1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016-2025 Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved. 6 */ 7 8 #include <assert.h> 9 #include <config.h> 10 #include <kernel/boot.h> 11 #include <kernel/dt.h> 12 #include <kernel/linker.h> 13 #include <kernel/panic.h> 14 #include <kernel/spinlock.h> 15 #include <kernel/tee_l2cc_mutex.h> 16 #include <kernel/tee_misc.h> 17 #include <kernel/tlb_helpers.h> 18 #include <kernel/user_mode_ctx.h> 19 #include <kernel/virtualization.h> 20 #include <libfdt.h> 21 #include <memtag.h> 22 #include <mm/core_memprot.h> 23 #include <mm/core_mmu.h> 24 #include <mm/mobj.h> 25 #include <mm/pgt_cache.h> 26 #include <mm/phys_mem.h> 27 #include <mm/tee_pager.h> 28 #include <mm/vm.h> 29 #include <platform_config.h> 30 #include <stdalign.h> 31 #include <string.h> 32 #include <trace.h> 33 #include <util.h> 34 35 #ifndef DEBUG_XLAT_TABLE 36 #define DEBUG_XLAT_TABLE 0 37 #endif 38 39 #define SHM_VASPACE_SIZE (1024 * 1024 * 32) 40 41 /* Virtual memory pool for core mappings */ 42 tee_mm_pool_t core_virt_mem_pool; 43 44 /* Virtual memory pool for shared memory mappings */ 45 tee_mm_pool_t core_virt_shm_pool; 46 47 #ifdef CFG_CORE_PHYS_RELOCATABLE 48 unsigned long core_mmu_tee_load_pa __nex_bss; 49 #else 50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR; 51 #endif 52 53 /* 54 * These variables are initialized before .bss is cleared. To avoid 55 * resetting them when .bss is cleared we're storing them in .data instead, 56 * even if they initially are zero. 57 */ 58 59 #ifdef CFG_CORE_RESERVED_SHM 60 /* Default NSec shared memory allocated from NSec world */ 61 unsigned long default_nsec_shm_size __nex_bss; 62 unsigned long default_nsec_shm_paddr __nex_bss; 63 #endif 64 65 #ifdef CFG_BOOT_MEM 66 static struct memory_map static_memory_map __nex_bss; 67 #else 68 static struct tee_mmap_region static_mmap_regions[CFG_MMAP_REGIONS 69 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE) 70 + 1 71 #endif 72 + 4] __nex_bss; 73 static struct memory_map static_memory_map __nex_data = { 74 .map = static_mmap_regions, 75 .alloc_count = ARRAY_SIZE(static_mmap_regions), 76 }; 77 #endif 78 void (*memory_map_realloc_func)(struct memory_map *mem_map) __nex_bss; 79 80 /* Offset of the first TEE RAM mapping from start of secure RAM */ 81 static size_t tee_ram_initial_offs __nex_bss; 82 83 /* Define the platform's memory layout. */ 84 struct memaccess_area { 85 paddr_t paddr; 86 size_t size; 87 }; 88 89 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } 90 91 static struct memaccess_area secure_only[] __nex_data = { 92 #ifdef CFG_CORE_PHYS_RELOCATABLE 93 MEMACCESS_AREA(0, 0), 94 #else 95 #ifdef TRUSTED_SRAM_BASE 96 MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), 97 #endif 98 MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), 99 #endif 100 }; 101 102 static struct memaccess_area nsec_shared[] __nex_data = { 103 #ifdef CFG_CORE_RESERVED_SHM 104 MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), 105 #endif 106 }; 107 108 #if defined(CFG_SECURE_DATA_PATH) 109 static const char *tz_sdp_match = "linaro,secure-heap"; 110 static struct memaccess_area sec_sdp; 111 #ifdef CFG_TEE_SDP_MEM_BASE 112 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); 113 #endif 114 #ifdef TEE_SDP_TEST_MEM_BASE 115 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); 116 #endif 117 #endif 118 119 #ifdef CFG_CORE_RESERVED_SHM 120 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); 121 #endif 122 static unsigned int mmu_spinlock; 123 124 static uint32_t mmu_lock(void) 125 { 126 return cpu_spin_lock_xsave(&mmu_spinlock); 127 } 128 129 static void mmu_unlock(uint32_t exceptions) 130 { 131 cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); 132 } 133 134 static void heap_realloc_memory_map(struct memory_map *mem_map) 135 { 136 struct tee_mmap_region *m = NULL; 137 struct tee_mmap_region *old = mem_map->map; 138 size_t old_sz = sizeof(*old) * mem_map->alloc_count; 139 size_t sz = old_sz + sizeof(*m); 140 141 assert(nex_malloc_buffer_is_within_alloced(old, old_sz)); 142 m = nex_realloc(old, sz); 143 if (!m) 144 panic(); 145 mem_map->map = m; 146 mem_map->alloc_count++; 147 } 148 149 static void boot_mem_realloc_memory_map(struct memory_map *mem_map) 150 { 151 struct tee_mmap_region *m = NULL; 152 struct tee_mmap_region *old = mem_map->map; 153 size_t old_sz = sizeof(*old) * mem_map->alloc_count; 154 size_t sz = old_sz * 2; 155 156 m = boot_mem_alloc_tmp(sz, alignof(*m)); 157 memcpy(m, old, old_sz); 158 mem_map->map = m; 159 mem_map->alloc_count *= 2; 160 } 161 162 static void grow_mem_map(struct memory_map *mem_map) 163 { 164 if (mem_map->count == mem_map->alloc_count) { 165 if (!memory_map_realloc_func) { 166 EMSG("Out of entries (%zu) in mem_map", 167 mem_map->alloc_count); 168 panic(); 169 } 170 memory_map_realloc_func(mem_map); 171 } 172 mem_map->count++; 173 } 174 175 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size) 176 { 177 /* 178 * The first range is always used to cover OP-TEE core memory, but 179 * depending on configuration it may cover more than that. 180 */ 181 *base = secure_only[0].paddr; 182 *size = secure_only[0].size; 183 } 184 185 void core_mmu_set_secure_memory(paddr_t base, size_t size) 186 { 187 #ifdef CFG_CORE_PHYS_RELOCATABLE 188 static_assert(ARRAY_SIZE(secure_only) == 1); 189 #endif 190 runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)); 191 assert(!secure_only[0].size); 192 assert(base && size); 193 194 DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size); 195 secure_only[0].paddr = base; 196 secure_only[0].size = size; 197 } 198 199 static struct memory_map *get_memory_map(void) 200 { 201 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 202 struct memory_map *map = virt_get_memory_map(); 203 204 if (map) 205 return map; 206 } 207 208 return &static_memory_map; 209 } 210 211 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, 212 paddr_t pa, size_t size) 213 { 214 size_t n; 215 216 for (n = 0; n < alen; n++) 217 if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) 218 return true; 219 return false; 220 } 221 222 #define pbuf_intersects(a, pa, size) \ 223 _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) 224 225 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, 226 paddr_t pa, size_t size) 227 { 228 size_t n; 229 230 for (n = 0; n < alen; n++) 231 if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) 232 return true; 233 return false; 234 } 235 236 #define pbuf_is_inside(a, pa, size) \ 237 _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) 238 239 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) 240 { 241 paddr_t end_pa = 0; 242 243 if (!map) 244 return false; 245 246 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 247 return false; 248 249 return (pa >= map->pa && end_pa <= map->pa + map->size - 1); 250 } 251 252 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) 253 { 254 if (!map) 255 return false; 256 return (va >= map->va && va <= (map->va + map->size - 1)); 257 } 258 259 /* check if target buffer fits in a core default map area */ 260 static bool pbuf_inside_map_area(unsigned long p, size_t l, 261 struct tee_mmap_region *map) 262 { 263 return core_is_buffer_inside(p, l, map->pa, map->size); 264 } 265 266 TEE_Result core_mmu_for_each_map(void *ptr, 267 TEE_Result (*fn)(struct tee_mmap_region *map, 268 void *ptr)) 269 { 270 struct memory_map *mem_map = get_memory_map(); 271 TEE_Result res = TEE_SUCCESS; 272 size_t n = 0; 273 274 for (n = 0; n < mem_map->count; n++) { 275 res = fn(mem_map->map + n, ptr); 276 if (res) 277 return res; 278 } 279 280 return TEE_SUCCESS; 281 } 282 283 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) 284 { 285 struct memory_map *mem_map = get_memory_map(); 286 size_t n = 0; 287 288 for (n = 0; n < mem_map->count; n++) { 289 if (mem_map->map[n].type == type) 290 return mem_map->map + n; 291 } 292 return NULL; 293 } 294 295 static struct tee_mmap_region * 296 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) 297 { 298 struct memory_map *mem_map = get_memory_map(); 299 size_t n = 0; 300 301 for (n = 0; n < mem_map->count; n++) { 302 if (mem_map->map[n].type != type) 303 continue; 304 if (pa_is_in_map(mem_map->map + n, pa, len)) 305 return mem_map->map + n; 306 } 307 return NULL; 308 } 309 310 static struct tee_mmap_region *find_map_by_va(void *va) 311 { 312 struct memory_map *mem_map = get_memory_map(); 313 vaddr_t a = (vaddr_t)va; 314 size_t n = 0; 315 316 for (n = 0; n < mem_map->count; n++) { 317 if (a >= mem_map->map[n].va && 318 a <= (mem_map->map[n].va - 1 + mem_map->map[n].size)) 319 return mem_map->map + n; 320 } 321 322 return NULL; 323 } 324 325 static struct tee_mmap_region *find_map_by_pa(unsigned long pa) 326 { 327 struct memory_map *mem_map = get_memory_map(); 328 size_t n = 0; 329 330 for (n = 0; n < mem_map->count; n++) { 331 /* Skip unmapped regions */ 332 if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) && 333 pa >= mem_map->map[n].pa && 334 pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size)) 335 return mem_map->map + n; 336 } 337 338 return NULL; 339 } 340 341 #if defined(CFG_SECURE_DATA_PATH) 342 static bool dtb_get_sdp_region(void) 343 { 344 void *fdt = NULL; 345 int node = 0; 346 int tmp_node = 0; 347 paddr_t tmp_addr = 0; 348 size_t tmp_size = 0; 349 350 if (!IS_ENABLED(CFG_EMBED_DTB)) 351 return false; 352 353 fdt = get_embedded_dt(); 354 if (!fdt) 355 panic("No DTB found"); 356 357 node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match); 358 if (node < 0) { 359 DMSG("No %s compatible node found", tz_sdp_match); 360 return false; 361 } 362 tmp_node = node; 363 while (tmp_node >= 0) { 364 tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node, 365 tz_sdp_match); 366 if (tmp_node >= 0) 367 DMSG("Ignore SDP pool node %s, supports only 1 node", 368 fdt_get_name(fdt, tmp_node, NULL)); 369 } 370 371 if (fdt_reg_info(fdt, node, &tmp_addr, &tmp_size)) { 