1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016, 2022 Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved. 6 */ 7 8 #include <assert.h> 9 #include <config.h> 10 #include <kernel/boot.h> 11 #include <kernel/dt.h> 12 #include <kernel/linker.h> 13 #include <kernel/panic.h> 14 #include <kernel/spinlock.h> 15 #include <kernel/tee_l2cc_mutex.h> 16 #include <kernel/tee_misc.h> 17 #include <kernel/tlb_helpers.h> 18 #include <kernel/user_mode_ctx.h> 19 #include <kernel/virtualization.h> 20 #include <libfdt.h> 21 #include <mm/core_memprot.h> 22 #include <mm/core_mmu.h> 23 #include <mm/mobj.h> 24 #include <mm/pgt_cache.h> 25 #include <mm/tee_pager.h> 26 #include <mm/vm.h> 27 #include <platform_config.h> 28 #include <string.h> 29 #include <trace.h> 30 #include <util.h> 31 32 #ifndef DEBUG_XLAT_TABLE 33 #define DEBUG_XLAT_TABLE 0 34 #endif 35 36 #define SHM_VASPACE_SIZE (1024 * 1024 * 32) 37 38 #ifdef CFG_CORE_PHYS_RELOCATABLE 39 unsigned long core_mmu_tee_load_pa __nex_bss; 40 #else 41 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR; 42 #endif 43 44 /* 45 * These variables are initialized before .bss is cleared. To avoid 46 * resetting them when .bss is cleared we're storing them in .data instead, 47 * even if they initially are zero. 48 */ 49 50 #ifdef CFG_CORE_RESERVED_SHM 51 /* Default NSec shared memory allocated from NSec world */ 52 unsigned long default_nsec_shm_size __nex_bss; 53 unsigned long default_nsec_shm_paddr __nex_bss; 54 #endif 55 56 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS 57 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE) 58 + 1 59 #endif 60 + 1] __nex_bss; 61 62 /* Define the platform's memory layout. */ 63 struct memaccess_area { 64 paddr_t paddr; 65 size_t size; 66 }; 67 68 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } 69 70 static struct memaccess_area secure_only[] __nex_data = { 71 #ifdef CFG_CORE_PHYS_RELOCATABLE 72 MEMACCESS_AREA(0, 0), 73 #else 74 #ifdef TRUSTED_SRAM_BASE 75 MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), 76 #endif 77 MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), 78 #endif 79 }; 80 81 static struct memaccess_area nsec_shared[] __nex_data = { 82 #ifdef CFG_CORE_RESERVED_SHM 83 MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), 84 #endif 85 }; 86 87 #if defined(CFG_SECURE_DATA_PATH) 88 static const char *tz_sdp_match = "linaro,secure-heap"; 89 static struct memaccess_area sec_sdp; 90 #ifdef CFG_TEE_SDP_MEM_BASE 91 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); 92 #endif 93 #ifdef TEE_SDP_TEST_MEM_BASE 94 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); 95 #endif 96 #endif 97 98 #ifdef CFG_CORE_RESERVED_SHM 99 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); 100 #endif 101 static unsigned int mmu_spinlock; 102 103 static uint32_t mmu_lock(void) 104 { 105 return cpu_spin_lock_xsave(&mmu_spinlock); 106 } 107 108 static void mmu_unlock(uint32_t exceptions) 109 { 110 cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); 111 } 112 113 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size) 114 { 115 /* 116 * The first range is always used to cover OP-TEE core memory, but 117 * depending on configuration it may cover more than that. 118 */ 119 *base = secure_only[0].paddr; 120 *size = secure_only[0].size; 121 } 122 123 #ifdef CFG_CORE_PHYS_RELOCATABLE 124 void core_mmu_set_secure_memory(paddr_t base, size_t size) 125 { 126 static_assert(ARRAY_SIZE(secure_only) == 1); 127 assert(!secure_only[0].size); 128 assert(base && size); 129 130 DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size); 131 secure_only[0].paddr = base; 132 secure_only[0].size = size; 133 } 134 #endif 135 136 void core_mmu_get_ta_range(paddr_t *base, size_t *size) 137 { 138 paddr_t b = 0; 139 size_t s = 0; 140 141 static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE)); 142 #ifdef TA_RAM_START 143 b = TA_RAM_START; 144 s = TA_RAM_SIZE; 145 #else 146 static_assert(ARRAY_SIZE(secure_only) <= 2); 147 if (ARRAY_SIZE(secure_only) == 1) { 148 vaddr_t load_offs = 0; 149 150 assert(core_mmu_tee_load_pa >= secure_only[0].paddr); 151 load_offs = core_mmu_tee_load_pa - secure_only[0].paddr; 152 153 assert(secure_only[0].size > 154 load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE); 155 b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE; 156 s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE - 157 TEE_SDP_TEST_MEM_SIZE; 158 } else { 159 assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE); 160 b = secure_only[1].paddr; 161 s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE; 162 } 163 #endif 164 if (base) 165 *base = b; 166 if (size) 167 *size = s; 168 } 169 170 static struct tee_mmap_region *get_memory_map(void) 171 { 172 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 173 struct tee_mmap_region *map = virt_get_memory_map(); 174 175 if (map) 176 return map; 177 } 178 179 return static_memory_map; 180 } 181 182 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, 183 paddr_t pa, size_t size) 184 { 185 size_t n; 186 187 for (n = 0; n < alen; n++) 188 if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) 189 return true; 190 return false; 191 } 192 193 #define pbuf_intersects(a, pa, size) \ 194 _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) 195 196 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, 197 paddr_t pa, size_t size) 198 { 199 size_t n; 200 201 for (n = 0; n < alen; n++) 202 if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) 203 return true; 204 return false; 205 } 206 207 #define pbuf_is_inside(a, pa, size) \ 208 _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) 209 210 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) 211 { 212 paddr_t end_pa = 0; 213 214 if (!map) 215 return false; 216 217 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 218 return false; 219 220 return (pa >= map->pa && end_pa <= map->pa + map->size - 1); 221 } 222 223 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) 224 { 225 if (!map) 226 return false; 227 return (va >= map->va && va <= (map->va + map->size - 1)); 228 } 229 230 /* check if target buffer fits in a core default map area */ 231 static bool pbuf_inside_map_area(unsigned long p, size_t l, 232 struct tee_mmap_region *map) 233 { 234 return core_is_buffer_inside(p, l, map->pa, map->size); 235 } 236 237 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) 238 { 239 struct tee_mmap_region *map; 240 241 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) 242 if (map->type == type) 243 return map; 244 return NULL; 245 } 246 247 static struct tee_mmap_region * 248 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) 249 { 250 struct tee_mmap_region *map; 251 252 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 253 if (map->type != type) 254 continue; 255 if (pa_is_in_map(map, pa, len)) 256 return map; 257 } 258 return NULL; 259 } 260 261 static struct tee_mmap_region *find_map_by_va(void *va) 262 { 263 struct tee_mmap_region *map = get_memory_map(); 264 unsigned long a = (unsigned long)va; 265 266 while (!core_mmap_is_end_of_table(map)) { 267 if (a >= map->va && a <= (map->va - 1 + map->size)) 268 return map; 269 map++; 270 } 271 return NULL; 272 } 273 274 static struct tee_mmap_region *find_map_by_pa(unsigned long pa) 275 { 276 struct tee_mmap_region *map = get_memory_map(); 277 278 while (!core_mmap_is_end_of_table(map)) { 279 if (pa >= map->pa && pa <= (map->pa + map->size - 1)) 280 return map; 281 map++; 282 } 283 return NULL; 284 } 285 286 #if defined(CFG_SECURE_DATA_PATH) 287 static bool dtb_get_sdp_region(void) 288 { 289 void *fdt = NULL; 290 int node = 0; 291 int tmp_node = 0; 292 paddr_t tmp_addr = 0; 293 size_t tmp_size = 0; 294 295 if (!IS_ENABLED(CFG_EMBED_DTB)) 296 return false; 297 298 fdt = get_embedded_dt(); 299 if (!fdt) 300 panic("No DTB found"); 301 302 node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match); 303 if (node < 0) { 304 DMSG("No %s compatible node found", tz_sdp_match); 305 return false; 306 } 307 tmp_node = node; 308 while (tmp_node >= 0) { 309 tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node, 310 tz_sdp_match); 311 if (tmp_node >= 0) 312 DMSG("Ignore SDP pool node %s, supports only 1 node", 313 fdt_get_name(fdt, tmp_node, NULL)); 314 } 315 316 tmp_addr = fdt_reg_base_address(fdt, node); 317 if (tmp_addr == DT_INFO_INVALID_REG) { 318 EMSG("%s: Unable to get base addr from DT", tz_sdp_match); 319 return false; 320 } 321 322 tmp_size = fdt_reg_size(fdt, node); 323 if (tmp_size == DT_INFO_INVALID_REG_SIZE) { 324 EMSG("%s: Unable to get size of base addr from DT", 325 tz_sdp_match); 326 return false; 327 } 328 329 sec_sdp.paddr = tmp_addr; 330 sec_sdp.size = tmp_size; 331 332 return true; 333 } 334 #endif 335 336 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) 337 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, 338 const struct core_mmu_phys_mem *start, 