xref: /optee_os/core/mm/core_mmu.c (revision b0563631928755fe864b97785160fb3088e9efdc)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <mm/core_memprot.h>
22 #include <mm/core_mmu.h>
23 #include <mm/mobj.h>
24 #include <mm/pgt_cache.h>
25 #include <mm/tee_pager.h>
26 #include <mm/vm.h>
27 #include <platform_config.h>
28 #include <string.h>
29 #include <trace.h>
30 #include <util.h>
31 
32 #ifndef DEBUG_XLAT_TABLE
33 #define DEBUG_XLAT_TABLE 0
34 #endif
35 
36 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
37 
38 /* Physical Secure DDR pool */
39 tee_mm_pool_t tee_mm_sec_ddr;
40 
41 /* Virtual memory pool for core mappings */
42 tee_mm_pool_t core_virt_mem_pool;
43 
44 /* Virtual memory pool for shared memory mappings */
45 tee_mm_pool_t core_virt_shm_pool;
46 
47 #ifdef CFG_CORE_PHYS_RELOCATABLE
48 unsigned long core_mmu_tee_load_pa __nex_bss;
49 #else
50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
51 #endif
52 
53 /*
54  * These variables are initialized before .bss is cleared. To avoid
55  * resetting them when .bss is cleared we're storing them in .data instead,
56  * even if they initially are zero.
57  */
58 
59 #ifdef CFG_CORE_RESERVED_SHM
60 /* Default NSec shared memory allocated from NSec world */
61 unsigned long default_nsec_shm_size __nex_bss;
62 unsigned long default_nsec_shm_paddr __nex_bss;
63 #endif
64 
65 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS
66 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE)
67 						+ 1
68 #endif
69 						+ 1] __nex_bss;
70 
71 /* Define the platform's memory layout. */
72 struct memaccess_area {
73 	paddr_t paddr;
74 	size_t size;
75 };
76 
77 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
78 
79 static struct memaccess_area secure_only[] __nex_data = {
80 #ifdef CFG_CORE_PHYS_RELOCATABLE
81 	MEMACCESS_AREA(0, 0),
82 #else
83 #ifdef TRUSTED_SRAM_BASE
84 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
85 #endif
86 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
87 #endif
88 };
89 
90 static struct memaccess_area nsec_shared[] __nex_data = {
91 #ifdef CFG_CORE_RESERVED_SHM
92 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
93 #endif
94 };
95 
96 #if defined(CFG_SECURE_DATA_PATH)
97 static const char *tz_sdp_match = "linaro,secure-heap";
98 static struct memaccess_area sec_sdp;
99 #ifdef CFG_TEE_SDP_MEM_BASE
100 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
101 #endif
102 #ifdef TEE_SDP_TEST_MEM_BASE
103 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
104 #endif
105 #endif
106 
107 #ifdef CFG_CORE_RESERVED_SHM
108 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
109 #endif
110 static unsigned int mmu_spinlock;
111 
112 static uint32_t mmu_lock(void)
113 {
114 	return cpu_spin_lock_xsave(&mmu_spinlock);
115 }
116 
117 static void mmu_unlock(uint32_t exceptions)
118 {
119 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
120 }
121 
122 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
123 {
124 	/*
125 	 * The first range is always used to cover OP-TEE core memory, but
126 	 * depending on configuration it may cover more than that.
127 	 */
128 	*base = secure_only[0].paddr;
129 	*size = secure_only[0].size;
130 }
131 
132 void core_mmu_set_secure_memory(paddr_t base, size_t size)
133 {
134 #ifdef CFG_CORE_PHYS_RELOCATABLE
135 	static_assert(ARRAY_SIZE(secure_only) == 1);
136 #endif
137 	runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE));
138 	assert(!secure_only[0].size);
139 	assert(base && size);
140 
141 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
142 	secure_only[0].paddr = base;
143 	secure_only[0].size = size;
144 }
145 
146 void core_mmu_get_ta_range(paddr_t *base, size_t *size)
147 {
148 	paddr_t b = 0;
149 	size_t s = 0;
150 
151 	static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE));
152 #ifdef TA_RAM_START
153 	b = TA_RAM_START;
154 	s = TA_RAM_SIZE;
155 #else
156 	static_assert(ARRAY_SIZE(secure_only) <= 2);
157 	if (ARRAY_SIZE(secure_only) == 1) {
158 		vaddr_t load_offs = 0;
159 
160 		assert(core_mmu_tee_load_pa >= secure_only[0].paddr);
161 		load_offs = core_mmu_tee_load_pa - secure_only[0].paddr;
162 
163 		assert(secure_only[0].size >
164 		       load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE);
165 		b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE;
166 		s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE -
167 		    TEE_SDP_TEST_MEM_SIZE;
168 	} else {
169 		assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE);
170 		b = secure_only[1].paddr;
171 		s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE;
172 	}
173 #endif
174 	if (base)
175 		*base = b;
176 	if (size)
177 		*size = s;
178 }
179 
180 static struct tee_mmap_region *get_memory_map(void)
181 {
182 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
183 		struct tee_mmap_region *map = virt_get_memory_map();
184 
185 		if (map)
186 			return map;
187 	}
188 
189 	return static_memory_map;
190 }
191 
192 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
193 			     paddr_t pa, size_t size)
194 {
195 	size_t n;
196 
197 	for (n = 0; n < alen; n++)
198 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
199 			return true;
200 	return false;
201 }
202 
203 #define pbuf_intersects(a, pa, size) \
204 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
205 
206 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
207 			    paddr_t pa, size_t size)
208 {
209 	size_t n;
210 
211 	for (n = 0; n < alen; n++)
212 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
213 			return true;
214 	return false;
215 }
216 
217 #define pbuf_is_inside(a, pa, size) \
218 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
219 
220 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
221 {
222 	paddr_t end_pa = 0;
223 
224 	if (!map)
225 		return false;
226 
227 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
228 		return false;
229 
230 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
231 }
232 
233 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
234 {
235 	if (!map)
236 		return false;
237 	return (va >= map->va && va <= (map->va + map->size - 1));
238 }
239 
240 /* check if target buffer fits in a core default map area */
241 static bool pbuf_inside_map_area(unsigned long p, size_t l,
242 				 struct tee_mmap_region *map)
243 {
244 	return core_is_buffer_inside(p, l, map->pa, map->size);
245 }
246 
247 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
248 {
249 	struct tee_mmap_region *map;
250 
251 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++)
252 		if (map->type == type)
253 			return map;
254 	return NULL;
255 }
256 
257 static struct tee_mmap_region *
258 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
259 {
260 	struct tee_mmap_region *map;
261 
262 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
263 		if (map->type != type)
264 			continue;
265 		if (pa_is_in_map(map, pa, len))
266 			return map;
267 	}
268 	return NULL;
269 }
270 
271 static struct tee_mmap_region *find_map_by_va(void *va)
272 {
273 	struct tee_mmap_region *map = get_memory_map();
274 	unsigned long a = (unsigned long)va;
275 
276 	while (!core_mmap_is_end_of_table(map)) {
277 		if (a >= map->va && a <= (map->va - 1 + map->size))
278 			return map;
279 		map++;
280 	}
281 	return NULL;
282 }
283 
284 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
285 {
286 	struct tee_mmap_region *map = get_memory_map();
287 
288 	while (!core_mmap_is_end_of_table(map)) {
289 		if (pa >= map->pa && pa <= (map->pa + map->size - 1))
290 			return map;
291 		map++;
292 	}
293 	return NULL;
294 }
295 
296 #if defined(CFG_SECURE_DATA_PATH)
297 static bool dtb_get_sdp_region(void)
298 {
299 	void *fdt = NULL;
300 	int node = 0;
301 	int tmp_node = 0;
302 	paddr_t tmp_addr = 0;
303 	size_t tmp_size = 0;
304 
305 	if (!IS_ENABLED(CFG_EMBED_DTB))
306 		return false;
307 
308 	fdt = get_embedded_dt();
309 	if (!fdt)
310 		panic("No DTB found");
311 
312 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
313 	if (node < 0) {
314 		DMSG("No %s compatible node found", tz_sdp_match);
315 		return false;
316 	}
317 	tmp_node = node;
318 	while (tmp_node >= 0) {
319 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
320 							 tz_sdp_match);
321 		if (tmp_node >= 0)
322 			DMSG("Ignore SDP pool node %s, supports only 1 node",
323 			     fdt_get_name(fdt, tmp_node, NULL));
324 	}
325 
326 	tmp_addr = fdt_reg_base_address(fdt, node);
327 	if (tmp_addr == DT_INFO_INVALID_REG) {
328 		EMSG("%s: Unable to get base addr from DT", tz_sdp_match);
329 		return false;
330 	}
331 
332 	tmp_size = fdt_reg_size(fdt, node);
333 	if (tmp_size == DT_INFO_INVALID_REG_SIZE) {
334 		EMSG("%s: Unable to get size of base addr from DT",
335 		     tz_sdp_match);
336 		return false;
337 	}
338 
339 	sec_sdp.paddr = tmp_addr;
340 	sec_sdp.size = tmp_size;
341 
342 	return true;
343 }
344 #endif
345 
346 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
347 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
348 				const struct core_mmu_phys_mem *start,
349 				const struct core_mmu_phys_mem *end)
350 {
351 	const struct core_mmu_phys_mem *mem;
352 
353 	for (mem = start; mem < end; mem++) {
354 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
355 			return true;
356 	}
357 
358 	return false;
359 }
360 #endif
361 
362 #ifdef CFG_CORE_DYN_SHM
363 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
364 			       paddr_t pa, size_t size)
365 {
366 	struct core_mmu_phys_mem *m = *mem;
367 	size_t n = 0;
368 
369 	while (true) {
370 		if (n >= *nelems) {
371 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
372 			     pa, size);
373 			return;
374 		}
375 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
376 			break;
377 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
378 			panic();
379 		n++;
380 	}
381 
382 	if (pa == m[n].addr && size == m[n].size) {
383 		/* Remove this entry */
384 		(*nelems)--;
385 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
386 		m = nex_realloc(m, sizeof(*m) * *nelems);
387 		if (!m)
388 			panic();
389 		*mem = m;
390 	} else if (pa == m[n].addr) {
391 		m[n].addr += size;
392 		m[n].size -= size;
393 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
394 		m[n].size -= size;
395 	} else {
396 		/* Need to split the memory entry */
397 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
398 		if (!m)
399 			panic();
400 		*mem = m;
401 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
402 		(*nelems)++;
403 		m[n].size = pa - m[n].addr;
404 		m[n + 1].size -= size + m[n].size;
405 		m[n + 1].addr = pa + size;
406 	}
407 }
408 
409 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
410 				      size_t nelems,
411 				      struct tee_mmap_region *map)
412 {
413 	size_t n;
414 
415 	for (n = 0; n < nelems; n++) {
416 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
417 					    map->pa, map->size)) {
418 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
419 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
420 			     start[n].addr, start[n].size,
421 			     map->type, map->pa, map->size);
422 			panic();
423 		}
424 	}
425 }
426 
427 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
428 static size_t discovered_nsec_ddr_nelems __nex_bss;
429 
430 static int cmp_pmem_by_addr(const void *a, const void *b)
431 {
432 	const struct core_mmu_phys_mem *pmem_a = a;
433 	const struct core_mmu_phys_mem *pmem_b = b;
434 
435 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
436 }
437 
438 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
439 				      size_t nelems)
440 {
441 	struct core_mmu_phys_mem *m = start;
442 	size_t num_elems = nelems;
443 	struct tee_mmap_region *map = static_memory_map;
444 	const struct core_mmu_phys_mem __maybe_unused *pmem;
445 	size_t n = 0;
446 
447 	assert(!discovered_nsec_ddr_start);
448 	assert(m && num_elems);
449 
450 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
451 
452 	/*
453 	 * Non-secure shared memory and also secure data
454 	 * path memory are supposed to reside inside
455 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
456 	 * are used for a specific purpose make holes for
457 	 * those memory in the normal non-secure memory.
