1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016, 2022 Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved. 6 */ 7 8 #include <assert.h> 9 #include <config.h> 10 #include <kernel/boot.h> 11 #include <kernel/dt.h> 12 #include <kernel/linker.h> 13 #include <kernel/panic.h> 14 #include <kernel/spinlock.h> 15 #include <kernel/tee_l2cc_mutex.h> 16 #include <kernel/tee_misc.h> 17 #include <kernel/tlb_helpers.h> 18 #include <kernel/user_mode_ctx.h> 19 #include <kernel/virtualization.h> 20 #include <libfdt.h> 21 #include <memtag.h> 22 #include <mm/core_memprot.h> 23 #include <mm/core_mmu.h> 24 #include <mm/mobj.h> 25 #include <mm/pgt_cache.h> 26 #include <mm/tee_pager.h> 27 #include <mm/vm.h> 28 #include <platform_config.h> 29 #include <string.h> 30 #include <trace.h> 31 #include <util.h> 32 33 #ifndef DEBUG_XLAT_TABLE 34 #define DEBUG_XLAT_TABLE 0 35 #endif 36 37 #define SHM_VASPACE_SIZE (1024 * 1024 * 32) 38 39 /* Physical Secure DDR pool */ 40 tee_mm_pool_t tee_mm_sec_ddr; 41 42 /* Virtual memory pool for core mappings */ 43 tee_mm_pool_t core_virt_mem_pool; 44 45 /* Virtual memory pool for shared memory mappings */ 46 tee_mm_pool_t core_virt_shm_pool; 47 48 #ifdef CFG_CORE_PHYS_RELOCATABLE 49 unsigned long core_mmu_tee_load_pa __nex_bss; 50 #else 51 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR; 52 #endif 53 54 /* 55 * These variables are initialized before .bss is cleared. To avoid 56 * resetting them when .bss is cleared we're storing them in .data instead, 57 * even if they initially are zero. 58 */ 59 60 #ifdef CFG_CORE_RESERVED_SHM 61 /* Default NSec shared memory allocated from NSec world */ 62 unsigned long default_nsec_shm_size __nex_bss; 63 unsigned long default_nsec_shm_paddr __nex_bss; 64 #endif 65 66 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS 67 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE) 68 + 1 69 #endif 70 + 1] __nex_bss; 71 72 /* Define the platform's memory layout. */ 73 struct memaccess_area { 74 paddr_t paddr; 75 size_t size; 76 }; 77 78 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } 79 80 static struct memaccess_area secure_only[] __nex_data = { 81 #ifdef CFG_CORE_PHYS_RELOCATABLE 82 MEMACCESS_AREA(0, 0), 83 #else 84 #ifdef TRUSTED_SRAM_BASE 85 MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), 86 #endif 87 MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), 88 #endif 89 }; 90 91 static struct memaccess_area nsec_shared[] __nex_data = { 92 #ifdef CFG_CORE_RESERVED_SHM 93 MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), 94 #endif 95 }; 96 97 #if defined(CFG_SECURE_DATA_PATH) 98 static const char *tz_sdp_match = "linaro,secure-heap"; 99 static struct memaccess_area sec_sdp; 100 #ifdef CFG_TEE_SDP_MEM_BASE 101 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); 102 #endif 103 #ifdef TEE_SDP_TEST_MEM_BASE 104 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); 105 #endif 106 #endif 107 108 #ifdef CFG_CORE_RESERVED_SHM 109 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); 110 #endif 111 static unsigned int mmu_spinlock; 112 113 static uint32_t mmu_lock(void) 114 { 115 return cpu_spin_lock_xsave(&mmu_spinlock); 116 } 117 118 static void mmu_unlock(uint32_t exceptions) 119 { 120 cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); 121 } 122 123 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size) 124 { 125 /* 126 * The first range is always used to cover OP-TEE core memory, but 127 * depending on configuration it may cover more than that. 128 */ 129 *base = secure_only[0].paddr; 130 *size = secure_only[0].size; 131 } 132 133 void core_mmu_set_secure_memory(paddr_t base, size_t size) 134 { 135 #ifdef CFG_CORE_PHYS_RELOCATABLE 136 static_assert(ARRAY_SIZE(secure_only) == 1); 137 #endif 138 runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)); 139 assert(!secure_only[0].size); 140 assert(base && size); 141 142 DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size); 143 secure_only[0].paddr = base; 144 secure_only[0].size = size; 145 } 146 147 void core_mmu_get_ta_range(paddr_t *base, size_t *size) 148 { 149 paddr_t b = 0; 150 size_t s = 0; 151 152 static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE)); 153 #ifdef TA_RAM_START 154 b = TA_RAM_START; 155 s = TA_RAM_SIZE; 156 #else 157 static_assert(ARRAY_SIZE(secure_only) <= 2); 158 if (ARRAY_SIZE(secure_only) == 1) { 159 vaddr_t load_offs = 0; 160 161 assert(core_mmu_tee_load_pa >= secure_only[0].paddr); 162 load_offs = core_mmu_tee_load_pa - secure_only[0].paddr; 163 164 assert(secure_only[0].size > 165 load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE); 166 b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE; 167 s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE - 168 TEE_SDP_TEST_MEM_SIZE; 169 } else { 170 assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE); 171 b = secure_only[1].paddr; 172 s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE; 173 } 174 #endif 175 if (base) 176 *base = b; 177 if (size) 178 *size = s; 179 } 180 181 static struct tee_mmap_region *get_memory_map(void) 182 { 183 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 184 struct tee_mmap_region *map = virt_get_memory_map(); 185 186 if (map) 187 return map; 188 } 189 190 return static_memory_map; 191 } 192 193 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, 194 paddr_t pa, size_t size) 195 { 196 size_t n; 197 198 for (n = 0; n < alen; n++) 199 if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) 200 return true; 201 return false; 202 } 203 204 #define pbuf_intersects(a, pa, size) \ 205 _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) 206 207 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, 208 paddr_t pa, size_t size) 209 { 210 size_t n; 211 212 for (n = 0; n < alen; n++) 213 if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) 214 return true; 215 return false; 216 } 217 218 #define pbuf_is_inside(a, pa, size) \ 219 _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) 220 221 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) 222 { 223 paddr_t end_pa = 0; 224 225 if (!map) 226 return false; 227 228 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 229 return false; 230 231 return (pa >= map->pa && end_pa <= map->pa + map->size - 1); 232 } 233 234 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) 235 { 236 if (!map) 237 return false; 238 return (va >= map->va && va <= (map->va + map->size - 1)); 239 } 240 241 /* check if target buffer fits in a core default map area */ 242 static bool pbuf_inside_map_area(unsigned long p, size_t l, 243 struct tee_mmap_region *map) 244 { 245 return core_is_buffer_inside(p, l, map->pa, map->size); 246 } 247 248 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) 249 { 250 struct tee_mmap_region *map; 251 252 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) 253 if (map->type == type) 254 return map; 255 return NULL; 256 } 257 258 static struct tee_mmap_region * 259 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) 260 { 261 struct tee_mmap_region *map; 262 263 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 264 if (map->type != type) 265 continue; 266 if (pa_is_in_map(map, pa, len)) 267 return map; 268 } 269 return NULL; 270 } 271 272 static struct tee_mmap_region *find_map_by_va(void *va) 273 { 274 struct tee_mmap_region *map = get_memory_map(); 275 unsigned long a = (unsigned long)va; 276 277 while (!core_mmap_is_end_of_table(map)) { 278 if (a >= map->va && a <= (map->va - 1 + map->size)) 279 return map; 280 map++; 281 } 282 return NULL; 283 } 284 285 static struct tee_mmap_region *find_map_by_pa(unsigned long pa) 286 { 287 struct tee_mmap_region *map = get_memory_map(); 288 289 while (!core_mmap_is_end_of_table(map)) { 290 /* Skip unmapped regions */ 291 if ((map->attr & TEE_MATTR_VALID_BLOCK) && 292 pa >= map->pa && pa <= (map->pa + map->size - 1)) 293 return map; 294 map++; 295 } 296 return NULL; 297 } 298 299 #if defined(CFG_SECURE_DATA_PATH) 300 static bool dtb_get_sdp_region(void) 301 { 302 void *fdt = NULL; 303 int node = 0; 304 int tmp_node = 0; 305 paddr_t tmp_addr = 0; 306 size_t tmp_size = 0; 307 308 if (!IS_ENABLED(CFG_EMBED_DTB)) 309 return false; 310 311 fdt = get_embedded_dt(); 312 if (!fdt) 313 panic("No DTB found"); 314 315 node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match); 316 if (node < 0) { 317 DMSG("No %s compatible node found", tz_sdp_match); 318 return false; 319 } 320 tmp_node = node; 321 while (tmp_node >= 0) { 322 tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node, 323 tz_sdp_match); 324 if (tmp_node >= 0) 325 DMSG("Ignore SDP pool node %s, supports only 1 node", 326 fdt_get_name(fdt, tmp_node, NULL)); 327 } 328 329 tmp_addr = fdt_reg_base_address(fdt, node); 330 if (tmp_addr == DT_INFO_INVALID_REG) { 331 EMSG("%s: Unable to get base addr from DT", tz_sdp_match); 332 return false; 333 } 334 335 tmp_size = fdt_reg_size(fdt, node); 336 if (tmp_size == DT_INFO_INVALID_REG_SIZE) { 337 EMSG("%s: Unable to get size of base addr from DT", 338 tz_sdp_match); 339 return false; 340 } 341 342 sec_sdp.paddr = tmp_addr; 343 sec_sdp.size = tmp_size; 344 345 return true; 346 } 347 #endif 348 349 