xref: /optee_os/core/mm/core_mmu.c (revision a7aaad053fed9971fc008625e6e47bf7c29a3c2b)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016-2025 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <memtag.h>
22 #include <mm/core_memprot.h>
23 #include <mm/core_mmu.h>
24 #include <mm/mobj.h>
25 #include <mm/pgt_cache.h>
26 #include <mm/phys_mem.h>
27 #include <mm/tee_pager.h>
28 #include <mm/vm.h>
29 #include <platform_config.h>
30 #include <stdalign.h>
31 #include <string.h>
32 #include <trace.h>
33 #include <util.h>
34 
35 #ifndef DEBUG_XLAT_TABLE
36 #define DEBUG_XLAT_TABLE 0
37 #endif
38 
39 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
40 
41 /* Virtual memory pool for core mappings */
42 tee_mm_pool_t core_virt_mem_pool;
43 
44 /* Virtual memory pool for shared memory mappings */
45 tee_mm_pool_t core_virt_shm_pool;
46 
47 #ifdef CFG_CORE_PHYS_RELOCATABLE
48 unsigned long core_mmu_tee_load_pa __nex_bss;
49 #else
50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
51 #endif
52 
53 /*
54  * These variables are initialized before .bss is cleared. To avoid
55  * resetting them when .bss is cleared we're storing them in .data instead,
56  * even if they initially are zero.
57  */
58 
59 #ifdef CFG_CORE_RESERVED_SHM
60 /* Default NSec shared memory allocated from NSec world */
61 unsigned long default_nsec_shm_size __nex_bss;
62 unsigned long default_nsec_shm_paddr __nex_bss;
63 #endif
64 
65 #ifdef CFG_BOOT_MEM
66 static struct memory_map static_memory_map __nex_bss;
67 #else
68 static struct tee_mmap_region static_mmap_regions[CFG_MMAP_REGIONS
69 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE)
70 						+ 1
71 #endif
72 						+ 4] __nex_bss;
73 static struct memory_map static_memory_map __nex_data = {
74 	.map = static_mmap_regions,
75 	.alloc_count = ARRAY_SIZE(static_mmap_regions),
76 };
77 #endif
78 void (*memory_map_realloc_func)(struct memory_map *mem_map) __nex_bss;
79 
80 /* Offset of the first TEE RAM mapping from start of secure RAM */
81 static size_t tee_ram_initial_offs __nex_bss;
82 
83 /* Define the platform's memory layout. */
84 struct memaccess_area {
85 	paddr_t paddr;
86 	size_t size;
87 };
88 
89 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
90 
91 static struct memaccess_area secure_only[] __nex_data = {
92 #ifdef CFG_CORE_PHYS_RELOCATABLE
93 	MEMACCESS_AREA(0, 0),
94 #else
95 #ifdef TRUSTED_SRAM_BASE
96 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
97 #endif
98 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
99 #endif
100 };
101 
102 static struct memaccess_area nsec_shared[] __nex_data = {
103 #ifdef CFG_CORE_RESERVED_SHM
104 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
105 #endif
106 };
107 
108 #if defined(CFG_SECURE_DATA_PATH)
109 static const char *tz_sdp_match = "linaro,secure-heap";
110 static struct memaccess_area sec_sdp;
111 #ifdef CFG_TEE_SDP_MEM_BASE
112 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
113 #endif
114 #ifdef TEE_SDP_TEST_MEM_BASE
115 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
116 #endif
117 #endif
118 
119 #ifdef CFG_CORE_RESERVED_SHM
120 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
121 #endif
122 static unsigned int mmu_spinlock;
123 
124 static uint32_t mmu_lock(void)
125 {
126 	return cpu_spin_lock_xsave(&mmu_spinlock);
127 }
128 
129 static void mmu_unlock(uint32_t exceptions)
130 {
131 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
132 }
133 
134 static void heap_realloc_memory_map(struct memory_map *mem_map)
135 {
136 	struct tee_mmap_region *m = NULL;
137 	struct tee_mmap_region *old = mem_map->map;
138 	size_t old_sz = sizeof(*old) * mem_map->alloc_count;
139 	size_t sz = old_sz + sizeof(*m);
140 
141 	assert(nex_malloc_buffer_is_within_alloced(old, old_sz));
142 	m = nex_realloc(old, sz);
143 	if (!m)
144 		panic();
145 	mem_map->map = m;
146 	mem_map->alloc_count++;
147 }
148 
149 static void boot_mem_realloc_memory_map(struct memory_map *mem_map)
150 {
151 	struct tee_mmap_region *m = NULL;
152 	struct tee_mmap_region *old = mem_map->map;
153 	size_t old_sz = sizeof(*old) * mem_map->alloc_count;
154 	size_t sz = old_sz * 2;
155 
156 	m = boot_mem_alloc_tmp(sz, alignof(*m));
157 	memcpy(m, old, old_sz);
158 	mem_map->map = m;
159 	mem_map->alloc_count *= 2;
160 }
161 
162 static void grow_mem_map(struct memory_map *mem_map)
163 {
164 	if (mem_map->count == mem_map->alloc_count) {
165 		if (!memory_map_realloc_func) {
166 			EMSG("Out of entries (%zu) in mem_map",
167 			     mem_map->alloc_count);
168 			panic();
169 		}
170 		memory_map_realloc_func(mem_map);
171 	}
172 	mem_map->count++;
173 }
174 
175 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
176 {
177 	/*
178 	 * The first range is always used to cover OP-TEE core memory, but
179 	 * depending on configuration it may cover more than that.
180 	 */
181 	*base = secure_only[0].paddr;
182 	*size = secure_only[0].size;
183 }
184 
185 void core_mmu_set_secure_memory(paddr_t base, size_t size)
186 {
187 #ifdef CFG_CORE_PHYS_RELOCATABLE
188 	static_assert(ARRAY_SIZE(secure_only) == 1);
189 #endif
190 	runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE));
191 	assert(!secure_only[0].size);
192 	assert(base && size);
193 
194 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
195 	secure_only[0].paddr = base;
196 	secure_only[0].size = size;
197 }
198 
199 static struct memory_map *get_memory_map(void)
200 {
201 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
202 		struct memory_map *map = virt_get_memory_map();
203 
204 		if (map)
205 			return map;
206 	}
207 
208 	return &static_memory_map;
209 }
210 
211 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
212 			     paddr_t pa, size_t size)
213 {
214 	size_t n;
215 
216 	for (n = 0; n < alen; n++)
217 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
218 			return true;
219 	return false;
220 }
221 
222 #define pbuf_intersects(a, pa, size) \
223 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
224 
225 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
226 			    paddr_t pa, size_t size)
227 {
228 	size_t n;
229 
230 	for (n = 0; n < alen; n++)
231 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
232 			return true;
233 	return false;
234 }
235 
236 #define pbuf_is_inside(a, pa, size) \
237 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
238 
239 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
240 {
241 	paddr_t end_pa = 0;
242 
243 	if (!map)
244 		return false;
245 
246 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
247 		return false;
248 
249 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
250 }
251 
252 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
253 {
254 	if (!map)
255 		return false;
256 	return (va >= map->va && va <= (map->va + map->size - 1));
257 }
258 
259 /* check if target buffer fits in a core default map area */
260 static bool pbuf_inside_map_area(unsigned long p, size_t l,
261 				 struct tee_mmap_region *map)
262 {
263 	return core_is_buffer_inside(p, l, map->pa, map->size);
264 }
265 
266 TEE_Result core_mmu_for_each_map(void *ptr,
267 				 TEE_Result (*fn)(struct tee_mmap_region *map,
268 						  void *ptr))
269 {
270 	struct memory_map *mem_map = get_memory_map();
271 	TEE_Result res = TEE_SUCCESS;
272 	size_t n = 0;
273 
274 	for (n = 0; n < mem_map->count; n++) {
275 		res = fn(mem_map->map + n, ptr);
276 		if (res)
277 			return res;
278 	}
279 
280 	return TEE_SUCCESS;
281 }
282 
283 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
284 {
285 	struct memory_map *mem_map = get_memory_map();
286 	size_t n = 0;
287 
288 	for (n = 0; n < mem_map->count; n++) {
289 		if (mem_map->map[n].type == type)
290 			return mem_map->map + n;
291 	}
292 	return NULL;
293 }
294 
295 static struct tee_mmap_region *
296 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
297 {
298 	struct memory_map *mem_map = get_memory_map();
299 	size_t n = 0;
300 
301 	for (n = 0; n < mem_map->count; n++) {
302 		if (mem_map->map[n].type != type)
303 			continue;
304 		if (pa_is_in_map(mem_map->map + n, pa, len))
305 			return mem_map->map + n;
306 	}
307 	return NULL;
308 }
309 
310 static struct tee_mmap_region *find_map_by_va(void *va)
311 {
312 	struct memory_map *mem_map = get_memory_map();
313 	vaddr_t a = (vaddr_t)va;
314 	size_t n = 0;
315 
316 	for (n = 0; n < mem_map->count; n++) {
317 		if (a >= mem_map->map[n].va &&
318 		    a <= (mem_map->map[n].va - 1 + mem_map->map[n].size))
319 			return mem_map->map + n;
320 	}
321 
322 	return NULL;
323 }
324 
325 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
326 {
327 	struct memory_map *mem_map = get_memory_map();
328 	size_t n = 0;
329 
330 	for (n = 0; n < mem_map->count; n++) {
331 		/* Skip unmapped regions */
332 		if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) &&
333 		    pa >= mem_map->map[n].pa &&
334 		    pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size))
335 			return mem_map->map + n;
336 	}
337 
338 	return NULL;
339 }
340 
341 #if defined(CFG_SECURE_DATA_PATH)
342 static bool dtb_get_sdp_region(void)
343 {
344 	void *fdt = NULL;
345 	int node = 0;
346 	int tmp_node = 0;
347 	paddr_t tmp_addr = 0;
348 	size_t tmp_size = 0;
349 
350 	if (!IS_ENABLED(CFG_EMBED_DTB))
351 		return false;
352 
353 	fdt = get_embedded_dt();
354 	if (!fdt)
355 		panic("No DTB found");
356 
357 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
358 	if (node < 0) {
359 		DMSG("No %s compatible node found", tz_sdp_match);
360 		return false;
361 	}
362 	tmp_node = node;
363 	while (tmp_node >= 0) {
364 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
365 							 tz_sdp_match);
366 		if (tmp_node >= 0)
367 			DMSG("Ignore SDP pool node %s, supports only 1 node",
368 			     fdt_get_name(fdt, tmp_node, NULL));
369 	}
370 
371 	if (fdt_reg_info(fdt, node, &tmp_addr, &tmp_size)) {
372 		EMSG("%s: Unable to get base addr or size from DT",
373 		     tz_sdp_match);
374 		return false;
375 	}
376 
377 	sec_sdp.paddr = tmp_addr;
378 	sec_sdp.size = tmp_size;
379 
380 	return true;
381 }
382 #endif
383 
384 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
385 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
386 				const struct core_mmu_phys_mem *start,
387 				const struct core_mmu_phys_mem *end)
388 {
389 	const struct core_mmu_phys_mem *mem;
390 
391 	for (mem = start; mem < end; mem++) {
392 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
393 			return true;
394 	}
395 
396 	return false;
397 }
398 #endif
399 
400 #ifdef CFG_CORE_DYN_SHM
401 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
402 			       paddr_t pa, size_t size)
403 {
404 	struct core_mmu_phys_mem *m = *mem;
405 	size_t n = 0;
406 
407 	while (true) {
408 		if (n >= *nelems) {
409 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
410 			     pa, size);
411 			return;
412 		}
413 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
414 			break;
415 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
416 			panic();
417 		n++;
418 	}
419 
420 	if (pa == m[n].addr && size == m[n].size) {
421 		/* Remove this entry */
422 		(*nelems)--;
423 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
424 		m = nex_realloc(m, sizeof(*m) * *nelems);
425 		if (!m)
426 			panic();
427 		*mem = m;
428 	} else if (pa == m[n].addr) {
429 		m[n].addr += size;
430 		m[n].size -= size;
431 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
432 		m[n].size -= size;
433 	} else {
434 		/* Need to split the memory entry */
435 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
436 		if (!m)
437 			panic();
438 		*mem = m;
439 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
440 		(*nelems)++;
441 		m[n].size = pa - m[n].addr;
442 		m[n + 1].size -= size + m[n].size;
443 		m[n + 1].addr = pa + size;
444 	}
445 }
446 
447 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
448 				      size_t nelems,
449 				      struct tee_mmap_region *map)
450 {
451 	size_t n;
452 
453 	for (n = 0; n < nelems; n++) {
454 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
455 					    map->pa, map->size)) {
456 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
457 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
458 			     start[n].addr, start[n].size,
459 			     map->type, map->pa, map->size);
460 			panic();
461 		}
462 	}
463 }
464 
465 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
466 static size_t discovered_nsec_ddr_nelems __nex_bss;
467 
468 static int cmp_pmem_by_addr(const void *a, const void *b)
469 {
470 	const struct core_mmu_phys_mem *pmem_a = a;
471 	const struct core_mmu_phys_mem *pmem_b = b;
472 
473 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
474 }
475 
476 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
477 				      size_t nelems)
478 {
479 	struct core_mmu_phys_mem *m = start;
480 	size_t num_elems = nelems;
481 	struct memory_map *mem_map = &static_memory_map;
482 	const struct core_mmu_phys_mem __maybe_unused *pmem;
483 	size_t n = 0;
484 
485 	assert(!discovered_nsec_ddr_start);
486 	assert(m && num_elems);
487 
488 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
489 
490 	/*
491 	 * Non-secure shared memory and also secure data
492 	 * path memory are supposed to reside inside
493 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
494 	 * are used for a specific purpose make holes for
495 	 * those memory in the normal non-secure memory.
