1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016, 2022 Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved. 6 */ 7 8 #include <assert.h> 9 #include <config.h> 10 #include <kernel/boot.h> 11 #include <kernel/dt.h> 12 #include <kernel/linker.h> 13 #include <kernel/panic.h> 14 #include <kernel/spinlock.h> 15 #include <kernel/tee_l2cc_mutex.h> 16 #include <kernel/tee_misc.h> 17 #include <kernel/tlb_helpers.h> 18 #include <kernel/user_mode_ctx.h> 19 #include <kernel/virtualization.h> 20 #include <libfdt.h> 21 #include <memtag.h> 22 #include <mm/core_memprot.h> 23 #include <mm/core_mmu.h> 24 #include <mm/mobj.h> 25 #include <mm/pgt_cache.h> 26 #include <mm/phys_mem.h> 27 #include <mm/tee_pager.h> 28 #include <mm/vm.h> 29 #include <platform_config.h> 30 #include <stdalign.h> 31 #include <string.h> 32 #include <trace.h> 33 #include <util.h> 34 35 #ifndef DEBUG_XLAT_TABLE 36 #define DEBUG_XLAT_TABLE 0 37 #endif 38 39 #define SHM_VASPACE_SIZE (1024 * 1024 * 32) 40 41 /* Virtual memory pool for core mappings */ 42 tee_mm_pool_t core_virt_mem_pool; 43 44 /* Virtual memory pool for shared memory mappings */ 45 tee_mm_pool_t core_virt_shm_pool; 46 47 #ifdef CFG_CORE_PHYS_RELOCATABLE 48 unsigned long core_mmu_tee_load_pa __nex_bss; 49 #else 50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR; 51 #endif 52 53 /* 54 * These variables are initialized before .bss is cleared. To avoid 55 * resetting them when .bss is cleared we're storing them in .data instead, 56 * even if they initially are zero. 57 */ 58 59 #ifdef CFG_CORE_RESERVED_SHM 60 /* Default NSec shared memory allocated from NSec world */ 61 unsigned long default_nsec_shm_size __nex_bss; 62 unsigned long default_nsec_shm_paddr __nex_bss; 63 #endif 64 65 static struct tee_mmap_region static_mmap_regions[CFG_MMAP_REGIONS 66 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE) 67 + 1 68 #endif 69 + 4] __nex_bss; 70 static struct memory_map static_memory_map __nex_data = { 71 .map = static_mmap_regions, 72 .alloc_count = ARRAY_SIZE(static_mmap_regions), 73 }; 74 75 /* Offset of the first TEE RAM mapping from start of secure RAM */ 76 static size_t tee_ram_initial_offs __nex_bss; 77 78 /* Define the platform's memory layout. */ 79 struct memaccess_area { 80 paddr_t paddr; 81 size_t size; 82 }; 83 84 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } 85 86 static struct memaccess_area secure_only[] __nex_data = { 87 #ifdef CFG_CORE_PHYS_RELOCATABLE 88 MEMACCESS_AREA(0, 0), 89 #else 90 #ifdef TRUSTED_SRAM_BASE 91 MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), 92 #endif 93 MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), 94 #endif 95 }; 96 97 static struct memaccess_area nsec_shared[] __nex_data = { 98 #ifdef CFG_CORE_RESERVED_SHM 99 MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), 100 #endif 101 }; 102 103 #if defined(CFG_SECURE_DATA_PATH) 104 static const char *tz_sdp_match = "linaro,secure-heap"; 105 static struct memaccess_area sec_sdp; 106 #ifdef CFG_TEE_SDP_MEM_BASE 107 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); 108 #endif 109 #ifdef TEE_SDP_TEST_MEM_BASE 110 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); 111 #endif 112 #endif 113 114 #ifdef CFG_CORE_RESERVED_SHM 115 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); 116 #endif 117 static unsigned int mmu_spinlock; 118 119 static uint32_t mmu_lock(void) 120 { 121 return cpu_spin_lock_xsave(&mmu_spinlock); 122 } 123 124 static void mmu_unlock(uint32_t exceptions) 125 { 126 cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); 127 } 128 129 static void grow_mem_map(struct memory_map *mem_map) 130 { 131 if (mem_map->count == mem_map->alloc_count) { 132 EMSG("Out of entries (%zu) in mem_map", mem_map->alloc_count); 133 panic(); 134 } 135 mem_map->count++; 136 } 137 138 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size) 139 { 140 /* 141 * The first range is always used to cover OP-TEE core memory, but 142 * depending on configuration it may cover more than that. 143 */ 144 *base = secure_only[0].paddr; 145 *size = secure_only[0].size; 146 } 147 148 void core_mmu_set_secure_memory(paddr_t base, size_t size) 149 { 150 #ifdef CFG_CORE_PHYS_RELOCATABLE 151 static_assert(ARRAY_SIZE(secure_only) == 1); 152 #endif 153 runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)); 154 assert(!secure_only[0].size); 155 assert(base && size); 156 157 DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size); 158 secure_only[0].paddr = base; 159 secure_only[0].size = size; 160 } 161 162 void core_mmu_get_ta_range(paddr_t *base, size_t *size) 163 { 164 paddr_t b = 0; 165 size_t s = 0; 166 167 static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE)); 168 #ifdef TA_RAM_START 169 b = TA_RAM_START; 170 s = TA_RAM_SIZE; 171 #else 172 static_assert(ARRAY_SIZE(secure_only) <= 2); 173 if (ARRAY_SIZE(secure_only) == 1) { 174 vaddr_t load_offs = 0; 175 176 assert(core_mmu_tee_load_pa >= secure_only[0].paddr); 177 load_offs = core_mmu_tee_load_pa - secure_only[0].paddr; 178 179 assert(secure_only[0].size > 180 load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE); 181 b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE; 182 s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE - 183 TEE_SDP_TEST_MEM_SIZE; 184 } else { 185 assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE); 186 b = secure_only[1].paddr; 187 s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE; 188 } 189 #endif 190 if (base) 191 *base = b; 192 if (size) 193 *size = s; 194 } 195 196 static struct memory_map *get_memory_map(void) 197 { 198 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 199 struct memory_map *map = virt_get_memory_map(); 200 201 if (map) 202 return map; 203 } 204 205 return &static_memory_map; 206 } 207 208 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, 209 paddr_t pa, size_t size) 210 { 211 size_t n; 212 213 for (n = 0; n < alen; n++) 214 if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) 215 return true; 216 return false; 217 } 218 219 #define pbuf_intersects(a, pa, size) \ 220 _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) 221 222 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, 223 paddr_t pa, size_t size) 224 { 225 size_t n; 226 227 for (n = 0; n < alen; n++) 228 if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) 229 return true; 230 return false; 231 } 232 233 #define pbuf_is_inside(a, pa, size) \ 234 _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) 235 236 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) 237 { 238 paddr_t end_pa = 0; 239 240 if (!map) 241 return false; 242 243 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 244 return false; 245 246 return (pa >= map->pa && end_pa <= map->pa + map->size - 1); 247 } 248 249 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) 250 { 251 if (!map) 252 return false; 253 return (va >= map->va && va <= (map->va + map->size - 1)); 254 } 255 256 /* check if target buffer fits in a core default map area */ 257 static bool pbuf_inside_map_area(unsigned long p, size_t l, 258 struct tee_mmap_region *map) 259 { 260 return core_is_buffer_inside(p, l, map->pa, map->size); 261 } 262 263 TEE_Result core_mmu_for_each_map(void *ptr, 264 TEE_Result (*fn)(struct tee_mmap_region *map, 265 void *ptr)) 266 { 267 struct memory_map *mem_map = get_memory_map(); 268 TEE_Result res = TEE_SUCCESS; 269 size_t n = 0; 270 271 for (n = 0; n < mem_map->count; n++) { 272 res = fn(mem_map->map + n, ptr); 273 if (res) 274 return res; 275 } 276 277 return TEE_SUCCESS; 278 } 279 280 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) 281 { 282 struct memory_map *mem_map = get_memory_map(); 283 size_t n = 0; 284 285 for (n = 0; n < mem_map->count; n++) { 286 if (mem_map->map[n].type == type) 287 return mem_map->map + n; 288 } 289 return NULL; 290 } 291 292 static struct tee_mmap_region * 293 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) 294 { 295 struct memory_map *mem_map = get_memory_map(); 296 size_t n = 0; 297 298 for (n = 0; n < mem_map->count; n++) { 299 if (mem_map->map[n].type != type) 300 continue; 301 if (pa_is_in_map(mem_map->map + n, pa, len)) 302 return mem_map->map + n; 303 } 304 return NULL; 305 } 306 307 static struct tee_mmap_region *find_map_by_va(void *va) 308 { 309 struct memory_map *mem_map = get_memory_map(); 310 vaddr_t a = (vaddr_t)va; 311 size_t n = 0; 312 313 for (n = 0; n < mem_map->count; n++) { 314 if (a >= mem_map->map[n].va && 315 a <= (mem_map->map[n].va - 1 + mem_map->map[n].size)) 316 return mem_map->map + n; 317 } 318 319 return NULL; 320 } 321 322 static struct tee_mmap_region *find_map_by_pa(unsigned long pa) 323 { 324 struct memory_map *mem_map = get_memory_map(); 325 size_t n = 0; 326 327 for (n = 0; n < mem_map->count; n++) { 328 /* Skip unmapped regions */ 329 if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) && 330 pa >= mem_map->map[n].pa && 331 pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size)) 332 return mem_map->map + n; 333 } 334 335 return NULL; 336 } 337 338 #if defined(CFG_SECURE_DATA_PATH) 339 static bool dtb_get_sdp_region(void) 340 { 341 void *fdt = NULL; 342 int node = 0; 343 int tmp_node = 0; 344 paddr_t tmp_addr = 0; 345 size_t tmp_size = 0; 346 347 if (!IS_ENABLED(CFG_EMBED_DTB)) 348 return false; 349 350 fdt = get_embedded_dt(); 351 if (!fdt) 352 panic("No DTB found"); 353 354 node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match); 355 if (node < 0) { 356 DMSG("No %s compatible node found", tz_sdp_match); 357 return false; 358 } 359 tmp_node = node; 360 while (tmp_node >= 0) { 361 tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node, 362 tz_sdp_match); 363 if (tmp_node >= 0) 364 DMSG("Ignore SDP pool node %s, supports only 1 node", 365 fdt_get_name(fdt, tmp_node, NULL)); 366 } 367 368 if (fdt_reg_info(fdt, node, &tmp_addr, &tmp_size)) { 369 EMSG("%s: Unable to get base addr or size from DT", 370 tz_sdp_match); 371 return false; 372 } 373 374 sec_sdp.paddr = tmp_addr; 375 sec_sdp.size = tmp_size; 376 377 return true; 378 } 379 #endif 380 381 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) 382 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, 383 const struct core_mmu_phys_mem *start, 384 const struct core_mmu_phys_mem *end) 385 { 386 const struct core_mmu_phys_mem *mem; 387 388 for (mem = start; mem < end; mem++) { 389 if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) 390 return true; 391 } 392 393 return false; 394 } 395 #endif 396 397 #ifdef CFG_CORE_DYN_SHM 398 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, 399 paddr_t pa, size_t size) 400 { 401 struct core_mmu_phys_mem *m = *mem; 402 size_t n = 0; 403 404 while (true) { 405 if (n >= *nelems) { 406 DMSG("No need to carve out %#" PRIxPA " size %#zx", 407 pa, size); 408 return; 409 } 410 if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size)) 411 break; 412 if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size)) 413 panic(); 414 n++; 415 } 416 417 if (pa == m[n].addr && size == m[n].size) { 418 /* Remove this entry */ 419 (*nelems)--; 420 memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n)); 421 m = nex_realloc(m, sizeof(*m) * *nelems); 422 if (!m) 423 panic(); 424 *mem = m; 425 } else if (pa == m[n].addr) { 426 m[n].addr += size; 427 m[n].size -= size; 428 } else if ((pa + size) == (m[n].addr + m[n].size)) { 429 m[n].size -= size; 430 } else { 431 /* Need to split the memory entry */ 432 m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); 433 if (!m) 434 panic(); 435 *mem = m; 436 memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n)); 437 (*nelems)++; 438 m[n].size = pa - m[n].addr; 439 m[n + 1].size -= size + m[n].size; 440 m[n + 1].addr = pa + size; 441 } 442 } 443 444 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, 445 size_t nelems, 446 struct tee_mmap_region *map) 447 { 448 size_t n; 449 450 for (n = 0; n < nelems; n++) { 451 if (!core_is_buffer_outside(start[n].addr, start[n].size, 452 map->pa, map->size)) { 453 EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ 454 ") overlaps map (type %d %#" PRIxPA ":%#zx)", 455 start[n].addr, start[n].size, 456 map->type, map->pa, map->size); 457 panic(); 458 } 459 } 460 } 461 462 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; 463 static size_t discovered_nsec_ddr_nelems __nex_bss; 464 465 static int cmp_pmem_by_addr(const void *a, const void *b) 466 { 467 const struct core_mmu_phys_mem *pmem_a = a; 468 const struct core_mmu_phys_mem *pmem_b = b; 469 470 return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); 471 } 472 473 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 474 size_t nelems) 475 { 476 struct core_mmu_phys_mem *m = start; 477 size_t num_elems = nelems; 478 struct memory_map *mem_map = &static_memory_map; 479 const struct core_mmu_phys_mem __maybe_unused *pmem; 480 size_t n = 0; 481 482 assert(!discovered_nsec_ddr_start); 483 assert(m && num_elems); 484 485 qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); 486 487 /* 488 * Non-secure shared memory and also secure data 489 * path memory are supposed to reside inside 490 * non-secure memory. Since NSEC_SHM and SDP_MEM 491 * are used for a specific purpose make holes for 492 * those memory in the normal non-secure memory. 493 * 494 * This has to be done since for instance QEMU 495 * isn't aware of which memory range in the 496 * non-secure memory is used for NSEC_SHM. 497 */ 498 499 #ifdef CFG_SECURE_DATA_PATH 500 if (dtb_get_sdp_region()) 501 carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size); 502 503 for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) 504 carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); 505 #endif 506 507 for (n = 0; n < ARRAY_SIZE(secure_only); n++) 508 carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr, 509 secure_only[n].size); 510 511 for (n = 0; n < mem_map->count; n++) { 512 switch (mem_map->map[n].type) { 513 case MEM_AREA_NSEC_SHM: 514 carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa, 515 mem_map->map[n].size); 516 break; 517 case MEM_AREA_EXT_DT: 518 case MEM_AREA_MANIFEST_DT: 519 case MEM_AREA_RAM_NSEC: 520 case MEM_AREA_RES_VASPACE: 521 case MEM_AREA_SHM_VASPACE: 522 case MEM_AREA_TS_VASPACE: 523 case MEM_AREA_PAGER_VASPACE: 524 break; 525 default: 526 check_phys_mem_is_outside(m, num_elems, 527 mem_map->map + n); 528 } 529 } 530 531 discovered_nsec_ddr_start = m; 532 discovered_nsec_ddr_nelems = num_elems; 533 534 if (!core_mmu_check_end_pa(m[num_elems - 1].addr, 535 m[num_elems - 1].size)) 536 panic(); 537 } 538 539 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, 540 const struct core_mmu_phys_mem **end) 541 { 542 if (!discovered_nsec_ddr_start) 543 return false; 544 545 *start = discovered_nsec_ddr_start; 546 *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; 547 548 return true; 549 } 550 551 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) 552 { 553 const struct core_mmu_phys_mem *start; 554 const struct core_mmu_phys_mem *end; 555 556 if (!get_discovered_nsec_ddr(&start, &end)) 557 return false; 558 559 return pbuf_is_special_mem(pbuf, len, start, end); 560 } 561 562 bool core_mmu_nsec_ddr_is_defined(void) 563 { 564 const struct core_mmu_phys_mem *start; 565 const struct core_mmu_phys_mem *end; 566 567 if (!get_discovered_nsec_ddr(&start, &end)) 568 return false; 569 570 return start != end; 571 } 572 #else 573 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) 574 { 575 return false; 576 } 577 #endif /*CFG_CORE_DYN_SHM*/ 578 579 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ 580 EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ 581 pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) 582 583 #ifdef CFG_SECURE_DATA_PATH 584 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) 585 { 586 bool is_sdp_mem = false; 587 588 if (sec_sdp.size) 589 is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr, 590 sec_sdp.size); 591 592 if (!is_sdp_mem) 593 is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, 594 phys_sdp_mem_end); 595 596 return is_sdp_mem; 597 } 598 599 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size) 600 { 601 struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED, 602 CORE_MEM_SDP_MEM); 603 604 if (!mobj) 605 panic("can't create SDP physical memory object"); 606 607 return mobj; 608 } 609 610 struct mobj **core_sdp_mem_create_mobjs(void) 611 { 612 const struct core_mmu_phys_mem *mem = NULL; 613 struct mobj **mobj_base = NULL; 614 struct mobj **mobj = NULL; 615 int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; 616 617 if (sec_sdp.size) 618 cnt++; 619 620 /* SDP mobjs table must end with a NULL entry */ 621 mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); 622 if (!mobj_base) 623 panic("Out of memory"); 624 625 mobj = mobj_base; 626 627 for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++) 628 *mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size); 629 630 if (sec_sdp.size) 631 *mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size); 632 633 return mobj_base; 634 } 635 636 #else /* CFG_SECURE_DATA_PATH */ 637 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) 638 { 639 return false; 640 } 641 642 #endif /* CFG_SECURE_DATA_PATH */ 643 644 /* Check special memories comply with registered memories */ 645 static void verify_special_mem_areas(struct memory_map *mem_map, 646 const struct core_mmu_phys_mem *start, 647 const struct core_mmu_phys_mem *end, 648 const char *area_name __maybe_unused) 649 { 650 const struct core_mmu_phys_mem *mem = NULL; 651 const struct core_mmu_phys_mem *mem2 = NULL; 652 size_t n = 0; 653 654 if (start == end) { 655 DMSG("No %s memory area defined", area_name); 656 return; 657 } 658 659 for (mem = start; mem < end; mem++) 660 DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", 661 area_name, mem->addr, (uint64_t)mem->addr + mem->size); 662 663 /* Check memories do not intersect each other */ 664 for (mem = start; mem + 1 < end; mem++) { 665 for (mem2 = mem + 1; mem2 < end; mem2++) { 666 if (core_is_buffer_intersect(mem2->addr, mem2->size, 667 mem->addr, mem->size)) { 668 MSG_MEM_INSTERSECT(mem2->addr, mem2->size, 669 mem->addr, mem->size); 670 panic("Special memory intersection"); 671 } 672 } 673 } 674 675 /* 676 * Check memories do not intersect any mapped memory. 