1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016-2025 Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved. 6 */ 7 8 #include <assert.h> 9 #include <config.h> 10 #include <kernel/boot.h> 11 #include <kernel/dt.h> 12 #include <kernel/linker.h> 13 #include <kernel/panic.h> 14 #include <kernel/spinlock.h> 15 #include <kernel/tee_l2cc_mutex.h> 16 #include <kernel/tee_misc.h> 17 #include <kernel/tlb_helpers.h> 18 #include <kernel/user_mode_ctx.h> 19 #include <kernel/virtualization.h> 20 #include <libfdt.h> 21 #include <memtag.h> 22 #include <mm/core_memprot.h> 23 #include <mm/core_mmu.h> 24 #include <mm/mobj.h> 25 #include <mm/pgt_cache.h> 26 #include <mm/phys_mem.h> 27 #include <mm/tee_pager.h> 28 #include <mm/vm.h> 29 #include <platform_config.h> 30 #include <stdalign.h> 31 #include <string.h> 32 #include <trace.h> 33 #include <util.h> 34 35 #ifndef DEBUG_XLAT_TABLE 36 #define DEBUG_XLAT_TABLE 0 37 #endif 38 39 #define SHM_VASPACE_SIZE (1024 * 1024 * 32) 40 41 /* Virtual memory pool for core mappings */ 42 tee_mm_pool_t core_virt_mem_pool; 43 44 /* Virtual memory pool for shared memory mappings */ 45 tee_mm_pool_t core_virt_shm_pool; 46 47 #ifdef CFG_CORE_PHYS_RELOCATABLE 48 unsigned long core_mmu_tee_load_pa __nex_bss; 49 #else 50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR; 51 #endif 52 53 /* 54 * These variables are initialized before .bss is cleared. To avoid 55 * resetting them when .bss is cleared we're storing them in .data instead, 56 * even if they initially are zero. 57 */ 58 59 #ifdef CFG_CORE_RESERVED_SHM 60 /* Default NSec shared memory allocated from NSec world */ 61 unsigned long default_nsec_shm_size __nex_bss; 62 unsigned long default_nsec_shm_paddr __nex_bss; 63 #endif 64 65 static struct memory_map static_memory_map __nex_bss; 66 void (*memory_map_realloc_func)(struct memory_map *mem_map) __nex_bss; 67 68 /* Offset of the first TEE RAM mapping from start of secure RAM */ 69 static size_t tee_ram_initial_offs __nex_bss; 70 71 /* Define the platform's memory layout. */ 72 struct memaccess_area { 73 paddr_t paddr; 74 size_t size; 75 }; 76 77 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } 78 79 static struct memaccess_area secure_only[] __nex_data = { 80 #ifdef CFG_CORE_PHYS_RELOCATABLE 81 MEMACCESS_AREA(0, 0), 82 #else 83 #ifdef TRUSTED_SRAM_BASE 84 MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), 85 #endif 86 MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), 87 #endif 88 }; 89 90 static struct memaccess_area nsec_shared[] __nex_data = { 91 #ifdef CFG_CORE_RESERVED_SHM 92 MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), 93 #endif 94 }; 95 96 #if defined(CFG_SECURE_DATA_PATH) 97 static const char *tz_sdp_match = "linaro,secure-heap"; 98 static struct memaccess_area sec_sdp; 99 #ifdef CFG_TEE_SDP_MEM_BASE 100 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); 101 #endif 102 #ifdef TEE_SDP_TEST_MEM_BASE 103 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); 104 #endif 105 #endif 106 107 #ifdef CFG_CORE_RESERVED_SHM 108 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); 109 #endif 110 static unsigned int mmu_spinlock; 111 112 static uint32_t mmu_lock(void) 113 { 114 return cpu_spin_lock_xsave(&mmu_spinlock); 115 } 116 117 static void mmu_unlock(uint32_t exceptions) 118 { 119 cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); 120 } 121 122 static void heap_realloc_memory_map(struct memory_map *mem_map) 123 { 124 struct tee_mmap_region *m = NULL; 125 struct tee_mmap_region *old = mem_map->map; 126 size_t old_sz = sizeof(*old) * mem_map->alloc_count; 127 size_t sz = old_sz + sizeof(*m); 128 129 assert(nex_malloc_buffer_is_within_alloced(old, old_sz)); 130 m = nex_realloc(old, sz); 