339 const struct core_mmu_phys_mem *end) 340 { 341 const struct core_mmu_phys_mem *mem; 342 343 for (mem = start; mem < end; mem++) { 344 if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) 345 return true; 346 } 347 348 return false; 349 } 350 #endif 351 352 #ifdef CFG_CORE_DYN_SHM 353 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, 354 paddr_t pa, size_t size) 355 { 356 struct core_mmu_phys_mem *m = *mem; 357 size_t n = 0; 358 359 while (true) { 360 if (n >= *nelems) { 361 DMSG("No need to carve out %#" PRIxPA " size %#zx", 362 pa, size); 363 return; 364 } 365 if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size)) 366 break; 367 if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size)) 368 panic(); 369 n++; 370 } 371 372 if (pa == m[n].addr && size == m[n].size) { 373 /* Remove this entry */ 374 (*nelems)--; 375 memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n)); 376 m = nex_realloc(m, sizeof(*m) * *nelems); 377 if (!m) 378 panic(); 379 *mem = m; 380 } else if (pa == m[n].addr) { 381 m[n].addr += size; 382 m[n].size -= size; 383 } else if ((pa + size) == (m[n].addr + m[n].size)) { 384 m[n].size -= size; 385 } else { 386 /* Need to split the memory entry */ 387 m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); 388 if (!m) 389 panic(); 390 *mem = m; 391 memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n)); 392 (*nelems)++; 393 m[n].size = pa - m[n].addr; 394 m[n + 1].size -= size + m[n].size; 395 m[n + 1].addr = pa + size; 396 } 397 } 398 399 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, 400 size_t nelems, 401 struct tee_mmap_region *map) 402 { 403 size_t n; 404 405 for (n = 0; n < nelems; n++) { 406 if (!core_is_buffer_outside(start[n].addr, start[n].size, 407 map->pa, map->size)) { 408 EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ 409 ") overlaps map (type %d %#" PRIxPA ":%#zx)", 410 start[n].addr, start[n].size, 411 map->type, map->pa, map->size); 412 panic(); 413 } 414 } 415 } 416 417 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; 418 static size_t discovered_nsec_ddr_nelems __nex_bss; 419 420 static int cmp_pmem_by_addr(const void *a, const void *b) 421 { 422 const struct core_mmu_phys_mem *pmem_a = a; 423 const struct core_mmu_phys_mem *pmem_b = b; 424 425 return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); 426 } 427 428 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 429 size_t nelems) 430 { 431 struct core_mmu_phys_mem *m = start; 432 size_t num_elems = nelems; 433 struct tee_mmap_region *map = static_memory_map; 434 const struct core_mmu_phys_mem __maybe_unused *pmem; 435 size_t n = 0; 436 437 assert(!discovered_nsec_ddr_start); 438 assert(m && num_elems); 439 440 qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); 441 442 /* 443 * Non-secure shared memory and also secure data 444 * path memory are supposed to reside inside 445 * non-secure memory. Since NSEC_SHM and SDP_MEM 446 * are used for a specific purpose make holes for 447 * those memory in the normal non-secure memory. 448 * 449 * This has to be done since for instance QEMU 450 * isn't aware of which memory range in the 451 * non-secure memory is used for NSEC_SHM. 452 */ 453 454 #ifdef CFG_SECURE_DATA_PATH 455 if (dtb_get_sdp_region()) 456 carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size); 457 458 for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) 459 carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); 460 #endif 461 462 for (n = 0; n < ARRAY_SIZE(secure_only); n++) 463 carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr, 464 secure_only[n].size); 465 466 for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) { 467 switch (map->type) { 468 case MEM_AREA_NSEC_SHM: 469 carve_out_phys_mem(&m, &num_elems, map->pa, map->size); 470 break; 471 case MEM_AREA_EXT_DT: 472 case MEM_AREA_MANIFEST_DT: 473 case MEM_AREA_RES_VASPACE: 474 case MEM_AREA_SHM_VASPACE: 475 case MEM_AREA_TS_VASPACE: 476 case MEM_AREA_PAGER_VASPACE: 477 break; 478 default: 479 check_phys_mem_is_outside(m, num_elems, map); 480 } 481 } 482 483 discovered_nsec_ddr_start = m; 484 discovered_nsec_ddr_nelems = num_elems; 485 486 if (!core_mmu_check_end_pa(m[num_elems - 1].addr, 487 m[num_elems - 1].size)) 488 panic(); 489 } 490 491 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, 492 const struct core_mmu_phys_mem **end) 493 { 494 if (!discovered_nsec_ddr_start) 495 return false; 496 497 *start = discovered_nsec_ddr_start; 498 *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; 499 500 return true; 501 } 502 503 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) 504 { 505 const struct core_mmu_phys_mem *start; 506 const struct core_mmu_phys_mem *end; 507 508 if (!get_discovered_nsec_ddr(&start, &end)) 509 return false; 510 511 return pbuf_is_special_mem(pbuf, len, start, end); 512 } 513 514 bool core_mmu_nsec_ddr_is_defined(void) 515 { 516 const struct core_mmu_phys_mem *start; 517 const struct core_mmu_phys_mem *end; 518 519 if (!get_discovered_nsec_ddr(&start, &end)) 520 return false; 521 522 return start != end; 523 } 524 #else 525 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) 526 { 527 return false; 528 } 529 #endif /*CFG_CORE_DYN_SHM*/ 530 531 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ 532 EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ 533 pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) 534 535 #ifdef CFG_SECURE_DATA_PATH 536 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) 537 { 538 bool is_sdp_mem = false; 539 540 if (sec_sdp.size) 541 is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr, 542 sec_sdp.size); 543 544 if (!is_sdp_mem) 545 is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, 546 phys_sdp_mem_end); 547 548 return is_sdp_mem; 549 } 550 551 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size) 552 { 553 struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED, 554 CORE_MEM_SDP_MEM); 555 556 if (!mobj) 557 panic("can't create SDP physical memory object"); 558 559 return mobj; 560 } 561 562 struct mobj **core_sdp_mem_create_mobjs(void) 563 { 564 const struct core_mmu_phys_mem *mem = NULL; 565 struct mobj **mobj_base = NULL; 566 struct mobj **mobj = NULL; 567 int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; 568 569 if (sec_sdp.size) 570 cnt++; 571 572 /* SDP mobjs table must end with a NULL entry */ 573 mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); 574 if (!mobj_base) 575 panic("Out of memory"); 576 577 mobj = mobj_base; 578 579 for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++) 580 *mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size); 581 582 if (sec_sdp.size) 583 *mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size); 584 585 return mobj_base; 586 } 587 588 #else /* CFG_SECURE_DATA_PATH */ 589 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) 590 { 591 return false; 592 } 593 594 #endif /* CFG_SECURE_DATA_PATH */ 595 596 /* Check special memories comply with registered memories */ 597 static void verify_special_mem_areas(struct tee_mmap_region *mem_map, 598 size_t len, 599 const struct core_mmu_phys_mem *start, 600 const struct core_mmu_phys_mem *end, 601 const char *area_name __maybe_unused) 602 { 603 const struct core_mmu_phys_mem *mem; 604 const struct core_mmu_phys_mem *mem2; 605 struct tee_mmap_region *mmap; 606 size_t n; 607 608 if (start == end) { 609 DMSG("No %s memory area defined", area_name); 610 return; 611 } 612 613 for (mem = start; mem < end; mem++) 614 DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", 615 area_name, mem->addr, (uint64_t)mem->addr + mem->size); 616 617 /* Check memories do not intersect each other */ 618 for (mem = start; mem + 1 < end; mem++) { 619 for (mem2 = mem + 1; mem2 < end; mem2++) { 620 if (core_is_buffer_intersect(mem2->addr, mem2->size, 621 mem->addr, mem->size)) { 622 MSG_MEM_INSTERSECT(mem2->addr, mem2->size, 623 mem->addr, mem->size); 624 panic("Special memory intersection"); 625 } 626 } 627 } 628 629 /* 630 * Check memories do not intersect any mapped memory. 631 * This is called before reserved VA space is loaded in mem_map. 632 */ 633 for (mem = start; mem < end; mem++) { 634 for (mmap = mem_map, n = 0; n < len; mmap++, n++) { 635 if (core_is_buffer_intersect(mem->addr, mem->size, 636 mmap->pa, mmap->size)) { 637 MSG_MEM_INSTERSECT(mem->addr, mem->size, 638 mmap->pa, mmap->size); 639 panic("Special memory intersection"); 640 } 641 } 642 } 643 } 644 645 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems, 646 const char *mem_name __maybe_unused, 647 enum teecore_memtypes mem_type, 648 paddr_t mem_addr, paddr_size_t mem_size, size_t *last) 649 { 650 size_t n = 0; 651 paddr_t pa; 652 paddr_size_t size; 653 654 if (!mem_size) /* Discard null size entries */ 655 return; 656 /* 657 * If some ranges of memory of the same type do overlap 658 * each others they are coalesced into one entry. To help this 659 * added entries are sorted by increasing physical. 