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) 350 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, 351 const struct core_mmu_phys_mem *start, 352 const struct core_mmu_phys_mem *end) 353 { 354 const struct core_mmu_phys_mem *mem; 355 356 for (mem = start; mem < end; mem++) { 357 if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) 358 return true; 359 } 360 361 return false; 362 } 363 #endif 364 365 #ifdef CFG_CORE_DYN_SHM 366 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, 367 paddr_t pa, size_t size) 368 { 369 struct core_mmu_phys_mem *m = *mem; 370 size_t n = 0; 371 372 while (true) { 373 if (n >= *nelems) { 374 DMSG("No need to carve out %#" PRIxPA " size %#zx", 375 pa, size); 376 return; 377 } 378 if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size)) 379 break; 380 if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size)) 381 panic(); 382 n++; 383 } 384 385 if (pa == m[n].addr && size == m[n].size) { 386 /* Remove this entry */ 387 (*nelems)--; 388 memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n)); 389 m = nex_realloc(m, sizeof(*m) * *nelems); 390 if (!m) 391 panic(); 392 *mem = m; 393 } else if (pa == m[n].addr) { 394 m[n].addr += size; 395 m[n].size -= size; 396 } else if ((pa + size) == (m[n].addr + m[n].size)) { 397 m[n].size -= size; 398 } else { 399 /* Need to split the memory entry */ 400 m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); 401 if (!m) 402 panic(); 403 *mem = m; 404 memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n)); 405 (*nelems)++; 406 m[n].size = pa - m[n].addr; 407 m[n + 1].size -= size + m[n].size; 408 m[n + 1].addr = pa + size; 409 } 410 } 411 412 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, 413 size_t nelems, 414 struct tee_mmap_region *map) 415 { 416 size_t n; 417 418 for (n = 0; n < nelems; n++) { 419 if (!core_is_buffer_outside(start[n].addr, start[n].size, 420 map->pa, map->size)) { 421 EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ 422 ") overlaps map (type %d %#" PRIxPA ":%#zx)", 423 start[n].addr, start[n].size, 424 map->type, map->pa, map->size); 425 panic(); 426 } 427 } 428 } 429 430 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; 431 static size_t discovered_nsec_ddr_nelems __nex_bss; 432 433 static int cmp_pmem_by_addr(const void *a, const void *b) 434 { 435 const struct core_mmu_phys_mem *pmem_a = a; 436 const struct core_mmu_phys_mem *pmem_b = b; 437 438 return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); 439 } 440 441 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 442 size_t nelems) 443 { 444 struct core_mmu_phys_mem *m = start; 445 size_t num_elems = nelems; 446 struct tee_mmap_region *map = static_memory_map; 447 const struct core_mmu_phys_mem __maybe_unused *pmem; 448 size_t n = 0; 449 450 assert(!discovered_nsec_ddr_start); 451 assert(m && num_elems); 452 453 qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); 454 455 /* 456 * Non-secure shared memory and also secure data 457 * path memory are supposed to reside inside 458 * non-secure memory. Since NSEC_SHM and SDP_MEM 459 * are used for a specific purpose make holes for 460 * those memory in the normal non-secure memory. 461 * 462 * This has to be done since for instance QEMU 463 * isn't aware of which memory range in the 464 * non-secure memory is used for NSEC_SHM. 465 */ 466 467 #ifdef CFG_SECURE_DATA_PATH 468 if (dtb_get_sdp_region()) 469 carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size); 470 471 for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) 472 carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); 473 #endif 474 475 for (n = 0; n < ARRAY_SIZE(secure_only); n++) 476 carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr, 477 secure_only[n].size); 478 479 for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) { 480 switch (map->type) { 481 case MEM_AREA_NSEC_SHM: 482 carve_out_phys_mem(&m, &num_elems, map->pa, map->size); 483 break; 484 case MEM_AREA_EXT_DT: 485 case MEM_AREA_MANIFEST_DT: 486 case MEM_AREA_RAM_NSEC: 487 case MEM_AREA_RES_VASPACE: 488 case MEM_AREA_SHM_VASPACE: 489 case MEM_AREA_TS_VASPACE: 490 case MEM_AREA_PAGER_VASPACE: 491 break; 492 default: 493 check_phys_mem_is_outside(m, num_elems, map); 494 } 495 } 496 497 discovered_nsec_ddr_start = m; 498 discovered_nsec_ddr_nelems = num_elems; 499 500 if (!core_mmu_check_end_pa(m[num_elems - 1].addr, 501 m[num_elems - 1].size)) 502 panic(); 503 } 504 505 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, 506 const struct core_mmu_phys_mem **end) 507 { 508 if (!discovered_nsec_ddr_start) 509 return false; 510 511 *start = discovered_nsec_ddr_start; 512 *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; 513 514 return true; 515 } 516 517 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) 518 { 519 const struct core_mmu_phys_mem *start; 520 const struct core_mmu_phys_mem *end; 521 522 if (!get_discovered_nsec_ddr(&start, &end)) 523 return false; 524 525 return pbuf_is_special_mem(pbuf, len, start, end); 526 } 527 528 bool core_mmu_nsec_ddr_is_defined(void) 529 { 530 const struct core_mmu_phys_mem *start; 531 const struct core_mmu_phys_mem *end; 532 533 if (!get_discovered_nsec_ddr(&start, &end)) 534 return false; 535 536 return start != end; 537 } 538 #else 539 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) 540 { 541 return false; 542 } 543 #endif /*CFG_CORE_DYN_SHM*/ 544 545 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ 546 EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ 547 pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) 548 549 #ifdef CFG_SECURE_DATA_PATH 550 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) 551 { 552 bool is_sdp_mem = false; 553 554 if (sec_sdp.size) 555 is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr, 556 sec_sdp.size); 557 558 if (!is_sdp_mem) 559 is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, 560 phys_sdp_mem_end); 561 562 return is_sdp_mem; 563 } 564 565 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size) 566 { 567 struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED, 568 CORE_MEM_SDP_MEM); 569 570 if (!mobj) 571 panic("can't create SDP physical memory object"); 572 573 return mobj; 574 } 575 576 struct mobj **core_sdp_mem_create_mobjs(void) 577 { 578 const struct core_mmu_phys_mem *mem = NULL; 579 struct mobj **mobj_base = NULL; 580 struct mobj **mobj = NULL; 581 int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; 582 583 if (sec_sdp.size) 584 cnt++; 585 586 /* SDP mobjs table must end with a NULL entry */ 587 mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); 588 if (!mobj_base) 589 panic("Out of memory"); 590 591 mobj = mobj_base; 592 593 for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++) 594 *mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size); 595 596 if (sec_sdp.size) 597 *mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size); 598 599 return mobj_base; 600 } 601 602 #else /* CFG_SECURE_DATA_PATH */ 603 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) 604 { 605 return false; 606 } 607 608 #endif /* CFG_SECURE_DATA_PATH */ 609 610 /* Check special memories comply with registered memories */ 611 static void verify_special_mem_areas(struct tee_mmap_region *mem_map, 612 const struct core_mmu_phys_mem *start, 613 const struct core_mmu_phys_mem *end, 614 const char *area_name __maybe_unused) 615 { 616 const struct core_mmu_phys_mem *mem; 617 const struct core_mmu_phys_mem *mem2; 618 struct tee_mmap_region *mmap; 619 620 if (start == end) { 621 DMSG("No %s memory area defined", area_name); 622 return; 623 } 624 625 for (mem = start; mem < end; mem++) 626 DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", 627 area_name, mem->addr, (uint64_t)mem->addr + mem->size); 628 629 /* Check memories do not intersect each other */ 630 for (mem = start; mem + 1 < end; mem++) { 631 for (mem2 = mem + 1; mem2 < end; mem2++) { 632 if (core_is_buffer_intersect(mem2->addr, mem2->size, 633 mem->addr, mem->size)) { 634 MSG_MEM_INSTERSECT(mem2->addr, mem2->size, 635 mem->addr, mem->size); 636 panic("Special memory intersection"); 637 } 638 } 639 } 640 641 /* 642 * Check memories do not intersect any mapped memory. 643 * This is called before reserved VA space is loaded in mem_map. 644 */ 645 for (mem = start; mem < end; mem++) { 646 for (mmap = mem_map; mmap->type != MEM_AREA_END; mmap++) { 647 if (core_is_buffer_intersect(mem->addr, mem->size, 648 mmap->pa, mmap->size)) { 649 MSG_MEM_INSTERSECT(mem->addr, mem->size, 650 mmap->pa, mmap->size); 651 panic("Special memory intersection"); 652 } 653 } 654 } 655 } 656 657 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems, 658 const char *mem_name __maybe_unused, 659 enum teecore_memtypes mem_type, 660 paddr_t mem_addr, paddr_size_t mem_size, size_t *last) 661 { 662 size_t n = 0; 663 paddr_t pa; 664 paddr_size_t size; 665 666 if (!mem_size) /* Discard null size entries */ 667 return; 668 /* 669 * If some ranges of memory of the same type do overlap 670 * each others they are coalesced into one entry. To help this 671 * added entries are sorted by increasing physical. 