677 * This is called before reserved VA space is loaded in mem_map. 678 */ 679 for (mem = start; mem < end; mem++) { 680 for (n = 0; n < mem_map->count; n++) { 681 if (core_is_buffer_intersect(mem->addr, mem->size, 682 mem_map->map[n].pa, 683 mem_map->map[n].size)) { 684 MSG_MEM_INSTERSECT(mem->addr, mem->size, 685 mem_map->map[n].pa, 686 mem_map->map[n].size); 687 panic("Special memory intersection"); 688 } 689 } 690 } 691 } 692 693 static void merge_mmaps(struct tee_mmap_region *dst, 694 const struct tee_mmap_region *src) 695 { 696 paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1); 697 paddr_t pa = MIN(dst->pa, src->pa); 698 699 DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA, 700 dst->pa, dst->pa + dst->size - 1, src->pa, 701 src->pa + src->size - 1); 702 dst->pa = pa; 703 dst->size = end_pa - pa + 1; 704 } 705 706 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1, 707 const struct tee_mmap_region *r2) 708 { 709 if (r1->type != r2->type) 710 return false; 711 712 if (r1->pa == r2->pa) 713 return true; 714 715 if (r1->pa < r2->pa) 716 return r1->pa + r1->size >= r2->pa; 717 else 718 return r2->pa + r2->size >= r1->pa; 719 } 720 721 static void add_phys_mem(struct memory_map *mem_map, 722 const char *mem_name __maybe_unused, 723 enum teecore_memtypes mem_type, 724 paddr_t mem_addr, paddr_size_t mem_size) 725 { 726 size_t n = 0; 727 const struct tee_mmap_region m0 = { 728 .type = mem_type, 729 .pa = mem_addr, 730 .size = mem_size, 731 }; 732 733 if (!mem_size) /* Discard null size entries */ 734 return; 735 736 /* 737 * If some ranges of memory of the same type do overlap 738 * each others they are coalesced into one entry. To help this 739 * added entries are sorted by increasing physical. 740 * 741 * Note that it's valid to have the same physical memory as several 742 * different memory types, for instance the same device memory 743 * mapped as both secure and non-secure. This will probably not 744 * happen often in practice. 745 */ 746 DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, 747 mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size); 748 for (n = 0; n < mem_map->count; n++) { 749 if (mmaps_are_mergeable(mem_map->map + n, &m0)) { 750 merge_mmaps(mem_map->map + n, &m0); 751 /* 752 * The merged result might be mergeable with the 753 * next or previous entry. 754 */ 755 if (n + 1 < mem_map->count && 756 mmaps_are_mergeable(mem_map->map + n, 757 mem_map->map + n + 1)) { 758 merge_mmaps(mem_map->map + n, 759 mem_map->map + n + 1); 760 rem_array_elem(mem_map->map, mem_map->count, 761 sizeof(*mem_map->map), n + 1); 762 mem_map->count--; 763 } 764 if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1, 765 mem_map->map + n)) { 766 merge_mmaps(mem_map->map + n - 1, 767 mem_map->map + n); 768 rem_array_elem(mem_map->map, mem_map->count, 769 sizeof(*mem_map->map), n); 770 mem_map->count--; 771 } 772 return; 773 } 774 if (mem_type < mem_map->map[n].type || 775 (mem_type == mem_map->map[n].type && 776 mem_addr < mem_map->map[n].pa)) 777 break; /* found the spot where to insert this memory */ 778 } 779 780 grow_mem_map(mem_map); 781 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 782 n, &m0); 783 } 784 785 static void add_va_space(struct memory_map *mem_map, 786 enum teecore_memtypes type, size_t size) 787 { 788 size_t n = 0; 789 790 DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); 791 for (n = 0; n < mem_map->count; n++) { 792 if (type < mem_map->map[n].type) 793 break; 794 } 795 796 grow_mem_map(mem_map); 797 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 798 n, NULL); 799 mem_map->map[n] = (struct tee_mmap_region){ 800 .type = type, 801 .size = size, 802 }; 803 } 804 805 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) 806 { 807 const uint32_t attr = TEE_MATTR_VALID_BLOCK; 808 const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED << 809 TEE_MATTR_MEM_TYPE_SHIFT; 810 const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << 811 TEE_MATTR_MEM_TYPE_SHIFT; 812 const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << 813 TEE_MATTR_MEM_TYPE_SHIFT; 814 815 switch (t) { 816 case MEM_AREA_TEE_RAM: 817 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged; 818 case MEM_AREA_TEE_RAM_RX: 819 case MEM_AREA_INIT_RAM_RX: 820 case MEM_AREA_IDENTITY_MAP_RX: 821 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged; 822 case MEM_AREA_TEE_RAM_RO: 823 case MEM_AREA_INIT_RAM_RO: 824 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged; 825 case MEM_AREA_TEE_RAM_RW: 826 case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ 827 case MEM_AREA_NEX_RAM_RW: 828 case MEM_AREA_TEE_ASAN: 829 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 830 case MEM_AREA_TEE_COHERENT: 831 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; 832 case MEM_AREA_NSEC_SHM: 833 case MEM_AREA_NEX_NSEC_SHM: 834 return attr | TEE_MATTR_PRW | cached; 835 case MEM_AREA_MANIFEST_DT: 836 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 837 case MEM_AREA_TRANSFER_LIST: 838 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 839 case MEM_AREA_EXT_DT: 840 /* 841 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device 842 * tree as secure non-cached memory, otherwise, fall back to 843 * non-secure mapping. 844 */ 845 if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE)) 846 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | 847 noncache; 848 fallthrough; 849 case MEM_AREA_IO_NSEC: 850 return attr | TEE_MATTR_PRW | noncache; 851 case MEM_AREA_IO_SEC: 852 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; 853 case MEM_AREA_RAM_NSEC: 854 return attr | TEE_MATTR_PRW | cached; 855 case MEM_AREA_RAM_SEC: 856 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 857 case MEM_AREA_SEC_RAM_OVERALL: 858 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 859 case MEM_AREA_ROM_SEC: 860 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 861 case MEM_AREA_RES_VASPACE: 862 case MEM_AREA_SHM_VASPACE: 863 return 0; 864 case MEM_AREA_PAGER_VASPACE: 865 return TEE_MATTR_SECURE; 866 default: 867 panic("invalid type"); 868 } 869 } 870 871 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) 872 { 873 switch (mm->type) { 874 case MEM_AREA_TEE_RAM: 875 case MEM_AREA_TEE_RAM_RX: 876 case MEM_AREA_TEE_RAM_RO: 877 case MEM_AREA_TEE_RAM_RW: 878 case MEM_AREA_INIT_RAM_RX: 879 case MEM_AREA_INIT_RAM_RO: 880 case MEM_AREA_NEX_RAM_RW: 881 case MEM_AREA_NEX_RAM_RO: 882 case MEM_AREA_TEE_ASAN: 883 return true; 884 default: 885 return false; 886 } 887 } 888 889 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) 890 { 891 return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); 892 } 893 894 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) 895 { 896 return mm->region_size == CORE_MMU_PGDIR_SIZE; 897 } 898 899 static int cmp_mmap_by_lower_va(const void *a, const void *b) 900 { 901 const struct tee_mmap_region *mm_a = a; 902 const struct tee_mmap_region *mm_b = b; 903 904 return CMP_TRILEAN(mm_a->va, mm_b->va); 905 } 906 907 static void dump_mmap_table(struct memory_map *mem_map) 908 { 909 size_t n = 0; 910 911 for (n = 0; n < mem_map->count; n++) { 912 struct tee_mmap_region *map __maybe_unused = mem_map->map + n; 913 914 DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA 915 " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", 916 teecore_memtype_name(map->type), map->va, 917 map->va + map->size - 1, map->pa, 918 (paddr_t)(map->pa + map->size - 1), map->size, 919 map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); 920 } 921 } 922 923 #if DEBUG_XLAT_TABLE 924 925 static void dump_xlat_table(vaddr_t va, unsigned int level) 926 { 927 struct core_mmu_table_info tbl_info; 928 unsigned int idx = 0; 929 paddr_t pa; 930 uint32_t attr; 931 932 core_mmu_find_table(NULL, va, level, &tbl_info); 933 va = tbl_info.va_base; 934 for (idx = 0; idx < tbl_info.num_entries; idx++) { 935 core_mmu_get_entry(&tbl_info, idx, &pa, &attr); 936 if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { 937 const char *security_bit = ""; 938 939 if (core_mmu_entry_have_security_bit(attr)) { 940 if (attr & TEE_MATTR_SECURE) 941 security_bit = "S"; 942 else 943 security_bit = "NS"; 944 } 945 946 if (attr & TEE_MATTR_TABLE) { 947 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 948 " TBL:0x%010" PRIxPA " %s", 949 level * 2, "", level, va, pa, 950 security_bit); 951 dump_xlat_table(va, level + 1); 952 } else if (attr) { 953 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 954 " PA:0x%010" PRIxPA " %s-%s-%s-%s", 955 level * 2, "", level, va, pa, 956 mattr_is_cached(attr) ? "MEM" : 957 "DEV", 958 attr & TEE_MATTR_PW ? "RW" : "RO", 959 attr & TEE_MATTR_PX ? "X " : "XN", 960 security_bit); 961 } else { 962 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 963 " INVALID\n", 964 level * 2, "", level, va); 965 } 966 } 967 va += BIT64(tbl_info.shift); 968 } 969 } 970 971 #else 972 973 static void dump_xlat_table(vaddr_t va __unused, int level __unused) 974 { 975 } 976 977 #endif 978 979 /* 980 * Reserves virtual memory space for pager usage. 981 * 982 * From the start of the first memory used by the link script + 983 * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty 984 * mapping for pager usage. This adds translation tables as needed for the 985 * pager to operate. 