458 	 *
459 	 * This has to be done since for instance QEMU
460 	 * isn't aware of which memory range in the
461 	 * non-secure memory is used for NSEC_SHM.
462 	 */
463 
464 #ifdef CFG_SECURE_DATA_PATH
465 	if (dtb_get_sdp_region())
466 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
467 
468 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
469 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
470 #endif
471 
472 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
473 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
474 				   secure_only[n].size);
475 
476 	for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) {
477 		switch (map->type) {
478 		case MEM_AREA_NSEC_SHM:
479 			carve_out_phys_mem(&m, &num_elems, map->pa, map->size);
480 			break;
481 		case MEM_AREA_EXT_DT:
482 		case MEM_AREA_MANIFEST_DT:
483 		case MEM_AREA_RAM_NSEC:
484 		case MEM_AREA_RES_VASPACE:
485 		case MEM_AREA_SHM_VASPACE:
486 		case MEM_AREA_TS_VASPACE:
487 		case MEM_AREA_PAGER_VASPACE:
488 			break;
489 		default:
490 			check_phys_mem_is_outside(m, num_elems, map);
491 		}
492 	}
493 
494 	discovered_nsec_ddr_start = m;
495 	discovered_nsec_ddr_nelems = num_elems;
496 
497 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
498 				   m[num_elems - 1].size))
499 		panic();
500 }
501 
502 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
503 				    const struct core_mmu_phys_mem **end)
504 {
505 	if (!discovered_nsec_ddr_start)
506 		return false;
507 
508 	*start = discovered_nsec_ddr_start;
509 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
510 
511 	return true;
512 }
513 
514 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
515 {
516 	const struct core_mmu_phys_mem *start;
517 	const struct core_mmu_phys_mem *end;
518 
519 	if (!get_discovered_nsec_ddr(&start, &end))
520 		return false;
521 
522 	return pbuf_is_special_mem(pbuf, len, start, end);
523 }
524 
525 bool core_mmu_nsec_ddr_is_defined(void)
526 {
527 	const struct core_mmu_phys_mem *start;
528 	const struct core_mmu_phys_mem *end;
529 
530 	if (!get_discovered_nsec_ddr(&start, &end))
531 		return false;
532 
533 	return start != end;
534 }
535 #else
536 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
537 {
538 	return false;
539 }
540 #endif /*CFG_CORE_DYN_SHM*/
541 
542 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
543 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
544 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
545 
546 #ifdef CFG_SECURE_DATA_PATH
547 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
548 {
549 	bool is_sdp_mem = false;
550 
551 	if (sec_sdp.size)
552 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
553 						   sec_sdp.size);
554 
555 	if (!is_sdp_mem)
556 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
557 						 phys_sdp_mem_end);
558 
559 	return is_sdp_mem;
560 }
561 
562 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
563 {
564 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
565 					    CORE_MEM_SDP_MEM);
566 
567 	if (!mobj)
568 		panic("can't create SDP physical memory object");
569 
570 	return mobj;
571 }
572 
573 struct mobj **core_sdp_mem_create_mobjs(void)
574 {
575 	const struct core_mmu_phys_mem *mem = NULL;
576 	struct mobj **mobj_base = NULL;
577 	struct mobj **mobj = NULL;
578 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
579 
580 	if (sec_sdp.size)
581 		cnt++;
582 
583 	/* SDP mobjs table must end with a NULL entry */
584 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
585 	if (!mobj_base)
586 		panic("Out of memory");
587 
588 	mobj = mobj_base;
589 
590 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
591 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
592 
593 	if (sec_sdp.size)
594 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
595 
596 	return mobj_base;
597 }
598 
599 #else /* CFG_SECURE_DATA_PATH */
600 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
601 {
602 	return false;
603 }
604 
605 #endif /* CFG_SECURE_DATA_PATH */
606 
607 /* Check special memories comply with registered memories */
608 static void verify_special_mem_areas(struct tee_mmap_region *mem_map,
609 				     const struct core_mmu_phys_mem *start,
610 				     const struct core_mmu_phys_mem *end,
611 				     const char *area_name __maybe_unused)
612 {
613 	const struct core_mmu_phys_mem *mem;
614 	const struct core_mmu_phys_mem *mem2;
615 	struct tee_mmap_region *mmap;
616 
617 	if (start == end) {
618 		DMSG("No %s memory area defined", area_name);
619 		return;
620 	}
621 
622 	for (mem = start; mem < end; mem++)
623 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
624 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
625 
626 	/* Check memories do not intersect each other */
627 	for (mem = start; mem + 1 < end; mem++) {
628 		for (mem2 = mem + 1; mem2 < end; mem2++) {
629 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
630 						     mem->addr, mem->size)) {
631 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
632 						   mem->addr, mem->size);
633 				panic("Special memory intersection");
634 			}
635 		}
636 	}
637 
638 	/*
639 	 * Check memories do not intersect any mapped memory.
640 	 * This is called before reserved VA space is loaded in mem_map.
641 	 */
642 	for (mem = start; mem < end; mem++) {
643 		for (mmap = mem_map; mmap->type != MEM_AREA_END; mmap++) {
644 			if (core_is_buffer_intersect(mem->addr, mem->size,
645 						     mmap->pa, mmap->size)) {
646 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
647 						   mmap->pa, mmap->size);
648 				panic("Special memory intersection");
649 			}
650 		}
651 	}
652 }
653 
654 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems,
655 			 const char *mem_name __maybe_unused,
656 			 enum teecore_memtypes mem_type,
657 			 paddr_t mem_addr, paddr_size_t mem_size, size_t *last)
658 {
659 	size_t n = 0;
660 	paddr_t pa;
661 	paddr_size_t size;
662 
663 	if (!mem_size)	/* Discard null size entries */
664 		return;
665 	/*
666 	 * If some ranges of memory of the same type do overlap
667 	 * each others they are coalesced into one entry. To help this
668 	 * added entries are sorted by increasing physical.
669 	 *
670 	 * Note that it's valid to have the same physical memory as several
671 	 * different memory types, for instance the same device memory
672 	 * mapped as both secure and non-secure. This will probably not
673 	 * happen often in practice.
