xref: /optee_os/core/mm/core_mmu.c (revision 997ff82731597ddcf8d6ad0fb3301adca8c0c6a8)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  */
6 
7 #include <assert.h>
8 #include <config.h>
9 #include <kernel/boot.h>
10 #include <kernel/linker.h>
11 #include <kernel/panic.h>
12 #include <kernel/spinlock.h>
13 #include <kernel/tee_l2cc_mutex.h>
14 #include <kernel/tee_misc.h>
15 #include <kernel/tlb_helpers.h>
16 #include <kernel/user_mode_ctx.h>
17 #include <kernel/virtualization.h>
18 #include <mm/core_memprot.h>
19 #include <mm/core_mmu.h>
20 #include <mm/mobj.h>
21 #include <mm/pgt_cache.h>
22 #include <mm/tee_pager.h>
23 #include <mm/vm.h>
24 #include <platform_config.h>
25 #include <string.h>
26 #include <trace.h>
27 #include <util.h>
28 
29 #ifndef DEBUG_XLAT_TABLE
30 #define DEBUG_XLAT_TABLE 0
31 #endif
32 
33 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
34 
35 /*
36  * These variables are initialized before .bss is cleared. To avoid
37  * resetting them when .bss is cleared we're storing them in .data instead,
38  * even if they initially are zero.
39  */
40 
41 #ifdef CFG_CORE_RESERVED_SHM
42 /* Default NSec shared memory allocated from NSec world */
43 unsigned long default_nsec_shm_size __nex_bss;
44 unsigned long default_nsec_shm_paddr __nex_bss;
45 #endif
46 
47 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS
48 #ifdef CFG_CORE_ASLR
49 						+ 1
50 #endif
51 						+ 1] __nex_bss;
52 
53 /* Define the platform's memory layout. */
54 struct memaccess_area {
55 	paddr_t paddr;
56 	size_t size;
57 };
58 
59 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
60 
61 static struct memaccess_area secure_only[] __nex_data = {
62 #ifdef TRUSTED_SRAM_BASE
63 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
64 #endif
65 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
66 };
67 
68 static struct memaccess_area nsec_shared[] __nex_data = {
69 #ifdef CFG_CORE_RESERVED_SHM
70 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
71 #endif
72 };
73 
74 #if defined(CFG_SECURE_DATA_PATH)
75 #ifdef CFG_TEE_SDP_MEM_BASE
76 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
77 #endif
78 #ifdef TEE_SDP_TEST_MEM_BASE
79 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
80 #endif
81 #endif
82 
83 #ifdef CFG_CORE_RWDATA_NOEXEC
84 register_phys_mem_ul(MEM_AREA_TEE_RAM_RO, TEE_RAM_START,
85 		     VCORE_UNPG_RX_PA - TEE_RAM_START);
86 register_phys_mem_ul(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
87 		     VCORE_UNPG_RX_SZ_UNSAFE);
88 register_phys_mem_ul(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
89 		     VCORE_UNPG_RO_SZ_UNSAFE);
90 
91 #ifdef CFG_VIRTUALIZATION
92 register_phys_mem_ul(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
93 		     VCORE_UNPG_RW_SZ_UNSAFE);
94 register_phys_mem_ul(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
95 		     VCORE_NEX_RW_SZ_UNSAFE);
96 #else
97 register_phys_mem_ul(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
98 		     VCORE_UNPG_RW_SZ_UNSAFE);
99 #endif
100 
101 #ifdef CFG_WITH_PAGER
102 register_phys_mem_ul(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
103 		     VCORE_INIT_RX_SZ_UNSAFE);
104 register_phys_mem_ul(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
105 		     VCORE_INIT_RO_SZ_UNSAFE);
106 #endif /*CFG_WITH_PAGER*/
107 #else /*!CFG_CORE_RWDATA_NOEXEC*/
108 register_phys_mem(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
109 #endif /*!CFG_CORE_RWDATA_NOEXEC*/
110 
111 #ifdef CFG_VIRTUALIZATION
112 register_phys_mem(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
113 		  TRUSTED_DRAM_SIZE);
114 #endif
115 
116 #if defined(CFG_CORE_SANITIZE_KADDRESS) && defined(CFG_WITH_PAGER)
117 /* Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is disabled */
118 register_phys_mem_ul(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
119 #endif
120 
121 #ifndef CFG_VIRTUALIZATION
122 /* Every guest will have own TA RAM if virtualization support is enabled */
123 register_phys_mem(MEM_AREA_TA_RAM, TA_RAM_START, TA_RAM_SIZE);
124 #endif
125 #ifdef CFG_CORE_RESERVED_SHM
126 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
127 #endif
128 
129 static unsigned int mmu_spinlock;
130 
131 static uint32_t mmu_lock(void)
132 {
133 	return cpu_spin_lock_xsave(&mmu_spinlock);
134 }
135 
136 static void mmu_unlock(uint32_t exceptions)
137 {
138 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
139 }
140 
141 static struct tee_mmap_region *get_memory_map(void)
142 {
143 	if (IS_ENABLED(CFG_VIRTUALIZATION)) {
144 		struct tee_mmap_region *map = virt_get_memory_map();
145 
146 		if (map)
147 			return map;
148 	}
149 
150 	return static_memory_map;
151 }
152 
153 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
154 			     paddr_t pa, size_t size)
155 {
156 	size_t n;
157 
158 	for (n = 0; n < alen; n++)
159 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
160 			return true;
161 	return false;
162 }
163 
164 #define pbuf_intersects(a, pa, size) \
165 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
166 
167 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
168 			    paddr_t pa, size_t size)
169 {
170 	size_t n;
171 
172 	for (n = 0; n < alen; n++)
173 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
174 			return true;
175 	return false;
176 }
177 
178 #define pbuf_is_inside(a, pa, size) \
179 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
180 
181 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
182 {
183 	paddr_t end_pa = 0;
184 
185 	if (!map)
186 		return false;
187 
188 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
189 		return false;
190 
191 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
192 }
193 
194 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
195 {
196 	if (!map)
197 		return false;
198 	return (va >= map->va && va <= (map->va + map->size - 1));
199 }
200 
201 /* check if target buffer fits in a core default map area */
202 static bool pbuf_inside_map_area(unsigned long p, size_t l,
203 				 struct tee_mmap_region *map)
204 {
205 	return core_is_buffer_inside(p, l, map->pa, map->size);
206 }
207 
208 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
209 {
210 	struct tee_mmap_region *map;
211 
212 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++)
213 		if (map->type == type)
214 			return map;
215 	return NULL;
216 }
217 
218 static struct tee_mmap_region *
219 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
220 {
221 	struct tee_mmap_region *map;
222 
223 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
224 		if (map->type != type)
225 			continue;
226 		if (pa_is_in_map(map, pa, len))
227 			return map;
228 	}
229 	return NULL;
230 }
231 
232 static struct tee_mmap_region *find_map_by_va(void *va)
233 {
234 	struct tee_mmap_region *map = get_memory_map();
235 	unsigned long a = (unsigned long)va;
236 
237 	while (!core_mmap_is_end_of_table(map)) {
238 		if (a >= map->va && a <= (map->va - 1 + map->size))
239 			return map;
240 		map++;
241 	}
242 	return NULL;
243 }
244 
245 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
246 {
247 	struct tee_mmap_region *map = get_memory_map();
248 
249 	while (!core_mmap_is_end_of_table(map)) {
250 		if (pa >= map->pa && pa <= (map->pa + map->size - 1))
251 			return map;
252 		map++;
253 	}
254 	return NULL;
255 }
256 
257 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
258 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
259 				const struct core_mmu_phys_mem *start,
260 				const struct core_mmu_phys_mem *end)
261 {
262 	const struct core_mmu_phys_mem *mem;
263 
264 	for (mem = start; mem < end; mem++) {
265 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
266 			return true;
267 	}
268 
269 	return false;
270 }
271 #endif
272 
273 #ifdef CFG_CORE_DYN_SHM
274 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
275 			       paddr_t pa, size_t size)
276 {
277 	struct core_mmu_phys_mem *m = *mem;
278 	size_t n = 0;
279 
280 	while (true) {
281 		if (n >= *nelems) {
282 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
283 			     pa, size);
284 			return;
285 		}
286 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
287 			break;
288 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
289 			panic();
290 		n++;
291 	}
292 
293 	if (pa == m[n].addr && size == m[n].size) {
294 		/* Remove this entry */
295 		(*nelems)--;
296 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
297 		m = nex_realloc(m, sizeof(*m) * *nelems);
298 		if (!m)
299 			panic();
300 		*mem = m;
301 	} else if (pa == m[n].addr) {
302 		m[n].addr += size;
303 		m[n].size -= size;
304 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
305 		m[n].size -= size;
306 	} else {
307 		/* Need to split the memory entry */
308 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
309 		if (!m)
310 			panic();
311 		*mem = m;
312 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
313 		(*nelems)++;
314 		m[n].size = pa - m[n].addr;
315 		m[n + 1].size -= size + m[n].size;
316 		m[n + 1].addr = pa + size;
317 	}
318 }
319 
320 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
321 				      size_t nelems,
322 				      struct tee_mmap_region *map)
323 {
324 	size_t n;
325 
326 	for (n = 0; n < nelems; n++) {
327 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
328 					    map->pa, map->size)) {
329 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
330 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
331 			     start[n].addr, start[n].size,
332 			     map->type, map->pa, map->size);
333 			panic();
334 		}
335 	}
336 }
337 
338 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
339 static size_t discovered_nsec_ddr_nelems __nex_bss;
340 
341 static int cmp_pmem_by_addr(const void *a, const void *b)
342 {
343 	const struct core_mmu_phys_mem *pmem_a = a;
344 	const struct core_mmu_phys_mem *pmem_b = b;
345 
346 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
347 }
348 
349 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
350 				      size_t nelems)
351 {
352 	struct core_mmu_phys_mem *m = start;
353 	size_t num_elems = nelems;
354 	struct tee_mmap_region *map = static_memory_map;
355 	const struct core_mmu_phys_mem __maybe_unused *pmem;
356 
357 	assert(!discovered_nsec_ddr_start);
358 	assert(m && num_elems);
359 
360 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
361 
362 	/*
363 	 * Non-secure shared memory and also secure data
364 	 * path memory are supposed to reside inside
365 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
366 	 * are used for a specific purpose make holes for
367 	 * those memory in the normal non-secure memory.