372 EMSG("%s: Unable to get base addr or size from DT", 373 tz_sdp_match); 374 return false; 375 } 376 377 sec_sdp.paddr = tmp_addr; 378 sec_sdp.size = tmp_size; 379 380 return true; 381 } 382 #endif 383 384 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) 385 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, 386 const struct core_mmu_phys_mem *start, 387 const struct core_mmu_phys_mem *end) 388 { 389 const struct core_mmu_phys_mem *mem; 390 391 for (mem = start; mem < end; mem++) { 392 if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) 393 return true; 394 } 395 396 return false; 397 } 398 #endif 399 400 #ifdef CFG_CORE_DYN_SHM 401 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, 402 paddr_t pa, size_t size) 403 { 404 struct core_mmu_phys_mem *m = *mem; 405 size_t n = 0; 406 407 while (true) { 408 if (n >= *nelems) { 409 DMSG("No need to carve out %#" PRIxPA " size %#zx", 410 pa, size); 411 return; 412 } 413 if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size)) 414 break; 415 if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size)) 416 panic(); 417 n++; 418 } 419 420 if (pa == m[n].addr && size == m[n].size) { 421 /* Remove this entry */ 422 (*nelems)--; 423 memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n)); 424 m = nex_realloc(m, sizeof(*m) * *nelems); 425 if (!m) 426 panic(); 427 *mem = m; 428 } else if (pa == m[n].addr) { 429 m[n].addr += size; 430 m[n].size -= size; 431 } else if ((pa + size) == (m[n].addr + m[n].size)) { 432 m[n].size -= size; 433 } else { 434 /* Need to split the memory entry */ 435 m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); 436 if (!m) 437 panic(); 438 *mem = m; 439 memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n)); 440 (*nelems)++; 441 m[n].size = pa - m[n].addr; 442 m[n + 1].size -= size + m[n].size; 443 m[n + 1].addr = pa + size; 444 } 445 } 446 447 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, 448 size_t nelems, 449 struct tee_mmap_region *map) 450 { 451 size_t n; 452 453 for (n = 0; n < nelems; n++) { 454 if (!core_is_buffer_outside(start[n].addr, start[n].size, 455 map->pa, map->size)) { 456 EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ 457 ") overlaps map (type %d %#" PRIxPA ":%#zx)", 458 start[n].addr, start[n].size, 459 map->type, map->pa, map->size); 460 panic(); 461 } 462 } 463 } 464 465 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; 466 static size_t discovered_nsec_ddr_nelems __nex_bss; 467 468 static int cmp_pmem_by_addr(const void *a, const void *b) 469 { 470 const struct core_mmu_phys_mem *pmem_a = a; 471 const struct core_mmu_phys_mem *pmem_b = b; 472 473 return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); 474 } 475 476 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 477 size_t nelems) 478 { 479 struct core_mmu_phys_mem *m = start; 480 size_t num_elems = nelems; 481 struct memory_map *mem_map = &static_memory_map; 482 const struct core_mmu_phys_mem __maybe_unused *pmem; 483 size_t n = 0; 484 485 assert(!discovered_nsec_ddr_start); 486 assert(m && num_elems); 487 488 qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); 489 490 /* 491 * Non-secure shared memory and also secure data 492 * path memory are supposed to reside inside 493 * non-secure memory. Since NSEC_SHM and SDP_MEM 494 * are used for a specific purpose make holes for 495 * those memory in the normal non-secure memory. 496 * 497 * This has to be done since for instance QEMU 498 * isn't aware of which memory range in the 499 * non-secure memory is used for NSEC_SHM. 500 */ 501 502 #ifdef CFG_SECURE_DATA_PATH 503 if (dtb_get_sdp_region()) 504 carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size); 505 506 for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) 507 carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); 508 #endif 509 510 for (n = 0; n < ARRAY_SIZE(secure_only); n++) 511 carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr, 512 secure_only[n].size); 513 514 for (n = 0; n < mem_map->count; n++) { 515 switch (mem_map->map[n].type) { 516 case MEM_AREA_NSEC_SHM: 517 carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa, 518 mem_map->map[n].size); 519 break; 520 case MEM_AREA_EXT_DT: 521 case MEM_AREA_MANIFEST_DT: 522 case MEM_AREA_RAM_NSEC: 523 case MEM_AREA_RES_VASPACE: 524 case MEM_AREA_SHM_VASPACE: 525 case MEM_AREA_TS_VASPACE: 526 case MEM_AREA_PAGER_VASPACE: 527 break; 528 default: 529 check_phys_mem_is_outside(m, num_elems, 530 mem_map->map + n); 531 } 532 } 533 534 discovered_nsec_ddr_start = m; 535 discovered_nsec_ddr_nelems = num_elems; 536 537 if (!core_mmu_check_end_pa(m[num_elems - 1].addr, 538 m[num_elems - 1].size)) 539 panic(); 540 } 541 542 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, 543 const struct core_mmu_phys_mem **end) 544 { 545 if (!discovered_nsec_ddr_start) 546 return false; 547 548 *start = discovered_nsec_ddr_start; 549 *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; 550 551 return true; 552 } 553 554 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) 555 { 556 const struct core_mmu_phys_mem *start; 557 const struct core_mmu_phys_mem *end; 558 559 if (!get_discovered_nsec_ddr(&start, &end)) 560 return false; 561 562 return pbuf_is_special_mem(pbuf, len, start, end); 563 } 564 565 bool core_mmu_nsec_ddr_is_defined(void) 566 { 567 const struct core_mmu_phys_mem *start; 568 const struct core_mmu_phys_mem *end; 569 570 if (!get_discovered_nsec_ddr(&start, &end)) 571 return false; 572 573 return start != end; 574 } 575 #else 576 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) 577 { 578 return false; 579 } 580 #endif /*CFG_CORE_DYN_SHM*/ 581 582 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ 583 EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ 584 pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) 585 586 #ifdef CFG_SECURE_DATA_PATH 587 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) 588 { 589 bool is_sdp_mem = false; 590 591 if (sec_sdp.size) 592 is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr, 593 sec_sdp.size); 594 595 if (!is_sdp_mem) 596 is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, 597 phys_sdp_mem_end); 598 599 return is_sdp_mem; 600 } 601 602 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size) 603 { 604 struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED, 605 CORE_MEM_SDP_MEM); 606 607 if (!mobj) 608 panic("can't create SDP physical memory object"); 609 610 return mobj; 611 } 612 613 struct mobj **core_sdp_mem_create_mobjs(void) 614 { 615 const struct core_mmu_phys_mem *mem = NULL; 616 struct mobj **mobj_base = NULL; 617 struct mobj **mobj = NULL; 618 int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; 619 620 if (sec_sdp.size) 621 cnt++; 622 623 /* SDP mobjs table must end with a NULL entry */ 624 mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); 625 if (!mobj_base) 626 panic("Out of memory"); 627 628 mobj = mobj_base; 629 630 for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++) 631 *mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size); 632 633 if (sec_sdp.size) 634 *mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size); 635 636 return mobj_base; 637 } 638 639 #else /* CFG_SECURE_DATA_PATH */ 640 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) 641 { 642 return false; 643 } 644 645 #endif /* CFG_SECURE_DATA_PATH */ 646 647 /* Check special memories comply with registered memories */ 648 static void verify_special_mem_areas(struct memory_map *mem_map, 649 const struct core_mmu_phys_mem *start, 650 const struct core_mmu_phys_mem *end, 651 const char *area_name __maybe_unused) 652 { 653 const struct core_mmu_phys_mem *mem = NULL; 654 const struct core_mmu_phys_mem *mem2 = NULL; 655 size_t n = 0; 656 657 if (start == end) { 658 DMSG("No %s memory area defined", area_name); 659 return; 660 } 661 662 for (mem = start; mem < end; mem++) 663 DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", 664 area_name, mem->addr, (uint64_t)mem->addr + mem->size); 665 666 /* Check memories do not intersect each other */ 667 for (mem = start; mem + 1 < end; mem++) { 668 for (mem2 = mem + 1; mem2 < end; mem2++) { 669 if (core_is_buffer_intersect(mem2->addr, mem2->size, 670 mem->addr, mem->size)) { 671 MSG_MEM_INSTERSECT(mem2->addr, mem2->size, 672 mem->addr, mem->size); 673 panic("Special memory intersection"); 674 } 675 } 676 } 677 678 /* 679 * Check memories do not intersect any mapped memory. 680 * This is called before reserved VA space is loaded in mem_map. 681 */ 682 for (mem = start; mem < end; mem++) { 683 for (n = 0; n < mem_map->count; n++) { 684 #ifdef TEE_SDP_TEST_MEM_BASE 685 /* 686 * Ignore MEM_AREA_SEC_RAM_OVERALL since it covers 687 * TEE_SDP_TEST_MEM too. 688 */ 689 if (mem->addr == TEE_SDP_TEST_MEM_BASE && 690 mem->size == TEE_SDP_TEST_MEM_SIZE && 691 mem_map->map[n].type == MEM_AREA_SEC_RAM_OVERALL) 692 continue; 693 #endif 694 if (core_is_buffer_intersect(mem->addr, mem->size, 695 mem_map->map[n].pa, 696 mem_map->map[n].size)) { 697 MSG_MEM_INSTERSECT(mem->addr, mem->size, 698 mem_map->map[n].pa, 699 mem_map->map[n].size); 700 panic("Special memory intersection"); 701 } 702 } 703 } 704 } 705 706 static void merge_mmaps(struct tee_mmap_region *dst, 707 const struct tee_mmap_region *src) 708 { 709 paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1); 710 paddr_t pa = MIN(dst->pa, src->pa); 711 712 DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA, 713 dst->pa, dst->pa + dst->size - 1, src->pa, 714 src->pa + src->size - 1); 715 dst->pa = pa; 716 dst->size = end_pa - pa + 1; 717 } 718 719 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1, 720 const struct tee_mmap_region *r2) 721 { 722 if (r1->type != r2->type) 723 return false; 724 725 if (r1->pa == r2->pa) 726 return true; 727 728 if (r1->pa < r2->pa) 729 return r1->pa + r1->size >= r2->pa; 730 else 731 return r2->pa + r2->size >= r1->pa; 732 } 733 734 static void add_phys_mem(struct memory_map *mem_map, 735 const char *mem_name __maybe_unused, 736 enum teecore_memtypes mem_type, 737 paddr_t mem_addr, paddr_size_t mem_size) 738 { 739 size_t n = 0; 740 const struct tee_mmap_region m0 = { 741 .type = mem_type, 742 .pa = mem_addr, 743 .size = mem_size, 744 }; 745 746 if (!mem_size) /* Discard null size entries */ 747 return; 748 749 /* 750 * If some ranges of memory of the same type do overlap 751 * each others they are coalesced into one entry. To help this 752 * added entries are sorted by increasing physical. 