660 * 661 * Note that it's valid to have the same physical memory as several 662 * different memory types, for instance the same device memory 663 * mapped as both secure and non-secure. This will probably not 664 * happen often in practice. 665 */ 666 DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, 667 mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size); 668 while (true) { 669 if (n >= (num_elems - 1)) { 670 EMSG("Out of entries (%zu) in memory_map", num_elems); 671 panic(); 672 } 673 if (n == *last) 674 break; 675 pa = memory_map[n].pa; 676 size = memory_map[n].size; 677 if (mem_type == memory_map[n].type && 678 ((pa <= (mem_addr + (mem_size - 1))) && 679 (mem_addr <= (pa + (size - 1))))) { 680 DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr); 681 memory_map[n].pa = MIN(pa, mem_addr); 682 memory_map[n].size = MAX(size, mem_size) + 683 (pa - memory_map[n].pa); 684 return; 685 } 686 if (mem_type < memory_map[n].type || 687 (mem_type == memory_map[n].type && mem_addr < pa)) 688 break; /* found the spot where to insert this memory */ 689 n++; 690 } 691 692 memmove(memory_map + n + 1, memory_map + n, 693 sizeof(struct tee_mmap_region) * (*last - n)); 694 (*last)++; 695 memset(memory_map + n, 0, sizeof(memory_map[0])); 696 memory_map[n].type = mem_type; 697 memory_map[n].pa = mem_addr; 698 memory_map[n].size = mem_size; 699 } 700 701 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems, 702 enum teecore_memtypes type, size_t size, size_t *last) 703 { 704 size_t n = 0; 705 706 DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); 707 while (true) { 708 if (n >= (num_elems - 1)) { 709 EMSG("Out of entries (%zu) in memory_map", num_elems); 710 panic(); 711 } 712 if (n == *last) 713 break; 714 if (type < memory_map[n].type) 715 break; 716 n++; 717 } 718 719 memmove(memory_map + n + 1, memory_map + n, 720 sizeof(struct tee_mmap_region) * (*last - n)); 721 (*last)++; 722 memset(memory_map + n, 0, sizeof(memory_map[0])); 723 memory_map[n].type = type; 724 memory_map[n].size = size; 725 } 726 727 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) 728 { 729 const uint32_t attr = TEE_MATTR_VALID_BLOCK; 730 const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED << 731 TEE_MATTR_MEM_TYPE_SHIFT; 732 const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << 733 TEE_MATTR_MEM_TYPE_SHIFT; 734 const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << 735 TEE_MATTR_MEM_TYPE_SHIFT; 736 737 switch (t) { 738 case MEM_AREA_TEE_RAM: 739 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged; 740 case MEM_AREA_TEE_RAM_RX: 741 case MEM_AREA_INIT_RAM_RX: 742 case MEM_AREA_IDENTITY_MAP_RX: 743 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged; 744 case MEM_AREA_TEE_RAM_RO: 745 case MEM_AREA_INIT_RAM_RO: 746 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged; 747 case MEM_AREA_TEE_RAM_RW: 748 case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ 749 case MEM_AREA_NEX_RAM_RW: 750 case MEM_AREA_TEE_ASAN: 751 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 752 case MEM_AREA_TEE_COHERENT: 753 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; 754 case MEM_AREA_TA_RAM: 755 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 756 case MEM_AREA_NSEC_SHM: 757 case MEM_AREA_NEX_NSEC_SHM: 758 return attr | TEE_MATTR_PRW | cached; 759 case MEM_AREA_MANIFEST_DT: 760 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 761 case MEM_AREA_EXT_DT: 762 /* 763 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device 764 * tree as secure non-cached memory, otherwise, fall back to 765 * non-secure mapping. 766 */ 767 if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE)) 768 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | 769 noncache; 770 fallthrough; 771 case MEM_AREA_IO_NSEC: 772 return attr | TEE_MATTR_PRW | noncache; 773 case MEM_AREA_IO_SEC: 774 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; 775 case MEM_AREA_RAM_NSEC: 776 return attr | TEE_MATTR_PRW | cached; 777 case MEM_AREA_RAM_SEC: 778 case MEM_AREA_SEC_RAM_OVERALL: 779 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 780 case MEM_AREA_RES_VASPACE: 781 case MEM_AREA_SHM_VASPACE: 782 return 0; 783 case MEM_AREA_PAGER_VASPACE: 784 return TEE_MATTR_SECURE; 785 default: 786 panic("invalid type"); 787 } 788 } 789 790 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) 791 { 792 switch (mm->type) { 793 case MEM_AREA_TEE_RAM: 794 case MEM_AREA_TEE_RAM_RX: 795 case MEM_AREA_TEE_RAM_RO: 796 case MEM_AREA_TEE_RAM_RW: 797 case MEM_AREA_INIT_RAM_RX: 798 case MEM_AREA_INIT_RAM_RO: 799 case MEM_AREA_NEX_RAM_RW: 800 case MEM_AREA_NEX_RAM_RO: 801 case MEM_AREA_TEE_ASAN: 802 return true; 803 default: 804 return false; 805 } 806 } 807 808 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) 809 { 810 return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); 811 } 812 813 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) 814 { 815 return mm->region_size == CORE_MMU_PGDIR_SIZE; 816 } 817 818 static int cmp_mmap_by_lower_va(const void *a, const void *b) 819 { 820 const struct tee_mmap_region *mm_a = a; 821 const struct tee_mmap_region *mm_b = b; 822 823 return CMP_TRILEAN(mm_a->va, mm_b->va); 824 } 825 826 static void dump_mmap_table(struct tee_mmap_region *memory_map) 827 { 828 struct tee_mmap_region *map; 829 830 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 831 vaddr_t __maybe_unused vstart; 832 833 vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1)); 834 DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA 835 " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", 836 teecore_memtype_name(map->type), vstart, 837 vstart + map->size - 1, map->pa, 838 (paddr_t)(map->pa + map->size - 1), map->size, 839 map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); 840 } 841 } 842 843 #if DEBUG_XLAT_TABLE 844 845 static void dump_xlat_table(vaddr_t va, unsigned int level) 846 { 847 struct core_mmu_table_info tbl_info; 848 unsigned int idx = 0; 849 paddr_t pa; 850 uint32_t attr; 851 852 core_mmu_find_table(NULL, va, level, &tbl_info); 853 va = tbl_info.va_base; 854 for (idx = 0; idx < tbl_info.num_entries; idx++) { 855 core_mmu_get_entry(&tbl_info, idx, &pa, &attr); 856 if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { 857 const char *security_bit = ""; 858 859 if (core_mmu_entry_have_security_bit(attr)) { 860 if (attr & TEE_MATTR_SECURE) 861 security_bit = "S"; 862 else 863 security_bit = "NS"; 864 } 865 866 if (attr & TEE_MATTR_TABLE) { 867 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 868 " TBL:0x%010" PRIxPA " %s", 869 level * 2, "", level, va, pa, 870 security_bit); 871 dump_xlat_table(va, level + 1); 872 } else if (attr) { 873 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 874 " PA:0x%010" PRIxPA " %s-%s-%s-%s", 875 level * 2, "", level, va, pa, 876 mattr_is_cached(attr) ? "MEM" : 877 "DEV", 878 attr & TEE_MATTR_PW ? "RW" : "RO", 879 attr & TEE_MATTR_PX ? "X " : "XN", 880 security_bit); 881 } else { 882 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 883 " INVALID\n", 884 level * 2, "", level, va); 885 } 886 } 887 va += BIT64(tbl_info.shift); 888 } 889 } 890 891 #else 892 893 static void dump_xlat_table(vaddr_t va __unused, int level __unused) 894 { 895 } 896 897 #endif 898 899 /* 900 * Reserves virtual memory space for pager usage. 901 * 902 * From the start of the first memory used by the link script + 903 * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty 904 * mapping for pager usage. This adds translation tables as needed for the 905 * pager to operate. 