368 	 *
369 	 * This has to be done since for instance QEMU
370 	 * isn't aware of which memory range in the
371 	 * non-secure memory is used for NSEC_SHM.
372 	 */
373 
374 #ifdef CFG_SECURE_DATA_PATH
375 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
376 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
377 #endif
378 
379 	carve_out_phys_mem(&m, &num_elems, TEE_RAM_START, TEE_RAM_PH_SIZE);
380 	carve_out_phys_mem(&m, &num_elems, TA_RAM_START, TA_RAM_SIZE);
381 
382 	for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) {
383 		switch (map->type) {
384 		case MEM_AREA_NSEC_SHM:
385 			carve_out_phys_mem(&m, &num_elems, map->pa, map->size);
386 			break;
387 		case MEM_AREA_EXT_DT:
388 		case MEM_AREA_RES_VASPACE:
389 		case MEM_AREA_SHM_VASPACE:
390 		case MEM_AREA_TS_VASPACE:
391 		case MEM_AREA_PAGER_VASPACE:
392 			break;
393 		default:
394 			check_phys_mem_is_outside(m, num_elems, map);
395 		}
396 	}
397 
398 	discovered_nsec_ddr_start = m;
399 	discovered_nsec_ddr_nelems = num_elems;
400 
401 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
402 				   m[num_elems - 1].size))
403 		panic();
404 }
405 
406 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
407 				    const struct core_mmu_phys_mem **end)
408 {
409 	if (!discovered_nsec_ddr_start)
410 		return false;
411 
412 	*start = discovered_nsec_ddr_start;
413 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
414 
415 	return true;
416 }
417 
418 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
419 {
420 	const struct core_mmu_phys_mem *start;
421 	const struct core_mmu_phys_mem *end;
422 
423 	if (!get_discovered_nsec_ddr(&start, &end))
424 		return false;
425 
426 	return pbuf_is_special_mem(pbuf, len, start, end);
427 }
428 
429 bool core_mmu_nsec_ddr_is_defined(void)
430 {
431 	const struct core_mmu_phys_mem *start;
432 	const struct core_mmu_phys_mem *end;
433 
434 	if (!get_discovered_nsec_ddr(&start, &end))
435 		return false;
436 
437 	return start != end;
438 }
439 #else
440 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
441 {
442 	return false;
443 }
444 #endif /*CFG_CORE_DYN_SHM*/
445 
446 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
447 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
448 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
449 
450 #ifdef CFG_SECURE_DATA_PATH
451 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
452 {
453 	return pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
454 				   phys_sdp_mem_end);
455 }
456 
457 struct mobj **core_sdp_mem_create_mobjs(void)
458 {
459 	const struct core_mmu_phys_mem *mem;
460 	struct mobj **mobj_base;
461 	struct mobj **mobj;
462 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
463 
464 	/* SDP mobjs table must end with a NULL entry */
465 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
466 	if (!mobj_base)
467 		panic("Out of memory");
468 
469 	for (mem = phys_sdp_mem_begin, mobj = mobj_base;
470 	     mem < phys_sdp_mem_end; mem++, mobj++) {
471 		*mobj = mobj_phys_alloc(mem->addr, mem->size,
472 					TEE_MATTR_CACHE_CACHED,
473 					CORE_MEM_SDP_MEM);
474 		if (!*mobj)
475 			panic("can't create SDP physical memory object");
476 	}
477 	return mobj_base;
478 }
479 
480 #else /* CFG_SECURE_DATA_PATH */
481 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
482 {
483 	return false;
484 }
485 
486 #endif /* CFG_SECURE_DATA_PATH */
487 
488 /* Check special memories comply with registered memories */
489 static void verify_special_mem_areas(struct tee_mmap_region *mem_map,
490 				     size_t len,
491 				     const struct core_mmu_phys_mem *start,
492 				     const struct core_mmu_phys_mem *end,
493 				     const char *area_name __maybe_unused)
494 {
495 	const struct core_mmu_phys_mem *mem;
496 	const struct core_mmu_phys_mem *mem2;
497 	struct tee_mmap_region *mmap;
498 	size_t n;
499 
500 	if (start == end) {
501 		DMSG("No %s memory area defined", area_name);
502 		return;
503 	}
504 
505 	for (mem = start; mem < end; mem++)
506 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
507 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
508 
509 	/* Check memories do not intersect each other */
510 	for (mem = start; mem + 1 < end; mem++) {
511 		for (mem2 = mem + 1; mem2 < end; mem2++) {
512 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
513 						     mem->addr, mem->size)) {
514 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
515 						   mem->addr, mem->size);
516 				panic("Special memory intersection");
517 			}
518 		}
519 	}
520 
521 	/*
522 	 * Check memories do not intersect any mapped memory.
523 	 * This is called before reserved VA space is loaded in mem_map.
524 	 */
525 	for (mem = start; mem < end; mem++) {
526 		for (mmap = mem_map, n = 0; n < len; mmap++, n++) {
527 			if (core_is_buffer_intersect(mem->addr, mem->size,
528 						     mmap->pa, mmap->size)) {
529 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
530 						   mmap->pa, mmap->size);
531 				panic("Special memory intersection");
532 			}
533 		}
534 	}
535 }
536 
537 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems,
538 			 const struct core_mmu_phys_mem *mem, size_t *last)
539 {
540 	size_t n = 0;
541 	paddr_t pa;
542 	paddr_size_t size;
543 
544 	/*
545 	 * If some ranges of memory of the same type do overlap
546 	 * each others they are coalesced into one entry. To help this
547 	 * added entries are sorted by increasing physical.
548 	 *
549 	 * Note that it's valid to have the same physical memory as several
550 	 * different memory types, for instance the same device memory
551 	 * mapped as both secure and non-secure. This will probably not
552 	 * happen often in practice.