753 * 754 * Note that it's valid to have the same physical memory as several 755 * different memory types, for instance the same device memory 756 * mapped as both secure and non-secure. This will probably not 757 * happen often in practice. 758 */ 759 DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, 760 mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size); 761 for (n = 0; n < mem_map->count; n++) { 762 if (mmaps_are_mergeable(mem_map->map + n, &m0)) { 763 merge_mmaps(mem_map->map + n, &m0); 764 /* 765 * The merged result might be mergeable with the 766 * next or previous entry. 767 */ 768 if (n + 1 < mem_map->count && 769 mmaps_are_mergeable(mem_map->map + n, 770 mem_map->map + n + 1)) { 771 merge_mmaps(mem_map->map + n, 772 mem_map->map + n + 1); 773 rem_array_elem(mem_map->map, mem_map->count, 774 sizeof(*mem_map->map), n + 1); 775 mem_map->count--; 776 } 777 if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1, 778 mem_map->map + n)) { 779 merge_mmaps(mem_map->map + n - 1, 780 mem_map->map + n); 781 rem_array_elem(mem_map->map, mem_map->count, 782 sizeof(*mem_map->map), n); 783 mem_map->count--; 784 } 785 return; 786 } 787 if (mem_type < mem_map->map[n].type || 788 (mem_type == mem_map->map[n].type && 789 mem_addr < mem_map->map[n].pa)) 790 break; /* found the spot where to insert this memory */ 791 } 792 793 grow_mem_map(mem_map); 794 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 795 n, &m0); 796 } 797 798 static void add_va_space(struct memory_map *mem_map, 799 enum teecore_memtypes type, size_t size) 800 { 801 size_t n = 0; 802 803 DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); 804 for (n = 0; n < mem_map->count; n++) { 805 if (type < mem_map->map[n].type) 806 break; 807 } 808 809 grow_mem_map(mem_map); 810 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 811 n, NULL); 812 mem_map->map[n] = (struct tee_mmap_region){ 813 .type = type, 814 .size = size, 815 }; 816 } 817 818 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) 819 { 820 const uint32_t attr = TEE_MATTR_VALID_BLOCK; 821 const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED << 822 TEE_MATTR_MEM_TYPE_SHIFT; 823 const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << 824 TEE_MATTR_MEM_TYPE_SHIFT; 825 const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << 826 TEE_MATTR_MEM_TYPE_SHIFT; 827 828 switch (t) { 829 case MEM_AREA_TEE_RAM: 830 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged; 831 case MEM_AREA_TEE_RAM_RX: 832 case MEM_AREA_INIT_RAM_RX: 833 case MEM_AREA_IDENTITY_MAP_RX: 834 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged; 835 case MEM_AREA_TEE_RAM_RO: 836 case MEM_AREA_INIT_RAM_RO: 837 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged; 838 case MEM_AREA_TEE_RAM_RW: 839 case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ 840 case MEM_AREA_NEX_RAM_RW: 841 case MEM_AREA_TEE_ASAN: 842 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 843 case MEM_AREA_TEE_COHERENT: 844 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; 845 case MEM_AREA_NSEC_SHM: 846 case MEM_AREA_NEX_NSEC_SHM: 847 return attr | TEE_MATTR_PRW | cached; 848 case MEM_AREA_MANIFEST_DT: 849 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 850 case MEM_AREA_TRANSFER_LIST: 851 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 852 case MEM_AREA_EXT_DT: 853 /* 854 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device 855 * tree as secure non-cached memory, otherwise, fall back to 856 * non-secure mapping. 857 */ 858 if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE)) 859 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | 860 noncache; 861 fallthrough; 862 case MEM_AREA_IO_NSEC: 863 return attr | TEE_MATTR_PRW | noncache; 864 case MEM_AREA_IO_SEC: 865 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; 866 case MEM_AREA_RAM_NSEC: 867 return attr | TEE_MATTR_PRW | cached; 868 case MEM_AREA_RAM_SEC: 869 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 870 case MEM_AREA_SEC_RAM_OVERALL: 871 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 872 case MEM_AREA_ROM_SEC: 873 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 874 case MEM_AREA_RES_VASPACE: 875 case MEM_AREA_SHM_VASPACE: 876 return 0; 877 case MEM_AREA_PAGER_VASPACE: 878 return TEE_MATTR_SECURE; 879 default: 880 panic("invalid type"); 881 } 882 } 883 884 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) 885 { 886 switch (mm->type) { 887 case MEM_AREA_TEE_RAM: 888 case MEM_AREA_TEE_RAM_RX: 889 case MEM_AREA_TEE_RAM_RO: 890 case MEM_AREA_TEE_RAM_RW: 891 case MEM_AREA_INIT_RAM_RX: 892 case MEM_AREA_INIT_RAM_RO: 893 case MEM_AREA_NEX_RAM_RW: 894 case MEM_AREA_NEX_RAM_RO: 895 case MEM_AREA_TEE_ASAN: 896 return true; 897 default: 898 return false; 899 } 900 } 901 902 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) 903 { 904 return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); 905 } 906 907 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) 908 { 909 return mm->region_size == CORE_MMU_PGDIR_SIZE; 910 } 911 912 static int cmp_mmap_by_lower_va(const void *a, const void *b) 913 { 914 const struct tee_mmap_region *mm_a = a; 915 const struct tee_mmap_region *mm_b = b; 916 917 return CMP_TRILEAN(mm_a->va, mm_b->va); 918 } 919 920 static void dump_mmap_table(struct memory_map *mem_map) 921 { 922 size_t n = 0; 923 924 for (n = 0; n < mem_map->count; n++) { 925 struct tee_mmap_region *map __maybe_unused = mem_map->map + n; 926 927 DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA 928 " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", 929 teecore_memtype_name(map->type), map->va, 930 map->va + map->size - 1, map->pa, 931 (paddr_t)(map->pa + map->size - 1), map->size, 932 map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); 933 } 934 } 935 936 #if DEBUG_XLAT_TABLE 937 938 static void dump_xlat_table(vaddr_t va, unsigned int level) 939 { 940 struct core_mmu_table_info tbl_info; 941 unsigned int idx = 0; 942 paddr_t pa; 943 uint32_t attr; 944 945 core_mmu_find_table(NULL, va, level, &tbl_info); 946 va = tbl_info.va_base; 947 for (idx = 0; idx < tbl_info.num_entries; idx++) { 948 core_mmu_get_entry(&tbl_info, idx, &pa, &attr); 949 if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { 950 const char *security_bit = ""; 951 952 if (core_mmu_entry_have_security_bit(attr)) { 953 if (attr & TEE_MATTR_SECURE) 954 security_bit = "S"; 955 else 956 security_bit = "NS"; 957 } 958 959 if (attr & TEE_MATTR_TABLE) { 960 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 961 " TBL:0x%010" PRIxPA " %s", 962 level * 2, "", level, va, pa, 963 security_bit); 964 dump_xlat_table(va, level + 1); 965 } else if (attr) { 966 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 967 " PA:0x%010" PRIxPA " %s-%s-%s-%s", 968 level * 2, "", level, va, pa, 969 mattr_is_cached(attr) ? "MEM" : 970 "DEV", 971 attr & TEE_MATTR_PW ? "RW" : "RO", 972 attr & TEE_MATTR_PX ? "X " : "XN", 973 security_bit); 974 } else { 975 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 976 " INVALID\n", 977 level * 2, "", level, va); 978 } 979 } 980 va += BIT64(tbl_info.shift); 981 } 982 } 983 984 #else 985 986 static void dump_xlat_table(vaddr_t va __unused, int level __unused) 987 { 988 } 989 990 #endif 991 992 /* 993 * Reserves virtual memory space for pager usage. 994 * 995 * From the start of the first memory used by the link script + 996 * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty 997 * mapping for pager usage. This adds translation tables as needed for the 998 * pager to operate. 999 */ 1000 static void add_pager_vaspace(struct memory_map *mem_map) 1001 { 1002 paddr_t begin = 0; 1003 paddr_t end = 0; 1004 size_t size = 0; 1005 size_t pos = 0; 1006 size_t n = 0; 1007 1008 1009 for (n = 0; n < mem_map->count; n++) { 1010 if (map_is_tee_ram(mem_map->map + n)) { 1011 if (!begin) 1012 begin = mem_map->map[n].pa; 1013 pos = n + 1; 1014 } 1015 } 1016 1017 end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size; 1018 assert(end - begin < TEE_RAM_VA_SIZE); 1019 size = TEE_RAM_VA_SIZE - (end - begin); 1020 1021 grow_mem_map(mem_map); 1022 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 1023 n, NULL); 1024 mem_map->map[n] = (struct tee_mmap_region){ 1025 .type = MEM_AREA_PAGER_VASPACE, 1026 .size = size, 1027 .region_size = SMALL_PAGE_SIZE, 1028 .attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE), 1029 }; 1030 } 1031 1032 static void check_sec_nsec_mem_config(void) 1033 { 1034 size_t n = 0; 1035 1036 for (n = 0; n < ARRAY_SIZE(secure_only); n++) { 1037 if (pbuf_intersects(nsec_shared, secure_only[n].paddr, 1038 secure_only[n].size)) 1039 panic("Invalid memory access config: sec/nsec"); 1040 } 1041 } 1042 1043 static void collect_device_mem_ranges(struct memory_map *mem_map) 1044 { 1045 const char *compatible = "arm,ffa-manifest-device-regions"; 1046 void *fdt = get_manifest_dt(); 1047 const char *name = NULL; 1048 uint64_t page_count = 0; 1049 uint64_t base = 0; 1050 int subnode = 0; 1051 int node = 0; 1052 1053 assert(fdt); 1054 1055 node = fdt_node_offset_by_compatible(fdt, 0, compatible); 1056 if (node < 0) 1057 return; 1058 1059 fdt_for_each_subnode(subnode, fdt, node) { 1060 name = fdt_get_name(fdt, subnode, NULL); 1061 if (!name) 1062 continue; 1063 1064 if (dt_getprop_as_number(fdt, subnode, "base-address", 1065 &base)) { 1066 EMSG("Mandatory field is missing: base-address"); 1067 continue; 1068 } 1069 1070 if (base & SMALL_PAGE_MASK) { 1071 EMSG("base-address is not page aligned"); 1072 continue; 1073 } 1074 1075 if (dt_getprop_as_number(fdt, subnode, "pages-count", 1076 &page_count)) { 1077 EMSG("Mandatory field is missing: pages-count"); 1078 continue; 1079 } 1080 1081 add_phys_mem(mem_map, name, MEM_AREA_IO_SEC, 1082 base, page_count * SMALL_PAGE_SIZE); 1083 } 1084 } 1085 1086 static void collect_mem_ranges(struct memory_map *mem_map) 1087 { 1088 const struct core_mmu_phys_mem *mem = NULL; 1089 vaddr_t ram_start = secure_only[0].paddr; 1090 size_t n = 0; 1091 1092 #define ADD_PHYS_MEM(_type, _addr, _size) \ 1093 add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size)) 1094 1095 if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) { 1096 paddr_t next_pa = 0; 1097 1098 /* 1099 * Read-only and read-execute physical memory areas must 1100 * not be mapped by MEM_AREA_SEC_RAM_OVERALL, but all the 1101 * read/write should. 