not needed here.
2341 	 */
2342 	return map_pa2va(mmap, pa, len);
2343 }
2344 #endif
2345 
2346 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2347 {
2348 	void *va = NULL;
2349 
2350 	switch (m) {
2351 	case MEM_AREA_TS_VASPACE:
2352 		va = phys_to_virt_ts_vaspace(pa, len);
2353 		break;
2354 	case MEM_AREA_TEE_RAM:
2355 	case MEM_AREA_TEE_RAM_RX:
2356 	case MEM_AREA_TEE_RAM_RO:
2357 	case MEM_AREA_TEE_RAM_RW:
2358 	case MEM_AREA_NEX_RAM_RO:
2359 	case MEM_AREA_NEX_RAM_RW:
2360 		va = phys_to_virt_tee_ram(pa, len);
2361 		break;
2362 	case MEM_AREA_SHM_VASPACE:
2363 		/* Find VA from PA in dynamic SHM is not yet supported */
2364 		va = NULL;
2365 		break;
2366 	default:
2367 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2368 	}
2369 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2370 		check_va_matches_pa(pa, va);
2371 	return va;
2372 }
2373 
2374 void *phys_to_virt_io(paddr_t pa, size_t len)
2375 {
2376 	struct tee_mmap_region *map = NULL;
2377 	void *va = NULL;
2378 
2379 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2380 	if (!map)
2381 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2382 	if (!map)
2383 		return NULL;
2384 	va = map_pa2va(map, pa, len);
2385 	check_va_matches_pa(pa, va);
2386 	return va;
2387 }
2388 
2389 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2390 {
2391 	if (cpu_mmu_enabled())
2392 		return (vaddr_t)phys_to_virt(pa, type, len);
2393 
2394 	return (vaddr_t)pa;
2395 }
2396 
2397 #ifdef CFG_WITH_PAGER
2398 bool is_unpaged(void *va)
2399 {
2400 	vaddr_t v = (vaddr_t)va;
2401 
2402 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2403 }
2404 #else
2405 bool is_unpaged(void *va __unused)
2406 {
2407 	return true;
2408 }
2409 #endif
2410 
2411 void core_mmu_init_virtualization(void)
2412 {
2413 	paddr_t b1 = 0;
2414 	paddr_size_t s1 = 0;
2415 
2416 	static_assert(ARRAY_SIZE(secure_only) <= 2);
2417 	if (ARRAY_SIZE(secure_only) == 2) {
2418 		b1 = secure_only[1].paddr;
2419 		s1 = secure_only[1].size;
2420 	}
2421 	virt_init_memory(static_memory_map, secure_only[0].paddr,
2422 			 secure_only[0].size, b1, s1);
2423 }
2424 
2425 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2426 {
2427 	assert(p->pa);
2428 	if (cpu_mmu_enabled()) {
2429 		if (!p->va)
2430 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2431 		assert(p->va);
2432 		return p->va;
2433 	}
2434 	return p->pa;
2435 }
2436 
2437 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2438 {
2439 	assert(p->pa);
2440 	if (cpu_mmu_enabled()) {
2441 		if (!p->va)
2442 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2443 						      len);
2444 		assert(p->va);
2445 		return p->va;
2446 	}
2447 	return p->pa;
2448 }
2449 
2450 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2451 {
2452 	assert(p->pa);
2453 	if (cpu_mmu_enabled()) {
2454 		if (!p->va)
2455 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2456 						      len);
2457 		assert(p->va);
2458 		return p->va;
2459 	}
2460 	return p->pa;
2461 }
2462 
2463 #ifdef CFG_CORE_RESERVED_SHM
2464 static TEE_Result teecore_init_pub_ram(void)
2465 {
2466 	vaddr_t s = 0;
2467 	vaddr_t e = 0;
2468 
2469 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2470 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2471 
2472 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2473 		panic("invalid PUB RAM");
2474 
2475 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2476 	if (!tee_vbuf_is_non_sec(s, e - s))
2477 		panic("PUB RAM is not non-secure");
2478 
2479 #ifdef CFG_PL310
2480 	/* Allocate statically the l2cc mutex */
2481 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2482 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2483 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2484 #endif
2485 
2486 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2487 	default_nsec_shm_size = e - s;
2488 
2489 	return TEE_SUCCESS;
2490 }
2491 early_init(teecore_init_pub_ram);
2492 #endif /*CFG_CORE_RESERVED_SHM*/
2493 
2494 void core_mmu_init_ta_ram(void)
2495 {
2496 	vaddr_t s = 0;
2497 	vaddr_t e = 0;
2498 	paddr_t ps = 0;
2499 	size_t size = 0;
2500 
2501 	/*
2502 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2503 	 * shared mem allocated from teecore.
2504 	 */
2505 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
2506 		virt_get_ta_ram(&s, &e);
2507 	else
2508 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2509 
2510 	ps = virt_to_phys((void *)s);
2511 	size = e - s;
2512 
2513 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2514 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2515 		panic("invalid TA RAM");
2516 
2517 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2518 	if (!tee_pbuf_is_sec(ps, size))
2519 		panic("TA RAM is not secure");
2520 
2521 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2522 		panic("TA RAM pool is not empty");
2523 
2524 	/* remove previous config and init TA ddr memory pool */
2525 	tee_mm_final(&tee_mm_sec_ddr);
2526 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2527 		    TEE_MM_POOL_NO_FLAGS);
2528 }
2529