xref: /optee_os/core/mm/core_mmu.c (revision b95263921a806d4cad9f333b43e5b078c2280c7b)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <mm/core_memprot.h>
22 #include <mm/core_mmu.h>
23 #include <mm/mobj.h>
24 #include <mm/pgt_cache.h>
25 #include <mm/tee_pager.h>
26 #include <mm/vm.h>
27 #include <platform_config.h>
28 #include <string.h>
29 #include <trace.h>
30 #include <util.h>
31 
32 #ifndef DEBUG_XLAT_TABLE
33 #define DEBUG_XLAT_TABLE 0
34 #endif
35 
36 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
37 
38 #ifdef CFG_CORE_PHYS_RELOCATABLE
39 unsigned long core_mmu_tee_load_pa __nex_bss;
40 #else
41 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
42 #endif
43 
44 /*
45  * These variables are initialized before .bss is cleared. To avoid
46  * resetting them when .bss is cleared we're storing them in .data instead,
47  * even if they initially are zero.
48  */
49 
50 #ifdef CFG_CORE_RESERVED_SHM
51 /* Default NSec shared memory allocated from NSec world */
52 unsigned long default_nsec_shm_size __nex_bss;
53 unsigned long default_nsec_shm_paddr __nex_bss;
54 #endif
55 
56 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS
57 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE)
58 						+ 1
59 #endif
60 						+ 1] __nex_bss;
61 
62 /* Define the platform's memory layout. */
63 struct memaccess_area {
64 	paddr_t paddr;
65 	size_t size;
66 };
67 
68 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
69 
70 static struct memaccess_area secure_only[] __nex_data = {
71 #ifdef CFG_CORE_PHYS_RELOCATABLE
72 	MEMACCESS_AREA(0, 0),
73 #else
74 #ifdef TRUSTED_SRAM_BASE
75 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
76 #endif
77 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
78 #endif
79 };
80 
81 static struct memaccess_area nsec_shared[] __nex_data = {
82 #ifdef CFG_CORE_RESERVED_SHM
83 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
84 #endif
85 };
86 
87 #if defined(CFG_SECURE_DATA_PATH)
88 static const char *tz_sdp_match = "linaro,secure-heap";
89 static struct memaccess_area sec_sdp;
90 #ifdef CFG_TEE_SDP_MEM_BASE
91 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
92 #endif
93 #ifdef TEE_SDP_TEST_MEM_BASE
94 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
95 #endif
96 #endif
97 
98 #ifdef CFG_CORE_RESERVED_SHM
99 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
100 #endif
101 static unsigned int mmu_spinlock;
102 
103 static uint32_t mmu_lock(void)
104 {
105 	return cpu_spin_lock_xsave(&mmu_spinlock);
106 }
107 
108 static void mmu_unlock(uint32_t exceptions)
109 {
110 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
111 }
112 
113 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
114 {
115 	/*
116 	 * The first range is always used to cover OP-TEE core memory, but
117 	 * depending on configuration it may cover more than that.
118 	 */
119 	*base = secure_only[0].paddr;
120 	*size = secure_only[0].size;
121 }
122 
123 #ifdef CFG_CORE_PHYS_RELOCATABLE
124 void core_mmu_set_secure_memory(paddr_t base, size_t size)
125 {
126 	static_assert(ARRAY_SIZE(secure_only) == 1);
127 	assert(!secure_only[0].size);
128 	assert(base && size);
129 
130 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
131 	secure_only[0].paddr = base;
132 	secure_only[0].size = size;
133 }
134 #endif
135 
136 void core_mmu_get_ta_range(paddr_t *base, size_t *size)
137 {
138 	paddr_t b = 0;
139 	size_t s = 0;
140 
141 	static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE));
142 #ifdef TA_RAM_START
143 	b = TA_RAM_START;
144 	s = TA_RAM_SIZE;
145 #else
146 	static_assert(ARRAY_SIZE(secure_only) <= 2);
147 	if (ARRAY_SIZE(secure_only) == 1) {
148 		vaddr_t load_offs = 0;
149 
150 		assert(core_mmu_tee_load_pa >= secure_only[0].paddr);
151 		load_offs = core_mmu_tee_load_pa - secure_only[0].paddr;
152 
153 		assert(secure_only[0].size >
154 		       load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE);
155 		b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE;
156 		s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE -
157 		    TEE_SDP_TEST_MEM_SIZE;
158 	} else {
159 		assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE);
160 		b = secure_only[1].paddr;
161 		s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE;
162 	}
163 #endif
164 	if (base)
165 		*base = b;
166 	if (size)
167 		*size = s;
168 }
169 
170 static struct tee_mmap_region *get_memory_map(void)
171 {
172 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
173 		struct tee_mmap_region *map = virt_get_memory_map();
174 
175 		if (map)
176 			return map;
177 	}
178 
179 	return static_memory_map;
180 }
181 
182 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
183 			     paddr_t pa, size_t size)
184 {
185 	size_t n;
186 
187 	for (n = 0; n < alen; n++)
188 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
189 			return true;
190 	return false;
191 }
192 
193 #define pbuf_intersects(a, pa, size) \
194 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
195 
196 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
197 			    paddr_t pa, size_t size)
198 {
199 	size_t n;
200 
201 	for (n = 0; n < alen; n++)
202 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
203 			return true;
204 	return false;
205 }
206 
207 #define pbuf_is_inside(a, pa, size) \
208 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
209 
210 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
211 {
212 	paddr_t end_pa = 0;
213 
214 	if (!map)
215 		return false;
216 
217 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
218 		return false;
219 
220 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
221 }
222 
223 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
224 {
225 	if (!map)
226 		return false;
227 	return (va >= map->va && va <= (map->va + map->size - 1));
228 }
229 
230 /* check if target buffer fits in a core default map area */
231 static bool pbuf_inside_map_area(unsigned long p, size_t l,
232 				 struct tee_mmap_region *map)
233 {
234 	return core_is_buffer_inside(p, l, map->pa, map->size);
235 }
236 
237 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
238 {
239 	struct tee_mmap_region *map;
240 
241 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++)
242 		if (map->type == type)
243 			return map;
244 	return NULL;
245 }
246 
247 static struct tee_mmap_region *
248 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
249 {
250 	struct tee_mmap_region *map;
251 
252 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
253 		if (map->type != type)
254 			continue;
255 		if (pa_is_in_map(map, pa, len))
256 			return map;
257 	}
258 	return NULL;
259 }
260 
261 static struct tee_mmap_region *find_map_by_va(void *va)
262 {
263 	struct tee_mmap_region *map = get_memory_map();
264 	unsigned long a = (unsigned long)va;
265 
266 	while (!core_mmap_is_end_of_table(map)) {
267 		if (a >= map->va && a <= (map->va - 1 + map->size))
268 			return map;
269 		map++;
270 	}
271 	return NULL;
272 }
273 
274 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
275 {
276 	struct tee_mmap_region *map = get_memory_map();
277 
278 	while (!core_mmap_is_end_of_table(map)) {
279 		if (pa >= map->pa && pa <= (map->pa + map->size - 1))
280 			return map;
281 		map++;
282 	}
283 	return NULL;
284 }
285 
286 #if defined(CFG_SECURE_DATA_PATH)
287 static bool dtb_get_sdp_region(void)
288 {
289 	void *fdt = NULL;
290 	int node = 0;
291 	int tmp_node = 0;
292 	paddr_t tmp_addr = 0;
293 	size_t tmp_size = 0;
294 
295 	if (!IS_ENABLED(CFG_EMBED_DTB))
296 		return false;
297 
298 	fdt = get_embedded_dt();
299 	if (!fdt)
300 		panic("No DTB found");
301 
302 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
303 	if (node < 0) {
304 		DMSG("No %s compatible node found", tz_sdp_match);
305 		return false;
306 	}
307 	tmp_node = node;
308 	while (tmp_node >= 0) {
309 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
310 							 tz_sdp_match);
311 		if (tmp_node >= 0)
312 			DMSG("Ignore SDP pool node %s, supports only 1 node",
313 			     fdt_get_name(fdt, tmp_node, NULL));
314 	}
315 
316 	tmp_addr = fdt_reg_base_address(fdt, node);
317 	if (tmp_addr == DT_INFO_INVALID_REG) {
318 		EMSG("%s: Unable to get base addr from DT", tz_sdp_match);
319 		return false;
320 	}
321 
322 	tmp_size = fdt_reg_size(fdt, node);
323 	if (tmp_size == DT_INFO_INVALID_REG_SIZE) {
324 		EMSG("%s: Unable to get size of base addr from DT",
325 		     tz_sdp_match);
326 		return false;
327 	}
328 
329 	sec_sdp.paddr = tmp_addr;
330 	sec_sdp.size = tmp_size;
331 
332 	return true;
333 }
334 #endif
335 
336 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
337 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
338 				const struct core_mmu_phys_mem *start,
339 				const struct core_mmu_phys_mem *end)
340 {
341 	const struct core_mmu_phys_mem *mem;
342 
343 	for (mem = start; mem < end; mem++) {
344 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
345 			return true;
346 	}
347 
348 	return false;
349 }
350 #endif
351 
352 #ifdef CFG_CORE_DYN_SHM
353 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
354 			       paddr_t pa, size_t size)
355 {
356 	struct core_mmu_phys_mem *m = *mem;
357 	size_t n = 0;
358 
359 	while (true) {
360 		if (n >= *nelems) {
361 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
362 			     pa, size);
363 			return;
364 		}
365 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
366 			break;
367 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
368 			panic();
369 		n++;
370 	}
371 
372 	if (pa == m[n].addr && size == m[n].size) {
373 		/* Remove this entry */
374 		(*nelems)--;
375 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
376 		m = nex_realloc(m, sizeof(*m) * *nelems);
377 		if (!m)
378 			panic();
379 		*mem = m;
380 	} else if (pa == m[n].addr) {
381 		m[n].addr += size;
382 		m[n].size -= size;
383 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
384 		m[n].size -= size;
385 	} else {
386 		/* Need to split the memory entry */
387 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
388 		if (!m)
389 			panic();
390 		*mem = m;
391 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
392 		(*nelems)++;
393 		m[n].size = pa - m[n].addr;
394 		m[n + 1].size -= size + m[n].size;
395 		m[n + 1].addr = pa + size;
396 	}
397 }
398 
399 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
400 				      size_t nelems,
401 				      struct tee_mmap_region *map)
402 {
403 	size_t n;
404 
405 	for (n = 0; n < nelems; n++) {
406 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
407 					    map->pa, map->size)) {
408 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
409 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
410 			     start[n].addr, start[n].size,
411 			     map->type, map->pa, map->size);
412 			panic();
413 		}
414 	}
415 }
416 
417 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
418 static size_t discovered_nsec_ddr_nelems __nex_bss;
419 
420 static int cmp_pmem_by_addr(const void *a, const void *b)
421 {
422 	const struct core_mmu_phys_mem *pmem_a = a;
423 	const struct core_mmu_phys_mem *pmem_b = b;
424 
425 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
426 }
427 
428 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
429 				      size_t nelems)
430 {
431 	struct core_mmu_phys_mem *m = start;
432 	size_t num_elems = nelems;
433 	struct tee_mmap_region *map = static_memory_map;
434 	const struct core_mmu_phys_mem __maybe_unused *pmem;
435 	size_t n = 0;
436 
437 	assert(!discovered_nsec_ddr_start);
438 	assert(m && num_elems);
439 
440 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
441 
442 	/*
443 	 * Non-secure shared memory and also secure data
444 	 * path memory are supposed to reside inside
445 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
446 	 * are used for a specific purpose make holes for
447 	 * those memory in the normal non-secure memory.