1102 */ 1103 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, ram_start, 1104 VCORE_UNPG_RX_PA - ram_start); 1105 assert(VCORE_UNPG_RX_PA >= ram_start); 1106 tee_ram_initial_offs = VCORE_UNPG_RX_PA - ram_start; 1107 DMSG("tee_ram_initial_offs %#zx", tee_ram_initial_offs); 1108 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, 1109 VCORE_UNPG_RX_SZ); 1110 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, 1111 VCORE_UNPG_RO_SZ); 1112 1113 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1114 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, 1115 VCORE_UNPG_RW_SZ); 1116 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA, 1117 VCORE_UNPG_RW_SZ); 1118 1119 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, 1120 VCORE_NEX_RW_SZ); 1121 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_NEX_RW_PA, 1122 VCORE_NEX_RW_SZ); 1123 1124 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_FREE_PA, 1125 VCORE_FREE_SZ); 1126 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA, 1127 VCORE_FREE_SZ); 1128 next_pa = VCORE_FREE_PA + VCORE_FREE_SZ; 1129 } else { 1130 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, 1131 VCORE_UNPG_RW_SZ); 1132 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA, 1133 VCORE_UNPG_RW_SZ); 1134 1135 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_FREE_PA, 1136 VCORE_FREE_SZ); 1137 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA, 1138 VCORE_FREE_SZ); 1139 next_pa = VCORE_FREE_PA + VCORE_FREE_SZ; 1140 } 1141 1142 if (IS_ENABLED(CFG_WITH_PAGER)) { 1143 paddr_t pa = 0; 1144 size_t sz = 0; 1145 1146 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, 1147 VCORE_INIT_RX_SZ); 1148 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, 1149 VCORE_INIT_RO_SZ); 1150 /* 1151 * Core init mapping shall cover up to end of the 1152 * physical RAM. This is required since the hash 1153 * table is appended to the binary data after the 1154 * firmware build sequence. 1155 */ 1156 pa = VCORE_INIT_RO_PA + VCORE_INIT_RO_SZ; 1157 sz = TEE_RAM_START + TEE_RAM_PH_SIZE - pa; 1158 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, pa, sz); 1159 } else { 1160 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, next_pa, 1161 secure_only[0].paddr + 1162 secure_only[0].size - next_pa); 1163 } 1164 } else { 1165 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); 1166 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr, 1167 secure_only[0].size); 1168 } 1169 1170 for (n = 1; n < ARRAY_SIZE(secure_only); n++) 1171 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr, 1172 secure_only[n].size); 1173 1174 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) && 1175 IS_ENABLED(CFG_WITH_PAGER)) { 1176 /* 1177 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is 1178 * disabled. 1179 */ 1180 ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); 1181 } 1182 1183 #undef ADD_PHYS_MEM 1184 1185 /* Collect device memory info from SP manifest */ 1186 if (IS_ENABLED(CFG_CORE_SEL2_SPMC)) 1187 collect_device_mem_ranges(mem_map); 1188 1189 for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { 1190 /* Only unmapped virtual range may have a null phys addr */ 1191 assert(mem->addr || !core_mmu_type_to_attr(mem->type)); 1192 1193 add_phys_mem(mem_map, mem->name, mem->type, 1194 mem->addr, mem->size); 1195 } 1196 1197 if (IS_ENABLED(CFG_SECURE_DATA_PATH)) 1198 verify_special_mem_areas(mem_map, phys_sdp_mem_begin, 1199 phys_sdp_mem_end, "SDP"); 1200 1201 add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE); 1202 add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE); 1203 } 1204 1205 static void assign_mem_granularity(struct memory_map *mem_map) 1206 { 1207 size_t n = 0; 1208 1209 /* 1210 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses 1211 * SMALL_PAGE_SIZE. 1212 */ 1213 for (n = 0; n < mem_map->count; n++) { 1214 paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size; 1215 1216 if (mask & SMALL_PAGE_MASK) 1217 panic("Impossible memory alignment"); 1218 1219 if (map_is_tee_ram(mem_map->map + n)) 1220 mem_map->map[n].region_size = SMALL_PAGE_SIZE; 1221 else 1222 mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE; 1223 } 1224 } 1225 1226 static bool place_tee_ram_at_top(paddr_t paddr) 1227 { 1228 return paddr > BIT64(core_mmu_get_va_width()) / 2; 1229 } 1230 1231 /* 1232 * MMU arch driver shall override this function if it helps 1233 * optimizing the memory footprint of the address translation tables. 1234 */ 1235 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr) 1236 { 1237 return place_tee_ram_at_top(paddr); 1238 } 1239 1240 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map, 1241 bool tee_ram_at_top) 1242 { 1243 struct tee_mmap_region *map = NULL; 1244 vaddr_t va = 0; 1245 bool va_is_secure = true; 1246 size_t n = 0; 1247 1248 /* 1249 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y. 1250 * 0 is by design an invalid va, so return false directly. 1251 */ 1252 if (!tee_ram_va) 1253 return false; 1254 1255 /* Clear eventual previous assignments */ 1256 for (n = 0; n < mem_map->count; n++) 1257 mem_map->map[n].va = 0; 1258 1259 /* 1260 * TEE RAM regions are always aligned with region_size. 1261 * 1262 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here 1263 * since it handles virtual memory which covers the part of the ELF 1264 * that cannot fit directly into memory. 1265 */ 1266 va = tee_ram_va + tee_ram_initial_offs; 1267 for (n = 0; n < mem_map->count; n++) { 1268 map = mem_map->map + n; 1269 if (map_is_tee_ram(map) || 1270 map->type == MEM_AREA_PAGER_VASPACE) { 1271 assert(!(va & (map->region_size - 1))); 1272 assert(!(map->size & (map->region_size - 1))); 1273 map->va = va; 1274 if (ADD_OVERFLOW(va, map->size, &va)) 1275 return false; 1276 if (va >= BIT64(core_mmu_get_va_width())) 1277 return false; 1278 } 1279 } 1280 1281 if (tee_ram_at_top) { 1282 /* 1283 * Map non-tee ram regions at addresses lower than the tee 1284 * ram region. 1285 */ 1286 va = tee_ram_va; 1287 for (n = 0; n < mem_map->count; n++) { 1288 map = mem_map->map + n; 1289 map->attr = core_mmu_type_to_attr(map->type); 1290 if (map->va) 1291 continue; 1292 1293 if (!IS_ENABLED(CFG_WITH_LPAE) && 1294 va_is_secure != map_is_secure(map)) { 1295 va_is_secure = !va_is_secure; 1296 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1297 } 1298 1299 if (SUB_OVERFLOW(va, map->size, &va)) 1300 return false; 1301 va = ROUNDDOWN2(va, map->region_size); 1302 /* 1303 * Make sure that va is aligned with pa for 1304 * efficient pgdir mapping. Basically pa & 1305 * pgdir_mask should be == va & pgdir_mask 1306 */ 1307 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1308 if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) 1309 return false; 1310 va += (map->pa - va) & CORE_MMU_PGDIR_MASK; 1311 } 1312 map->va = va; 1313 } 1314 } else { 1315 /* 1316 * Map non-tee ram regions at addresses higher than the tee 1317 * ram region. 1318 */ 1319 for (n = 0; n < mem_map->count; n++) { 1320 map = mem_map->map + n; 1321 map->attr = core_mmu_type_to_attr(map->type); 1322 if (map->va) 1323 continue; 1324 1325 if (!IS_ENABLED(CFG_WITH_LPAE) && 1326 va_is_secure != map_is_secure(map)) { 1327 va_is_secure = !va_is_secure; 1328 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1329 &va)) 1330 return false; 1331 } 1332 1333 if (ROUNDUP2_OVERFLOW(va, map->region_size, &va)) 1334 return false; 1335 /* 1336 * Make sure that va is aligned with pa for 1337 * efficient pgdir mapping. Basically pa & 1338 * pgdir_mask should be == va & pgdir_mask 1339 */ 1340 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1341 vaddr_t offs = (map->pa - va) & 1342 CORE_MMU_PGDIR_MASK; 1343 1344 if (ADD_OVERFLOW(va, offs, &va)) 1345 return false; 1346 } 1347 1348 map->va = va; 1349 if (ADD_OVERFLOW(va, map->size, &va)) 1350 return false; 1351 if (va >= BIT64(core_mmu_get_va_width())) 1352 return false; 1353 } 1354 } 1355 1356 return true; 1357 } 1358 1359 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map) 1360 { 1361 bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va); 1362 1363 /* 1364 * Check that we're not overlapping with the user VA range. 1365 */ 1366 if (IS_ENABLED(CFG_WITH_LPAE)) { 1367 /* 1368 * User VA range is supposed to be defined after these 1369 * mappings have been established. 1370 */ 1371 assert(!core_mmu_user_va_range_is_defined()); 1372 } else { 1373 vaddr_t user_va_base = 0; 1374 size_t user_va_size = 0; 1375 1376 assert(core_mmu_user_va_range_is_defined()); 1377 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 1378 if (tee_ram_va < (user_va_base + user_va_size)) 1379 return false; 1380 } 1381 1382 if (IS_ENABLED(CFG_WITH_PAGER)) { 1383 bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va); 1384 1385 /* Try whole mapping covered by a single base xlat entry */ 1386 if (prefered_dir != tee_ram_at_top && 1387 assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir)) 1388 return true; 1389 } 1390 1391 return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top); 1392 } 1393 1394 static int cmp_init_mem_map(const void *a, const void *b) 1395 { 1396 const struct tee_mmap_region *mm_a = a; 1397 const struct tee_mmap_region *mm_b = b; 1398 int rc = 0; 1399 1400 rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); 1401 if (!rc) 1402 rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); 1403 /* 1404 * 32bit MMU descriptors cannot mix secure and non-secure mapping in 1405 * the same level2 table. Hence sort secure mapping from non-secure 1406 * mapping. 