674 	 */
675 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
676 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
677 	while (true) {
678 		if (n >= (num_elems - 1)) {
679 			EMSG("Out of entries (%zu) in memory_map", num_elems);
680 			panic();
681 		}
682 		if (n == *last)
683 			break;
684 		pa = memory_map[n].pa;
685 		size = memory_map[n].size;
686 		if (mem_type == memory_map[n].type &&
687 		    ((pa <= (mem_addr + (mem_size - 1))) &&
688 		    (mem_addr <= (pa + (size - 1))))) {
689 			DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr);
690 			memory_map[n].pa = MIN(pa, mem_addr);
691 			memory_map[n].size = MAX(size, mem_size) +
692 					     (pa - memory_map[n].pa);
693 			return;
694 		}
695 		if (mem_type < memory_map[n].type ||
696 		    (mem_type == memory_map[n].type && mem_addr < pa))
697 			break; /* found the spot where to insert this memory */
698 		n++;
699 	}
700 
701 	memmove(memory_map + n + 1, memory_map + n,
702 		sizeof(struct tee_mmap_region) * (*last - n));
703 	(*last)++;
704 	memset(memory_map + n, 0, sizeof(memory_map[0]));
705 	memory_map[n].type = mem_type;
706 	memory_map[n].pa = mem_addr;
707 	memory_map[n].size = mem_size;
708 }
709 
710 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems,
711 			 enum teecore_memtypes type, size_t size, size_t *last)
712 {
713 	size_t n = 0;
714 
715 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
716 	while (true) {
717 		if (n >= (num_elems - 1)) {
718 			EMSG("Out of entries (%zu) in memory_map", num_elems);
719 			panic();
720 		}
721 		if (n == *last)
722 			break;
723 		if (type < memory_map[n].type)
724 			break;
725 		n++;
726 	}
727 
728 	memmove(memory_map + n + 1, memory_map + n,
729 		sizeof(struct tee_mmap_region) * (*last - n));
730 	(*last)++;
731 	memset(memory_map + n, 0, sizeof(memory_map[0]));
732 	memory_map[n].type = type;
733 	memory_map[n].size = size;
734 }
735 
736 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
737 {
738 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
739 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
740 				TEE_MATTR_MEM_TYPE_SHIFT;
741 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
742 				TEE_MATTR_MEM_TYPE_SHIFT;
743 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
744 				  TEE_MATTR_MEM_TYPE_SHIFT;
745 
746 	switch (t) {
747 	case MEM_AREA_TEE_RAM:
748 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
749 	case MEM_AREA_TEE_RAM_RX:
750 	case MEM_AREA_INIT_RAM_RX:
751 	case MEM_AREA_IDENTITY_MAP_RX:
752 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
753 	case MEM_AREA_TEE_RAM_RO:
754 	case MEM_AREA_INIT_RAM_RO:
755 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
756 	case MEM_AREA_TEE_RAM_RW:
757 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
758 	case MEM_AREA_NEX_RAM_RW:
759 	case MEM_AREA_TEE_ASAN:
760 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
761 	case MEM_AREA_TEE_COHERENT:
762 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
763 	case MEM_AREA_TA_RAM:
764 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
765 	case MEM_AREA_NSEC_SHM:
766 	case MEM_AREA_NEX_NSEC_SHM:
767 		return attr | TEE_MATTR_PRW | cached;
768 	case MEM_AREA_MANIFEST_DT:
769 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
770 	case MEM_AREA_TRANSFER_LIST:
771 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
772 	case MEM_AREA_EXT_DT:
773 		/*
774 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
775 		 * tree as secure non-cached memory, otherwise, fall back to
776 		 * non-secure mapping.
777 		 */
778 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
779 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
780 			       noncache;
781 		fallthrough;
782 	case MEM_AREA_IO_NSEC:
783 		return attr | TEE_MATTR_PRW | noncache;
784 	case MEM_AREA_IO_SEC:
785 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
786 	case MEM_AREA_RAM_NSEC:
787 		return attr | TEE_MATTR_PRW | cached;
788 	case MEM_AREA_RAM_SEC:
789 	case MEM_AREA_SEC_RAM_OVERALL:
790 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
791 	case MEM_AREA_ROM_SEC:
792 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
793 	case MEM_AREA_RES_VASPACE:
794 	case MEM_AREA_SHM_VASPACE:
795 		return 0;
796 	case MEM_AREA_PAGER_VASPACE:
797 		return TEE_MATTR_SECURE;
798 	default:
799 		panic("invalid type");
800 	}
801 }
802 
803 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
804 {
805 	switch (mm->type) {
806 	case MEM_AREA_TEE_RAM:
807 	case MEM_AREA_TEE_RAM_RX:
808 	case MEM_AREA_TEE_RAM_RO:
809 	case MEM_AREA_TEE_RAM_RW:
810 	case MEM_AREA_INIT_RAM_RX:
811 	case MEM_AREA_INIT_RAM_RO:
812 	case MEM_AREA_NEX_RAM_RW:
813 	case MEM_AREA_NEX_RAM_RO:
814 	case MEM_AREA_TEE_ASAN:
815 		return true;
816 	default:
817 		return false;
818 	}
819 }
820 
821 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
822 {
823 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
824 }
825 
826 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
827 {
828 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
829 }
830 
831 static int cmp_mmap_by_lower_va(const void *a, const void *b)
832 {
833 	const struct tee_mmap_region *mm_a = a;
834 	const struct tee_mmap_region *mm_b = b;
835 
836 	return CMP_TRILEAN(mm_a->va, mm_b->va);
837 }
838 
839 static void dump_mmap_table(struct tee_mmap_region *memory_map)
840 {
841 	struct tee_mmap_region *map;
842 
843 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
844 		vaddr_t __maybe_unused vstart;
845 
846 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
847 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
848 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
849 		     teecore_memtype_name(map->type), vstart,
850 		     vstart + map->size - 1, map->pa,
851 		     (paddr_t)(map->pa + map->size - 1), map->size,
852 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
853 	}
854 }
855 
856 #if DEBUG_XLAT_TABLE
857 
858 static void dump_xlat_table(vaddr_t va, unsigned int level)
859 {
860 	struct core_mmu_table_info tbl_info;
861 	unsigned int idx = 0;
862 	paddr_t pa;
863 	uint32_t attr;
864 
865 	core_mmu_find_table(NULL, va, level, &tbl_info);
866 	va = tbl_info.va_base;
867 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
868 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
869 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
870 			const char *security_bit = "";
871 
872 			if (core_mmu_entry_have_security_bit(attr)) {
873 				if (attr & TEE_MATTR_SECURE)
874 					security_bit = "S";
875 				else
876 					security_bit = "NS";
877 			}
878 
879 			if (attr & TEE_MATTR_TABLE) {
880 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
881 					" TBL:0x%010" PRIxPA " %s",
882 					level * 2, "", level, va, pa,
883 					security_bit);
884 				dump_xlat_table(va, level + 1);
885 			} else if (attr) {
886 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
887 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
888 					level * 2, "", level, va, pa,
889 					mattr_is_cached(attr) ? "MEM" :
890 					"DEV",
891 					attr & TEE_MATTR_PW ? "RW" : "RO",
892 					attr & TEE_MATTR_PX ? "X " : "XN",
893 					security_bit);
894 			} else {
895 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
896 					    " INVALID\n",
897 					    level * 2, "", level, va);
898 			}
899 		}
900 		va += BIT64(tbl_info.shift);
901 	}
902 }
903 
904 #else
905 
906 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
907 {
908 }
909 
910 #endif
911 
912 /*
913  * Reserves virtual memory space for pager usage.
914  *
915  * From the start of the first memory used by the link script +
916  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
917  * mapping for pager usage. This adds translation tables as needed for the
918  * pager to operate.
919  */
920 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems,
921 			      size_t *last)
922 {
923 	paddr_t begin = 0;
924 	paddr_t end = 0;
925 	size_t size = 0;
926 	size_t pos = 0;
927 	size_t n = 0;
928 
929 	if (*last >= (num_elems - 1)) {
930 		EMSG("Out of entries (%zu) in memory map", num_elems);
931 		panic();
932 	}
933 
934 	for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) {
935 		if (map_is_tee_ram(mmap + n)) {
936 			if (!begin)
937 				begin = mmap[n].pa;
938 			pos = n + 1;
939 		}
940 	}
941 
942 	end = mmap[pos - 1].pa + mmap[pos - 1].size;
943 	assert(end - begin < TEE_RAM_VA_SIZE);
944 	size = TEE_RAM_VA_SIZE - (end - begin);
945 
946 	assert(pos <= *last);
947 	memmove(mmap + pos + 1, mmap + pos,
948 		sizeof(struct tee_mmap_region) * (*last - pos));
949 	(*last)++;
950 	memset(mmap + pos, 0, sizeof(mmap[0]));
951 	mmap[pos].type = MEM_AREA_PAGER_VASPACE;
952 	mmap[pos].va = 0;
953 	mmap[pos].size = size;
954 	mmap[pos].region_size = SMALL_PAGE_SIZE;
955 	mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE);
956 }
957 
958 static void check_sec_nsec_mem_config(void)
959 {
960 	size_t n = 0;
961 
962 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
963 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
964 				    secure_only[n].size))
965 			panic("Invalid memory access config: sec/nsec");
966 	}
967 }
968 
969 static void collect_device_mem_ranges(struct tee_mmap_region *memory_map,
970 				      size_t num_elems, size_t *last)
971 {
972 	const char *compatible = "arm,ffa-manifest-device-regions";
973 	void *fdt = get_manifest_dt();
974 	const char *name = NULL;
975 	uint64_t page_count = 0;
976 	uint64_t base = 0;
977 	int subnode = 0;
978 	int node = 0;
979 
980 	assert(fdt);
981 
982 	node = fdt_node_offset_by_compatible(fdt, 0, compatible);
983 	if (node < 0)
984 		return;
985 
986 	fdt_for_each_subnode(subnode, fdt, node) {
987 		name = fdt_get_name(fdt, subnode, NULL);
988 		if (!name)
989 			continue;
990 
991 		if (dt_getprop_as_number(fdt, subnode, "base-address",
992 					 &base)) {
993 			EMSG("Mandatory field is missing: base-address");
994 			continue;
995 		}
996 
997 		if (base & SMALL_PAGE_MASK) {
998 			EMSG("base-address is not page aligned");
999 			continue;
1000 		}
1001 
1002 		if (dt_getprop_as_number(fdt, subnode, "pages-count",
1003 					 &page_count)) {
1004 			EMSG("Mandatory field is missing: pages-count");
1005 			continue;
1006 		}
1007 
1008 		add_phys_mem(memory_map, num_elems, name, MEM_AREA_IO_SEC,
1009 			     base, page_count * SMALL_PAGE_SIZE, last);
1010 	}
1011 }
1012 
1013 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map,
1014 				 size_t num_elems)
1015 {
1016 	const struct core_mmu_phys_mem *mem = NULL;
1017 	vaddr_t ram_start = secure_only[0].paddr;
1018 	size_t last = 0;
1019 
1020 
1021 #define ADD_PHYS_MEM(_type, _addr, _size) \
1022 		add_phys_mem(memory_map, num_elems, #_addr, (_type), \
1023 			     (_addr), (_size),  &last)
1024 
1025 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
1026 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start,
1027 			     VCORE_UNPG_RX_PA - ram_start);
1028 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
1029 			     VCORE_UNPG_RX_SZ);
1030 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
1031 			     VCORE_UNPG_RO_SZ);
1032 
1033 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1034 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
1035 				     VCORE_UNPG_RW_SZ);
1036 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
1037 				     VCORE_NEX_RW_SZ);
1038 		} else {
1039 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
1040 				     VCORE_UNPG_RW_SZ);
1041 		}
1042 
1043 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1044 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
1045 				     VCORE_INIT_RX_SZ);
1046 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
1047 				     VCORE_INIT_RO_SZ);
1048 		}
1049 	} else {
1050 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
1051 	}
1052 
1053 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1054 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
1055 			     TRUSTED_DRAM_SIZE);
1056 	} else {
1057 		/*
1058 		 * Every guest will have own TA RAM if virtualization
1059 		 * support is enabled.