131 if (!m) 132 panic(); 133 mem_map->map = m; 134 mem_map->alloc_count++; 135 } 136 137 static void boot_mem_realloc_memory_map(struct memory_map *mem_map) 138 { 139 struct tee_mmap_region *m = NULL; 140 struct tee_mmap_region *old = mem_map->map; 141 size_t old_sz = sizeof(*old) * mem_map->alloc_count; 142 size_t sz = old_sz * 2; 143 144 m = boot_mem_alloc_tmp(sz, alignof(*m)); 145 memcpy(m, old, old_sz); 146 mem_map->map = m; 147 mem_map->alloc_count *= 2; 148 } 149 150 static void grow_mem_map(struct memory_map *mem_map) 151 { 152 if (mem_map->count == mem_map->alloc_count) { 153 if (!memory_map_realloc_func) { 154 EMSG("Out of entries (%zu) in mem_map", 155 mem_map->alloc_count); 156 panic(); 157 } 158 memory_map_realloc_func(mem_map); 159 } 160 mem_map->count++; 161 } 162 163 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size) 164 { 165 /* 166 * The first range is always used to cover OP-TEE core memory, but 167 * depending on configuration it may cover more than that. 168 */ 169 *base = secure_only[0].paddr; 170 *size = secure_only[0].size; 171 } 172 173 void core_mmu_set_secure_memory(paddr_t base, size_t size) 174 { 175 #ifdef CFG_CORE_PHYS_RELOCATABLE 176 static_assert(ARRAY_SIZE(secure_only) == 1); 177 #endif 178 runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)); 179 assert(!secure_only[0].size); 180 assert(base && size); 181 182 DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size); 183 secure_only[0].paddr = base; 184 secure_only[0].size = size; 185 } 186 187 static struct memory_map *get_memory_map(void) 188 { 189 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 190 struct memory_map *map = virt_get_memory_map(); 191 192 if (map) 193 return map; 194 } 195 196 return &static_memory_map; 197 } 198 199 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, 200 paddr_t pa, size_t size) 201 { 202 size_t n; 203 204 for (n = 0; n < alen; n++) 205 if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) 206 return true; 207 return false; 208 } 209 210 #define pbuf_intersects(a, pa, size) \ 211 _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) 212 213 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, 214 paddr_t pa, size_t size) 215 { 216 size_t n; 217 218 for (n = 0; n < alen; n++) 219 if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) 220 return true; 221 return false; 222 } 223 224 #define pbuf_is_inside(a, pa, size) \ 225 _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) 226 227 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) 228 { 229 paddr_t end_pa = 0; 230 231 if (!map) 232 return false; 233 234 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 235 return false; 236 237 return (pa >= map->pa && end_pa <= map->pa + map->size - 1); 238 } 239 240 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) 241 { 242 if (!map) 243 return false; 244 return (va >= map->va && va <= (map->va + map->size - 1)); 245 } 246 247 /* check if target buffer fits in a core default map area */ 248 static bool pbuf_inside_map_area(unsigned long p, size_t l, 249 struct tee_mmap_region *map) 250 { 251 return core_is_buffer_inside(p, l, map->pa, map->size); 252 } 253 254 TEE_Result core_mmu_for_each_map(void *ptr, 255 TEE_Result (*fn)(struct tee_mmap_region *map, 256 void *ptr)) 257 { 258 struct memory_map *mem_map = get_memory_map(); 259 TEE_Result res = TEE_SUCCESS; 260 size_t n = 0; 261 262 for (n = 0; n < mem_map->count; n++) { 263 res = fn(mem_map->map + n, ptr); 264 if (res) 265 return res; 266 } 267 268 return TEE_SUCCESS; 269 } 270 271 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) 272 { 273 struct memory_map *mem_map = get_memory_map(); 274 size_t n = 0; 275 276 for (n = 0; n < mem_map->count; n++) { 277 if (mem_map->map[n].type == type) 278 return mem_map->map + n; 279 } 280 return NULL; 281 } 282 283 static struct tee_mmap_region * 284 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) 285 { 286 struct memory_map *mem_map = get_memory_map(); 287 size_t n = 0; 288 289 for (n = 0; n < mem_map->count; n++) { 290 if (mem_map->map[n].type != type) 291 continue; 292 if (pa_is_in_map(mem_map->map + n, pa, len)) 293 return mem_map->map + n; 294 } 295 return NULL; 296 } 297 298 static struct tee_mmap_region *find_map_by_va(void *va) 299 { 300 struct memory_map *mem_map = get_memory_map(); 301 vaddr_t a = (vaddr_t)va; 302 size_t n = 0; 303 304 for (n = 0; n < mem_map->count; n++) { 305 if (a >= mem_map->map[n].va && 306 a <= (mem_map->map[n].va - 1 + mem_map->map[n].size)) 307 return mem_map->map + n; 308 } 309 310 return NULL; 311 } 312 313 static struct tee_mmap_region *find_map_by_pa(unsigned long pa) 314 { 315 struct memory_map *mem_map = get_memory_map(); 316 size_t n = 0; 317 318 for (n = 0; n < mem_map->count; n++) { 319 /* Skip unmapped regions */ 320 if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) && 321 pa >= mem_map->map[n].pa && 322 pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size)) 323 return mem_map->map + n; 324 } 325 326 return NULL; 327 } 328 329 #if defined(CFG_SECURE_DATA_PATH) 330 static bool dtb_get_sdp_region(void) 331 { 332 void *fdt = NULL; 333 int node = 0; 334 int tmp_node = 0; 335 paddr_t tmp_addr = 0; 336 size_t tmp_size = 0; 337 338 if (!IS_ENABLED(CFG_EMBED_DTB)) 339 return false; 340 341 fdt = get_embedded_dt(); 342 if (!fdt) 343 panic("No DTB found"); 344 345 node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match); 346 if (node < 0) { 347 DMSG("No %s compatible node found", tz_sdp_match); 348 return false; 349 } 350 tmp_node = node; 351 while (tmp_node >= 0) { 352 tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node, 353 tz_sdp_match); 354 if (tmp_node >= 0) 355 DMSG("Ignore SDP pool node %s, supports only 1 node", 356 fdt_get_name(fdt, tmp_node, NULL)); 357 } 358 359 if (fdt_reg_info(fdt, node, &tmp_addr, &tmp_size)) { 360 EMSG("%s: Unable to get base addr or size from DT", 361 tz_sdp_match); 362 return false; 363 } 364 365 sec_sdp.paddr = tmp_addr; 366 sec_sdp.size = tmp_size; 367 368 return true; 369 } 370 #endif 371 372 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) 373 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, 374 const struct core_mmu_phys_mem *start, 375 const struct core_mmu_phys_mem *end) 376 { 377 const struct core_mmu_phys_mem *mem; 378 379 for (mem = start; mem < end; mem++) { 380 if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) 381 return true; 382 } 383 384 return false; 385 } 386 #endif 387 388 #ifdef CFG_CORE_DYN_SHM 389 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, 390 paddr_t pa, size_t size) 391 { 392 struct core_mmu_phys_mem *m = *mem; 393 size_t n = 0; 394 395 while (n < *nelems) { 396 if (!core_is_buffer_intersect(pa, size, m[n].addr, m[n].size)) { 397 n++; 398 continue; 399 } 400 401 if (core_is_buffer_inside(m[n].addr, m[n].size, pa, size)) { 402 /* m[n] is completely covered by pa:size */ 403 rem_array_elem(m, *nelems, sizeof(*m), n); 404 (*nelems)--; 405 m = nex_realloc(m, sizeof(*m) * *nelems); 406 if (!m) 407 panic(); 408 *mem = m; 409 continue; 410 } 411 412 if (pa > m[n].addr && 413 pa + size - 1 < m[n].addr + m[n].size - 1) { 414 /* 415 * pa:size is strictly inside m[n] range so split 416 * m[n] entry. 