906 */ 907 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems, 908 size_t *last) 909 { 910 paddr_t begin = 0; 911 paddr_t end = 0; 912 size_t size = 0; 913 size_t pos = 0; 914 size_t n = 0; 915 916 if (*last >= (num_elems - 1)) { 917 EMSG("Out of entries (%zu) in memory map", num_elems); 918 panic(); 919 } 920 921 for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) { 922 if (map_is_tee_ram(mmap + n)) { 923 if (!begin) 924 begin = mmap[n].pa; 925 pos = n + 1; 926 } 927 } 928 929 end = mmap[pos - 1].pa + mmap[pos - 1].size; 930 assert(end - begin < TEE_RAM_VA_SIZE); 931 size = TEE_RAM_VA_SIZE - (end - begin); 932 933 assert(pos <= *last); 934 memmove(mmap + pos + 1, mmap + pos, 935 sizeof(struct tee_mmap_region) * (*last - pos)); 936 (*last)++; 937 memset(mmap + pos, 0, sizeof(mmap[0])); 938 mmap[pos].type = MEM_AREA_PAGER_VASPACE; 939 mmap[pos].va = 0; 940 mmap[pos].size = size; 941 mmap[pos].region_size = SMALL_PAGE_SIZE; 942 mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE); 943 } 944 945 static void check_sec_nsec_mem_config(void) 946 { 947 size_t n = 0; 948 949 for (n = 0; n < ARRAY_SIZE(secure_only); n++) { 950 if (pbuf_intersects(nsec_shared, secure_only[n].paddr, 951 secure_only[n].size)) 952 panic("Invalid memory access config: sec/nsec"); 953 } 954 } 955 956 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map, 957 size_t num_elems) 958 { 959 const struct core_mmu_phys_mem *mem = NULL; 960 vaddr_t ram_start = secure_only[0].paddr; 961 size_t last = 0; 962 963 964 #define ADD_PHYS_MEM(_type, _addr, _size) \ 965 add_phys_mem(memory_map, num_elems, #_addr, (_type), \ 966 (_addr), (_size), &last) 967 968 if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) { 969 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start, 970 VCORE_UNPG_RX_PA - ram_start); 971 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, 972 VCORE_UNPG_RX_SZ); 973 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, 974 VCORE_UNPG_RO_SZ); 975 976 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 977 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, 978 VCORE_UNPG_RW_SZ); 979 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, 980 VCORE_NEX_RW_SZ); 981 } else { 982 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, 983 VCORE_UNPG_RW_SZ); 984 } 985 986 if (IS_ENABLED(CFG_WITH_PAGER)) { 987 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, 988 VCORE_INIT_RX_SZ); 989 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, 990 VCORE_INIT_RO_SZ); 991 } 992 } else { 993 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); 994 } 995 996 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 997 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE, 998 TRUSTED_DRAM_SIZE); 999 } else { 1000 /* 1001 * Every guest will have own TA RAM if virtualization 1002 * support is enabled. 1003 */ 1004 paddr_t ta_base = 0; 1005 size_t ta_size = 0; 1006 1007 core_mmu_get_ta_range(&ta_base, &ta_size); 1008 ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size); 1009 } 1010 1011 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) && 1012 IS_ENABLED(CFG_WITH_PAGER)) { 1013 /* 1014 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is 1015 * disabled. 1016 */ 1017 ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); 1018 } 1019 1020 #undef ADD_PHYS_MEM 1021 1022 for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { 1023 /* Only unmapped virtual range may have a null phys addr */ 1024 assert(mem->addr || !core_mmu_type_to_attr(mem->type)); 1025 1026 add_phys_mem(memory_map, num_elems, mem->name, mem->type, 1027 mem->addr, mem->size, &last); 1028 } 1029 1030 if (IS_ENABLED(CFG_SECURE_DATA_PATH)) 1031 verify_special_mem_areas(memory_map, num_elems, 1032 phys_sdp_mem_begin, 1033 phys_sdp_mem_end, "SDP"); 1034 1035 add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE, 1036 CFG_RESERVED_VASPACE_SIZE, &last); 1037 1038 add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE, 1039 SHM_VASPACE_SIZE, &last); 1040 1041 memory_map[last].type = MEM_AREA_END; 1042 1043 return last; 1044 } 1045 1046 static void assign_mem_granularity(struct tee_mmap_region *memory_map) 1047 { 1048 struct tee_mmap_region *map = NULL; 1049 1050 /* 1051 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses 1052 * SMALL_PAGE_SIZE. 1053 */ 1054 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1055 paddr_t mask = map->pa | map->size; 1056 1057 if (!(mask & CORE_MMU_PGDIR_MASK)) 1058 map->region_size = CORE_MMU_PGDIR_SIZE; 1059 else if (!(mask & SMALL_PAGE_MASK)) 1060 map->region_size = SMALL_PAGE_SIZE; 1061 else 1062 panic("Impossible memory alignment"); 1063 1064 if (map_is_tee_ram(map)) 1065 map->region_size = SMALL_PAGE_SIZE; 1066 } 1067 } 1068 1069 static bool place_tee_ram_at_top(paddr_t paddr) 1070 { 1071 return paddr > BIT64(core_mmu_get_va_width()) / 2; 1072 } 1073 1074 /* 1075 * MMU arch driver shall override this function if it helps 1076 * optimizing the memory footprint of the address translation tables. 1077 */ 1078 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr) 1079 { 1080 return place_tee_ram_at_top(paddr); 1081 } 1082 1083 static bool assign_mem_va_dir(vaddr_t tee_ram_va, 1084 struct tee_mmap_region *memory_map, 1085 bool tee_ram_at_top) 1086 { 1087 struct tee_mmap_region *map = NULL; 1088 vaddr_t va = 0; 1089 bool va_is_secure = true; 1090 1091 /* 1092 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y. 1093 * 0 is by design an invalid va, so return false directly. 1094 */ 1095 if (!tee_ram_va) 1096 return false; 1097 1098 /* Clear eventual previous assignments */ 1099 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 1100 map->va = 0; 1101 1102 /* 1103 * TEE RAM regions are always aligned with region_size. 1104 * 1105 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here 1106 * since it handles virtual memory which covers the part of the ELF 1107 * that cannot fit directly into memory. 1108 */ 1109 va = tee_ram_va; 1110 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1111 if (map_is_tee_ram(map) || 1112 map->type == MEM_AREA_PAGER_VASPACE) { 1113 assert(!(va & (map->region_size - 1))); 1114 assert(!(map->size & (map->region_size - 1))); 1115 map->va = va; 1116 if (ADD_OVERFLOW(va, map->size, &va)) 1117 return false; 1118 if (va >= BIT64(core_mmu_get_va_width())) 1119 return false; 1120 } 1121 } 1122 1123 if (tee_ram_at_top) { 1124 /* 1125 * Map non-tee ram regions at addresses lower than the tee 1126 * ram region. 1127 */ 1128 va = tee_ram_va; 1129 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1130 map->attr = core_mmu_type_to_attr(map->type); 1131 if (map->va) 1132 continue; 1133 1134 if (!IS_ENABLED(CFG_WITH_LPAE) && 1135 va_is_secure != map_is_secure(map)) { 1136 va_is_secure = !va_is_secure; 1137 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1138 } 1139 1140 if (SUB_OVERFLOW(va, map->size, &va)) 1141 return false; 1142 va = ROUNDDOWN(va, map->region_size); 1143 /* 1144 * Make sure that va is aligned with pa for 1145 * efficient pgdir mapping. Basically pa & 1146 * pgdir_mask should be == va & pgdir_mask 1147 */ 1148 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1149 if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) 1150 return false; 1151 va += (map->pa - va) & CORE_MMU_PGDIR_MASK; 1152 } 1153 map->va = va; 1154 } 1155 } else { 1156 /* 1157 * Map non-tee ram regions at addresses higher than the tee 1158 * ram region. 1159 */ 1160 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1161 map->attr = core_mmu_type_to_attr(map->type); 1162 if (map->va) 1163 continue; 1164 1165 if (!IS_ENABLED(CFG_WITH_LPAE) && 1166 va_is_secure != map_is_secure(map)) { 1167 va_is_secure = !va_is_secure; 1168 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1169 &va)) 1170 return false; 1171 } 1172 1173 if (ROUNDUP_OVERFLOW(va, map->region_size, &va)) 1174 return false; 1175 /* 1176 * Make sure that va is aligned with pa for 1177 * efficient pgdir mapping. Basically pa & 1178 * pgdir_mask should be == va & pgdir_mask 1179 */ 1180 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1181 vaddr_t offs = (map->pa - va) & 1182 CORE_MMU_PGDIR_MASK; 1183 1184 if (ADD_OVERFLOW(va, offs, &va)) 1185 return false; 1186 } 1187 1188 map->va = va; 1189 if (ADD_OVERFLOW(va, map->size, &va)) 1190 return false; 1191 if (va >= BIT64(core_mmu_get_va_width())) 1192 return false; 1193 } 1194 } 1195 1196 return true; 1197 } 1198 1199 static bool assign_mem_va(vaddr_t tee_ram_va, 1200 struct tee_mmap_region *memory_map) 1201 { 1202 bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va); 1203 1204 /* 1205 * Check that we're not overlapping with the user VA range. 1206 */ 1207 if (IS_ENABLED(CFG_WITH_LPAE)) { 1208 /* 1209 * User VA range is supposed to be defined after these 1210 * mappings have been established. 1211 */ 1212 assert(!core_mmu_user_va_range_is_defined()); 1213 } else { 1214 vaddr_t user_va_base = 0; 1215 size_t user_va_size = 0; 1216 1217 assert(core_mmu_user_va_range_is_defined()); 1218 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 1219 if (tee_ram_va < (user_va_base + user_va_size)) 1220 return false; 1221 } 1222 1223 if (IS_ENABLED(CFG_WITH_PAGER)) { 1224 bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va); 1225 1226 /* Try whole mapping covered by a single base xlat entry */ 1227 if (prefered_dir != tee_ram_at_top && 1228 assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir)) 1229 return true; 1230 } 1231 1232 return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top); 1233 } 1234 1235 static int cmp_init_mem_map(const void *a, const void *b) 1236 { 1237 const struct tee_mmap_region *mm_a = a; 1238 const struct tee_mmap_region *mm_b = b; 1239 int rc = 0; 1240 1241 rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); 1242 if (!rc) 1243 rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); 1244 /* 1245 * 32bit MMU descriptors cannot mix secure and non-secure mapping in 1246 * the same level2 table. Hence sort secure mapping from non-secure 1247 * mapping. 