986 */ 987 static void add_pager_vaspace(struct memory_map *mem_map) 988 { 989 paddr_t begin = 0; 990 paddr_t end = 0; 991 size_t size = 0; 992 size_t pos = 0; 993 size_t n = 0; 994 995 996 for (n = 0; n < mem_map->count; n++) { 997 if (map_is_tee_ram(mem_map->map + n)) { 998 if (!begin) 999 begin = mem_map->map[n].pa; 1000 pos = n + 1; 1001 } 1002 } 1003 1004 end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size; 1005 assert(end - begin < TEE_RAM_VA_SIZE); 1006 size = TEE_RAM_VA_SIZE - (end - begin); 1007 1008 grow_mem_map(mem_map); 1009 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 1010 n, NULL); 1011 mem_map->map[n] = (struct tee_mmap_region){ 1012 .type = MEM_AREA_PAGER_VASPACE, 1013 .size = size, 1014 .region_size = SMALL_PAGE_SIZE, 1015 .attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE), 1016 }; 1017 } 1018 1019 static void check_sec_nsec_mem_config(void) 1020 { 1021 size_t n = 0; 1022 1023 for (n = 0; n < ARRAY_SIZE(secure_only); n++) { 1024 if (pbuf_intersects(nsec_shared, secure_only[n].paddr, 1025 secure_only[n].size)) 1026 panic("Invalid memory access config: sec/nsec"); 1027 } 1028 } 1029 1030 static void collect_device_mem_ranges(struct memory_map *mem_map) 1031 { 1032 const char *compatible = "arm,ffa-manifest-device-regions"; 1033 void *fdt = get_manifest_dt(); 1034 const char *name = NULL; 1035 uint64_t page_count = 0; 1036 uint64_t base = 0; 1037 int subnode = 0; 1038 int node = 0; 1039 1040 assert(fdt); 1041 1042 node = fdt_node_offset_by_compatible(fdt, 0, compatible); 1043 if (node < 0) 1044 return; 1045 1046 fdt_for_each_subnode(subnode, fdt, node) { 1047 name = fdt_get_name(fdt, subnode, NULL); 1048 if (!name) 1049 continue; 1050 1051 if (dt_getprop_as_number(fdt, subnode, "base-address", 1052 &base)) { 1053 EMSG("Mandatory field is missing: base-address"); 1054 continue; 1055 } 1056 1057 if (base & SMALL_PAGE_MASK) { 1058 EMSG("base-address is not page aligned"); 1059 continue; 1060 } 1061 1062 if (dt_getprop_as_number(fdt, subnode, "pages-count", 1063 &page_count)) { 1064 EMSG("Mandatory field is missing: pages-count"); 1065 continue; 1066 } 1067 1068 add_phys_mem(mem_map, name, MEM_AREA_IO_SEC, 1069 base, base + page_count * SMALL_PAGE_SIZE); 1070 } 1071 } 1072 1073 static void collect_mem_ranges(struct memory_map *mem_map) 1074 { 1075 const struct core_mmu_phys_mem *mem = NULL; 1076 vaddr_t ram_start = secure_only[0].paddr; 1077 size_t n = 0; 1078 1079 #define ADD_PHYS_MEM(_type, _addr, _size) \ 1080 add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size)) 1081 1082 if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) { 1083 paddr_t next_pa = 0; 1084 1085 /* 1086 * Read-only and read-execute physical memory areas must 1087 * not be mapped by MEM_AREA_SEC_RAM_OVERALL, but all the 1088 * read/write should. 1089 */ 1090 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, ram_start, 1091 VCORE_UNPG_RX_PA - ram_start); 1092 assert(VCORE_UNPG_RX_PA >= ram_start); 1093 tee_ram_initial_offs = VCORE_UNPG_RX_PA - ram_start; 1094 DMSG("tee_ram_initial_offs %#zx", tee_ram_initial_offs); 1095 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, 1096 VCORE_UNPG_RX_SZ); 1097 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, 1098 VCORE_UNPG_RO_SZ); 1099 1100 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1101 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, 1102 VCORE_UNPG_RW_SZ); 1103 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA, 1104 VCORE_UNPG_RW_SZ); 1105 1106 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, 1107 VCORE_NEX_RW_SZ); 1108 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_NEX_RW_PA, 1109 VCORE_NEX_RW_SZ); 1110 1111 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_FREE_PA, 1112 VCORE_FREE_SZ); 1113 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA, 1114 VCORE_FREE_SZ); 1115 next_pa = VCORE_FREE_PA + VCORE_FREE_SZ; 1116 } else { 1117 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, 1118 VCORE_UNPG_RW_SZ); 1119 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA, 1120 VCORE_UNPG_RW_SZ); 1121 1122 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_FREE_PA, 1123 VCORE_FREE_SZ); 1124 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA, 1125 VCORE_FREE_SZ); 1126 next_pa = VCORE_FREE_PA + VCORE_FREE_SZ; 1127 } 1128 1129 if (IS_ENABLED(CFG_WITH_PAGER)) { 1130 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, 1131 VCORE_INIT_RX_SZ); 1132 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, 1133 VCORE_INIT_RO_SZ); 1134 } else { 1135 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, next_pa, 1136 secure_only[0].paddr + 1137 secure_only[0].size - next_pa); 1138 } 1139 } else { 1140 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); 1141 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr, 1142 secure_only[0].size); 1143 } 1144 1145 for (n = 1; n < ARRAY_SIZE(secure_only); n++) 1146 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr, 1147 secure_only[n].size); 1148 1149 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) && 1150 IS_ENABLED(CFG_WITH_PAGER)) { 1151 /* 1152 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is 1153 * disabled. 1154 */ 1155 ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); 1156 } 1157 1158 #undef ADD_PHYS_MEM 1159 1160 /* Collect device memory info from SP manifest */ 1161 if (IS_ENABLED(CFG_CORE_SEL2_SPMC)) 1162 collect_device_mem_ranges(mem_map); 1163 1164 for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { 1165 /* Only unmapped virtual range may have a null phys addr */ 1166 assert(mem->addr || !core_mmu_type_to_attr(mem->type)); 1167 1168 add_phys_mem(mem_map, mem->name, mem->type, 1169 mem->addr, mem->size); 1170 } 1171 1172 if (IS_ENABLED(CFG_SECURE_DATA_PATH)) 1173 verify_special_mem_areas(mem_map, phys_sdp_mem_begin, 1174 phys_sdp_mem_end, "SDP"); 1175 1176 add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE); 1177 add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE); 1178 } 1179 1180 static void assign_mem_granularity(struct memory_map *mem_map) 1181 { 1182 size_t n = 0; 1183 1184 /* 1185 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses 1186 * SMALL_PAGE_SIZE. 1187 */ 1188 for (n = 0; n < mem_map->count; n++) { 1189 paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size; 1190 1191 if (mask & SMALL_PAGE_MASK) 1192 panic("Impossible memory alignment"); 1193 1194 if (map_is_tee_ram(mem_map->map + n)) 1195 mem_map->map[n].region_size = SMALL_PAGE_SIZE; 1196 else 1197 mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE; 1198 } 1199 } 1200 1201 static bool place_tee_ram_at_top(paddr_t paddr) 1202 { 1203 return paddr > BIT64(core_mmu_get_va_width()) / 2; 1204 } 1205 1206 /* 1207 * MMU arch driver shall override this function if it helps 1208 * optimizing the memory footprint of the address translation tables. 1209 */ 1210 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr) 1211 { 1212 return place_tee_ram_at_top(paddr); 1213 } 1214 1215 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map, 1216 bool tee_ram_at_top) 1217 { 1218 struct tee_mmap_region *map = NULL; 1219 vaddr_t va = 0; 1220 bool va_is_secure = true; 1221 size_t n = 0; 1222 1223 /* 1224 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y. 1225 * 0 is by design an invalid va, so return false directly. 1226 */ 1227 if (!tee_ram_va) 1228 return false; 1229 1230 /* Clear eventual previous assignments */ 1231 for (n = 0; n < mem_map->count; n++) 1232 mem_map->map[n].va = 0; 1233 1234 /* 1235 * TEE RAM regions are always aligned with region_size. 1236 * 1237 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here 1238 * since it handles virtual memory which covers the part of the ELF 1239 * that cannot fit directly into memory. 1240 */ 1241 va = tee_ram_va + tee_ram_initial_offs; 1242 for (n = 0; n < mem_map->count; n++) { 1243 map = mem_map->map + n; 1244 if (map_is_tee_ram(map) || 1245 map->type == MEM_AREA_PAGER_VASPACE) { 1246 assert(!(va & (map->region_size - 1))); 1247 assert(!(map->size & (map->region_size - 1))); 1248 map->va = va; 1249 if (ADD_OVERFLOW(va, map->size, &va)) 1250 return false; 1251 if (va >= BIT64(core_mmu_get_va_width())) 1252 return false; 1253 } 1254 } 1255 1256 if (tee_ram_at_top) { 1257 /* 1258 * Map non-tee ram regions at addresses lower than the tee 1259 * ram region. 1260 */ 1261 va = tee_ram_va; 1262 for (n = 0; n < mem_map->count; n++) { 1263 map = mem_map->map + n; 1264 map->attr = core_mmu_type_to_attr(map->type); 1265 if (map->va) 1266 continue; 1267 1268 if (!IS_ENABLED(CFG_WITH_LPAE) && 1269 va_is_secure != map_is_secure(map)) { 1270 va_is_secure = !va_is_secure; 1271 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1272 } 1273 1274 if (SUB_OVERFLOW(va, map->size, &va)) 1275 return false; 1276 va = ROUNDDOWN(va, map->region_size); 1277 /* 1278 * Make sure that va is aligned with pa for 1279 * efficient pgdir mapping. Basically pa & 1280 * pgdir_mask should be == va & pgdir_mask 1281 */ 1282 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1283 if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) 1284 return false; 1285 va += (map->pa - va) & CORE_MMU_PGDIR_MASK; 1286 } 1287 map->va = va; 1288 } 1289 } else { 1290 /* 1291 * Map non-tee ram regions at addresses higher than the tee 1292 * ram region. 1293 */ 1294 for (n = 0; n < mem_map->count; n++) { 1295 map = mem_map->map + n; 1296 map->attr = core_mmu_type_to_attr(map->type); 1297 if (map->va) 1298 continue; 1299 1300 if (!IS_ENABLED(CFG_WITH_LPAE) && 1301 va_is_secure != map_is_secure(map)) { 1302 va_is_secure = !va_is_secure; 1303 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1304 &va)) 1305 return false; 1306 } 1307 1308 if (ROUNDUP_OVERFLOW(va, map->region_size, &va)) 1309 return false; 1310 /* 1311 * Make sure that va is aligned with pa for 1312 * efficient pgdir mapping. Basically pa & 1313 * pgdir_mask should be == va & pgdir_mask 1314 */ 1315 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1316 vaddr_t offs = (map->pa - va) & 1317 CORE_MMU_PGDIR_MASK; 1318 1319 if (ADD_OVERFLOW(va, offs, &va)) 1320 return false; 1321 } 1322 1323 map->va = va; 1324 if (ADD_OVERFLOW(va, map->size, &va)) 1325 return false; 1326 if (va >= BIT64(core_mmu_get_va_width())) 1327 return false; 1328 } 1329 } 1330 1331 return true; 1332 } 1333 1334 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map) 1335 { 1336 bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va); 1337 1338 /* 1339 * Check that we're not overlapping with the user VA range. 1340 */ 1341 if (IS_ENABLED(CFG_WITH_LPAE)) { 1342 /* 1343 * User VA range is supposed to be defined after these 1344 * mappings have been established. 