448 	 *
449 	 * This has to be done since for instance QEMU
450 	 * isn't aware of which memory range in the
451 	 * non-secure memory is used for NSEC_SHM.
452 	 */
453 
454 #ifdef CFG_SECURE_DATA_PATH
455 	if (dtb_get_sdp_region())
456 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
457 
458 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
459 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
460 #endif
461 
462 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
463 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
464 				   secure_only[n].size);
465 
466 	for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) {
467 		switch (map->type) {
468 		case MEM_AREA_NSEC_SHM:
469 			carve_out_phys_mem(&m, &num_elems, map->pa, map->size);
470 			break;
471 		case MEM_AREA_EXT_DT:
472 		case MEM_AREA_MANIFEST_DT:
473 		case MEM_AREA_RES_VASPACE:
474 		case MEM_AREA_SHM_VASPACE:
475 		case MEM_AREA_TS_VASPACE:
476 		case MEM_AREA_PAGER_VASPACE:
477 			break;
478 		default:
479 			check_phys_mem_is_outside(m, num_elems, map);
480 		}
481 	}
482 
483 	discovered_nsec_ddr_start = m;
484 	discovered_nsec_ddr_nelems = num_elems;
485 
486 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
487 				   m[num_elems - 1].size))
488 		panic();
489 }
490 
491 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
492 				    const struct core_mmu_phys_mem **end)
493 {
494 	if (!discovered_nsec_ddr_start)
495 		return false;
496 
497 	*start = discovered_nsec_ddr_start;
498 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
499 
500 	return true;
501 }
502 
503 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
504 {
505 	const struct core_mmu_phys_mem *start;
506 	const struct core_mmu_phys_mem *end;
507 
508 	if (!get_discovered_nsec_ddr(&start, &end))
509 		return false;
510 
511 	return pbuf_is_special_mem(pbuf, len, start, end);
512 }
513 
514 bool core_mmu_nsec_ddr_is_defined(void)
515 {
516 	const struct core_mmu_phys_mem *start;
517 	const struct core_mmu_phys_mem *end;
518 
519 	if (!get_discovered_nsec_ddr(&start, &end))
520 		return false;
521 
522 	return start != end;
523 }
524 #else
525 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
526 {
527 	return false;
528 }
529 #endif /*CFG_CORE_DYN_SHM*/
530 
531 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
532 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
533 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
534 
535 #ifdef CFG_SECURE_DATA_PATH
536 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
537 {
538 	bool is_sdp_mem = false;
539 
540 	if (sec_sdp.size)
541 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
542 						   sec_sdp.size);
543 
544 	if (!is_sdp_mem)
545 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
546 						 phys_sdp_mem_end);
547 
548 	return is_sdp_mem;
549 }
550 
551 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
552 {
553 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
554 					    CORE_MEM_SDP_MEM);
555 
556 	if (!mobj)
557 		panic("can't create SDP physical memory object");
558 
559 	return mobj;
560 }
561 
562 struct mobj **core_sdp_mem_create_mobjs(void)
563 {
564 	const struct core_mmu_phys_mem *mem = NULL;
565 	struct mobj **mobj_base = NULL;
566 	struct mobj **mobj = NULL;
567 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
568 
569 	if (sec_sdp.size)
570 		cnt++;
571 
572 	/* SDP mobjs table must end with a NULL entry */
573 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
574 	if (!mobj_base)
575 		panic("Out of memory");
576 
577 	mobj = mobj_base;
578 
579 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
580 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
581 
582 	if (sec_sdp.size)
583 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
584 
585 	return mobj_base;
586 }
587 
588 #else /* CFG_SECURE_DATA_PATH */
589 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
590 {
591 	return false;
592 }
593 
594 #endif /* CFG_SECURE_DATA_PATH */
595 
596 /* Check special memories comply with registered memories */
597 static void verify_special_mem_areas(struct tee_mmap_region *mem_map,
598 				     size_t len,
599 				     const struct core_mmu_phys_mem *start,
600 				     const struct core_mmu_phys_mem *end,
601 				     const char *area_name __maybe_unused)
602 {
603 	const struct core_mmu_phys_mem *mem;
604 	const struct core_mmu_phys_mem *mem2;
605 	struct tee_mmap_region *mmap;
606 	size_t n;
607 
608 	if (start == end) {
609 		DMSG("No %s memory area defined", area_name);
610 		return;
611 	}
612 
613 	for (mem = start; mem < end; mem++)
614 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
615 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
616 
617 	/* Check memories do not intersect each other */
618 	for (mem = start; mem + 1 < end; mem++) {
619 		for (mem2 = mem + 1; mem2 < end; mem2++) {
620 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
621 						     mem->addr, mem->size)) {
622 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
623 						   mem->addr, mem->size);
624 				panic("Special memory intersection");
625 			}
626 		}
627 	}
628 
629 	/*
630 	 * Check memories do not intersect any mapped memory.
631 	 * This is called before reserved VA space is loaded in mem_map.
632 	 */
633 	for (mem = start; mem < end; mem++) {
634 		for (mmap = mem_map, n = 0; n < len; mmap++, n++) {
635 			if (core_is_buffer_intersect(mem->addr, mem->size,
636 						     mmap->pa, mmap->size)) {
637 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
638 						   mmap->pa, mmap->size);
639 				panic("Special memory intersection");
640 			}
641 		}
642 	}
643 }
644 
645 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems,
646 			 const char *mem_name __maybe_unused,
647 			 enum teecore_memtypes mem_type,
648 			 paddr_t mem_addr, paddr_size_t mem_size, size_t *last)
649 {
650 	size_t n = 0;
651 	paddr_t pa;
652 	paddr_size_t size;
653 
654 	if (!mem_size)	/* Discard null size entries */
655 		return;
656 	/*
657 	 * If some ranges of memory of the same type do overlap
658 	 * each others they are coalesced into one entry. To help this
659 	 * added entries are sorted by increasing physical.
660 	 *
661 	 * Note that it's valid to have the same physical memory as several
662 	 * different memory types, for instance the same device memory
663 	 * mapped as both secure and non-secure. This will probably not
664 	 * happen often in practice.