672 * 673 * Note that it's valid to have the same physical memory as several 674 * different memory types, for instance the same device memory 675 * mapped as both secure and non-secure. This will probably not 676 * happen often in practice. 677 */ 678 DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, 679 mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size); 680 while (true) { 681 if (n >= (num_elems - 1)) { 682 EMSG("Out of entries (%zu) in memory_map", num_elems); 683 panic(); 684 } 685 if (n == *last) 686 break; 687 pa = memory_map[n].pa; 688 size = memory_map[n].size; 689 if (mem_type == memory_map[n].type && 690 ((pa <= (mem_addr + (mem_size - 1))) && 691 (mem_addr <= (pa + (size - 1))))) { 692 DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr); 693 memory_map[n].pa = MIN(pa, mem_addr); 694 memory_map[n].size = MAX(size, mem_size) + 695 (pa - memory_map[n].pa); 696 return; 697 } 698 if (mem_type < memory_map[n].type || 699 (mem_type == memory_map[n].type && mem_addr < pa)) 700 break; /* found the spot where to insert this memory */ 701 n++; 702 } 703 704 memmove(memory_map + n + 1, memory_map + n, 705 sizeof(struct tee_mmap_region) * (*last - n)); 706 (*last)++; 707 memset(memory_map + n, 0, sizeof(memory_map[0])); 708 memory_map[n].type = mem_type; 709 memory_map[n].pa = mem_addr; 710 memory_map[n].size = mem_size; 711 } 712 713 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems, 714 enum teecore_memtypes type, size_t size, size_t *last) 715 { 716 size_t n = 0; 717 718 DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); 719 while (true) { 720 if (n >= (num_elems - 1)) { 721 EMSG("Out of entries (%zu) in memory_map", num_elems); 722 panic(); 723 } 724 if (n == *last) 725 break; 726 if (type < memory_map[n].type) 727 break; 728 n++; 729 } 730 731 memmove(memory_map + n + 1, memory_map + n, 732 sizeof(struct tee_mmap_region) * (*last - n)); 733 (*last)++; 734 memset(memory_map + n, 0, sizeof(memory_map[0])); 735 memory_map[n].type = type; 736 memory_map[n].size = size; 737 } 738 739 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) 740 { 741 const uint32_t attr = TEE_MATTR_VALID_BLOCK; 742 const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED << 743 TEE_MATTR_MEM_TYPE_SHIFT; 744 const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << 745 TEE_MATTR_MEM_TYPE_SHIFT; 746 const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << 747 TEE_MATTR_MEM_TYPE_SHIFT; 748 749 switch (t) { 750 case MEM_AREA_TEE_RAM: 751 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged; 752 case MEM_AREA_TEE_RAM_RX: 753 case MEM_AREA_INIT_RAM_RX: 754 case MEM_AREA_IDENTITY_MAP_RX: 755 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged; 756 case MEM_AREA_TEE_RAM_RO: 757 case MEM_AREA_INIT_RAM_RO: 758 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged; 759 case MEM_AREA_TEE_RAM_RW: 760 case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ 761 case MEM_AREA_NEX_RAM_RW: 762 case MEM_AREA_TEE_ASAN: 763 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 764 case MEM_AREA_TEE_COHERENT: 765 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; 766 case MEM_AREA_TA_RAM: 767 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 768 case MEM_AREA_NSEC_SHM: 769 case MEM_AREA_NEX_NSEC_SHM: 770 return attr | TEE_MATTR_PRW | cached; 771 case MEM_AREA_MANIFEST_DT: 772 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 773 case MEM_AREA_TRANSFER_LIST: 774 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 775 case MEM_AREA_EXT_DT: 776 /* 777 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device 778 * tree as secure non-cached memory, otherwise, fall back to 779 * non-secure mapping. 780 */ 781 if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE)) 782 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | 783 noncache; 784 fallthrough; 785 case MEM_AREA_IO_NSEC: 786 return attr | TEE_MATTR_PRW | noncache; 787 case MEM_AREA_IO_SEC: 788 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; 789 case MEM_AREA_RAM_NSEC: 790 return attr | TEE_MATTR_PRW | cached; 791 case MEM_AREA_RAM_SEC: 792 case MEM_AREA_SEC_RAM_OVERALL: 793 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 794 case MEM_AREA_ROM_SEC: 795 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 796 case MEM_AREA_RES_VASPACE: 797 case MEM_AREA_SHM_VASPACE: 798 return 0; 799 case MEM_AREA_PAGER_VASPACE: 800 return TEE_MATTR_SECURE; 801 default: 802 panic("invalid type"); 803 } 804 } 805 806 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) 807 { 808 switch (mm->type) { 809 case MEM_AREA_TEE_RAM: 810 case MEM_AREA_TEE_RAM_RX: 811 case MEM_AREA_TEE_RAM_RO: 812 case MEM_AREA_TEE_RAM_RW: 813 case MEM_AREA_INIT_RAM_RX: 814 case MEM_AREA_INIT_RAM_RO: 815 case MEM_AREA_NEX_RAM_RW: 816 case MEM_AREA_NEX_RAM_RO: 817 case MEM_AREA_TEE_ASAN: 818 return true; 819 default: 820 return false; 821 } 822 } 823 824 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) 825 { 826 return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); 827 } 828 829 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) 830 { 831 return mm->region_size == CORE_MMU_PGDIR_SIZE; 832 } 833 834 static int cmp_mmap_by_lower_va(const void *a, const void *b) 835 { 836 const struct tee_mmap_region *mm_a = a; 837 const struct tee_mmap_region *mm_b = b; 838 839 return CMP_TRILEAN(mm_a->va, mm_b->va); 840 } 841 842 static void dump_mmap_table(struct tee_mmap_region *memory_map) 843 { 844 struct tee_mmap_region *map; 845 846 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 847 vaddr_t __maybe_unused vstart; 848 849 vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1)); 850 DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA 851 " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", 852 teecore_memtype_name(map->type), vstart, 853 vstart + map->size - 1, map->pa, 854 (paddr_t)(map->pa + map->size - 1), map->size, 855 map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); 856 } 857 } 858 859 #if DEBUG_XLAT_TABLE 860 861 static void dump_xlat_table(vaddr_t va, unsigned int level) 862 { 863 struct core_mmu_table_info tbl_info; 864 unsigned int idx = 0; 865 paddr_t pa; 866 uint32_t attr; 867 868 core_mmu_find_table(NULL, va, level, &tbl_info); 869 va = tbl_info.va_base; 870 for (idx = 0; idx < tbl_info.num_entries; idx++) { 871 core_mmu_get_entry(&tbl_info, idx, &pa, &attr); 872 if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { 873 const char *security_bit = ""; 874 875 if (core_mmu_entry_have_security_bit(attr)) { 876 if (attr & TEE_MATTR_SECURE) 877 security_bit = "S"; 878 else 879 security_bit = "NS"; 880 } 881 882 if (attr & TEE_MATTR_TABLE) { 883 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 884 " TBL:0x%010" PRIxPA " %s", 885 level * 2, "", level, va, pa, 886 security_bit); 887 dump_xlat_table(va, level + 1); 888 } else if (attr) { 889 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 890 " PA:0x%010" PRIxPA " %s-%s-%s-%s", 891 level * 2, "", level, va, pa, 892 mattr_is_cached(attr) ? "MEM" : 893 "DEV", 894 attr & TEE_MATTR_PW ? "RW" : "RO", 895 attr & TEE_MATTR_PX ? "X " : "XN", 896 security_bit); 897 } else { 898 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 899 " INVALID\n", 900 level * 2, "", level, va); 901 } 902 } 903 va += BIT64(tbl_info.shift); 904 } 905 } 906 907 #else 908 909 static void dump_xlat_table(vaddr_t va __unused, int level __unused) 910 { 911 } 912 913 #endif 914 915 /* 916 * Reserves virtual memory space for pager usage. 917 * 918 * From the start of the first memory used by the link script + 919 * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty 920 * mapping for pager usage. This adds translation tables as needed for the 921 * pager to operate. 922 */ 923 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems, 924 size_t *last) 925 { 926 paddr_t begin = 0; 927 paddr_t end = 0; 928 size_t size = 0; 929 size_t pos = 0; 930 size_t n = 0; 931 932 if (*last >= (num_elems - 1)) { 933 EMSG("Out of entries (%zu) in memory map", num_elems); 934 panic(); 935 } 936 937 for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) { 938 if (map_is_tee_ram(mmap + n)) { 939 if (!begin) 940 begin = mmap[n].pa; 941 pos = n + 1; 942 } 943 } 944 945 end = mmap[pos - 1].pa + mmap[pos - 1].size; 946 assert(end - begin < TEE_RAM_VA_SIZE); 947 size = TEE_RAM_VA_SIZE - (end - begin); 948 949 assert(pos <= *last); 950 memmove(mmap + pos + 1, mmap + pos, 951 sizeof(struct tee_mmap_region) * (*last - pos)); 952 (*last)++; 953 memset(mmap + pos, 0, sizeof(mmap[0])); 954 mmap[pos].type = MEM_AREA_PAGER_VASPACE; 955 mmap[pos].va = 0; 956 mmap[pos].size = size; 957 mmap[pos].region_size = SMALL_PAGE_SIZE; 958 mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE); 959 } 960 961 static void check_sec_nsec_mem_config(void) 962 { 963 size_t n = 0; 964 965 for (n = 0; n < ARRAY_SIZE(secure_only); n++) { 966 if (pbuf_intersects(nsec_shared, secure_only[n].paddr, 967 secure_only[n].size)) 968 panic("Invalid memory access config: sec/nsec"); 969 } 970 } 971 972 static void collect_device_mem_ranges(struct tee_mmap_region *memory_map, 973 size_t num_elems, size_t *last) 974 { 975 const char *compatible = "arm,ffa-manifest-device-regions"; 976 void *fdt = get_manifest_dt(); 977 const char *name = NULL; 978 uint64_t page_count = 0; 979 uint64_t base = 0; 980 int subnode = 0; 981 int node = 0; 982 983 assert(fdt); 984 985 node = fdt_node_offset_by_compatible(fdt, 0, compatible); 986 if (node < 0) 987 return; 988 989 fdt_for_each_subnode(subnode, fdt, node) { 990 name = fdt_get_name(fdt, subnode, NULL); 991 if (!name) 992 continue; 993 994 if (dt_getprop_as_number(fdt, subnode, "base-address", 995 &base)) { 996 EMSG("Mandatory field is missing: base-address"); 997 continue; 998 } 999 1000 if (base & SMALL_PAGE_MASK) { 1001 EMSG("base-address is not page aligned"); 1002 continue; 1003 } 1004 1005 if (dt_getprop_as_number(fdt, subnode, "pages-count", 1006 &page_count)) { 1007 EMSG("Mandatory field is missing: pages-count"); 1008 continue; 1009 } 1010 1011 add_phys_mem(memory_map, num_elems, name, MEM_AREA_IO_SEC, 1012 base, page_count * SMALL_PAGE_SIZE, last); 1013 } 1014 } 1015 1016 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map, 1017 size_t num_elems) 1018 { 1019 const struct core_mmu_phys_mem *mem = NULL; 1020 vaddr_t ram_start = secure_only[0].paddr; 1021 size_t last = 0; 1022 1023 1024 #define ADD_PHYS_MEM(_type, _addr, _size) \ 1025 add_phys_mem(memory_map, num_elems, #_addr, (_type), \ 1026 (_addr), (_size), &last) 1027 1028 if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) { 1029 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start, 1030 VCORE_UNPG_RX_PA - ram_start); 1031 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, 1032 VCORE_UNPG_RX_SZ); 1033 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, 1034 VCORE_UNPG_RO_SZ); 1035 1036 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1037 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, 1038 VCORE_UNPG_RW_SZ); 1039 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, 1040 VCORE_NEX_RW_SZ); 1041 } else { 1042 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, 1043 VCORE_UNPG_RW_SZ); 1044 } 1045 1046 if (IS_ENABLED(CFG_WITH_PAGER)) { 1047 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, 1048 VCORE_INIT_RX_SZ); 1049 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, 1050 VCORE_INIT_RO_SZ); 1051 } 1052 } else { 1053 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); 1054 } 1055 1056 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1057 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE, 1058 TRUSTED_DRAM_SIZE); 1059 } else { 1060 /* 1061 * Every guest will have own TA RAM if virtualization 1062 * support is enabled. 1063 */ 1064 paddr_t ta_base = 0; 1065 size_t ta_size = 0; 1066 1067 core_mmu_get_ta_range(&ta_base, &ta_size); 1068 ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size); 1069 } 1070 1071 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) && 1072 IS_ENABLED(CFG_WITH_PAGER)) { 1073 /* 1074 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is 1075 * disabled. 1076 */ 1077 ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); 1078 } 1079 1080 #undef ADD_PHYS_MEM 1081 1082 /* Collect device memory info from SP manifest */ 1083 if (IS_ENABLED(CFG_CORE_SEL2_SPMC)) 1084 collect_device_mem_ranges(memory_map, num_elems, &last); 1085 1086 for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { 1087 /* Only unmapped virtual range may have a null phys addr */ 1088 assert(mem->addr || !core_mmu_type_to_attr(mem->type)); 1089 1090 add_phys_mem(memory_map, num_elems, mem->name, mem->type, 1091 mem->addr, mem->size, &last); 1092 } 1093 1094 if (IS_ENABLED(CFG_SECURE_DATA_PATH)) 1095 verify_special_mem_areas(memory_map, phys_sdp_mem_begin, 1096 phys_sdp_mem_end, "SDP"); 1097 1098 add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE, 1099 CFG_RESERVED_VASPACE_SIZE, &last); 1100 1101 add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE, 1102 SHM_VASPACE_SIZE, &last); 1103 1104 memory_map[last].type = MEM_AREA_END; 1105 1106 return last; 1107 } 1108 1109 static void assign_mem_granularity(struct tee_mmap_region *memory_map) 1110 { 1111 struct tee_mmap_region *map = NULL; 1112 1113 /* 1114 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses 1115 * SMALL_PAGE_SIZE. 1116 */ 1117 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1118 paddr_t mask = map->pa | map->size; 1119 1120 if (!(mask & CORE_MMU_PGDIR_MASK)) 1121 map->region_size = CORE_MMU_PGDIR_SIZE; 1122 else if (!(mask & SMALL_PAGE_MASK)) 1123 map->region_size = SMALL_PAGE_SIZE; 1124 else 1125 panic("Impossible memory alignment"); 1126 1127 if (map_is_tee_ram(map)) 1128 map->region_size = SMALL_PAGE_SIZE; 1129 } 1130 } 1131 1132 static bool place_tee_ram_at_top(paddr_t paddr) 1133 { 1134 return paddr > BIT64(core_mmu_get_va_width()) / 2; 1135 } 1136 1137 /* 1138 * MMU arch driver shall override this function if it helps 1139 * optimizing the memory footprint of the address translation tables. 1140 */ 1141 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr) 1142 { 1143 return place_tee_ram_at_top(paddr); 1144 } 1145 1146 static bool assign_mem_va_dir(vaddr_t tee_ram_va, 1147 struct tee_mmap_region *memory_map, 1148 bool tee_ram_at_top) 1149 { 1150 struct tee_mmap_region *map = NULL; 1151 vaddr_t va = 0; 1152 bool va_is_secure = true; 1153 1154 /* 1155 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y. 1156 * 0 is by design an invalid va, so return false directly. 1157 */ 1158 if (!tee_ram_va) 1159 return false; 1160 1161 /* Clear eventual previous assignments */ 1162 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 1163 map->va = 0; 1164 1165 /* 1166 * TEE RAM regions are always aligned with region_size. 1167 * 1168 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here 1169 * since it handles virtual memory which covers the part of the ELF 1170 * that cannot fit directly into memory. 1171 */ 1172 va = tee_ram_va; 1173 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1174 if (map_is_tee_ram(map) || 1175 map->type == MEM_AREA_PAGER_VASPACE) { 1176 assert(!(va & (map->region_size - 1))); 1177 assert(!(map->size & (map->region_size - 1))); 1178 map->va = va; 1179 if (ADD_OVERFLOW(va, map->size, &va)) 1180 return false; 1181 if (va >= BIT64(core_mmu_get_va_width())) 1182 return false; 1183 } 1184 } 1185 1186 if (tee_ram_at_top) { 1187 /* 1188 * Map non-tee ram regions at addresses lower than the tee 1189 * ram region. 1190 */ 1191 va = tee_ram_va; 1192 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1193 map->attr = core_mmu_type_to_attr(map->type); 1194 if (map->va) 1195 continue; 1196 1197 if (!IS_ENABLED(CFG_WITH_LPAE) && 1198 va_is_secure != map_is_secure(map)) { 1199 va_is_secure = !va_is_secure; 1200 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1201 } 1202 1203 if (SUB_OVERFLOW(va, map->size, &va)) 1204 return false; 1205 va = ROUNDDOWN(va, map->region_size); 1206 /* 1207 * Make sure that va is aligned with pa for 1208 * efficient pgdir mapping. Basically pa & 1209 * pgdir_mask should be == va & pgdir_mask 1210 */ 1211 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1212 if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) 1213 return false; 1214 va += (map->pa - va) & CORE_MMU_PGDIR_MASK; 1215 } 1216 map->va = va; 1217 } 1218 } else { 1219 /* 1220 * Map non-tee ram regions at addresses higher than the tee 1221 * ram region. 1222 */ 1223 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1224 map->attr = core_mmu_type_to_attr(map->type); 1225 if (map->va) 1226 continue; 1227 1228 if (!IS_ENABLED(CFG_WITH_LPAE) && 1229 va_is_secure != map_is_secure(map)) { 1230 va_is_secure = !va_is_secure; 1231 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1232 &va)) 1233 return false; 1234 } 1235 1236 if (ROUNDUP_OVERFLOW(va, map->region_size, &va)) 1237 return false; 1238 /* 1239 * Make sure that va is aligned with pa for 1240 * efficient pgdir mapping. Basically pa & 1241 * pgdir_mask should be == va & pgdir_mask 1242 */ 1243 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1244 vaddr_t offs = (map->pa - va) & 1245 CORE_MMU_PGDIR_MASK; 1246 1247 if (ADD_OVERFLOW(va, offs, &va)) 1248 return false; 1249 } 1250 1251 map->va = va; 1252 if (ADD_OVERFLOW(va, map->size, &va)) 1253 return false; 1254 if (va >= BIT64(core_mmu_get_va_width())) 1255 return false; 1256 } 1257 } 1258 1259 return true; 1260 } 1261 1262 static bool assign_mem_va(vaddr_t tee_ram_va, 1263 struct tee_mmap_region *memory_map) 1264 { 1265 bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va); 1266 1267 /* 1268 * Check that we're not overlapping with the user VA range. 1269 */ 1270 if (IS_ENABLED(CFG_WITH_LPAE)) { 1271 /* 1272 * User VA range is supposed to be defined after these 1273 * mappings have been established. 