1345 */ 1346 assert(!core_mmu_user_va_range_is_defined()); 1347 } else { 1348 vaddr_t user_va_base = 0; 1349 size_t user_va_size = 0; 1350 1351 assert(core_mmu_user_va_range_is_defined()); 1352 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 1353 if (tee_ram_va < (user_va_base + user_va_size)) 1354 return false; 1355 } 1356 1357 if (IS_ENABLED(CFG_WITH_PAGER)) { 1358 bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va); 1359 1360 /* Try whole mapping covered by a single base xlat entry */ 1361 if (prefered_dir != tee_ram_at_top && 1362 assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir)) 1363 return true; 1364 } 1365 1366 return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top); 1367 } 1368 1369 static int cmp_init_mem_map(const void *a, const void *b) 1370 { 1371 const struct tee_mmap_region *mm_a = a; 1372 const struct tee_mmap_region *mm_b = b; 1373 int rc = 0; 1374 1375 rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); 1376 if (!rc) 1377 rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); 1378 /* 1379 * 32bit MMU descriptors cannot mix secure and non-secure mapping in 1380 * the same level2 table. Hence sort secure mapping from non-secure 1381 * mapping. 1382 */ 1383 if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) 1384 rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); 1385 1386 return rc; 1387 } 1388 1389 static bool mem_map_add_id_map(struct memory_map *mem_map, 1390 vaddr_t id_map_start, vaddr_t id_map_end) 1391 { 1392 vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); 1393 vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); 1394 size_t len = end - start; 1395 size_t n = 0; 1396 1397 1398 for (n = 0; n < mem_map->count; n++) 1399 if (core_is_buffer_intersect(mem_map->map[n].va, 1400 mem_map->map[n].size, start, len)) 1401 return false; 1402 1403 grow_mem_map(mem_map); 1404 mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){ 1405 .type = MEM_AREA_IDENTITY_MAP_RX, 1406 /* 1407 * Could use CORE_MMU_PGDIR_SIZE to potentially save a 1408 * translation table, at the increased risk of clashes with 1409 * the rest of the memory map. 1410 */ 1411 .region_size = SMALL_PAGE_SIZE, 1412 .pa = start, 1413 .va = start, 1414 .size = len, 1415 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1416 }; 1417 1418 return true; 1419 } 1420 1421 static struct memory_map *init_mem_map(struct memory_map *mem_map, 1422 unsigned long seed, 1423 unsigned long *ret_offs) 1424 { 1425 /* 1426 * @id_map_start and @id_map_end describes a physical memory range 1427 * that must be mapped Read-Only eXecutable at identical virtual 1428 * addresses. 1429 */ 1430 vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; 1431 vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; 1432 vaddr_t start_addr = secure_only[0].paddr; 1433 unsigned long offs = 0; 1434 1435 collect_mem_ranges(mem_map); 1436 assign_mem_granularity(mem_map); 1437 1438 /* 1439 * To ease mapping and lower use of xlat tables, sort mapping 1440 * description moving small-page regions after the pgdir regions. 1441 */ 1442 qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), 1443 cmp_init_mem_map); 1444 1445 if (IS_ENABLED(CFG_WITH_PAGER)) 1446 add_pager_vaspace(mem_map); 1447 1448 if (IS_ENABLED(CFG_CORE_ASLR) && seed) { 1449 vaddr_t base_addr = start_addr + seed; 1450 const unsigned int va_width = core_mmu_get_va_width(); 1451 const vaddr_t va_mask = GENMASK_64(va_width - 1, 1452 SMALL_PAGE_SHIFT); 1453 vaddr_t ba = base_addr; 1454 size_t n = 0; 1455 1456 for (n = 0; n < 3; n++) { 1457 if (n) 1458 ba = base_addr ^ BIT64(va_width - n); 1459 ba &= va_mask; 1460 if (assign_mem_va(ba, mem_map) && 1461 mem_map_add_id_map(mem_map, id_map_start, 1462 id_map_end)) { 1463 offs = ba - start_addr; 1464 DMSG("Mapping core at %#"PRIxVA" offs %#lx", 1465 ba, offs); 1466 goto out; 1467 } else { 1468 DMSG("Failed to map core at %#"PRIxVA, ba); 1469 } 1470 } 1471 EMSG("Failed to map core with seed %#lx", seed); 1472 } 1473 1474 if (!assign_mem_va(start_addr, mem_map)) 1475 panic(); 1476 1477 out: 1478 qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), 1479 cmp_mmap_by_lower_va); 1480 1481 dump_mmap_table(mem_map); 1482 1483 *ret_offs = offs; 1484 return mem_map; 1485 } 1486 1487 static void check_mem_map(struct memory_map *mem_map) 1488 { 1489 struct tee_mmap_region *m = NULL; 1490 size_t n = 0; 1491 1492 for (n = 0; n < mem_map->count; n++) { 1493 m = mem_map->map + n; 1494 switch (m->type) { 1495 case MEM_AREA_TEE_RAM: 1496 case MEM_AREA_TEE_RAM_RX: 1497 case MEM_AREA_TEE_RAM_RO: 1498 case MEM_AREA_TEE_RAM_RW: 1499 case MEM_AREA_INIT_RAM_RX: 1500 case MEM_AREA_INIT_RAM_RO: 1501 case MEM_AREA_NEX_RAM_RW: 1502 case MEM_AREA_NEX_RAM_RO: 1503 case MEM_AREA_IDENTITY_MAP_RX: 1504 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1505 panic("TEE_RAM can't fit in secure_only"); 1506 break; 1507 case MEM_AREA_SEC_RAM_OVERALL: 1508 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1509 panic("SEC_RAM_OVERALL can't fit in secure_only"); 1510 break; 1511 case MEM_AREA_NSEC_SHM: 1512 if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) 1513 panic("NS_SHM can't fit in nsec_shared"); 1514 break; 1515 case MEM_AREA_TEE_COHERENT: 1516 case MEM_AREA_TEE_ASAN: 1517 case MEM_AREA_IO_SEC: 1518 case MEM_AREA_IO_NSEC: 1519 case MEM_AREA_EXT_DT: 1520 case MEM_AREA_MANIFEST_DT: 1521 case MEM_AREA_TRANSFER_LIST: 1522 case MEM_AREA_RAM_SEC: 1523 case MEM_AREA_RAM_NSEC: 1524 case MEM_AREA_ROM_SEC: 1525 case MEM_AREA_RES_VASPACE: 1526 case MEM_AREA_SHM_VASPACE: 1527 case MEM_AREA_PAGER_VASPACE: 1528 break; 1529 default: 1530 EMSG("Uhandled memtype %d", m->type); 1531 panic(); 1532 } 1533 } 1534 } 1535 1536 /* 1537 * core_init_mmu_map() - init tee core default memory mapping 1538 * 1539 * This routine sets the static default TEE core mapping. If @seed is > 0 1540 * and configured with CFG_CORE_ASLR it will map tee core at a location 1541 * based on the seed and return the offset from the link address. 1542 * 1543 * If an error happened: core_init_mmu_map is expected to panic. 1544 * 1545 * Note: this function is weak just to make it possible to exclude it from 1546 * the unpaged area. 1547 */ 1548 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) 1549 { 1550 #ifndef CFG_NS_VIRTUALIZATION 1551 vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); 1552 #else 1553 vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, 1554 SMALL_PAGE_SIZE); 1555 #endif 1556 vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; 1557 struct tee_mmap_region tmp_mmap_region = { }; 1558 struct memory_map mem_map = { }; 1559 unsigned long offs = 0; 1560 1561 if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) && 1562 (core_mmu_tee_load_pa & SMALL_PAGE_MASK)) 1563 panic("OP-TEE load address is not page aligned"); 1564 1565 check_sec_nsec_mem_config(); 1566 1567 mem_map = static_memory_map; 1568 static_memory_map = (struct memory_map){ 1569 .map = &tmp_mmap_region, 1570 .alloc_count = 1, 1571 .count = 1, 1572 }; 1573 /* 1574 * Add a entry covering the translation tables which will be 1575 * involved in some virt_to_phys() and phys_to_virt() conversions. 1576 */ 1577 static_memory_map.map[0] = (struct tee_mmap_region){ 1578 .type = MEM_AREA_TEE_RAM, 1579 .region_size = SMALL_PAGE_SIZE, 1580 .pa = start, 1581 .va = start, 1582 .size = len, 1583 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1584 }; 1585 1586 init_mem_map(&mem_map, seed, &offs); 1587 1588 check_mem_map(&mem_map); 1589 core_init_mmu(&mem_map); 1590 dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); 1591 core_init_mmu_regs(cfg); 1592 cfg->map_offset = offs; 1593 static_memory_map = mem_map; 1594 } 1595 1596 bool core_mmu_mattr_is_ok(uint32_t mattr) 1597 { 1598 /* 1599 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and 1600 * core_mmu_v7.c:mattr_to_texcb 1601 */ 1602 1603 switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { 1604 case TEE_MATTR_MEM_TYPE_DEV: 1605 case TEE_MATTR_MEM_TYPE_STRONGLY_O: 1606 case TEE_MATTR_MEM_TYPE_CACHED: 1607 case TEE_MATTR_MEM_TYPE_TAGGED: 1608 return true; 1609 default: 1610 return false; 1611 } 1612 } 1613 1614 /* 1615 * test attributes of target physical buffer 1616 * 1617 * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). 1618 * 1619 */ 1620 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) 1621 { 1622 struct tee_mmap_region *map; 1623 1624 /* Empty buffers complies with anything */ 1625 if (len == 0) 1626 return true; 1627 1628 switch (attr) { 1629 case CORE_MEM_SEC: 1630 return pbuf_is_inside(secure_only, pbuf, len); 1631 case CORE_MEM_NON_SEC: 1632 return pbuf_is_inside(nsec_shared, pbuf, len) || 1633 pbuf_is_nsec_ddr(pbuf, len); 1634 case CORE_MEM_TEE_RAM: 1635 return core_is_buffer_inside(pbuf, len, TEE_RAM_START, 1636 TEE_RAM_PH_SIZE); 1637 #ifdef CFG_CORE_RESERVED_SHM 1638 case CORE_MEM_NSEC_SHM: 1639 return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, 1640 TEE_SHMEM_SIZE); 1641 #endif 1642 case CORE_MEM_SDP_MEM: 1643 return pbuf_is_sdp_mem(pbuf, len); 1644 case CORE_MEM_CACHED: 1645 map = find_map_by_pa(pbuf); 1646 if (!map || !pbuf_inside_map_area(pbuf, len, map)) 1647 return false; 1648 return mattr_is_cached(map->attr); 1649 default: 1650 return false; 1651 } 1652 } 1653 1654 /* test attributes of target virtual buffer (in core mapping) */ 1655 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) 1656 { 1657 paddr_t p; 1658 1659 /* Empty buffers complies with anything */ 1660 if (len == 0) 1661 return true; 1662 1663 p = virt_to_phys((void *)vbuf); 1664 if (!p) 1665 return false; 1666 1667 return core_pbuf_is(attr, p, len); 1668 } 1669 1670 /* core_va2pa - teecore exported service */ 1671 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) 1672 { 1673 struct tee_mmap_region *map; 1674 1675 map = find_map_by_va(va); 1676 if (!va_is_in_map(map, (vaddr_t)va)) 1677 return -1; 1678 1679 /* 1680 * We can calculate PA for static map. Virtual address ranges 1681 * reserved to core dynamic mapping return a 'match' (return 0;) 1682 * together with an invalid null physical address. 