665 	 */
666 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
667 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
668 	while (true) {
669 		if (n >= (num_elems - 1)) {
670 			EMSG("Out of entries (%zu) in memory_map", num_elems);
671 			panic();
672 		}
673 		if (n == *last)
674 			break;
675 		pa = memory_map[n].pa;
676 		size = memory_map[n].size;
677 		if (mem_type == memory_map[n].type &&
678 		    ((pa <= (mem_addr + (mem_size - 1))) &&
679 		    (mem_addr <= (pa + (size - 1))))) {
680 			DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr);
681 			memory_map[n].pa = MIN(pa, mem_addr);
682 			memory_map[n].size = MAX(size, mem_size) +
683 					     (pa - memory_map[n].pa);
684 			return;
685 		}
686 		if (mem_type < memory_map[n].type ||
687 		    (mem_type == memory_map[n].type && mem_addr < pa))
688 			break; /* found the spot where to insert this memory */
689 		n++;
690 	}
691 
692 	memmove(memory_map + n + 1, memory_map + n,
693 		sizeof(struct tee_mmap_region) * (*last - n));
694 	(*last)++;
695 	memset(memory_map + n, 0, sizeof(memory_map[0]));
696 	memory_map[n].type = mem_type;
697 	memory_map[n].pa = mem_addr;
698 	memory_map[n].size = mem_size;
699 }
700 
701 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems,
702 			 enum teecore_memtypes type, size_t size, size_t *last)
703 {
704 	size_t n = 0;
705 
706 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
707 	while (true) {
708 		if (n >= (num_elems - 1)) {
709 			EMSG("Out of entries (%zu) in memory_map", num_elems);
710 			panic();
711 		}
712 		if (n == *last)
713 			break;
714 		if (type < memory_map[n].type)
715 			break;
716 		n++;
717 	}
718 
719 	memmove(memory_map + n + 1, memory_map + n,
720 		sizeof(struct tee_mmap_region) * (*last - n));
721 	(*last)++;
722 	memset(memory_map + n, 0, sizeof(memory_map[0]));
723 	memory_map[n].type = type;
724 	memory_map[n].size = size;
725 }
726 
727 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
728 {
729 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
730 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
731 				TEE_MATTR_MEM_TYPE_SHIFT;
732 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
733 				TEE_MATTR_MEM_TYPE_SHIFT;
734 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
735 				  TEE_MATTR_MEM_TYPE_SHIFT;
736 
737 	switch (t) {
738 	case MEM_AREA_TEE_RAM:
739 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
740 	case MEM_AREA_TEE_RAM_RX:
741 	case MEM_AREA_INIT_RAM_RX:
742 	case MEM_AREA_IDENTITY_MAP_RX:
743 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
744 	case MEM_AREA_TEE_RAM_RO:
745 	case MEM_AREA_INIT_RAM_RO:
746 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
747 	case MEM_AREA_TEE_RAM_RW:
748 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
749 	case MEM_AREA_NEX_RAM_RW:
750 	case MEM_AREA_TEE_ASAN:
751 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
752 	case MEM_AREA_TEE_COHERENT:
753 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
754 	case MEM_AREA_TA_RAM:
755 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
756 	case MEM_AREA_NSEC_SHM:
757 	case MEM_AREA_NEX_NSEC_SHM:
758 		return attr | TEE_MATTR_PRW | cached;
759 	case MEM_AREA_MANIFEST_DT:
760 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
761 	case MEM_AREA_EXT_DT:
762 		/*
763 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
764 		 * tree as secure non-cached memory, otherwise, fall back to
765 		 * non-secure mapping.
766 		 */
767 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
768 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
769 			       noncache;
770 		fallthrough;
771 	case MEM_AREA_IO_NSEC:
772 		return attr | TEE_MATTR_PRW | noncache;
773 	case MEM_AREA_IO_SEC:
774 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
775 	case MEM_AREA_RAM_NSEC:
776 		return attr | TEE_MATTR_PRW | cached;
777 	case MEM_AREA_RAM_SEC:
778 	case MEM_AREA_SEC_RAM_OVERALL:
779 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
780 	case MEM_AREA_RES_VASPACE:
781 	case MEM_AREA_SHM_VASPACE:
782 		return 0;
783 	case MEM_AREA_PAGER_VASPACE:
784 		return TEE_MATTR_SECURE;
785 	default:
786 		panic("invalid type");
787 	}
788 }
789 
790 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
791 {
792 	switch (mm->type) {
793 	case MEM_AREA_TEE_RAM:
794 	case MEM_AREA_TEE_RAM_RX:
795 	case MEM_AREA_TEE_RAM_RO:
796 	case MEM_AREA_TEE_RAM_RW:
797 	case MEM_AREA_INIT_RAM_RX:
798 	case MEM_AREA_INIT_RAM_RO:
799 	case MEM_AREA_NEX_RAM_RW:
800 	case MEM_AREA_NEX_RAM_RO:
801 	case MEM_AREA_TEE_ASAN:
802 		return true;
803 	default:
804 		return false;
805 	}
806 }
807 
808 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
809 {
810 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
811 }
812 
813 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
814 {
815 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
816 }
817 
818 static int cmp_mmap_by_lower_va(const void *a, const void *b)
819 {
820 	const struct tee_mmap_region *mm_a = a;
821 	const struct tee_mmap_region *mm_b = b;
822 
823 	return CMP_TRILEAN(mm_a->va, mm_b->va);
824 }
825 
826 static void dump_mmap_table(struct tee_mmap_region *memory_map)
827 {
828 	struct tee_mmap_region *map;
829 
830 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
831 		vaddr_t __maybe_unused vstart;
832 
833 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
834 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
835 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
836 		     teecore_memtype_name(map->type), vstart,
837 		     vstart + map->size - 1, map->pa,
838 		     (paddr_t)(map->pa + map->size - 1), map->size,
839 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
840 	}
841 }
842 
843 #if DEBUG_XLAT_TABLE
844 
845 static void dump_xlat_table(vaddr_t va, unsigned int level)
846 {
847 	struct core_mmu_table_info tbl_info;
848 	unsigned int idx = 0;
849 	paddr_t pa;
850 	uint32_t attr;
851 
852 	core_mmu_find_table(NULL, va, level, &tbl_info);
853 	va = tbl_info.va_base;
854 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
855 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
856 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
857 			const char *security_bit = "";
858 
859 			if (core_mmu_entry_have_security_bit(attr)) {
860 				if (attr & TEE_MATTR_SECURE)
861 					security_bit = "S";
862 				else
863 					security_bit = "NS";
864 			}
865 
866 			if (attr & TEE_MATTR_TABLE) {
867 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
868 					" TBL:0x%010" PRIxPA " %s",
869 					level * 2, "", level, va, pa,
870 					security_bit);
871 				dump_xlat_table(va, level + 1);
872 			} else if (attr) {
873 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
874 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
875 					level * 2, "", level, va, pa,
876 					mattr_is_cached(attr) ? "MEM" :
877 					"DEV",
878 					attr & TEE_MATTR_PW ? "RW" : "RO",
879 					attr & TEE_MATTR_PX ? "X " : "XN",
880 					security_bit);
881 			} else {
882 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
883 					    " INVALID\n",
884 					    level * 2, "", level, va);
885 			}
886 		}
887 		va += BIT64(tbl_info.shift);
888 	}
889 }
890 
891 #else
892 
893 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
894 {
895 }
896 
897 #endif
898 
899 /*
900  * Reserves virtual memory space for pager usage.
901  *
902  * From the start of the first memory used by the link script +
903  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
904  * mapping for pager usage. This adds translation tables as needed for the
905  * pager to operate.
906  */
907 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems,
908 			      size_t *last)
909 {
910 	paddr_t begin = 0;
911 	paddr_t end = 0;
912 	size_t size = 0;
913 	size_t pos = 0;
914 	size_t n = 0;
915 
916 	if (*last >= (num_elems - 1)) {
917 		EMSG("Out of entries (%zu) in memory map", num_elems);
918 		panic();
919 	}
920 
921 	for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) {
922 		if (map_is_tee_ram(mmap + n)) {
923 			if (!begin)
924 				begin = mmap[n].pa;
925 			pos = n + 1;
926 		}
927 	}
928 
929 	end = mmap[pos - 1].pa + mmap[pos - 1].size;
930 	assert(end - begin < TEE_RAM_VA_SIZE);
931 	size = TEE_RAM_VA_SIZE - (end - begin);
932 
933 	assert(pos <= *last);
934 	memmove(mmap + pos + 1, mmap + pos,
935 		sizeof(struct tee_mmap_region) * (*last - pos));
936 	(*last)++;
937 	memset(mmap + pos, 0, sizeof(mmap[0]));
938 	mmap[pos].type = MEM_AREA_PAGER_VASPACE;
939 	mmap[pos].va = 0;
940 	mmap[pos].size = size;
941 	mmap[pos].region_size = SMALL_PAGE_SIZE;
942 	mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE);
943 }
944 
945 static void check_sec_nsec_mem_config(void)
946 {
947 	size_t n = 0;
948 
949 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
950 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
951 				    secure_only[n].size))
952 			panic("Invalid memory access config: sec/nsec");
953 	}
954 }
955 
956 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map,
957 				 size_t num_elems)
958 {
959 	const struct core_mmu_phys_mem *mem = NULL;
960 	vaddr_t ram_start = secure_only[0].paddr;
961 	size_t last = 0;
962 
963 
964 #define ADD_PHYS_MEM(_type, _addr, _size) \
965 		add_phys_mem(memory_map, num_elems, #_addr, (_type), \
966 			     (_addr), (_size),  &last)
967 
968 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
969 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start,
970 			     VCORE_UNPG_RX_PA - ram_start);
971 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
972 			     VCORE_UNPG_RX_SZ);
973 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
974 			     VCORE_UNPG_RO_SZ);
975 
976 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
977 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
978 				     VCORE_UNPG_RW_SZ);
979 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
980 				     VCORE_NEX_RW_SZ);
981 		} else {
982 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
983 				     VCORE_UNPG_RW_SZ);
984 		}
985 
986 		if (IS_ENABLED(CFG_WITH_PAGER)) {
987 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
988 				     VCORE_INIT_RX_SZ);
989 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
990 				     VCORE_INIT_RO_SZ);
991 		}
992 	} else {
993 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
994 	}
995 
996 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
997 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
998 			     TRUSTED_DRAM_SIZE);
999 	} else {
1000 		/*
1001 		 * Every guest will have own TA RAM if virtualization
1002 		 * support is enabled.