553 	 */
554 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
555 	     mem->name, teecore_memtype_name(mem->type), mem->addr, mem->size);
556 	while (true) {
557 		if (n >= (num_elems - 1)) {
558 			EMSG("Out of entries (%zu) in memory_map", num_elems);
559 			panic();
560 		}
561 		if (n == *last)
562 			break;
563 		pa = memory_map[n].pa;
564 		size = memory_map[n].size;
565 		if (mem->type == memory_map[n].type &&
566 		    ((pa <= (mem->addr + (mem->size - 1))) &&
567 		    (mem->addr <= (pa + (size - 1))))) {
568 			DMSG("Physical mem map overlaps 0x%" PRIxPA, mem->addr);
569 			memory_map[n].pa = MIN(pa, mem->addr);
570 			memory_map[n].size = MAX(size, mem->size) +
571 					     (pa - memory_map[n].pa);
572 			return;
573 		}
574 		if (mem->type < memory_map[n].type ||
575 		    (mem->type == memory_map[n].type && mem->addr < pa))
576 			break; /* found the spot where to insert this memory */
577 		n++;
578 	}
579 
580 	memmove(memory_map + n + 1, memory_map + n,
581 		sizeof(struct tee_mmap_region) * (*last - n));
582 	(*last)++;
583 	memset(memory_map + n, 0, sizeof(memory_map[0]));
584 	memory_map[n].type = mem->type;
585 	memory_map[n].pa = mem->addr;
586 	memory_map[n].size = mem->size;
587 }
588 
589 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems,
590 			 enum teecore_memtypes type, size_t size, size_t *last)
591 {
592 	size_t n = 0;
593 
594 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
595 	while (true) {
596 		if (n >= (num_elems - 1)) {
597 			EMSG("Out of entries (%zu) in memory_map", num_elems);
598 			panic();
599 		}
600 		if (n == *last)
601 			break;
602 		if (type < memory_map[n].type)
603 			break;
604 		n++;
605 	}
606 
607 	memmove(memory_map + n + 1, memory_map + n,
608 		sizeof(struct tee_mmap_region) * (*last - n));
609 	(*last)++;
610 	memset(memory_map + n, 0, sizeof(memory_map[0]));
611 	memory_map[n].type = type;
612 	memory_map[n].size = size;
613 }
614 
615 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
616 {
617 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
618 	const uint32_t cached = TEE_MATTR_CACHE_CACHED << TEE_MATTR_CACHE_SHIFT;
619 	const uint32_t noncache = TEE_MATTR_CACHE_NONCACHE <<
620 				  TEE_MATTR_CACHE_SHIFT;
621 
622 	switch (t) {
623 	case MEM_AREA_TEE_RAM:
624 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | cached;
625 	case MEM_AREA_TEE_RAM_RX:
626 	case MEM_AREA_INIT_RAM_RX:
627 	case MEM_AREA_IDENTITY_MAP_RX:
628 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | cached;
629 	case MEM_AREA_TEE_RAM_RO:
630 	case MEM_AREA_INIT_RAM_RO:
631 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
632 	case MEM_AREA_TEE_RAM_RW:
633 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
634 	case MEM_AREA_NEX_RAM_RW:
635 	case MEM_AREA_TEE_ASAN:
636 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
637 	case MEM_AREA_TEE_COHERENT:
638 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
639 	case MEM_AREA_TA_RAM:
640 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
641 	case MEM_AREA_NSEC_SHM:
642 		return attr | TEE_MATTR_PRW | cached;
643 	case MEM_AREA_EXT_DT:
644 	case MEM_AREA_IO_NSEC:
645 		return attr | TEE_MATTR_PRW | noncache;
646 	case MEM_AREA_IO_SEC:
647 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
648 	case MEM_AREA_RAM_NSEC:
649 		return attr | TEE_MATTR_PRW | cached;
650 	case MEM_AREA_RAM_SEC:
651 	case MEM_AREA_SEC_RAM_OVERALL:
652 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
653 	case MEM_AREA_RES_VASPACE:
654 	case MEM_AREA_SHM_VASPACE:
655 		return 0;
656 	case MEM_AREA_PAGER_VASPACE:
657 		return TEE_MATTR_SECURE;
658 	default:
659 		panic("invalid type");
660 	}
661 }
662 
663 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
664 {
665 	switch (mm->type) {
666 	case MEM_AREA_TEE_RAM:
667 	case MEM_AREA_TEE_RAM_RX:
668 	case MEM_AREA_TEE_RAM_RO:
669 	case MEM_AREA_TEE_RAM_RW:
670 	case MEM_AREA_INIT_RAM_RX:
671 	case MEM_AREA_INIT_RAM_RO:
672 	case MEM_AREA_NEX_RAM_RW:
673 	case MEM_AREA_NEX_RAM_RO:
674 	case MEM_AREA_TEE_ASAN:
675 		return true;
676 	default:
677 		return false;
678 	}
679 }
680 
681 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
682 {
683 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
684 }
685 
686 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
687 {
688 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
689 }
690 
691 static int cmp_mmap_by_lower_va(const void *a, const void *b)
692 {
693 	const struct tee_mmap_region *mm_a = a;
694 	const struct tee_mmap_region *mm_b = b;
695 
696 	return CMP_TRILEAN(mm_a->va, mm_b->va);
697 }
698 
699 static void dump_mmap_table(struct tee_mmap_region *memory_map)
700 {
701 	struct tee_mmap_region *map;
702 
703 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
704 		vaddr_t __maybe_unused vstart;
705 
706 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
707 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
708 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
709 		     teecore_memtype_name(map->type), vstart,
710 		     vstart + map->size - 1, map->pa,
711 		     (paddr_t)(map->pa + map->size - 1), map->size,
712 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
713 	}
714 }
715 
716 #if DEBUG_XLAT_TABLE
717 
718 static void dump_xlat_table(vaddr_t va, unsigned int level)
719 {
720 	struct core_mmu_table_info tbl_info;
721 	unsigned int idx = 0;
722 	paddr_t pa;
723 	uint32_t attr;
724 
725 	core_mmu_find_table(NULL, va, level, &tbl_info);
726 	va = tbl_info.va_base;
727 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
728 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
729 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
730 			const char *security_bit = "";
731 
732 			if (core_mmu_entry_have_security_bit(attr)) {
733 				if (attr & TEE_MATTR_SECURE)
734 					security_bit = "S";
735 				else
736 					security_bit = "NS";
737 			}
738 
739 			if (attr & TEE_MATTR_TABLE) {
740 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
741 					" TBL:0x%010" PRIxPA " %s",
742 					level * 2, "", level, va, pa,
743 					security_bit);
744 				dump_xlat_table(va, level + 1);
745 			} else if (attr) {
746 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
747 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
748 					level * 2, "", level, va, pa,
749 					attr & (TEE_MATTR_CACHE_CACHED <<
750 					TEE_MATTR_CACHE_SHIFT) ? "MEM" : "DEV",
751 					attr & TEE_MATTR_PW ? "RW" : "RO",
752 					attr & TEE_MATTR_PX ? "X " : "XN",
753 					security_bit);
754 			} else {
755 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
756 					    " INVALID\n",
757 					    level * 2, "", level, va);
758 			}
759 		}
760 		va += BIT64(tbl_info.shift);
761 	}
762 }
763 
764 #else
765 
766 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
767 {
768 }
769 
770 #endif
771 
772 /*
773  * Reserves virtual memory space for pager usage.
774  *
775  * From the start of the first memory used by the link script +
776  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
777  * mapping for pager usage. This adds translation tables as needed for the
778  * pager to operate.
779  */
780 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems,
781 			      size_t *last)
782 {
783 	paddr_t begin = 0;
784 	paddr_t end = 0;
785 	size_t size = 0;
786 	size_t pos = 0;
787 	size_t n = 0;
788 
789 	if (*last >= (num_elems - 1)) {
790 		EMSG("Out of entries (%zu) in memory map", num_elems);
791 		panic();
792 	}
793 
794 	for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) {
795 		if (map_is_tee_ram(mmap + n)) {
796 			if (!begin)
797 				begin = mmap[n].pa;
798 			pos = n + 1;
799 		}
800 	}
801 
802 	end = mmap[pos - 1].pa + mmap[pos - 1].size;
803 	size = TEE_RAM_VA_SIZE - (end - begin);
804 	if (!size)
805 		return;
806 
807 	assert(pos <= *last);
808 	memmove(mmap + pos + 1, mmap + pos,
809 		sizeof(struct tee_mmap_region) * (*last - pos));
810 	(*last)++;
811 	memset(mmap + pos, 0, sizeof(mmap[0]));
812 	mmap[pos].type = MEM_AREA_PAGER_VASPACE;
813 	mmap[pos].va = 0;
814 	mmap[pos].size = size;
815 	mmap[pos].region_size = SMALL_PAGE_SIZE;
816 	mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE);
817 }
818 
819 static void check_sec_nsec_mem_config(void)
820 {
821 	size_t n = 0;
822 
823 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
824 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
825 				    secure_only[n].size))
826 			panic("Invalid memory access config: sec/nsec");
827 	}
828 }
829 
830 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map,
831 				 size_t num_elems)
832 {
833 	const struct core_mmu_phys_mem *mem = NULL;
834 	size_t last = 0;
835 
836 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
837 		struct core_mmu_phys_mem m = *mem;
838 
839 		/* Discard null size entries */
840 		if (!m.size)
841 			continue;
842 
843 		/* Only unmapped virtual range may have a null phys addr */
844 		assert(m.addr || !core_mmu_type_to_attr(m.type));
845 
846 		add_phys_mem(memory_map, num_elems, &m, &last);
847 	}
848 
849 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
850 		verify_special_mem_areas(memory_map, num_elems,
851 					 phys_sdp_mem_begin,
852 					 phys_sdp_mem_end, "SDP");
853 
854 	add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE,
855 		     CFG_RESERVED_VASPACE_SIZE, &last);
856 
857 	add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE,
858 		     SHM_VASPACE_SIZE, &last);
859 
860 	memory_map[last].type = MEM_AREA_END;
861 
862 	return last;
863 }
864 
865 static void assign_mem_granularity(struct tee_mmap_region *memory_map)
866 {
867 	struct tee_mmap_region *map = NULL;
868 
869 	/*
870 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
871 	 * SMALL_PAGE_SIZE.