496 	 *
497 	 * This has to be done since for instance QEMU
498 	 * isn't aware of which memory range in the
499 	 * non-secure memory is used for NSEC_SHM.
500 	 */
501 
502 #ifdef CFG_SECURE_DATA_PATH
503 	if (dtb_get_sdp_region())
504 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
505 
506 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
507 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
508 #endif
509 
510 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
511 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
512 				   secure_only[n].size);
513 
514 	for  (n = 0; n < mem_map->count; n++) {
515 		switch (mem_map->map[n].type) {
516 		case MEM_AREA_NSEC_SHM:
517 			carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa,
518 					   mem_map->map[n].size);
519 			break;
520 		case MEM_AREA_EXT_DT:
521 		case MEM_AREA_MANIFEST_DT:
522 		case MEM_AREA_RAM_NSEC:
523 		case MEM_AREA_RES_VASPACE:
524 		case MEM_AREA_SHM_VASPACE:
525 		case MEM_AREA_TS_VASPACE:
526 		case MEM_AREA_PAGER_VASPACE:
527 			break;
528 		default:
529 			check_phys_mem_is_outside(m, num_elems,
530 						  mem_map->map + n);
531 		}
532 	}
533 
534 	discovered_nsec_ddr_start = m;
535 	discovered_nsec_ddr_nelems = num_elems;
536 
537 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
538 				   m[num_elems - 1].size))
539 		panic();
540 }
541 
542 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
543 				    const struct core_mmu_phys_mem **end)
544 {
545 	if (!discovered_nsec_ddr_start)
546 		return false;
547 
548 	*start = discovered_nsec_ddr_start;
549 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
550 
551 	return true;
552 }
553 
554 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
555 {
556 	const struct core_mmu_phys_mem *start;
557 	const struct core_mmu_phys_mem *end;
558 
559 	if (!get_discovered_nsec_ddr(&start, &end))
560 		return false;
561 
562 	return pbuf_is_special_mem(pbuf, len, start, end);
563 }
564 
565 bool core_mmu_nsec_ddr_is_defined(void)
566 {
567 	const struct core_mmu_phys_mem *start;
568 	const struct core_mmu_phys_mem *end;
569 
570 	if (!get_discovered_nsec_ddr(&start, &end))
571 		return false;
572 
573 	return start != end;
574 }
575 #else
576 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
577 {
578 	return false;
579 }
580 #endif /*CFG_CORE_DYN_SHM*/
581 
582 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
583 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
584 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
585 
586 #ifdef CFG_SECURE_DATA_PATH
587 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
588 {
589 	bool is_sdp_mem = false;
590 
591 	if (sec_sdp.size)
592 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
593 						   sec_sdp.size);
594 
595 	if (!is_sdp_mem)
596 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
597 						 phys_sdp_mem_end);
598 
599 	return is_sdp_mem;
600 }
601 
602 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
603 {
604 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
605 					    CORE_MEM_SDP_MEM);
606 
607 	if (!mobj)
608 		panic("can't create SDP physical memory object");
609 
610 	return mobj;
611 }
612 
613 struct mobj **core_sdp_mem_create_mobjs(void)
614 {
615 	const struct core_mmu_phys_mem *mem = NULL;
616 	struct mobj **mobj_base = NULL;
617 	struct mobj **mobj = NULL;
618 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
619 
620 	if (sec_sdp.size)
621 		cnt++;
622 
623 	/* SDP mobjs table must end with a NULL entry */
624 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
625 	if (!mobj_base)
626 		panic("Out of memory");
627 
628 	mobj = mobj_base;
629 
630 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
631 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
632 
633 	if (sec_sdp.size)
634 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
635 
636 	return mobj_base;
637 }
638 
639 #else /* CFG_SECURE_DATA_PATH */
640 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
641 {
642 	return false;
643 }
644 
645 #endif /* CFG_SECURE_DATA_PATH */
646 
647 /* Check special memories comply with registered memories */
648 static void verify_special_mem_areas(struct memory_map *mem_map,
649 				     const struct core_mmu_phys_mem *start,
650 				     const struct core_mmu_phys_mem *end,
651 				     const char *area_name __maybe_unused)
652 {
653 	const struct core_mmu_phys_mem *mem = NULL;
654 	const struct core_mmu_phys_mem *mem2 = NULL;
655 	size_t n = 0;
656 
657 	if (start == end) {
658 		DMSG("No %s memory area defined", area_name);
659 		return;
660 	}
661 
662 	for (mem = start; mem < end; mem++)
663 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
664 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
665 
666 	/* Check memories do not intersect each other */
667 	for (mem = start; mem + 1 < end; mem++) {
668 		for (mem2 = mem + 1; mem2 < end; mem2++) {
669 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
670 						     mem->addr, mem->size)) {
671 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
672 						   mem->addr, mem->size);
673 				panic("Special memory intersection");
674 			}
675 		}
676 	}
677 
678 	/*
679 	 * Check memories do not intersect any mapped memory.
680 	 * This is called before reserved VA space is loaded in mem_map.
681 	 */
682 	for (mem = start; mem < end; mem++) {
683 		for (n = 0; n < mem_map->count; n++) {
684 #ifdef TEE_SDP_TEST_MEM_BASE
685 			/*
686 			 * Ignore MEM_AREA_SEC_RAM_OVERALL since it covers
687 			 * TEE_SDP_TEST_MEM too.
688 			 */
689 			if (mem->addr == TEE_SDP_TEST_MEM_BASE &&
690 			    mem->size == TEE_SDP_TEST_MEM_SIZE &&
691 			    mem_map->map[n].type == MEM_AREA_SEC_RAM_OVERALL)
692 				continue;
693 #endif
694 			if (core_is_buffer_intersect(mem->addr, mem->size,
695 						     mem_map->map[n].pa,
696 						     mem_map->map[n].size)) {
697 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
698 						   mem_map->map[n].pa,
699 						   mem_map->map[n].size);
700 				panic("Special memory intersection");
701 			}
702 		}
703 	}
704 }
705 
706 static void merge_mmaps(struct tee_mmap_region *dst,
707 			const struct tee_mmap_region *src)
708 {
709 	paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1);
710 	paddr_t pa = MIN(dst->pa, src->pa);
711 
712 	DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA,
713 	     dst->pa, dst->pa + dst->size - 1, src->pa,
714 	     src->pa + src->size - 1);
715 	dst->pa = pa;
716 	dst->size = end_pa - pa + 1;
717 }
718 
719 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1,
720 				const struct tee_mmap_region *r2)
721 {
722 	if (r1->type != r2->type)
723 		return false;
724 
725 	if (r1->pa == r2->pa)
726 		return true;
727 
728 	if (r1->pa < r2->pa)
729 		return r1->pa + r1->size >= r2->pa;
730 	else
731 		return r2->pa + r2->size >= r1->pa;
732 }
733 
734 static void add_phys_mem(struct memory_map *mem_map,
735 			 const char *mem_name __maybe_unused,
736 			 enum teecore_memtypes mem_type,
737 			 paddr_t mem_addr, paddr_size_t mem_size)
738 {
739 	size_t n = 0;
740 	const struct tee_mmap_region m0 = {
741 		.type = mem_type,
742 		.pa = mem_addr,
743 		.size = mem_size,
744 	};
745 
746 	if (!mem_size)	/* Discard null size entries */
747 		return;
748 
749 	/*
750 	 * If some ranges of memory of the same type do overlap
751 	 * each others they are coalesced into one entry. To help this
752 	 * added entries are sorted by increasing physical.
753 	 *
754 	 * Note that it's valid to have the same physical memory as several
755 	 * different memory types, for instance the same device memory
756 	 * mapped as both secure and non-secure. This will probably not
757 	 * happen often in practice.
758 	 */
759 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
760 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
761 	for  (n = 0; n < mem_map->count; n++) {
762 		if (mmaps_are_mergeable(mem_map->map + n, &m0)) {
763 			merge_mmaps(mem_map->map + n, &m0);
764 			/*
765 			 * The merged result might be mergeable with the
766 			 * next or previous entry.