1003 		 */
1004 		paddr_t ta_base = 0;
1005 		size_t ta_size = 0;
1006 
1007 		core_mmu_get_ta_range(&ta_base, &ta_size);
1008 		ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size);
1009 	}
1010 
1011 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
1012 	    IS_ENABLED(CFG_WITH_PAGER)) {
1013 		/*
1014 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
1015 		 * disabled.
1016 		 */
1017 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1018 	}
1019 
1020 #undef ADD_PHYS_MEM
1021 
1022 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1023 		/* Only unmapped virtual range may have a null phys addr */
1024 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1025 
1026 		add_phys_mem(memory_map, num_elems, mem->name, mem->type,
1027 			     mem->addr, mem->size, &last);
1028 	}
1029 
1030 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1031 		verify_special_mem_areas(memory_map, num_elems,
1032 					 phys_sdp_mem_begin,
1033 					 phys_sdp_mem_end, "SDP");
1034 
1035 	add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE,
1036 		     CFG_RESERVED_VASPACE_SIZE, &last);
1037 
1038 	add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE,
1039 		     SHM_VASPACE_SIZE, &last);
1040 
1041 	memory_map[last].type = MEM_AREA_END;
1042 
1043 	return last;
1044 }
1045 
1046 static void assign_mem_granularity(struct tee_mmap_region *memory_map)
1047 {
1048 	struct tee_mmap_region *map = NULL;
1049 
1050 	/*
1051 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1052 	 * SMALL_PAGE_SIZE.
1053 	 */
1054 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1055 		paddr_t mask = map->pa | map->size;
1056 
1057 		if (!(mask & CORE_MMU_PGDIR_MASK))
1058 			map->region_size = CORE_MMU_PGDIR_SIZE;
1059 		else if (!(mask & SMALL_PAGE_MASK))
1060 			map->region_size = SMALL_PAGE_SIZE;
1061 		else
1062 			panic("Impossible memory alignment");
1063 
1064 		if (map_is_tee_ram(map))
1065 			map->region_size = SMALL_PAGE_SIZE;
1066 	}
1067 }
1068 
1069 static bool place_tee_ram_at_top(paddr_t paddr)
1070 {
1071 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1072 }
1073 
1074 /*
1075  * MMU arch driver shall override this function if it helps
1076  * optimizing the memory footprint of the address translation tables.
1077  */
1078 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1079 {
1080 	return place_tee_ram_at_top(paddr);
1081 }
1082 
1083 static bool assign_mem_va_dir(vaddr_t tee_ram_va,
1084 			      struct tee_mmap_region *memory_map,
1085 			      bool tee_ram_at_top)
1086 {
1087 	struct tee_mmap_region *map = NULL;
1088 	vaddr_t va = 0;
1089 	bool va_is_secure = true;
1090 
1091 	/*
1092 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1093 	 * 0 is by design an invalid va, so return false directly.
1094 	 */
1095 	if (!tee_ram_va)
1096 		return false;
1097 
1098 	/* Clear eventual previous assignments */
1099 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1100 		map->va = 0;
1101 
1102 	/*
1103 	 * TEE RAM regions are always aligned with region_size.
1104 	 *
1105 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1106 	 * since it handles virtual memory which covers the part of the ELF
1107 	 * that cannot fit directly into memory.
1108 	 */
1109 	va = tee_ram_va;
1110 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1111 		if (map_is_tee_ram(map) ||
1112 		    map->type == MEM_AREA_PAGER_VASPACE) {
1113 			assert(!(va & (map->region_size - 1)));
1114 			assert(!(map->size & (map->region_size - 1)));
1115 			map->va = va;
1116 			if (ADD_OVERFLOW(va, map->size, &va))
1117 				return false;
1118 			if (va >= BIT64(core_mmu_get_va_width()))
1119 				return false;
1120 		}
1121 	}
1122 
1123 	if (tee_ram_at_top) {
1124 		/*
1125 		 * Map non-tee ram regions at addresses lower than the tee
1126 		 * ram region.
1127 		 */
1128 		va = tee_ram_va;
1129 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1130 			map->attr = core_mmu_type_to_attr(map->type);
1131 			if (map->va)
1132 				continue;
1133 
1134 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1135 			    va_is_secure != map_is_secure(map)) {
1136 				va_is_secure = !va_is_secure;
1137 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1138 			}
1139 
1140 			if (SUB_OVERFLOW(va, map->size, &va))
1141 				return false;
1142 			va = ROUNDDOWN(va, map->region_size);
1143 			/*
1144 			 * Make sure that va is aligned with pa for
1145 			 * efficient pgdir mapping. Basically pa &
1146 			 * pgdir_mask should be == va & pgdir_mask
1147 			 */
1148 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1149 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1150 					return false;
1151 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1152 			}
1153 			map->va = va;
1154 		}
1155 	} else {
1156 		/*
1157 		 * Map non-tee ram regions at addresses higher than the tee
1158 		 * ram region.
1159 		 */
1160 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1161 			map->attr = core_mmu_type_to_attr(map->type);
1162 			if (map->va)
1163 				continue;
1164 
1165 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1166 			    va_is_secure != map_is_secure(map)) {
1167 				va_is_secure = !va_is_secure;
1168 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1169 						     &va))
1170 					return false;
1171 			}
1172 
1173 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1174 				return false;
1175 			/*
1176 			 * Make sure that va is aligned with pa for
1177 			 * efficient pgdir mapping. Basically pa &
1178 			 * pgdir_mask should be == va & pgdir_mask
1179 			 */
1180 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1181 				vaddr_t offs = (map->pa - va) &
1182 					       CORE_MMU_PGDIR_MASK;
1183 
1184 				if (ADD_OVERFLOW(va, offs, &va))
1185 					return false;
1186 			}
1187 
1188 			map->va = va;
1189 			if (ADD_OVERFLOW(va, map->size, &va))
1190 				return false;
1191 			if (va >= BIT64(core_mmu_get_va_width()))
1192 				return false;
1193 		}
1194 	}
1195 
1196 	return true;
1197 }
1198 
1199 static bool assign_mem_va(vaddr_t tee_ram_va,
1200 			  struct tee_mmap_region *memory_map)
1201 {
1202 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1203 
1204 	/*
1205 	 * Check that we're not overlapping with the user VA range.
1206 	 */
1207 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1208 		/*
1209 		 * User VA range is supposed to be defined after these
1210 		 * mappings have been established.
1211 		 */
1212 		assert(!core_mmu_user_va_range_is_defined());
1213 	} else {
1214 		vaddr_t user_va_base = 0;
1215 		size_t user_va_size = 0;
1216 
1217 		assert(core_mmu_user_va_range_is_defined());
1218 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1219 		if (tee_ram_va < (user_va_base + user_va_size))
1220 			return false;
1221 	}
1222 
1223 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1224 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1225 
1226 		/* Try whole mapping covered by a single base xlat entry */
1227 		if (prefered_dir != tee_ram_at_top &&
1228 		    assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir))
1229 			return true;
1230 	}
1231 
1232 	return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top);
1233 }
1234 
1235 static int cmp_init_mem_map(const void *a, const void *b)
1236 {
1237 	const struct tee_mmap_region *mm_a = a;
1238 	const struct tee_mmap_region *mm_b = b;
1239 	int rc = 0;
1240 
1241 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1242 	if (!rc)
1243 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1244 	/*
1245 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1246 	 * the same level2 table. Hence sort secure mapping from non-secure
1247 	 * mapping.
1248 	 */
1249 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1250 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1251 
1252 	return rc;
1253 }
1254 
1255 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map,
1256 			       size_t num_elems, size_t *last,
1257 			       vaddr_t id_map_start, vaddr_t id_map_end)
1258 {
1259 	struct tee_mmap_region *map = NULL;
1260 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1261 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1262 	size_t len = end - start;
1263 
1264 	if (*last >= num_elems - 1) {
1265 		EMSG("Out of entries (%zu) in memory map", num_elems);
1266 		panic();
1267 	}
1268 
1269 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1270 		if (core_is_buffer_intersect(map->va, map->size, start, len))
1271 			return false;
1272 
1273 	*map = (struct tee_mmap_region){
1274 		.type = MEM_AREA_IDENTITY_MAP_RX,
1275 		/*
1276 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1277 		 * translation table, at the increased risk of clashes with
1278 		 * the rest of the memory map.
1279 		 */
1280 		.region_size = SMALL_PAGE_SIZE,
1281 		.pa = start,
1282 		.va = start,
1283 		.size = len,
1284 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1285 	};
1286 
1287 	(*last)++;
1288 
1289 	return true;
1290 }
1291 
1292 static unsigned long init_mem_map(struct tee_mmap_region *memory_map,
1293 				  size_t num_elems, unsigned long seed)
1294 {
1295 	/*
1296 	 * @id_map_start and @id_map_end describes a physical memory range
1297 	 * that must be mapped Read-Only eXecutable at identical virtual
1298 	 * addresses.
