xref: /optee_os/core/mm/core_mmu.c (revision b8ef8d0b6ff45bcf0c1e092fbe61cb5a32f83e8e)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <memtag.h>
22 #include <mm/core_memprot.h>
23 #include <mm/core_mmu.h>
24 #include <mm/mobj.h>
25 #include <mm/pgt_cache.h>
26 #include <mm/tee_pager.h>
27 #include <mm/vm.h>
28 #include <platform_config.h>
29 #include <stdalign.h>
30 #include <string.h>
31 #include <trace.h>
32 #include <util.h>
33 
34 #ifndef DEBUG_XLAT_TABLE
35 #define DEBUG_XLAT_TABLE 0
36 #endif
37 
38 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
39 
40 /* Physical Secure DDR pool */
41 tee_mm_pool_t tee_mm_sec_ddr;
42 
43 /* Virtual memory pool for core mappings */
44 tee_mm_pool_t core_virt_mem_pool;
45 
46 /* Virtual memory pool for shared memory mappings */
47 tee_mm_pool_t core_virt_shm_pool;
48 
49 #ifdef CFG_CORE_PHYS_RELOCATABLE
50 unsigned long core_mmu_tee_load_pa __nex_bss;
51 #else
52 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
53 #endif
54 
55 /*
56  * These variables are initialized before .bss is cleared. To avoid
57  * resetting them when .bss is cleared we're storing them in .data instead,
58  * even if they initially are zero.
59  */
60 
61 #ifdef CFG_CORE_RESERVED_SHM
62 /* Default NSec shared memory allocated from NSec world */
63 unsigned long default_nsec_shm_size __nex_bss;
64 unsigned long default_nsec_shm_paddr __nex_bss;
65 #endif
66 
67 static struct tee_mmap_region static_mmap_regions[CFG_MMAP_REGIONS
68 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE)
69 						+ 1
70 #endif
71 						+ 1] __nex_bss;
72 static struct memory_map static_memory_map __nex_data = {
73 	.map = static_mmap_regions,
74 	.alloc_count = ARRAY_SIZE(static_mmap_regions),
75 };
76 
77 /* Define the platform's memory layout. */
78 struct memaccess_area {
79 	paddr_t paddr;
80 	size_t size;
81 };
82 
83 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
84 
85 static struct memaccess_area secure_only[] __nex_data = {
86 #ifdef CFG_CORE_PHYS_RELOCATABLE
87 	MEMACCESS_AREA(0, 0),
88 #else
89 #ifdef TRUSTED_SRAM_BASE
90 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
91 #endif
92 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
93 #endif
94 };
95 
96 static struct memaccess_area nsec_shared[] __nex_data = {
97 #ifdef CFG_CORE_RESERVED_SHM
98 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
99 #endif
100 };
101 
102 #if defined(CFG_SECURE_DATA_PATH)
103 static const char *tz_sdp_match = "linaro,secure-heap";
104 static struct memaccess_area sec_sdp;
105 #ifdef CFG_TEE_SDP_MEM_BASE
106 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
107 #endif
108 #ifdef TEE_SDP_TEST_MEM_BASE
109 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
110 #endif
111 #endif
112 
113 #ifdef CFG_CORE_RESERVED_SHM
114 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
115 #endif
116 static unsigned int mmu_spinlock;
117 
118 static uint32_t mmu_lock(void)
119 {
120 	return cpu_spin_lock_xsave(&mmu_spinlock);
121 }
122 
123 static void mmu_unlock(uint32_t exceptions)
124 {
125 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
126 }
127 
128 static void grow_mem_map(struct memory_map *mem_map)
129 {
130 	if (mem_map->count == mem_map->alloc_count) {
131 		EMSG("Out of entries (%zu) in mem_map", mem_map->alloc_count);
132 		panic();
133 	}
134 	mem_map->count++;
135 }
136 
137 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
138 {
139 	/*
140 	 * The first range is always used to cover OP-TEE core memory, but
141 	 * depending on configuration it may cover more than that.
142 	 */
143 	*base = secure_only[0].paddr;
144 	*size = secure_only[0].size;
145 }
146 
147 void core_mmu_set_secure_memory(paddr_t base, size_t size)
148 {
149 #ifdef CFG_CORE_PHYS_RELOCATABLE
150 	static_assert(ARRAY_SIZE(secure_only) == 1);
151 #endif
152 	runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE));
153 	assert(!secure_only[0].size);
154 	assert(base && size);
155 
156 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
157 	secure_only[0].paddr = base;
158 	secure_only[0].size = size;
159 }
160 
161 void core_mmu_get_ta_range(paddr_t *base, size_t *size)
162 {
163 	paddr_t b = 0;
164 	size_t s = 0;
165 
166 	static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE));
167 #ifdef TA_RAM_START
168 	b = TA_RAM_START;
169 	s = TA_RAM_SIZE;
170 #else
171 	static_assert(ARRAY_SIZE(secure_only) <= 2);
172 	if (ARRAY_SIZE(secure_only) == 1) {
173 		vaddr_t load_offs = 0;
174 
175 		assert(core_mmu_tee_load_pa >= secure_only[0].paddr);
176 		load_offs = core_mmu_tee_load_pa - secure_only[0].paddr;
177 
178 		assert(secure_only[0].size >
179 		       load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE);
180 		b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE;
181 		s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE -
182 		    TEE_SDP_TEST_MEM_SIZE;
183 	} else {
184 		assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE);
185 		b = secure_only[1].paddr;
186 		s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE;
187 	}
188 #endif
189 	if (base)
190 		*base = b;
191 	if (size)
192 		*size = s;
193 }
194 
195 static struct memory_map *get_memory_map(void)
196 {
197 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
198 		struct memory_map *map = virt_get_memory_map();
199 
200 		if (map)
201 			return map;
202 	}
203 
204 	return &static_memory_map;
205 }
206 
207 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
208 			     paddr_t pa, size_t size)
209 {
210 	size_t n;
211 
212 	for (n = 0; n < alen; n++)
213 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
214 			return true;
215 	return false;
216 }
217 
218 #define pbuf_intersects(a, pa, size) \
219 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
220 
221 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
222 			    paddr_t pa, size_t size)
223 {
224 	size_t n;
225 
226 	for (n = 0; n < alen; n++)
227 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
228 			return true;
229 	return false;
230 }
231 
232 #define pbuf_is_inside(a, pa, size) \
233 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
234 
235 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
236 {
237 	paddr_t end_pa = 0;
238 
239 	if (!map)
240 		return false;
241 
242 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
243 		return false;
244 
245 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
246 }
247 
248 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
249 {
250 	if (!map)
251 		return false;
252 	return (va >= map->va && va <= (map->va + map->size - 1));
253 }
254 
255 /* check if target buffer fits in a core default map area */
256 static bool pbuf_inside_map_area(unsigned long p, size_t l,
257 				 struct tee_mmap_region *map)
258 {
259 	return core_is_buffer_inside(p, l, map->pa, map->size);
260 }
261 
262 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
263 {
264 	struct memory_map *mem_map = get_memory_map();
265 	size_t n = 0;
266 
267 	for (n = 0; n < mem_map->count; n++) {
268 		if (mem_map->map[n].type == type)
269 			return mem_map->map + n;
270 	}
271 	return NULL;
272 }
273 
274 static struct tee_mmap_region *
275 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
276 {
277 	struct memory_map *mem_map = get_memory_map();
278 	size_t n = 0;
279 
280 	for (n = 0; n < mem_map->count; n++) {
281 		if (mem_map->map[n].type != type)
282 			continue;
283 		if (pa_is_in_map(mem_map->map + n, pa, len))
284 			return mem_map->map + n;
285 	}
286 	return NULL;
287 }
288 
289 static struct tee_mmap_region *find_map_by_va(void *va)
290 {
291 	struct memory_map *mem_map = get_memory_map();
292 	vaddr_t a = (vaddr_t)va;
293 	size_t n = 0;
294 
295 	for (n = 0; n < mem_map->count; n++) {
296 		if (a >= mem_map->map[n].va &&
297 		    a <= (mem_map->map[n].va - 1 + mem_map->map[n].size))
298 			return mem_map->map + n;
299 	}
300 
301 	return NULL;
302 }
303 
304 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
305 {
306 	struct memory_map *mem_map = get_memory_map();
307 	size_t n = 0;
308 
309 	for (n = 0; n < mem_map->count; n++) {
310 		/* Skip unmapped regions */
311 		if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) &&
312 		    pa >= mem_map->map[n].pa &&
313 		    pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size))
314 			return mem_map->map + n;
315 	}
316 
317 	return NULL;
318 }
319 
320 #if defined(CFG_SECURE_DATA_PATH)
321 static bool dtb_get_sdp_region(void)
322 {
323 	void *fdt = NULL;
324 	int node = 0;
325 	int tmp_node = 0;
326 	paddr_t tmp_addr = 0;
327 	size_t tmp_size = 0;
328 
329 	if (!IS_ENABLED(CFG_EMBED_DTB))
330 		return false;
331 
332 	fdt = get_embedded_dt();
333 	if (!fdt)
334 		panic("No DTB found");
335 
336 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
337 	if (node < 0) {
338 		DMSG("No %s compatible node found", tz_sdp_match);
339 		return false;
340 	}
341 	tmp_node = node;
342 	while (tmp_node >= 0) {
343 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
344 							 tz_sdp_match);
345 		if (tmp_node >= 0)
346 			DMSG("Ignore SDP pool node %s, supports only 1 node",
347 			     fdt_get_name(fdt, tmp_node, NULL));
348 	}
349 
350 	tmp_addr = fdt_reg_base_address(fdt, node);
351 	if (tmp_addr == DT_INFO_INVALID_REG) {
352 		EMSG("%s: Unable to get base addr from DT", tz_sdp_match);
353 		return false;
354 	}
355 
356 	tmp_size = fdt_reg_size(fdt, node);
357 	if (tmp_size == DT_INFO_INVALID_REG_SIZE) {
358 		EMSG("%s: Unable to get size of base addr from DT",
359 		     tz_sdp_match);
360 		return false;
361 	}
362 
363 	sec_sdp.paddr = tmp_addr;
364 	sec_sdp.size = tmp_size;
365 
366 	return true;