1248 */ 1249 if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) 1250 rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); 1251 1252 return rc; 1253 } 1254 1255 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map, 1256 size_t num_elems, size_t *last, 1257 vaddr_t id_map_start, vaddr_t id_map_end) 1258 { 1259 struct tee_mmap_region *map = NULL; 1260 vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); 1261 vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); 1262 size_t len = end - start; 1263 1264 if (*last >= num_elems - 1) { 1265 EMSG("Out of entries (%zu) in memory map", num_elems); 1266 panic(); 1267 } 1268 1269 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 1270 if (core_is_buffer_intersect(map->va, map->size, start, len)) 1271 return false; 1272 1273 *map = (struct tee_mmap_region){ 1274 .type = MEM_AREA_IDENTITY_MAP_RX, 1275 /* 1276 * Could use CORE_MMU_PGDIR_SIZE to potentially save a 1277 * translation table, at the increased risk of clashes with 1278 * the rest of the memory map. 1279 */ 1280 .region_size = SMALL_PAGE_SIZE, 1281 .pa = start, 1282 .va = start, 1283 .size = len, 1284 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1285 }; 1286 1287 (*last)++; 1288 1289 return true; 1290 } 1291 1292 static unsigned long init_mem_map(struct tee_mmap_region *memory_map, 1293 size_t num_elems, unsigned long seed) 1294 { 1295 /* 1296 * @id_map_start and @id_map_end describes a physical memory range 1297 * that must be mapped Read-Only eXecutable at identical virtual 1298 * addresses. 1299 */ 1300 vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; 1301 vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; 1302 vaddr_t start_addr = secure_only[0].paddr; 1303 unsigned long offs = 0; 1304 size_t last = 0; 1305 1306 last = collect_mem_ranges(memory_map, num_elems); 1307 assign_mem_granularity(memory_map); 1308 1309 /* 1310 * To ease mapping and lower use of xlat tables, sort mapping 1311 * description moving small-page regions after the pgdir regions. 1312 */ 1313 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1314 cmp_init_mem_map); 1315 1316 if (IS_ENABLED(CFG_WITH_PAGER)) 1317 add_pager_vaspace(memory_map, num_elems, &last); 1318 1319 if (IS_ENABLED(CFG_CORE_ASLR) && seed) { 1320 vaddr_t base_addr = start_addr + seed; 1321 const unsigned int va_width = core_mmu_get_va_width(); 1322 const vaddr_t va_mask = GENMASK_64(va_width - 1, 1323 SMALL_PAGE_SHIFT); 1324 vaddr_t ba = base_addr; 1325 size_t n = 0; 1326 1327 for (n = 0; n < 3; n++) { 1328 if (n) 1329 ba = base_addr ^ BIT64(va_width - n); 1330 ba &= va_mask; 1331 if (assign_mem_va(ba, memory_map) && 1332 mem_map_add_id_map(memory_map, num_elems, &last, 1333 id_map_start, id_map_end)) { 1334 offs = ba - start_addr; 1335 DMSG("Mapping core at %#"PRIxVA" offs %#lx", 1336 ba, offs); 1337 goto out; 1338 } else { 1339 DMSG("Failed to map core at %#"PRIxVA, ba); 1340 } 1341 } 1342 EMSG("Failed to map core with seed %#lx", seed); 1343 } 1344 1345 if (!assign_mem_va(start_addr, memory_map)) 1346 panic(); 1347 1348 out: 1349 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1350 cmp_mmap_by_lower_va); 1351 1352 dump_mmap_table(memory_map); 1353 1354 return offs; 1355 } 1356 1357 static void check_mem_map(struct tee_mmap_region *map) 1358 { 1359 struct tee_mmap_region *m = NULL; 1360 1361 for (m = map; !core_mmap_is_end_of_table(m); m++) { 1362 switch (m->type) { 1363 case MEM_AREA_TEE_RAM: 1364 case MEM_AREA_TEE_RAM_RX: 1365 case MEM_AREA_TEE_RAM_RO: 1366 case MEM_AREA_TEE_RAM_RW: 1367 case MEM_AREA_INIT_RAM_RX: 1368 case MEM_AREA_INIT_RAM_RO: 1369 case MEM_AREA_NEX_RAM_RW: 1370 case MEM_AREA_NEX_RAM_RO: 1371 case MEM_AREA_IDENTITY_MAP_RX: 1372 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1373 panic("TEE_RAM can't fit in secure_only"); 1374 break; 1375 case MEM_AREA_TA_RAM: 1376 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1377 panic("TA_RAM can't fit in secure_only"); 1378 break; 1379 case MEM_AREA_NSEC_SHM: 1380 if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) 1381 panic("NS_SHM can't fit in nsec_shared"); 1382 break; 1383 case MEM_AREA_SEC_RAM_OVERALL: 1384 case MEM_AREA_TEE_COHERENT: 1385 case MEM_AREA_TEE_ASAN: 1386 case MEM_AREA_IO_SEC: 1387 case MEM_AREA_IO_NSEC: 1388 case MEM_AREA_EXT_DT: 1389 case MEM_AREA_MANIFEST_DT: 1390 case MEM_AREA_RAM_SEC: 1391 case MEM_AREA_RAM_NSEC: 1392 case MEM_AREA_RES_VASPACE: 1393 case MEM_AREA_SHM_VASPACE: 1394 case MEM_AREA_PAGER_VASPACE: 1395 break; 1396 default: 1397 EMSG("Uhandled memtype %d", m->type); 1398 panic(); 1399 } 1400 } 1401 } 1402 1403 static struct tee_mmap_region *get_tmp_mmap(void) 1404 { 1405 struct tee_mmap_region *tmp_mmap = (void *)__heap1_start; 1406 1407 #ifdef CFG_WITH_PAGER 1408 if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map)) 1409 tmp_mmap = (void *)__heap2_start; 1410 #endif 1411 1412 memset(tmp_mmap, 0, sizeof(static_memory_map)); 1413 1414 return tmp_mmap; 1415 } 1416 1417 /* 1418 * core_init_mmu_map() - init tee core default memory mapping 1419 * 1420 * This routine sets the static default TEE core mapping. If @seed is > 0 1421 * and configured with CFG_CORE_ASLR it will map tee core at a location 1422 * based on the seed and return the offset from the link address. 1423 * 1424 * If an error happened: core_init_mmu_map is expected to panic. 1425 * 1426 * Note: this function is weak just to make it possible to exclude it from 1427 * the unpaged area. 1428 */ 1429 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) 1430 { 1431 #ifndef CFG_NS_VIRTUALIZATION 1432 vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); 1433 #else 1434 vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, 1435 SMALL_PAGE_SIZE); 1436 #endif 1437 vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; 1438 struct tee_mmap_region *tmp_mmap = get_tmp_mmap(); 1439 unsigned long offs = 0; 1440 1441 if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) && 1442 (core_mmu_tee_load_pa & SMALL_PAGE_MASK)) 1443 panic("OP-TEE load address is not page aligned"); 1444 1445 check_sec_nsec_mem_config(); 1446 1447 /* 1448 * Add a entry covering the translation tables which will be 1449 * involved in some virt_to_phys() and phys_to_virt() conversions. 1450 */ 1451 static_memory_map[0] = (struct tee_mmap_region){ 1452 .type = MEM_AREA_TEE_RAM, 1453 .region_size = SMALL_PAGE_SIZE, 1454 .pa = start, 1455 .va = start, 1456 .size = len, 1457 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1458 }; 1459 1460 COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13); 1461 offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed); 1462 1463 check_mem_map(tmp_mmap); 1464 core_init_mmu(tmp_mmap); 1465 dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); 1466 core_init_mmu_regs(cfg); 1467 cfg->map_offset = offs; 1468 memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map)); 1469 } 1470 1471 bool core_mmu_mattr_is_ok(uint32_t mattr) 1472 { 1473 /* 1474 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and 1475 * core_mmu_v7.c:mattr_to_texcb 1476 */ 1477 1478 switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { 1479 case TEE_MATTR_MEM_TYPE_DEV: 1480 case TEE_MATTR_MEM_TYPE_STRONGLY_O: 1481 case TEE_MATTR_MEM_TYPE_CACHED: 1482 case TEE_MATTR_MEM_TYPE_TAGGED: 1483 return true; 1484 default: 1485 return false; 1486 } 1487 } 1488 1489 /* 1490 * test attributes of target physical buffer 1491 * 1492 * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). 1493 * 1494 */ 1495 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) 1496 { 1497 paddr_t ta_base = 0; 1498 size_t ta_size = 0; 1499 struct tee_mmap_region *map; 1500 1501 /* Empty buffers complies with anything */ 1502 if (len == 0) 1503 return true; 1504 1505 switch (attr) { 1506 case CORE_MEM_SEC: 1507 return pbuf_is_inside(secure_only, pbuf, len); 1508 case CORE_MEM_NON_SEC: 1509 return pbuf_is_inside(nsec_shared, pbuf, len) || 1510 pbuf_is_nsec_ddr(pbuf, len); 1511 case CORE_MEM_TEE_RAM: 1512 return core_is_buffer_inside(pbuf, len, TEE_RAM_START, 1513 TEE_RAM_PH_SIZE); 1514 case CORE_MEM_TA_RAM: 1515 core_mmu_get_ta_range(&ta_base, &ta_size); 1516 return core_is_buffer_inside(pbuf, len, ta_base, ta_size); 1517 #ifdef CFG_CORE_RESERVED_SHM 1518 case CORE_MEM_NSEC_SHM: 1519 return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, 1520 TEE_SHMEM_SIZE); 1521 #endif 1522 case CORE_MEM_SDP_MEM: 1523 return pbuf_is_sdp_mem(pbuf, len); 1524 case CORE_MEM_CACHED: 1525 map = find_map_by_pa(pbuf); 1526 if (!map || !pbuf_inside_map_area(pbuf, len, map)) 1527 return false; 1528 return mattr_is_cached(map->attr); 1529 default: 1530 return false; 1531 } 1532 } 1533 1534 /* test attributes of target virtual buffer (in core mapping) */ 1535 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) 1536 { 1537 paddr_t p; 1538 1539 /* Empty buffers complies with anything */ 1540 if (len == 0) 1541 return true; 1542 1543 p = virt_to_phys((void *)vbuf); 1544 if (!p) 1545 return false; 1546 1547 return core_pbuf_is(attr, p, len); 1548 } 1549 1550 /* core_va2pa - teecore exported service */ 1551 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) 1552 { 1553 struct tee_mmap_region *map; 1554 1555 map = find_map_by_va(va); 1556 if (!va_is_in_map(map, (vaddr_t)va)) 1557 return -1; 1558 1559 /* 1560 * We can calculate PA for static map. Virtual address ranges 1561 * reserved to core dynamic mapping return a 'match' (return 0;) 1562 * together with an invalid null physical address. 