1299 	 */
1300 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1301 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1302 	vaddr_t start_addr = secure_only[0].paddr;
1303 	unsigned long offs = 0;
1304 	size_t last = 0;
1305 
1306 	last = collect_mem_ranges(memory_map, num_elems);
1307 	assign_mem_granularity(memory_map);
1308 
1309 	/*
1310 	 * To ease mapping and lower use of xlat tables, sort mapping
1311 	 * description moving small-page regions after the pgdir regions.
1312 	 */
1313 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1314 	      cmp_init_mem_map);
1315 
1316 	if (IS_ENABLED(CFG_WITH_PAGER))
1317 		add_pager_vaspace(memory_map, num_elems, &last);
1318 
1319 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1320 		vaddr_t base_addr = start_addr + seed;
1321 		const unsigned int va_width = core_mmu_get_va_width();
1322 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1323 						   SMALL_PAGE_SHIFT);
1324 		vaddr_t ba = base_addr;
1325 		size_t n = 0;
1326 
1327 		for (n = 0; n < 3; n++) {
1328 			if (n)
1329 				ba = base_addr ^ BIT64(va_width - n);
1330 			ba &= va_mask;
1331 			if (assign_mem_va(ba, memory_map) &&
1332 			    mem_map_add_id_map(memory_map, num_elems, &last,
1333 					       id_map_start, id_map_end)) {
1334 				offs = ba - start_addr;
1335 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1336 				     ba, offs);
1337 				goto out;
1338 			} else {
1339 				DMSG("Failed to map core at %#"PRIxVA, ba);
1340 			}
1341 		}
1342 		EMSG("Failed to map core with seed %#lx", seed);
1343 	}
1344 
1345 	if (!assign_mem_va(start_addr, memory_map))
1346 		panic();
1347 
1348 out:
1349 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1350 	      cmp_mmap_by_lower_va);
1351 
1352 	dump_mmap_table(memory_map);
1353 
1354 	return offs;
1355 }
1356 
1357 static void check_mem_map(struct tee_mmap_region *map)
1358 {
1359 	struct tee_mmap_region *m = NULL;
1360 
1361 	for (m = map; !core_mmap_is_end_of_table(m); m++) {
1362 		switch (m->type) {
1363 		case MEM_AREA_TEE_RAM:
1364 		case MEM_AREA_TEE_RAM_RX:
1365 		case MEM_AREA_TEE_RAM_RO:
1366 		case MEM_AREA_TEE_RAM_RW:
1367 		case MEM_AREA_INIT_RAM_RX:
1368 		case MEM_AREA_INIT_RAM_RO:
1369 		case MEM_AREA_NEX_RAM_RW:
1370 		case MEM_AREA_NEX_RAM_RO:
1371 		case MEM_AREA_IDENTITY_MAP_RX:
1372 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1373 				panic("TEE_RAM can't fit in secure_only");
1374 			break;
1375 		case MEM_AREA_TA_RAM:
1376 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1377 				panic("TA_RAM can't fit in secure_only");
1378 			break;
1379 		case MEM_AREA_NSEC_SHM:
1380 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1381 				panic("NS_SHM can't fit in nsec_shared");
1382 			break;
1383 		case MEM_AREA_SEC_RAM_OVERALL:
1384 		case MEM_AREA_TEE_COHERENT:
1385 		case MEM_AREA_TEE_ASAN:
1386 		case MEM_AREA_IO_SEC:
1387 		case MEM_AREA_IO_NSEC:
1388 		case MEM_AREA_EXT_DT:
1389 		case MEM_AREA_MANIFEST_DT:
1390 		case MEM_AREA_RAM_SEC:
1391 		case MEM_AREA_RAM_NSEC:
1392 		case MEM_AREA_RES_VASPACE:
1393 		case MEM_AREA_SHM_VASPACE:
1394 		case MEM_AREA_PAGER_VASPACE:
1395 			break;
1396 		default:
1397 			EMSG("Uhandled memtype %d", m->type);
1398 			panic();
1399 		}
1400 	}
1401 }
1402 
1403 static struct tee_mmap_region *get_tmp_mmap(void)
1404 {
1405 	struct tee_mmap_region *tmp_mmap = (void *)__heap1_start;
1406 
1407 #ifdef CFG_WITH_PAGER
1408 	if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map))
1409 		tmp_mmap = (void *)__heap2_start;
1410 #endif
1411 
1412 	memset(tmp_mmap, 0, sizeof(static_memory_map));
1413 
1414 	return tmp_mmap;
1415 }
1416 
1417 /*
1418  * core_init_mmu_map() - init tee core default memory mapping
1419  *
1420  * This routine sets the static default TEE core mapping. If @seed is > 0
1421  * and configured with CFG_CORE_ASLR it will map tee core at a location
1422  * based on the seed and return the offset from the link address.
1423  *
1424  * If an error happened: core_init_mmu_map is expected to panic.
1425  *
1426  * Note: this function is weak just to make it possible to exclude it from
1427  * the unpaged area.
1428  */
1429 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1430 {
1431 #ifndef CFG_NS_VIRTUALIZATION
1432 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1433 #else
1434 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1435 				  SMALL_PAGE_SIZE);
1436 #endif
1437 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1438 	struct tee_mmap_region *tmp_mmap = get_tmp_mmap();
1439 	unsigned long offs = 0;
1440 
1441 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1442 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1443 		panic("OP-TEE load address is not page aligned");
1444 
1445 	check_sec_nsec_mem_config();
1446 
1447 	/*
1448 	 * Add a entry covering the translation tables which will be
1449 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1450 	 */
1451 	static_memory_map[0] = (struct tee_mmap_region){
1452 		.type = MEM_AREA_TEE_RAM,
1453 		.region_size = SMALL_PAGE_SIZE,
1454 		.pa = start,
1455 		.va = start,
1456 		.size = len,
1457 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1458 	};
1459 
1460 	COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13);
1461 	offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed);
1462 
1463 	check_mem_map(tmp_mmap);
1464 	core_init_mmu(tmp_mmap);
1465 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1466 	core_init_mmu_regs(cfg);
1467 	cfg->map_offset = offs;
1468 	memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map));
1469 }
1470 
1471 bool core_mmu_mattr_is_ok(uint32_t mattr)
1472 {
1473 	/*
1474 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1475 	 * core_mmu_v7.c:mattr_to_texcb
1476 	 */
1477 
1478 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1479 	case TEE_MATTR_MEM_TYPE_DEV:
1480 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1481 	case TEE_MATTR_MEM_TYPE_CACHED:
1482 	case TEE_MATTR_MEM_TYPE_TAGGED:
1483 		return true;
1484 	default:
1485 		return false;
1486 	}
1487 }
1488 
1489 /*
1490  * test attributes of target physical buffer
1491  *
1492  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1493  *
1494  */
1495 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1496 {
1497 	paddr_t ta_base = 0;
1498 	size_t ta_size = 0;
1499 	struct tee_mmap_region *map;
1500 
1501 	/* Empty buffers complies with anything */
1502 	if (len == 0)
1503 		return true;
1504 
1505 	switch (attr) {
1506 	case CORE_MEM_SEC:
1507 		return pbuf_is_inside(secure_only, pbuf, len);
1508 	case CORE_MEM_NON_SEC:
1509 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1510 			pbuf_is_nsec_ddr(pbuf, len);
1511 	case CORE_MEM_TEE_RAM:
1512 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1513 							TEE_RAM_PH_SIZE);
1514 	case CORE_MEM_TA_RAM:
1515 		core_mmu_get_ta_range(&ta_base, &ta_size);
1516 		return core_is_buffer_inside(pbuf, len, ta_base, ta_size);
1517 #ifdef CFG_CORE_RESERVED_SHM
1518 	case CORE_MEM_NSEC_SHM:
1519 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1520 							TEE_SHMEM_SIZE);
1521 #endif
1522 	case CORE_MEM_SDP_MEM:
1523 		return pbuf_is_sdp_mem(pbuf, len);
1524 	case CORE_MEM_CACHED:
1525 		map = find_map_by_pa(pbuf);
1526 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1527 			return false;
1528 		return mattr_is_cached(map->attr);
1529 	default:
1530 		return false;
1531 	}
1532 }
1533 
1534 /* test attributes of target virtual buffer (in core mapping) */
1535 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1536 {
1537 	paddr_t p;
1538 
1539 	/* Empty buffers complies with anything */
1540 	if (len == 0)
1541 		return true;
1542 
1543 	p = virt_to_phys((void *)vbuf);
1544 	if (!p)
1545 		return false;
1546 
1547 	return core_pbuf_is(attr, p, len);
1548 }
1549 
1550 /* core_va2pa - teecore exported service */
1551 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1552 {
1553 	struct tee_mmap_region *map;
1554 
1555 	map = find_map_by_va(va);
1556 	if (!va_is_in_map(map, (vaddr_t)va))
1557 		return -1;
1558 
1559 	/*
1560 	 * We can calculate PA for static map. Virtual address ranges
1561 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1562 	 * together with an invalid null physical address.