367 }
368 #endif
369 
370 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
371 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
372 				const struct core_mmu_phys_mem *start,
373 				const struct core_mmu_phys_mem *end)
374 {
375 	const struct core_mmu_phys_mem *mem;
376 
377 	for (mem = start; mem < end; mem++) {
378 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
379 			return true;
380 	}
381 
382 	return false;
383 }
384 #endif
385 
386 #ifdef CFG_CORE_DYN_SHM
387 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
388 			       paddr_t pa, size_t size)
389 {
390 	struct core_mmu_phys_mem *m = *mem;
391 	size_t n = 0;
392 
393 	while (true) {
394 		if (n >= *nelems) {
395 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
396 			     pa, size);
397 			return;
398 		}
399 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
400 			break;
401 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
402 			panic();
403 		n++;
404 	}
405 
406 	if (pa == m[n].addr && size == m[n].size) {
407 		/* Remove this entry */
408 		(*nelems)--;
409 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
410 		m = nex_realloc(m, sizeof(*m) * *nelems);
411 		if (!m)
412 			panic();
413 		*mem = m;
414 	} else if (pa == m[n].addr) {
415 		m[n].addr += size;
416 		m[n].size -= size;
417 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
418 		m[n].size -= size;
419 	} else {
420 		/* Need to split the memory entry */
421 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
422 		if (!m)
423 			panic();
424 		*mem = m;
425 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
426 		(*nelems)++;
427 		m[n].size = pa - m[n].addr;
428 		m[n + 1].size -= size + m[n].size;
429 		m[n + 1].addr = pa + size;
430 	}
431 }
432 
433 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
434 				      size_t nelems,
435 				      struct tee_mmap_region *map)
436 {
437 	size_t n;
438 
439 	for (n = 0; n < nelems; n++) {
440 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
441 					    map->pa, map->size)) {
442 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
443 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
444 			     start[n].addr, start[n].size,
445 			     map->type, map->pa, map->size);
446 			panic();
447 		}
448 	}
449 }
450 
451 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
452 static size_t discovered_nsec_ddr_nelems __nex_bss;
453 
454 static int cmp_pmem_by_addr(const void *a, const void *b)
455 {
456 	const struct core_mmu_phys_mem *pmem_a = a;
457 	const struct core_mmu_phys_mem *pmem_b = b;
458 
459 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
460 }
461 
462 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
463 				      size_t nelems)
464 {
465 	struct core_mmu_phys_mem *m = start;
466 	size_t num_elems = nelems;
467 	struct memory_map *mem_map = &static_memory_map;
468 	const struct core_mmu_phys_mem __maybe_unused *pmem;
469 	size_t n = 0;
470 
471 	assert(!discovered_nsec_ddr_start);
472 	assert(m && num_elems);
473 
474 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
475 
476 	/*
477 	 * Non-secure shared memory and also secure data
478 	 * path memory are supposed to reside inside
479 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
480 	 * are used for a specific purpose make holes for
481 	 * those memory in the normal non-secure memory.
482 	 *
483 	 * This has to be done since for instance QEMU
484 	 * isn't aware of which memory range in the
485 	 * non-secure memory is used for NSEC_SHM.
486 	 */
487 
488 #ifdef CFG_SECURE_DATA_PATH
489 	if (dtb_get_sdp_region())
490 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
491 
492 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
493 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
494 #endif
495 
496 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
497 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
498 				   secure_only[n].size);
499 
500 	for  (n = 0; n < mem_map->count; n++) {
501 		switch (mem_map->map[n].type) {
502 		case MEM_AREA_NSEC_SHM:
503 			carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa,
504 					   mem_map->map[n].size);
505 			break;
506 		case MEM_AREA_EXT_DT:
507 		case MEM_AREA_MANIFEST_DT:
508 		case MEM_AREA_RAM_NSEC:
509 		case MEM_AREA_RES_VASPACE:
510 		case MEM_AREA_SHM_VASPACE:
511 		case MEM_AREA_TS_VASPACE:
512 		case MEM_AREA_PAGER_VASPACE:
513 			break;
514 		default:
515 			check_phys_mem_is_outside(m, num_elems,
516 						  mem_map->map + n);
517 		}
518 	}
519 
520 	discovered_nsec_ddr_start = m;
521 	discovered_nsec_ddr_nelems = num_elems;
522 
523 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
524 				   m[num_elems - 1].size))
525 		panic();
526 }
527 
528 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
529 				    const struct core_mmu_phys_mem **end)
530 {
531 	if (!discovered_nsec_ddr_start)
532 		return false;
533 
534 	*start = discovered_nsec_ddr_start;
535 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
536 
537 	return true;
538 }
539 
540 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
541 {
542 	const struct core_mmu_phys_mem *start;
543 	const struct core_mmu_phys_mem *end;
544 
545 	if (!get_discovered_nsec_ddr(&start, &end))
546 		return false;
547 
548 	return pbuf_is_special_mem(pbuf, len, start, end);
549 }
550 
551 bool core_mmu_nsec_ddr_is_defined(void)
552 {
553 	const struct core_mmu_phys_mem *start;
554 	const struct core_mmu_phys_mem *end;
555 
556 	if (!get_discovered_nsec_ddr(&start, &end))
557 		return false;
558 
559 	return start != end;
560 }
561 #else
562 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
563 {
564 	return false;
565 }
566 #endif /*CFG_CORE_DYN_SHM*/
567 
568 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
569 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
570 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
571 
572 #ifdef CFG_SECURE_DATA_PATH
573 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
574 {
575 	bool is_sdp_mem = false;
576 
577 	if (sec_sdp.size)
578 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
579 						   sec_sdp.size);
580 
581 	if (!is_sdp_mem)
582 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
583 						 phys_sdp_mem_end);
584 
585 	return is_sdp_mem;
586 }
587 
588 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
589 {
590 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
591 					    CORE_MEM_SDP_MEM);
592 
593 	if (!mobj)
594 		panic("can't create SDP physical memory object");
595 
596 	return mobj;
597 }
598 
599 struct mobj **core_sdp_mem_create_mobjs(void)
600 {
601 	const struct core_mmu_phys_mem *mem = NULL;
602 	struct mobj **mobj_base = NULL;
603 	struct mobj **mobj = NULL;
604 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
605 
606 	if (sec_sdp.size)
607 		cnt++;
608 
609 	/* SDP mobjs table must end with a NULL entry */
610 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
611 	if (!mobj_base)
612 		panic("Out of memory");
613 
614 	mobj = mobj_base;
615 
616 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
617 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
618 
619 	if (sec_sdp.size)
620 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
621 
622 	return mobj_base;
623 }
624 
625 #else /* CFG_SECURE_DATA_PATH */
626 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
627 {
628 	return false;
629 }
630 
631 #endif /* CFG_SECURE_DATA_PATH */
632 
633 /* Check special memories comply with registered memories */
634 static void verify_special_mem_areas(struct memory_map *mem_map,
635 				     const struct core_mmu_phys_mem *start,
636 				     const struct core_mmu_phys_mem *end,
637 				     const char *area_name __maybe_unused)
638 {
639 	const struct core_mmu_phys_mem *mem = NULL;
640 	const struct core_mmu_phys_mem *mem2 = NULL;
641 	size_t n = 0;
642 
643 	if (start == end) {
644 		DMSG("No %s memory area defined", area_name);
645 		return;
646 	}
647 
648 	for (mem = start; mem < end; mem++)
649 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
650 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
651 
652 	/* Check memories do not intersect each other */
653 	for (mem = start; mem + 1 < end; mem++) {
654 		for (mem2 = mem + 1; mem2 < end; mem2++) {
655 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
656 						     mem->addr, mem->size)) {
657 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
658 						   mem->addr, mem->size);
659 				panic("Special memory intersection");
660 			}
661 		}
662 	}
663 
664 	/*
665 	 * Check memories do not intersect any mapped memory.
666 	 * This is called before reserved VA space is loaded in mem_map.
667 	 */
668 	for (mem = start; mem < end; mem++) {
669 		for (n = 0; n < mem_map->count; n++) {
670 			if (core_is_buffer_intersect(mem->addr, mem->size,
671 						     mem_map->map[n].pa,
672 						     mem_map->map[n].size)) {
673 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
674 						   mem_map->map[n].pa,
675 						   mem_map->map[n].size);
676 				panic("Special memory intersection");
677 			}
678 		}
679 	}
680 }
681 
682 static void add_phys_mem(struct memory_map *mem_map,
683 			 const char *mem_name __maybe_unused,
684 			 enum teecore_memtypes mem_type,
685 			 paddr_t mem_addr, paddr_size_t mem_size)
686 {
687 	size_t n = 0;
688 	paddr_t pa = 0;
689 	paddr_size_t size = 0;
690 
691 	if (!mem_size)	/* Discard null size entries */
692 		return;
693 
694 	/*
695 	 * If some ranges of memory of the same type do overlap
696 	 * each others they are coalesced into one entry. To help this
697 	 * added entries are sorted by increasing physical.