1274 */ 1275 assert(!core_mmu_user_va_range_is_defined()); 1276 } else { 1277 vaddr_t user_va_base = 0; 1278 size_t user_va_size = 0; 1279 1280 assert(core_mmu_user_va_range_is_defined()); 1281 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 1282 if (tee_ram_va < (user_va_base + user_va_size)) 1283 return false; 1284 } 1285 1286 if (IS_ENABLED(CFG_WITH_PAGER)) { 1287 bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va); 1288 1289 /* Try whole mapping covered by a single base xlat entry */ 1290 if (prefered_dir != tee_ram_at_top && 1291 assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir)) 1292 return true; 1293 } 1294 1295 return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top); 1296 } 1297 1298 static int cmp_init_mem_map(const void *a, const void *b) 1299 { 1300 const struct tee_mmap_region *mm_a = a; 1301 const struct tee_mmap_region *mm_b = b; 1302 int rc = 0; 1303 1304 rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); 1305 if (!rc) 1306 rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); 1307 /* 1308 * 32bit MMU descriptors cannot mix secure and non-secure mapping in 1309 * the same level2 table. Hence sort secure mapping from non-secure 1310 * mapping. 1311 */ 1312 if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) 1313 rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); 1314 1315 return rc; 1316 } 1317 1318 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map, 1319 size_t num_elems, size_t *last, 1320 vaddr_t id_map_start, vaddr_t id_map_end) 1321 { 1322 struct tee_mmap_region *map = NULL; 1323 vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); 1324 vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); 1325 size_t len = end - start; 1326 1327 if (*last >= num_elems - 1) { 1328 EMSG("Out of entries (%zu) in memory map", num_elems); 1329 panic(); 1330 } 1331 1332 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 1333 if (core_is_buffer_intersect(map->va, map->size, start, len)) 1334 return false; 1335 1336 *map = (struct tee_mmap_region){ 1337 .type = MEM_AREA_IDENTITY_MAP_RX, 1338 /* 1339 * Could use CORE_MMU_PGDIR_SIZE to potentially save a 1340 * translation table, at the increased risk of clashes with 1341 * the rest of the memory map. 1342 */ 1343 .region_size = SMALL_PAGE_SIZE, 1344 .pa = start, 1345 .va = start, 1346 .size = len, 1347 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1348 }; 1349 1350 (*last)++; 1351 1352 return true; 1353 } 1354 1355 static unsigned long init_mem_map(struct tee_mmap_region *memory_map, 1356 size_t num_elems, unsigned long seed) 1357 { 1358 /* 1359 * @id_map_start and @id_map_end describes a physical memory range 1360 * that must be mapped Read-Only eXecutable at identical virtual 1361 * addresses. 1362 */ 1363 vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; 1364 vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; 1365 vaddr_t start_addr = secure_only[0].paddr; 1366 unsigned long offs = 0; 1367 size_t last = 0; 1368 1369 last = collect_mem_ranges(memory_map, num_elems); 1370 assign_mem_granularity(memory_map); 1371 1372 /* 1373 * To ease mapping and lower use of xlat tables, sort mapping 1374 * description moving small-page regions after the pgdir regions. 1375 */ 1376 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1377 cmp_init_mem_map); 1378 1379 if (IS_ENABLED(CFG_WITH_PAGER)) 1380 add_pager_vaspace(memory_map, num_elems, &last); 1381 1382 if (IS_ENABLED(CFG_CORE_ASLR) && seed) { 1383 vaddr_t base_addr = start_addr + seed; 1384 const unsigned int va_width = core_mmu_get_va_width(); 1385 const vaddr_t va_mask = GENMASK_64(va_width - 1, 1386 SMALL_PAGE_SHIFT); 1387 vaddr_t ba = base_addr; 1388 size_t n = 0; 1389 1390 for (n = 0; n < 3; n++) { 1391 if (n) 1392 ba = base_addr ^ BIT64(va_width - n); 1393 ba &= va_mask; 1394 if (assign_mem_va(ba, memory_map) && 1395 mem_map_add_id_map(memory_map, num_elems, &last, 1396 id_map_start, id_map_end)) { 1397 offs = ba - start_addr; 1398 DMSG("Mapping core at %#"PRIxVA" offs %#lx", 1399 ba, offs); 1400 goto out; 1401 } else { 1402 DMSG("Failed to map core at %#"PRIxVA, ba); 1403 } 1404 } 1405 EMSG("Failed to map core with seed %#lx", seed); 1406 } 1407 1408 if (!assign_mem_va(start_addr, memory_map)) 1409 panic(); 1410 1411 out: 1412 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1413 cmp_mmap_by_lower_va); 1414 1415 dump_mmap_table(memory_map); 1416 1417 return offs; 1418 } 1419 1420 static void check_mem_map(struct tee_mmap_region *map) 1421 { 1422 struct tee_mmap_region *m = NULL; 1423 1424 for (m = map; !core_mmap_is_end_of_table(m); m++) { 1425 switch (m->type) { 1426 case MEM_AREA_TEE_RAM: 1427 case MEM_AREA_TEE_RAM_RX: 1428 case MEM_AREA_TEE_RAM_RO: 1429 case MEM_AREA_TEE_RAM_RW: 1430 case MEM_AREA_INIT_RAM_RX: 1431 case MEM_AREA_INIT_RAM_RO: 1432 case MEM_AREA_NEX_RAM_RW: 1433 case MEM_AREA_NEX_RAM_RO: 1434 case MEM_AREA_IDENTITY_MAP_RX: 1435 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1436 panic("TEE_RAM can't fit in secure_only"); 1437 break; 1438 case MEM_AREA_TA_RAM: 1439 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1440 panic("TA_RAM can't fit in secure_only"); 1441 break; 1442 case MEM_AREA_NSEC_SHM: 1443 if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) 1444 panic("NS_SHM can't fit in nsec_shared"); 1445 break; 1446 case MEM_AREA_SEC_RAM_OVERALL: 1447 case MEM_AREA_TEE_COHERENT: 1448 case MEM_AREA_TEE_ASAN: 1449 case MEM_AREA_IO_SEC: 1450 case MEM_AREA_IO_NSEC: 1451 case MEM_AREA_EXT_DT: 1452 case MEM_AREA_MANIFEST_DT: 1453 case MEM_AREA_TRANSFER_LIST: 1454 case MEM_AREA_RAM_SEC: 1455 case MEM_AREA_RAM_NSEC: 1456 case MEM_AREA_ROM_SEC: 1457 case MEM_AREA_RES_VASPACE: 1458 case MEM_AREA_SHM_VASPACE: 1459 case MEM_AREA_PAGER_VASPACE: 1460 break; 1461 default: 1462 EMSG("Uhandled memtype %d", m->type); 1463 panic(); 1464 } 1465 } 1466 } 1467 1468 static struct tee_mmap_region *get_tmp_mmap(void) 1469 { 1470 struct tee_mmap_region *tmp_mmap = (void *)__heap1_start; 1471 1472 #ifdef CFG_WITH_PAGER 1473 if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map)) 1474 tmp_mmap = (void *)__heap2_start; 1475 #endif 1476 1477 memset(tmp_mmap, 0, sizeof(static_memory_map)); 1478 1479 return tmp_mmap; 1480 } 1481 1482 /* 1483 * core_init_mmu_map() - init tee core default memory mapping 1484 * 1485 * This routine sets the static default TEE core mapping. If @seed is > 0 1486 * and configured with CFG_CORE_ASLR it will map tee core at a location 1487 * based on the seed and return the offset from the link address. 1488 * 1489 * If an error happened: core_init_mmu_map is expected to panic. 1490 * 1491 * Note: this function is weak just to make it possible to exclude it from 1492 * the unpaged area. 1493 */ 1494 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) 1495 { 1496 #ifndef CFG_NS_VIRTUALIZATION 1497 vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); 1498 #else 1499 vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, 1500 SMALL_PAGE_SIZE); 1501 #endif 1502 vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; 1503 struct tee_mmap_region *tmp_mmap = get_tmp_mmap(); 1504 unsigned long offs = 0; 1505 1506 if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) && 1507 (core_mmu_tee_load_pa & SMALL_PAGE_MASK)) 1508 panic("OP-TEE load address is not page aligned"); 1509 1510 check_sec_nsec_mem_config(); 1511 1512 /* 1513 * Add a entry covering the translation tables which will be 1514 * involved in some virt_to_phys() and phys_to_virt() conversions. 1515 */ 1516 static_memory_map[0] = (struct tee_mmap_region){ 1517 .type = MEM_AREA_TEE_RAM, 1518 .region_size = SMALL_PAGE_SIZE, 1519 .pa = start, 1520 .va = start, 1521 .size = len, 1522 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1523 }; 1524 1525 COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13); 1526 offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed); 1527 1528 check_mem_map(tmp_mmap); 1529 core_init_mmu(tmp_mmap); 1530 dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); 1531 core_init_mmu_regs(cfg); 1532 cfg->map_offset = offs; 1533 memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map)); 1534 } 1535 1536 bool core_mmu_mattr_is_ok(uint32_t mattr) 1537 { 1538 /* 1539 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and 1540 * core_mmu_v7.c:mattr_to_texcb 1541 */ 1542 1543 switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { 1544 case TEE_MATTR_MEM_TYPE_DEV: 1545 case TEE_MATTR_MEM_TYPE_STRONGLY_O: 1546 case TEE_MATTR_MEM_TYPE_CACHED: 1547 case TEE_MATTR_MEM_TYPE_TAGGED: 1548 return true; 1549 default: 1550 return false; 1551 } 1552 } 1553 1554 /* 1555 * test attributes of target physical buffer 1556 * 1557 * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). 