1407 */ 1408 if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) 1409 rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); 1410 1411 return rc; 1412 } 1413 1414 static bool mem_map_add_id_map(struct memory_map *mem_map, 1415 vaddr_t id_map_start, vaddr_t id_map_end) 1416 { 1417 vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); 1418 vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); 1419 size_t len = end - start; 1420 size_t n = 0; 1421 1422 1423 for (n = 0; n < mem_map->count; n++) 1424 if (core_is_buffer_intersect(mem_map->map[n].va, 1425 mem_map->map[n].size, start, len)) 1426 return false; 1427 1428 grow_mem_map(mem_map); 1429 mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){ 1430 .type = MEM_AREA_IDENTITY_MAP_RX, 1431 /* 1432 * Could use CORE_MMU_PGDIR_SIZE to potentially save a 1433 * translation table, at the increased risk of clashes with 1434 * the rest of the memory map. 1435 */ 1436 .region_size = SMALL_PAGE_SIZE, 1437 .pa = start, 1438 .va = start, 1439 .size = len, 1440 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1441 }; 1442 1443 return true; 1444 } 1445 1446 static struct memory_map *init_mem_map(struct memory_map *mem_map, 1447 unsigned long seed, 1448 unsigned long *ret_offs) 1449 { 1450 /* 1451 * @id_map_start and @id_map_end describes a physical memory range 1452 * that must be mapped Read-Only eXecutable at identical virtual 1453 * addresses. 1454 */ 1455 vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; 1456 vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; 1457 vaddr_t start_addr = secure_only[0].paddr; 1458 unsigned long offs = 0; 1459 1460 collect_mem_ranges(mem_map); 1461 assign_mem_granularity(mem_map); 1462 1463 /* 1464 * To ease mapping and lower use of xlat tables, sort mapping 1465 * description moving small-page regions after the pgdir regions. 1466 */ 1467 qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), 1468 cmp_init_mem_map); 1469 1470 if (IS_ENABLED(CFG_WITH_PAGER)) 1471 add_pager_vaspace(mem_map); 1472 1473 if (IS_ENABLED(CFG_CORE_ASLR) && seed) { 1474 vaddr_t base_addr = start_addr + seed; 1475 const unsigned int va_width = core_mmu_get_va_width(); 1476 const vaddr_t va_mask = GENMASK_64(va_width - 1, 1477 SMALL_PAGE_SHIFT); 1478 vaddr_t ba = base_addr; 1479 size_t n = 0; 1480 1481 for (n = 0; n < 3; n++) { 1482 if (n) 1483 ba = base_addr ^ BIT64(va_width - n); 1484 ba &= va_mask; 1485 if (assign_mem_va(ba, mem_map) && 1486 mem_map_add_id_map(mem_map, id_map_start, 1487 id_map_end)) { 1488 offs = ba - start_addr; 1489 DMSG("Mapping core at %#"PRIxVA" offs %#lx", 1490 ba, offs); 1491 goto out; 1492 } else { 1493 DMSG("Failed to map core at %#"PRIxVA, ba); 1494 } 1495 } 1496 EMSG("Failed to map core with seed %#lx", seed); 1497 } 1498 1499 if (!assign_mem_va(start_addr, mem_map)) 1500 panic(); 1501 1502 out: 1503 qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), 1504 cmp_mmap_by_lower_va); 1505 1506 dump_mmap_table(mem_map); 1507 1508 *ret_offs = offs; 1509 return mem_map; 1510 } 1511 1512 static void check_mem_map(struct memory_map *mem_map) 1513 { 1514 struct tee_mmap_region *m = NULL; 1515 size_t n = 0; 1516 1517 for (n = 0; n < mem_map->count; n++) { 1518 m = mem_map->map + n; 1519 switch (m->type) { 1520 case MEM_AREA_TEE_RAM: 1521 case MEM_AREA_TEE_RAM_RX: 1522 case MEM_AREA_TEE_RAM_RO: 1523 case MEM_AREA_TEE_RAM_RW: 1524 case MEM_AREA_INIT_RAM_RX: 1525 case MEM_AREA_INIT_RAM_RO: 1526 case MEM_AREA_NEX_RAM_RW: 1527 case MEM_AREA_NEX_RAM_RO: 1528 case MEM_AREA_IDENTITY_MAP_RX: 1529 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1530 panic("TEE_RAM can't fit in secure_only"); 1531 break; 1532 case MEM_AREA_SEC_RAM_OVERALL: 1533 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1534 panic("SEC_RAM_OVERALL can't fit in secure_only"); 1535 break; 1536 case MEM_AREA_NSEC_SHM: 1537 if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) 1538 panic("NS_SHM can't fit in nsec_shared"); 1539 break; 1540 case MEM_AREA_TEE_COHERENT: 1541 case MEM_AREA_TEE_ASAN: 1542 case MEM_AREA_IO_SEC: 1543 case MEM_AREA_IO_NSEC: 1544 case MEM_AREA_EXT_DT: 1545 case MEM_AREA_MANIFEST_DT: 1546 case MEM_AREA_TRANSFER_LIST: 1547 case MEM_AREA_RAM_SEC: 1548 case MEM_AREA_RAM_NSEC: 1549 case MEM_AREA_ROM_SEC: 1550 case MEM_AREA_RES_VASPACE: 1551 case MEM_AREA_SHM_VASPACE: 1552 case MEM_AREA_PAGER_VASPACE: 1553 break; 1554 default: 1555 EMSG("Uhandled memtype %d", m->type); 1556 panic(); 1557 } 1558 } 1559 } 1560 1561 /* 1562 * core_init_mmu_map() - init tee core default memory mapping 1563 * 1564 * This routine sets the static default TEE core mapping. If @seed is > 0 1565 * and configured with CFG_CORE_ASLR it will map tee core at a location 1566 * based on the seed and return the offset from the link address. 1567 * 1568 * If an error happened: core_init_mmu_map is expected to panic. 1569 * 1570 * Note: this function is weak just to make it possible to exclude it from 1571 * the unpaged area. 1572 */ 1573 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) 1574 { 1575 #ifndef CFG_NS_VIRTUALIZATION 1576 vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); 1577 #else 1578 vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, 1579 SMALL_PAGE_SIZE); 1580 #endif 1581 #ifdef CFG_DYN_CONFIG 1582 vaddr_t len = ROUNDUP(VCORE_FREE_END_PA, SMALL_PAGE_SIZE) - start; 1583 #else 1584 vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; 1585 #endif 1586 struct tee_mmap_region tmp_mmap_region = { }; 1587 struct memory_map mem_map = { }; 1588 unsigned long offs = 0; 1589 1590 if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) && 1591 (core_mmu_tee_load_pa & SMALL_PAGE_MASK)) 1592 panic("OP-TEE load address is not page aligned"); 1593 1594 check_sec_nsec_mem_config(); 1595 1596 if (IS_ENABLED(CFG_BOOT_MEM)) { 1597 mem_map.alloc_count = CFG_MMAP_REGIONS; 1598 mem_map.map = boot_mem_alloc_tmp(mem_map.alloc_count * 1599 sizeof(*mem_map.map), 1600 alignof(*mem_map.map)); 1601 memory_map_realloc_func = boot_mem_realloc_memory_map; 1602 } else { 1603 mem_map = static_memory_map; 1604 } 1605 1606 static_memory_map = (struct memory_map){ 1607 .map = &tmp_mmap_region, 1608 .alloc_count = 1, 1609 .count = 1, 1610 }; 1611 /* 1612 * Add a entry covering the translation tables which will be 1613 * involved in some virt_to_phys() and phys_to_virt() conversions. 1614 */ 1615 static_memory_map.map[0] = (struct tee_mmap_region){ 1616 .type = MEM_AREA_TEE_RAM, 1617 .region_size = SMALL_PAGE_SIZE, 1618 .pa = start, 1619 .va = start, 1620 .size = len, 1621 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1622 }; 1623 1624 init_mem_map(&mem_map, seed, &offs); 1625 1626 check_mem_map(&mem_map); 1627 core_init_mmu(&mem_map); 1628 dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); 1629 core_init_mmu_regs(cfg); 1630 cfg->map_offset = offs; 1631 static_memory_map = mem_map; 1632 boot_mem_add_reloc(&static_memory_map.map); 1633 } 1634 1635 void core_mmu_save_mem_map(void) 1636 { 1637 if (IS_ENABLED(CFG_BOOT_MEM)) { 1638 size_t alloc_count = static_memory_map.count + 5; 1639 size_t elem_sz = sizeof(*static_memory_map.map); 1640 void *p = NULL; 1641 1642 p = nex_calloc(alloc_count, elem_sz); 1643 if (!p) 1644 panic(); 1645 memcpy(p, static_memory_map.map, 1646 static_memory_map.count * elem_sz); 1647 static_memory_map.map = p; 1648 static_memory_map.alloc_count = alloc_count; 1649 memory_map_realloc_func = heap_realloc_memory_map; 1650 } 1651 } 1652 1653 bool core_mmu_mattr_is_ok(uint32_t mattr) 1654 { 1655 /* 1656 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and 1657 * core_mmu_v7.c:mattr_to_texcb 1658 */ 1659 1660 switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { 1661 case TEE_MATTR_MEM_TYPE_DEV: 1662 case TEE_MATTR_MEM_TYPE_STRONGLY_O: 1663 case TEE_MATTR_MEM_TYPE_CACHED: 1664 case TEE_MATTR_MEM_TYPE_TAGGED: 1665 return true; 1666 default: 1667 return false; 1668 } 1669 } 1670 1671 /* 1672 * test attributes of target physical buffer 1673 * 1674 * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). 1675 * 1676 */ 1677 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) 1678 { 1679 struct tee_mmap_region *map; 1680 1681 /* Empty buffers complies with anything */ 1682 if (len == 0) 1683 return true; 1684 1685 switch (attr) { 1686 case CORE_MEM_SEC: 1687 return pbuf_is_inside(secure_only, pbuf, len); 1688 case CORE_MEM_NON_SEC: 1689 return pbuf_is_inside(nsec_shared, pbuf, len) || 1690 pbuf_is_nsec_ddr(pbuf, len); 1691 case CORE_MEM_TEE_RAM: 1692 return core_is_buffer_inside(pbuf, len, TEE_RAM_START, 1693 TEE_RAM_PH_SIZE); 1694 #ifdef CFG_CORE_RESERVED_SHM 1695 case CORE_MEM_NSEC_SHM: 1696 return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, 1697 TEE_SHMEM_SIZE); 1698 #endif 1699 case CORE_MEM_SDP_MEM: 1700 return pbuf_is_sdp_mem(pbuf, len); 1701 case CORE_MEM_CACHED: 1702 map = find_map_by_pa(pbuf); 1703 if (!map || !pbuf_inside_map_area(pbuf, len, map)) 1704 return false; 1705 return mattr_is_cached(map->attr); 1706 default: 1707 return false; 1708 } 1709 } 1710 1711 /* test attributes of target virtual buffer (in core mapping) */ 1712 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) 1713 { 1714 paddr_t p; 1715 1716 /* Empty buffers complies with anything */ 1717 if (len == 0) 1718 return true; 1719 1720 p = virt_to_phys((void *)vbuf); 1721 if (!p) 1722 return false; 1723 1724 return core_pbuf_is(attr, p, len); 1725 } 1726 1727 /* core_va2pa - teecore exported service */ 1728 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) 1729 { 1730 struct tee_mmap_region *map; 1731 1732 map = find_map_by_va(va); 1733 if (!va_is_in_map(map, (vaddr_t)va)) 1734 return -1; 1735 1736 /* 1737 * We can calculate PA for static map. Virtual address ranges 1738 * reserved to core dynamic mapping return a 'match' (return 0;) 1739 * together with an invalid null physical address. 