698 	 *
699 	 * Note that it's valid to have the same physical memory as several
700 	 * different memory types, for instance the same device memory
701 	 * mapped as both secure and non-secure. This will probably not
702 	 * happen often in practice.
703 	 */
704 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
705 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
706 	for  (n = 0; n < mem_map->count; n++) {
707 		pa = mem_map->map[n].pa;
708 		size = mem_map->map[n].size;
709 		if (mem_type == mem_map->map[n].type &&
710 		    ((pa <= (mem_addr + (mem_size - 1))) &&
711 		    (mem_addr <= (pa + (size - 1))))) {
712 			DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr);
713 			mem_map->map[n].pa = MIN(pa, mem_addr);
714 			mem_map->map[n].size = MAX(size, mem_size) +
715 					     (pa - mem_map->map[n].pa);
716 			return;
717 		}
718 		if (mem_type < mem_map->map[n].type ||
719 		    (mem_type == mem_map->map[n].type && mem_addr < pa))
720 			break; /* found the spot where to insert this memory */
721 	}
722 
723 	grow_mem_map(mem_map);
724 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
725 		       n, NULL);
726 	mem_map->map[n] = (struct tee_mmap_region){
727 		.type = mem_type,
728 		.pa = mem_addr,
729 		.size = mem_size,
730 	};
731 }
732 
733 static void add_va_space(struct memory_map *mem_map,
734 			 enum teecore_memtypes type, size_t size)
735 {
736 	size_t n = 0;
737 
738 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
739 	for  (n = 0; n < mem_map->count; n++) {
740 		if (type < mem_map->map[n].type)
741 			break;
742 	}
743 
744 	grow_mem_map(mem_map);
745 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
746 		       n, NULL);
747 	mem_map->map[n] = (struct tee_mmap_region){
748 		.type = type,
749 		.size = size,
750 	};
751 }
752 
753 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
754 {
755 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
756 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
757 				TEE_MATTR_MEM_TYPE_SHIFT;
758 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
759 				TEE_MATTR_MEM_TYPE_SHIFT;
760 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
761 				  TEE_MATTR_MEM_TYPE_SHIFT;
762 
763 	switch (t) {
764 	case MEM_AREA_TEE_RAM:
765 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
766 	case MEM_AREA_TEE_RAM_RX:
767 	case MEM_AREA_INIT_RAM_RX:
768 	case MEM_AREA_IDENTITY_MAP_RX:
769 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
770 	case MEM_AREA_TEE_RAM_RO:
771 	case MEM_AREA_INIT_RAM_RO:
772 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
773 	case MEM_AREA_TEE_RAM_RW:
774 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
775 	case MEM_AREA_NEX_RAM_RW:
776 	case MEM_AREA_TEE_ASAN:
777 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
778 	case MEM_AREA_TEE_COHERENT:
779 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
780 	case MEM_AREA_TA_RAM:
781 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
782 	case MEM_AREA_NSEC_SHM:
783 	case MEM_AREA_NEX_NSEC_SHM:
784 		return attr | TEE_MATTR_PRW | cached;
785 	case MEM_AREA_MANIFEST_DT:
786 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
787 	case MEM_AREA_TRANSFER_LIST:
788 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
789 	case MEM_AREA_EXT_DT:
790 		/*
791 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
792 		 * tree as secure non-cached memory, otherwise, fall back to
793 		 * non-secure mapping.
794 		 */
795 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
796 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
797 			       noncache;
798 		fallthrough;
799 	case MEM_AREA_IO_NSEC:
800 		return attr | TEE_MATTR_PRW | noncache;
801 	case MEM_AREA_IO_SEC:
802 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
803 	case MEM_AREA_RAM_NSEC:
804 		return attr | TEE_MATTR_PRW | cached;
805 	case MEM_AREA_RAM_SEC:
806 	case MEM_AREA_SEC_RAM_OVERALL:
807 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
808 	case MEM_AREA_ROM_SEC:
809 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
810 	case MEM_AREA_RES_VASPACE:
811 	case MEM_AREA_SHM_VASPACE:
812 		return 0;
813 	case MEM_AREA_PAGER_VASPACE:
814 		return TEE_MATTR_SECURE;
815 	default:
816 		panic("invalid type");
817 	}
818 }
819 
820 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
821 {
822 	switch (mm->type) {
823 	case MEM_AREA_TEE_RAM:
824 	case MEM_AREA_TEE_RAM_RX:
825 	case MEM_AREA_TEE_RAM_RO:
826 	case MEM_AREA_TEE_RAM_RW:
827 	case MEM_AREA_INIT_RAM_RX:
828 	case MEM_AREA_INIT_RAM_RO:
829 	case MEM_AREA_NEX_RAM_RW:
830 	case MEM_AREA_NEX_RAM_RO:
831 	case MEM_AREA_TEE_ASAN:
832 		return true;
833 	default:
834 		return false;
835 	}
836 }
837 
838 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
839 {
840 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
841 }
842 
843 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
844 {
845 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
846 }
847 
848 static int cmp_mmap_by_lower_va(const void *a, const void *b)
849 {
850 	const struct tee_mmap_region *mm_a = a;
851 	const struct tee_mmap_region *mm_b = b;
852 
853 	return CMP_TRILEAN(mm_a->va, mm_b->va);
854 }
855 
856 static void dump_mmap_table(struct memory_map *mem_map)
857 {
858 	size_t n = 0;
859 
860 	for (n = 0; n < mem_map->count; n++) {
861 		struct tee_mmap_region *map = mem_map->map + n;
862 		vaddr_t __maybe_unused vstart;
863 
864 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
865 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
866 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
867 		     teecore_memtype_name(map->type), vstart,
868 		     vstart + map->size - 1, map->pa,
869 		     (paddr_t)(map->pa + map->size - 1), map->size,
870 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
871 	}
872 }
873 
874 #if DEBUG_XLAT_TABLE
875 
876 static void dump_xlat_table(vaddr_t va, unsigned int level)
877 {
878 	struct core_mmu_table_info tbl_info;
879 	unsigned int idx = 0;
880 	paddr_t pa;
881 	uint32_t attr;
882 
883 	core_mmu_find_table(NULL, va, level, &tbl_info);
884 	va = tbl_info.va_base;
885 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
886 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
887 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
888 			const char *security_bit = "";
889 
890 			if (core_mmu_entry_have_security_bit(attr)) {
891 				if (attr & TEE_MATTR_SECURE)
892 					security_bit = "S";
893 				else
894 					security_bit = "NS";
895 			}
896 
897 			if (attr & TEE_MATTR_TABLE) {
898 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
899 					" TBL:0x%010" PRIxPA " %s",
900 					level * 2, "", level, va, pa,
901 					security_bit);
902 				dump_xlat_table(va, level + 1);
903 			} else if (attr) {
904 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
905 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
906 					level * 2, "", level, va, pa,
907 					mattr_is_cached(attr) ? "MEM" :
908 					"DEV",
909 					attr & TEE_MATTR_PW ? "RW" : "RO",
910 					attr & TEE_MATTR_PX ? "X " : "XN",
911 					security_bit);
912 			} else {
913 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
914 					    " INVALID\n",
915 					    level * 2, "", level, va);
916 			}
917 		}
918 		va += BIT64(tbl_info.shift);
919 	}
920 }
921 
922 #else
923 
924 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
925 {
926 }
927 
928 #endif
929 
930 /*
931  * Reserves virtual memory space for pager usage.
932  *
933  * From the start of the first memory used by the link script +
934  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
935  * mapping for pager usage. This adds translation tables as needed for the
936  * pager to operate.
937  */
938 static void add_pager_vaspace(struct memory_map *mem_map)
939 {
940 	paddr_t begin = 0;
941 	paddr_t end = 0;
942 	size_t size = 0;
943 	size_t pos = 0;
944 	size_t n = 0;
945 
946 
947 	for (n = 0; n < mem_map->count; n++) {
948 		if (map_is_tee_ram(mem_map->map + n)) {
949 			if (!begin)
950 				begin = mem_map->map[n].pa;
951 			pos = n + 1;
952 		}
953 	}
954 
955 	end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size;
956 	assert(end - begin < TEE_RAM_VA_SIZE);
957 	size = TEE_RAM_VA_SIZE - (end - begin);
958 
959 	grow_mem_map(mem_map);
960 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
961 		       n, NULL);
962 	mem_map->map[n] = (struct tee_mmap_region){
963 		.type = MEM_AREA_PAGER_VASPACE,
964 		.size = size,
965 		.region_size = SMALL_PAGE_SIZE,
966 		.attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE),
967 	};
968 }
969 
970 static void check_sec_nsec_mem_config(void)
971 {
972 	size_t n = 0;
973 
974 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
975 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
976 				    secure_only[n].size))
977 			panic("Invalid memory access config: sec/nsec");
978 	}
979 }
980 
981 static void collect_device_mem_ranges(struct memory_map *mem_map)
982 {
983 	const char *compatible = "arm,ffa-manifest-device-regions";
984 	void *fdt = get_manifest_dt();
985 	const char *name = NULL;
986 	uint64_t page_count = 0;
987 	uint64_t base = 0;
988 	int subnode = 0;
989 	int node = 0;
990 
991 	assert(fdt);
992 
993 	node = fdt_node_offset_by_compatible(fdt, 0, compatible);
994 	if (node < 0)
995 		return;
996 
997 	fdt_for_each_subnode(subnode, fdt, node) {
998 		name = fdt_get_name(fdt, subnode, NULL);
999 		if (!name)
1000 			continue;
1001 
1002 		if (dt_getprop_as_number(fdt, subnode, "base-address",
1003 					 &base)) {
1004 			EMSG("Mandatory field is missing: base-address");
1005 			continue;
1006 		}
1007 
1008 		if (base & SMALL_PAGE_MASK) {
1009 			EMSG("base-address is not page aligned");
1010 			continue;
1011 		}
1012 
1013 		if (dt_getprop_as_number(fdt, subnode, "pages-count",
1014 					 &page_count)) {
1015 			EMSG("Mandatory field is missing: pages-count");
1016 			continue;
1017 		}
1018 
1019 		add_phys_mem(mem_map, name, MEM_AREA_IO_SEC,
1020 			     base, base + page_count * SMALL_PAGE_SIZE);
1021 	}
1022 }
1023 
1024 static void collect_mem_ranges(struct memory_map *mem_map)
1025 {
1026 	const struct core_mmu_phys_mem *mem = NULL;
1027 	vaddr_t ram_start = secure_only[0].paddr;
1028 
1029 #define ADD_PHYS_MEM(_type, _addr, _size) \
1030 		add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size))
1031 
1032 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
1033 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start,
1034 			     VCORE_UNPG_RX_PA - ram_start);
1035 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
1036 			     VCORE_UNPG_RX_SZ);
1037 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
1038 			     VCORE_UNPG_RO_SZ);
1039 
1040 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1041 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
1042 				     VCORE_UNPG_RW_SZ);
1043 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
1044 				     VCORE_NEX_RW_SZ);
1045 		} else {
1046 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
1047 				     VCORE_UNPG_RW_SZ);
1048 		}
1049 
1050 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1051 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
1052 				     VCORE_INIT_RX_SZ);
1053 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
1054 				     VCORE_INIT_RO_SZ);
1055 		}
1056 	} else {
1057 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
1058 	}
1059 
1060 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1061 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
1062 			     TRUSTED_DRAM_SIZE);
1063 	} else {
1064 		/*
1065 		 * Every guest will have own TA RAM if virtualization
1066 		 * support is enabled.