1563 	 */
1564 	if (map->pa)
1565 		*pa = map->pa + (vaddr_t)va  - map->va;
1566 	else
1567 		*pa = 0;
1568 
1569 	return 0;
1570 }
1571 
1572 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1573 {
1574 	if (!pa_is_in_map(map, pa, len))
1575 		return NULL;
1576 
1577 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1578 }
1579 
1580 /*
1581  * teecore gets some memory area definitions
1582  */
1583 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1584 			      vaddr_t *e)
1585 {
1586 	struct tee_mmap_region *map = find_map_by_type(type);
1587 
1588 	if (map) {
1589 		*s = map->va;
1590 		*e = map->va + map->size;
1591 	} else {
1592 		*s = 0;
1593 		*e = 0;
1594 	}
1595 }
1596 
1597 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1598 {
1599 	struct tee_mmap_region *map = find_map_by_pa(pa);
1600 
1601 	if (!map)
1602 		return MEM_AREA_MAXTYPE;
1603 	return map->type;
1604 }
1605 
1606 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1607 			paddr_t pa, uint32_t attr)
1608 {
1609 	assert(idx < tbl_info->num_entries);
1610 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1611 				     idx, pa, attr);
1612 }
1613 
1614 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1615 			paddr_t *pa, uint32_t *attr)
1616 {
1617 	assert(idx < tbl_info->num_entries);
1618 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1619 				     idx, pa, attr);
1620 }
1621 
1622 static void clear_region(struct core_mmu_table_info *tbl_info,
1623 			 struct tee_mmap_region *region)
1624 {
1625 	unsigned int end = 0;
1626 	unsigned int idx = 0;
1627 
1628 	/* va, len and pa should be block aligned */
1629 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1630 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1631 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1632 
1633 	idx = core_mmu_va2idx(tbl_info, region->va);
1634 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1635 
1636 	while (idx < end) {
1637 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1638 		idx++;
1639 	}
1640 }
1641 
1642 static void set_region(struct core_mmu_table_info *tbl_info,
1643 		       struct tee_mmap_region *region)
1644 {
1645 	unsigned int end;
1646 	unsigned int idx;
1647 	paddr_t pa;
1648 
1649 	/* va, len and pa should be block aligned */
1650 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1651 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1652 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1653 
1654 	idx = core_mmu_va2idx(tbl_info, region->va);
1655 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1656 	pa = region->pa;
1657 
1658 	while (idx < end) {
1659 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1660 		idx++;
1661 		pa += BIT64(tbl_info->shift);
1662 	}
1663 }
1664 
1665 static void set_pg_region(struct core_mmu_table_info *dir_info,
1666 			  struct vm_region *region, struct pgt **pgt,
1667 			  struct core_mmu_table_info *pg_info)
1668 {
1669 	struct tee_mmap_region r = {
1670 		.va = region->va,
1671 		.size = region->size,
1672 		.attr = region->attr,
1673 	};
1674 	vaddr_t end = r.va + r.size;
1675 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1676 
1677 	while (r.va < end) {
1678 		if (!pg_info->table ||
1679 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1680 			/*
1681 			 * We're assigning a new translation table.
1682 			 */
1683 			unsigned int idx;
1684 
1685 			/* Virtual addresses must grow */
1686 			assert(r.va > pg_info->va_base);
1687 
1688 			idx = core_mmu_va2idx(dir_info, r.va);
1689 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1690 
1691 			/*
1692 			 * Advance pgt to va_base, note that we may need to
1693 			 * skip multiple page tables if there are large
1694 			 * holes in the vm map.
1695 			 */
1696 			while ((*pgt)->vabase < pg_info->va_base) {
1697 				*pgt = SLIST_NEXT(*pgt, link);
1698 				/* We should have allocated enough */
1699 				assert(*pgt);
1700 			}
1701 			assert((*pgt)->vabase == pg_info->va_base);
1702 			pg_info->table = (*pgt)->tbl;
1703 
1704 			core_mmu_set_entry(dir_info, idx,
1705 					   virt_to_phys(pg_info->table),
1706 					   pgt_attr);
1707 		}
1708 
1709 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1710 			     end - r.va);
1711 
1712 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1713 			size_t granule = BIT(pg_info->shift);
1714 			size_t offset = r.va - region->va + region->offset;
1715 
1716 			r.size = MIN(r.size,
1717 				     mobj_get_phys_granule(region->mobj));
1718 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1719 
1720 			if (mobj_get_pa(region->mobj, offset, granule,
1721 					&r.pa) != TEE_SUCCESS)
1722 				panic("Failed to get PA of unpaged mobj");
1723 			set_region(pg_info, &r);
1724 		}
1725 		r.va += r.size;
1726 	}
1727 }
1728 
1729 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1730 			     size_t size_left, paddr_t block_size,
1731 			     struct tee_mmap_region *mm __maybe_unused)
1732 {
1733 	/* VA and PA are aligned to block size at current level */
1734 	if ((vaddr | paddr) & (block_size - 1))
1735 		return false;
1736 
1737 	/* Remainder fits into block at current level */
1738 	if (size_left < block_size)
1739 		return false;
1740 
1741 #ifdef CFG_WITH_PAGER
1742 	/*
1743 	 * If pager is enabled, we need to map tee ram
1744 	 * regions with small pages only
1745 	 */
1746 	if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE)
1747 		return false;
1748 #endif
1749 
1750 	return true;
1751 }
1752 
1753 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1754 {
1755 	struct core_mmu_table_info tbl_info;
1756 	unsigned int idx;
1757 	vaddr_t vaddr = mm->va;
1758 	paddr_t paddr = mm->pa;
1759 	ssize_t size_left = mm->size;
1760 	unsigned int level;
1761 	bool table_found;
1762 	uint32_t old_attr;
1763 
1764 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1765 
1766 	while (size_left > 0) {
1767 		level = CORE_MMU_BASE_TABLE_LEVEL;
1768 
1769 		while (true) {
1770 			paddr_t block_size = 0;
1771 
1772 			assert(core_mmu_level_in_range(level));
1773 
1774 			table_found = core_mmu_find_table(prtn, vaddr, level,
1775 							  &tbl_info);
1776 			if (!table_found)
1777 				panic("can't find table for mapping");
1778 
1779 			block_size = BIT64(tbl_info.shift);
1780 
1781 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1782 			if (!can_map_at_level(paddr, vaddr, size_left,
1783 					      block_size, mm)) {
1784 				bool secure = mm->attr & TEE_MATTR_SECURE;
1785 
1786 				/*
1787 				 * This part of the region can't be mapped at
1788 				 * this level. Need to go deeper.
1789 				 */
1790 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1791 								     idx,
1792 								     secure))
1793 					panic("Can't divide MMU entry");
1794 				level = tbl_info.next_level;
1795 				continue;
1796 			}
1797 
1798 			/* We can map part of the region at current level */
1799 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1800 			if (old_attr)
1801 				panic("Page is already mapped");
1802 
1803 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1804 			paddr += block_size;
1805 			vaddr += block_size;
1806 			size_left -= block_size;
1807 
1808 			break;
1809 		}
1810 	}
1811 }
1812 
1813 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1814 			      enum teecore_memtypes memtype)
1815 {
1816 	TEE_Result ret;
1817 	struct core_mmu_table_info tbl_info;
1818 	struct tee_mmap_region *mm;
1819 	unsigned int idx;
1820 	uint32_t old_attr;
1821 	uint32_t exceptions;
1822 	vaddr_t vaddr = vstart;
1823 	size_t i;
1824 	bool secure;
1825 
1826 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1827 
1828 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1829 
1830 	if (vaddr & SMALL_PAGE_MASK)
1831 		return TEE_ERROR_BAD_PARAMETERS;
1832 
1833 	exceptions = mmu_lock();
1834 
1835 	mm = find_map_by_va((void *)vaddr);
1836 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1837 		panic("VA does not belong to any known mm region");
1838 
1839 	if (!core_mmu_is_dynamic_vaspace(mm))
1840 		panic("Trying to map into static region");
1841 
1842 	for (i = 0; i < num_pages; i++) {
1843 		if (pages[i] & SMALL_PAGE_MASK) {
1844 			ret = TEE_ERROR_BAD_PARAMETERS;
1845 			goto err;
1846 		}
1847 
1848 		while (true) {
1849 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1850 						 &tbl_info))
1851 				panic("Can't find pagetable for vaddr ");
1852 
1853 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1854 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1855 				break;
1856 
1857 			/* This is supertable. Need to divide it. */
1858 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1859 							     secure))
1860 				panic("Failed to spread pgdir on small tables");
1861 		}
1862 
1863 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1864 		if (old_attr)
1865 			panic("Page is already mapped");
1866 
1867 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1868 				   core_mmu_type_to_attr(memtype));
1869 		vaddr += SMALL_PAGE_SIZE;
1870 	}
1871 
1872 	/*
1873 	 * Make sure all the changes to translation tables are visible
1874 	 * before returning. TLB doesn't need to be invalidated as we are
1875 	 * guaranteed that there's no valid mapping in this range.