1060 		 */
1061 		paddr_t ta_base = 0;
1062 		size_t ta_size = 0;
1063 
1064 		core_mmu_get_ta_range(&ta_base, &ta_size);
1065 		ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size);
1066 	}
1067 
1068 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
1069 	    IS_ENABLED(CFG_WITH_PAGER)) {
1070 		/*
1071 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
1072 		 * disabled.
1073 		 */
1074 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1075 	}
1076 
1077 #undef ADD_PHYS_MEM
1078 
1079 	/* Collect device memory info from SP manifest */
1080 	if (IS_ENABLED(CFG_CORE_SEL2_SPMC))
1081 		collect_device_mem_ranges(memory_map, num_elems, &last);
1082 
1083 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1084 		/* Only unmapped virtual range may have a null phys addr */
1085 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1086 
1087 		add_phys_mem(memory_map, num_elems, mem->name, mem->type,
1088 			     mem->addr, mem->size, &last);
1089 	}
1090 
1091 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1092 		verify_special_mem_areas(memory_map, phys_sdp_mem_begin,
1093 					 phys_sdp_mem_end, "SDP");
1094 
1095 	add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE,
1096 		     CFG_RESERVED_VASPACE_SIZE, &last);
1097 
1098 	add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE,
1099 		     SHM_VASPACE_SIZE, &last);
1100 
1101 	memory_map[last].type = MEM_AREA_END;
1102 
1103 	return last;
1104 }
1105 
1106 static void assign_mem_granularity(struct tee_mmap_region *memory_map)
1107 {
1108 	struct tee_mmap_region *map = NULL;
1109 
1110 	/*
1111 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1112 	 * SMALL_PAGE_SIZE.
1113 	 */
1114 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1115 		paddr_t mask = map->pa | map->size;
1116 
1117 		if (!(mask & CORE_MMU_PGDIR_MASK))
1118 			map->region_size = CORE_MMU_PGDIR_SIZE;
1119 		else if (!(mask & SMALL_PAGE_MASK))
1120 			map->region_size = SMALL_PAGE_SIZE;
1121 		else
1122 			panic("Impossible memory alignment");
1123 
1124 		if (map_is_tee_ram(map))
1125 			map->region_size = SMALL_PAGE_SIZE;
1126 	}
1127 }
1128 
1129 static bool place_tee_ram_at_top(paddr_t paddr)
1130 {
1131 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1132 }
1133 
1134 /*
1135  * MMU arch driver shall override this function if it helps
1136  * optimizing the memory footprint of the address translation tables.
1137  */
1138 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1139 {
1140 	return place_tee_ram_at_top(paddr);
1141 }
1142 
1143 static bool assign_mem_va_dir(vaddr_t tee_ram_va,
1144 			      struct tee_mmap_region *memory_map,
1145 			      bool tee_ram_at_top)
1146 {
1147 	struct tee_mmap_region *map = NULL;
1148 	vaddr_t va = 0;
1149 	bool va_is_secure = true;
1150 
1151 	/*
1152 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1153 	 * 0 is by design an invalid va, so return false directly.
1154 	 */
1155 	if (!tee_ram_va)
1156 		return false;
1157 
1158 	/* Clear eventual previous assignments */
1159 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1160 		map->va = 0;
1161 
1162 	/*
1163 	 * TEE RAM regions are always aligned with region_size.
1164 	 *
1165 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1166 	 * since it handles virtual memory which covers the part of the ELF
1167 	 * that cannot fit directly into memory.
1168 	 */
1169 	va = tee_ram_va;
1170 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1171 		if (map_is_tee_ram(map) ||
1172 		    map->type == MEM_AREA_PAGER_VASPACE) {
1173 			assert(!(va & (map->region_size - 1)));
1174 			assert(!(map->size & (map->region_size - 1)));
1175 			map->va = va;
1176 			if (ADD_OVERFLOW(va, map->size, &va))
1177 				return false;
1178 			if (va >= BIT64(core_mmu_get_va_width()))
1179 				return false;
1180 		}
1181 	}
1182 
1183 	if (tee_ram_at_top) {
1184 		/*
1185 		 * Map non-tee ram regions at addresses lower than the tee
1186 		 * ram region.
1187 		 */
1188 		va = tee_ram_va;
1189 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1190 			map->attr = core_mmu_type_to_attr(map->type);
1191 			if (map->va)
1192 				continue;
1193 
1194 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1195 			    va_is_secure != map_is_secure(map)) {
1196 				va_is_secure = !va_is_secure;
1197 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1198 			}
1199 
1200 			if (SUB_OVERFLOW(va, map->size, &va))
1201 				return false;
1202 			va = ROUNDDOWN(va, map->region_size);
1203 			/*
1204 			 * Make sure that va is aligned with pa for
1205 			 * efficient pgdir mapping. Basically pa &
1206 			 * pgdir_mask should be == va & pgdir_mask
1207 			 */
1208 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1209 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1210 					return false;
1211 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1212 			}
1213 			map->va = va;
1214 		}
1215 	} else {
1216 		/*
1217 		 * Map non-tee ram regions at addresses higher than the tee
1218 		 * ram region.
1219 		 */
1220 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1221 			map->attr = core_mmu_type_to_attr(map->type);
1222 			if (map->va)
1223 				continue;
1224 
1225 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1226 			    va_is_secure != map_is_secure(map)) {
1227 				va_is_secure = !va_is_secure;
1228 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1229 						     &va))
1230 					return false;
1231 			}
1232 
1233 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1234 				return false;
1235 			/*
1236 			 * Make sure that va is aligned with pa for
1237 			 * efficient pgdir mapping. Basically pa &
1238 			 * pgdir_mask should be == va & pgdir_mask
1239 			 */
1240 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1241 				vaddr_t offs = (map->pa - va) &
1242 					       CORE_MMU_PGDIR_MASK;
1243 
1244 				if (ADD_OVERFLOW(va, offs, &va))
1245 					return false;
1246 			}
1247 
1248 			map->va = va;
1249 			if (ADD_OVERFLOW(va, map->size, &va))
1250 				return false;
1251 			if (va >= BIT64(core_mmu_get_va_width()))
1252 				return false;
1253 		}
1254 	}
1255 
1256 	return true;
1257 }
1258 
1259 static bool assign_mem_va(vaddr_t tee_ram_va,
1260 			  struct tee_mmap_region *memory_map)
1261 {
1262 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1263 
1264 	/*
1265 	 * Check that we're not overlapping with the user VA range.
1266 	 */
1267 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1268 		/*
1269 		 * User VA range is supposed to be defined after these
1270 		 * mappings have been established.
1271 		 */
1272 		assert(!core_mmu_user_va_range_is_defined());
1273 	} else {
1274 		vaddr_t user_va_base = 0;
1275 		size_t user_va_size = 0;
1276 
1277 		assert(core_mmu_user_va_range_is_defined());
1278 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1279 		if (tee_ram_va < (user_va_base + user_va_size))
1280 			return false;
1281 	}
1282 
1283 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1284 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1285 
1286 		/* Try whole mapping covered by a single base xlat entry */
1287 		if (prefered_dir != tee_ram_at_top &&
1288 		    assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir))
1289 			return true;
1290 	}
1291 
1292 	return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top);
1293 }
1294 
1295 static int cmp_init_mem_map(const void *a, const void *b)
1296 {
1297 	const struct tee_mmap_region *mm_a = a;
1298 	const struct tee_mmap_region *mm_b = b;
1299 	int rc = 0;
1300 
1301 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1302 	if (!rc)
1303 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1304 	/*
1305 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1306 	 * the same level2 table. Hence sort secure mapping from non-secure
1307 	 * mapping.
1308 	 */
1309 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1310 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1311 
1312 	return rc;
1313 }
1314 
1315 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map,
1316 			       size_t num_elems, size_t *last,
1317 			       vaddr_t id_map_start, vaddr_t id_map_end)
1318 {
1319 	struct tee_mmap_region *map = NULL;
1320 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1321 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1322 	size_t len = end - start;
1323 
1324 	if (*last >= num_elems - 1) {
1325 		EMSG("Out of entries (%zu) in memory map", num_elems);
1326 		panic();
1327 	}
1328 
1329 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1330 		if (core_is_buffer_intersect(map->va, map->size, start, len))
1331 			return false;
1332 
1333 	*map = (struct tee_mmap_region){
1334 		.type = MEM_AREA_IDENTITY_MAP_RX,
1335 		/*
1336 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1337 		 * translation table, at the increased risk of clashes with
1338 		 * the rest of the memory map.