1067 		 */
1068 		paddr_t ta_base = 0;
1069 		size_t ta_size = 0;
1070 
1071 		core_mmu_get_ta_range(&ta_base, &ta_size);
1072 		ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size);
1073 	}
1074 
1075 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
1076 	    IS_ENABLED(CFG_WITH_PAGER)) {
1077 		/*
1078 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
1079 		 * disabled.
1080 		 */
1081 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1082 	}
1083 
1084 #undef ADD_PHYS_MEM
1085 
1086 	/* Collect device memory info from SP manifest */
1087 	if (IS_ENABLED(CFG_CORE_SEL2_SPMC))
1088 		collect_device_mem_ranges(mem_map);
1089 
1090 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1091 		/* Only unmapped virtual range may have a null phys addr */
1092 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1093 
1094 		add_phys_mem(mem_map, mem->name, mem->type,
1095 			     mem->addr, mem->size);
1096 	}
1097 
1098 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1099 		verify_special_mem_areas(mem_map, phys_sdp_mem_begin,
1100 					 phys_sdp_mem_end, "SDP");
1101 
1102 	add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE);
1103 	add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE);
1104 }
1105 
1106 static void assign_mem_granularity(struct memory_map *mem_map)
1107 {
1108 	size_t n = 0;
1109 
1110 	/*
1111 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1112 	 * SMALL_PAGE_SIZE.
1113 	 */
1114 	for  (n = 0; n < mem_map->count; n++) {
1115 		paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size;
1116 
1117 		if (!(mask & CORE_MMU_PGDIR_MASK))
1118 			mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE;
1119 		else if (!(mask & SMALL_PAGE_MASK))
1120 			mem_map->map[n].region_size = SMALL_PAGE_SIZE;
1121 		else
1122 			panic("Impossible memory alignment");
1123 
1124 		if (map_is_tee_ram(mem_map->map + n))
1125 			mem_map->map[n].region_size = SMALL_PAGE_SIZE;
1126 	}
1127 }
1128 
1129 static bool place_tee_ram_at_top(paddr_t paddr)
1130 {
1131 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1132 }
1133 
1134 /*
1135  * MMU arch driver shall override this function if it helps
1136  * optimizing the memory footprint of the address translation tables.
1137  */
1138 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1139 {
1140 	return place_tee_ram_at_top(paddr);
1141 }
1142 
1143 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map,
1144 			      bool tee_ram_at_top)
1145 {
1146 	struct tee_mmap_region *map = NULL;
1147 	vaddr_t va = 0;
1148 	bool va_is_secure = true;
1149 	size_t n = 0;
1150 
1151 	/*
1152 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1153 	 * 0 is by design an invalid va, so return false directly.
1154 	 */
1155 	if (!tee_ram_va)
1156 		return false;
1157 
1158 	/* Clear eventual previous assignments */
1159 	for (n = 0; n < mem_map->count; n++)
1160 		mem_map->map[n].va = 0;
1161 
1162 	/*
1163 	 * TEE RAM regions are always aligned with region_size.
1164 	 *
1165 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1166 	 * since it handles virtual memory which covers the part of the ELF
1167 	 * that cannot fit directly into memory.
1168 	 */
1169 	va = tee_ram_va;
1170 	for (n = 0; n < mem_map->count; n++) {
1171 		map = mem_map->map + n;
1172 		if (map_is_tee_ram(map) ||
1173 		    map->type == MEM_AREA_PAGER_VASPACE) {
1174 			assert(!(va & (map->region_size - 1)));
1175 			assert(!(map->size & (map->region_size - 1)));
1176 			map->va = va;
1177 			if (ADD_OVERFLOW(va, map->size, &va))
1178 				return false;
1179 			if (va >= BIT64(core_mmu_get_va_width()))
1180 				return false;
1181 		}
1182 	}
1183 
1184 	if (tee_ram_at_top) {
1185 		/*
1186 		 * Map non-tee ram regions at addresses lower than the tee
1187 		 * ram region.
1188 		 */
1189 		va = tee_ram_va;
1190 		for (n = 0; n < mem_map->count; n++) {
1191 			map = mem_map->map + n;
1192 			map->attr = core_mmu_type_to_attr(map->type);
1193 			if (map->va)
1194 				continue;
1195 
1196 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1197 			    va_is_secure != map_is_secure(map)) {
1198 				va_is_secure = !va_is_secure;
1199 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1200 			}
1201 
1202 			if (SUB_OVERFLOW(va, map->size, &va))
1203 				return false;
1204 			va = ROUNDDOWN(va, map->region_size);
1205 			/*
1206 			 * Make sure that va is aligned with pa for
1207 			 * efficient pgdir mapping. Basically pa &
1208 			 * pgdir_mask should be == va & pgdir_mask
1209 			 */
1210 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1211 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1212 					return false;
1213 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1214 			}
1215 			map->va = va;
1216 		}
1217 	} else {
1218 		/*
1219 		 * Map non-tee ram regions at addresses higher than the tee
1220 		 * ram region.
1221 		 */
1222 		for (n = 0; n < mem_map->count; n++) {
1223 			map = mem_map->map + n;
1224 			map->attr = core_mmu_type_to_attr(map->type);
1225 			if (map->va)
1226 				continue;
1227 
1228 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1229 			    va_is_secure != map_is_secure(map)) {
1230 				va_is_secure = !va_is_secure;
1231 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1232 						     &va))
1233 					return false;
1234 			}
1235 
1236 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1237 				return false;
1238 			/*
1239 			 * Make sure that va is aligned with pa for
1240 			 * efficient pgdir mapping. Basically pa &
1241 			 * pgdir_mask should be == va & pgdir_mask
1242 			 */
1243 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1244 				vaddr_t offs = (map->pa - va) &
1245 					       CORE_MMU_PGDIR_MASK;
1246 
1247 				if (ADD_OVERFLOW(va, offs, &va))
1248 					return false;
1249 			}
1250 
1251 			map->va = va;
1252 			if (ADD_OVERFLOW(va, map->size, &va))
1253 				return false;
1254 			if (va >= BIT64(core_mmu_get_va_width()))
1255 				return false;
1256 		}
1257 	}
1258 
1259 	return true;
1260 }
1261 
1262 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map)
1263 {
1264 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1265 
1266 	/*
1267 	 * Check that we're not overlapping with the user VA range.
1268 	 */
1269 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1270 		/*
1271 		 * User VA range is supposed to be defined after these
1272 		 * mappings have been established.
1273 		 */
1274 		assert(!core_mmu_user_va_range_is_defined());
1275 	} else {
1276 		vaddr_t user_va_base = 0;
1277 		size_t user_va_size = 0;
1278 
1279 		assert(core_mmu_user_va_range_is_defined());
1280 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1281 		if (tee_ram_va < (user_va_base + user_va_size))
1282 			return false;
1283 	}
1284 
1285 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1286 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1287 
1288 		/* Try whole mapping covered by a single base xlat entry */
1289 		if (prefered_dir != tee_ram_at_top &&
1290 		    assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir))
1291 			return true;
1292 	}
1293 
1294 	return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top);
1295 }
1296 
1297 static int cmp_init_mem_map(const void *a, const void *b)
1298 {
1299 	const struct tee_mmap_region *mm_a = a;
1300 	const struct tee_mmap_region *mm_b = b;
1301 	int rc = 0;
1302 
1303 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1304 	if (!rc)
1305 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1306 	/*
1307 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1308 	 * the same level2 table. Hence sort secure mapping from non-secure
1309 	 * mapping.