872 	 */
873 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
874 		paddr_t mask = map->pa | map->size;
875 
876 		if (!(mask & CORE_MMU_PGDIR_MASK))
877 			map->region_size = CORE_MMU_PGDIR_SIZE;
878 		else if (!(mask & SMALL_PAGE_MASK))
879 			map->region_size = SMALL_PAGE_SIZE;
880 		else
881 			panic("Impossible memory alignment");
882 
883 		if (map_is_tee_ram(map))
884 			map->region_size = SMALL_PAGE_SIZE;
885 	}
886 }
887 
888 static bool assign_mem_va(vaddr_t tee_ram_va,
889 			  struct tee_mmap_region *memory_map)
890 {
891 	struct tee_mmap_region *map = NULL;
892 	vaddr_t va = tee_ram_va;
893 	bool va_is_secure = true;
894 
895 	/*
896 	 * Check that we're not overlapping with the user VA range.
897 	 */
898 	if (IS_ENABLED(CFG_WITH_LPAE)) {
899 		/*
900 		 * User VA range is supposed to be defined after these
901 		 * mappings have been established.
902 		 */
903 		assert(!core_mmu_user_va_range_is_defined());
904 	} else {
905 		vaddr_t user_va_base = 0;
906 		size_t user_va_size = 0;
907 
908 		assert(core_mmu_user_va_range_is_defined());
909 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
910 		if (tee_ram_va < (user_va_base + user_va_size))
911 			return false;
912 	}
913 
914 	/* Clear eventual previous assignments */
915 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
916 		map->va = 0;
917 
918 	/*
919 	 * TEE RAM regions are always aligned with region_size.
920 	 *
921 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
922 	 * since it handles virtual memory which covers the part of the ELF
923 	 * that cannot fit directly into memory.
924 	 */
925 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
926 		if (map_is_tee_ram(map) ||
927 		    map->type == MEM_AREA_PAGER_VASPACE) {
928 			assert(!(va & (map->region_size - 1)));
929 			assert(!(map->size & (map->region_size - 1)));
930 			map->va = va;
931 			if (ADD_OVERFLOW(va, map->size, &va))
932 				return false;
933 			if (va >= BIT64(core_mmu_get_va_width()))
934 				return false;
935 		}
936 	}
937 
938 	if (core_mmu_place_tee_ram_at_top(tee_ram_va)) {
939 		/*
940 		 * Map non-tee ram regions at addresses lower than the tee
941 		 * ram region.
942 		 */
943 		va = tee_ram_va;
944 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
945 			map->attr = core_mmu_type_to_attr(map->type);
946 			if (map->va)
947 				continue;
948 
949 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
950 			    va_is_secure != map_is_secure(map)) {
951 				va_is_secure = !va_is_secure;
952 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
953 			}
954 
955 			if (SUB_OVERFLOW(va, map->size, &va))
956 				return false;
957 			va = ROUNDDOWN(va, map->region_size);
958 			/*
959 			 * Make sure that va is aligned with pa for
960 			 * efficient pgdir mapping. Basically pa &
961 			 * pgdir_mask should be == va & pgdir_mask
962 			 */
963 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
964 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
965 					return false;
966 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
967 			}
968 			map->va = va;
969 		}
970 	} else {
971 		/*
972 		 * Map non-tee ram regions at addresses higher than the tee
973 		 * ram region.
974 		 */
975 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
976 			map->attr = core_mmu_type_to_attr(map->type);
977 			if (map->va)
978 				continue;
979 
980 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
981 			    va_is_secure != map_is_secure(map)) {
982 				va_is_secure = !va_is_secure;
983 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
984 						     &va))
985 					return false;
986 			}
987 
988 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
989 				return false;
990 			/*
991 			 * Make sure that va is aligned with pa for
992 			 * efficient pgdir mapping. Basically pa &
993 			 * pgdir_mask should be == va & pgdir_mask
994 			 */
995 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
996 				vaddr_t offs = (map->pa - va) &
997 					       CORE_MMU_PGDIR_MASK;
998 
999 				if (ADD_OVERFLOW(va, offs, &va))
1000 					return false;
1001 			}
1002 
1003 			map->va = va;
1004 			if (ADD_OVERFLOW(va, map->size, &va))
1005 				return false;
1006 			if (va >= BIT64(core_mmu_get_va_width()))
1007 				return false;
1008 		}
1009 	}
1010 
1011 	return true;
1012 }
1013 
1014 static int cmp_init_mem_map(const void *a, const void *b)
1015 {
1016 	const struct tee_mmap_region *mm_a = a;
1017 	const struct tee_mmap_region *mm_b = b;
1018 	int rc = 0;
1019 
1020 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1021 	if (!rc)
1022 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1023 	/*
1024 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1025 	 * the same level2 table. Hence sort secure mapping from non-secure
1026 	 * mapping.
1027 	 */
1028 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1029 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1030 
1031 	return rc;
1032 }
1033 
1034 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map,
1035 			       size_t num_elems, size_t *last,
1036 			       vaddr_t id_map_start, vaddr_t id_map_end)
1037 {
1038 	struct tee_mmap_region *map = NULL;
1039 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1040 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1041 	size_t len = end - start;
1042 
1043 	if (*last >= num_elems - 1) {
1044 		EMSG("Out of entries (%zu) in memory map", num_elems);
1045 		panic();
1046 	}
1047 
1048 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1049 		if (core_is_buffer_intersect(map->va, map->size, start, len))
1050 			return false;
1051 
1052 	*map = (struct tee_mmap_region){
1053 		.type = MEM_AREA_IDENTITY_MAP_RX,
1054 		/*
1055 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1056 		 * translation table, at the increased risk of clashes with
1057 		 * the rest of the memory map.
1058 		 */
1059 		.region_size = SMALL_PAGE_SIZE,
1060 		.pa = start,
1061 		.va = start,
1062 		.size = len,
1063 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1064 	};
1065 
1066 	(*last)++;
1067 
1068 	return true;
1069 }
1070 
1071 static unsigned long init_mem_map(struct tee_mmap_region *memory_map,
1072 				  size_t num_elems, unsigned long seed)
1073 {
1074 	/*
1075 	 * @id_map_start and @id_map_end describes a physical memory range
1076 	 * that must be mapped Read-Only eXecutable at identical virtual
1077 	 * addresses.
1078 	 */
1079 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1080 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1081 	unsigned long offs = 0;
1082 	size_t last = 0;
1083 
1084 	last = collect_mem_ranges(memory_map, num_elems);
1085 	assign_mem_granularity(memory_map);
1086 
1087 	/*
1088 	 * To ease mapping and lower use of xlat tables, sort mapping
1089 	 * description moving small-page regions after the pgdir regions.