1563 */ 1564 if (map->pa) 1565 *pa = map->pa + (vaddr_t)va - map->va; 1566 else 1567 *pa = 0; 1568 1569 return 0; 1570 } 1571 1572 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) 1573 { 1574 if (!pa_is_in_map(map, pa, len)) 1575 return NULL; 1576 1577 return (void *)(vaddr_t)(map->va + pa - map->pa); 1578 } 1579 1580 /* 1581 * teecore gets some memory area definitions 1582 */ 1583 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s, 1584 vaddr_t *e) 1585 { 1586 struct tee_mmap_region *map = find_map_by_type(type); 1587 1588 if (map) { 1589 *s = map->va; 1590 *e = map->va + map->size; 1591 } else { 1592 *s = 0; 1593 *e = 0; 1594 } 1595 } 1596 1597 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) 1598 { 1599 struct tee_mmap_region *map = find_map_by_pa(pa); 1600 1601 if (!map) 1602 return MEM_AREA_MAXTYPE; 1603 return map->type; 1604 } 1605 1606 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1607 paddr_t pa, uint32_t attr) 1608 { 1609 assert(idx < tbl_info->num_entries); 1610 core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, 1611 idx, pa, attr); 1612 } 1613 1614 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1615 paddr_t *pa, uint32_t *attr) 1616 { 1617 assert(idx < tbl_info->num_entries); 1618 core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, 1619 idx, pa, attr); 1620 } 1621 1622 static void clear_region(struct core_mmu_table_info *tbl_info, 1623 struct tee_mmap_region *region) 1624 { 1625 unsigned int end = 0; 1626 unsigned int idx = 0; 1627 1628 /* va, len and pa should be block aligned */ 1629 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1630 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1631 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1632 1633 idx = core_mmu_va2idx(tbl_info, region->va); 1634 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1635 1636 while (idx < end) { 1637 core_mmu_set_entry(tbl_info, idx, 0, 0); 1638 idx++; 1639 } 1640 } 1641 1642 static void set_region(struct core_mmu_table_info *tbl_info, 1643 struct tee_mmap_region *region) 1644 { 1645 unsigned int end; 1646 unsigned int idx; 1647 paddr_t pa; 1648 1649 /* va, len and pa should be block aligned */ 1650 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1651 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1652 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1653 1654 idx = core_mmu_va2idx(tbl_info, region->va); 1655 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1656 pa = region->pa; 1657 1658 while (idx < end) { 1659 core_mmu_set_entry(tbl_info, idx, pa, region->attr); 1660 idx++; 1661 pa += BIT64(tbl_info->shift); 1662 } 1663 } 1664 1665 static void set_pg_region(struct core_mmu_table_info *dir_info, 1666 struct vm_region *region, struct pgt **pgt, 1667 struct core_mmu_table_info *pg_info) 1668 { 1669 struct tee_mmap_region r = { 1670 .va = region->va, 1671 .size = region->size, 1672 .attr = region->attr, 1673 }; 1674 vaddr_t end = r.va + r.size; 1675 uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; 1676 1677 while (r.va < end) { 1678 if (!pg_info->table || 1679 r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { 1680 /* 1681 * We're assigning a new translation table. 1682 */ 1683 unsigned int idx; 1684 1685 /* Virtual addresses must grow */ 1686 assert(r.va > pg_info->va_base); 1687 1688 idx = core_mmu_va2idx(dir_info, r.va); 1689 pg_info->va_base = core_mmu_idx2va(dir_info, idx); 1690 1691 /* 1692 * Advance pgt to va_base, note that we may need to 1693 * skip multiple page tables if there are large 1694 * holes in the vm map. 1695 */ 1696 while ((*pgt)->vabase < pg_info->va_base) { 1697 *pgt = SLIST_NEXT(*pgt, link); 1698 /* We should have allocated enough */ 1699 assert(*pgt); 1700 } 1701 assert((*pgt)->vabase == pg_info->va_base); 1702 pg_info->table = (*pgt)->tbl; 1703 1704 core_mmu_set_entry(dir_info, idx, 1705 virt_to_phys(pg_info->table), 1706 pgt_attr); 1707 } 1708 1709 r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), 1710 end - r.va); 1711 1712 if (!(*pgt)->populated && !mobj_is_paged(region->mobj)) { 1713 size_t granule = BIT(pg_info->shift); 1714 size_t offset = r.va - region->va + region->offset; 1715 1716 r.size = MIN(r.size, 1717 mobj_get_phys_granule(region->mobj)); 1718 r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); 1719 1720 if (mobj_get_pa(region->mobj, offset, granule, 1721 &r.pa) != TEE_SUCCESS) 1722 panic("Failed to get PA of unpaged mobj"); 1723 set_region(pg_info, &r); 1724 } 1725 r.va += r.size; 1726 } 1727 } 1728 1729 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, 1730 size_t size_left, paddr_t block_size, 1731 struct tee_mmap_region *mm __maybe_unused) 1732 { 1733 /* VA and PA are aligned to block size at current level */ 1734 if ((vaddr | paddr) & (block_size - 1)) 1735 return false; 1736 1737 /* Remainder fits into block at current level */ 1738 if (size_left < block_size) 1739 return false; 1740 1741 #ifdef CFG_WITH_PAGER 1742 /* 1743 * If pager is enabled, we need to map tee ram 1744 * regions with small pages only 1745 */ 1746 if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE) 1747 return false; 1748 #endif 1749 1750 return true; 1751 } 1752 1753 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) 1754 { 1755 struct core_mmu_table_info tbl_info; 1756 unsigned int idx; 1757 vaddr_t vaddr = mm->va; 1758 paddr_t paddr = mm->pa; 1759 ssize_t size_left = mm->size; 1760 unsigned int level; 1761 bool table_found; 1762 uint32_t old_attr; 1763 1764 assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); 1765 1766 while (size_left > 0) { 1767 level = CORE_MMU_BASE_TABLE_LEVEL; 1768 1769 while (true) { 1770 paddr_t block_size = 0; 1771 1772 assert(core_mmu_level_in_range(level)); 1773 1774 table_found = core_mmu_find_table(prtn, vaddr, level, 1775 &tbl_info); 1776 if (!table_found) 1777 panic("can't find table for mapping"); 1778 1779 block_size = BIT64(tbl_info.shift); 1780 1781 idx = core_mmu_va2idx(&tbl_info, vaddr); 1782 if (!can_map_at_level(paddr, vaddr, size_left, 1783 block_size, mm)) { 1784 bool secure = mm->attr & TEE_MATTR_SECURE; 1785 1786 /* 1787 * This part of the region can't be mapped at 1788 * this level. Need to go deeper. 1789 */ 1790 if (!core_mmu_entry_to_finer_grained(&tbl_info, 1791 idx, 1792 secure)) 1793 panic("Can't divide MMU entry"); 1794 level = tbl_info.next_level; 1795 continue; 1796 } 1797 1798 /* We can map part of the region at current level */ 1799 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1800 if (old_attr) 1801 panic("Page is already mapped"); 1802 1803 core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr); 1804 paddr += block_size; 1805 vaddr += block_size; 1806 size_left -= block_size; 1807 1808 break; 1809 } 1810 } 1811 } 1812 1813 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 1814 enum teecore_memtypes memtype) 1815 { 1816 TEE_Result ret; 1817 struct core_mmu_table_info tbl_info; 1818 struct tee_mmap_region *mm; 1819 unsigned int idx; 1820 uint32_t old_attr; 1821 uint32_t exceptions; 1822 vaddr_t vaddr = vstart; 1823 size_t i; 1824 bool secure; 1825 1826 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1827 1828 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1829 1830 if (vaddr & SMALL_PAGE_MASK) 1831 return TEE_ERROR_BAD_PARAMETERS; 1832 1833 exceptions = mmu_lock(); 1834 1835 mm = find_map_by_va((void *)vaddr); 1836 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1837 panic("VA does not belong to any known mm region"); 1838 1839 if (!core_mmu_is_dynamic_vaspace(mm)) 1840 panic("Trying to map into static region"); 1841 1842 for (i = 0; i < num_pages; i++) { 1843 if (pages[i] & SMALL_PAGE_MASK) { 1844 ret = TEE_ERROR_BAD_PARAMETERS; 1845 goto err; 1846 } 1847 1848 while (true) { 1849 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1850 &tbl_info)) 1851 panic("Can't find pagetable for vaddr "); 1852 1853 idx = core_mmu_va2idx(&tbl_info, vaddr); 1854 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1855 break; 1856 1857 /* This is supertable. Need to divide it. */ 1858 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1859 secure)) 1860 panic("Failed to spread pgdir on small tables"); 1861 } 1862 1863 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1864 if (old_attr) 1865 panic("Page is already mapped"); 1866 1867 core_mmu_set_entry(&tbl_info, idx, pages[i], 1868 core_mmu_type_to_attr(memtype)); 1869 vaddr += SMALL_PAGE_SIZE; 1870 } 1871 1872 /* 1873 * Make sure all the changes to translation tables are visible 1874 * before returning. TLB doesn't need to be invalidated as we are 1875 * guaranteed that there's no valid mapping in this range. 