1310 	 */
1311 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1312 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1313 
1314 	return rc;
1315 }
1316 
1317 static bool mem_map_add_id_map(struct memory_map *mem_map,
1318 			       vaddr_t id_map_start, vaddr_t id_map_end)
1319 {
1320 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1321 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1322 	size_t len = end - start;
1323 	size_t n = 0;
1324 
1325 
1326 	for (n = 0; n < mem_map->count; n++)
1327 		if (core_is_buffer_intersect(mem_map->map[n].va,
1328 					     mem_map->map[n].size, start, len))
1329 			return false;
1330 
1331 	grow_mem_map(mem_map);
1332 	mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){
1333 		.type = MEM_AREA_IDENTITY_MAP_RX,
1334 		/*
1335 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1336 		 * translation table, at the increased risk of clashes with
1337 		 * the rest of the memory map.
1338 		 */
1339 		.region_size = SMALL_PAGE_SIZE,
1340 		.pa = start,
1341 		.va = start,
1342 		.size = len,
1343 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1344 	};
1345 
1346 	return true;
1347 }
1348 
1349 static struct memory_map *init_mem_map(struct memory_map *mem_map,
1350 				       unsigned long seed,
1351 				       unsigned long *ret_offs)
1352 {
1353 	/*
1354 	 * @id_map_start and @id_map_end describes a physical memory range
1355 	 * that must be mapped Read-Only eXecutable at identical virtual
1356 	 * addresses.
1357 	 */
1358 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1359 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1360 	vaddr_t start_addr = secure_only[0].paddr;
1361 	unsigned long offs = 0;
1362 
1363 	collect_mem_ranges(mem_map);
1364 	assign_mem_granularity(mem_map);
1365 
1366 	/*
1367 	 * To ease mapping and lower use of xlat tables, sort mapping
1368 	 * description moving small-page regions after the pgdir regions.
1369 	 */
1370 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1371 	      cmp_init_mem_map);
1372 
1373 	if (IS_ENABLED(CFG_WITH_PAGER))
1374 		add_pager_vaspace(mem_map);
1375 
1376 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1377 		vaddr_t base_addr = start_addr + seed;
1378 		const unsigned int va_width = core_mmu_get_va_width();
1379 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1380 						   SMALL_PAGE_SHIFT);
1381 		vaddr_t ba = base_addr;
1382 		size_t n = 0;
1383 
1384 		for (n = 0; n < 3; n++) {
1385 			if (n)
1386 				ba = base_addr ^ BIT64(va_width - n);
1387 			ba &= va_mask;
1388 			if (assign_mem_va(ba, mem_map) &&
1389 			    mem_map_add_id_map(mem_map, id_map_start,
1390 					       id_map_end)) {
1391 				offs = ba - start_addr;
1392 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1393 				     ba, offs);
1394 				goto out;
1395 			} else {
1396 				DMSG("Failed to map core at %#"PRIxVA, ba);
1397 			}
1398 		}
1399 		EMSG("Failed to map core with seed %#lx", seed);
1400 	}
1401 
1402 	if (!assign_mem_va(start_addr, mem_map))
1403 		panic();
1404 
1405 out:
1406 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1407 	      cmp_mmap_by_lower_va);
1408 
1409 	dump_mmap_table(mem_map);
1410 
1411 	*ret_offs = offs;
1412 	return mem_map;
1413 }
1414 
1415 static void check_mem_map(struct memory_map *mem_map)
1416 {
1417 	struct tee_mmap_region *m = NULL;
1418 	size_t n = 0;
1419 
1420 	for (n = 0; n < mem_map->count; n++) {
1421 		m = mem_map->map + n;
1422 		switch (m->type) {
1423 		case MEM_AREA_TEE_RAM:
1424 		case MEM_AREA_TEE_RAM_RX:
1425 		case MEM_AREA_TEE_RAM_RO:
1426 		case MEM_AREA_TEE_RAM_RW:
1427 		case MEM_AREA_INIT_RAM_RX:
1428 		case MEM_AREA_INIT_RAM_RO:
1429 		case MEM_AREA_NEX_RAM_RW:
1430 		case MEM_AREA_NEX_RAM_RO:
1431 		case MEM_AREA_IDENTITY_MAP_RX:
1432 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1433 				panic("TEE_RAM can't fit in secure_only");
1434 			break;
1435 		case MEM_AREA_TA_RAM:
1436 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1437 				panic("TA_RAM can't fit in secure_only");
1438 			break;
1439 		case MEM_AREA_NSEC_SHM:
1440 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1441 				panic("NS_SHM can't fit in nsec_shared");
1442 			break;
1443 		case MEM_AREA_SEC_RAM_OVERALL:
1444 		case MEM_AREA_TEE_COHERENT:
1445 		case MEM_AREA_TEE_ASAN:
1446 		case MEM_AREA_IO_SEC:
1447 		case MEM_AREA_IO_NSEC:
1448 		case MEM_AREA_EXT_DT:
1449 		case MEM_AREA_MANIFEST_DT:
1450 		case MEM_AREA_TRANSFER_LIST:
1451 		case MEM_AREA_RAM_SEC:
1452 		case MEM_AREA_RAM_NSEC:
1453 		case MEM_AREA_ROM_SEC:
1454 		case MEM_AREA_RES_VASPACE:
1455 		case MEM_AREA_SHM_VASPACE:
1456 		case MEM_AREA_PAGER_VASPACE:
1457 			break;
1458 		default:
1459 			EMSG("Uhandled memtype %d", m->type);
1460 			panic();
1461 		}
1462 	}
1463 }
1464 
1465 /*
1466  * core_init_mmu_map() - init tee core default memory mapping
1467  *
1468  * This routine sets the static default TEE core mapping. If @seed is > 0
1469  * and configured with CFG_CORE_ASLR it will map tee core at a location
1470  * based on the seed and return the offset from the link address.
1471  *
1472  * If an error happened: core_init_mmu_map is expected to panic.
1473  *
1474  * Note: this function is weak just to make it possible to exclude it from
1475  * the unpaged area.
1476  */
1477 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1478 {
1479 #ifndef CFG_NS_VIRTUALIZATION
1480 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1481 #else
1482 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1483 				  SMALL_PAGE_SIZE);
1484 #endif
1485 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1486 	struct tee_mmap_region tmp_mmap_region = { };
1487 	struct memory_map mem_map = { };
1488 	unsigned long offs = 0;
1489 
1490 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1491 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1492 		panic("OP-TEE load address is not page aligned");
1493 
1494 	check_sec_nsec_mem_config();
1495 
1496 	mem_map = static_memory_map;
1497 	static_memory_map = (struct memory_map){
1498 		.map = &tmp_mmap_region,
1499 		.alloc_count = 1,
1500 		.count = 1,
1501 	};
1502 	/*
1503 	 * Add a entry covering the translation tables which will be
1504 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1505 	 */
1506 	static_memory_map.map[0] = (struct tee_mmap_region){
1507 		.type = MEM_AREA_TEE_RAM,
1508 		.region_size = SMALL_PAGE_SIZE,
1509 		.pa = start,
1510 		.va = start,
1511 		.size = len,
1512 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1513 	};
1514 
1515 	init_mem_map(&mem_map, seed, &offs);
1516 
1517 	check_mem_map(&mem_map);
1518 	core_init_mmu(&mem_map);
1519 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1520 	core_init_mmu_regs(cfg);
1521 	cfg->map_offset = offs;
1522 	static_memory_map = mem_map;
1523 }
1524 
1525 bool core_mmu_mattr_is_ok(uint32_t mattr)
1526 {
1527 	/*
1528 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1529 	 * core_mmu_v7.c:mattr_to_texcb
1530 	 */
1531 
1532 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1533 	case TEE_MATTR_MEM_TYPE_DEV:
1534 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1535 	case TEE_MATTR_MEM_TYPE_CACHED:
1536 	case TEE_MATTR_MEM_TYPE_TAGGED:
1537 		return true;
1538 	default:
1539 		return false;
1540 	}
1541 }
1542 
1543 /*
1544  * test attributes of target physical buffer
1545  *
1546  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1547  *
1548  */
1549 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1550 {
1551 	paddr_t ta_base = 0;
1552 	size_t ta_size = 0;
1553 	struct tee_mmap_region *map;
1554 
1555 	/* Empty buffers complies with anything */
1556 	if (len == 0)
1557 		return true;
1558 
1559 	switch (attr) {
1560 	case CORE_MEM_SEC:
1561 		return pbuf_is_inside(secure_only, pbuf, len);
1562 	case CORE_MEM_NON_SEC:
1563 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1564 			pbuf_is_nsec_ddr(pbuf, len);
1565 	case CORE_MEM_TEE_RAM:
1566 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1567 							TEE_RAM_PH_SIZE);
1568 	case CORE_MEM_TA_RAM:
1569 		core_mmu_get_ta_range(&ta_base, &ta_size);
1570 		return core_is_buffer_inside(pbuf, len, ta_base, ta_size);
1571 #ifdef CFG_CORE_RESERVED_SHM
1572 	case CORE_MEM_NSEC_SHM:
1573 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1574 							TEE_SHMEM_SIZE);
1575 #endif
1576 	case CORE_MEM_SDP_MEM:
1577 		return pbuf_is_sdp_mem(pbuf, len);
1578 	case CORE_MEM_CACHED:
1579 		map = find_map_by_pa(pbuf);
1580 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1581 			return false;
1582 		return mattr_is_cached(map->attr);
1583 	default:
1584 		return false;
1585 	}
1586 }
1587 
1588 /* test attributes of target virtual buffer (in core mapping) */
1589 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1590 {
1591 	paddr_t p;
1592 
1593 	/* Empty buffers complies with anything */
1594 	if (len == 0)
1595 		return true;
1596 
1597 	p = virt_to_phys((void *)vbuf);
1598 	if (!p)
1599 		return false;
1600 
1601 	return core_pbuf_is(attr, p, len);
1602 }
1603 
1604 /* core_va2pa - teecore exported service */
1605 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1606 {
1607 	struct tee_mmap_region *map;
1608 
1609 	map = find_map_by_va(va);
1610 	if (!va_is_in_map(map, (vaddr_t)va))
1611 		return -1;
1612 
1613 	/*
1614 	 * We can calculate PA for static map. Virtual address ranges
1615 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1616 	 * together with an invalid null physical address.