767 			 */
768 			if (n + 1 < mem_map->count &&
769 			    mmaps_are_mergeable(mem_map->map + n,
770 						mem_map->map + n + 1)) {
771 				merge_mmaps(mem_map->map + n,
772 					    mem_map->map + n + 1);
773 				rem_array_elem(mem_map->map, mem_map->count,
774 					       sizeof(*mem_map->map), n + 1);
775 				mem_map->count--;
776 			}
777 			if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1,
778 							 mem_map->map + n)) {
779 				merge_mmaps(mem_map->map + n - 1,
780 					    mem_map->map + n);
781 				rem_array_elem(mem_map->map, mem_map->count,
782 					       sizeof(*mem_map->map), n);
783 				mem_map->count--;
784 			}
785 			return;
786 		}
787 		if (mem_type < mem_map->map[n].type ||
788 		    (mem_type == mem_map->map[n].type &&
789 		     mem_addr < mem_map->map[n].pa))
790 			break; /* found the spot where to insert this memory */
791 	}
792 
793 	grow_mem_map(mem_map);
794 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
795 		       n, &m0);
796 }
797 
798 static void add_va_space(struct memory_map *mem_map,
799 			 enum teecore_memtypes type, size_t size)
800 {
801 	size_t n = 0;
802 
803 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
804 	for  (n = 0; n < mem_map->count; n++) {
805 		if (type < mem_map->map[n].type)
806 			break;
807 	}
808 
809 	grow_mem_map(mem_map);
810 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
811 		       n, NULL);
812 	mem_map->map[n] = (struct tee_mmap_region){
813 		.type = type,
814 		.size = size,
815 	};
816 }
817 
818 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
819 {
820 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
821 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
822 				TEE_MATTR_MEM_TYPE_SHIFT;
823 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
824 				TEE_MATTR_MEM_TYPE_SHIFT;
825 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
826 				  TEE_MATTR_MEM_TYPE_SHIFT;
827 
828 	switch (t) {
829 	case MEM_AREA_TEE_RAM:
830 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
831 	case MEM_AREA_TEE_RAM_RX:
832 	case MEM_AREA_INIT_RAM_RX:
833 	case MEM_AREA_IDENTITY_MAP_RX:
834 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
835 	case MEM_AREA_TEE_RAM_RO:
836 	case MEM_AREA_INIT_RAM_RO:
837 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
838 	case MEM_AREA_TEE_RAM_RW:
839 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
840 	case MEM_AREA_NEX_RAM_RW:
841 	case MEM_AREA_TEE_ASAN:
842 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
843 	case MEM_AREA_TEE_COHERENT:
844 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
845 	case MEM_AREA_NSEC_SHM:
846 	case MEM_AREA_NEX_NSEC_SHM:
847 		return attr | TEE_MATTR_PRW | cached;
848 	case MEM_AREA_MANIFEST_DT:
849 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
850 	case MEM_AREA_TRANSFER_LIST:
851 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
852 	case MEM_AREA_EXT_DT:
853 		/*
854 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
855 		 * tree as secure non-cached memory, otherwise, fall back to
856 		 * non-secure mapping.
857 		 */
858 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
859 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
860 			       noncache;
861 		fallthrough;
862 	case MEM_AREA_IO_NSEC:
863 		return attr | TEE_MATTR_PRW | noncache;
864 	case MEM_AREA_IO_SEC:
865 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
866 	case MEM_AREA_RAM_NSEC:
867 		return attr | TEE_MATTR_PRW | cached;
868 	case MEM_AREA_RAM_SEC:
869 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
870 	case MEM_AREA_SEC_RAM_OVERALL:
871 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
872 	case MEM_AREA_ROM_SEC:
873 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
874 	case MEM_AREA_RES_VASPACE:
875 	case MEM_AREA_SHM_VASPACE:
876 		return 0;
877 	case MEM_AREA_PAGER_VASPACE:
878 		return TEE_MATTR_SECURE;
879 	default:
880 		panic("invalid type");
881 	}
882 }
883 
884 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
885 {
886 	switch (mm->type) {
887 	case MEM_AREA_TEE_RAM:
888 	case MEM_AREA_TEE_RAM_RX:
889 	case MEM_AREA_TEE_RAM_RO:
890 	case MEM_AREA_TEE_RAM_RW:
891 	case MEM_AREA_INIT_RAM_RX:
892 	case MEM_AREA_INIT_RAM_RO:
893 	case MEM_AREA_NEX_RAM_RW:
894 	case MEM_AREA_NEX_RAM_RO:
895 	case MEM_AREA_TEE_ASAN:
896 		return true;
897 	default:
898 		return false;
899 	}
900 }
901 
902 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
903 {
904 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
905 }
906 
907 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
908 {
909 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
910 }
911 
912 static int cmp_mmap_by_lower_va(const void *a, const void *b)
913 {
914 	const struct tee_mmap_region *mm_a = a;
915 	const struct tee_mmap_region *mm_b = b;
916 
917 	return CMP_TRILEAN(mm_a->va, mm_b->va);
918 }
919 
920 static void dump_mmap_table(struct memory_map *mem_map)
921 {
922 	size_t n = 0;
923 
924 	for (n = 0; n < mem_map->count; n++) {
925 		struct tee_mmap_region *map __maybe_unused = mem_map->map + n;
926 
927 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
928 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
929 		     teecore_memtype_name(map->type), map->va,
930 		     map->va + map->size - 1, map->pa,
931 		     (paddr_t)(map->pa + map->size - 1), map->size,
932 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
933 	}
934 }
935 
936 #if DEBUG_XLAT_TABLE
937 
938 static void dump_xlat_table(vaddr_t va, unsigned int level)
939 {
940 	struct core_mmu_table_info tbl_info;
941 	unsigned int idx = 0;
942 	paddr_t pa;
943 	uint32_t attr;
944 
945 	core_mmu_find_table(NULL, va, level, &tbl_info);
946 	va = tbl_info.va_base;
947 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
948 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
949 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
950 			const char *security_bit = "";
951 
952 			if (core_mmu_entry_have_security_bit(attr)) {
953 				if (attr & TEE_MATTR_SECURE)
954 					security_bit = "S";
955 				else
956 					security_bit = "NS";
957 			}
958 
959 			if (attr & TEE_MATTR_TABLE) {
960 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
961 					" TBL:0x%010" PRIxPA " %s",
962 					level * 2, "", level, va, pa,
963 					security_bit);
964 				dump_xlat_table(va, level + 1);
965 			} else if (attr) {
966 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
967 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
968 					level * 2, "", level, va, pa,
969 					mattr_is_cached(attr) ? "MEM" :
970 					"DEV",
971 					attr & TEE_MATTR_PW ? "RW" : "RO",
972 					attr & TEE_MATTR_PX ? "X " : "XN",
973 					security_bit);
974 			} else {
975 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
976 					    " INVALID\n",
977 					    level * 2, "", level, va);
978 			}
979 		}
980 		va += BIT64(tbl_info.shift);
981 	}
982 }
983 
984 #else
985 
986 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
987 {
988 }
989 
990 #endif
991 
992 /*
993  * Reserves virtual memory space for pager usage.
994  *
995  * From the start of the first memory used by the link script +
996  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
997  * mapping for pager usage. This adds translation tables as needed for the
998  * pager to operate.
999  */
1000 static void add_pager_vaspace(struct memory_map *mem_map)
1001 {
1002 	paddr_t begin = 0;
1003 	paddr_t end = 0;
1004 	size_t size = 0;
1005 	size_t pos = 0;
1006 	size_t n = 0;
1007 
1008 
1009 	for (n = 0; n < mem_map->count; n++) {
1010 		if (map_is_tee_ram(mem_map->map + n)) {
1011 			if (!begin)
1012 				begin = mem_map->map[n].pa;
1013 			pos = n + 1;
1014 		}
1015 	}
1016 
1017 	end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size;
1018 	assert(end - begin < TEE_RAM_VA_SIZE);
1019 	size = TEE_RAM_VA_SIZE - (end - begin);
1020 
1021 	grow_mem_map(mem_map);
1022 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
1023 		       n, NULL);
1024 	mem_map->map[n] = (struct tee_mmap_region){
1025 		.type = MEM_AREA_PAGER_VASPACE,
1026 		.size = size,
1027 		.region_size = SMALL_PAGE_SIZE,
1028 		.attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE),
1029 	};
1030 }
1031 
1032 static void check_sec_nsec_mem_config(void)
1033 {
1034 	size_t n = 0;
1035 
1036 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
1037 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
1038 				    secure_only[n].size))
1039 			panic("Invalid memory access config: sec/nsec");
1040 	}
1041 }
1042 
1043 static void collect_device_mem_ranges(struct memory_map *mem_map)
1044 {
1045 	const char *compatible = "arm,ffa-manifest-device-regions";
1046 	void *fdt = get_manifest_dt();
1047 	const char *name = NULL;
1048 	uint64_t page_count = 0;
1049 	uint64_t base = 0;
1050 	int subnode = 0;
1051 	int node = 0;
1052 
1053 	assert(fdt);
1054 
1055 	node = fdt_node_offset_by_compatible(fdt, 0, compatible);
1056 	if (node < 0)
1057 		return;
1058 
1059 	fdt_for_each_subnode(subnode, fdt, node) {
1060 		name = fdt_get_name(fdt, subnode, NULL);
1061 		if (!name)
1062 			continue;
1063 
1064 		if (dt_getprop_as_number(fdt, subnode, "base-address",
1065 					 &base)) {
1066 			EMSG("Mandatory field is missing: base-address");
1067 			continue;
1068 		}
1069 
1070 		if (base & SMALL_PAGE_MASK) {
1071 			EMSG("base-address is not page aligned");
1072 			continue;
1073 		}
1074 
1075 		if (dt_getprop_as_number(fdt, subnode, "pages-count",
1076 					 &page_count)) {
1077 			EMSG("Mandatory field is missing: pages-count");
1078 			continue;
1079 		}
1080 
1081 		add_phys_mem(mem_map, name, MEM_AREA_IO_SEC,
1082 			     base, page_count * SMALL_PAGE_SIZE);
1083 	}
1084 }
1085 
1086 static void collect_mem_ranges(struct memory_map *mem_map)
1087 {
1088 	const struct core_mmu_phys_mem *mem = NULL;
1089 	vaddr_t ram_start = secure_only[0].paddr;
1090 	size_t n = 0;
1091 
1092 #define ADD_PHYS_MEM(_type, _addr, _size) \
1093 		add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size))
1094 
1095 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
1096 		paddr_t next_pa = 0;
1097 
1098 		/*
1099 		 * Read-only and read-execute physical memory areas must
1100 		 * not be mapped by MEM_AREA_SEC_RAM_OVERALL, but all the
1101 		 * read/write should.