1558 * 1559 */ 1560 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) 1561 { 1562 paddr_t ta_base = 0; 1563 size_t ta_size = 0; 1564 struct tee_mmap_region *map; 1565 1566 /* Empty buffers complies with anything */ 1567 if (len == 0) 1568 return true; 1569 1570 switch (attr) { 1571 case CORE_MEM_SEC: 1572 return pbuf_is_inside(secure_only, pbuf, len); 1573 case CORE_MEM_NON_SEC: 1574 return pbuf_is_inside(nsec_shared, pbuf, len) || 1575 pbuf_is_nsec_ddr(pbuf, len); 1576 case CORE_MEM_TEE_RAM: 1577 return core_is_buffer_inside(pbuf, len, TEE_RAM_START, 1578 TEE_RAM_PH_SIZE); 1579 case CORE_MEM_TA_RAM: 1580 core_mmu_get_ta_range(&ta_base, &ta_size); 1581 return core_is_buffer_inside(pbuf, len, ta_base, ta_size); 1582 #ifdef CFG_CORE_RESERVED_SHM 1583 case CORE_MEM_NSEC_SHM: 1584 return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, 1585 TEE_SHMEM_SIZE); 1586 #endif 1587 case CORE_MEM_SDP_MEM: 1588 return pbuf_is_sdp_mem(pbuf, len); 1589 case CORE_MEM_CACHED: 1590 map = find_map_by_pa(pbuf); 1591 if (!map || !pbuf_inside_map_area(pbuf, len, map)) 1592 return false; 1593 return mattr_is_cached(map->attr); 1594 default: 1595 return false; 1596 } 1597 } 1598 1599 /* test attributes of target virtual buffer (in core mapping) */ 1600 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) 1601 { 1602 paddr_t p; 1603 1604 /* Empty buffers complies with anything */ 1605 if (len == 0) 1606 return true; 1607 1608 p = virt_to_phys((void *)vbuf); 1609 if (!p) 1610 return false; 1611 1612 return core_pbuf_is(attr, p, len); 1613 } 1614 1615 /* core_va2pa - teecore exported service */ 1616 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) 1617 { 1618 struct tee_mmap_region *map; 1619 1620 map = find_map_by_va(va); 1621 if (!va_is_in_map(map, (vaddr_t)va)) 1622 return -1; 1623 1624 /* 1625 * We can calculate PA for static map. Virtual address ranges 1626 * reserved to core dynamic mapping return a 'match' (return 0;) 1627 * together with an invalid null physical address. 1628 */ 1629 if (map->pa) 1630 *pa = map->pa + (vaddr_t)va - map->va; 1631 else 1632 *pa = 0; 1633 1634 return 0; 1635 } 1636 1637 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) 1638 { 1639 if (!pa_is_in_map(map, pa, len)) 1640 return NULL; 1641 1642 return (void *)(vaddr_t)(map->va + pa - map->pa); 1643 } 1644 1645 /* 1646 * teecore gets some memory area definitions 1647 */ 1648 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s, 1649 vaddr_t *e) 1650 { 1651 struct tee_mmap_region *map = find_map_by_type(type); 1652 1653 if (map) { 1654 *s = map->va; 1655 *e = map->va + map->size; 1656 } else { 1657 *s = 0; 1658 *e = 0; 1659 } 1660 } 1661 1662 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) 1663 { 1664 struct tee_mmap_region *map = find_map_by_pa(pa); 1665 1666 if (!map) 1667 return MEM_AREA_MAXTYPE; 1668 return map->type; 1669 } 1670 1671 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1672 paddr_t pa, uint32_t attr) 1673 { 1674 assert(idx < tbl_info->num_entries); 1675 core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, 1676 idx, pa, attr); 1677 } 1678 1679 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1680 paddr_t *pa, uint32_t *attr) 1681 { 1682 assert(idx < tbl_info->num_entries); 1683 core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, 1684 idx, pa, attr); 1685 } 1686 1687 static void clear_region(struct core_mmu_table_info *tbl_info, 1688 struct tee_mmap_region *region) 1689 { 1690 unsigned int end = 0; 1691 unsigned int idx = 0; 1692 1693 /* va, len and pa should be block aligned */ 1694 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1695 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1696 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1697 1698 idx = core_mmu_va2idx(tbl_info, region->va); 1699 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1700 1701 while (idx < end) { 1702 core_mmu_set_entry(tbl_info, idx, 0, 0); 1703 idx++; 1704 } 1705 } 1706 1707 static void set_region(struct core_mmu_table_info *tbl_info, 1708 struct tee_mmap_region *region) 1709 { 1710 unsigned int end; 1711 unsigned int idx; 1712 paddr_t pa; 1713 1714 /* va, len and pa should be block aligned */ 1715 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1716 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1717 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1718 1719 idx = core_mmu_va2idx(tbl_info, region->va); 1720 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1721 pa = region->pa; 1722 1723 while (idx < end) { 1724 core_mmu_set_entry(tbl_info, idx, pa, region->attr); 1725 idx++; 1726 pa += BIT64(tbl_info->shift); 1727 } 1728 } 1729 1730 static void set_pg_region(struct core_mmu_table_info *dir_info, 1731 struct vm_region *region, struct pgt **pgt, 1732 struct core_mmu_table_info *pg_info) 1733 { 1734 struct tee_mmap_region r = { 1735 .va = region->va, 1736 .size = region->size, 1737 .attr = region->attr, 1738 }; 1739 vaddr_t end = r.va + r.size; 1740 uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; 1741 1742 while (r.va < end) { 1743 if (!pg_info->table || 1744 r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { 1745 /* 1746 * We're assigning a new translation table. 1747 */ 1748 unsigned int idx; 1749 1750 /* Virtual addresses must grow */ 1751 assert(r.va > pg_info->va_base); 1752 1753 idx = core_mmu_va2idx(dir_info, r.va); 1754 pg_info->va_base = core_mmu_idx2va(dir_info, idx); 1755 1756 /* 1757 * Advance pgt to va_base, note that we may need to 1758 * skip multiple page tables if there are large 1759 * holes in the vm map. 1760 */ 1761 while ((*pgt)->vabase < pg_info->va_base) { 1762 *pgt = SLIST_NEXT(*pgt, link); 1763 /* We should have allocated enough */ 1764 assert(*pgt); 1765 } 1766 assert((*pgt)->vabase == pg_info->va_base); 1767 pg_info->table = (*pgt)->tbl; 1768 1769 core_mmu_set_entry(dir_info, idx, 1770 virt_to_phys(pg_info->table), 1771 pgt_attr); 1772 } 1773 1774 r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), 1775 end - r.va); 1776 1777 if (!(*pgt)->populated && !mobj_is_paged(region->mobj)) { 1778 size_t granule = BIT(pg_info->shift); 1779 size_t offset = r.va - region->va + region->offset; 1780 1781 r.size = MIN(r.size, 1782 mobj_get_phys_granule(region->mobj)); 1783 r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); 1784 1785 if (mobj_get_pa(region->mobj, offset, granule, 1786 &r.pa) != TEE_SUCCESS) 1787 panic("Failed to get PA of unpaged mobj"); 1788 set_region(pg_info, &r); 1789 } 1790 r.va += r.size; 1791 } 1792 } 1793 1794 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, 1795 size_t size_left, paddr_t block_size, 1796 struct tee_mmap_region *mm __maybe_unused) 1797 { 1798 /* VA and PA are aligned to block size at current level */ 1799 if ((vaddr | paddr) & (block_size - 1)) 1800 return false; 1801 1802 /* Remainder fits into block at current level */ 1803 if (size_left < block_size) 1804 return false; 1805 1806 #ifdef CFG_WITH_PAGER 1807 /* 1808 * If pager is enabled, we need to map TEE RAM and the whole pager 1809 * regions with small pages only 1810 */ 1811 if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) && 1812 block_size != SMALL_PAGE_SIZE) 1813 return false; 1814 #endif 1815 1816 return true; 1817 } 1818 1819 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) 1820 { 1821 struct core_mmu_table_info tbl_info; 1822 unsigned int idx; 1823 vaddr_t vaddr = mm->va; 1824 paddr_t paddr = mm->pa; 1825 ssize_t size_left = mm->size; 1826 unsigned int level; 1827 bool table_found; 1828 uint32_t old_attr; 1829 1830 assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); 1831 1832 while (size_left > 0) { 1833 level = CORE_MMU_BASE_TABLE_LEVEL; 1834 1835 while (true) { 1836 paddr_t block_size = 0; 1837 1838 assert(core_mmu_level_in_range(level)); 1839 1840 table_found = core_mmu_find_table(prtn, vaddr, level, 1841 &tbl_info); 1842 if (!table_found) 1843 panic("can't find table for mapping"); 1844 1845 block_size = BIT64(tbl_info.shift); 1846 1847 idx = core_mmu_va2idx(&tbl_info, vaddr); 1848 if (!can_map_at_level(paddr, vaddr, size_left, 1849 block_size, mm)) { 1850 bool secure = mm->attr & TEE_MATTR_SECURE; 1851 1852 /* 1853 * This part of the region can't be mapped at 1854 * this level. Need to go deeper. 1855 */ 1856 if (!core_mmu_entry_to_finer_grained(&tbl_info, 1857 idx, 1858 secure)) 1859 panic("Can't divide MMU entry"); 1860 level = tbl_info.next_level; 1861 continue; 1862 } 1863 1864 /* We can map part of the region at current level */ 1865 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1866 if (old_attr) 1867 panic("Page is already mapped"); 1868 1869 core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr); 1870 paddr += block_size; 1871 vaddr += block_size; 1872 size_left -= block_size; 1873 1874 break; 1875 } 1876 } 1877 } 1878 1879 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 1880 enum teecore_memtypes memtype) 1881 { 1882 TEE_Result ret; 1883 struct core_mmu_table_info tbl_info; 1884 struct tee_mmap_region *mm; 1885 unsigned int idx; 1886 uint32_t old_attr; 1887 uint32_t exceptions; 1888 vaddr_t vaddr = vstart; 1889 size_t i; 1890 bool secure; 1891 1892 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1893 1894 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1895 1896 if (vaddr & SMALL_PAGE_MASK) 1897 return TEE_ERROR_BAD_PARAMETERS; 1898 1899 exceptions = mmu_lock(); 1900 1901 mm = find_map_by_va((void *)vaddr); 1902 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1903 panic("VA does not belong to any known mm region"); 1904 1905 if (!core_mmu_is_dynamic_vaspace(mm)) 1906 panic("Trying to map into static region"); 1907 1908 for (i = 0; i < num_pages; i++) { 1909 if (pages[i] & SMALL_PAGE_MASK) { 1910 ret = TEE_ERROR_BAD_PARAMETERS; 1911 goto err; 1912 } 1913 1914 while (true) { 1915 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1916 &tbl_info)) 1917 panic("Can't find pagetable for vaddr "); 1918 1919 idx = core_mmu_va2idx(&tbl_info, vaddr); 1920 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1921 break; 1922 1923 /* This is supertable. Need to divide it. */ 1924 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1925 secure)) 1926 panic("Failed to spread pgdir on small tables"); 1927 } 1928 1929 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1930 if (old_attr) 1931 panic("Page is already mapped"); 1932 1933 core_mmu_set_entry(&tbl_info, idx, pages[i], 1934 core_mmu_type_to_attr(memtype)); 1935 vaddr += SMALL_PAGE_SIZE; 1936 } 1937 1938 /* 1939 * Make sure all the changes to translation tables are visible 1940 * before returning. TLB doesn't need to be invalidated as we are 1941 * guaranteed that there's no valid mapping in this range. 