1090 	 */
1091 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1092 	      cmp_init_mem_map);
1093 
1094 	add_pager_vaspace(memory_map, num_elems, &last);
1095 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1096 		vaddr_t base_addr = TEE_RAM_START + seed;
1097 		const unsigned int va_width = core_mmu_get_va_width();
1098 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1099 						   SMALL_PAGE_SHIFT);
1100 		vaddr_t ba = base_addr;
1101 		size_t n = 0;
1102 
1103 		for (n = 0; n < 3; n++) {
1104 			if (n)
1105 				ba = base_addr ^ BIT64(va_width - n);
1106 			ba &= va_mask;
1107 			if (assign_mem_va(ba, memory_map) &&
1108 			    mem_map_add_id_map(memory_map, num_elems, &last,
1109 					       id_map_start, id_map_end)) {
1110 				offs = ba - TEE_RAM_START;
1111 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1112 				     ba, offs);
1113 				goto out;
1114 			} else {
1115 				DMSG("Failed to map core at %#"PRIxVA, ba);
1116 			}
1117 		}
1118 		EMSG("Failed to map core with seed %#lx", seed);
1119 	}
1120 
1121 	if (!assign_mem_va(TEE_RAM_START, memory_map))
1122 		panic();
1123 
1124 out:
1125 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1126 	      cmp_mmap_by_lower_va);
1127 
1128 	dump_mmap_table(memory_map);
1129 
1130 	return offs;
1131 }
1132 
1133 static void check_mem_map(struct tee_mmap_region *map)
1134 {
1135 	struct tee_mmap_region *m = NULL;
1136 
1137 	for (m = map; !core_mmap_is_end_of_table(m); m++) {
1138 		switch (m->type) {
1139 		case MEM_AREA_TEE_RAM:
1140 		case MEM_AREA_TEE_RAM_RX:
1141 		case MEM_AREA_TEE_RAM_RO:
1142 		case MEM_AREA_TEE_RAM_RW:
1143 		case MEM_AREA_INIT_RAM_RX:
1144 		case MEM_AREA_INIT_RAM_RO:
1145 		case MEM_AREA_NEX_RAM_RW:
1146 		case MEM_AREA_NEX_RAM_RO:
1147 		case MEM_AREA_IDENTITY_MAP_RX:
1148 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1149 				panic("TEE_RAM can't fit in secure_only");
1150 			break;
1151 		case MEM_AREA_TA_RAM:
1152 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1153 				panic("TA_RAM can't fit in secure_only");
1154 			break;
1155 		case MEM_AREA_NSEC_SHM:
1156 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1157 				panic("NS_SHM can't fit in nsec_shared");
1158 			break;
1159 		case MEM_AREA_SEC_RAM_OVERALL:
1160 		case MEM_AREA_TEE_COHERENT:
1161 		case MEM_AREA_TEE_ASAN:
1162 		case MEM_AREA_IO_SEC:
1163 		case MEM_AREA_IO_NSEC:
1164 		case MEM_AREA_EXT_DT:
1165 		case MEM_AREA_RAM_SEC:
1166 		case MEM_AREA_RAM_NSEC:
1167 		case MEM_AREA_RES_VASPACE:
1168 		case MEM_AREA_SHM_VASPACE:
1169 		case MEM_AREA_PAGER_VASPACE:
1170 			break;
1171 		default:
1172 			EMSG("Uhandled memtype %d", m->type);
1173 			panic();
1174 		}
1175 	}
1176 }
1177 
1178 static struct tee_mmap_region *get_tmp_mmap(void)
1179 {
1180 	struct tee_mmap_region *tmp_mmap = (void *)__heap1_start;
1181 
1182 #ifdef CFG_WITH_PAGER
1183 	if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map))
1184 		tmp_mmap = (void *)__heap2_start;
1185 #endif
1186 
1187 	memset(tmp_mmap, 0, sizeof(static_memory_map));
1188 
1189 	return tmp_mmap;
1190 }
1191 
1192 /*
1193  * core_init_mmu_map() - init tee core default memory mapping
1194  *
1195  * This routine sets the static default TEE core mapping. If @seed is > 0
1196  * and configured with CFG_CORE_ASLR it will map tee core at a location
1197  * based on the seed and return the offset from the link address.
1198  *
1199  * If an error happened: core_init_mmu_map is expected to panic.
1200  *
1201  * Note: this function is weak just to make it possible to exclude it from
1202  * the unpaged area.
1203  */
1204 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1205 {
1206 #ifndef CFG_VIRTUALIZATION
1207 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1208 #else
1209 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1210 				  SMALL_PAGE_SIZE);
1211 #endif
1212 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1213 	struct tee_mmap_region *tmp_mmap = get_tmp_mmap();
1214 	unsigned long offs = 0;
1215 
1216 	check_sec_nsec_mem_config();
1217 
1218 	/*
1219 	 * Add a entry covering the translation tables which will be
1220 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1221 	 */
1222 	static_memory_map[0] = (struct tee_mmap_region){
1223 		.type = MEM_AREA_TEE_RAM,
1224 		.region_size = SMALL_PAGE_SIZE,
1225 		.pa = start,
1226 		.va = start,
1227 		.size = len,
1228 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1229 	};
1230 
1231 	COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13);
1232 	offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed);
1233 
1234 	check_mem_map(tmp_mmap);
1235 	core_init_mmu(tmp_mmap);
1236 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1237 	core_init_mmu_regs(cfg);
1238 	cfg->load_offset = offs;
1239 	memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map));
1240 }
1241 
1242 bool core_mmu_mattr_is_ok(uint32_t mattr)
1243 {
1244 	/*
1245 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1246 	 * core_mmu_v7.c:mattr_to_texcb
1247 	 */
1248 
1249 	switch ((mattr >> TEE_MATTR_CACHE_SHIFT) & TEE_MATTR_CACHE_MASK) {
1250 	case TEE_MATTR_CACHE_NONCACHE:
1251 	case TEE_MATTR_CACHE_CACHED:
1252 		return true;
1253 	default:
1254 		return false;
1255 	}
1256 }
1257 
1258 /*
1259  * test attributes of target physical buffer
1260  *
1261  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1262  *
1263  */
1264 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1265 {
1266 	struct tee_mmap_region *map;
1267 
1268 	/* Empty buffers complies with anything */
1269 	if (len == 0)
1270 		return true;
1271 
1272 	switch (attr) {
1273 	case CORE_MEM_SEC:
1274 		return pbuf_is_inside(secure_only, pbuf, len);
1275 	case CORE_MEM_NON_SEC:
1276 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1277 			pbuf_is_nsec_ddr(pbuf, len);
1278 	case CORE_MEM_TEE_RAM:
1279 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1280 							TEE_RAM_PH_SIZE);
1281 	case CORE_MEM_TA_RAM:
1282 		return core_is_buffer_inside(pbuf, len, TA_RAM_START,
1283 							TA_RAM_SIZE);
1284 #ifdef CFG_CORE_RESERVED_SHM
1285 	case CORE_MEM_NSEC_SHM:
1286 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1287 							TEE_SHMEM_SIZE);
1288 #endif
1289 	case CORE_MEM_SDP_MEM:
1290 		return pbuf_is_sdp_mem(pbuf, len);
1291 	case CORE_MEM_CACHED:
1292 		map = find_map_by_pa(pbuf);
1293 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1294 			return false;
1295 		return map->attr >> TEE_MATTR_CACHE_SHIFT ==
1296 		       TEE_MATTR_CACHE_CACHED;
1297 	default:
1298 		return false;
1299 	}
1300 }
1301 
1302 /* test attributes of target virtual buffer (in core mapping) */
1303 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1304 {
1305 	paddr_t p;
1306 
1307 	/* Empty buffers complies with anything */
1308 	if (len == 0)
1309 		return true;
1310 
1311 	p = virt_to_phys((void *)vbuf);
1312 	if (!p)
1313 		return false;
1314 
1315 	return core_pbuf_is(attr, p, len);
1316 }
1317 
1318 /* core_va2pa - teecore exported service */
1319 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1320 {
1321 	struct tee_mmap_region *map;
1322 
1323 	map = find_map_by_va(va);
1324 	if (!va_is_in_map(map, (vaddr_t)va))
1325 		return -1;
1326 
1327 	/*
1328 	 * We can calculate PA for static map. Virtual address ranges
1329 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1330 	 * together with an invalid null physical address.
1331 	 */
1332 	if (map->pa)
1333 		*pa = map->pa + (vaddr_t)va  - map->va;
1334 	else
1335 		*pa = 0;
1336 
1337 	return 0;
1338 }
1339 
1340 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1341 {
1342 	if (!pa_is_in_map(map, pa, len))
1343 		return NULL;
1344 
1345 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1346 }
1347 
1348 /*
1349  * teecore gets some memory area definitions
1350  */
1351 void core_mmu_get_mem_by_type(unsigned int type, vaddr_t *s, vaddr_t *e)
1352 {
1353 	struct tee_mmap_region *map = find_map_by_type(type);
1354 
1355 	if (map) {
1356 		*s = map->va;
1357 		*e = map->va + map->size;
1358 	} else {
1359 		*s = 0;
1360 		*e = 0;
1361 	}
1362 }
1363 
1364 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1365 {
1366 	struct tee_mmap_region *map = find_map_by_pa(pa);
1367 
1368 	if (!map)
1369 		return MEM_AREA_MAXTYPE;
1370 	return map->type;
1371 }
1372 
1373 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1374 			paddr_t pa, uint32_t attr)
1375 {
1376 	assert(idx < tbl_info->num_entries);
1377 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1378 				     idx, pa, attr);
1379 }
1380 
1381 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1382 			paddr_t *pa, uint32_t *attr)
1383 {
1384 	assert(idx < tbl_info->num_entries);
1385 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1386 				     idx, pa, attr);
1387 }
1388 
1389 static void clear_region(struct core_mmu_table_info *tbl_info,
1390 			 struct tee_mmap_region *region)
1391 {
1392 	unsigned int end = 0;
1393 	unsigned int idx = 0;
1394 
1395 	/* va, len and pa should be block aligned */
1396 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1397 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1398 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1399 
1400 	idx = core_mmu_va2idx(tbl_info, region->va);
1401 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1402 
1403 	while (idx < end) {
1404 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1405 		idx++;
1406 	}
1407 }
1408 
1409 static void set_region(struct core_mmu_table_info *tbl_info,
1410 		       struct tee_mmap_region *region)
1411 {
1412 	unsigned int end;
1413 	unsigned int idx;
1414 	paddr_t pa;
1415 
1416 	/* va, len and pa should be block aligned */
1417 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1418 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1419 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1420 
1421 	idx = core_mmu_va2idx(tbl_info, region->va);
1422 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1423 	pa = region->pa;
1424 
1425 	while (idx < end) {
1426 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1427 		idx++;
1428 		pa += BIT64(tbl_info->shift);
1429 	}
1430 }
1431 
1432 static void set_pg_region(struct core_mmu_table_info *dir_info,
1433 			  struct vm_region *region, struct pgt **pgt,
1434 			  struct core_mmu_table_info *pg_info)
1435 {
1436 	struct tee_mmap_region r = {
1437 		.va = region->va,
1438 		.size = region->size,
1439 		.attr = region->attr,
1440 	};
1441 	vaddr_t end = r.va + r.size;
1442 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1443 
1444 	while (r.va < end) {
1445 		if (!pg_info->table ||
1446 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1447 			/*
1448 			 * We're assigning a new translation table.