417 */ 418 m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); 419 if (!m) 420 panic(); 421 *mem = m; 422 (*nelems)++; 423 ins_array_elem(m, *nelems, sizeof(*m), n + 1, NULL); 424 m[n + 1].addr = pa + size; 425 m[n + 1].size = m[n].addr + m[n].size - pa - size; 426 m[n].size = pa - m[n].addr; 427 n++; 428 } else if (pa <= m[n].addr) { 429 /* 430 * pa:size is overlapping (possibly partially) at the 431 * beginning of m[n]. 432 */ 433 m[n].size = m[n].addr + m[n].size - pa - size; 434 m[n].addr = pa + size; 435 } else { 436 /* 437 * pa:size is overlapping (possibly partially) at 438 * the end of m[n]. 439 */ 440 m[n].size = pa - m[n].addr; 441 } 442 n++; 443 } 444 } 445 446 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, 447 size_t nelems, 448 struct tee_mmap_region *map) 449 { 450 size_t n; 451 452 for (n = 0; n < nelems; n++) { 453 if (!core_is_buffer_outside(start[n].addr, start[n].size, 454 map->pa, map->size)) { 455 EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ 456 ") overlaps map (type %d %#" PRIxPA ":%#zx)", 457 start[n].addr, start[n].size, 458 map->type, map->pa, map->size); 459 panic(); 460 } 461 } 462 } 463 464 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; 465 static size_t discovered_nsec_ddr_nelems __nex_bss; 466 467 static int cmp_pmem_by_addr(const void *a, const void *b) 468 { 469 const struct core_mmu_phys_mem *pmem_a = a; 470 const struct core_mmu_phys_mem *pmem_b = b; 471 472 return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); 473 } 474 475 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 476 size_t nelems) 477 { 478 struct core_mmu_phys_mem *m = start; 479 size_t num_elems = nelems; 480 struct memory_map *mem_map = &static_memory_map; 481 const struct core_mmu_phys_mem __maybe_unused *pmem; 482 size_t n = 0; 483 484 assert(!discovered_nsec_ddr_start); 485 assert(m && num_elems); 486 487 qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); 488 489 /* 490 * Non-secure shared memory and also secure data 491 * path memory are supposed to reside inside 492 * non-secure memory. Since NSEC_SHM and SDP_MEM 493 * are used for a specific purpose make holes for 494 * those memory in the normal non-secure memory. 495 * 496 * This has to be done since for instance QEMU 497 * isn't aware of which memory range in the 498 * non-secure memory is used for NSEC_SHM. 499 */ 500 501 #ifdef CFG_SECURE_DATA_PATH 502 if (dtb_get_sdp_region()) 503 carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size); 504 505 for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) 506 carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); 507 #endif 508 509 for (n = 0; n < ARRAY_SIZE(secure_only); n++) 510 carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr, 511 secure_only[n].size); 512 513 for (n = 0; n < mem_map->count; n++) { 514 switch (mem_map->map[n].type) { 515 case MEM_AREA_NSEC_SHM: 516 carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa, 517 mem_map->map[n].size); 518 break; 519 case MEM_AREA_EXT_DT: 520 case MEM_AREA_MANIFEST_DT: 521 case MEM_AREA_RAM_NSEC: 522 case MEM_AREA_RES_VASPACE: 523 case MEM_AREA_SHM_VASPACE: 524 case MEM_AREA_TS_VASPACE: 525 case MEM_AREA_PAGER_VASPACE: 526 break; 527 default: 528 check_phys_mem_is_outside(m, num_elems, 529 mem_map->map + n); 530 } 531 } 532 533 discovered_nsec_ddr_start = m; 534 discovered_nsec_ddr_nelems = num_elems; 535 536 DMSG("Non-secure RAM:"); 537 for (n = 0; n < num_elems; n++) 538 DMSG("%zu: pa %#"PRIxPA"..