1740 */ 1741 if (map->pa) 1742 *pa = map->pa + (vaddr_t)va - map->va; 1743 else 1744 *pa = 0; 1745 1746 return 0; 1747 } 1748 1749 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) 1750 { 1751 if (!pa_is_in_map(map, pa, len)) 1752 return NULL; 1753 1754 return (void *)(vaddr_t)(map->va + pa - map->pa); 1755 } 1756 1757 /* 1758 * teecore gets some memory area definitions 1759 */ 1760 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s, 1761 vaddr_t *e) 1762 { 1763 struct tee_mmap_region *map = find_map_by_type(type); 1764 1765 if (map) { 1766 *s = map->va; 1767 *e = map->va + map->size; 1768 } else { 1769 *s = 0; 1770 *e = 0; 1771 } 1772 } 1773 1774 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) 1775 { 1776 struct tee_mmap_region *map = find_map_by_pa(pa); 1777 1778 if (!map) 1779 return MEM_AREA_MAXTYPE; 1780 return map->type; 1781 } 1782 1783 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1784 paddr_t pa, uint32_t attr) 1785 { 1786 assert(idx < tbl_info->num_entries); 1787 core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, 1788 idx, pa, attr); 1789 } 1790 1791 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1792 paddr_t *pa, uint32_t *attr) 1793 { 1794 assert(idx < tbl_info->num_entries); 1795 core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, 1796 idx, pa, attr); 1797 } 1798 1799 static void clear_region(struct core_mmu_table_info *tbl_info, 1800 struct tee_mmap_region *region) 1801 { 1802 unsigned int end = 0; 1803 unsigned int idx = 0; 1804 1805 /* va, len and pa should be block aligned */ 1806 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1807 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1808 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1809 1810 idx = core_mmu_va2idx(tbl_info, region->va); 1811 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1812 1813 while (idx < end) { 1814 core_mmu_set_entry(tbl_info, idx, 0, 0); 1815 idx++; 1816 } 1817 } 1818 1819 static void set_region(struct core_mmu_table_info *tbl_info, 1820 struct tee_mmap_region *region) 1821 { 1822 unsigned int end; 1823 unsigned int idx; 1824 paddr_t pa; 1825 1826 /* va, len and pa should be block aligned */ 1827 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1828 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1829 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1830 1831 idx = core_mmu_va2idx(tbl_info, region->va); 1832 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1833 pa = region->pa; 1834 1835 while (idx < end) { 1836 core_mmu_set_entry(tbl_info, idx, pa, region->attr); 1837 idx++; 1838 pa += BIT64(tbl_info->shift); 1839 } 1840 } 1841 1842 static void set_pg_region(struct core_mmu_table_info *dir_info, 1843 struct vm_region *region, struct pgt **pgt, 1844 struct core_mmu_table_info *pg_info) 1845 { 1846 struct tee_mmap_region r = { 1847 .va = region->va, 1848 .size = region->size, 1849 .attr = region->attr, 1850 }; 1851 vaddr_t end = r.va + r.size; 1852 uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; 1853 1854 while (r.va < end) { 1855 if (!pg_info->table || 1856 r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { 1857 /* 1858 * We're assigning a new translation table. 1859 */ 1860 unsigned int idx; 1861 1862 /* Virtual addresses must grow */ 1863 assert(r.va > pg_info->va_base); 1864 1865 idx = core_mmu_va2idx(dir_info, r.va); 1866 pg_info->va_base = core_mmu_idx2va(dir_info, idx); 1867 1868 /* 1869 * Advance pgt to va_base, note that we may need to 1870 * skip multiple page tables if there are large 1871 * holes in the vm map. 1872 */ 1873 while ((*pgt)->vabase < pg_info->va_base) { 1874 *pgt = SLIST_NEXT(*pgt, link); 1875 /* We should have allocated enough */ 1876 assert(*pgt); 1877 } 1878 assert((*pgt)->vabase == pg_info->va_base); 1879 pg_info->table = (*pgt)->tbl; 1880 1881 core_mmu_set_entry(dir_info, idx, 1882 virt_to_phys(pg_info->table), 1883 pgt_attr); 1884 } 1885 1886 r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), 1887 end - r.va); 1888 1889 if (!(*pgt)->populated && !mobj_is_paged(region->mobj)) { 1890 size_t granule = BIT(pg_info->shift); 1891 size_t offset = r.va - region->va + region->offset; 1892 1893 r.size = MIN(r.size, 1894 mobj_get_phys_granule(region->mobj)); 1895 r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); 1896 1897 if (mobj_get_pa(region->mobj, offset, granule, 1898 &r.pa) != TEE_SUCCESS) 1899 panic("Failed to get PA of unpaged mobj"); 1900 set_region(pg_info, &r); 1901 } 1902 r.va += r.size; 1903 } 1904 } 1905 1906 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, 1907 size_t size_left, paddr_t block_size, 1908 struct tee_mmap_region *mm) 1909 { 1910 /* VA and PA are aligned to block size at current level */ 1911 if ((vaddr | paddr) & (block_size - 1)) 1912 return false; 1913 1914 /* Remainder fits into block at current level */ 1915 if (size_left < block_size) 1916 return false; 1917 1918 /* 1919 * The required block size of the region is compatible with the 1920 * block size of the current level. 1921 */ 1922 if (mm->region_size < block_size) 1923 return false; 1924 1925 #ifdef CFG_WITH_PAGER 1926 /* 1927 * If pager is enabled, we need to map TEE RAM and the whole pager 1928 * regions with small pages only 1929 */ 1930 if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) && 1931 block_size != SMALL_PAGE_SIZE) 1932 return false; 1933 #endif 1934 1935 return true; 1936 } 1937 1938 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) 1939 { 1940 struct core_mmu_table_info tbl_info; 1941 unsigned int idx; 1942 vaddr_t vaddr = mm->va; 1943 paddr_t paddr = mm->pa; 1944 ssize_t size_left = mm->size; 1945 unsigned int level; 1946 bool table_found; 1947 uint32_t old_attr; 1948 1949 assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); 1950 1951 while (size_left > 0) { 1952 level = CORE_MMU_BASE_TABLE_LEVEL; 1953 1954 while (true) { 1955 paddr_t block_size = 0; 1956 1957 assert(core_mmu_level_in_range(level)); 1958 1959 table_found = core_mmu_find_table(prtn, vaddr, level, 1960 &tbl_info); 1961 if (!table_found) 1962 panic("can't find table for mapping"); 1963 1964 block_size = BIT64(tbl_info.shift); 1965 1966 idx = core_mmu_va2idx(&tbl_info, vaddr); 1967 if (!can_map_at_level(paddr, vaddr, size_left, 1968 block_size, mm)) { 1969 bool secure = mm->attr & TEE_MATTR_SECURE; 1970 1971 /* 1972 * This part of the region can't be mapped at 1973 * this level. Need to go deeper. 1974 */ 1975 if (!core_mmu_entry_to_finer_grained(&tbl_info, 1976 idx, 1977 secure)) 1978 panic("Can't divide MMU entry"); 1979 level = tbl_info.next_level; 1980 continue; 1981 } 1982 1983 /* We can map part of the region at current level */ 1984 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1985 if (old_attr) 1986 panic("Page is already mapped"); 1987 1988 core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr); 1989 paddr += block_size; 1990 vaddr += block_size; 1991 size_left -= block_size; 1992 1993 break; 1994 } 1995 } 1996 } 1997 1998 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 1999 enum teecore_memtypes memtype) 2000 { 2001 TEE_Result ret; 2002 struct core_mmu_table_info tbl_info; 2003 struct tee_mmap_region *mm; 2004 unsigned int idx; 2005 uint32_t old_attr; 2006 uint32_t exceptions; 2007 vaddr_t vaddr = vstart; 2008 size_t i; 2009 bool secure; 2010 2011 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 2012 2013 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 2014 2015 if (vaddr & SMALL_PAGE_MASK) 2016 return TEE_ERROR_BAD_PARAMETERS; 2017 2018 exceptions = mmu_lock(); 2019 2020 mm = find_map_by_va((void *)vaddr); 2021 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 2022 panic("VA does not belong to any known mm region"); 2023 2024 if (!core_mmu_is_dynamic_vaspace(mm)) 2025 panic("Trying to map into static region"); 2026 2027 for (i = 0; i < num_pages; i++) { 2028 if (pages[i] & SMALL_PAGE_MASK) { 2029 ret = TEE_ERROR_BAD_PARAMETERS; 2030 goto err; 2031 } 2032 2033 while (true) { 2034 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 2035 &tbl_info)) 2036 panic("Can't find pagetable for vaddr "); 2037 2038 idx = core_mmu_va2idx(&tbl_info, vaddr); 2039 if (tbl_info.shift == SMALL_PAGE_SHIFT) 2040 break; 2041 2042 /* This is supertable. Need to divide it. */ 2043 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 2044 secure)) 2045 panic("Failed to spread pgdir on small tables"); 2046 } 2047 2048 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2049 if (old_attr) 2050 panic("Page is already mapped"); 2051 2052 core_mmu_set_entry(&tbl_info, idx, pages[i], 2053 core_mmu_type_to_attr(memtype)); 2054 vaddr += SMALL_PAGE_SIZE; 2055 } 2056 2057 /* 2058 * Make sure all the changes to translation tables are visible 2059 * before returning. TLB doesn't need to be invalidated as we are 2060 * guaranteed that there's no valid mapping in this range. 