1449 			 */
1450 			unsigned int idx;
1451 
1452 			/* Virtual addresses must grow */
1453 			assert(r.va > pg_info->va_base);
1454 
1455 			idx = core_mmu_va2idx(dir_info, r.va);
1456 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1457 
1458 #ifdef CFG_PAGED_USER_TA
1459 			/*
1460 			 * Advance pgt to va_base, note that we may need to
1461 			 * skip multiple page tables if there are large
1462 			 * holes in the vm map.
1463 			 */
1464 			while ((*pgt)->vabase < pg_info->va_base) {
1465 				*pgt = SLIST_NEXT(*pgt, link);
1466 				/* We should have allocated enough */
1467 				assert(*pgt);
1468 			}
1469 			assert((*pgt)->vabase == pg_info->va_base);
1470 			pg_info->table = (*pgt)->tbl;
1471 #else
1472 			assert(*pgt); /* We should have allocated enough */
1473 			pg_info->table = (*pgt)->tbl;
1474 			*pgt = SLIST_NEXT(*pgt, link);
1475 #endif
1476 
1477 			core_mmu_set_entry(dir_info, idx,
1478 					   virt_to_phys(pg_info->table),
1479 					   pgt_attr);
1480 		}
1481 
1482 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1483 			     end - r.va);
1484 
1485 		if (!mobj_is_paged(region->mobj)) {
1486 			size_t granule = BIT(pg_info->shift);
1487 			size_t offset = r.va - region->va + region->offset;
1488 
1489 			r.size = MIN(r.size,
1490 				     mobj_get_phys_granule(region->mobj));
1491 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1492 
1493 			if (mobj_get_pa(region->mobj, offset, granule,
1494 					&r.pa) != TEE_SUCCESS)
1495 				panic("Failed to get PA of unpaged mobj");
1496 			set_region(pg_info, &r);
1497 		}
1498 		r.va += r.size;
1499 	}
1500 }
1501 
1502 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1503 			     size_t size_left, paddr_t block_size,
1504 			     struct tee_mmap_region *mm __maybe_unused)
1505 {
1506 	/* VA and PA are aligned to block size at current level */
1507 	if ((vaddr | paddr) & (block_size - 1))
1508 		return false;
1509 
1510 	/* Remainder fits into block at current level */
1511 	if (size_left < block_size)
1512 		return false;
1513 
1514 #ifdef CFG_WITH_PAGER
1515 	/*
1516 	 * If pager is enabled, we need to map tee ram
1517 	 * regions with small pages only
1518 	 */
1519 	if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE)
1520 		return false;
1521 #endif
1522 
1523 	return true;
1524 }
1525 
1526 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1527 {
1528 	struct core_mmu_table_info tbl_info;
1529 	unsigned int idx;
1530 	vaddr_t vaddr = mm->va;
1531 	paddr_t paddr = mm->pa;
1532 	ssize_t size_left = mm->size;
1533 	unsigned int level;
1534 	bool table_found;
1535 	uint32_t old_attr;
1536 
1537 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1538 
1539 	while (size_left > 0) {
1540 		level = CORE_MMU_BASE_TABLE_LEVEL;
1541 
1542 		while (true) {
1543 			paddr_t block_size = 0;
1544 
1545 			assert(level <= CORE_MMU_PGDIR_LEVEL);
1546 
1547 			table_found = core_mmu_find_table(prtn, vaddr, level,
1548 							  &tbl_info);
1549 			if (!table_found)
1550 				panic("can't find table for mapping");
1551 
1552 			block_size = BIT64(tbl_info.shift);
1553 
1554 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1555 			if (!can_map_at_level(paddr, vaddr, size_left,
1556 					      block_size, mm)) {
1557 				bool secure = mm->attr & TEE_MATTR_SECURE;
1558 
1559 				/*
1560 				 * This part of the region can't be mapped at
1561 				 * this level. Need to go deeper.
1562 				 */
1563 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1564 								     idx,
1565 								     secure))
1566 					panic("Can't divide MMU entry");
1567 				level++;
1568 				continue;
1569 			}
1570 
1571 			/* We can map part of the region at current level */
1572 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1573 			if (old_attr)
1574 				panic("Page is already mapped");
1575 
1576 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1577 			paddr += block_size;
1578 			vaddr += block_size;
1579 			size_left -= block_size;
1580 
1581 			break;
1582 		}
1583 	}
1584 }
1585 
1586 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1587 			      enum teecore_memtypes memtype)
1588 {
1589 	TEE_Result ret;
1590 	struct core_mmu_table_info tbl_info;
1591 	struct tee_mmap_region *mm;
1592 	unsigned int idx;
1593 	uint32_t old_attr;
1594 	uint32_t exceptions;
1595 	vaddr_t vaddr = vstart;
1596 	size_t i;
1597 	bool secure;
1598 
1599 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1600 
1601 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1602 
1603 	if (vaddr & SMALL_PAGE_MASK)
1604 		return TEE_ERROR_BAD_PARAMETERS;
1605 
1606 	exceptions = mmu_lock();
1607 
1608 	mm = find_map_by_va((void *)vaddr);
1609 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1610 		panic("VA does not belong to any known mm region");
1611 
1612 	if (!core_mmu_is_dynamic_vaspace(mm))
1613 		panic("Trying to map into static region");
1614 
1615 	for (i = 0; i < num_pages; i++) {
1616 		if (pages[i] & SMALL_PAGE_MASK) {
1617 			ret = TEE_ERROR_BAD_PARAMETERS;
1618 			goto err;
1619 		}
1620 
1621 		while (true) {
1622 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1623 						 &tbl_info))
1624 				panic("Can't find pagetable for vaddr ");
1625 
1626 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1627 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1628 				break;
1629 
1630 			/* This is supertable. Need to divide it. */
1631 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1632 							     secure))
1633 				panic("Failed to spread pgdir on small tables");
1634 		}
1635 
1636 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1637 		if (old_attr)
1638 			panic("Page is already mapped");
1639 
1640 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1641 				   core_mmu_type_to_attr(memtype));
1642 		vaddr += SMALL_PAGE_SIZE;
1643 	}
1644 
1645 	/*
1646 	 * Make sure all the changes to translation tables are visible
1647 	 * before returning. TLB doesn't need to be invalidated as we are
1648 	 * guaranteed that there's no valid mapping in this range.
1649 	 */
1650 	core_mmu_table_write_barrier();
1651 	mmu_unlock(exceptions);
1652 
1653 	return TEE_SUCCESS;
1654 err:
1655 	mmu_unlock(exceptions);
1656 
1657 	if (i)
1658 		core_mmu_unmap_pages(vstart, i);
1659 
1660 	return ret;
1661 }
1662 
1663 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
1664 					 size_t num_pages,
1665 					 enum teecore_memtypes memtype)
1666 {
1667 	struct core_mmu_table_info tbl_info = { };
1668 	struct tee_mmap_region *mm = NULL;
1669 	unsigned int idx = 0;
1670 	uint32_t old_attr = 0;
1671 	uint32_t exceptions = 0;
1672 	vaddr_t vaddr = vstart;
1673 	paddr_t paddr = pstart;
1674 	size_t i = 0;
1675 	bool secure = false;
1676 
1677 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1678 
1679 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1680 
1681 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
1682 		return TEE_ERROR_BAD_PARAMETERS;
1683 
1684 	exceptions = mmu_lock();
1685 
1686 	mm = find_map_by_va((void *)vaddr);
1687 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1688 		panic("VA does not belong to any known mm region");
1689 
1690 	if (!core_mmu_is_dynamic_vaspace(mm))
1691 		panic("Trying to map into static region");
1692 
1693 	for (i = 0; i < num_pages; i++) {
1694 		while (true) {
1695 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1696 						 &tbl_info))
1697 				panic("Can't find pagetable for vaddr ");
1698 
1699 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1700 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1701 				break;
1702 
1703 			/* This is supertable. Need to divide it. */
1704 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1705 							     secure))
1706 				panic("Failed to spread pgdir on small tables");
1707 		}
1708 
1709 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1710 		if (old_attr)
1711 			panic("Page is already mapped");
1712 
1713 		core_mmu_set_entry(&tbl_info, idx, paddr,
1714 				   core_mmu_type_to_attr(memtype));
1715 		paddr += SMALL_PAGE_SIZE;
1716 		vaddr += SMALL_PAGE_SIZE;
1717 	}
1718 
1719 	/*
1720 	 * Make sure all the changes to translation tables are visible
1721 	 * before returning. TLB doesn't need to be invalidated as we are
1722 	 * guaranteed that there's no valid mapping in this range.