1876 */ 1877 core_mmu_table_write_barrier(); 1878 mmu_unlock(exceptions); 1879 1880 return TEE_SUCCESS; 1881 err: 1882 mmu_unlock(exceptions); 1883 1884 if (i) 1885 core_mmu_unmap_pages(vstart, i); 1886 1887 return ret; 1888 } 1889 1890 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 1891 size_t num_pages, 1892 enum teecore_memtypes memtype) 1893 { 1894 struct core_mmu_table_info tbl_info = { }; 1895 struct tee_mmap_region *mm = NULL; 1896 unsigned int idx = 0; 1897 uint32_t old_attr = 0; 1898 uint32_t exceptions = 0; 1899 vaddr_t vaddr = vstart; 1900 paddr_t paddr = pstart; 1901 size_t i = 0; 1902 bool secure = false; 1903 1904 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1905 1906 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1907 1908 if ((vaddr | paddr) & SMALL_PAGE_MASK) 1909 return TEE_ERROR_BAD_PARAMETERS; 1910 1911 exceptions = mmu_lock(); 1912 1913 mm = find_map_by_va((void *)vaddr); 1914 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1915 panic("VA does not belong to any known mm region"); 1916 1917 if (!core_mmu_is_dynamic_vaspace(mm)) 1918 panic("Trying to map into static region"); 1919 1920 for (i = 0; i < num_pages; i++) { 1921 while (true) { 1922 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1923 &tbl_info)) 1924 panic("Can't find pagetable for vaddr "); 1925 1926 idx = core_mmu_va2idx(&tbl_info, vaddr); 1927 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1928 break; 1929 1930 /* This is supertable. Need to divide it. */ 1931 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1932 secure)) 1933 panic("Failed to spread pgdir on small tables"); 1934 } 1935 1936 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1937 if (old_attr) 1938 panic("Page is already mapped"); 1939 1940 core_mmu_set_entry(&tbl_info, idx, paddr, 1941 core_mmu_type_to_attr(memtype)); 1942 paddr += SMALL_PAGE_SIZE; 1943 vaddr += SMALL_PAGE_SIZE; 1944 } 1945 1946 /* 1947 * Make sure all the changes to translation tables are visible 1948 * before returning. TLB doesn't need to be invalidated as we are 1949 * guaranteed that there's no valid mapping in this range. 1950 */ 1951 core_mmu_table_write_barrier(); 1952 mmu_unlock(exceptions); 1953 1954 return TEE_SUCCESS; 1955 } 1956 1957 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) 1958 { 1959 struct core_mmu_table_info tbl_info; 1960 struct tee_mmap_region *mm; 1961 size_t i; 1962 unsigned int idx; 1963 uint32_t exceptions; 1964 1965 exceptions = mmu_lock(); 1966 1967 mm = find_map_by_va((void *)vstart); 1968 if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) 1969 panic("VA does not belong to any known mm region"); 1970 1971 if (!core_mmu_is_dynamic_vaspace(mm)) 1972 panic("Trying to unmap static region"); 1973 1974 for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { 1975 if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) 1976 panic("Can't find pagetable"); 1977 1978 if (tbl_info.shift != SMALL_PAGE_SHIFT) 1979 panic("Invalid pagetable level"); 1980 1981 idx = core_mmu_va2idx(&tbl_info, vstart); 1982 core_mmu_set_entry(&tbl_info, idx, 0, 0); 1983 } 1984 tlbi_all(); 1985 1986 mmu_unlock(exceptions); 1987 } 1988 1989 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 1990 struct user_mode_ctx *uctx) 1991 { 1992 struct core_mmu_table_info pg_info = { }; 1993 struct pgt_cache *pgt_cache = &uctx->pgt_cache; 1994 struct pgt *pgt = NULL; 1995 struct pgt *p = NULL; 1996 struct vm_region *r = NULL; 1997 1998 if (TAILQ_EMPTY(&uctx->vm_info.regions)) 1999 return; /* Nothing to map */ 2000 2001 /* 2002 * Allocate all page tables in advance. 2003 */ 2004 pgt_get_all(uctx); 2005 pgt = SLIST_FIRST(pgt_cache); 2006 2007 core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL); 2008 2009 TAILQ_FOREACH(r, &uctx->vm_info.regions, link) 2010 set_pg_region(dir_info, r, &pgt, &pg_info); 2011 /* Record that the translation tables now are populated. */ 2012 SLIST_FOREACH(p, pgt_cache, link) { 2013 p->populated = true; 2014 if (p == pgt) 2015 break; 2016 } 2017 assert(p == pgt); 2018 } 2019 2020 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 2021 size_t len) 2022 { 2023 struct core_mmu_table_info tbl_info = { }; 2024 struct tee_mmap_region *res_map = NULL; 2025 struct tee_mmap_region *map = NULL; 2026 paddr_t pa = virt_to_phys(addr); 2027 size_t granule = 0; 2028 ptrdiff_t i = 0; 2029 paddr_t p = 0; 2030 size_t l = 0; 2031 2032 map = find_map_by_type_and_pa(type, pa, len); 2033 if (!map) 2034 return TEE_ERROR_GENERIC; 2035 2036 res_map = find_map_by_type(MEM_AREA_RES_VASPACE); 2037 if (!res_map) 2038 return TEE_ERROR_GENERIC; 2039 if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) 2040 return TEE_ERROR_GENERIC; 2041 granule = BIT(tbl_info.shift); 2042 2043 if (map < static_memory_map || 2044 map >= static_memory_map + ARRAY_SIZE(static_memory_map)) 2045 return TEE_ERROR_GENERIC; 2046 i = map - static_memory_map; 2047 2048 /* Check that we have a full match */ 2049 p = ROUNDDOWN(pa, granule); 2050 l = ROUNDUP(len + pa - p, granule); 2051 if (map->pa != p || map->size != l) 2052 return TEE_ERROR_GENERIC; 2053 2054 clear_region(&tbl_info, map); 2055 tlbi_all(); 2056 2057 /* If possible remove the va range from res_map */ 2058 if (res_map->va - map->size == map->va) { 2059 res_map->va -= map->size; 2060 res_map->size += map->size; 2061 } 2062 2063 /* Remove the entry. */ 2064 memmove(map, map + 1, 2065 (ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map)); 2066 2067 /* Clear the last new entry in case it was used */ 2068 memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1, 2069 0, sizeof(*map)); 2070 2071 return TEE_SUCCESS; 2072 } 2073 2074 struct tee_mmap_region * 2075 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) 2076 { 2077 struct tee_mmap_region *map = NULL; 2078 struct tee_mmap_region *map_found = NULL; 2079 2080 if (!len) 2081 return NULL; 2082 2083 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 2084 if (map->type != type) 2085 continue; 2086 2087 if (map_found) 2088 return NULL; 2089 2090 map_found = map; 2091 } 2092 2093 if (!map_found || map_found->size < len) 2094 return NULL; 2095 2096 return map_found; 2097 } 2098 2099 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) 2100 { 2101 struct core_mmu_table_info tbl_info; 2102 struct tee_mmap_region *map; 2103 size_t n; 2104 size_t granule; 2105 paddr_t p; 2106 size_t l; 2107 2108 if (!len) 2109 return NULL; 2110 2111 if (!core_mmu_check_end_pa(addr, len)) 2112 return NULL; 2113 2114 /* Check if the memory is already mapped */ 2115 map = find_map_by_type_and_pa(type, addr, len); 2116 if (map && pbuf_inside_map_area(addr, len, map)) 2117 return (void *)(vaddr_t)(map->va + addr - map->pa); 2118 2119 /* Find the reserved va space used for late mappings */ 2120 map = find_map_by_type(MEM_AREA_RES_VASPACE); 2121 if (!map) 2122 return NULL; 2123 2124 if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) 2125 return NULL; 2126 2127 granule = BIT64(tbl_info.shift); 2128 p = ROUNDDOWN(addr, granule); 2129 l = ROUNDUP(len + addr - p, granule); 2130 2131 /* Ban overflowing virtual addresses */ 2132 if (map->size < l) 2133 return NULL; 2134 2135 /* 2136 * Something is wrong, we can't fit the va range into the selected 2137 * table. The reserved va range is possibly missaligned with 2138 * granule. 2139 */ 2140 if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) 2141 return NULL; 2142 2143 /* Find end of the memory map */ 2144 n = 0; 2145 while (!core_mmap_is_end_of_table(static_memory_map + n)) 2146 n++; 2147 2148 if (n < (ARRAY_SIZE(static_memory_map) - 1)) { 2149 /* There's room for another entry */ 2150 static_memory_map[n].va = map->va; 2151 static_memory_map[n].size = l; 2152 static_memory_map[n + 1].type = MEM_AREA_END; 2153 map->va += l; 2154 map->size -= l; 2155 map = static_memory_map + n; 2156 } else { 2157 /* 2158 * There isn't room for another entry, steal the reserved 2159 * entry as it's not useful for anything else any longer. 