1617 	 */
1618 	if (map->pa)
1619 		*pa = map->pa + (vaddr_t)va  - map->va;
1620 	else
1621 		*pa = 0;
1622 
1623 	return 0;
1624 }
1625 
1626 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1627 {
1628 	if (!pa_is_in_map(map, pa, len))
1629 		return NULL;
1630 
1631 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1632 }
1633 
1634 /*
1635  * teecore gets some memory area definitions
1636  */
1637 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1638 			      vaddr_t *e)
1639 {
1640 	struct tee_mmap_region *map = find_map_by_type(type);
1641 
1642 	if (map) {
1643 		*s = map->va;
1644 		*e = map->va + map->size;
1645 	} else {
1646 		*s = 0;
1647 		*e = 0;
1648 	}
1649 }
1650 
1651 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1652 {
1653 	struct tee_mmap_region *map = find_map_by_pa(pa);
1654 
1655 	if (!map)
1656 		return MEM_AREA_MAXTYPE;
1657 	return map->type;
1658 }
1659 
1660 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1661 			paddr_t pa, uint32_t attr)
1662 {
1663 	assert(idx < tbl_info->num_entries);
1664 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1665 				     idx, pa, attr);
1666 }
1667 
1668 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1669 			paddr_t *pa, uint32_t *attr)
1670 {
1671 	assert(idx < tbl_info->num_entries);
1672 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1673 				     idx, pa, attr);
1674 }
1675 
1676 static void clear_region(struct core_mmu_table_info *tbl_info,
1677 			 struct tee_mmap_region *region)
1678 {
1679 	unsigned int end = 0;
1680 	unsigned int idx = 0;
1681 
1682 	/* va, len and pa should be block aligned */
1683 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1684 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1685 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1686 
1687 	idx = core_mmu_va2idx(tbl_info, region->va);
1688 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1689 
1690 	while (idx < end) {
1691 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1692 		idx++;
1693 	}
1694 }
1695 
1696 static void set_region(struct core_mmu_table_info *tbl_info,
1697 		       struct tee_mmap_region *region)
1698 {
1699 	unsigned int end;
1700 	unsigned int idx;
1701 	paddr_t pa;
1702 
1703 	/* va, len and pa should be block aligned */
1704 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1705 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1706 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1707 
1708 	idx = core_mmu_va2idx(tbl_info, region->va);
1709 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1710 	pa = region->pa;
1711 
1712 	while (idx < end) {
1713 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1714 		idx++;
1715 		pa += BIT64(tbl_info->shift);
1716 	}
1717 }
1718 
1719 static void set_pg_region(struct core_mmu_table_info *dir_info,
1720 			  struct vm_region *region, struct pgt **pgt,
1721 			  struct core_mmu_table_info *pg_info)
1722 {
1723 	struct tee_mmap_region r = {
1724 		.va = region->va,
1725 		.size = region->size,
1726 		.attr = region->attr,
1727 	};
1728 	vaddr_t end = r.va + r.size;
1729 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1730 
1731 	while (r.va < end) {
1732 		if (!pg_info->table ||
1733 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1734 			/*
1735 			 * We're assigning a new translation table.
1736 			 */
1737 			unsigned int idx;
1738 
1739 			/* Virtual addresses must grow */
1740 			assert(r.va > pg_info->va_base);
1741 
1742 			idx = core_mmu_va2idx(dir_info, r.va);
1743 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1744 
1745 			/*
1746 			 * Advance pgt to va_base, note that we may need to
1747 			 * skip multiple page tables if there are large
1748 			 * holes in the vm map.
1749 			 */
1750 			while ((*pgt)->vabase < pg_info->va_base) {
1751 				*pgt = SLIST_NEXT(*pgt, link);
1752 				/* We should have allocated enough */
1753 				assert(*pgt);
1754 			}
1755 			assert((*pgt)->vabase == pg_info->va_base);
1756 			pg_info->table = (*pgt)->tbl;
1757 
1758 			core_mmu_set_entry(dir_info, idx,
1759 					   virt_to_phys(pg_info->table),
1760 					   pgt_attr);
1761 		}
1762 
1763 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1764 			     end - r.va);
1765 
1766 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1767 			size_t granule = BIT(pg_info->shift);
1768 			size_t offset = r.va - region->va + region->offset;
1769 
1770 			r.size = MIN(r.size,
1771 				     mobj_get_phys_granule(region->mobj));
1772 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1773 
1774 			if (mobj_get_pa(region->mobj, offset, granule,
1775 					&r.pa) != TEE_SUCCESS)
1776 				panic("Failed to get PA of unpaged mobj");
1777 			set_region(pg_info, &r);
1778 		}
1779 		r.va += r.size;
1780 	}
1781 }
1782 
1783 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1784 			     size_t size_left, paddr_t block_size,
1785 			     struct tee_mmap_region *mm __maybe_unused)
1786 {
1787 	/* VA and PA are aligned to block size at current level */
1788 	if ((vaddr | paddr) & (block_size - 1))
1789 		return false;
1790 
1791 	/* Remainder fits into block at current level */
1792 	if (size_left < block_size)
1793 		return false;
1794 
1795 #ifdef CFG_WITH_PAGER
1796 	/*
1797 	 * If pager is enabled, we need to map TEE RAM and the whole pager
1798 	 * regions with small pages only
1799 	 */
1800 	if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) &&
1801 	    block_size != SMALL_PAGE_SIZE)
1802 		return false;
1803 #endif
1804 
1805 	return true;
1806 }
1807 
1808 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1809 {
1810 	struct core_mmu_table_info tbl_info;
1811 	unsigned int idx;
1812 	vaddr_t vaddr = mm->va;
1813 	paddr_t paddr = mm->pa;
1814 	ssize_t size_left = mm->size;
1815 	unsigned int level;
1816 	bool table_found;
1817 	uint32_t old_attr;
1818 
1819 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1820 
1821 	while (size_left > 0) {
1822 		level = CORE_MMU_BASE_TABLE_LEVEL;
1823 
1824 		while (true) {
1825 			paddr_t block_size = 0;
1826 
1827 			assert(core_mmu_level_in_range(level));
1828 
1829 			table_found = core_mmu_find_table(prtn, vaddr, level,
1830 							  &tbl_info);
1831 			if (!table_found)
1832 				panic("can't find table for mapping");
1833 
1834 			block_size = BIT64(tbl_info.shift);
1835 
1836 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1837 			if (!can_map_at_level(paddr, vaddr, size_left,
1838 					      block_size, mm)) {
1839 				bool secure = mm->attr & TEE_MATTR_SECURE;
1840 
1841 				/*
1842 				 * This part of the region can't be mapped at
1843 				 * this level. Need to go deeper.
1844 				 */
1845 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1846 								     idx,
1847 								     secure))
1848 					panic("Can't divide MMU entry");
1849 				level = tbl_info.next_level;
1850 				continue;
1851 			}
1852 
1853 			/* We can map part of the region at current level */
1854 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1855 			if (old_attr)
1856 				panic("Page is already mapped");
1857 
1858 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1859 			paddr += block_size;
1860 			vaddr += block_size;
1861 			size_left -= block_size;
1862 
1863 			break;
1864 		}
1865 	}
1866 }
1867 
1868 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1869 			      enum teecore_memtypes memtype)
1870 {
1871 	TEE_Result ret;
1872 	struct core_mmu_table_info tbl_info;
1873 	struct tee_mmap_region *mm;
1874 	unsigned int idx;
1875 	uint32_t old_attr;
1876 	uint32_t exceptions;
1877 	vaddr_t vaddr = vstart;
1878 	size_t i;
1879 	bool secure;
1880 
1881 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1882 
1883 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1884 
1885 	if (vaddr & SMALL_PAGE_MASK)
1886 		return TEE_ERROR_BAD_PARAMETERS;
1887 
1888 	exceptions = mmu_lock();
1889 
1890 	mm = find_map_by_va((void *)vaddr);
1891 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1892 		panic("VA does not belong to any known mm region");
1893 
1894 	if (!core_mmu_is_dynamic_vaspace(mm))
1895 		panic("Trying to map into static region");
1896 
1897 	for (i = 0; i < num_pages; i++) {
1898 		if (pages[i] & SMALL_PAGE_MASK) {
1899 			ret = TEE_ERROR_BAD_PARAMETERS;
1900 			goto err;
1901 		}
1902 
1903 		while (true) {
1904 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1905 						 &tbl_info))
1906 				panic("Can't find pagetable for vaddr ");
1907 
1908 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1909 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1910 				break;
1911 
1912 			/* This is supertable. Need to divide it. */
1913 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1914 							     secure))
1915 				panic("Failed to spread pgdir on small tables");
1916 		}
1917 
1918 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1919 		if (old_attr)
1920 			panic("Page is already mapped");
1921 
1922 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1923 				   core_mmu_type_to_attr(memtype));
1924 		vaddr += SMALL_PAGE_SIZE;
1925 	}
1926 
1927 	/*
1928 	 * Make sure all the changes to translation tables are visible
1929 	 * before returning. TLB doesn't need to be invalidated as we are
1930 	 * guaranteed that there's no valid mapping in this range.