2061 */ 2062 core_mmu_table_write_barrier(); 2063 mmu_unlock(exceptions); 2064 2065 return TEE_SUCCESS; 2066 err: 2067 mmu_unlock(exceptions); 2068 2069 if (i) 2070 core_mmu_unmap_pages(vstart, i); 2071 2072 return ret; 2073 } 2074 2075 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 2076 size_t num_pages, 2077 enum teecore_memtypes memtype) 2078 { 2079 struct core_mmu_table_info tbl_info = { }; 2080 struct tee_mmap_region *mm = NULL; 2081 unsigned int idx = 0; 2082 uint32_t old_attr = 0; 2083 uint32_t exceptions = 0; 2084 vaddr_t vaddr = vstart; 2085 paddr_t paddr = pstart; 2086 size_t i = 0; 2087 bool secure = false; 2088 2089 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 2090 2091 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 2092 2093 if ((vaddr | paddr) & SMALL_PAGE_MASK) 2094 return TEE_ERROR_BAD_PARAMETERS; 2095 2096 exceptions = mmu_lock(); 2097 2098 mm = find_map_by_va((void *)vaddr); 2099 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 2100 panic("VA does not belong to any known mm region"); 2101 2102 if (!core_mmu_is_dynamic_vaspace(mm)) 2103 panic("Trying to map into static region"); 2104 2105 for (i = 0; i < num_pages; i++) { 2106 while (true) { 2107 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 2108 &tbl_info)) 2109 panic("Can't find pagetable for vaddr "); 2110 2111 idx = core_mmu_va2idx(&tbl_info, vaddr); 2112 if (tbl_info.shift == SMALL_PAGE_SHIFT) 2113 break; 2114 2115 /* This is supertable. Need to divide it. */ 2116 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 2117 secure)) 2118 panic("Failed to spread pgdir on small tables"); 2119 } 2120 2121 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2122 if (old_attr) 2123 panic("Page is already mapped"); 2124 2125 core_mmu_set_entry(&tbl_info, idx, paddr, 2126 core_mmu_type_to_attr(memtype)); 2127 paddr += SMALL_PAGE_SIZE; 2128 vaddr += SMALL_PAGE_SIZE; 2129 } 2130 2131 /* 2132 * Make sure all the changes to translation tables are visible 2133 * before returning. TLB doesn't need to be invalidated as we are 2134 * guaranteed that there's no valid mapping in this range. 2135 */ 2136 core_mmu_table_write_barrier(); 2137 mmu_unlock(exceptions); 2138 2139 return TEE_SUCCESS; 2140 } 2141 2142 static bool mem_range_is_in_vcore_free(vaddr_t vstart, size_t num_pages) 2143 { 2144 return core_is_buffer_inside(vstart, num_pages * SMALL_PAGE_SIZE, 2145 VCORE_FREE_PA, VCORE_FREE_SZ); 2146 } 2147 2148 static void maybe_remove_from_mem_map(vaddr_t vstart, size_t num_pages) 2149 { 2150 struct memory_map *mem_map = NULL; 2151 struct tee_mmap_region *mm = NULL; 2152 size_t idx = 0; 2153 vaddr_t va = 0; 2154 2155 mm = find_map_by_va((void *)vstart); 2156 if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) 2157 panic("VA does not belong to any known mm region"); 2158 2159 if (core_mmu_is_dynamic_vaspace(mm)) 2160 return; 2161 2162 if (!mem_range_is_in_vcore_free(vstart, num_pages)) 2163 panic("Trying to unmap static region"); 2164 2165 /* 2166 * We're going to remove a memory from the VCORE_FREE memory range. 2167 * Depending where the range is we may need to remove the matching 2168 * mm, peal of a bit from the start or end of the mm, or split it 2169 * into two with a whole in the middle. 2170 */ 2171 2172 va = ROUNDDOWN(vstart, SMALL_PAGE_SIZE); 2173 assert(mm->region_size == SMALL_PAGE_SIZE); 2174 2175 if (va == mm->va && mm->size == num_pages * SMALL_PAGE_SIZE) { 2176 mem_map = get_memory_map(); 2177 idx = mm - mem_map->map; 2178 assert(idx < mem_map->count); 2179 2180 rem_array_elem(mem_map->map, mem_map->count, 2181 sizeof(*mem_map->map), idx); 2182 mem_map->count--; 2183 } else if (va == mm->va) { 2184 mm->va += num_pages * SMALL_PAGE_SIZE; 2185 mm->pa += num_pages * SMALL_PAGE_SIZE; 2186 mm->size -= num_pages * SMALL_PAGE_SIZE; 2187 } else if (va + num_pages * SMALL_PAGE_SIZE == mm->va + mm->size) { 2188 mm->size -= num_pages * SMALL_PAGE_SIZE; 2189 } else { 2190 struct tee_mmap_region m = *mm; 2191 2192 mem_map = get_memory_map(); 2193 idx = mm - mem_map->map; 2194 assert(idx < mem_map->count); 2195 2196 mm->size = va - mm->va; 2197 m.va += mm->size + num_pages * SMALL_PAGE_SIZE; 2198 m.pa += mm->size + num_pages * SMALL_PAGE_SIZE; 2199 m.size -= mm->size + num_pages * SMALL_PAGE_SIZE; 2200 grow_mem_map(mem_map); 2201 ins_array_elem(mem_map->map, mem_map->count, 2202 sizeof(*mem_map->map), idx + 1, &m); 2203 } 2204 } 2205 2206 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) 2207 { 2208 struct core_mmu_table_info tbl_info; 2209 size_t i; 2210 unsigned int idx; 2211 uint32_t exceptions; 2212 2213 exceptions = mmu_lock(); 2214 2215 maybe_remove_from_mem_map(vstart, num_pages); 2216 2217 for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { 2218 if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) 2219 panic("Can't find pagetable"); 2220 2221 if (tbl_info.shift != SMALL_PAGE_SHIFT) 2222 panic("Invalid pagetable level"); 2223 2224 idx = core_mmu_va2idx(&tbl_info, vstart); 2225 core_mmu_set_entry(&tbl_info, idx, 0, 0); 2226 } 2227 tlbi_all(); 2228 2229 mmu_unlock(exceptions); 2230 } 2231 2232 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 2233 struct user_mode_ctx *uctx) 2234 { 2235 struct core_mmu_table_info pg_info = { }; 2236 struct pgt_cache *pgt_cache = &uctx->pgt_cache; 2237 struct pgt *pgt = NULL; 2238 struct pgt *p = NULL; 2239 struct vm_region *r = NULL; 2240 2241 if (TAILQ_EMPTY(&uctx->vm_info.regions)) 2242 return; /* Nothing to map */ 2243 2244 /* 2245 * Allocate all page tables in advance. 2246 */ 2247 pgt_get_all(uctx); 2248 pgt = SLIST_FIRST(pgt_cache); 2249 2250 core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL); 2251 2252 TAILQ_FOREACH(r, &uctx->vm_info.regions, link) 2253 set_pg_region(dir_info, r, &pgt, &pg_info); 2254 /* Record that the translation tables now are populated. */ 2255 SLIST_FOREACH(p, pgt_cache, link) { 2256 p->populated = true; 2257 if (p == pgt) 2258 break; 2259 } 2260 assert(p == pgt); 2261 } 2262 2263 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 2264 size_t len) 2265 { 2266 struct core_mmu_table_info tbl_info = { }; 2267 struct tee_mmap_region *res_map = NULL; 2268 struct tee_mmap_region *map = NULL; 2269 paddr_t pa = virt_to_phys(addr); 2270 size_t granule = 0; 2271 ptrdiff_t i = 0; 2272 paddr_t p = 0; 2273 size_t l = 0; 2274 2275 map = find_map_by_type_and_pa(type, pa, len); 2276 if (!map) 2277 return TEE_ERROR_GENERIC; 2278 2279 res_map = find_map_by_type(MEM_AREA_RES_VASPACE); 2280 if (!res_map) 2281 return TEE_ERROR_GENERIC; 2282 if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) 2283 return TEE_ERROR_GENERIC; 2284 granule = BIT(tbl_info.shift); 2285 2286 if (map < static_memory_map.map || 2287 map >= static_memory_map.map + static_memory_map.count) 2288 return TEE_ERROR_GENERIC; 2289 i = map - static_memory_map.map; 2290 2291 /* Check that we have a full match */ 2292 p = ROUNDDOWN2(pa, granule); 2293 l = ROUNDUP2(len + pa - p, granule); 2294 if (map->pa != p || map->size != l) 2295 return TEE_ERROR_GENERIC; 2296 2297 clear_region(&tbl_info, map); 2298 tlbi_all(); 2299 2300 /* If possible remove the va range from res_map */ 2301 if (res_map->va - map->size == map->va) { 2302 res_map->va -= map->size; 2303 res_map->size += map->size; 2304 } 2305 2306 /* Remove the entry. */ 2307 rem_array_elem(static_memory_map.map, static_memory_map.count, 2308 sizeof(*static_memory_map.map), i); 2309 static_memory_map.count--; 2310 2311 return TEE_SUCCESS; 2312 } 2313 2314 struct tee_mmap_region * 2315 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) 2316 { 2317 struct memory_map *mem_map = get_memory_map(); 2318 struct tee_mmap_region *map_found = NULL; 2319 size_t n = 0; 2320 2321 if (!len) 2322 return NULL; 2323 2324 for (n = 0; n < mem_map->count; n++) { 2325 if (mem_map->map[n].type != type) 2326 continue; 2327 2328 if (map_found) 2329 return NULL; 2330 2331 map_found = mem_map->map + n; 2332 } 2333 2334 if (!map_found || map_found->size < len) 2335 return NULL; 2336 2337 return map_found; 2338 } 2339 2340 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) 2341 { 2342 struct memory_map *mem_map = &static_memory_map; 2343 struct core_mmu_table_info tbl_info = { }; 2344 struct tee_mmap_region *map = NULL; 2345 size_t granule = 0; 2346 paddr_t p = 0; 2347 size_t l = 0; 2348 2349 if (!len) 2350 return NULL; 2351 2352 if (!core_mmu_check_end_pa(addr, len)) 2353 return NULL; 2354 2355 /* Check if the memory is already mapped */ 2356 map = find_map_by_type_and_pa(type, addr, len); 2357 if (map && pbuf_inside_map_area(addr, len, map)) 2358 return (void *)(vaddr_t)(map->va + addr - map->pa); 2359 2360 /* Find the reserved va space used for late mappings */ 2361 map = find_map_by_type(MEM_AREA_RES_VASPACE); 2362 if (!map) 2363 return NULL; 2364 2365 if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) 2366 return NULL; 2367 2368 granule = BIT64(tbl_info.shift); 2369 p = ROUNDDOWN2(addr, granule); 2370 l = ROUNDUP2(len + addr - p, granule); 2371 2372 /* Ban overflowing virtual addresses */ 2373 if (map->size < l) 2374 return NULL; 2375 2376 /* 2377 * Something is wrong, we can't fit the va range into the selected 2378 * table. The reserved va range is possibly missaligned with 2379 * granule. 2380 */ 2381 if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) 2382 return NULL; 2383 2384 if (static_memory_map.count >= static_memory_map.alloc_count) 2385 return NULL; 2386 2387 mem_map->map[mem_map->count] = (struct tee_mmap_region){ 2388 .va = map->va, 2389 .size = l, 2390 .type = type, 2391 .region_size = granule, 2392 .attr = core_mmu_type_to_attr(type), 2393 .pa = p, 2394 }; 2395 map->va += l; 2396 map->size -= l; 2397 map = mem_map->map + mem_map->count; 2398 mem_map->count++; 2399 2400 set_region(&tbl_info, map); 2401 2402 /* Make sure the new entry is visible before continuing. */ 2403 core_mmu_table_write_barrier(); 2404 2405 return (void *)(vaddr_t)(map->va + addr - map->pa); 2406 } 2407 2408 #ifdef CFG_WITH_PAGER 2409 static vaddr_t get_linear_map_end_va(void) 2410 { 2411 /* this is synced with the generic linker file kern.ld.S */ 2412 return (vaddr_t)__heap2_end; 2413 } 2414 2415 static paddr_t get_linear_map_end_pa(void) 2416 { 2417 return get_linear_map_end_va() - boot_mmu_config.map_offset; 2418 } 2419 #endif 2420 2421 #if defined(CFG_TEE_CORE_DEBUG) 2422 static void check_pa_matches_va(void *va, paddr_t pa) 2423 { 2424 TEE_Result res = TEE_ERROR_GENERIC; 2425 vaddr_t v = (vaddr_t)va; 2426 paddr_t p = 0; 2427 struct core_mmu_table_info ti __maybe_unused = { }; 2428 2429 if (core_mmu_user_va_range_is_defined()) { 2430 vaddr_t user_va_base = 0; 2431 size_t user_va_size = 0; 2432 2433 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 2434 if (v >= user_va_base && 2435 v <= (user_va_base - 1 + user_va_size)) { 2436 if (!core_mmu_user_mapping_is_active()) { 2437 if (pa) 2438 panic("issue in linear address space"); 2439 return; 2440 } 2441 2442 res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), 2443 va, &p); 2444 if (res == TEE_ERROR_NOT_SUPPORTED) 2445 return; 2446 if (res == TEE_SUCCESS && pa != p) 2447 panic("bad pa"); 2448 if (res != TEE_SUCCESS && pa) 2449 panic("false pa"); 2450 return; 2451 } 2452 } 2453 #ifdef CFG_WITH_PAGER 2454 if (is_unpaged(va)) { 2455 if (v - boot_mmu_config.map_offset != pa) 2456 panic("issue in linear address space"); 2457 return; 2458 } 2459 2460 if (tee_pager_get_table_info(v, &ti)) { 2461 uint32_t a; 2462 2463 /* 2464 * Lookups in the page table managed by the pager is 2465 * dangerous for addresses in the paged area as those pages 2466 * changes all the time. But some ranges are safe, 2467 * rw-locked areas when the page is populated for instance. 