1876 	 */
1877 	core_mmu_table_write_barrier();
1878 	mmu_unlock(exceptions);
1879 
1880 	return TEE_SUCCESS;
1881 err:
1882 	mmu_unlock(exceptions);
1883 
1884 	if (i)
1885 		core_mmu_unmap_pages(vstart, i);
1886 
1887 	return ret;
1888 }
1889 
1890 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
1891 					 size_t num_pages,
1892 					 enum teecore_memtypes memtype)
1893 {
1894 	struct core_mmu_table_info tbl_info = { };
1895 	struct tee_mmap_region *mm = NULL;
1896 	unsigned int idx = 0;
1897 	uint32_t old_attr = 0;
1898 	uint32_t exceptions = 0;
1899 	vaddr_t vaddr = vstart;
1900 	paddr_t paddr = pstart;
1901 	size_t i = 0;
1902 	bool secure = false;
1903 
1904 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1905 
1906 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1907 
1908 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
1909 		return TEE_ERROR_BAD_PARAMETERS;
1910 
1911 	exceptions = mmu_lock();
1912 
1913 	mm = find_map_by_va((void *)vaddr);
1914 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1915 		panic("VA does not belong to any known mm region");
1916 
1917 	if (!core_mmu_is_dynamic_vaspace(mm))
1918 		panic("Trying to map into static region");
1919 
1920 	for (i = 0; i < num_pages; i++) {
1921 		while (true) {
1922 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1923 						 &tbl_info))
1924 				panic("Can't find pagetable for vaddr ");
1925 
1926 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1927 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1928 				break;
1929 
1930 			/* This is supertable. Need to divide it. */
1931 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1932 							     secure))
1933 				panic("Failed to spread pgdir on small tables");
1934 		}
1935 
1936 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1937 		if (old_attr)
1938 			panic("Page is already mapped");
1939 
1940 		core_mmu_set_entry(&tbl_info, idx, paddr,
1941 				   core_mmu_type_to_attr(memtype));
1942 		paddr += SMALL_PAGE_SIZE;
1943 		vaddr += SMALL_PAGE_SIZE;
1944 	}
1945 
1946 	/*
1947 	 * Make sure all the changes to translation tables are visible
1948 	 * before returning. TLB doesn't need to be invalidated as we are
1949 	 * guaranteed that there's no valid mapping in this range.
1950 	 */
1951 	core_mmu_table_write_barrier();
1952 	mmu_unlock(exceptions);
1953 
1954 	return TEE_SUCCESS;
1955 }
1956 
1957 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
1958 {
1959 	struct core_mmu_table_info tbl_info;
1960 	struct tee_mmap_region *mm;
1961 	size_t i;
1962 	unsigned int idx;
1963 	uint32_t exceptions;
1964 
1965 	exceptions = mmu_lock();
1966 
1967 	mm = find_map_by_va((void *)vstart);
1968 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
1969 		panic("VA does not belong to any known mm region");
1970 
1971 	if (!core_mmu_is_dynamic_vaspace(mm))
1972 		panic("Trying to unmap static region");
1973 
1974 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
1975 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
1976 			panic("Can't find pagetable");
1977 
1978 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
1979 			panic("Invalid pagetable level");
1980 
1981 		idx = core_mmu_va2idx(&tbl_info, vstart);
1982 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
1983 	}
1984 	tlbi_all();
1985 
1986 	mmu_unlock(exceptions);
1987 }
1988 
1989 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
1990 				struct user_mode_ctx *uctx)
1991 {
1992 	struct core_mmu_table_info pg_info = { };
1993 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
1994 	struct pgt *pgt = NULL;
1995 	struct pgt *p = NULL;
1996 	struct vm_region *r = NULL;
1997 
1998 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
1999 		return; /* Nothing to map */
2000 
2001 	/*
2002 	 * Allocate all page tables in advance.
2003 	 */
2004 	pgt_get_all(uctx);
2005 	pgt = SLIST_FIRST(pgt_cache);
2006 
2007 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2008 
2009 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2010 		set_pg_region(dir_info, r, &pgt, &pg_info);
2011 	/* Record that the translation tables now are populated. */
2012 	SLIST_FOREACH(p, pgt_cache, link) {
2013 		p->populated = true;
2014 		if (p == pgt)
2015 			break;
2016 	}
2017 	assert(p == pgt);
2018 }
2019 
2020 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2021 				   size_t len)
2022 {
2023 	struct core_mmu_table_info tbl_info = { };
2024 	struct tee_mmap_region *res_map = NULL;
2025 	struct tee_mmap_region *map = NULL;
2026 	paddr_t pa = virt_to_phys(addr);
2027 	size_t granule = 0;
2028 	ptrdiff_t i = 0;
2029 	paddr_t p = 0;
2030 	size_t l = 0;
2031 
2032 	map = find_map_by_type_and_pa(type, pa, len);
2033 	if (!map)
2034 		return TEE_ERROR_GENERIC;
2035 
2036 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2037 	if (!res_map)
2038 		return TEE_ERROR_GENERIC;
2039 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2040 		return TEE_ERROR_GENERIC;
2041 	granule = BIT(tbl_info.shift);
2042 
2043 	if (map < static_memory_map ||
2044 	    map >= static_memory_map + ARRAY_SIZE(static_memory_map))
2045 		return TEE_ERROR_GENERIC;
2046 	i = map - static_memory_map;
2047 
2048 	/* Check that we have a full match */
2049 	p = ROUNDDOWN(pa, granule);
2050 	l = ROUNDUP(len + pa - p, granule);
2051 	if (map->pa != p || map->size != l)
2052 		return TEE_ERROR_GENERIC;
2053 
2054 	clear_region(&tbl_info, map);
2055 	tlbi_all();
2056 
2057 	/* If possible remove the va range from res_map */
2058 	if (res_map->va - map->size == map->va) {
2059 		res_map->va -= map->size;
2060 		res_map->size += map->size;
2061 	}
2062 
2063 	/* Remove the entry. */
2064 	memmove(map, map + 1,
2065 		(ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map));
2066 
2067 	/* Clear the last new entry in case it was used */
2068 	memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1,
2069 	       0, sizeof(*map));
2070 
2071 	return TEE_SUCCESS;
2072 }
2073 
2074 struct tee_mmap_region *
2075 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2076 {
2077 	struct tee_mmap_region *map = NULL;
2078 	struct tee_mmap_region *map_found = NULL;
2079 
2080 	if (!len)
2081 		return NULL;
2082 
2083 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
2084 		if (map->type != type)
2085 			continue;
2086 
2087 		if (map_found)
2088 			return NULL;
2089 
2090 		map_found = map;
2091 	}
2092 
2093 	if (!map_found || map_found->size < len)
2094 		return NULL;
2095 
2096 	return map_found;
2097 }
2098 
2099 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2100 {
2101 	struct core_mmu_table_info tbl_info;
2102 	struct tee_mmap_region *map;
2103 	size_t n;
2104 	size_t granule;
2105 	paddr_t p;
2106 	size_t l;
2107 
2108 	if (!len)
2109 		return NULL;
2110 
2111 	if (!core_mmu_check_end_pa(addr, len))
2112 		return NULL;
2113 
2114 	/* Check if the memory is already mapped */
2115 	map = find_map_by_type_and_pa(type, addr, len);
2116 	if (map && pbuf_inside_map_area(addr, len, map))
2117 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2118 
2119 	/* Find the reserved va space used for late mappings */
2120 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2121 	if (!map)
2122 		return NULL;
2123 
2124 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2125 		return NULL;
2126 
2127 	granule = BIT64(tbl_info.shift);
2128 	p = ROUNDDOWN(addr, granule);
2129 	l = ROUNDUP(len + addr - p, granule);
2130 
2131 	/* Ban overflowing virtual addresses */
2132 	if (map->size < l)
2133 		return NULL;
2134 
2135 	/*
2136 	 * Something is wrong, we can't fit the va range into the selected
2137 	 * table. The reserved va range is possibly missaligned with
2138 	 * granule.
2139 	 */
2140 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2141 		return NULL;
2142 
2143 	/* Find end of the memory map */
2144 	n = 0;
2145 	while (!core_mmap_is_end_of_table(static_memory_map + n))
2146 		n++;
2147 
2148 	if (n < (ARRAY_SIZE(static_memory_map) - 1)) {
2149 		/* There's room for another entry */
2150 		static_memory_map[n].va = map->va;
2151 		static_memory_map[n].size = l;
2152 		static_memory_map[n + 1].type = MEM_AREA_END;
2153 		map->va += l;
2154 		map->size -= l;
2155 		map = static_memory_map + n;
2156 	} else {
2157 		/*
2158 		 * There isn't room for another entry, steal the reserved
2159 		 * entry as it's not useful for anything else any longer.