1723 	 */
1724 	core_mmu_table_write_barrier();
1725 	mmu_unlock(exceptions);
1726 
1727 	return TEE_SUCCESS;
1728 }
1729 
1730 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
1731 {
1732 	struct core_mmu_table_info tbl_info;
1733 	struct tee_mmap_region *mm;
1734 	size_t i;
1735 	unsigned int idx;
1736 	uint32_t exceptions;
1737 
1738 	exceptions = mmu_lock();
1739 
1740 	mm = find_map_by_va((void *)vstart);
1741 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
1742 		panic("VA does not belong to any known mm region");
1743 
1744 	if (!core_mmu_is_dynamic_vaspace(mm))
1745 		panic("Trying to unmap static region");
1746 
1747 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
1748 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
1749 			panic("Can't find pagetable");
1750 
1751 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
1752 			panic("Invalid pagetable level");
1753 
1754 		idx = core_mmu_va2idx(&tbl_info, vstart);
1755 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
1756 	}
1757 	tlbi_all();
1758 
1759 	mmu_unlock(exceptions);
1760 }
1761 
1762 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
1763 				struct user_mode_ctx *uctx)
1764 {
1765 	struct core_mmu_table_info pg_info = { };
1766 	struct pgt_cache *pgt_cache = &thread_get_tsd()->pgt_cache;
1767 	struct pgt *pgt = NULL;
1768 	struct vm_region *r = NULL;
1769 	struct vm_region *r_last = NULL;
1770 
1771 	/* Find the first and last valid entry */
1772 	r = TAILQ_FIRST(&uctx->vm_info.regions);
1773 	if (!r)
1774 		return; /* Nothing to map */
1775 	r_last = TAILQ_LAST(&uctx->vm_info.regions, vm_region_head);
1776 
1777 	/*
1778 	 * Allocate all page tables in advance.
1779 	 */
1780 	pgt_alloc(pgt_cache, uctx->ts_ctx, r->va,
1781 		  r_last->va + r_last->size - 1);
1782 	pgt = SLIST_FIRST(pgt_cache);
1783 
1784 	core_mmu_set_info_table(&pg_info, dir_info->level + 1, 0, NULL);
1785 
1786 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
1787 		set_pg_region(dir_info, r, &pgt, &pg_info);
1788 }
1789 
1790 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
1791 				   size_t len)
1792 {
1793 	struct core_mmu_table_info tbl_info = { };
1794 	struct tee_mmap_region *res_map = NULL;
1795 	struct tee_mmap_region *map = NULL;
1796 	paddr_t pa = virt_to_phys(addr);
1797 	size_t granule = 0;
1798 	ptrdiff_t i = 0;
1799 	paddr_t p = 0;
1800 	size_t l = 0;
1801 
1802 	map = find_map_by_type_and_pa(type, pa, len);
1803 	if (!map)
1804 		return TEE_ERROR_GENERIC;
1805 
1806 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
1807 	if (!res_map)
1808 		return TEE_ERROR_GENERIC;
1809 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
1810 		return TEE_ERROR_GENERIC;
1811 	granule = BIT(tbl_info.shift);
1812 
1813 	if (map < static_memory_map ||
1814 	    map >= static_memory_map + ARRAY_SIZE(static_memory_map))
1815 		return TEE_ERROR_GENERIC;
1816 	i = map - static_memory_map;
1817 
1818 	/* Check that we have a full match */
1819 	p = ROUNDDOWN(pa, granule);
1820 	l = ROUNDUP(len + pa - p, granule);
1821 	if (map->pa != p || map->size != l)
1822 		return TEE_ERROR_GENERIC;
1823 
1824 	clear_region(&tbl_info, map);
1825 	tlbi_all();
1826 
1827 	/* If possible remove the va range from res_map */
1828 	if (res_map->va - map->size == map->va) {
1829 		res_map->va -= map->size;
1830 		res_map->size += map->size;
1831 	}
1832 
1833 	/* Remove the entry. */
1834 	memmove(map, map + 1,
1835 		(ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map));
1836 
1837 	/* Clear the last new entry in case it was used */
1838 	memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1,
1839 	       0, sizeof(*map));
1840 
1841 	return TEE_SUCCESS;
1842 }
1843 
1844 struct tee_mmap_region *
1845 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
1846 {
1847 	struct tee_mmap_region *map = NULL;
1848 	struct tee_mmap_region *map_found = NULL;
1849 
1850 	if (!len)
1851 		return NULL;
1852 
1853 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
1854 		if (map->type != type)
1855 			continue;
1856 
1857 		if (map_found)
1858 			return NULL;
1859 
1860 		map_found = map;
1861 	}
1862 
1863 	if (!map_found || map_found->size < len)
1864 		return NULL;
1865 
1866 	return map_found;
1867 }
1868 
1869 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
1870 {
1871 	struct core_mmu_table_info tbl_info;
1872 	struct tee_mmap_region *map;
1873 	size_t n;
1874 	size_t granule;
1875 	paddr_t p;
1876 	size_t l;
1877 
1878 	if (!len)
1879 		return NULL;
1880 
1881 	if (!core_mmu_check_end_pa(addr, len))
1882 		return NULL;
1883 
1884 	/* Check if the memory is already mapped */
1885 	map = find_map_by_type_and_pa(type, addr, len);
1886 	if (map && pbuf_inside_map_area(addr, len, map))
1887 		return (void *)(vaddr_t)(map->va + addr - map->pa);
1888 
1889 	/* Find the reserved va space used for late mappings */
1890 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
1891 	if (!map)
1892 		return NULL;
1893 
1894 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
1895 		return NULL;
1896 
1897 	granule = BIT64(tbl_info.shift);
1898 	p = ROUNDDOWN(addr, granule);
1899 	l = ROUNDUP(len + addr - p, granule);
1900 
1901 	/* Ban overflowing virtual addresses */
1902 	if (map->size < l)
1903 		return NULL;
1904 
1905 	/*
1906 	 * Something is wrong, we can't fit the va range into the selected
1907 	 * table. The reserved va range is possibly missaligned with
1908 	 * granule.
1909 	 */
1910 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
1911 		return NULL;
1912 
1913 	/* Find end of the memory map */
1914 	n = 0;
1915 	while (!core_mmap_is_end_of_table(static_memory_map + n))
1916 		n++;
1917 
1918 	if (n < (ARRAY_SIZE(static_memory_map) - 1)) {
1919 		/* There's room for another entry */
1920 		static_memory_map[n].va = map->va;
1921 		static_memory_map[n].size = l;
1922 		static_memory_map[n + 1].type = MEM_AREA_END;
1923 		map->va += l;
1924 		map->size -= l;
1925 		map = static_memory_map + n;
1926 	} else {
1927 		/*
1928 		 * There isn't room for another entry, steal the reserved
1929 		 * entry as it's not useful for anything else any longer.
1930 		 */
1931 		map->size = l;
1932 	}
1933 	map->type = type;
1934 	map->region_size = granule;
1935 	map->attr = core_mmu_type_to_attr(type);
1936 	map->pa = p;
1937 
1938 	set_region(&tbl_info, map);
1939 
1940 	/* Make sure the new entry is visible before continuing. */
1941 	core_mmu_table_write_barrier();
1942 
1943 	return (void *)(vaddr_t)(map->va + addr - map->pa);
1944 }
1945 
1946 #ifdef CFG_WITH_PAGER
1947 static vaddr_t get_linear_map_end(void)
1948 {
1949 	/* this is synced with the generic linker file kern.ld.S */
1950 	return (vaddr_t)__heap2_end;
1951 }
1952 #endif
1953 
1954 #if defined(CFG_TEE_CORE_DEBUG)
1955 static void check_pa_matches_va(void *va, paddr_t pa)
1956 {
1957 	TEE_Result res = TEE_ERROR_GENERIC;
1958 	vaddr_t v = (vaddr_t)va;
1959 	paddr_t p = 0;
1960 	struct core_mmu_table_info ti __maybe_unused = { };
1961 
1962 	if (core_mmu_user_va_range_is_defined()) {
1963 		vaddr_t user_va_base = 0;
1964 		size_t user_va_size = 0;
1965 
1966 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1967 		if (v >= user_va_base &&
1968 		    v <= (user_va_base - 1 + user_va_size)) {
1969 			if (!core_mmu_user_mapping_is_active()) {
1970 				if (pa)
1971 					panic("issue in linear address space");
1972 				return;
1973 			}
1974 
1975 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
1976 				       va, &p);
1977 			if (res == TEE_ERROR_NOT_SUPPORTED)
1978 				return;
1979 			if (res == TEE_SUCCESS && pa != p)
1980 				panic("bad pa");
1981 			if (res != TEE_SUCCESS && pa)
1982 				panic("false pa");
1983 			return;
1984 		}
1985 	}
1986 #ifdef CFG_WITH_PAGER
1987 	if (is_unpaged(va)) {
1988 		if (v - boot_mmu_config.load_offset != pa)
1989 			panic("issue in linear address space");
1990 		return;
1991 	}
1992 
1993 	if (tee_pager_get_table_info(v, &ti)) {
1994 		uint32_t a;
1995 
1996 		/*
1997 		 * Lookups in the page table managed by the pager is
1998 		 * dangerous for addresses in the paged area as those pages
1999 		 * changes all the time. But some ranges are safe,
2000 		 * rw-locked areas when the page is populated for instance.