2468 */ 2469 core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); 2470 if (a & TEE_MATTR_VALID_BLOCK) { 2471 paddr_t mask = BIT64(ti.shift) - 1; 2472 2473 p |= v & mask; 2474 if (pa != p) 2475 panic(); 2476 } else { 2477 if (pa) 2478 panic(); 2479 } 2480 return; 2481 } 2482 #endif 2483 2484 if (!core_va2pa_helper(va, &p)) { 2485 /* Verfiy only the static mapping (case non null phys addr) */ 2486 if (p && pa != p) { 2487 DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, 2488 va, p, pa); 2489 panic(); 2490 } 2491 } else { 2492 if (pa) { 2493 DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); 2494 panic(); 2495 } 2496 } 2497 } 2498 #else 2499 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) 2500 { 2501 } 2502 #endif 2503 2504 paddr_t virt_to_phys(void *va) 2505 { 2506 paddr_t pa = 0; 2507 2508 if (!arch_va2pa_helper(va, &pa)) 2509 pa = 0; 2510 check_pa_matches_va(memtag_strip_tag(va), pa); 2511 return pa; 2512 } 2513 2514 /* 2515 * Don't use check_va_matches_pa() for RISC-V, as its callee 2516 * arch_va2pa_helper() will call it eventually, this creates 2517 * indirect recursion and can lead to a stack overflow. 2518 * Moreover, if arch_va2pa_helper() returns true, it implies 2519 * the va2pa mapping is matched, no need to check it again. 2520 */ 2521 #if defined(CFG_TEE_CORE_DEBUG) && !defined(__riscv) 2522 static void check_va_matches_pa(paddr_t pa, void *va) 2523 { 2524 paddr_t p = 0; 2525 2526 if (!va) 2527 return; 2528 2529 p = virt_to_phys(va); 2530 if (p != pa) { 2531 DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); 2532 panic(); 2533 } 2534 } 2535 #else 2536 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) 2537 { 2538 } 2539 #endif 2540 2541 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) 2542 { 2543 if (!core_mmu_user_mapping_is_active()) 2544 return NULL; 2545 2546 return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); 2547 } 2548 2549 #ifdef CFG_WITH_PAGER 2550 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2551 { 2552 paddr_t end_pa = 0; 2553 2554 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 2555 return NULL; 2556 2557 if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) { 2558 if (end_pa > get_linear_map_end_pa()) 2559 return NULL; 2560 return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset); 2561 } 2562 2563 return tee_pager_phys_to_virt(pa, len); 2564 } 2565 #else 2566 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2567 { 2568 struct tee_mmap_region *mmap = NULL; 2569 2570 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); 2571 if (!mmap) 2572 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); 2573 if (!mmap) 2574 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); 2575 if (!mmap) 2576 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); 2577 if (!mmap) 2578 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); 2579 if (!mmap) 2580 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); 2581 /* 2582 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only 2583 * used with pager and not needed here. 2584 */ 2585 return map_pa2va(mmap, pa, len); 2586 } 2587 #endif 2588 2589 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) 2590 { 2591 void *va = NULL; 2592 2593 switch (m) { 2594 case MEM_AREA_TS_VASPACE: 2595 va = phys_to_virt_ts_vaspace(pa, len); 2596 break; 2597 case MEM_AREA_TEE_RAM: 2598 case MEM_AREA_TEE_RAM_RX: 2599 case MEM_AREA_TEE_RAM_RO: 2600 case MEM_AREA_TEE_RAM_RW: 2601 case MEM_AREA_NEX_RAM_RO: 2602 case MEM_AREA_NEX_RAM_RW: 2603 va = phys_to_virt_tee_ram(pa, len); 2604 break; 2605 case MEM_AREA_SHM_VASPACE: 2606 /* Find VA from PA in dynamic SHM is not yet supported */ 2607 va = NULL; 2608 break; 2609 default: 2610 va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); 2611 } 2612 if (m != MEM_AREA_SEC_RAM_OVERALL) 2613 check_va_matches_pa(pa, va); 2614 return va; 2615 } 2616 2617 void *phys_to_virt_io(paddr_t pa, size_t len) 2618 { 2619 struct tee_mmap_region *map = NULL; 2620 void *va = NULL; 2621 2622 map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); 2623 if (!map) 2624 map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); 2625 if (!map) 2626 return NULL; 2627 va = map_pa2va(map, pa, len); 2628 check_va_matches_pa(pa, va); 2629 return va; 2630 } 2631 2632 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) 2633 { 2634 if (cpu_mmu_enabled()) 2635 return (vaddr_t)phys_to_virt(pa, type, len); 2636 2637 return (vaddr_t)pa; 2638 } 2639 2640 #ifdef CFG_WITH_PAGER 2641 bool is_unpaged(const void *va) 2642 { 2643 vaddr_t v = (vaddr_t)va; 2644 2645 return v >= VCORE_START_VA && v < get_linear_map_end_va(); 2646 } 2647 #endif 2648 2649 #ifdef CFG_NS_VIRTUALIZATION 2650 bool is_nexus(const void *va) 2651 { 2652 vaddr_t v = (vaddr_t)va; 2653 2654 return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ; 2655 } 2656 #endif 2657 2658 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) 2659 { 2660 assert(p->pa); 2661 if (cpu_mmu_enabled()) { 2662 if (!p->va) 2663 p->va = (vaddr_t)phys_to_virt_io(p->pa, len); 2664 assert(p->va); 2665 return p->va; 2666 } 2667 return p->pa; 2668 } 2669 2670 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) 2671 { 2672 assert(p->pa); 2673 if (cpu_mmu_enabled()) { 2674 if (!p->va) 2675 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, 2676 len); 2677 assert(p->va); 2678 return p->va; 2679 } 2680 return p->pa; 2681 } 2682 2683 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) 2684 { 2685 assert(p->pa); 2686 if (cpu_mmu_enabled()) { 2687 if (!p->va) 2688 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, 2689 len); 2690 assert(p->va); 2691 return p->va; 2692 } 2693 return p->pa; 2694 } 2695 2696 #ifdef CFG_CORE_RESERVED_SHM 2697 static TEE_Result teecore_init_pub_ram(void) 2698 { 2699 vaddr_t s = 0; 2700 vaddr_t e = 0; 2701 2702 /* get virtual addr/size of NSec shared mem allocated from teecore */ 2703 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); 2704 2705 if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) 2706 panic("invalid PUB RAM"); 2707 2708 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2709 if (!tee_vbuf_is_non_sec(s, e - s)) 2710 panic("PUB RAM is not non-secure"); 2711 2712 #ifdef CFG_PL310 2713 /* Allocate statically the l2cc mutex */ 2714 tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); 2715 s += sizeof(uint32_t); /* size of a pl310 mutex */ 2716 s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ 2717 #endif 2718 2719 default_nsec_shm_paddr = virt_to_phys((void *)s); 2720 default_nsec_shm_size = e - s; 2721 2722 return TEE_SUCCESS; 2723 } 2724 early_init(teecore_init_pub_ram); 2725 #endif /*CFG_CORE_RESERVED_SHM*/ 2726 2727 static void __maybe_unused carve_out_core_mem(paddr_t pa, paddr_t end_pa) 2728 { 2729 tee_mm_entry_t *mm __maybe_unused = NULL; 2730 2731 DMSG("%#"PRIxPA" .. %#"PRIxPA, pa, end_pa); 2732 mm = phys_mem_alloc2(pa, end_pa - pa); 2733 assert(mm); 2734 } 2735 2736 void core_mmu_init_phys_mem(void) 2737 { 2738 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 2739 paddr_t b1 = 0; 2740 paddr_size_t s1 = 0; 2741 2742 static_assert(ARRAY_SIZE(secure_only) <= 2); 2743 2744 if (ARRAY_SIZE(secure_only) == 2) { 2745 b1 = secure_only[1].paddr; 2746 s1 = secure_only[1].size; 2747 } 2748 virt_init_memory(&static_memory_map, secure_only[0].paddr, 2749 secure_only[0].size, b1, s1); 2750 } else { 2751 #ifdef CFG_WITH_PAGER 2752 /* 2753 * The pager uses all core memory so there's no need to add 2754 * it to the pool. 2755 */ 2756 static_assert(ARRAY_SIZE(secure_only) == 2); 2757 phys_mem_init(0, 0, secure_only[1].paddr, secure_only[1].size); 2758 #else /*!CFG_WITH_PAGER*/ 2759 size_t align = BIT(CORE_MMU_USER_CODE_SHIFT); 2760 paddr_t end_pa = 0; 2761 size_t size = 0; 2762 paddr_t ps = 0; 2763 paddr_t pa = 0; 2764 2765 static_assert(ARRAY_SIZE(secure_only) <= 2); 2766 if (ARRAY_SIZE(secure_only) == 2) { 2767 ps = secure_only[1].paddr; 2768 size = secure_only[1].size; 2769 } 2770 phys_mem_init(secure_only[0].paddr, secure_only[0].size, 2771 ps, size); 2772 2773 /* 2774 * The VCORE macros are relocatable so we need to translate 2775 * the addresses now that the MMU is enabled. 2776 */ 2777 end_pa = vaddr_to_phys(ROUNDUP2(VCORE_FREE_END_PA, 2778 align) - 1) + 1; 2779 /* Carve out the part used by OP-TEE core */ 2780 carve_out_core_mem(vaddr_to_phys(VCORE_UNPG_RX_PA), end_pa); 2781 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) { 2782 pa = vaddr_to_phys(ROUNDUP2(ASAN_MAP_PA, align)); 2783 carve_out_core_mem(pa, pa + ASAN_MAP_SZ); 2784 } 2785 2786 /* Carve out test SDP memory */ 2787 #ifdef TEE_SDP_TEST_MEM_BASE 2788 if (TEE_SDP_TEST_MEM_SIZE) { 2789 pa = TEE_SDP_TEST_MEM_BASE; 2790 carve_out_core_mem(pa, pa + TEE_SDP_TEST_MEM_SIZE); 2791 } 2792 #endif 2793 #endif /*!CFG_WITH_PAGER*/ 2794 } 2795 } 2796