2160 		 */
2161 		map->size = l;
2162 	}
2163 	map->type = type;
2164 	map->region_size = granule;
2165 	map->attr = core_mmu_type_to_attr(type);
2166 	map->pa = p;
2167 
2168 	set_region(&tbl_info, map);
2169 
2170 	/* Make sure the new entry is visible before continuing. */
2171 	core_mmu_table_write_barrier();
2172 
2173 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2174 }
2175 
2176 #ifdef CFG_WITH_PAGER
2177 static vaddr_t get_linear_map_end_va(void)
2178 {
2179 	/* this is synced with the generic linker file kern.ld.S */
2180 	return (vaddr_t)__heap2_end;
2181 }
2182 
2183 static paddr_t get_linear_map_end_pa(void)
2184 {
2185 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2186 }
2187 #endif
2188 
2189 #if defined(CFG_TEE_CORE_DEBUG)
2190 static void check_pa_matches_va(void *va, paddr_t pa)
2191 {
2192 	TEE_Result res = TEE_ERROR_GENERIC;
2193 	vaddr_t v = (vaddr_t)va;
2194 	paddr_t p = 0;
2195 	struct core_mmu_table_info ti __maybe_unused = { };
2196 
2197 	if (core_mmu_user_va_range_is_defined()) {
2198 		vaddr_t user_va_base = 0;
2199 		size_t user_va_size = 0;
2200 
2201 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2202 		if (v >= user_va_base &&
2203 		    v <= (user_va_base - 1 + user_va_size)) {
2204 			if (!core_mmu_user_mapping_is_active()) {
2205 				if (pa)
2206 					panic("issue in linear address space");
2207 				return;
2208 			}
2209 
2210 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2211 				       va, &p);
2212 			if (res == TEE_ERROR_NOT_SUPPORTED)
2213 				return;
2214 			if (res == TEE_SUCCESS && pa != p)
2215 				panic("bad pa");
2216 			if (res != TEE_SUCCESS && pa)
2217 				panic("false pa");
2218 			return;
2219 		}
2220 	}
2221 #ifdef CFG_WITH_PAGER
2222 	if (is_unpaged(va)) {
2223 		if (v - boot_mmu_config.map_offset != pa)
2224 			panic("issue in linear address space");
2225 		return;
2226 	}
2227 
2228 	if (tee_pager_get_table_info(v, &ti)) {
2229 		uint32_t a;
2230 
2231 		/*
2232 		 * Lookups in the page table managed by the pager is
2233 		 * dangerous for addresses in the paged area as those pages
2234 		 * changes all the time. But some ranges are safe,
2235 		 * rw-locked areas when the page is populated for instance.
2236 		 */
2237 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2238 		if (a & TEE_MATTR_VALID_BLOCK) {
2239 			paddr_t mask = BIT64(ti.shift) - 1;
2240 
2241 			p |= v & mask;
2242 			if (pa != p)
2243 				panic();
2244 		} else {
2245 			if (pa)
2246 				panic();
2247 		}
2248 		return;
2249 	}
2250 #endif
2251 
2252 	if (!core_va2pa_helper(va, &p)) {
2253 		/* Verfiy only the static mapping (case non null phys addr) */
2254 		if (p && pa != p) {
2255 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2256 			     va, p, pa);
2257 			panic();
2258 		}
2259 	} else {
2260 		if (pa) {
2261 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2262 			panic();
2263 		}
2264 	}
2265 }
2266 #else
2267 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2268 {
2269 }
2270 #endif
2271 
2272 paddr_t virt_to_phys(void *va)
2273 {
2274 	paddr_t pa = 0;
2275 
2276 	if (!arch_va2pa_helper(va, &pa))
2277 		pa = 0;
2278 	check_pa_matches_va(va, pa);
2279 	return pa;
2280 }
2281 
2282 #if defined(CFG_TEE_CORE_DEBUG)
2283 static void check_va_matches_pa(paddr_t pa, void *va)
2284 {
2285 	paddr_t p = 0;
2286 
2287 	if (!va)
2288 		return;
2289 
2290 	p = virt_to_phys(va);
2291 	if (p != pa) {
2292 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2293 		panic();
2294 	}
2295 }
2296 #else
2297 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2298 {
2299 }
2300 #endif
2301 
2302 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2303 {
2304 	if (!core_mmu_user_mapping_is_active())
2305 		return NULL;
2306 
2307 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2308 }
2309 
2310 #ifdef CFG_WITH_PAGER
2311 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2312 {
2313 	paddr_t end_pa = 0;
2314 
2315 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2316 		return NULL;
2317 
2318 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2319 		if (end_pa > get_linear_map_end_pa())
2320 			return NULL;
2321 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2322 	}
2323 
2324 	return tee_pager_phys_to_virt(pa, len);
2325 }
2326 #else
2327 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2328 {
2329 	struct tee_mmap_region *mmap = NULL;
2330 
2331 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2332 	if (!mmap)
2333 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2334 	if (!mmap)
2335 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2336 	if (!mmap)
2337 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2338 	if (!mmap)
2339 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2340 	if (!mmap)
2341 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2342 	/*
2343 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2344 	 * used with pager and not needed here.
2345 	 */
2346 	return map_pa2va(mmap, pa, len);
2347 }
2348 #endif
2349 
2350 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2351 {
2352 	void *va = NULL;
2353 
2354 	switch (m) {
2355 	case MEM_AREA_TS_VASPACE:
2356 		va = phys_to_virt_ts_vaspace(pa, len);
2357 		break;
2358 	case MEM_AREA_TEE_RAM:
2359 	case MEM_AREA_TEE_RAM_RX:
2360 	case MEM_AREA_TEE_RAM_RO:
2361 	case MEM_AREA_TEE_RAM_RW:
2362 	case MEM_AREA_NEX_RAM_RO:
2363 	case MEM_AREA_NEX_RAM_RW:
2364 		va = phys_to_virt_tee_ram(pa, len);
2365 		break;
2366 	case MEM_AREA_SHM_VASPACE:
2367 		/* Find VA from PA in dynamic SHM is not yet supported */
2368 		va = NULL;
2369 		break;
2370 	default:
2371 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2372 	}
2373 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2374 		check_va_matches_pa(pa, va);
2375 	return va;
2376 }
2377 
2378 void *phys_to_virt_io(paddr_t pa, size_t len)
2379 {
2380 	struct tee_mmap_region *map = NULL;
2381 	void *va = NULL;
2382 
2383 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2384 	if (!map)
2385 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2386 	if (!map)
2387 		return NULL;
2388 	va = map_pa2va(map, pa, len);
2389 	check_va_matches_pa(pa, va);
2390 	return va;
2391 }
2392 
2393 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2394 {
2395 	if (cpu_mmu_enabled())
2396 		return (vaddr_t)phys_to_virt(pa, type, len);
2397 
2398 	return (vaddr_t)pa;
2399 }
2400 
2401 #ifdef CFG_WITH_PAGER
2402 bool is_unpaged(void *va)
2403 {
2404 	vaddr_t v = (vaddr_t)va;
2405 
2406 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2407 }
2408 #else
2409 bool is_unpaged(void *va __unused)
2410 {
2411 	return true;
2412 }
2413 #endif
2414 
2415 void core_mmu_init_virtualization(void)
2416 {
2417 	paddr_t b1 = 0;
2418 	paddr_size_t s1 = 0;
2419 
2420 	static_assert(ARRAY_SIZE(secure_only) <= 2);
2421 	if (ARRAY_SIZE(secure_only) == 2) {
2422 		b1 = secure_only[1].paddr;
2423 		s1 = secure_only[1].size;
2424 	}
2425 	virt_init_memory(static_memory_map, secure_only[0].paddr,
2426 			 secure_only[0].size, b1, s1);
2427 }
2428 
2429 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2430 {
2431 	assert(p->pa);
2432 	if (cpu_mmu_enabled()) {
2433 		if (!p->va)
2434 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2435 		assert(p->va);
2436 		return p->va;
2437 	}
2438 	return p->pa;
2439 }
2440 
2441 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2442 {
2443 	assert(p->pa);
2444 	if (cpu_mmu_enabled()) {
2445 		if (!p->va)
2446 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2447 						      len);
2448 		assert(p->va);
2449 		return p->va;
2450 	}
2451 	return p->pa;
2452 }
2453 
2454 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2455 {
2456 	assert(p->pa);
2457 	if (cpu_mmu_enabled()) {
2458 		if (!p->va)
2459 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2460 						      len);
2461 		assert(p->va);
2462 		return p->va;
2463 	}
2464 	return p->pa;
2465 }
2466 
2467 #ifdef CFG_CORE_RESERVED_SHM
2468 static TEE_Result teecore_init_pub_ram(void)
2469 {
2470 	vaddr_t s = 0;
2471 	vaddr_t e = 0;
2472 
2473 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2474 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2475 
2476 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2477 		panic("invalid PUB RAM");
2478 
2479 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2480 	if (!tee_vbuf_is_non_sec(s, e - s))
2481 		panic("PUB RAM is not non-secure");
2482 
2483 #ifdef CFG_PL310
2484 	/* Allocate statically the l2cc mutex */
2485 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2486 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2487 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2488 #endif
2489 
2490 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2491 	default_nsec_shm_size = e - s;
2492 
2493 	return TEE_SUCCESS;
2494 }
2495 early_init(teecore_init_pub_ram);
2496 #endif /*CFG_CORE_RESERVED_SHM*/
2497 
2498 void core_mmu_init_ta_ram(void)
2499 {
2500 	vaddr_t s = 0;
2501 	vaddr_t e = 0;
2502 	paddr_t ps = 0;
2503 	size_t size = 0;
2504 
2505 	/*
2506 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2507 	 * shared mem allocated from teecore.
2508 	 */
2509 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
2510 		virt_get_ta_ram(&s, &e);
2511 	else
2512 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2513 
2514 	ps = virt_to_phys((void *)s);
2515 	size = e - s;
2516 
2517 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2518 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2519 		panic("invalid TA RAM");
2520 
2521 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2522 	if (!tee_pbuf_is_sec(ps, size))
2523 		panic("TA RAM is not secure");
2524 
2525 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2526 		panic("TA RAM pool is not empty");
2527 
2528 	/* remove previous config and init TA ddr memory pool */
2529 	tee_mm_final(&tee_mm_sec_ddr);
2530 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2531 		    TEE_MM_POOL_NO_FLAGS);
2532 }
2533