1339 		 */
1340 		.region_size = SMALL_PAGE_SIZE,
1341 		.pa = start,
1342 		.va = start,
1343 		.size = len,
1344 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1345 	};
1346 
1347 	(*last)++;
1348 
1349 	return true;
1350 }
1351 
1352 static unsigned long init_mem_map(struct tee_mmap_region *memory_map,
1353 				  size_t num_elems, unsigned long seed)
1354 {
1355 	/*
1356 	 * @id_map_start and @id_map_end describes a physical memory range
1357 	 * that must be mapped Read-Only eXecutable at identical virtual
1358 	 * addresses.
1359 	 */
1360 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1361 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1362 	vaddr_t start_addr = secure_only[0].paddr;
1363 	unsigned long offs = 0;
1364 	size_t last = 0;
1365 
1366 	last = collect_mem_ranges(memory_map, num_elems);
1367 	assign_mem_granularity(memory_map);
1368 
1369 	/*
1370 	 * To ease mapping and lower use of xlat tables, sort mapping
1371 	 * description moving small-page regions after the pgdir regions.
1372 	 */
1373 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1374 	      cmp_init_mem_map);
1375 
1376 	if (IS_ENABLED(CFG_WITH_PAGER))
1377 		add_pager_vaspace(memory_map, num_elems, &last);
1378 
1379 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1380 		vaddr_t base_addr = start_addr + seed;
1381 		const unsigned int va_width = core_mmu_get_va_width();
1382 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1383 						   SMALL_PAGE_SHIFT);
1384 		vaddr_t ba = base_addr;
1385 		size_t n = 0;
1386 
1387 		for (n = 0; n < 3; n++) {
1388 			if (n)
1389 				ba = base_addr ^ BIT64(va_width - n);
1390 			ba &= va_mask;
1391 			if (assign_mem_va(ba, memory_map) &&
1392 			    mem_map_add_id_map(memory_map, num_elems, &last,
1393 					       id_map_start, id_map_end)) {
1394 				offs = ba - start_addr;
1395 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1396 				     ba, offs);
1397 				goto out;
1398 			} else {
1399 				DMSG("Failed to map core at %#"PRIxVA, ba);
1400 			}
1401 		}
1402 		EMSG("Failed to map core with seed %#lx", seed);
1403 	}
1404 
1405 	if (!assign_mem_va(start_addr, memory_map))
1406 		panic();
1407 
1408 out:
1409 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1410 	      cmp_mmap_by_lower_va);
1411 
1412 	dump_mmap_table(memory_map);
1413 
1414 	return offs;
1415 }
1416 
1417 static void check_mem_map(struct tee_mmap_region *map)
1418 {
1419 	struct tee_mmap_region *m = NULL;
1420 
1421 	for (m = map; !core_mmap_is_end_of_table(m); m++) {
1422 		switch (m->type) {
1423 		case MEM_AREA_TEE_RAM:
1424 		case MEM_AREA_TEE_RAM_RX:
1425 		case MEM_AREA_TEE_RAM_RO:
1426 		case MEM_AREA_TEE_RAM_RW:
1427 		case MEM_AREA_INIT_RAM_RX:
1428 		case MEM_AREA_INIT_RAM_RO:
1429 		case MEM_AREA_NEX_RAM_RW:
1430 		case MEM_AREA_NEX_RAM_RO:
1431 		case MEM_AREA_IDENTITY_MAP_RX:
1432 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1433 				panic("TEE_RAM can't fit in secure_only");
1434 			break;
1435 		case MEM_AREA_TA_RAM:
1436 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1437 				panic("TA_RAM can't fit in secure_only");
1438 			break;
1439 		case MEM_AREA_NSEC_SHM:
1440 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1441 				panic("NS_SHM can't fit in nsec_shared");
1442 			break;
1443 		case MEM_AREA_SEC_RAM_OVERALL:
1444 		case MEM_AREA_TEE_COHERENT:
1445 		case MEM_AREA_TEE_ASAN:
1446 		case MEM_AREA_IO_SEC:
1447 		case MEM_AREA_IO_NSEC:
1448 		case MEM_AREA_EXT_DT:
1449 		case MEM_AREA_MANIFEST_DT:
1450 		case MEM_AREA_TRANSFER_LIST:
1451 		case MEM_AREA_RAM_SEC:
1452 		case MEM_AREA_RAM_NSEC:
1453 		case MEM_AREA_ROM_SEC:
1454 		case MEM_AREA_RES_VASPACE:
1455 		case MEM_AREA_SHM_VASPACE:
1456 		case MEM_AREA_PAGER_VASPACE:
1457 			break;
1458 		default:
1459 			EMSG("Uhandled memtype %d", m->type);
1460 			panic();
1461 		}
1462 	}
1463 }
1464 
1465 static struct tee_mmap_region *get_tmp_mmap(void)
1466 {
1467 	struct tee_mmap_region *tmp_mmap = (void *)__heap1_start;
1468 
1469 #ifdef CFG_WITH_PAGER
1470 	if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map))
1471 		tmp_mmap = (void *)__heap2_start;
1472 #endif
1473 
1474 	memset(tmp_mmap, 0, sizeof(static_memory_map));
1475 
1476 	return tmp_mmap;
1477 }
1478 
1479 /*
1480  * core_init_mmu_map() - init tee core default memory mapping
1481  *
1482  * This routine sets the static default TEE core mapping. If @seed is > 0
1483  * and configured with CFG_CORE_ASLR it will map tee core at a location
1484  * based on the seed and return the offset from the link address.
1485  *
1486  * If an error happened: core_init_mmu_map is expected to panic.
1487  *
1488  * Note: this function is weak just to make it possible to exclude it from
1489  * the unpaged area.
1490  */
1491 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1492 {
1493 #ifndef CFG_NS_VIRTUALIZATION
1494 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1495 #else
1496 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1497 				  SMALL_PAGE_SIZE);
1498 #endif
1499 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1500 	struct tee_mmap_region *tmp_mmap = get_tmp_mmap();
1501 	unsigned long offs = 0;
1502 
1503 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1504 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1505 		panic("OP-TEE load address is not page aligned");
1506 
1507 	check_sec_nsec_mem_config();
1508 
1509 	/*
1510 	 * Add a entry covering the translation tables which will be
1511 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1512 	 */
1513 	static_memory_map[0] = (struct tee_mmap_region){
1514 		.type = MEM_AREA_TEE_RAM,
1515 		.region_size = SMALL_PAGE_SIZE,
1516 		.pa = start,
1517 		.va = start,
1518 		.size = len,
1519 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1520 	};
1521 
1522 	COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13);
1523 	offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed);
1524 
1525 	check_mem_map(tmp_mmap);
1526 	core_init_mmu(tmp_mmap);
1527 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1528 	core_init_mmu_regs(cfg);
1529 	cfg->map_offset = offs;
1530 	memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map));
1531 }
1532 
1533 bool core_mmu_mattr_is_ok(uint32_t mattr)
1534 {
1535 	/*
1536 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1537 	 * core_mmu_v7.c:mattr_to_texcb
1538 	 */
1539 
1540 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1541 	case TEE_MATTR_MEM_TYPE_DEV:
1542 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1543 	case TEE_MATTR_MEM_TYPE_CACHED:
1544 	case TEE_MATTR_MEM_TYPE_TAGGED:
1545 		return true;
1546 	default:
1547 		return false;
1548 	}
1549 }
1550 
1551 /*
1552  * test attributes of target physical buffer
1553  *
1554  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1555  *
1556  */
1557 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1558 {
1559 	paddr_t ta_base = 0;
1560 	size_t ta_size = 0;
1561 	struct tee_mmap_region *map;
1562 
1563 	/* Empty buffers complies with anything */
1564 	if (len == 0)
1565 		return true;
1566 
1567 	switch (attr) {
1568 	case CORE_MEM_SEC:
1569 		return pbuf_is_inside(secure_only, pbuf, len);
1570 	case CORE_MEM_NON_SEC:
1571 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1572 			pbuf_is_nsec_ddr(pbuf, len);
1573 	case CORE_MEM_TEE_RAM:
1574 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1575 							TEE_RAM_PH_SIZE);
1576 	case CORE_MEM_TA_RAM:
1577 		core_mmu_get_ta_range(&ta_base, &ta_size);
1578 		return core_is_buffer_inside(pbuf, len, ta_base, ta_size);
1579 #ifdef CFG_CORE_RESERVED_SHM
1580 	case CORE_MEM_NSEC_SHM:
1581 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1582 							TEE_SHMEM_SIZE);
1583 #endif
1584 	case CORE_MEM_SDP_MEM:
1585 		return pbuf_is_sdp_mem(pbuf, len);
1586 	case CORE_MEM_CACHED:
1587 		map = find_map_by_pa(pbuf);
1588 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1589 			return false;
1590 		return mattr_is_cached(map->attr);
1591 	default:
1592 		return false;
1593 	}
1594 }
1595 
1596 /* test attributes of target virtual buffer (in core mapping) */
1597 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1598 {
1599 	paddr_t p;
1600 
1601 	/* Empty buffers complies with anything */
1602 	if (len == 0)
1603 		return true;
1604 
1605 	p = virt_to_phys((void *)vbuf);
1606 	if (!p)
1607 		return false;
1608 
1609 	return core_pbuf_is(attr, p, len);
1610 }
1611 
1612 /* core_va2pa - teecore exported service */
1613 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1614 {
1615 	struct tee_mmap_region *map;
1616 
1617 	map = find_map_by_va(va);
1618 	if (!va_is_in_map(map, (vaddr_t)va))
1619 		return -1;
1620 
1621 	/*
1622 	 * We can calculate PA for static map. Virtual address ranges
1623 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1624 	 * together with an invalid null physical address.