1102 		 */
1103 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, ram_start,
1104 			     VCORE_UNPG_RX_PA - ram_start);
1105 		assert(VCORE_UNPG_RX_PA >= ram_start);
1106 		tee_ram_initial_offs = VCORE_UNPG_RX_PA - ram_start;
1107 		DMSG("tee_ram_initial_offs %#zx", tee_ram_initial_offs);
1108 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
1109 			     VCORE_UNPG_RX_SZ);
1110 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
1111 			     VCORE_UNPG_RO_SZ);
1112 
1113 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1114 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
1115 				     VCORE_UNPG_RW_SZ);
1116 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA,
1117 				     VCORE_UNPG_RW_SZ);
1118 
1119 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
1120 				     VCORE_NEX_RW_SZ);
1121 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_NEX_RW_PA,
1122 				     VCORE_NEX_RW_SZ);
1123 
1124 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_FREE_PA,
1125 				     VCORE_FREE_SZ);
1126 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA,
1127 				     VCORE_FREE_SZ);
1128 			next_pa = VCORE_FREE_PA + VCORE_FREE_SZ;
1129 		} else {
1130 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
1131 				     VCORE_UNPG_RW_SZ);
1132 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA,
1133 				     VCORE_UNPG_RW_SZ);
1134 
1135 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_FREE_PA,
1136 				     VCORE_FREE_SZ);
1137 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA,
1138 				     VCORE_FREE_SZ);
1139 			next_pa = VCORE_FREE_PA + VCORE_FREE_SZ;
1140 		}
1141 
1142 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1143 			paddr_t pa = 0;
1144 			size_t sz = 0;
1145 
1146 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
1147 				     VCORE_INIT_RX_SZ);
1148 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
1149 				     VCORE_INIT_RO_SZ);
1150 			/*
1151 			 * Core init mapping shall cover up to end of the
1152 			 * physical RAM.  This is required since the hash
1153 			 * table is appended to the binary data after the
1154 			 * firmware build sequence.
1155 			 */
1156 			pa = VCORE_INIT_RO_PA + VCORE_INIT_RO_SZ;
1157 			sz = TEE_RAM_START + TEE_RAM_PH_SIZE - pa;
1158 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM, pa, sz);
1159 		} else {
1160 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, next_pa,
1161 				     secure_only[0].paddr +
1162 				     secure_only[0].size - next_pa);
1163 		}
1164 	} else {
1165 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
1166 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr,
1167 			     secure_only[0].size);
1168 	}
1169 
1170 	for (n = 1; n < ARRAY_SIZE(secure_only); n++)
1171 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr,
1172 			     secure_only[n].size);
1173 
1174 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
1175 	    IS_ENABLED(CFG_WITH_PAGER)) {
1176 		/*
1177 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
1178 		 * disabled.
1179 		 */
1180 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1181 	}
1182 
1183 #undef ADD_PHYS_MEM
1184 
1185 	/* Collect device memory info from SP manifest */
1186 	if (IS_ENABLED(CFG_CORE_SEL2_SPMC))
1187 		collect_device_mem_ranges(mem_map);
1188 
1189 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1190 		/* Only unmapped virtual range may have a null phys addr */
1191 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1192 
1193 		add_phys_mem(mem_map, mem->name, mem->type,
1194 			     mem->addr, mem->size);
1195 	}
1196 
1197 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1198 		verify_special_mem_areas(mem_map, phys_sdp_mem_begin,
1199 					 phys_sdp_mem_end, "SDP");
1200 
1201 	add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE);
1202 	add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE);
1203 }
1204 
1205 static void assign_mem_granularity(struct memory_map *mem_map)
1206 {
1207 	size_t n = 0;
1208 
1209 	/*
1210 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1211 	 * SMALL_PAGE_SIZE.
1212 	 */
1213 	for  (n = 0; n < mem_map->count; n++) {
1214 		paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size;
1215 
1216 		if (mask & SMALL_PAGE_MASK)
1217 			panic("Impossible memory alignment");
1218 
1219 		if (map_is_tee_ram(mem_map->map + n))
1220 			mem_map->map[n].region_size = SMALL_PAGE_SIZE;
1221 		else
1222 			mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE;
1223 	}
1224 }
1225 
1226 static bool place_tee_ram_at_top(paddr_t paddr)
1227 {
1228 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1229 }
1230 
1231 /*
1232  * MMU arch driver shall override this function if it helps
1233  * optimizing the memory footprint of the address translation tables.
1234  */
1235 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1236 {
1237 	return place_tee_ram_at_top(paddr);
1238 }
1239 
1240 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map,
1241 			      bool tee_ram_at_top)
1242 {
1243 	struct tee_mmap_region *map = NULL;
1244 	vaddr_t va = 0;
1245 	bool va_is_secure = true;
1246 	size_t n = 0;
1247 
1248 	/*
1249 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1250 	 * 0 is by design an invalid va, so return false directly.
1251 	 */
1252 	if (!tee_ram_va)
1253 		return false;
1254 
1255 	/* Clear eventual previous assignments */
1256 	for (n = 0; n < mem_map->count; n++)
1257 		mem_map->map[n].va = 0;
1258 
1259 	/*
1260 	 * TEE RAM regions are always aligned with region_size.
1261 	 *
1262 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1263 	 * since it handles virtual memory which covers the part of the ELF
1264 	 * that cannot fit directly into memory.
1265 	 */
1266 	va = tee_ram_va + tee_ram_initial_offs;
1267 	for (n = 0; n < mem_map->count; n++) {
1268 		map = mem_map->map + n;
1269 		if (map_is_tee_ram(map) ||
1270 		    map->type == MEM_AREA_PAGER_VASPACE) {
1271 			assert(!(va & (map->region_size - 1)));
1272 			assert(!(map->size & (map->region_size - 1)));
1273 			map->va = va;
1274 			if (ADD_OVERFLOW(va, map->size, &va))
1275 				return false;
1276 			if (va >= BIT64(core_mmu_get_va_width()))
1277 				return false;
1278 		}
1279 	}
1280 
1281 	if (tee_ram_at_top) {
1282 		/*
1283 		 * Map non-tee ram regions at addresses lower than the tee
1284 		 * ram region.
1285 		 */
1286 		va = tee_ram_va;
1287 		for (n = 0; n < mem_map->count; n++) {
1288 			map = mem_map->map + n;
1289 			map->attr = core_mmu_type_to_attr(map->type);
1290 			if (map->va)
1291 				continue;
1292 
1293 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1294 			    va_is_secure != map_is_secure(map)) {
1295 				va_is_secure = !va_is_secure;
1296 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1297 			}
1298 
1299 			if (SUB_OVERFLOW(va, map->size, &va))
1300 				return false;
1301 			va = ROUNDDOWN2(va, map->region_size);
1302 			/*
1303 			 * Make sure that va is aligned with pa for
1304 			 * efficient pgdir mapping. Basically pa &
1305 			 * pgdir_mask should be == va & pgdir_mask
1306 			 */
1307 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1308 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1309 					return false;
1310 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1311 			}
1312 			map->va = va;
1313 		}
1314 	} else {
1315 		/*
1316 		 * Map non-tee ram regions at addresses higher than the tee
1317 		 * ram region.
1318 		 */
1319 		for (n = 0; n < mem_map->count; n++) {
1320 			map = mem_map->map + n;
1321 			map->attr = core_mmu_type_to_attr(map->type);
1322 			if (map->va)
1323 				continue;
1324 
1325 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1326 			    va_is_secure != map_is_secure(map)) {
1327 				va_is_secure = !va_is_secure;
1328 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1329 						     &va))
1330 					return false;
1331 			}
1332 
1333 			if (ROUNDUP2_OVERFLOW(va, map->region_size, &va))
1334 				return false;
1335 			/*
1336 			 * Make sure that va is aligned with pa for
1337 			 * efficient pgdir mapping. Basically pa &
1338 			 * pgdir_mask should be == va & pgdir_mask
1339 			 */
1340 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1341 				vaddr_t offs = (map->pa - va) &
1342 					       CORE_MMU_PGDIR_MASK;
1343 
1344 				if (ADD_OVERFLOW(va, offs, &va))
1345 					return false;
1346 			}
1347 
1348 			map->va = va;
1349 			if (ADD_OVERFLOW(va, map->size, &va))
1350 				return false;
1351 			if (va >= BIT64(core_mmu_get_va_width()))
1352 				return false;
1353 		}
1354 	}
1355 
1356 	return true;
1357 }
1358 
1359 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map)
1360 {
1361 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1362 
1363 	/*
1364 	 * Check that we're not overlapping with the user VA range.
1365 	 */
1366 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1367 		/*
1368 		 * User VA range is supposed to be defined after these
1369 		 * mappings have been established.
1370 		 */
1371 		assert(!core_mmu_user_va_range_is_defined());
1372 	} else {
1373 		vaddr_t user_va_base = 0;
1374 		size_t user_va_size = 0;
1375 
1376 		assert(core_mmu_user_va_range_is_defined());
1377 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1378 		if (tee_ram_va < (user_va_base + user_va_size))
1379 			return false;
1380 	}
1381 
1382 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1383 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1384 
1385 		/* Try whole mapping covered by a single base xlat entry */
1386 		if (prefered_dir != tee_ram_at_top &&
1387 		    assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir))
1388 			return true;
1389 	}
1390 
1391 	return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top);
1392 }
1393 
1394 static int cmp_init_mem_map(const void *a, const void *b)
1395 {
1396 	const struct tee_mmap_region *mm_a = a;
1397 	const struct tee_mmap_region *mm_b = b;
1398 	int rc = 0;
1399 
1400 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1401 	if (!rc)
1402 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1403 	/*
1404 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1405 	 * the same level2 table. Hence sort secure mapping from non-secure
1406 	 * mapping.
1407 	 */
1408 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1409 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1410 
1411 	return rc;
1412 }
1413 
1414 static bool mem_map_add_id_map(struct memory_map *mem_map,
1415 			       vaddr_t id_map_start, vaddr_t id_map_end)
1416 {
1417 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1418 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1419 	size_t len = end - start;
1420 	size_t n = 0;
1421 
1422 
1423 	for (n = 0; n < mem_map->count; n++)
1424 		if (core_is_buffer_intersect(mem_map->map[n].va,
1425 					     mem_map->map[n].size, start, len))
1426 			return false;
1427 
1428 	grow_mem_map(mem_map);
1429 	mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){
1430 		.type = MEM_AREA_IDENTITY_MAP_RX,
1431 		/*
1432 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1433 		 * translation table, at the increased risk of clashes with
1434 		 * the rest of the memory map.
1435 		 */
1436 		.region_size = SMALL_PAGE_SIZE,
1437 		.pa = start,
1438 		.va = start,
1439 		.size = len,
1440 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1441 	};
1442 
1443 	return true;
1444 }
1445 
1446 static struct memory_map *init_mem_map(struct memory_map *mem_map,
1447 				       unsigned long seed,
1448 				       unsigned long *ret_offs)
1449 {
1450 	/*
1451 	 * @id_map_start and @id_map_end describes a physical memory range
1452 	 * that must be mapped Read-Only eXecutable at identical virtual
1453 	 * addresses.