1942 */ 1943 core_mmu_table_write_barrier(); 1944 mmu_unlock(exceptions); 1945 1946 return TEE_SUCCESS; 1947 err: 1948 mmu_unlock(exceptions); 1949 1950 if (i) 1951 core_mmu_unmap_pages(vstart, i); 1952 1953 return ret; 1954 } 1955 1956 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 1957 size_t num_pages, 1958 enum teecore_memtypes memtype) 1959 { 1960 struct core_mmu_table_info tbl_info = { }; 1961 struct tee_mmap_region *mm = NULL; 1962 unsigned int idx = 0; 1963 uint32_t old_attr = 0; 1964 uint32_t exceptions = 0; 1965 vaddr_t vaddr = vstart; 1966 paddr_t paddr = pstart; 1967 size_t i = 0; 1968 bool secure = false; 1969 1970 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1971 1972 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1973 1974 if ((vaddr | paddr) & SMALL_PAGE_MASK) 1975 return TEE_ERROR_BAD_PARAMETERS; 1976 1977 exceptions = mmu_lock(); 1978 1979 mm = find_map_by_va((void *)vaddr); 1980 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1981 panic("VA does not belong to any known mm region"); 1982 1983 if (!core_mmu_is_dynamic_vaspace(mm)) 1984 panic("Trying to map into static region"); 1985 1986 for (i = 0; i < num_pages; i++) { 1987 while (true) { 1988 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1989 &tbl_info)) 1990 panic("Can't find pagetable for vaddr "); 1991 1992 idx = core_mmu_va2idx(&tbl_info, vaddr); 1993 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1994 break; 1995 1996 /* This is supertable. Need to divide it. */ 1997 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1998 secure)) 1999 panic("Failed to spread pgdir on small tables"); 2000 } 2001 2002 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2003 if (old_attr) 2004 panic("Page is already mapped"); 2005 2006 core_mmu_set_entry(&tbl_info, idx, paddr, 2007 core_mmu_type_to_attr(memtype)); 2008 paddr += SMALL_PAGE_SIZE; 2009 vaddr += SMALL_PAGE_SIZE; 2010 } 2011 2012 /* 2013 * Make sure all the changes to translation tables are visible 2014 * before returning. TLB doesn't need to be invalidated as we are 2015 * guaranteed that there's no valid mapping in this range. 2016 */ 2017 core_mmu_table_write_barrier(); 2018 mmu_unlock(exceptions); 2019 2020 return TEE_SUCCESS; 2021 } 2022 2023 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) 2024 { 2025 struct core_mmu_table_info tbl_info; 2026 struct tee_mmap_region *mm; 2027 size_t i; 2028 unsigned int idx; 2029 uint32_t exceptions; 2030 2031 exceptions = mmu_lock(); 2032 2033 mm = find_map_by_va((void *)vstart); 2034 if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) 2035 panic("VA does not belong to any known mm region"); 2036 2037 if (!core_mmu_is_dynamic_vaspace(mm)) 2038 panic("Trying to unmap static region"); 2039 2040 for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { 2041 if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) 2042 panic("Can't find pagetable"); 2043 2044 if (tbl_info.shift != SMALL_PAGE_SHIFT) 2045 panic("Invalid pagetable level"); 2046 2047 idx = core_mmu_va2idx(&tbl_info, vstart); 2048 core_mmu_set_entry(&tbl_info, idx, 0, 0); 2049 } 2050 tlbi_all(); 2051 2052 mmu_unlock(exceptions); 2053 } 2054 2055 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 2056 struct user_mode_ctx *uctx) 2057 { 2058 struct core_mmu_table_info pg_info = { }; 2059 struct pgt_cache *pgt_cache = &uctx->pgt_cache; 2060 struct pgt *pgt = NULL; 2061 struct pgt *p = NULL; 2062 struct vm_region *r = NULL; 2063 2064 if (TAILQ_EMPTY(&uctx->vm_info.regions)) 2065 return; /* Nothing to map */ 2066 2067 /* 2068 * Allocate all page tables in advance. 2069 */ 2070 pgt_get_all(uctx); 2071 pgt = SLIST_FIRST(pgt_cache); 2072 2073 core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL); 2074 2075 TAILQ_FOREACH(r, &uctx->vm_info.regions, link) 2076 set_pg_region(dir_info, r, &pgt, &pg_info); 2077 /* Record that the translation tables now are populated. */ 2078 SLIST_FOREACH(p, pgt_cache, link) { 2079 p->populated = true; 2080 if (p == pgt) 2081 break; 2082 } 2083 assert(p == pgt); 2084 } 2085 2086 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 2087 size_t len) 2088 { 2089 struct core_mmu_table_info tbl_info = { }; 2090 struct tee_mmap_region *res_map = NULL; 2091 struct tee_mmap_region *map = NULL; 2092 paddr_t pa = virt_to_phys(addr); 2093 size_t granule = 0; 2094 ptrdiff_t i = 0; 2095 paddr_t p = 0; 2096 size_t l = 0; 2097 2098 map = find_map_by_type_and_pa(type, pa, len); 2099 if (!map) 2100 return TEE_ERROR_GENERIC; 2101 2102 res_map = find_map_by_type(MEM_AREA_RES_VASPACE); 2103 if (!res_map) 2104 return TEE_ERROR_GENERIC; 2105 if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) 2106 return TEE_ERROR_GENERIC; 2107 granule = BIT(tbl_info.shift); 2108 2109 if (map < static_memory_map || 2110 map >= static_memory_map + ARRAY_SIZE(static_memory_map)) 2111 return TEE_ERROR_GENERIC; 2112 i = map - static_memory_map; 2113 2114 /* Check that we have a full match */ 2115 p = ROUNDDOWN(pa, granule); 2116 l = ROUNDUP(len + pa - p, granule); 2117 if (map->pa != p || map->size != l) 2118 return TEE_ERROR_GENERIC; 2119 2120 clear_region(&tbl_info, map); 2121 tlbi_all(); 2122 2123 /* If possible remove the va range from res_map */ 2124 if (res_map->va - map->size == map->va) { 2125 res_map->va -= map->size; 2126 res_map->size += map->size; 2127 } 2128 2129 /* Remove the entry. */ 2130 memmove(map, map + 1, 2131 (ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map)); 2132 2133 /* Clear the last new entry in case it was used */ 2134 memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1, 2135 0, sizeof(*map)); 2136 2137 return TEE_SUCCESS; 2138 } 2139 2140 struct tee_mmap_region * 2141 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) 2142 { 2143 struct tee_mmap_region *map = NULL; 2144 struct tee_mmap_region *map_found = NULL; 2145 2146 if (!len) 2147 return NULL; 2148 2149 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 2150 if (map->type != type) 2151 continue; 2152 2153 if (map_found) 2154 return NULL; 2155 2156 map_found = map; 2157 } 2158 2159 if (!map_found || map_found->size < len) 2160 return NULL; 2161 2162 return map_found; 2163 } 2164 2165 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) 2166 { 2167 struct core_mmu_table_info tbl_info; 2168 struct tee_mmap_region *map; 2169 size_t n; 2170 size_t granule; 2171 paddr_t p; 2172 size_t l; 2173 2174 if (!len) 2175 return NULL; 2176 2177 if (!core_mmu_check_end_pa(addr, len)) 2178 return NULL; 2179 2180 /* Check if the memory is already mapped */ 2181 map = find_map_by_type_and_pa(type, addr, len); 2182 if (map && pbuf_inside_map_area(addr, len, map)) 2183 return (void *)(vaddr_t)(map->va + addr - map->pa); 2184 2185 /* Find the reserved va space used for late mappings */ 2186 map = find_map_by_type(MEM_AREA_RES_VASPACE); 2187 if (!map) 2188 return NULL; 2189 2190 if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) 2191 return NULL; 2192 2193 granule = BIT64(tbl_info.shift); 2194 p = ROUNDDOWN(addr, granule); 2195 l = ROUNDUP(len + addr - p, granule); 2196 2197 /* Ban overflowing virtual addresses */ 2198 if (map->size < l) 2199 return NULL; 2200 2201 /* 2202 * Something is wrong, we can't fit the va range into the selected 2203 * table. The reserved va range is possibly missaligned with 2204 * granule. 2205 */ 2206 if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) 2207 return NULL; 2208 2209 /* Find end of the memory map */ 2210 n = 0; 2211 while (!core_mmap_is_end_of_table(static_memory_map + n)) 2212 n++; 2213 2214 if (n < (ARRAY_SIZE(static_memory_map) - 1)) { 2215 /* There's room for another entry */ 2216 static_memory_map[n].va = map->va; 2217 static_memory_map[n].size = l; 2218 static_memory_map[n + 1].type = MEM_AREA_END; 2219 map->va += l; 2220 map->size -= l; 2221 map = static_memory_map + n; 2222 } else { 2223 /* 2224 * There isn't room for another entry, steal the reserved 2225 * entry as it's not useful for anything else any longer. 