2160 */ 2161 map->size = l; 2162 } 2163 map->type = type; 2164 map->region_size = granule; 2165 map->attr = core_mmu_type_to_attr(type); 2166 map->pa = p; 2167 2168 set_region(&tbl_info, map); 2169 2170 /* Make sure the new entry is visible before continuing. */ 2171 core_mmu_table_write_barrier(); 2172 2173 return (void *)(vaddr_t)(map->va + addr - map->pa); 2174 } 2175 2176 #ifdef CFG_WITH_PAGER 2177 static vaddr_t get_linear_map_end_va(void) 2178 { 2179 /* this is synced with the generic linker file kern.ld.S */ 2180 return (vaddr_t)__heap2_end; 2181 } 2182 2183 static paddr_t get_linear_map_end_pa(void) 2184 { 2185 return get_linear_map_end_va() - boot_mmu_config.map_offset; 2186 } 2187 #endif 2188 2189 #if defined(CFG_TEE_CORE_DEBUG) 2190 static void check_pa_matches_va(void *va, paddr_t pa) 2191 { 2192 TEE_Result res = TEE_ERROR_GENERIC; 2193 vaddr_t v = (vaddr_t)va; 2194 paddr_t p = 0; 2195 struct core_mmu_table_info ti __maybe_unused = { }; 2196 2197 if (core_mmu_user_va_range_is_defined()) { 2198 vaddr_t user_va_base = 0; 2199 size_t user_va_size = 0; 2200 2201 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 2202 if (v >= user_va_base && 2203 v <= (user_va_base - 1 + user_va_size)) { 2204 if (!core_mmu_user_mapping_is_active()) { 2205 if (pa) 2206 panic("issue in linear address space"); 2207 return; 2208 } 2209 2210 res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), 2211 va, &p); 2212 if (res == TEE_ERROR_NOT_SUPPORTED) 2213 return; 2214 if (res == TEE_SUCCESS && pa != p) 2215 panic("bad pa"); 2216 if (res != TEE_SUCCESS && pa) 2217 panic("false pa"); 2218 return; 2219 } 2220 } 2221 #ifdef CFG_WITH_PAGER 2222 if (is_unpaged(va)) { 2223 if (v - boot_mmu_config.map_offset != pa) 2224 panic("issue in linear address space"); 2225 return; 2226 } 2227 2228 if (tee_pager_get_table_info(v, &ti)) { 2229 uint32_t a; 2230 2231 /* 2232 * Lookups in the page table managed by the pager is 2233 * dangerous for addresses in the paged area as those pages 2234 * changes all the time. But some ranges are safe, 2235 * rw-locked areas when the page is populated for instance. 2236 */ 2237 core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); 2238 if (a & TEE_MATTR_VALID_BLOCK) { 2239 paddr_t mask = BIT64(ti.shift) - 1; 2240 2241 p |= v & mask; 2242 if (pa != p) 2243 panic(); 2244 } else { 2245 if (pa) 2246 panic(); 2247 } 2248 return; 2249 } 2250 #endif 2251 2252 if (!core_va2pa_helper(va, &p)) { 2253 /* Verfiy only the static mapping (case non null phys addr) */ 2254 if (p && pa != p) { 2255 DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, 2256 va, p, pa); 2257 panic(); 2258 } 2259 } else { 2260 if (pa) { 2261 DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); 2262 panic(); 2263 } 2264 } 2265 } 2266 #else 2267 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) 2268 { 2269 } 2270 #endif 2271 2272 paddr_t virt_to_phys(void *va) 2273 { 2274 paddr_t pa = 0; 2275 2276 if (!arch_va2pa_helper(va, &pa)) 2277 pa = 0; 2278 check_pa_matches_va(va, pa); 2279 return pa; 2280 } 2281 2282 #if defined(CFG_TEE_CORE_DEBUG) 2283 static void check_va_matches_pa(paddr_t pa, void *va) 2284 { 2285 paddr_t p = 0; 2286 2287 if (!va) 2288 return; 2289 2290 p = virt_to_phys(va); 2291 if (p != pa) { 2292 DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); 2293 panic(); 2294 } 2295 } 2296 #else 2297 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) 2298 { 2299 } 2300 #endif 2301 2302 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) 2303 { 2304 if (!core_mmu_user_mapping_is_active()) 2305 return NULL; 2306 2307 return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); 2308 } 2309 2310 #ifdef CFG_WITH_PAGER 2311 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2312 { 2313 paddr_t end_pa = 0; 2314 2315 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 2316 return NULL; 2317 2318 if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) { 2319 if (end_pa > get_linear_map_end_pa()) 2320 return NULL; 2321 return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset); 2322 } 2323 2324 return tee_pager_phys_to_virt(pa, len); 2325 } 2326 #else 2327 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2328 { 2329 struct tee_mmap_region *mmap = NULL; 2330 2331 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); 2332 if (!mmap) 2333 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); 2334 if (!mmap) 2335 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); 2336 if (!mmap) 2337 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); 2338 if (!mmap) 2339 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); 2340 if (!mmap) 2341 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); 2342 /* 2343 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only 2344 * used with pager and not needed here. 2345 */ 2346 return map_pa2va(mmap, pa, len); 2347 } 2348 #endif 2349 2350 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) 2351 { 2352 void *va = NULL; 2353 2354 switch (m) { 2355 case MEM_AREA_TS_VASPACE: 2356 va = phys_to_virt_ts_vaspace(pa, len); 2357 break; 2358 case MEM_AREA_TEE_RAM: 2359 case MEM_AREA_TEE_RAM_RX: 2360 case MEM_AREA_TEE_RAM_RO: 2361 case MEM_AREA_TEE_RAM_RW: 2362 case MEM_AREA_NEX_RAM_RO: 2363 case MEM_AREA_NEX_RAM_RW: 2364 va = phys_to_virt_tee_ram(pa, len); 2365 break; 2366 case MEM_AREA_SHM_VASPACE: 2367 /* Find VA from PA in dynamic SHM is not yet supported */ 2368 va = NULL; 2369 break; 2370 default: 2371 va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); 2372 } 2373 if (m != MEM_AREA_SEC_RAM_OVERALL) 2374 check_va_matches_pa(pa, va); 2375 return va; 2376 } 2377 2378 void *phys_to_virt_io(paddr_t pa, size_t len) 2379 { 2380 struct tee_mmap_region *map = NULL; 2381 void *va = NULL; 2382 2383 map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); 2384 if (!map) 2385 map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); 2386 if (!map) 2387 return NULL; 2388 va = map_pa2va(map, pa, len); 2389 check_va_matches_pa(pa, va); 2390 return va; 2391 } 2392 2393 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) 2394 { 2395 if (cpu_mmu_enabled()) 2396 return (vaddr_t)phys_to_virt(pa, type, len); 2397 2398 return (vaddr_t)pa; 2399 } 2400 2401 #ifdef CFG_WITH_PAGER 2402 bool is_unpaged(void *va) 2403 { 2404 vaddr_t v = (vaddr_t)va; 2405 2406 return v >= VCORE_START_VA && v < get_linear_map_end_va(); 2407 } 2408 #else 2409 bool is_unpaged(void *va __unused) 2410 { 2411 return true; 2412 } 2413 #endif 2414 2415 void core_mmu_init_virtualization(void) 2416 { 2417 paddr_t b1 = 0; 2418 paddr_size_t s1 = 0; 2419 2420 static_assert(ARRAY_SIZE(secure_only) <= 2); 2421 if (ARRAY_SIZE(secure_only) == 2) { 2422 b1 = secure_only[1].paddr; 2423 s1 = secure_only[1].size; 2424 } 2425 virt_init_memory(static_memory_map, secure_only[0].paddr, 2426 secure_only[0].size, b1, s1); 2427 } 2428 2429 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) 2430 { 2431 assert(p->pa); 2432 if (cpu_mmu_enabled()) { 2433 if (!p->va) 2434 p->va = (vaddr_t)phys_to_virt_io(p->pa, len); 2435 assert(p->va); 2436 return p->va; 2437 } 2438 return p->pa; 2439 } 2440 2441 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) 2442 { 2443 assert(p->pa); 2444 if (cpu_mmu_enabled()) { 2445 if (!p->va) 2446 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, 2447 len); 2448 assert(p->va); 2449 return p->va; 2450 } 2451 return p->pa; 2452 } 2453 2454 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) 2455 { 2456 assert(p->pa); 2457 if (cpu_mmu_enabled()) { 2458 if (!p->va) 2459 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, 2460 len); 2461 assert(p->va); 2462 return p->va; 2463 } 2464 return p->pa; 2465 } 2466 2467 #ifdef CFG_CORE_RESERVED_SHM 2468 static TEE_Result teecore_init_pub_ram(void) 2469 { 2470 vaddr_t s = 0; 2471 vaddr_t e = 0; 2472 2473 /* get virtual addr/size of NSec shared mem allocated from teecore */ 2474 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); 2475 2476 if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) 2477 panic("invalid PUB RAM"); 2478 2479 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2480 if (!tee_vbuf_is_non_sec(s, e - s)) 2481 panic("PUB RAM is not non-secure"); 2482 2483 #ifdef CFG_PL310 2484 /* Allocate statically the l2cc mutex */ 2485 tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); 2486 s += sizeof(uint32_t); /* size of a pl310 mutex */ 2487 s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ 2488 #endif 2489 2490 default_nsec_shm_paddr = virt_to_phys((void *)s); 2491 default_nsec_shm_size = e - s; 2492 2493 return TEE_SUCCESS; 2494 } 2495 early_init(teecore_init_pub_ram); 2496 #endif /*CFG_CORE_RESERVED_SHM*/ 2497 2498 void core_mmu_init_ta_ram(void) 2499 { 2500 vaddr_t s = 0; 2501 vaddr_t e = 0; 2502 paddr_t ps = 0; 2503 size_t size = 0; 2504 2505 /* 2506 * Get virtual addr/size of RAM where TA are loaded/executedNSec 2507 * shared mem allocated from teecore. 2508 */ 2509 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) 2510 virt_get_ta_ram(&s, &e); 2511 else 2512 core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e); 2513 2514 ps = virt_to_phys((void *)s); 2515 size = e - s; 2516 2517 if (!ps || (ps & CORE_MMU_USER_CODE_MASK) || 2518 !size || (size & CORE_MMU_USER_CODE_MASK)) 2519 panic("invalid TA RAM"); 2520 2521 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2522 if (!tee_pbuf_is_sec(ps, size)) 2523 panic("TA RAM is not secure"); 2524 2525 if (!tee_mm_is_empty(&tee_mm_sec_ddr)) 2526 panic("TA RAM pool is not empty"); 2527 2528 /* remove previous config and init TA ddr memory pool */ 2529 tee_mm_final(&tee_mm_sec_ddr); 2530 tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT, 2531 TEE_MM_POOL_NO_FLAGS); 2532 } 2533