1625 	 */
1626 	if (map->pa)
1627 		*pa = map->pa + (vaddr_t)va  - map->va;
1628 	else
1629 		*pa = 0;
1630 
1631 	return 0;
1632 }
1633 
1634 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1635 {
1636 	if (!pa_is_in_map(map, pa, len))
1637 		return NULL;
1638 
1639 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1640 }
1641 
1642 /*
1643  * teecore gets some memory area definitions
1644  */
1645 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1646 			      vaddr_t *e)
1647 {
1648 	struct tee_mmap_region *map = find_map_by_type(type);
1649 
1650 	if (map) {
1651 		*s = map->va;
1652 		*e = map->va + map->size;
1653 	} else {
1654 		*s = 0;
1655 		*e = 0;
1656 	}
1657 }
1658 
1659 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1660 {
1661 	struct tee_mmap_region *map = find_map_by_pa(pa);
1662 
1663 	if (!map)
1664 		return MEM_AREA_MAXTYPE;
1665 	return map->type;
1666 }
1667 
1668 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1669 			paddr_t pa, uint32_t attr)
1670 {
1671 	assert(idx < tbl_info->num_entries);
1672 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1673 				     idx, pa, attr);
1674 }
1675 
1676 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1677 			paddr_t *pa, uint32_t *attr)
1678 {
1679 	assert(idx < tbl_info->num_entries);
1680 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1681 				     idx, pa, attr);
1682 }
1683 
1684 static void clear_region(struct core_mmu_table_info *tbl_info,
1685 			 struct tee_mmap_region *region)
1686 {
1687 	unsigned int end = 0;
1688 	unsigned int idx = 0;
1689 
1690 	/* va, len and pa should be block aligned */
1691 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1692 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1693 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1694 
1695 	idx = core_mmu_va2idx(tbl_info, region->va);
1696 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1697 
1698 	while (idx < end) {
1699 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1700 		idx++;
1701 	}
1702 }
1703 
1704 static void set_region(struct core_mmu_table_info *tbl_info,
1705 		       struct tee_mmap_region *region)
1706 {
1707 	unsigned int end;
1708 	unsigned int idx;
1709 	paddr_t pa;
1710 
1711 	/* va, len and pa should be block aligned */
1712 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1713 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1714 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1715 
1716 	idx = core_mmu_va2idx(tbl_info, region->va);
1717 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1718 	pa = region->pa;
1719 
1720 	while (idx < end) {
1721 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1722 		idx++;
1723 		pa += BIT64(tbl_info->shift);
1724 	}
1725 }
1726 
1727 static void set_pg_region(struct core_mmu_table_info *dir_info,
1728 			  struct vm_region *region, struct pgt **pgt,
1729 			  struct core_mmu_table_info *pg_info)
1730 {
1731 	struct tee_mmap_region r = {
1732 		.va = region->va,
1733 		.size = region->size,
1734 		.attr = region->attr,
1735 	};
1736 	vaddr_t end = r.va + r.size;
1737 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1738 
1739 	while (r.va < end) {
1740 		if (!pg_info->table ||
1741 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1742 			/*
1743 			 * We're assigning a new translation table.
1744 			 */
1745 			unsigned int idx;
1746 
1747 			/* Virtual addresses must grow */
1748 			assert(r.va > pg_info->va_base);
1749 
1750 			idx = core_mmu_va2idx(dir_info, r.va);
1751 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1752 
1753 			/*
1754 			 * Advance pgt to va_base, note that we may need to
1755 			 * skip multiple page tables if there are large
1756 			 * holes in the vm map.
1757 			 */
1758 			while ((*pgt)->vabase < pg_info->va_base) {
1759 				*pgt = SLIST_NEXT(*pgt, link);
1760 				/* We should have allocated enough */
1761 				assert(*pgt);
1762 			}
1763 			assert((*pgt)->vabase == pg_info->va_base);
1764 			pg_info->table = (*pgt)->tbl;
1765 
1766 			core_mmu_set_entry(dir_info, idx,
1767 					   virt_to_phys(pg_info->table),
1768 					   pgt_attr);
1769 		}
1770 
1771 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1772 			     end - r.va);
1773 
1774 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1775 			size_t granule = BIT(pg_info->shift);
1776 			size_t offset = r.va - region->va + region->offset;
1777 
1778 			r.size = MIN(r.size,
1779 				     mobj_get_phys_granule(region->mobj));
1780 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1781 
1782 			if (mobj_get_pa(region->mobj, offset, granule,
1783 					&r.pa) != TEE_SUCCESS)
1784 				panic("Failed to get PA of unpaged mobj");
1785 			set_region(pg_info, &r);
1786 		}
1787 		r.va += r.size;
1788 	}
1789 }
1790 
1791 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1792 			     size_t size_left, paddr_t block_size,
1793 			     struct tee_mmap_region *mm __maybe_unused)
1794 {
1795 	/* VA and PA are aligned to block size at current level */
1796 	if ((vaddr | paddr) & (block_size - 1))
1797 		return false;
1798 
1799 	/* Remainder fits into block at current level */
1800 	if (size_left < block_size)
1801 		return false;
1802 
1803 #ifdef CFG_WITH_PAGER
1804 	/*
1805 	 * If pager is enabled, we need to map tee ram
1806 	 * regions with small pages only
1807 	 */
1808 	if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE)
1809 		return false;
1810 #endif
1811 
1812 	return true;
1813 }
1814 
1815 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1816 {
1817 	struct core_mmu_table_info tbl_info;
1818 	unsigned int idx;
1819 	vaddr_t vaddr = mm->va;
1820 	paddr_t paddr = mm->pa;
1821 	ssize_t size_left = mm->size;
1822 	unsigned int level;
1823 	bool table_found;
1824 	uint32_t old_attr;
1825 
1826 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1827 
1828 	while (size_left > 0) {
1829 		level = CORE_MMU_BASE_TABLE_LEVEL;
1830 
1831 		while (true) {
1832 			paddr_t block_size = 0;
1833 
1834 			assert(core_mmu_level_in_range(level));
1835 
1836 			table_found = core_mmu_find_table(prtn, vaddr, level,
1837 							  &tbl_info);
1838 			if (!table_found)
1839 				panic("can't find table for mapping");
1840 
1841 			block_size = BIT64(tbl_info.shift);
1842 
1843 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1844 			if (!can_map_at_level(paddr, vaddr, size_left,
1845 					      block_size, mm)) {
1846 				bool secure = mm->attr & TEE_MATTR_SECURE;
1847 
1848 				/*
1849 				 * This part of the region can't be mapped at
1850 				 * this level. Need to go deeper.
1851 				 */
1852 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1853 								     idx,
1854 								     secure))
1855 					panic("Can't divide MMU entry");
1856 				level = tbl_info.next_level;
1857 				continue;
1858 			}
1859 
1860 			/* We can map part of the region at current level */
1861 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1862 			if (old_attr)
1863 				panic("Page is already mapped");
1864 
1865 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1866 			paddr += block_size;
1867 			vaddr += block_size;
1868 			size_left -= block_size;
1869 
1870 			break;
1871 		}
1872 	}
1873 }
1874 
1875 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1876 			      enum teecore_memtypes memtype)
1877 {
1878 	TEE_Result ret;
1879 	struct core_mmu_table_info tbl_info;
1880 	struct tee_mmap_region *mm;
1881 	unsigned int idx;
1882 	uint32_t old_attr;
1883 	uint32_t exceptions;
1884 	vaddr_t vaddr = vstart;
1885 	size_t i;
1886 	bool secure;
1887 
1888 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1889 
1890 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1891 
1892 	if (vaddr & SMALL_PAGE_MASK)
1893 		return TEE_ERROR_BAD_PARAMETERS;
1894 
1895 	exceptions = mmu_lock();
1896 
1897 	mm = find_map_by_va((void *)vaddr);
1898 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1899 		panic("VA does not belong to any known mm region");
1900 
1901 	if (!core_mmu_is_dynamic_vaspace(mm))
1902 		panic("Trying to map into static region");
1903 
1904 	for (i = 0; i < num_pages; i++) {
1905 		if (pages[i] & SMALL_PAGE_MASK) {
1906 			ret = TEE_ERROR_BAD_PARAMETERS;
1907 			goto err;
1908 		}
1909 
1910 		while (true) {
1911 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1912 						 &tbl_info))
1913 				panic("Can't find pagetable for vaddr ");
1914 
1915 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1916 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1917 				break;
1918 
1919 			/* This is supertable. Need to divide it. */
1920 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1921 							     secure))
1922 				panic("Failed to spread pgdir on small tables");
1923 		}
1924 
1925 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1926 		if (old_attr)
1927 			panic("Page is already mapped");
1928 
1929 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1930 				   core_mmu_type_to_attr(memtype));
1931 		vaddr += SMALL_PAGE_SIZE;
1932 	}
1933 
1934 	/*
1935 	 * Make sure all the changes to translation tables are visible
1936 	 * before returning. TLB doesn't need to be invalidated as we are
1937 	 * guaranteed that there's no valid mapping in this range.