1454 	 */
1455 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1456 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1457 	vaddr_t start_addr = secure_only[0].paddr;
1458 	unsigned long offs = 0;
1459 
1460 	collect_mem_ranges(mem_map);
1461 	assign_mem_granularity(mem_map);
1462 
1463 	/*
1464 	 * To ease mapping and lower use of xlat tables, sort mapping
1465 	 * description moving small-page regions after the pgdir regions.
1466 	 */
1467 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1468 	      cmp_init_mem_map);
1469 
1470 	if (IS_ENABLED(CFG_WITH_PAGER))
1471 		add_pager_vaspace(mem_map);
1472 
1473 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1474 		vaddr_t base_addr = start_addr + seed;
1475 		const unsigned int va_width = core_mmu_get_va_width();
1476 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1477 						   SMALL_PAGE_SHIFT);
1478 		vaddr_t ba = base_addr;
1479 		size_t n = 0;
1480 
1481 		for (n = 0; n < 3; n++) {
1482 			if (n)
1483 				ba = base_addr ^ BIT64(va_width - n);
1484 			ba &= va_mask;
1485 			if (assign_mem_va(ba, mem_map) &&
1486 			    mem_map_add_id_map(mem_map, id_map_start,
1487 					       id_map_end)) {
1488 				offs = ba - start_addr;
1489 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1490 				     ba, offs);
1491 				goto out;
1492 			} else {
1493 				DMSG("Failed to map core at %#"PRIxVA, ba);
1494 			}
1495 		}
1496 		EMSG("Failed to map core with seed %#lx", seed);
1497 	}
1498 
1499 	if (!assign_mem_va(start_addr, mem_map))
1500 		panic();
1501 
1502 out:
1503 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1504 	      cmp_mmap_by_lower_va);
1505 
1506 	dump_mmap_table(mem_map);
1507 
1508 	*ret_offs = offs;
1509 	return mem_map;
1510 }
1511 
1512 static void check_mem_map(struct memory_map *mem_map)
1513 {
1514 	struct tee_mmap_region *m = NULL;
1515 	size_t n = 0;
1516 
1517 	for (n = 0; n < mem_map->count; n++) {
1518 		m = mem_map->map + n;
1519 		switch (m->type) {
1520 		case MEM_AREA_TEE_RAM:
1521 		case MEM_AREA_TEE_RAM_RX:
1522 		case MEM_AREA_TEE_RAM_RO:
1523 		case MEM_AREA_TEE_RAM_RW:
1524 		case MEM_AREA_INIT_RAM_RX:
1525 		case MEM_AREA_INIT_RAM_RO:
1526 		case MEM_AREA_NEX_RAM_RW:
1527 		case MEM_AREA_NEX_RAM_RO:
1528 		case MEM_AREA_IDENTITY_MAP_RX:
1529 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1530 				panic("TEE_RAM can't fit in secure_only");
1531 			break;
1532 		case MEM_AREA_SEC_RAM_OVERALL:
1533 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1534 				panic("SEC_RAM_OVERALL can't fit in secure_only");
1535 			break;
1536 		case MEM_AREA_NSEC_SHM:
1537 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1538 				panic("NS_SHM can't fit in nsec_shared");
1539 			break;
1540 		case MEM_AREA_TEE_COHERENT:
1541 		case MEM_AREA_TEE_ASAN:
1542 		case MEM_AREA_IO_SEC:
1543 		case MEM_AREA_IO_NSEC:
1544 		case MEM_AREA_EXT_DT:
1545 		case MEM_AREA_MANIFEST_DT:
1546 		case MEM_AREA_TRANSFER_LIST:
1547 		case MEM_AREA_RAM_SEC:
1548 		case MEM_AREA_RAM_NSEC:
1549 		case MEM_AREA_ROM_SEC:
1550 		case MEM_AREA_RES_VASPACE:
1551 		case MEM_AREA_SHM_VASPACE:
1552 		case MEM_AREA_PAGER_VASPACE:
1553 			break;
1554 		default:
1555 			EMSG("Uhandled memtype %d", m->type);
1556 			panic();
1557 		}
1558 	}
1559 }
1560 
1561 /*
1562  * core_init_mmu_map() - init tee core default memory mapping
1563  *
1564  * This routine sets the static default TEE core mapping. If @seed is > 0
1565  * and configured with CFG_CORE_ASLR it will map tee core at a location
1566  * based on the seed and return the offset from the link address.
1567  *
1568  * If an error happened: core_init_mmu_map is expected to panic.
1569  *
1570  * Note: this function is weak just to make it possible to exclude it from
1571  * the unpaged area.
1572  */
1573 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1574 {
1575 #ifndef CFG_NS_VIRTUALIZATION
1576 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1577 #else
1578 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1579 				  SMALL_PAGE_SIZE);
1580 #endif
1581 #ifdef CFG_DYN_CONFIG
1582 	vaddr_t len = ROUNDUP(VCORE_FREE_END_PA, SMALL_PAGE_SIZE) - start;
1583 #else
1584 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1585 #endif
1586 	struct tee_mmap_region tmp_mmap_region = { };
1587 	struct memory_map mem_map = { };
1588 	unsigned long offs = 0;
1589 
1590 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1591 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1592 		panic("OP-TEE load address is not page aligned");
1593 
1594 	check_sec_nsec_mem_config();
1595 
1596 	if (IS_ENABLED(CFG_BOOT_MEM)) {
1597 		mem_map.alloc_count = CFG_MMAP_REGIONS;
1598 		mem_map.map = boot_mem_alloc_tmp(mem_map.alloc_count *
1599 							sizeof(*mem_map.map),
1600 						 alignof(*mem_map.map));
1601 		memory_map_realloc_func = boot_mem_realloc_memory_map;
1602 	} else {
1603 		mem_map = static_memory_map;
1604 	}
1605 
1606 	static_memory_map = (struct memory_map){
1607 		.map = &tmp_mmap_region,
1608 		.alloc_count = 1,
1609 		.count = 1,
1610 	};
1611 	/*
1612 	 * Add a entry covering the translation tables which will be
1613 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1614 	 */
1615 	static_memory_map.map[0] = (struct tee_mmap_region){
1616 		.type = MEM_AREA_TEE_RAM,
1617 		.region_size = SMALL_PAGE_SIZE,
1618 		.pa = start,
1619 		.va = start,
1620 		.size = len,
1621 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1622 	};
1623 
1624 	init_mem_map(&mem_map, seed, &offs);
1625 
1626 	check_mem_map(&mem_map);
1627 	core_init_mmu(&mem_map);
1628 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1629 	core_init_mmu_regs(cfg);
1630 	cfg->map_offset = offs;
1631 	static_memory_map = mem_map;
1632 	boot_mem_add_reloc(&static_memory_map.map);
1633 }
1634 
1635 void core_mmu_save_mem_map(void)
1636 {
1637 	if (IS_ENABLED(CFG_BOOT_MEM)) {
1638 		size_t alloc_count = static_memory_map.count + 5;
1639 		size_t elem_sz = sizeof(*static_memory_map.map);
1640 		void *p = NULL;
1641 
1642 		p = nex_calloc(alloc_count, elem_sz);
1643 		if (!p)
1644 			panic();
1645 		memcpy(p, static_memory_map.map,
1646 		       static_memory_map.count * elem_sz);
1647 		static_memory_map.map = p;
1648 		static_memory_map.alloc_count = alloc_count;
1649 		memory_map_realloc_func = heap_realloc_memory_map;
1650 	}
1651 }
1652 
1653 bool core_mmu_mattr_is_ok(uint32_t mattr)
1654 {
1655 	/*
1656 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1657 	 * core_mmu_v7.c:mattr_to_texcb
1658 	 */
1659 
1660 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1661 	case TEE_MATTR_MEM_TYPE_DEV:
1662 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1663 	case TEE_MATTR_MEM_TYPE_CACHED:
1664 	case TEE_MATTR_MEM_TYPE_TAGGED:
1665 		return true;
1666 	default:
1667 		return false;
1668 	}
1669 }
1670 
1671 /*
1672  * test attributes of target physical buffer
1673  *
1674  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1675  *
1676  */
1677 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1678 {
1679 	struct tee_mmap_region *map;
1680 
1681 	/* Empty buffers complies with anything */
1682 	if (len == 0)
1683 		return true;
1684 
1685 	switch (attr) {
1686 	case CORE_MEM_SEC:
1687 		return pbuf_is_inside(secure_only, pbuf, len);
1688 	case CORE_MEM_NON_SEC:
1689 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1690 			pbuf_is_nsec_ddr(pbuf, len);
1691 	case CORE_MEM_TEE_RAM:
1692 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1693 							TEE_RAM_PH_SIZE);
1694 #ifdef CFG_CORE_RESERVED_SHM
1695 	case CORE_MEM_NSEC_SHM:
1696 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1697 							TEE_SHMEM_SIZE);
1698 #endif
1699 	case CORE_MEM_SDP_MEM:
1700 		return pbuf_is_sdp_mem(pbuf, len);
1701 	case CORE_MEM_CACHED:
1702 		map = find_map_by_pa(pbuf);
1703 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1704 			return false;
1705 		return mattr_is_cached(map->attr);
1706 	default:
1707 		return false;
1708 	}
1709 }
1710 
1711 /* test attributes of target virtual buffer (in core mapping) */
1712 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1713 {
1714 	paddr_t p;
1715 
1716 	/* Empty buffers complies with anything */
1717 	if (len == 0)
1718 		return true;
1719 
1720 	p = virt_to_phys((void *)vbuf);
1721 	if (!p)
1722 		return false;
1723 
1724 	return core_pbuf_is(attr, p, len);
1725 }
1726 
1727 /* core_va2pa - teecore exported service */
1728 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1729 {
1730 	struct tee_mmap_region *map;
1731 
1732 	map = find_map_by_va(va);
1733 	if (!va_is_in_map(map, (vaddr_t)va))
1734 		return -1;
1735 
1736 	/*
1737 	 * We can calculate PA for static map. Virtual address ranges
1738 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1739 	 * together with an invalid null physical address.