1683 */ 1684 if (map->pa) 1685 *pa = map->pa + (vaddr_t)va - map->va; 1686 else 1687 *pa = 0; 1688 1689 return 0; 1690 } 1691 1692 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) 1693 { 1694 if (!pa_is_in_map(map, pa, len)) 1695 return NULL; 1696 1697 return (void *)(vaddr_t)(map->va + pa - map->pa); 1698 } 1699 1700 /* 1701 * teecore gets some memory area definitions 1702 */ 1703 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s, 1704 vaddr_t *e) 1705 { 1706 struct tee_mmap_region *map = find_map_by_type(type); 1707 1708 if (map) { 1709 *s = map->va; 1710 *e = map->va + map->size; 1711 } else { 1712 *s = 0; 1713 *e = 0; 1714 } 1715 } 1716 1717 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) 1718 { 1719 struct tee_mmap_region *map = find_map_by_pa(pa); 1720 1721 if (!map) 1722 return MEM_AREA_MAXTYPE; 1723 return map->type; 1724 } 1725 1726 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1727 paddr_t pa, uint32_t attr) 1728 { 1729 assert(idx < tbl_info->num_entries); 1730 core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, 1731 idx, pa, attr); 1732 } 1733 1734 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1735 paddr_t *pa, uint32_t *attr) 1736 { 1737 assert(idx < tbl_info->num_entries); 1738 core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, 1739 idx, pa, attr); 1740 } 1741 1742 static void clear_region(struct core_mmu_table_info *tbl_info, 1743 struct tee_mmap_region *region) 1744 { 1745 unsigned int end = 0; 1746 unsigned int idx = 0; 1747 1748 /* va, len and pa should be block aligned */ 1749 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1750 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1751 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1752 1753 idx = core_mmu_va2idx(tbl_info, region->va); 1754 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1755 1756 while (idx < end) { 1757 core_mmu_set_entry(tbl_info, idx, 0, 0); 1758 idx++; 1759 } 1760 } 1761 1762 static void set_region(struct core_mmu_table_info *tbl_info, 1763 struct tee_mmap_region *region) 1764 { 1765 unsigned int end; 1766 unsigned int idx; 1767 paddr_t pa; 1768 1769 /* va, len and pa should be block aligned */ 1770 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1771 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1772 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1773 1774 idx = core_mmu_va2idx(tbl_info, region->va); 1775 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1776 pa = region->pa; 1777 1778 while (idx < end) { 1779 core_mmu_set_entry(tbl_info, idx, pa, region->attr); 1780 idx++; 1781 pa += BIT64(tbl_info->shift); 1782 } 1783 } 1784 1785 static void set_pg_region(struct core_mmu_table_info *dir_info, 1786 struct vm_region *region, struct pgt **pgt, 1787 struct core_mmu_table_info *pg_info) 1788 { 1789 struct tee_mmap_region r = { 1790 .va = region->va, 1791 .size = region->size, 1792 .attr = region->attr, 1793 }; 1794 vaddr_t end = r.va + r.size; 1795 uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; 1796 1797 while (r.va < end) { 1798 if (!pg_info->table || 1799 r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { 1800 /* 1801 * We're assigning a new translation table. 1802 */ 1803 unsigned int idx; 1804 1805 /* Virtual addresses must grow */ 1806 assert(r.va > pg_info->va_base); 1807 1808 idx = core_mmu_va2idx(dir_info, r.va); 1809 pg_info->va_base = core_mmu_idx2va(dir_info, idx); 1810 1811 /* 1812 * Advance pgt to va_base, note that we may need to 1813 * skip multiple page tables if there are large 1814 * holes in the vm map. 1815 */ 1816 while ((*pgt)->vabase < pg_info->va_base) { 1817 *pgt = SLIST_NEXT(*pgt, link); 1818 /* We should have allocated enough */ 1819 assert(*pgt); 1820 } 1821 assert((*pgt)->vabase == pg_info->va_base); 1822 pg_info->table = (*pgt)->tbl; 1823 1824 core_mmu_set_entry(dir_info, idx, 1825 virt_to_phys(pg_info->table), 1826 pgt_attr); 1827 } 1828 1829 r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), 1830 end - r.va); 1831 1832 if (!(*pgt)->populated && !mobj_is_paged(region->mobj)) { 1833 size_t granule = BIT(pg_info->shift); 1834 size_t offset = r.va - region->va + region->offset; 1835 1836 r.size = MIN(r.size, 1837 mobj_get_phys_granule(region->mobj)); 1838 r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); 1839 1840 if (mobj_get_pa(region->mobj, offset, granule, 1841 &r.pa) != TEE_SUCCESS) 1842 panic("Failed to get PA of unpaged mobj"); 1843 set_region(pg_info, &r); 1844 } 1845 r.va += r.size; 1846 } 1847 } 1848 1849 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, 1850 size_t size_left, paddr_t block_size, 1851 struct tee_mmap_region *mm) 1852 { 1853 /* VA and PA are aligned to block size at current level */ 1854 if ((vaddr | paddr) & (block_size - 1)) 1855 return false; 1856 1857 /* Remainder fits into block at current level */ 1858 if (size_left < block_size) 1859 return false; 1860 1861 /* 1862 * The required block size of the region is compatible with the 1863 * block size of the current level. 1864 */ 1865 if (mm->region_size < block_size) 1866 return false; 1867 1868 #ifdef CFG_WITH_PAGER 1869 /* 1870 * If pager is enabled, we need to map TEE RAM and the whole pager 1871 * regions with small pages only 1872 */ 1873 if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) && 1874 block_size != SMALL_PAGE_SIZE) 1875 return false; 1876 #endif 1877 1878 return true; 1879 } 1880 1881 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) 1882 { 1883 struct core_mmu_table_info tbl_info; 1884 unsigned int idx; 1885 vaddr_t vaddr = mm->va; 1886 paddr_t paddr = mm->pa; 1887 ssize_t size_left = mm->size; 1888 unsigned int level; 1889 bool table_found; 1890 uint32_t old_attr; 1891 1892 assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); 1893 1894 while (size_left > 0) { 1895 level = CORE_MMU_BASE_TABLE_LEVEL; 1896 1897 while (true) { 1898 paddr_t block_size = 0; 1899 1900 assert(core_mmu_level_in_range(level)); 1901 1902 table_found = core_mmu_find_table(prtn, vaddr, level, 1903 &tbl_info); 1904 if (!table_found) 1905 panic("can't find table for mapping"); 1906 1907 block_size = BIT64(tbl_info.shift); 1908 1909 idx = core_mmu_va2idx(&tbl_info, vaddr); 1910 if (!can_map_at_level(paddr, vaddr, size_left, 1911 block_size, mm)) { 1912 bool secure = mm->attr & TEE_MATTR_SECURE; 1913 1914 /* 1915 * This part of the region can't be mapped at 1916 * this level. Need to go deeper. 1917 */ 1918 if (!core_mmu_entry_to_finer_grained(&tbl_info, 1919 idx, 1920 secure)) 1921 panic("Can't divide MMU entry"); 1922 level = tbl_info.next_level; 1923 continue; 1924 } 1925 1926 /* We can map part of the region at current level */ 1927 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1928 if (old_attr) 1929 panic("Page is already mapped"); 1930 1931 core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr); 1932 paddr += block_size; 1933 vaddr += block_size; 1934 size_left -= block_size; 1935 1936 break; 1937 } 1938 } 1939 } 1940 1941 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 1942 enum teecore_memtypes memtype) 1943 { 1944 TEE_Result ret; 1945 struct core_mmu_table_info tbl_info; 1946 struct tee_mmap_region *mm; 1947 unsigned int idx; 1948 uint32_t old_attr; 1949 uint32_t exceptions; 1950 vaddr_t vaddr = vstart; 1951 size_t i; 1952 bool secure; 1953 1954 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1955 1956 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1957 1958 if (vaddr & SMALL_PAGE_MASK) 1959 return TEE_ERROR_BAD_PARAMETERS; 1960 1961 exceptions = mmu_lock(); 1962 1963 mm = find_map_by_va((void *)vaddr); 1964 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1965 panic("VA does not belong to any known mm region"); 1966 1967 if (!core_mmu_is_dynamic_vaspace(mm)) 1968 panic("Trying to map into static region"); 1969 1970 for (i = 0; i < num_pages; i++) { 1971 if (pages[i] & SMALL_PAGE_MASK) { 1972 ret = TEE_ERROR_BAD_PARAMETERS; 1973 goto err; 1974 } 1975 1976 while (true) { 1977 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1978 &tbl_info)) 1979 panic("Can't find pagetable for vaddr "); 1980 1981 idx = core_mmu_va2idx(&tbl_info, vaddr); 1982 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1983 break; 1984 1985 /* This is supertable. Need to divide it. */ 1986 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1987 secure)) 1988 panic("Failed to spread pgdir on small tables"); 1989 } 1990 1991 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1992 if (old_attr) 1993 panic("Page is already mapped"); 1994 1995 core_mmu_set_entry(&tbl_info, idx, pages[i], 1996 core_mmu_type_to_attr(memtype)); 1997 vaddr += SMALL_PAGE_SIZE; 1998 } 1999 2000 /* 2001 * Make sure all the changes to translation tables are visible 2002 * before returning. TLB doesn't need to be invalidated as we are 2003 * guaranteed that there's no valid mapping in this range. 