1938 	 */
1939 	core_mmu_table_write_barrier();
1940 	mmu_unlock(exceptions);
1941 
1942 	return TEE_SUCCESS;
1943 err:
1944 	mmu_unlock(exceptions);
1945 
1946 	if (i)
1947 		core_mmu_unmap_pages(vstart, i);
1948 
1949 	return ret;
1950 }
1951 
1952 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
1953 					 size_t num_pages,
1954 					 enum teecore_memtypes memtype)
1955 {
1956 	struct core_mmu_table_info tbl_info = { };
1957 	struct tee_mmap_region *mm = NULL;
1958 	unsigned int idx = 0;
1959 	uint32_t old_attr = 0;
1960 	uint32_t exceptions = 0;
1961 	vaddr_t vaddr = vstart;
1962 	paddr_t paddr = pstart;
1963 	size_t i = 0;
1964 	bool secure = false;
1965 
1966 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1967 
1968 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1969 
1970 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
1971 		return TEE_ERROR_BAD_PARAMETERS;
1972 
1973 	exceptions = mmu_lock();
1974 
1975 	mm = find_map_by_va((void *)vaddr);
1976 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1977 		panic("VA does not belong to any known mm region");
1978 
1979 	if (!core_mmu_is_dynamic_vaspace(mm))
1980 		panic("Trying to map into static region");
1981 
1982 	for (i = 0; i < num_pages; i++) {
1983 		while (true) {
1984 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1985 						 &tbl_info))
1986 				panic("Can't find pagetable for vaddr ");
1987 
1988 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1989 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1990 				break;
1991 
1992 			/* This is supertable. Need to divide it. */
1993 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1994 							     secure))
1995 				panic("Failed to spread pgdir on small tables");
1996 		}
1997 
1998 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1999 		if (old_attr)
2000 			panic("Page is already mapped");
2001 
2002 		core_mmu_set_entry(&tbl_info, idx, paddr,
2003 				   core_mmu_type_to_attr(memtype));
2004 		paddr += SMALL_PAGE_SIZE;
2005 		vaddr += SMALL_PAGE_SIZE;
2006 	}
2007 
2008 	/*
2009 	 * Make sure all the changes to translation tables are visible
2010 	 * before returning. TLB doesn't need to be invalidated as we are
2011 	 * guaranteed that there's no valid mapping in this range.
2012 	 */
2013 	core_mmu_table_write_barrier();
2014 	mmu_unlock(exceptions);
2015 
2016 	return TEE_SUCCESS;
2017 }
2018 
2019 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
2020 {
2021 	struct core_mmu_table_info tbl_info;
2022 	struct tee_mmap_region *mm;
2023 	size_t i;
2024 	unsigned int idx;
2025 	uint32_t exceptions;
2026 
2027 	exceptions = mmu_lock();
2028 
2029 	mm = find_map_by_va((void *)vstart);
2030 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
2031 		panic("VA does not belong to any known mm region");
2032 
2033 	if (!core_mmu_is_dynamic_vaspace(mm))
2034 		panic("Trying to unmap static region");
2035 
2036 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
2037 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
2038 			panic("Can't find pagetable");
2039 
2040 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
2041 			panic("Invalid pagetable level");
2042 
2043 		idx = core_mmu_va2idx(&tbl_info, vstart);
2044 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
2045 	}
2046 	tlbi_all();
2047 
2048 	mmu_unlock(exceptions);
2049 }
2050 
2051 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
2052 				struct user_mode_ctx *uctx)
2053 {
2054 	struct core_mmu_table_info pg_info = { };
2055 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
2056 	struct pgt *pgt = NULL;
2057 	struct pgt *p = NULL;
2058 	struct vm_region *r = NULL;
2059 
2060 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
2061 		return; /* Nothing to map */
2062 
2063 	/*
2064 	 * Allocate all page tables in advance.
2065 	 */
2066 	pgt_get_all(uctx);
2067 	pgt = SLIST_FIRST(pgt_cache);
2068 
2069 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2070 
2071 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2072 		set_pg_region(dir_info, r, &pgt, &pg_info);
2073 	/* Record that the translation tables now are populated. */
2074 	SLIST_FOREACH(p, pgt_cache, link) {
2075 		p->populated = true;
2076 		if (p == pgt)
2077 			break;
2078 	}
2079 	assert(p == pgt);
2080 }
2081 
2082 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2083 				   size_t len)
2084 {
2085 	struct core_mmu_table_info tbl_info = { };
2086 	struct tee_mmap_region *res_map = NULL;
2087 	struct tee_mmap_region *map = NULL;
2088 	paddr_t pa = virt_to_phys(addr);
2089 	size_t granule = 0;
2090 	ptrdiff_t i = 0;
2091 	paddr_t p = 0;
2092 	size_t l = 0;
2093 
2094 	map = find_map_by_type_and_pa(type, pa, len);
2095 	if (!map)
2096 		return TEE_ERROR_GENERIC;
2097 
2098 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2099 	if (!res_map)
2100 		return TEE_ERROR_GENERIC;
2101 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2102 		return TEE_ERROR_GENERIC;
2103 	granule = BIT(tbl_info.shift);
2104 
2105 	if (map < static_memory_map ||
2106 	    map >= static_memory_map + ARRAY_SIZE(static_memory_map))
2107 		return TEE_ERROR_GENERIC;
2108 	i = map - static_memory_map;
2109 
2110 	/* Check that we have a full match */
2111 	p = ROUNDDOWN(pa, granule);
2112 	l = ROUNDUP(len + pa - p, granule);
2113 	if (map->pa != p || map->size != l)
2114 		return TEE_ERROR_GENERIC;
2115 
2116 	clear_region(&tbl_info, map);
2117 	tlbi_all();
2118 
2119 	/* If possible remove the va range from res_map */
2120 	if (res_map->va - map->size == map->va) {
2121 		res_map->va -= map->size;
2122 		res_map->size += map->size;
2123 	}
2124 
2125 	/* Remove the entry. */
2126 	memmove(map, map + 1,
2127 		(ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map));
2128 
2129 	/* Clear the last new entry in case it was used */
2130 	memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1,
2131 	       0, sizeof(*map));
2132 
2133 	return TEE_SUCCESS;
2134 }
2135 
2136 struct tee_mmap_region *
2137 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2138 {
2139 	struct tee_mmap_region *map = NULL;
2140 	struct tee_mmap_region *map_found = NULL;
2141 
2142 	if (!len)
2143 		return NULL;
2144 
2145 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
2146 		if (map->type != type)
2147 			continue;
2148 
2149 		if (map_found)
2150 			return NULL;
2151 
2152 		map_found = map;
2153 	}
2154 
2155 	if (!map_found || map_found->size < len)
2156 		return NULL;
2157 
2158 	return map_found;
2159 }
2160 
2161 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2162 {
2163 	struct core_mmu_table_info tbl_info;
2164 	struct tee_mmap_region *map;
2165 	size_t n;
2166 	size_t granule;
2167 	paddr_t p;
2168 	size_t l;
2169 
2170 	if (!len)
2171 		return NULL;
2172 
2173 	if (!core_mmu_check_end_pa(addr, len))
2174 		return NULL;
2175 
2176 	/* Check if the memory is already mapped */
2177 	map = find_map_by_type_and_pa(type, addr, len);
2178 	if (map && pbuf_inside_map_area(addr, len, map))
2179 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2180 
2181 	/* Find the reserved va space used for late mappings */
2182 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2183 	if (!map)
2184 		return NULL;
2185 
2186 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2187 		return NULL;
2188 
2189 	granule = BIT64(tbl_info.shift);
2190 	p = ROUNDDOWN(addr, granule);
2191 	l = ROUNDUP(len + addr - p, granule);
2192 
2193 	/* Ban overflowing virtual addresses */
2194 	if (map->size < l)
2195 		return NULL;
2196 
2197 	/*
2198 	 * Something is wrong, we can't fit the va range into the selected
2199 	 * table. The reserved va range is possibly missaligned with
2200 	 * granule.
2201 	 */
2202 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2203 		return NULL;
2204 
2205 	/* Find end of the memory map */
2206 	n = 0;
2207 	while (!core_mmap_is_end_of_table(static_memory_map + n))
2208 		n++;
2209 
2210 	if (n < (ARRAY_SIZE(static_memory_map) - 1)) {
2211 		/* There's room for another entry */
2212 		static_memory_map[n].va = map->va;
2213 		static_memory_map[n].size = l;
2214 		static_memory_map[n + 1].type = MEM_AREA_END;
2215 		map->va += l;
2216 		map->size -= l;
2217 		map = static_memory_map + n;
2218 	} else {
2219 		/*
2220 		 * There isn't room for another entry, steal the reserved
2221 		 * entry as it's not useful for anything else any longer.