1740 	 */
1741 	if (map->pa)
1742 		*pa = map->pa + (vaddr_t)va  - map->va;
1743 	else
1744 		*pa = 0;
1745 
1746 	return 0;
1747 }
1748 
1749 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1750 {
1751 	if (!pa_is_in_map(map, pa, len))
1752 		return NULL;
1753 
1754 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1755 }
1756 
1757 /*
1758  * teecore gets some memory area definitions
1759  */
1760 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1761 			      vaddr_t *e)
1762 {
1763 	struct tee_mmap_region *map = find_map_by_type(type);
1764 
1765 	if (map) {
1766 		*s = map->va;
1767 		*e = map->va + map->size;
1768 	} else {
1769 		*s = 0;
1770 		*e = 0;
1771 	}
1772 }
1773 
1774 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1775 {
1776 	struct tee_mmap_region *map = find_map_by_pa(pa);
1777 
1778 	if (!map)
1779 		return MEM_AREA_MAXTYPE;
1780 	return map->type;
1781 }
1782 
1783 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1784 			paddr_t pa, uint32_t attr)
1785 {
1786 	assert(idx < tbl_info->num_entries);
1787 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1788 				     idx, pa, attr);
1789 }
1790 
1791 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1792 			paddr_t *pa, uint32_t *attr)
1793 {
1794 	assert(idx < tbl_info->num_entries);
1795 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1796 				     idx, pa, attr);
1797 }
1798 
1799 static void clear_region(struct core_mmu_table_info *tbl_info,
1800 			 struct tee_mmap_region *region)
1801 {
1802 	unsigned int end = 0;
1803 	unsigned int idx = 0;
1804 
1805 	/* va, len and pa should be block aligned */
1806 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1807 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1808 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1809 
1810 	idx = core_mmu_va2idx(tbl_info, region->va);
1811 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1812 
1813 	while (idx < end) {
1814 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1815 		idx++;
1816 	}
1817 }
1818 
1819 static void set_region(struct core_mmu_table_info *tbl_info,
1820 		       struct tee_mmap_region *region)
1821 {
1822 	unsigned int end;
1823 	unsigned int idx;
1824 	paddr_t pa;
1825 
1826 	/* va, len and pa should be block aligned */
1827 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1828 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1829 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1830 
1831 	idx = core_mmu_va2idx(tbl_info, region->va);
1832 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1833 	pa = region->pa;
1834 
1835 	while (idx < end) {
1836 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1837 		idx++;
1838 		pa += BIT64(tbl_info->shift);
1839 	}
1840 }
1841 
1842 static void set_pg_region(struct core_mmu_table_info *dir_info,
1843 			  struct vm_region *region, struct pgt **pgt,
1844 			  struct core_mmu_table_info *pg_info)
1845 {
1846 	struct tee_mmap_region r = {
1847 		.va = region->va,
1848 		.size = region->size,
1849 		.attr = region->attr,
1850 	};
1851 	vaddr_t end = r.va + r.size;
1852 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1853 
1854 	while (r.va < end) {
1855 		if (!pg_info->table ||
1856 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1857 			/*
1858 			 * We're assigning a new translation table.
1859 			 */
1860 			unsigned int idx;
1861 
1862 			/* Virtual addresses must grow */
1863 			assert(r.va > pg_info->va_base);
1864 
1865 			idx = core_mmu_va2idx(dir_info, r.va);
1866 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1867 
1868 			/*
1869 			 * Advance pgt to va_base, note that we may need to
1870 			 * skip multiple page tables if there are large
1871 			 * holes in the vm map.
1872 			 */
1873 			while ((*pgt)->vabase < pg_info->va_base) {
1874 				*pgt = SLIST_NEXT(*pgt, link);
1875 				/* We should have allocated enough */
1876 				assert(*pgt);
1877 			}
1878 			assert((*pgt)->vabase == pg_info->va_base);
1879 			pg_info->table = (*pgt)->tbl;
1880 
1881 			core_mmu_set_entry(dir_info, idx,
1882 					   virt_to_phys(pg_info->table),
1883 					   pgt_attr);
1884 		}
1885 
1886 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1887 			     end - r.va);
1888 
1889 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1890 			size_t granule = BIT(pg_info->shift);
1891 			size_t offset = r.va - region->va + region->offset;
1892 
1893 			r.size = MIN(r.size,
1894 				     mobj_get_phys_granule(region->mobj));
1895 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1896 
1897 			if (mobj_get_pa(region->mobj, offset, granule,
1898 					&r.pa) != TEE_SUCCESS)
1899 				panic("Failed to get PA of unpaged mobj");
1900 			set_region(pg_info, &r);
1901 		}
1902 		r.va += r.size;
1903 	}
1904 }
1905 
1906 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1907 			     size_t size_left, paddr_t block_size,
1908 			     struct tee_mmap_region *mm)
1909 {
1910 	/* VA and PA are aligned to block size at current level */
1911 	if ((vaddr | paddr) & (block_size - 1))
1912 		return false;
1913 
1914 	/* Remainder fits into block at current level */
1915 	if (size_left < block_size)
1916 		return false;
1917 
1918 	/*
1919 	 * The required block size of the region is compatible with the
1920 	 * block size of the current level.
1921 	 */
1922 	if (mm->region_size < block_size)
1923 		return false;
1924 
1925 #ifdef CFG_WITH_PAGER
1926 	/*
1927 	 * If pager is enabled, we need to map TEE RAM and the whole pager
1928 	 * regions with small pages only
1929 	 */
1930 	if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) &&
1931 	    block_size != SMALL_PAGE_SIZE)
1932 		return false;
1933 #endif
1934 
1935 	return true;
1936 }
1937 
1938 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1939 {
1940 	struct core_mmu_table_info tbl_info;
1941 	unsigned int idx;
1942 	vaddr_t vaddr = mm->va;
1943 	paddr_t paddr = mm->pa;
1944 	ssize_t size_left = mm->size;
1945 	unsigned int level;
1946 	bool table_found;
1947 	uint32_t old_attr;
1948 
1949 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1950 
1951 	while (size_left > 0) {
1952 		level = CORE_MMU_BASE_TABLE_LEVEL;
1953 
1954 		while (true) {
1955 			paddr_t block_size = 0;
1956 
1957 			assert(core_mmu_level_in_range(level));
1958 
1959 			table_found = core_mmu_find_table(prtn, vaddr, level,
1960 							  &tbl_info);
1961 			if (!table_found)
1962 				panic("can't find table for mapping");
1963 
1964 			block_size = BIT64(tbl_info.shift);
1965 
1966 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1967 			if (!can_map_at_level(paddr, vaddr, size_left,
1968 					      block_size, mm)) {
1969 				bool secure = mm->attr & TEE_MATTR_SECURE;
1970 
1971 				/*
1972 				 * This part of the region can't be mapped at
1973 				 * this level. Need to go deeper.
1974 				 */
1975 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1976 								     idx,
1977 								     secure))
1978 					panic("Can't divide MMU entry");
1979 				level = tbl_info.next_level;
1980 				continue;
1981 			}
1982 
1983 			/* We can map part of the region at current level */
1984 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1985 			if (old_attr)
1986 				panic("Page is already mapped");
1987 
1988 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1989 			paddr += block_size;
1990 			vaddr += block_size;
1991 			size_left -= block_size;
1992 
1993 			break;
1994 		}
1995 	}
1996 }
1997 
1998 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1999 			      enum teecore_memtypes memtype)
2000 {
2001 	TEE_Result ret;
2002 	struct core_mmu_table_info tbl_info;
2003 	struct tee_mmap_region *mm;
2004 	unsigned int idx;
2005 	uint32_t old_attr;
2006 	uint32_t exceptions;
2007 	vaddr_t vaddr = vstart;
2008 	size_t i;
2009 	bool secure;
2010 
2011 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
2012 
2013 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
2014 
2015 	if (vaddr & SMALL_PAGE_MASK)
2016 		return TEE_ERROR_BAD_PARAMETERS;
2017 
2018 	exceptions = mmu_lock();
2019 
2020 	mm = find_map_by_va((void *)vaddr);
2021 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
2022 		panic("VA does not belong to any known mm region");
2023 
2024 	if (!core_mmu_is_dynamic_vaspace(mm))
2025 		panic("Trying to map into static region");
2026 
2027 	for (i = 0; i < num_pages; i++) {
2028 		if (pages[i] & SMALL_PAGE_MASK) {
2029 			ret = TEE_ERROR_BAD_PARAMETERS;
2030 			goto err;
2031 		}
2032 
2033 		while (true) {
2034 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
2035 						 &tbl_info))
2036 				panic("Can't find pagetable for vaddr ");
2037 
2038 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2039 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
2040 				break;
2041 
2042 			/* This is supertable. Need to divide it. */
2043 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
2044 							     secure))
2045 				panic("Failed to spread pgdir on small tables");
2046 		}
2047 
2048 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2049 		if (old_attr)
2050 			panic("Page is already mapped");
2051 
2052 		core_mmu_set_entry(&tbl_info, idx, pages[i],
2053 				   core_mmu_type_to_attr(memtype));
2054 		vaddr += SMALL_PAGE_SIZE;
2055 	}
2056 
2057 	/*
2058 	 * Make sure all the changes to translation tables are visible
2059 	 * before returning. TLB doesn't need to be invalidated as we are
2060 	 * guaranteed that there's no valid mapping in this range.
2061 	 */
2062 	core_mmu_table_write_barrier();
2063 	mmu_unlock(exceptions);
2064 
2065 	return TEE_SUCCESS;
2066 err:
2067 	mmu_unlock(exceptions);
2068 
2069 	if (i)
2070 		core_mmu_unmap_pages(vstart, i);
2071 
2072 	return ret;
2073 }
2074 
2075 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
2076 					 size_t num_pages,
2077 					 enum teecore_memtypes memtype)
2078 {
2079 	struct core_mmu_table_info tbl_info = { };
2080 	struct tee_mmap_region *mm = NULL;
2081 	unsigned int idx = 0;
2082 	uint32_t old_attr = 0;
2083 	uint32_t exceptions = 0;
2084 	vaddr_t vaddr = vstart;
2085 	paddr_t paddr = pstart;
2086 	size_t i = 0;
2087 	bool secure = false;
2088 
2089 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
2090 
2091 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
2092 
2093 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
2094 		return TEE_ERROR_BAD_PARAMETERS;
2095 
2096 	exceptions = mmu_lock();
2097 
2098 	mm = find_map_by_va((void *)vaddr);
2099 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
2100 		panic("VA does not belong to any known mm region");
2101 
2102 	if (!core_mmu_is_dynamic_vaspace(mm))
2103 		panic("Trying to map into static region");
2104 
2105 	for (i = 0; i < num_pages; i++) {
2106 		while (true) {
2107 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
2108 						 &tbl_info))
2109 				panic("Can't find pagetable for vaddr ");
2110 
2111 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2112 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
2113 				break;
2114 
2115 			/* This is supertable. Need to divide it. */
2116 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
2117 							     secure))
2118 				panic("Failed to spread pgdir on small tables");
2119 		}
2120 
2121 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2122 		if (old_attr)
2123 			panic("Page is already mapped");
2124 
2125 		core_mmu_set_entry(&tbl_info, idx, paddr,
2126 				   core_mmu_type_to_attr(memtype));
2127 		paddr += SMALL_PAGE_SIZE;
2128 		vaddr += SMALL_PAGE_SIZE;
2129 	}
2130 
2131 	/*
2132 	 * Make sure all the changes to translation tables are visible
2133 	 * before returning. TLB doesn't need to be invalidated as we are
2134 	 * guaranteed that there's no valid mapping in this range.