2004 */ 2005 core_mmu_table_write_barrier(); 2006 mmu_unlock(exceptions); 2007 2008 return TEE_SUCCESS; 2009 err: 2010 mmu_unlock(exceptions); 2011 2012 if (i) 2013 core_mmu_unmap_pages(vstart, i); 2014 2015 return ret; 2016 } 2017 2018 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 2019 size_t num_pages, 2020 enum teecore_memtypes memtype) 2021 { 2022 struct core_mmu_table_info tbl_info = { }; 2023 struct tee_mmap_region *mm = NULL; 2024 unsigned int idx = 0; 2025 uint32_t old_attr = 0; 2026 uint32_t exceptions = 0; 2027 vaddr_t vaddr = vstart; 2028 paddr_t paddr = pstart; 2029 size_t i = 0; 2030 bool secure = false; 2031 2032 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 2033 2034 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 2035 2036 if ((vaddr | paddr) & SMALL_PAGE_MASK) 2037 return TEE_ERROR_BAD_PARAMETERS; 2038 2039 exceptions = mmu_lock(); 2040 2041 mm = find_map_by_va((void *)vaddr); 2042 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 2043 panic("VA does not belong to any known mm region"); 2044 2045 if (!core_mmu_is_dynamic_vaspace(mm)) 2046 panic("Trying to map into static region"); 2047 2048 for (i = 0; i < num_pages; i++) { 2049 while (true) { 2050 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 2051 &tbl_info)) 2052 panic("Can't find pagetable for vaddr "); 2053 2054 idx = core_mmu_va2idx(&tbl_info, vaddr); 2055 if (tbl_info.shift == SMALL_PAGE_SHIFT) 2056 break; 2057 2058 /* This is supertable. Need to divide it. */ 2059 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 2060 secure)) 2061 panic("Failed to spread pgdir on small tables"); 2062 } 2063 2064 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2065 if (old_attr) 2066 panic("Page is already mapped"); 2067 2068 core_mmu_set_entry(&tbl_info, idx, paddr, 2069 core_mmu_type_to_attr(memtype)); 2070 paddr += SMALL_PAGE_SIZE; 2071 vaddr += SMALL_PAGE_SIZE; 2072 } 2073 2074 /* 2075 * Make sure all the changes to translation tables are visible 2076 * before returning. TLB doesn't need to be invalidated as we are 2077 * guaranteed that there's no valid mapping in this range. 2078 */ 2079 core_mmu_table_write_barrier(); 2080 mmu_unlock(exceptions); 2081 2082 return TEE_SUCCESS; 2083 } 2084 2085 static bool mem_range_is_in_vcore_free(vaddr_t vstart, size_t num_pages) 2086 { 2087 return core_is_buffer_inside(vstart, num_pages * SMALL_PAGE_SIZE, 2088 VCORE_FREE_PA, VCORE_FREE_SZ); 2089 } 2090 2091 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) 2092 { 2093 struct core_mmu_table_info tbl_info; 2094 struct tee_mmap_region *mm; 2095 size_t i; 2096 unsigned int idx; 2097 uint32_t exceptions; 2098 2099 exceptions = mmu_lock(); 2100 2101 mm = find_map_by_va((void *)vstart); 2102 if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) 2103 panic("VA does not belong to any known mm region"); 2104 2105 if (!core_mmu_is_dynamic_vaspace(mm) && 2106 !mem_range_is_in_vcore_free(vstart, num_pages)) 2107 panic("Trying to unmap static region"); 2108 2109 for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { 2110 if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) 2111 panic("Can't find pagetable"); 2112 2113 if (tbl_info.shift != SMALL_PAGE_SHIFT) 2114 panic("Invalid pagetable level"); 2115 2116 idx = core_mmu_va2idx(&tbl_info, vstart); 2117 core_mmu_set_entry(&tbl_info, idx, 0, 0); 2118 } 2119 tlbi_all(); 2120 2121 mmu_unlock(exceptions); 2122 } 2123 2124 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 2125 struct user_mode_ctx *uctx) 2126 { 2127 struct core_mmu_table_info pg_info = { }; 2128 struct pgt_cache *pgt_cache = &uctx->pgt_cache; 2129 struct pgt *pgt = NULL; 2130 struct pgt *p = NULL; 2131 struct vm_region *r = NULL; 2132 2133 if (TAILQ_EMPTY(&uctx->vm_info.regions)) 2134 return; /* Nothing to map */ 2135 2136 /* 2137 * Allocate all page tables in advance. 2138 */ 2139 pgt_get_all(uctx); 2140 pgt = SLIST_FIRST(pgt_cache); 2141 2142 core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL); 2143 2144 TAILQ_FOREACH(r, &uctx->vm_info.regions, link) 2145 set_pg_region(dir_info, r, &pgt, &pg_info); 2146 /* Record that the translation tables now are populated. */ 2147 SLIST_FOREACH(p, pgt_cache, link) { 2148 p->populated = true; 2149 if (p == pgt) 2150 break; 2151 } 2152 assert(p == pgt); 2153 } 2154 2155 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 2156 size_t len) 2157 { 2158 struct core_mmu_table_info tbl_info = { }; 2159 struct tee_mmap_region *res_map = NULL; 2160 struct tee_mmap_region *map = NULL; 2161 paddr_t pa = virt_to_phys(addr); 2162 size_t granule = 0; 2163 ptrdiff_t i = 0; 2164 paddr_t p = 0; 2165 size_t l = 0; 2166 2167 map = find_map_by_type_and_pa(type, pa, len); 2168 if (!map) 2169 return TEE_ERROR_GENERIC; 2170 2171 res_map = find_map_by_type(MEM_AREA_RES_VASPACE); 2172 if (!res_map) 2173 return TEE_ERROR_GENERIC; 2174 if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) 2175 return TEE_ERROR_GENERIC; 2176 granule = BIT(tbl_info.shift); 2177 2178 if (map < static_memory_map.map || 2179 map >= static_memory_map.map + static_memory_map.count) 2180 return TEE_ERROR_GENERIC; 2181 i = map - static_memory_map.map; 2182 2183 /* Check that we have a full match */ 2184 p = ROUNDDOWN(pa, granule); 2185 l = ROUNDUP(len + pa - p, granule); 2186 if (map->pa != p || map->size != l) 2187 return TEE_ERROR_GENERIC; 2188 2189 clear_region(&tbl_info, map); 2190 tlbi_all(); 2191 2192 /* If possible remove the va range from res_map */ 2193 if (res_map->va - map->size == map->va) { 2194 res_map->va -= map->size; 2195 res_map->size += map->size; 2196 } 2197 2198 /* Remove the entry. */ 2199 rem_array_elem(static_memory_map.map, static_memory_map.count, 2200 sizeof(*static_memory_map.map), i); 2201 static_memory_map.count--; 2202 2203 return TEE_SUCCESS; 2204 } 2205 2206 struct tee_mmap_region * 2207 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) 2208 { 2209 struct memory_map *mem_map = get_memory_map(); 2210 struct tee_mmap_region *map_found = NULL; 2211 size_t n = 0; 2212 2213 if (!len) 2214 return NULL; 2215 2216 for (n = 0; n < mem_map->count; n++) { 2217 if (mem_map->map[n].type != type) 2218 continue; 2219 2220 if (map_found) 2221 return NULL; 2222 2223 map_found = mem_map->map + n; 2224 } 2225 2226 if (!map_found || map_found->size < len) 2227 return NULL; 2228 2229 return map_found; 2230 } 2231 2232 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) 2233 { 2234 struct memory_map *mem_map = &static_memory_map; 2235 struct core_mmu_table_info tbl_info = { }; 2236 struct tee_mmap_region *map = NULL; 2237 size_t granule = 0; 2238 paddr_t p = 0; 2239 size_t l = 0; 2240 2241 if (!len) 2242 return NULL; 2243 2244 if (!core_mmu_check_end_pa(addr, len)) 2245 return NULL; 2246 2247 /* Check if the memory is already mapped */ 2248 map = find_map_by_type_and_pa(type, addr, len); 2249 if (map && pbuf_inside_map_area(addr, len, map)) 2250 return (void *)(vaddr_t)(map->va + addr - map->pa); 2251 2252 /* Find the reserved va space used for late mappings */ 2253 map = find_map_by_type(MEM_AREA_RES_VASPACE); 2254 if (!map) 2255 return NULL; 2256 2257 if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) 2258 return NULL; 2259 2260 granule = BIT64(tbl_info.shift); 2261 p = ROUNDDOWN(addr, granule); 2262 l = ROUNDUP(len + addr - p, granule); 2263 2264 /* Ban overflowing virtual addresses */ 2265 if (map->size < l) 2266 return NULL; 2267 2268 /* 2269 * Something is wrong, we can't fit the va range into the selected 2270 * table. The reserved va range is possibly missaligned with 2271 * granule. 2272 */ 2273 if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) 2274 return NULL; 2275 2276 if (static_memory_map.count >= static_memory_map.alloc_count) 2277 return NULL; 2278 2279 mem_map->map[mem_map->count] = (struct tee_mmap_region){ 2280 .va = map->va, 2281 .size = l, 2282 .type = type, 2283 .region_size = granule, 2284 .attr = core_mmu_type_to_attr(type), 2285 .pa = p, 2286 }; 2287 map->va += l; 2288 map->size -= l; 2289 map = mem_map->map + mem_map->count; 2290 mem_map->count++; 2291 2292 set_region(&tbl_info, map); 2293 2294 /* Make sure the new entry is visible before continuing. */ 2295 core_mmu_table_write_barrier(); 2296 2297 return (void *)(vaddr_t)(map->va + addr - map->pa); 2298 } 2299 2300 #ifdef CFG_WITH_PAGER 2301 static vaddr_t get_linear_map_end_va(void) 2302 { 2303 /* this is synced with the generic linker file kern.ld.S */ 2304 return (vaddr_t)__heap2_end; 2305 } 2306 2307 static paddr_t get_linear_map_end_pa(void) 2308 { 2309 return get_linear_map_end_va() - boot_mmu_config.map_offset; 2310 } 2311 #endif 2312 2313 #if defined(CFG_TEE_CORE_DEBUG) 2314 static void check_pa_matches_va(void *va, paddr_t pa) 2315 { 2316 TEE_Result res = TEE_ERROR_GENERIC; 2317 vaddr_t v = (vaddr_t)va; 2318 paddr_t p = 0; 2319 struct core_mmu_table_info ti __maybe_unused = { }; 2320 2321 if (core_mmu_user_va_range_is_defined()) { 2322 vaddr_t user_va_base = 0; 2323 size_t user_va_size = 0; 2324 2325 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 2326 if (v >= user_va_base && 2327 v <= (user_va_base - 1 + user_va_size)) { 2328 if (!core_mmu_user_mapping_is_active()) { 2329 if (pa) 2330 panic("issue in linear address space"); 2331 return; 2332 } 2333 2334 res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), 2335 va, &p); 2336 if (res == TEE_ERROR_NOT_SUPPORTED) 2337 return; 2338 if (res == TEE_SUCCESS && pa != p) 2339 panic("bad pa"); 2340 if (res != TEE_SUCCESS && pa) 2341 panic("false pa"); 2342 return; 2343 } 2344 } 2345 #ifdef CFG_WITH_PAGER 2346 if (is_unpaged(va)) { 2347 if (v - boot_mmu_config.map_offset != pa) 2348 panic("issue in linear address space"); 2349 return; 2350 } 2351 2352 if (tee_pager_get_table_info(v, &ti)) { 2353 uint32_t a; 2354 2355 /* 2356 * Lookups in the page table managed by the pager is 2357 * dangerous for addresses in the paged area as those pages 2358 * changes all the time. But some ranges are safe, 2359 * rw-locked areas when the page is populated for instance. 