2222 		 */
2223 		map->size = l;
2224 	}
2225 	map->type = type;
2226 	map->region_size = granule;
2227 	map->attr = core_mmu_type_to_attr(type);
2228 	map->pa = p;
2229 
2230 	set_region(&tbl_info, map);
2231 
2232 	/* Make sure the new entry is visible before continuing. */
2233 	core_mmu_table_write_barrier();
2234 
2235 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2236 }
2237 
2238 #ifdef CFG_WITH_PAGER
2239 static vaddr_t get_linear_map_end_va(void)
2240 {
2241 	/* this is synced with the generic linker file kern.ld.S */
2242 	return (vaddr_t)__heap2_end;
2243 }
2244 
2245 static paddr_t get_linear_map_end_pa(void)
2246 {
2247 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2248 }
2249 #endif
2250 
2251 #if defined(CFG_TEE_CORE_DEBUG)
2252 static void check_pa_matches_va(void *va, paddr_t pa)
2253 {
2254 	TEE_Result res = TEE_ERROR_GENERIC;
2255 	vaddr_t v = (vaddr_t)va;
2256 	paddr_t p = 0;
2257 	struct core_mmu_table_info ti __maybe_unused = { };
2258 
2259 	if (core_mmu_user_va_range_is_defined()) {
2260 		vaddr_t user_va_base = 0;
2261 		size_t user_va_size = 0;
2262 
2263 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2264 		if (v >= user_va_base &&
2265 		    v <= (user_va_base - 1 + user_va_size)) {
2266 			if (!core_mmu_user_mapping_is_active()) {
2267 				if (pa)
2268 					panic("issue in linear address space");
2269 				return;
2270 			}
2271 
2272 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2273 				       va, &p);
2274 			if (res == TEE_ERROR_NOT_SUPPORTED)
2275 				return;
2276 			if (res == TEE_SUCCESS && pa != p)
2277 				panic("bad pa");
2278 			if (res != TEE_SUCCESS && pa)
2279 				panic("false pa");
2280 			return;
2281 		}
2282 	}
2283 #ifdef CFG_WITH_PAGER
2284 	if (is_unpaged(va)) {
2285 		if (v - boot_mmu_config.map_offset != pa)
2286 			panic("issue in linear address space");
2287 		return;
2288 	}
2289 
2290 	if (tee_pager_get_table_info(v, &ti)) {
2291 		uint32_t a;
2292 
2293 		/*
2294 		 * Lookups in the page table managed by the pager is
2295 		 * dangerous for addresses in the paged area as those pages
2296 		 * changes all the time. But some ranges are safe,
2297 		 * rw-locked areas when the page is populated for instance.
2298 		 */
2299 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2300 		if (a & TEE_MATTR_VALID_BLOCK) {
2301 			paddr_t mask = BIT64(ti.shift) - 1;
2302 
2303 			p |= v & mask;
2304 			if (pa != p)
2305 				panic();
2306 		} else {
2307 			if (pa)
2308 				panic();
2309 		}
2310 		return;
2311 	}
2312 #endif
2313 
2314 	if (!core_va2pa_helper(va, &p)) {
2315 		/* Verfiy only the static mapping (case non null phys addr) */
2316 		if (p && pa != p) {
2317 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2318 			     va, p, pa);
2319 			panic();
2320 		}
2321 	} else {
2322 		if (pa) {
2323 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2324 			panic();
2325 		}
2326 	}
2327 }
2328 #else
2329 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2330 {
2331 }
2332 #endif
2333 
2334 paddr_t virt_to_phys(void *va)
2335 {
2336 	paddr_t pa = 0;
2337 
2338 	if (!arch_va2pa_helper(va, &pa))
2339 		pa = 0;
2340 	check_pa_matches_va(va, pa);
2341 	return pa;
2342 }
2343 
2344 #if defined(CFG_TEE_CORE_DEBUG)
2345 static void check_va_matches_pa(paddr_t pa, void *va)
2346 {
2347 	paddr_t p = 0;
2348 
2349 	if (!va)
2350 		return;
2351 
2352 	p = virt_to_phys(va);
2353 	if (p != pa) {
2354 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2355 		panic();
2356 	}
2357 }
2358 #else
2359 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2360 {
2361 }
2362 #endif
2363 
2364 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2365 {
2366 	if (!core_mmu_user_mapping_is_active())
2367 		return NULL;
2368 
2369 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2370 }
2371 
2372 #ifdef CFG_WITH_PAGER
2373 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2374 {
2375 	paddr_t end_pa = 0;
2376 
2377 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2378 		return NULL;
2379 
2380 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2381 		if (end_pa > get_linear_map_end_pa())
2382 			return NULL;
2383 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2384 	}
2385 
2386 	return tee_pager_phys_to_virt(pa, len);
2387 }
2388 #else
2389 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2390 {
2391 	struct tee_mmap_region *mmap = NULL;
2392 
2393 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2394 	if (!mmap)
2395 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2396 	if (!mmap)
2397 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2398 	if (!mmap)
2399 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2400 	if (!mmap)
2401 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2402 	if (!mmap)
2403 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2404 	/*
2405 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2406 	 * used with pager and not needed here.
2407 	 */
2408 	return map_pa2va(mmap, pa, len);
2409 }
2410 #endif
2411 
2412 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2413 {
2414 	void *va = NULL;
2415 
2416 	switch (m) {
2417 	case MEM_AREA_TS_VASPACE:
2418 		va = phys_to_virt_ts_vaspace(pa, len);
2419 		break;
2420 	case MEM_AREA_TEE_RAM:
2421 	case MEM_AREA_TEE_RAM_RX:
2422 	case MEM_AREA_TEE_RAM_RO:
2423 	case MEM_AREA_TEE_RAM_RW:
2424 	case MEM_AREA_NEX_RAM_RO:
2425 	case MEM_AREA_NEX_RAM_RW:
2426 		va = phys_to_virt_tee_ram(pa, len);
2427 		break;
2428 	case MEM_AREA_SHM_VASPACE:
2429 		/* Find VA from PA in dynamic SHM is not yet supported */
2430 		va = NULL;
2431 		break;
2432 	default:
2433 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2434 	}
2435 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2436 		check_va_matches_pa(pa, va);
2437 	return va;
2438 }
2439 
2440 void *phys_to_virt_io(paddr_t pa, size_t len)
2441 {
2442 	struct tee_mmap_region *map = NULL;
2443 	void *va = NULL;
2444 
2445 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2446 	if (!map)
2447 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2448 	if (!map)
2449 		return NULL;
2450 	va = map_pa2va(map, pa, len);
2451 	check_va_matches_pa(pa, va);
2452 	return va;
2453 }
2454 
2455 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2456 {
2457 	if (cpu_mmu_enabled())
2458 		return (vaddr_t)phys_to_virt(pa, type, len);
2459 
2460 	return (vaddr_t)pa;
2461 }
2462 
2463 #ifdef CFG_WITH_PAGER
2464 bool is_unpaged(const void *va)
2465 {
2466 	vaddr_t v = (vaddr_t)va;
2467 
2468 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2469 }
2470 #endif
2471 
2472 #ifdef CFG_NS_VIRTUALIZATION
2473 bool is_nexus(const void *va)
2474 {
2475 	vaddr_t v = (vaddr_t)va;
2476 
2477 	return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ;
2478 }
2479 #endif
2480 
2481 void core_mmu_init_virtualization(void)
2482 {
2483 	paddr_t b1 = 0;
2484 	paddr_size_t s1 = 0;
2485 
2486 	static_assert(ARRAY_SIZE(secure_only) <= 2);
2487 	if (ARRAY_SIZE(secure_only) == 2) {
2488 		b1 = secure_only[1].paddr;
2489 		s1 = secure_only[1].size;
2490 	}
2491 	virt_init_memory(static_memory_map, secure_only[0].paddr,
2492 			 secure_only[0].size, b1, s1);
2493 }
2494 
2495 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2496 {
2497 	assert(p->pa);
2498 	if (cpu_mmu_enabled()) {
2499 		if (!p->va)
2500 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2501 		assert(p->va);
2502 		return p->va;
2503 	}
2504 	return p->pa;
2505 }
2506 
2507 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2508 {
2509 	assert(p->pa);
2510 	if (cpu_mmu_enabled()) {
2511 		if (!p->va)
2512 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2513 						      len);
2514 		assert(p->va);
2515 		return p->va;
2516 	}
2517 	return p->pa;
2518 }
2519 
2520 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2521 {
2522 	assert(p->pa);
2523 	if (cpu_mmu_enabled()) {
2524 		if (!p->va)
2525 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2526 						      len);
2527 		assert(p->va);
2528 		return p->va;
2529 	}
2530 	return p->pa;
2531 }
2532 
2533 #ifdef CFG_CORE_RESERVED_SHM
2534 static TEE_Result teecore_init_pub_ram(void)
2535 {
2536 	vaddr_t s = 0;
2537 	vaddr_t e = 0;
2538 
2539 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2540 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2541 
2542 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2543 		panic("invalid PUB RAM");
2544 
2545 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2546 	if (!tee_vbuf_is_non_sec(s, e - s))
2547 		panic("PUB RAM is not non-secure");
2548 
2549 #ifdef CFG_PL310
2550 	/* Allocate statically the l2cc mutex */
2551 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2552 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2553 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2554 #endif
2555 
2556 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2557 	default_nsec_shm_size = e - s;
2558 
2559 	return TEE_SUCCESS;
2560 }
2561 early_init(teecore_init_pub_ram);
2562 #endif /*CFG_CORE_RESERVED_SHM*/
2563 
2564 void core_mmu_init_ta_ram(void)
2565 {
2566 	vaddr_t s = 0;
2567 	vaddr_t e = 0;
2568 	paddr_t ps = 0;
2569 	size_t size = 0;
2570 
2571 	/*
2572 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2573 	 * shared mem allocated from teecore.
2574 	 */
2575 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
2576 		virt_get_ta_ram(&s, &e);
2577 	else
2578 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2579 
2580 	ps = virt_to_phys((void *)s);
2581 	size = e - s;
2582 
2583 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2584 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2585 		panic("invalid TA RAM");
2586 
2587 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2588 	if (!tee_pbuf_is_sec(ps, size))
2589 		panic("TA RAM is not secure");
2590 
2591 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2592 		panic("TA RAM pool is not empty");
2593 
2594 	/* remove previous config and init TA ddr memory pool */
2595 	tee_mm_final(&tee_mm_sec_ddr);
2596 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2597 		    TEE_MM_POOL_NO_FLAGS);
2598 }
2599