2135 	 */
2136 	core_mmu_table_write_barrier();
2137 	mmu_unlock(exceptions);
2138 
2139 	return TEE_SUCCESS;
2140 }
2141 
2142 static bool mem_range_is_in_vcore_free(vaddr_t vstart, size_t num_pages)
2143 {
2144 	return core_is_buffer_inside(vstart, num_pages * SMALL_PAGE_SIZE,
2145 				     VCORE_FREE_PA, VCORE_FREE_SZ);
2146 }
2147 
2148 static void maybe_remove_from_mem_map(vaddr_t vstart, size_t num_pages)
2149 {
2150 	struct memory_map *mem_map = NULL;
2151 	struct tee_mmap_region *mm = NULL;
2152 	size_t idx = 0;
2153 	vaddr_t va = 0;
2154 
2155 	mm = find_map_by_va((void *)vstart);
2156 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
2157 		panic("VA does not belong to any known mm region");
2158 
2159 	if (core_mmu_is_dynamic_vaspace(mm))
2160 		return;
2161 
2162 	if (!mem_range_is_in_vcore_free(vstart, num_pages))
2163 		panic("Trying to unmap static region");
2164 
2165 	/*
2166 	 * We're going to remove a memory from the VCORE_FREE memory range.
2167 	 * Depending where the range is we may need to remove the matching
2168 	 * mm, peal of a bit from the start or end of the mm, or split it
2169 	 * into two with a whole in the middle.
2170 	 */
2171 
2172 	va = ROUNDDOWN(vstart, SMALL_PAGE_SIZE);
2173 	assert(mm->region_size == SMALL_PAGE_SIZE);
2174 
2175 	if (va == mm->va && mm->size == num_pages * SMALL_PAGE_SIZE) {
2176 		mem_map = get_memory_map();
2177 		idx = mm - mem_map->map;
2178 		assert(idx < mem_map->count);
2179 
2180 		rem_array_elem(mem_map->map, mem_map->count,
2181 			       sizeof(*mem_map->map), idx);
2182 		mem_map->count--;
2183 	} else if (va == mm->va) {
2184 		mm->va += num_pages * SMALL_PAGE_SIZE;
2185 		mm->pa += num_pages * SMALL_PAGE_SIZE;
2186 		mm->size -= num_pages * SMALL_PAGE_SIZE;
2187 	} else if (va + num_pages * SMALL_PAGE_SIZE == mm->va + mm->size) {
2188 		mm->size -= num_pages * SMALL_PAGE_SIZE;
2189 	} else {
2190 		struct tee_mmap_region m = *mm;
2191 
2192 		mem_map = get_memory_map();
2193 		idx = mm - mem_map->map;
2194 		assert(idx < mem_map->count);
2195 
2196 		mm->size = va - mm->va;
2197 		m.va += mm->size + num_pages * SMALL_PAGE_SIZE;
2198 		m.pa += mm->size + num_pages * SMALL_PAGE_SIZE;
2199 		m.size -= mm->size + num_pages * SMALL_PAGE_SIZE;
2200 		grow_mem_map(mem_map);
2201 		ins_array_elem(mem_map->map, mem_map->count,
2202 			       sizeof(*mem_map->map), idx + 1, &m);
2203 	}
2204 }
2205 
2206 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
2207 {
2208 	struct core_mmu_table_info tbl_info;
2209 	size_t i;
2210 	unsigned int idx;
2211 	uint32_t exceptions;
2212 
2213 	exceptions = mmu_lock();
2214 
2215 	maybe_remove_from_mem_map(vstart, num_pages);
2216 
2217 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
2218 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
2219 			panic("Can't find pagetable");
2220 
2221 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
2222 			panic("Invalid pagetable level");
2223 
2224 		idx = core_mmu_va2idx(&tbl_info, vstart);
2225 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
2226 	}
2227 	tlbi_all();
2228 
2229 	mmu_unlock(exceptions);
2230 }
2231 
2232 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
2233 				struct user_mode_ctx *uctx)
2234 {
2235 	struct core_mmu_table_info pg_info = { };
2236 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
2237 	struct pgt *pgt = NULL;
2238 	struct pgt *p = NULL;
2239 	struct vm_region *r = NULL;
2240 
2241 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
2242 		return; /* Nothing to map */
2243 
2244 	/*
2245 	 * Allocate all page tables in advance.
2246 	 */
2247 	pgt_get_all(uctx);
2248 	pgt = SLIST_FIRST(pgt_cache);
2249 
2250 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2251 
2252 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2253 		set_pg_region(dir_info, r, &pgt, &pg_info);
2254 	/* Record that the translation tables now are populated. */
2255 	SLIST_FOREACH(p, pgt_cache, link) {
2256 		p->populated = true;
2257 		if (p == pgt)
2258 			break;
2259 	}
2260 	assert(p == pgt);
2261 }
2262 
2263 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2264 				   size_t len)
2265 {
2266 	struct core_mmu_table_info tbl_info = { };
2267 	struct tee_mmap_region *res_map = NULL;
2268 	struct tee_mmap_region *map = NULL;
2269 	paddr_t pa = virt_to_phys(addr);
2270 	size_t granule = 0;
2271 	ptrdiff_t i = 0;
2272 	paddr_t p = 0;
2273 	size_t l = 0;
2274 
2275 	map = find_map_by_type_and_pa(type, pa, len);
2276 	if (!map)
2277 		return TEE_ERROR_GENERIC;
2278 
2279 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2280 	if (!res_map)
2281 		return TEE_ERROR_GENERIC;
2282 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2283 		return TEE_ERROR_GENERIC;
2284 	granule = BIT(tbl_info.shift);
2285 
2286 	if (map < static_memory_map.map ||
2287 	    map >= static_memory_map.map + static_memory_map.count)
2288 		return TEE_ERROR_GENERIC;
2289 	i = map - static_memory_map.map;
2290 
2291 	/* Check that we have a full match */
2292 	p = ROUNDDOWN2(pa, granule);
2293 	l = ROUNDUP2(len + pa - p, granule);
2294 	if (map->pa != p || map->size != l)
2295 		return TEE_ERROR_GENERIC;
2296 
2297 	clear_region(&tbl_info, map);
2298 	tlbi_all();
2299 
2300 	/* If possible remove the va range from res_map */
2301 	if (res_map->va - map->size == map->va) {
2302 		res_map->va -= map->size;
2303 		res_map->size += map->size;
2304 	}
2305 
2306 	/* Remove the entry. */
2307 	rem_array_elem(static_memory_map.map, static_memory_map.count,
2308 		       sizeof(*static_memory_map.map), i);
2309 	static_memory_map.count--;
2310 
2311 	return TEE_SUCCESS;
2312 }
2313 
2314 struct tee_mmap_region *
2315 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2316 {
2317 	struct memory_map *mem_map = get_memory_map();
2318 	struct tee_mmap_region *map_found = NULL;
2319 	size_t n = 0;
2320 
2321 	if (!len)
2322 		return NULL;
2323 
2324 	for (n = 0; n < mem_map->count; n++) {
2325 		if (mem_map->map[n].type != type)
2326 			continue;
2327 
2328 		if (map_found)
2329 			return NULL;
2330 
2331 		map_found = mem_map->map + n;
2332 	}
2333 
2334 	if (!map_found || map_found->size < len)
2335 		return NULL;
2336 
2337 	return map_found;
2338 }
2339 
2340 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2341 {
2342 	struct memory_map *mem_map = &static_memory_map;
2343 	struct core_mmu_table_info tbl_info = { };
2344 	struct tee_mmap_region *map = NULL;
2345 	size_t granule = 0;
2346 	paddr_t p = 0;
2347 	size_t l = 0;
2348 
2349 	if (!len)
2350 		return NULL;
2351 
2352 	if (!core_mmu_check_end_pa(addr, len))
2353 		return NULL;
2354 
2355 	/* Check if the memory is already mapped */
2356 	map = find_map_by_type_and_pa(type, addr, len);
2357 	if (map && pbuf_inside_map_area(addr, len, map))
2358 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2359 
2360 	/* Find the reserved va space used for late mappings */
2361 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2362 	if (!map)
2363 		return NULL;
2364 
2365 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2366 		return NULL;
2367 
2368 	granule = BIT64(tbl_info.shift);
2369 	p = ROUNDDOWN2(addr, granule);
2370 	l = ROUNDUP2(len + addr - p, granule);
2371 
2372 	/* Ban overflowing virtual addresses */
2373 	if (map->size < l)
2374 		return NULL;
2375 
2376 	/*
2377 	 * Something is wrong, we can't fit the va range into the selected
2378 	 * table. The reserved va range is possibly missaligned with
2379 	 * granule.
2380 	 */
2381 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2382 		return NULL;
2383 
2384 	if (static_memory_map.count >= static_memory_map.alloc_count)
2385 		return NULL;
2386 
2387 	mem_map->map[mem_map->count] = (struct tee_mmap_region){
2388 		.va = map->va,
2389 		.size = l,
2390 		.type = type,
2391 		.region_size = granule,
2392 		.attr = core_mmu_type_to_attr(type),
2393 		.pa = p,
2394 	};
2395 	map->va += l;
2396 	map->size -= l;
2397 	map = mem_map->map + mem_map->count;
2398 	mem_map->count++;
2399 
2400 	set_region(&tbl_info, map);
2401 
2402 	/* Make sure the new entry is visible before continuing. */
2403 	core_mmu_table_write_barrier();
2404 
2405 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2406 }
2407 
2408 #ifdef CFG_WITH_PAGER
2409 static vaddr_t get_linear_map_end_va(void)
2410 {
2411 	/* this is synced with the generic linker file kern.ld.S */
2412 	return (vaddr_t)__heap2_end;
2413 }
2414 
2415 static paddr_t get_linear_map_end_pa(void)
2416 {
2417 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2418 }
2419 #endif
2420 
2421 #if defined(CFG_TEE_CORE_DEBUG)
2422 static void check_pa_matches_va(void *va, paddr_t pa)
2423 {
2424 	TEE_Result res = TEE_ERROR_GENERIC;
2425 	vaddr_t v = (vaddr_t)va;
2426 	paddr_t p = 0;
2427 	struct core_mmu_table_info ti __maybe_unused = { };
2428 
2429 	if (core_mmu_user_va_range_is_defined()) {
2430 		vaddr_t user_va_base = 0;
2431 		size_t user_va_size = 0;
2432 
2433 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2434 		if (v >= user_va_base &&
2435 		    v <= (user_va_base - 1 + user_va_size)) {
2436 			if (!core_mmu_user_mapping_is_active()) {
2437 				if (pa)
2438 					panic("issue in linear address space");
2439 				return;
2440 			}
2441 
2442 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2443 				       va, &p);
2444 			if (res == TEE_ERROR_NOT_SUPPORTED)
2445 				return;
2446 			if (res == TEE_SUCCESS && pa != p)
2447 				panic("bad pa");
2448 			if (res != TEE_SUCCESS && pa)
2449 				panic("false pa");
2450 			return;
2451 		}
2452 	}
2453 #ifdef CFG_WITH_PAGER
2454 	if (is_unpaged(va)) {
2455 		if (v - boot_mmu_config.map_offset != pa)
2456 			panic("issue in linear address space");
2457 		return;
2458 	}
2459 
2460 	if (tee_pager_get_table_info(v, &ti)) {
2461 		uint32_t a;
2462 
2463 		/*
2464 		 * Lookups in the page table managed by the pager is
2465 		 * dangerous for addresses in the paged area as those pages
2466 		 * changes all the time. But some ranges are safe,
2467 		 * rw-locked areas when the page is populated for instance.