1931 	 */
1932 	core_mmu_table_write_barrier();
1933 	mmu_unlock(exceptions);
1934 
1935 	return TEE_SUCCESS;
1936 err:
1937 	mmu_unlock(exceptions);
1938 
1939 	if (i)
1940 		core_mmu_unmap_pages(vstart, i);
1941 
1942 	return ret;
1943 }
1944 
1945 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
1946 					 size_t num_pages,
1947 					 enum teecore_memtypes memtype)
1948 {
1949 	struct core_mmu_table_info tbl_info = { };
1950 	struct tee_mmap_region *mm = NULL;
1951 	unsigned int idx = 0;
1952 	uint32_t old_attr = 0;
1953 	uint32_t exceptions = 0;
1954 	vaddr_t vaddr = vstart;
1955 	paddr_t paddr = pstart;
1956 	size_t i = 0;
1957 	bool secure = false;
1958 
1959 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1960 
1961 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1962 
1963 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
1964 		return TEE_ERROR_BAD_PARAMETERS;
1965 
1966 	exceptions = mmu_lock();
1967 
1968 	mm = find_map_by_va((void *)vaddr);
1969 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1970 		panic("VA does not belong to any known mm region");
1971 
1972 	if (!core_mmu_is_dynamic_vaspace(mm))
1973 		panic("Trying to map into static region");
1974 
1975 	for (i = 0; i < num_pages; i++) {
1976 		while (true) {
1977 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1978 						 &tbl_info))
1979 				panic("Can't find pagetable for vaddr ");
1980 
1981 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1982 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1983 				break;
1984 
1985 			/* This is supertable. Need to divide it. */
1986 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1987 							     secure))
1988 				panic("Failed to spread pgdir on small tables");
1989 		}
1990 
1991 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1992 		if (old_attr)
1993 			panic("Page is already mapped");
1994 
1995 		core_mmu_set_entry(&tbl_info, idx, paddr,
1996 				   core_mmu_type_to_attr(memtype));
1997 		paddr += SMALL_PAGE_SIZE;
1998 		vaddr += SMALL_PAGE_SIZE;
1999 	}
2000 
2001 	/*
2002 	 * Make sure all the changes to translation tables are visible
2003 	 * before returning. TLB doesn't need to be invalidated as we are
2004 	 * guaranteed that there's no valid mapping in this range.
2005 	 */
2006 	core_mmu_table_write_barrier();
2007 	mmu_unlock(exceptions);
2008 
2009 	return TEE_SUCCESS;
2010 }
2011 
2012 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
2013 {
2014 	struct core_mmu_table_info tbl_info;
2015 	struct tee_mmap_region *mm;
2016 	size_t i;
2017 	unsigned int idx;
2018 	uint32_t exceptions;
2019 
2020 	exceptions = mmu_lock();
2021 
2022 	mm = find_map_by_va((void *)vstart);
2023 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
2024 		panic("VA does not belong to any known mm region");
2025 
2026 	if (!core_mmu_is_dynamic_vaspace(mm))
2027 		panic("Trying to unmap static region");
2028 
2029 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
2030 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
2031 			panic("Can't find pagetable");
2032 
2033 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
2034 			panic("Invalid pagetable level");
2035 
2036 		idx = core_mmu_va2idx(&tbl_info, vstart);
2037 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
2038 	}
2039 	tlbi_all();
2040 
2041 	mmu_unlock(exceptions);
2042 }
2043 
2044 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
2045 				struct user_mode_ctx *uctx)
2046 {
2047 	struct core_mmu_table_info pg_info = { };
2048 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
2049 	struct pgt *pgt = NULL;
2050 	struct pgt *p = NULL;
2051 	struct vm_region *r = NULL;
2052 
2053 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
2054 		return; /* Nothing to map */
2055 
2056 	/*
2057 	 * Allocate all page tables in advance.
2058 	 */
2059 	pgt_get_all(uctx);
2060 	pgt = SLIST_FIRST(pgt_cache);
2061 
2062 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2063 
2064 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2065 		set_pg_region(dir_info, r, &pgt, &pg_info);
2066 	/* Record that the translation tables now are populated. */
2067 	SLIST_FOREACH(p, pgt_cache, link) {
2068 		p->populated = true;
2069 		if (p == pgt)
2070 			break;
2071 	}
2072 	assert(p == pgt);
2073 }
2074 
2075 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2076 				   size_t len)
2077 {
2078 	struct core_mmu_table_info tbl_info = { };
2079 	struct tee_mmap_region *res_map = NULL;
2080 	struct tee_mmap_region *map = NULL;
2081 	paddr_t pa = virt_to_phys(addr);
2082 	size_t granule = 0;
2083 	ptrdiff_t i = 0;
2084 	paddr_t p = 0;
2085 	size_t l = 0;
2086 
2087 	map = find_map_by_type_and_pa(type, pa, len);
2088 	if (!map)
2089 		return TEE_ERROR_GENERIC;
2090 
2091 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2092 	if (!res_map)
2093 		return TEE_ERROR_GENERIC;
2094 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2095 		return TEE_ERROR_GENERIC;
2096 	granule = BIT(tbl_info.shift);
2097 
2098 	if (map < static_memory_map.map ||
2099 	    map >= static_memory_map.map + static_memory_map.count)
2100 		return TEE_ERROR_GENERIC;
2101 	i = map - static_memory_map.map;
2102 
2103 	/* Check that we have a full match */
2104 	p = ROUNDDOWN(pa, granule);
2105 	l = ROUNDUP(len + pa - p, granule);
2106 	if (map->pa != p || map->size != l)
2107 		return TEE_ERROR_GENERIC;
2108 
2109 	clear_region(&tbl_info, map);
2110 	tlbi_all();
2111 
2112 	/* If possible remove the va range from res_map */
2113 	if (res_map->va - map->size == map->va) {
2114 		res_map->va -= map->size;
2115 		res_map->size += map->size;
2116 	}
2117 
2118 	/* Remove the entry. */
2119 	rem_array_elem(static_memory_map.map, static_memory_map.count,
2120 		       sizeof(*static_memory_map.map), i);
2121 	static_memory_map.count--;
2122 
2123 	return TEE_SUCCESS;
2124 }
2125 
2126 struct tee_mmap_region *
2127 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2128 {
2129 	struct memory_map *mem_map = get_memory_map();
2130 	struct tee_mmap_region *map_found = NULL;
2131 	size_t n = 0;
2132 
2133 	if (!len)
2134 		return NULL;
2135 
2136 	for (n = 0; n < mem_map->count; n++) {
2137 		if (mem_map->map[n].type != type)
2138 			continue;
2139 
2140 		if (map_found)
2141 			return NULL;
2142 
2143 		map_found = mem_map->map + n;
2144 	}
2145 
2146 	if (!map_found || map_found->size < len)
2147 		return NULL;
2148 
2149 	return map_found;
2150 }
2151 
2152 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2153 {
2154 	struct memory_map *mem_map = &static_memory_map;
2155 	struct core_mmu_table_info tbl_info = { };
2156 	struct tee_mmap_region *map = NULL;
2157 	size_t granule = 0;
2158 	paddr_t p = 0;
2159 	size_t l = 0;
2160 
2161 	if (!len)
2162 		return NULL;
2163 
2164 	if (!core_mmu_check_end_pa(addr, len))
2165 		return NULL;
2166 
2167 	/* Check if the memory is already mapped */
2168 	map = find_map_by_type_and_pa(type, addr, len);
2169 	if (map && pbuf_inside_map_area(addr, len, map))
2170 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2171 
2172 	/* Find the reserved va space used for late mappings */
2173 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2174 	if (!map)
2175 		return NULL;
2176 
2177 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2178 		return NULL;
2179 
2180 	granule = BIT64(tbl_info.shift);
2181 	p = ROUNDDOWN(addr, granule);
2182 	l = ROUNDUP(len + addr - p, granule);
2183 
2184 	/* Ban overflowing virtual addresses */
2185 	if (map->size < l)
2186 		return NULL;
2187 
2188 	/*
2189 	 * Something is wrong, we can't fit the va range into the selected
2190 	 * table. The reserved va range is possibly missaligned with
2191 	 * granule.