2001 		 */
2002 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2003 		if (a & TEE_MATTR_VALID_BLOCK) {
2004 			paddr_t mask = BIT64(ti.shift) - 1;
2005 
2006 			p |= v & mask;
2007 			if (pa != p)
2008 				panic();
2009 		} else {
2010 			if (pa)
2011 				panic();
2012 		}
2013 		return;
2014 	}
2015 #endif
2016 
2017 	if (!core_va2pa_helper(va, &p)) {
2018 		/* Verfiy only the static mapping (case non null phys addr) */
2019 		if (p && pa != p) {
2020 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2021 			     va, p, pa);
2022 			panic();
2023 		}
2024 	} else {
2025 		if (pa) {
2026 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2027 			panic();
2028 		}
2029 	}
2030 }
2031 #else
2032 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2033 {
2034 }
2035 #endif
2036 
2037 paddr_t virt_to_phys(void *va)
2038 {
2039 	paddr_t pa = 0;
2040 
2041 	if (!arch_va2pa_helper(va, &pa))
2042 		pa = 0;
2043 	check_pa_matches_va(va, pa);
2044 	return pa;
2045 }
2046 
2047 #if defined(CFG_TEE_CORE_DEBUG)
2048 static void check_va_matches_pa(paddr_t pa, void *va)
2049 {
2050 	paddr_t p = 0;
2051 
2052 	if (!va)
2053 		return;
2054 
2055 	p = virt_to_phys(va);
2056 	if (p != pa) {
2057 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2058 		panic();
2059 	}
2060 }
2061 #else
2062 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2063 {
2064 }
2065 #endif
2066 
2067 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2068 {
2069 	if (!core_mmu_user_mapping_is_active())
2070 		return NULL;
2071 
2072 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2073 }
2074 
2075 #ifdef CFG_WITH_PAGER
2076 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2077 {
2078 	paddr_t end_pa = 0;
2079 
2080 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2081 		return NULL;
2082 
2083 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end()) {
2084 		if (end_pa > get_linear_map_end())
2085 			return NULL;
2086 		return (void *)(vaddr_t)(pa + boot_mmu_config.load_offset);
2087 	}
2088 
2089 	return tee_pager_phys_to_virt(pa, len);
2090 }
2091 #else
2092 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2093 {
2094 	struct tee_mmap_region *mmap = NULL;
2095 
2096 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2097 	if (!mmap)
2098 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2099 	if (!mmap)
2100 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2101 	if (!mmap)
2102 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2103 	if (!mmap)
2104 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2105 	if (!mmap)
2106 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2107 	/*
2108 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2109 	 * used with pager and not needed here.
2110 	 */
2111 	return map_pa2va(mmap, pa, len);
2112 }
2113 #endif
2114 
2115 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2116 {
2117 	void *va = NULL;
2118 
2119 	switch (m) {
2120 	case MEM_AREA_TS_VASPACE:
2121 		va = phys_to_virt_ts_vaspace(pa, len);
2122 		break;
2123 	case MEM_AREA_TEE_RAM:
2124 	case MEM_AREA_TEE_RAM_RX:
2125 	case MEM_AREA_TEE_RAM_RO:
2126 	case MEM_AREA_TEE_RAM_RW:
2127 	case MEM_AREA_NEX_RAM_RO:
2128 	case MEM_AREA_NEX_RAM_RW:
2129 		va = phys_to_virt_tee_ram(pa, len);
2130 		break;
2131 	case MEM_AREA_SHM_VASPACE:
2132 		/* Find VA from PA in dynamic SHM is not yet supported */
2133 		va = NULL;
2134 		break;
2135 	default:
2136 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2137 	}
2138 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2139 		check_va_matches_pa(pa, va);
2140 	return va;
2141 }
2142 
2143 void *phys_to_virt_io(paddr_t pa, size_t len)
2144 {
2145 	struct tee_mmap_region *map = NULL;
2146 	void *va = NULL;
2147 
2148 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2149 	if (!map)
2150 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2151 	if (!map)
2152 		return NULL;
2153 	va = map_pa2va(map, pa, len);
2154 	check_va_matches_pa(pa, va);
2155 	return va;
2156 }
2157 
2158 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2159 {
2160 	if (cpu_mmu_enabled())
2161 		return (vaddr_t)phys_to_virt(pa, type, len);
2162 
2163 	return (vaddr_t)pa;
2164 }
2165 
2166 #ifdef CFG_WITH_PAGER
2167 bool is_unpaged(void *va)
2168 {
2169 	vaddr_t v = (vaddr_t)va;
2170 
2171 	return v >= VCORE_START_VA && v < get_linear_map_end();
2172 }
2173 #else
2174 bool is_unpaged(void *va __unused)
2175 {
2176 	return true;
2177 }
2178 #endif
2179 
2180 void core_mmu_init_virtualization(void)
2181 {
2182 	virt_init_memory(static_memory_map);
2183 }
2184 
2185 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2186 {
2187 	assert(p->pa);
2188 	if (cpu_mmu_enabled()) {
2189 		if (!p->va)
2190 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2191 		assert(p->va);
2192 		return p->va;
2193 	}
2194 	return p->pa;
2195 }
2196 
2197 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2198 {
2199 	assert(p->pa);
2200 	if (cpu_mmu_enabled()) {
2201 		if (!p->va)
2202 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2203 						      len);
2204 		assert(p->va);
2205 		return p->va;
2206 	}
2207 	return p->pa;
2208 }
2209 
2210 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2211 {
2212 	assert(p->pa);
2213 	if (cpu_mmu_enabled()) {
2214 		if (!p->va)
2215 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2216 						      len);
2217 		assert(p->va);
2218 		return p->va;
2219 	}
2220 	return p->pa;
2221 }
2222 
2223 #ifdef CFG_CORE_RESERVED_SHM
2224 static TEE_Result teecore_init_pub_ram(void)
2225 {
2226 	vaddr_t s = 0;
2227 	vaddr_t e = 0;
2228 
2229 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2230 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2231 
2232 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2233 		panic("invalid PUB RAM");
2234 
2235 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2236 	if (!tee_vbuf_is_non_sec(s, e - s))
2237 		panic("PUB RAM is not non-secure");
2238 
2239 #ifdef CFG_PL310
2240 	/* Allocate statically the l2cc mutex */
2241 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2242 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2243 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2244 #endif
2245 
2246 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2247 	default_nsec_shm_size = e - s;
2248 
2249 	return TEE_SUCCESS;
2250 }
2251 early_init(teecore_init_pub_ram);
2252 #endif /*CFG_CORE_RESERVED_SHM*/
2253 
2254 void core_mmu_init_ta_ram(void)
2255 {
2256 	vaddr_t s = 0;
2257 	vaddr_t e = 0;
2258 	paddr_t ps = 0;
2259 	size_t size = 0;
2260 
2261 	/*
2262 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2263 	 * shared mem allocated from teecore.
2264 	 */
2265 	if (IS_ENABLED(CFG_VIRTUALIZATION))
2266 		virt_get_ta_ram(&s, &e);
2267 	else
2268 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2269 
2270 	ps = virt_to_phys((void *)s);
2271 	size = e - s;
2272 
2273 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2274 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2275 		panic("invalid TA RAM");
2276 
2277 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2278 	if (!tee_pbuf_is_sec(ps, size))
2279 		panic("TA RAM is not secure");
2280 
2281 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2282 		panic("TA RAM pool is not empty");
2283 
2284 	/* remove previous config and init TA ddr memory pool */
2285 	tee_mm_final(&tee_mm_sec_ddr);
2286 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2287 		    TEE_MM_POOL_NO_FLAGS);
2288 }
2289