2468 		 */
2469 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2470 		if (a & TEE_MATTR_VALID_BLOCK) {
2471 			paddr_t mask = BIT64(ti.shift) - 1;
2472 
2473 			p |= v & mask;
2474 			if (pa != p)
2475 				panic();
2476 		} else {
2477 			if (pa)
2478 				panic();
2479 		}
2480 		return;
2481 	}
2482 #endif
2483 
2484 	if (!core_va2pa_helper(va, &p)) {
2485 		/* Verfiy only the static mapping (case non null phys addr) */
2486 		if (p && pa != p) {
2487 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2488 			     va, p, pa);
2489 			panic();
2490 		}
2491 	} else {
2492 		if (pa) {
2493 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2494 			panic();
2495 		}
2496 	}
2497 }
2498 #else
2499 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2500 {
2501 }
2502 #endif
2503 
2504 paddr_t virt_to_phys(void *va)
2505 {
2506 	paddr_t pa = 0;
2507 
2508 	if (!arch_va2pa_helper(va, &pa))
2509 		pa = 0;
2510 	check_pa_matches_va(memtag_strip_tag(va), pa);
2511 	return pa;
2512 }
2513 
2514 /*
2515  * Don't use check_va_matches_pa() for RISC-V, as its callee
2516  * arch_va2pa_helper() will call it eventually, this creates
2517  * indirect recursion and can lead to a stack overflow.
2518  * Moreover, if arch_va2pa_helper() returns true, it implies
2519  * the va2pa mapping is matched, no need to check it again.
2520  */
2521 #if defined(CFG_TEE_CORE_DEBUG) && !defined(__riscv)
2522 static void check_va_matches_pa(paddr_t pa, void *va)
2523 {
2524 	paddr_t p = 0;
2525 
2526 	if (!va)
2527 		return;
2528 
2529 	p = virt_to_phys(va);
2530 	if (p != pa) {
2531 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2532 		panic();
2533 	}
2534 }
2535 #else
2536 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2537 {
2538 }
2539 #endif
2540 
2541 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2542 {
2543 	if (!core_mmu_user_mapping_is_active())
2544 		return NULL;
2545 
2546 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2547 }
2548 
2549 #ifdef CFG_WITH_PAGER
2550 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2551 {
2552 	paddr_t end_pa = 0;
2553 
2554 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2555 		return NULL;
2556 
2557 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2558 		if (end_pa > get_linear_map_end_pa())
2559 			return NULL;
2560 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2561 	}
2562 
2563 	return tee_pager_phys_to_virt(pa, len);
2564 }
2565 #else
2566 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2567 {
2568 	struct tee_mmap_region *mmap = NULL;
2569 
2570 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2571 	if (!mmap)
2572 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2573 	if (!mmap)
2574 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2575 	if (!mmap)
2576 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2577 	if (!mmap)
2578 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2579 	if (!mmap)
2580 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2581 	/*
2582 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2583 	 * used with pager and not needed here.
2584 	 */
2585 	return map_pa2va(mmap, pa, len);
2586 }
2587 #endif
2588 
2589 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2590 {
2591 	void *va = NULL;
2592 
2593 	switch (m) {
2594 	case MEM_AREA_TS_VASPACE:
2595 		va = phys_to_virt_ts_vaspace(pa, len);
2596 		break;
2597 	case MEM_AREA_TEE_RAM:
2598 	case MEM_AREA_TEE_RAM_RX:
2599 	case MEM_AREA_TEE_RAM_RO:
2600 	case MEM_AREA_TEE_RAM_RW:
2601 	case MEM_AREA_NEX_RAM_RO:
2602 	case MEM_AREA_NEX_RAM_RW:
2603 		va = phys_to_virt_tee_ram(pa, len);
2604 		break;
2605 	case MEM_AREA_SHM_VASPACE:
2606 		/* Find VA from PA in dynamic SHM is not yet supported */
2607 		va = NULL;
2608 		break;
2609 	default:
2610 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2611 	}
2612 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2613 		check_va_matches_pa(pa, va);
2614 	return va;
2615 }
2616 
2617 void *phys_to_virt_io(paddr_t pa, size_t len)
2618 {
2619 	struct tee_mmap_region *map = NULL;
2620 	void *va = NULL;
2621 
2622 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2623 	if (!map)
2624 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2625 	if (!map)
2626 		return NULL;
2627 	va = map_pa2va(map, pa, len);
2628 	check_va_matches_pa(pa, va);
2629 	return va;
2630 }
2631 
2632 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2633 {
2634 	if (cpu_mmu_enabled())
2635 		return (vaddr_t)phys_to_virt(pa, type, len);
2636 
2637 	return (vaddr_t)pa;
2638 }
2639 
2640 #ifdef CFG_WITH_PAGER
2641 bool is_unpaged(const void *va)
2642 {
2643 	vaddr_t v = (vaddr_t)va;
2644 
2645 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2646 }
2647 #endif
2648 
2649 #ifdef CFG_NS_VIRTUALIZATION
2650 bool is_nexus(const void *va)
2651 {
2652 	vaddr_t v = (vaddr_t)va;
2653 
2654 	return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ;
2655 }
2656 #endif
2657 
2658 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2659 {
2660 	assert(p->pa);
2661 	if (cpu_mmu_enabled()) {
2662 		if (!p->va)
2663 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2664 		assert(p->va);
2665 		return p->va;
2666 	}
2667 	return p->pa;
2668 }
2669 
2670 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2671 {
2672 	assert(p->pa);
2673 	if (cpu_mmu_enabled()) {
2674 		if (!p->va)
2675 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2676 						      len);
2677 		assert(p->va);
2678 		return p->va;
2679 	}
2680 	return p->pa;
2681 }
2682 
2683 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2684 {
2685 	assert(p->pa);
2686 	if (cpu_mmu_enabled()) {
2687 		if (!p->va)
2688 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2689 						      len);
2690 		assert(p->va);
2691 		return p->va;
2692 	}
2693 	return p->pa;
2694 }
2695 
2696 #ifdef CFG_CORE_RESERVED_SHM
2697 static TEE_Result teecore_init_pub_ram(void)
2698 {
2699 	vaddr_t s = 0;
2700 	vaddr_t e = 0;
2701 
2702 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2703 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2704 
2705 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2706 		panic("invalid PUB RAM");
2707 
2708 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2709 	if (!tee_vbuf_is_non_sec(s, e - s))
2710 		panic("PUB RAM is not non-secure");
2711 
2712 #ifdef CFG_PL310
2713 	/* Allocate statically the l2cc mutex */
2714 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2715 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2716 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2717 #endif
2718 
2719 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2720 	default_nsec_shm_size = e - s;
2721 
2722 	return TEE_SUCCESS;
2723 }
2724 early_init(teecore_init_pub_ram);
2725 #endif /*CFG_CORE_RESERVED_SHM*/
2726 
2727 static void __maybe_unused carve_out_core_mem(paddr_t pa, paddr_t end_pa)
2728 {
2729 	tee_mm_entry_t *mm __maybe_unused = NULL;
2730 
2731 	DMSG("%#"PRIxPA" .. %#"PRIxPA, pa, end_pa);
2732 	mm = phys_mem_alloc2(pa, end_pa - pa);
2733 	assert(mm);
2734 }
2735 
2736 void core_mmu_init_phys_mem(void)
2737 {
2738 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
2739 		paddr_t b1 = 0;
2740 		paddr_size_t s1 = 0;
2741 
2742 		static_assert(ARRAY_SIZE(secure_only) <= 2);
2743 
2744 		if (ARRAY_SIZE(secure_only) == 2) {
2745 			b1 = secure_only[1].paddr;
2746 			s1 = secure_only[1].size;
2747 		}
2748 		virt_init_memory(&static_memory_map, secure_only[0].paddr,
2749 				 secure_only[0].size, b1, s1);
2750 	} else {
2751 #ifdef CFG_WITH_PAGER
2752 		/*
2753 		 * The pager uses all core memory so there's no need to add
2754 		 * it to the pool.
2755 		 */
2756 		static_assert(ARRAY_SIZE(secure_only) == 2);
2757 		phys_mem_init(0, 0, secure_only[1].paddr, secure_only[1].size);
2758 #else /*!CFG_WITH_PAGER*/
2759 		size_t align = BIT(CORE_MMU_USER_CODE_SHIFT);
2760 		paddr_t end_pa = 0;
2761 		size_t size = 0;
2762 		paddr_t ps = 0;
2763 		paddr_t pa = 0;
2764 
2765 		static_assert(ARRAY_SIZE(secure_only) <= 2);
2766 		if (ARRAY_SIZE(secure_only) == 2) {
2767 			ps = secure_only[1].paddr;
2768 			size = secure_only[1].size;
2769 		}
2770 		phys_mem_init(secure_only[0].paddr, secure_only[0].size,
2771 			      ps, size);
2772 
2773 		/*
2774 		 * The VCORE macros are relocatable so we need to translate
2775 		 * the addresses now that the MMU is enabled.
2776 		 */
2777 		end_pa = vaddr_to_phys(ROUNDUP2(VCORE_FREE_END_PA,
2778 						align) - 1) + 1;
2779 		/* Carve out the part used by OP-TEE core */
2780 		carve_out_core_mem(vaddr_to_phys(VCORE_UNPG_RX_PA), end_pa);
2781 		if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) {
2782 			pa = vaddr_to_phys(ROUNDUP2(ASAN_MAP_PA, align));
2783 			carve_out_core_mem(pa, pa + ASAN_MAP_SZ);
2784 		}
2785 
2786 		/* Carve out test SDP memory */
2787 #ifdef TEE_SDP_TEST_MEM_BASE
2788 		if (TEE_SDP_TEST_MEM_SIZE) {
2789 			pa = TEE_SDP_TEST_MEM_BASE;
2790 			carve_out_core_mem(pa, pa + TEE_SDP_TEST_MEM_SIZE);
2791 		}
2792 #endif
2793 #endif /*!CFG_WITH_PAGER*/
2794 	}
2795 }
2796