2192 	 */
2193 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2194 		return NULL;
2195 
2196 	if (static_memory_map.count >= static_memory_map.alloc_count)
2197 		return NULL;
2198 
2199 	mem_map->map[mem_map->count] = (struct tee_mmap_region){
2200 		.va = map->va,
2201 		.size = l,
2202 		.type = type,
2203 		.region_size = granule,
2204 		.attr = core_mmu_type_to_attr(type),
2205 		.pa = p,
2206 	};
2207 	map->va += l;
2208 	map->size -= l;
2209 	map = mem_map->map + mem_map->count;
2210 	mem_map->count++;
2211 
2212 	set_region(&tbl_info, map);
2213 
2214 	/* Make sure the new entry is visible before continuing. */
2215 	core_mmu_table_write_barrier();
2216 
2217 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2218 }
2219 
2220 #ifdef CFG_WITH_PAGER
2221 static vaddr_t get_linear_map_end_va(void)
2222 {
2223 	/* this is synced with the generic linker file kern.ld.S */
2224 	return (vaddr_t)__heap2_end;
2225 }
2226 
2227 static paddr_t get_linear_map_end_pa(void)
2228 {
2229 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2230 }
2231 #endif
2232 
2233 #if defined(CFG_TEE_CORE_DEBUG)
2234 static void check_pa_matches_va(void *va, paddr_t pa)
2235 {
2236 	TEE_Result res = TEE_ERROR_GENERIC;
2237 	vaddr_t v = (vaddr_t)va;
2238 	paddr_t p = 0;
2239 	struct core_mmu_table_info ti __maybe_unused = { };
2240 
2241 	if (core_mmu_user_va_range_is_defined()) {
2242 		vaddr_t user_va_base = 0;
2243 		size_t user_va_size = 0;
2244 
2245 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2246 		if (v >= user_va_base &&
2247 		    v <= (user_va_base - 1 + user_va_size)) {
2248 			if (!core_mmu_user_mapping_is_active()) {
2249 				if (pa)
2250 					panic("issue in linear address space");
2251 				return;
2252 			}
2253 
2254 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2255 				       va, &p);
2256 			if (res == TEE_ERROR_NOT_SUPPORTED)
2257 				return;
2258 			if (res == TEE_SUCCESS && pa != p)
2259 				panic("bad pa");
2260 			if (res != TEE_SUCCESS && pa)
2261 				panic("false pa");
2262 			return;
2263 		}
2264 	}
2265 #ifdef CFG_WITH_PAGER
2266 	if (is_unpaged(va)) {
2267 		if (v - boot_mmu_config.map_offset != pa)
2268 			panic("issue in linear address space");
2269 		return;
2270 	}
2271 
2272 	if (tee_pager_get_table_info(v, &ti)) {
2273 		uint32_t a;
2274 
2275 		/*
2276 		 * Lookups in the page table managed by the pager is
2277 		 * dangerous for addresses in the paged area as those pages
2278 		 * changes all the time. But some ranges are safe,
2279 		 * rw-locked areas when the page is populated for instance.
2280 		 */
2281 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2282 		if (a & TEE_MATTR_VALID_BLOCK) {
2283 			paddr_t mask = BIT64(ti.shift) - 1;
2284 
2285 			p |= v & mask;
2286 			if (pa != p)
2287 				panic();
2288 		} else {
2289 			if (pa)
2290 				panic();
2291 		}
2292 		return;
2293 	}
2294 #endif
2295 
2296 	if (!core_va2pa_helper(va, &p)) {
2297 		/* Verfiy only the static mapping (case non null phys addr) */
2298 		if (p && pa != p) {
2299 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2300 			     va, p, pa);
2301 			panic();
2302 		}
2303 	} else {
2304 		if (pa) {
2305 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2306 			panic();
2307 		}
2308 	}
2309 }
2310 #else
2311 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2312 {
2313 }
2314 #endif
2315 
2316 paddr_t virt_to_phys(void *va)
2317 {
2318 	paddr_t pa = 0;
2319 
2320 	if (!arch_va2pa_helper(va, &pa))
2321 		pa = 0;
2322 	check_pa_matches_va(memtag_strip_tag(va), pa);
2323 	return pa;
2324 }
2325 
2326 #if defined(CFG_TEE_CORE_DEBUG)
2327 static void check_va_matches_pa(paddr_t pa, void *va)
2328 {
2329 	paddr_t p = 0;
2330 
2331 	if (!va)
2332 		return;
2333 
2334 	p = virt_to_phys(va);
2335 	if (p != pa) {
2336 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2337 		panic();
2338 	}
2339 }
2340 #else
2341 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2342 {
2343 }
2344 #endif
2345 
2346 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2347 {
2348 	if (!core_mmu_user_mapping_is_active())
2349 		return NULL;
2350 
2351 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2352 }
2353 
2354 #ifdef CFG_WITH_PAGER
2355 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2356 {
2357 	paddr_t end_pa = 0;
2358 
2359 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2360 		return NULL;
2361 
2362 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2363 		if (end_pa > get_linear_map_end_pa())
2364 			return NULL;
2365 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2366 	}
2367 
2368 	return tee_pager_phys_to_virt(pa, len);
2369 }
2370 #else
2371 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2372 {
2373 	struct tee_mmap_region *mmap = NULL;
2374 
2375 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2376 	if (!mmap)
2377 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2378 	if (!mmap)
2379 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2380 	if (!mmap)
2381 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2382 	if (!mmap)
2383 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2384 	if (!mmap)
2385 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2386 	/*
2387 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2388 	 * used with pager and not needed here.
2389 	 */
2390 	return map_pa2va(mmap, pa, len);
2391 }
2392 #endif
2393 
2394 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2395 {
2396 	void *va = NULL;
2397 
2398 	switch (m) {
2399 	case MEM_AREA_TS_VASPACE:
2400 		va = phys_to_virt_ts_vaspace(pa, len);
2401 		break;
2402 	case MEM_AREA_TEE_RAM:
2403 	case MEM_AREA_TEE_RAM_RX:
2404 	case MEM_AREA_TEE_RAM_RO:
2405 	case MEM_AREA_TEE_RAM_RW:
2406 	case MEM_AREA_NEX_RAM_RO:
2407 	case MEM_AREA_NEX_RAM_RW:
2408 		va = phys_to_virt_tee_ram(pa, len);
2409 		break;
2410 	case MEM_AREA_SHM_VASPACE:
2411 		/* Find VA from PA in dynamic SHM is not yet supported */
2412 		va = NULL;
2413 		break;
2414 	default:
2415 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2416 	}
2417 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2418 		check_va_matches_pa(pa, va);
2419 	return va;
2420 }
2421 
2422 void *phys_to_virt_io(paddr_t pa, size_t len)
2423 {
2424 	struct tee_mmap_region *map = NULL;
2425 	void *va = NULL;
2426 
2427 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2428 	if (!map)
2429 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2430 	if (!map)
2431 		return NULL;
2432 	va = map_pa2va(map, pa, len);
2433 	check_va_matches_pa(pa, va);
2434 	return va;
2435 }
2436 
2437 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2438 {
2439 	if (cpu_mmu_enabled())
2440 		return (vaddr_t)phys_to_virt(pa, type, len);
2441 
2442 	return (vaddr_t)pa;
2443 }
2444 
2445 #ifdef CFG_WITH_PAGER
2446 bool is_unpaged(const void *va)
2447 {
2448 	vaddr_t v = (vaddr_t)va;
2449 
2450 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2451 }
2452 #endif
2453 
2454 #ifdef CFG_NS_VIRTUALIZATION
2455 bool is_nexus(const void *va)
2456 {
2457 	vaddr_t v = (vaddr_t)va;
2458 
2459 	return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ;
2460 }
2461 #endif
2462 
2463 void core_mmu_init_virtualization(void)
2464 {
2465 	paddr_t b1 = 0;
2466 	paddr_size_t s1 = 0;
2467 
2468 	static_assert(ARRAY_SIZE(secure_only) <= 2);
2469 	if (ARRAY_SIZE(secure_only) == 2) {
2470 		b1 = secure_only[1].paddr;
2471 		s1 = secure_only[1].size;
2472 	}
2473 	virt_init_memory(&static_memory_map, secure_only[0].paddr,
2474 			 secure_only[0].size, b1, s1);
2475 }
2476 
2477 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2478 {
2479 	assert(p->pa);
2480 	if (cpu_mmu_enabled()) {
2481 		if (!p->va)
2482 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2483 		assert(p->va);
2484 		return p->va;
2485 	}
2486 	return p->pa;
2487 }
2488 
2489 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2490 {
2491 	assert(p->pa);
2492 	if (cpu_mmu_enabled()) {
2493 		if (!p->va)
2494 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2495 						      len);
2496 		assert(p->va);
2497 		return p->va;
2498 	}
2499 	return p->pa;
2500 }
2501 
2502 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2503 {
2504 	assert(p->pa);
2505 	if (cpu_mmu_enabled()) {
2506 		if (!p->va)
2507 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2508 						      len);
2509 		assert(p->va);
2510 		return p->va;
2511 	}
2512 	return p->pa;
2513 }
2514 
2515 #ifdef CFG_CORE_RESERVED_SHM
2516 static TEE_Result teecore_init_pub_ram(void)
2517 {
2518 	vaddr_t s = 0;
2519 	vaddr_t e = 0;
2520 
2521 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2522 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2523 
2524 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2525 		panic("invalid PUB RAM");
2526 
2527 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2528 	if (!tee_vbuf_is_non_sec(s, e - s))
2529 		panic("PUB RAM is not non-secure");
2530 
2531 #ifdef CFG_PL310
2532 	/* Allocate statically the l2cc mutex */
2533 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2534 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2535 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2536 #endif
2537 
2538 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2539 	default_nsec_shm_size = e - s;
2540 
2541 	return TEE_SUCCESS;
2542 }
2543 early_init(teecore_init_pub_ram);
2544 #endif /*CFG_CORE_RESERVED_SHM*/
2545 
2546 void core_mmu_init_ta_ram(void)
2547 {
2548 	vaddr_t s = 0;
2549 	vaddr_t e = 0;
2550 	paddr_t ps = 0;
2551 	size_t size = 0;
2552 
2553 	/*
2554 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2555 	 * shared mem allocated from teecore.
2556 	 */
2557 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
2558 		virt_get_ta_ram(&s, &e);
2559 	else
2560 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2561 
2562 	ps = virt_to_phys((void *)s);
2563 	size = e - s;
2564 
2565 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2566 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2567 		panic("invalid TA RAM");
2568 
2569 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2570 	if (!tee_pbuf_is_sec(ps, size))
2571 		panic("TA RAM is not secure");
2572 
2573 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2574 		panic("TA RAM pool is not empty");
2575 
2576 	/* remove previous config and init TA ddr memory pool */
2577 	tee_mm_final(&tee_mm_sec_ddr);
2578 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2579 		    TEE_MM_POOL_NO_FLAGS);
2580 }
2581