2226 */ 2227 map->size = l; 2228 } 2229 map->type = type; 2230 map->region_size = granule; 2231 map->attr = core_mmu_type_to_attr(type); 2232 map->pa = p; 2233 2234 set_region(&tbl_info, map); 2235 2236 /* Make sure the new entry is visible before continuing. */ 2237 core_mmu_table_write_barrier(); 2238 2239 return (void *)(vaddr_t)(map->va + addr - map->pa); 2240 } 2241 2242 #ifdef CFG_WITH_PAGER 2243 static vaddr_t get_linear_map_end_va(void) 2244 { 2245 /* this is synced with the generic linker file kern.ld.S */ 2246 return (vaddr_t)__heap2_end; 2247 } 2248 2249 static paddr_t get_linear_map_end_pa(void) 2250 { 2251 return get_linear_map_end_va() - boot_mmu_config.map_offset; 2252 } 2253 #endif 2254 2255 #if defined(CFG_TEE_CORE_DEBUG) 2256 static void check_pa_matches_va(void *va, paddr_t pa) 2257 { 2258 TEE_Result res = TEE_ERROR_GENERIC; 2259 vaddr_t v = (vaddr_t)va; 2260 paddr_t p = 0; 2261 struct core_mmu_table_info ti __maybe_unused = { }; 2262 2263 if (core_mmu_user_va_range_is_defined()) { 2264 vaddr_t user_va_base = 0; 2265 size_t user_va_size = 0; 2266 2267 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 2268 if (v >= user_va_base && 2269 v <= (user_va_base - 1 + user_va_size)) { 2270 if (!core_mmu_user_mapping_is_active()) { 2271 if (pa) 2272 panic("issue in linear address space"); 2273 return; 2274 } 2275 2276 res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), 2277 va, &p); 2278 if (res == TEE_ERROR_NOT_SUPPORTED) 2279 return; 2280 if (res == TEE_SUCCESS && pa != p) 2281 panic("bad pa"); 2282 if (res != TEE_SUCCESS && pa) 2283 panic("false pa"); 2284 return; 2285 } 2286 } 2287 #ifdef CFG_WITH_PAGER 2288 if (is_unpaged(va)) { 2289 if (v - boot_mmu_config.map_offset != pa) 2290 panic("issue in linear address space"); 2291 return; 2292 } 2293 2294 if (tee_pager_get_table_info(v, &ti)) { 2295 uint32_t a; 2296 2297 /* 2298 * Lookups in the page table managed by the pager is 2299 * dangerous for addresses in the paged area as those pages 2300 * changes all the time. But some ranges are safe, 2301 * rw-locked areas when the page is populated for instance. 2302 */ 2303 core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); 2304 if (a & TEE_MATTR_VALID_BLOCK) { 2305 paddr_t mask = BIT64(ti.shift) - 1; 2306 2307 p |= v & mask; 2308 if (pa != p) 2309 panic(); 2310 } else { 2311 if (pa) 2312 panic(); 2313 } 2314 return; 2315 } 2316 #endif 2317 2318 if (!core_va2pa_helper(va, &p)) { 2319 /* Verfiy only the static mapping (case non null phys addr) */ 2320 if (p && pa != p) { 2321 DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, 2322 va, p, pa); 2323 panic(); 2324 } 2325 } else { 2326 if (pa) { 2327 DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); 2328 panic(); 2329 } 2330 } 2331 } 2332 #else 2333 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) 2334 { 2335 } 2336 #endif 2337 2338 paddr_t virt_to_phys(void *va) 2339 { 2340 paddr_t pa = 0; 2341 2342 if (!arch_va2pa_helper(va, &pa)) 2343 pa = 0; 2344 check_pa_matches_va(memtag_strip_tag(va), pa); 2345 return pa; 2346 } 2347 2348 #if defined(CFG_TEE_CORE_DEBUG) 2349 static void check_va_matches_pa(paddr_t pa, void *va) 2350 { 2351 paddr_t p = 0; 2352 2353 if (!va) 2354 return; 2355 2356 p = virt_to_phys(va); 2357 if (p != pa) { 2358 DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); 2359 panic(); 2360 } 2361 } 2362 #else 2363 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) 2364 { 2365 } 2366 #endif 2367 2368 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) 2369 { 2370 if (!core_mmu_user_mapping_is_active()) 2371 return NULL; 2372 2373 return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); 2374 } 2375 2376 #ifdef CFG_WITH_PAGER 2377 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2378 { 2379 paddr_t end_pa = 0; 2380 2381 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 2382 return NULL; 2383 2384 if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) { 2385 if (end_pa > get_linear_map_end_pa()) 2386 return NULL; 2387 return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset); 2388 } 2389 2390 return tee_pager_phys_to_virt(pa, len); 2391 } 2392 #else 2393 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2394 { 2395 struct tee_mmap_region *mmap = NULL; 2396 2397 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); 2398 if (!mmap) 2399 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); 2400 if (!mmap) 2401 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); 2402 if (!mmap) 2403 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); 2404 if (!mmap) 2405 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); 2406 if (!mmap) 2407 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); 2408 /* 2409 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only 2410 * used with pager and not needed here. 2411 */ 2412 return map_pa2va(mmap, pa, len); 2413 } 2414 #endif 2415 2416 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) 2417 { 2418 void *va = NULL; 2419 2420 switch (m) { 2421 case MEM_AREA_TS_VASPACE: 2422 va = phys_to_virt_ts_vaspace(pa, len); 2423 break; 2424 case MEM_AREA_TEE_RAM: 2425 case MEM_AREA_TEE_RAM_RX: 2426 case MEM_AREA_TEE_RAM_RO: 2427 case MEM_AREA_TEE_RAM_RW: 2428 case MEM_AREA_NEX_RAM_RO: 2429 case MEM_AREA_NEX_RAM_RW: 2430 va = phys_to_virt_tee_ram(pa, len); 2431 break; 2432 case MEM_AREA_SHM_VASPACE: 2433 /* Find VA from PA in dynamic SHM is not yet supported */ 2434 va = NULL; 2435 break; 2436 default: 2437 va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); 2438 } 2439 if (m != MEM_AREA_SEC_RAM_OVERALL) 2440 check_va_matches_pa(pa, va); 2441 return va; 2442 } 2443 2444 void *phys_to_virt_io(paddr_t pa, size_t len) 2445 { 2446 struct tee_mmap_region *map = NULL; 2447 void *va = NULL; 2448 2449 map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); 2450 if (!map) 2451 map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); 2452 if (!map) 2453 return NULL; 2454 va = map_pa2va(map, pa, len); 2455 check_va_matches_pa(pa, va); 2456 return va; 2457 } 2458 2459 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) 2460 { 2461 if (cpu_mmu_enabled()) 2462 return (vaddr_t)phys_to_virt(pa, type, len); 2463 2464 return (vaddr_t)pa; 2465 } 2466 2467 #ifdef CFG_WITH_PAGER 2468 bool is_unpaged(const void *va) 2469 { 2470 vaddr_t v = (vaddr_t)va; 2471 2472 return v >= VCORE_START_VA && v < get_linear_map_end_va(); 2473 } 2474 #endif 2475 2476 #ifdef CFG_NS_VIRTUALIZATION 2477 bool is_nexus(const void *va) 2478 { 2479 vaddr_t v = (vaddr_t)va; 2480 2481 return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ; 2482 } 2483 #endif 2484 2485 void core_mmu_init_virtualization(void) 2486 { 2487 paddr_t b1 = 0; 2488 paddr_size_t s1 = 0; 2489 2490 static_assert(ARRAY_SIZE(secure_only) <= 2); 2491 if (ARRAY_SIZE(secure_only) == 2) { 2492 b1 = secure_only[1].paddr; 2493 s1 = secure_only[1].size; 2494 } 2495 virt_init_memory(static_memory_map, secure_only[0].paddr, 2496 secure_only[0].size, b1, s1); 2497 } 2498 2499 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) 2500 { 2501 assert(p->pa); 2502 if (cpu_mmu_enabled()) { 2503 if (!p->va) 2504 p->va = (vaddr_t)phys_to_virt_io(p->pa, len); 2505 assert(p->va); 2506 return p->va; 2507 } 2508 return p->pa; 2509 } 2510 2511 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) 2512 { 2513 assert(p->pa); 2514 if (cpu_mmu_enabled()) { 2515 if (!p->va) 2516 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, 2517 len); 2518 assert(p->va); 2519 return p->va; 2520 } 2521 return p->pa; 2522 } 2523 2524 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) 2525 { 2526 assert(p->pa); 2527 if (cpu_mmu_enabled()) { 2528 if (!p->va) 2529 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, 2530 len); 2531 assert(p->va); 2532 return p->va; 2533 } 2534 return p->pa; 2535 } 2536 2537 #ifdef CFG_CORE_RESERVED_SHM 2538 static TEE_Result teecore_init_pub_ram(void) 2539 { 2540 vaddr_t s = 0; 2541 vaddr_t e = 0; 2542 2543 /* get virtual addr/size of NSec shared mem allocated from teecore */ 2544 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); 2545 2546 if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) 2547 panic("invalid PUB RAM"); 2548 2549 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2550 if (!tee_vbuf_is_non_sec(s, e - s)) 2551 panic("PUB RAM is not non-secure"); 2552 2553 #ifdef CFG_PL310 2554 /* Allocate statically the l2cc mutex */ 2555 tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); 2556 s += sizeof(uint32_t); /* size of a pl310 mutex */ 2557 s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ 2558 #endif 2559 2560 default_nsec_shm_paddr = virt_to_phys((void *)s); 2561 default_nsec_shm_size = e - s; 2562 2563 return TEE_SUCCESS; 2564 } 2565 early_init(teecore_init_pub_ram); 2566 #endif /*CFG_CORE_RESERVED_SHM*/ 2567 2568 void core_mmu_init_ta_ram(void) 2569 { 2570 vaddr_t s = 0; 2571 vaddr_t e = 0; 2572 paddr_t ps = 0; 2573 size_t size = 0; 2574 2575 /* 2576 * Get virtual addr/size of RAM where TA are loaded/executedNSec 2577 * shared mem allocated from teecore. 2578 */ 2579 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) 2580 virt_get_ta_ram(&s, &e); 2581 else 2582 core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e); 2583 2584 ps = virt_to_phys((void *)s); 2585 size = e - s; 2586 2587 if (!ps || (ps & CORE_MMU_USER_CODE_MASK) || 2588 !size || (size & CORE_MMU_USER_CODE_MASK)) 2589 panic("invalid TA RAM"); 2590 2591 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2592 if (!tee_pbuf_is_sec(ps, size)) 2593 panic("TA RAM is not secure"); 2594 2595 if (!tee_mm_is_empty(&tee_mm_sec_ddr)) 2596 panic("TA RAM pool is not empty"); 2597 2598 /* remove previous config and init TA ddr memory pool */ 2599 tee_mm_final(&tee_mm_sec_ddr); 2600 tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT, 2601 TEE_MM_POOL_NO_FLAGS); 2602 } 2603