2360 */ 2361 core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); 2362 if (a & TEE_MATTR_VALID_BLOCK) { 2363 paddr_t mask = BIT64(ti.shift) - 1; 2364 2365 p |= v & mask; 2366 if (pa != p) 2367 panic(); 2368 } else { 2369 if (pa) 2370 panic(); 2371 } 2372 return; 2373 } 2374 #endif 2375 2376 if (!core_va2pa_helper(va, &p)) { 2377 /* Verfiy only the static mapping (case non null phys addr) */ 2378 if (p && pa != p) { 2379 DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, 2380 va, p, pa); 2381 panic(); 2382 } 2383 } else { 2384 if (pa) { 2385 DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); 2386 panic(); 2387 } 2388 } 2389 } 2390 #else 2391 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) 2392 { 2393 } 2394 #endif 2395 2396 paddr_t virt_to_phys(void *va) 2397 { 2398 paddr_t pa = 0; 2399 2400 if (!arch_va2pa_helper(va, &pa)) 2401 pa = 0; 2402 check_pa_matches_va(memtag_strip_tag(va), pa); 2403 return pa; 2404 } 2405 2406 /* 2407 * Don't use check_va_matches_pa() for RISC-V, as its callee 2408 * arch_va2pa_helper() will call it eventually, this creates 2409 * indirect recursion and can lead to a stack overflow. 2410 * Moreover, if arch_va2pa_helper() returns true, it implies 2411 * the va2pa mapping is matched, no need to check it again. 2412 */ 2413 #if defined(CFG_TEE_CORE_DEBUG) && !defined(__riscv) 2414 static void check_va_matches_pa(paddr_t pa, void *va) 2415 { 2416 paddr_t p = 0; 2417 2418 if (!va) 2419 return; 2420 2421 p = virt_to_phys(va); 2422 if (p != pa) { 2423 DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); 2424 panic(); 2425 } 2426 } 2427 #else 2428 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) 2429 { 2430 } 2431 #endif 2432 2433 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) 2434 { 2435 if (!core_mmu_user_mapping_is_active()) 2436 return NULL; 2437 2438 return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); 2439 } 2440 2441 #ifdef CFG_WITH_PAGER 2442 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2443 { 2444 paddr_t end_pa = 0; 2445 2446 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 2447 return NULL; 2448 2449 if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) { 2450 if (end_pa > get_linear_map_end_pa()) 2451 return NULL; 2452 return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset); 2453 } 2454 2455 return tee_pager_phys_to_virt(pa, len); 2456 } 2457 #else 2458 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2459 { 2460 struct tee_mmap_region *mmap = NULL; 2461 2462 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); 2463 if (!mmap) 2464 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); 2465 if (!mmap) 2466 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); 2467 if (!mmap) 2468 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); 2469 if (!mmap) 2470 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); 2471 if (!mmap) 2472 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); 2473 /* 2474 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only 2475 * used with pager and not needed here. 2476 */ 2477 return map_pa2va(mmap, pa, len); 2478 } 2479 #endif 2480 2481 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) 2482 { 2483 void *va = NULL; 2484 2485 switch (m) { 2486 case MEM_AREA_TS_VASPACE: 2487 va = phys_to_virt_ts_vaspace(pa, len); 2488 break; 2489 case MEM_AREA_TEE_RAM: 2490 case MEM_AREA_TEE_RAM_RX: 2491 case MEM_AREA_TEE_RAM_RO: 2492 case MEM_AREA_TEE_RAM_RW: 2493 case MEM_AREA_NEX_RAM_RO: 2494 case MEM_AREA_NEX_RAM_RW: 2495 va = phys_to_virt_tee_ram(pa, len); 2496 break; 2497 case MEM_AREA_SHM_VASPACE: 2498 /* Find VA from PA in dynamic SHM is not yet supported */ 2499 va = NULL; 2500 break; 2501 default: 2502 va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); 2503 } 2504 if (m != MEM_AREA_SEC_RAM_OVERALL) 2505 check_va_matches_pa(pa, va); 2506 return va; 2507 } 2508 2509 void *phys_to_virt_io(paddr_t pa, size_t len) 2510 { 2511 struct tee_mmap_region *map = NULL; 2512 void *va = NULL; 2513 2514 map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); 2515 if (!map) 2516 map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); 2517 if (!map) 2518 return NULL; 2519 va = map_pa2va(map, pa, len); 2520 check_va_matches_pa(pa, va); 2521 return va; 2522 } 2523 2524 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) 2525 { 2526 if (cpu_mmu_enabled()) 2527 return (vaddr_t)phys_to_virt(pa, type, len); 2528 2529 return (vaddr_t)pa; 2530 } 2531 2532 #ifdef CFG_WITH_PAGER 2533 bool is_unpaged(const void *va) 2534 { 2535 vaddr_t v = (vaddr_t)va; 2536 2537 return v >= VCORE_START_VA && v < get_linear_map_end_va(); 2538 } 2539 #endif 2540 2541 #ifdef CFG_NS_VIRTUALIZATION 2542 bool is_nexus(const void *va) 2543 { 2544 vaddr_t v = (vaddr_t)va; 2545 2546 return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ; 2547 } 2548 #endif 2549 2550 void core_mmu_init_virtualization(void) 2551 { 2552 paddr_t b1 = 0; 2553 paddr_size_t s1 = 0; 2554 2555 static_assert(ARRAY_SIZE(secure_only) <= 2); 2556 if (ARRAY_SIZE(secure_only) == 2) { 2557 b1 = secure_only[1].paddr; 2558 s1 = secure_only[1].size; 2559 } 2560 virt_init_memory(&static_memory_map, secure_only[0].paddr, 2561 secure_only[0].size, b1, s1); 2562 } 2563 2564 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) 2565 { 2566 assert(p->pa); 2567 if (cpu_mmu_enabled()) { 2568 if (!p->va) 2569 p->va = (vaddr_t)phys_to_virt_io(p->pa, len); 2570 assert(p->va); 2571 return p->va; 2572 } 2573 return p->pa; 2574 } 2575 2576 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) 2577 { 2578 assert(p->pa); 2579 if (cpu_mmu_enabled()) { 2580 if (!p->va) 2581 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, 2582 len); 2583 assert(p->va); 2584 return p->va; 2585 } 2586 return p->pa; 2587 } 2588 2589 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) 2590 { 2591 assert(p->pa); 2592 if (cpu_mmu_enabled()) { 2593 if (!p->va) 2594 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, 2595 len); 2596 assert(p->va); 2597 return p->va; 2598 } 2599 return p->pa; 2600 } 2601 2602 #ifdef CFG_CORE_RESERVED_SHM 2603 static TEE_Result teecore_init_pub_ram(void) 2604 { 2605 vaddr_t s = 0; 2606 vaddr_t e = 0; 2607 2608 /* get virtual addr/size of NSec shared mem allocated from teecore */ 2609 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); 2610 2611 if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) 2612 panic("invalid PUB RAM"); 2613 2614 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2615 if (!tee_vbuf_is_non_sec(s, e - s)) 2616 panic("PUB RAM is not non-secure"); 2617 2618 #ifdef CFG_PL310 2619 /* Allocate statically the l2cc mutex */ 2620 tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); 2621 s += sizeof(uint32_t); /* size of a pl310 mutex */ 2622 s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ 2623 #endif 2624 2625 default_nsec_shm_paddr = virt_to_phys((void *)s); 2626 default_nsec_shm_size = e - s; 2627 2628 return TEE_SUCCESS; 2629 } 2630 early_init(teecore_init_pub_ram); 2631 #endif /*CFG_CORE_RESERVED_SHM*/ 2632 2633 static void __maybe_unused carve_out_core_mem(paddr_t pa, paddr_t end_pa) 2634 { 2635 tee_mm_entry_t *mm __maybe_unused = NULL; 2636 2637 DMSG("%#"PRIxPA" .. %#"PRIxPA, pa, end_pa); 2638 mm = phys_mem_alloc2(pa, end_pa - pa); 2639 assert(mm); 2640 } 2641 2642 void core_mmu_init_phys_mem(void) 2643 { 2644 paddr_t ps = 0; 2645 size_t size = 0; 2646 2647 /* 2648 * Get virtual addr/size of RAM where TA are loaded/executedNSec 2649 * shared mem allocated from teecore. 2650 */ 2651 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 2652 vaddr_t s = 0; 2653 vaddr_t e = 0; 2654 2655 virt_get_ta_ram(&s, &e); 2656 ps = virt_to_phys((void *)s); 2657 size = e - s; 2658 phys_mem_init(0, 0, ps, size); 2659 } else { 2660 #ifdef CFG_WITH_PAGER 2661 /* 2662 * The pager uses all core memory so there's no need to add 2663 * it to the pool. 2664 */ 2665 static_assert(ARRAY_SIZE(secure_only) == 2); 2666 phys_mem_init(0, 0, secure_only[1].paddr, secure_only[1].size); 2667 #else /*!CFG_WITH_PAGER*/ 2668 size_t align = BIT(CORE_MMU_USER_CODE_SHIFT); 2669 paddr_t end_pa = 0; 2670 paddr_t pa = 0; 2671 2672 static_assert(ARRAY_SIZE(secure_only) <= 2); 2673 if (ARRAY_SIZE(secure_only) == 2) { 2674 ps = secure_only[1].paddr; 2675 size = secure_only[1].size; 2676 } 2677 phys_mem_init(secure_only[0].paddr, secure_only[0].size, 2678 ps, size); 2679 2680 /* 2681 * The VCORE macros are relocatable so we need to translate 2682 * the addresses now that the MMU is enabled. 2683 */ 2684 end_pa = vaddr_to_phys(ROUNDUP(VCORE_FREE_END_PA, 2685 align) - 1) + 1; 2686 /* Carve out the part used by OP-TEE core */ 2687 carve_out_core_mem(vaddr_to_phys(VCORE_UNPG_RX_PA), end_pa); 2688 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) { 2689 pa = vaddr_to_phys(ROUNDUP(ASAN_MAP_PA, align)); 2690 carve_out_core_mem(pa, pa + ASAN_MAP_SZ); 2691 } 2692 2693 /* Carve out test SDP memory */ 2694 #ifdef TEE_SDP_TEST_MEM_BASE 2695 if (TEE_SDP_TEST_MEM_SIZE) { 2696 pa = vaddr_to_phys(TEE_SDP_TEST_MEM_BASE); 2697 carve_out_core_mem(pa, pa + TEE_SDP_TEST_MEM_SIZE); 2698 } 2699 #endif 2700 #endif /*!CFG_WITH_PAGER*/ 2701 } 2702 } 2703