%#"PRIxPA" sz %#"PRIxPASZ, 539 n, m[n].addr, m[n].addr + m[n].size - 1, m[n].size); 540 541 if (!core_mmu_check_end_pa(m[num_elems - 1].addr, 542 m[num_elems - 1].size)) 543 panic(); 544 } 545 546 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, 547 const struct core_mmu_phys_mem **end) 548 { 549 if (!discovered_nsec_ddr_start) 550 return false; 551 552 *start = discovered_nsec_ddr_start; 553 *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; 554 555 return true; 556 } 557 558 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) 559 { 560 const struct core_mmu_phys_mem *start; 561 const struct core_mmu_phys_mem *end; 562 563 if (!get_discovered_nsec_ddr(&start, &end)) 564 return false; 565 566 return pbuf_is_special_mem(pbuf, len, start, end); 567 } 568 569 bool core_mmu_nsec_ddr_is_defined(void) 570 { 571 const struct core_mmu_phys_mem *start; 572 const struct core_mmu_phys_mem *end; 573 574 if (!get_discovered_nsec_ddr(&start, &end)) 575 return false; 576 577 return start != end; 578 } 579 #else 580 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) 581 { 582 return false; 583 } 584 #endif /*CFG_CORE_DYN_SHM*/ 585 586 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ 587 EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ 588 pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) 589 590 #ifdef CFG_SECURE_DATA_PATH 591 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) 592 { 593 bool is_sdp_mem = false; 594 595 if (sec_sdp.size) 596 is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr, 597 sec_sdp.size); 598 599 if (!is_sdp_mem) 600 is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, 601 phys_sdp_mem_end); 602 603 return is_sdp_mem; 604 } 605 606 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size) 607 { 608 struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED, 609 CORE_MEM_SDP_MEM); 610 611 if (!mobj) 612 panic("can't create SDP physical memory object"); 613 614 return mobj; 615 } 616 617 struct mobj **core_sdp_mem_create_mobjs(void) 618 { 619 const struct core_mmu_phys_mem *mem = NULL; 620 struct mobj **mobj_base = NULL; 621 struct mobj **mobj = NULL; 622 int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; 623 624 if (sec_sdp.size) 625 cnt++; 626 627 /* SDP mobjs table must end with a NULL entry */ 628 mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); 629 if (!mobj_base) 630 panic("Out of memory"); 631 632 mobj = mobj_base; 633 634 for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++) 635 *mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size); 636 637 if (sec_sdp.size) 638 *mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size); 639 640 return mobj_base; 641 } 642 643 #else /* CFG_SECURE_DATA_PATH */ 644 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) 645 { 646 return false; 647 } 648 649 #endif /* CFG_SECURE_DATA_PATH */ 650 651 /* Check special memories comply with registered memories */ 652 static void verify_special_mem_areas(struct memory_map *mem_map, 653 const struct core_mmu_phys_mem *start, 654 const struct core_mmu_phys_mem *end, 655 const char *area_name __maybe_unused) 656 { 657 const struct core_mmu_phys_mem *mem = NULL; 658 const struct core_mmu_phys_mem *mem2 = NULL; 659 size_t n = 0; 660 661 if (start == end) { 662 DMSG("No %s memory area defined", area_name); 663 return; 664 } 665 666 for (mem = start; mem < end; mem++) 667 DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", 668 area_name, mem->addr, (uint64_t)mem->addr + mem->size); 669 670 /* Check memories do not intersect each other */ 671 for (mem = start; mem + 1 < end; mem++) { 672 for (mem2 = mem + 1; mem2 < end; mem2++) { 673 if (core_is_buffer_intersect(mem2->addr, mem2->size, 674 mem->addr, mem->size)) { 675 MSG_MEM_INSTERSECT(mem2->addr, mem2->size, 676 mem->addr, mem->size); 677 panic("Special memory intersection"); 678 } 679 } 680 } 681 682 /* 683 * Check memories do not intersect any mapped memory. 684 * This is called before reserved VA space is loaded in mem_map. 685 */ 686 for (mem = start; mem < end; mem++) { 687 for (n = 0; n < mem_map->count; n++) { 688 #ifdef TEE_SDP_TEST_MEM_BASE 689 /* 690 * Ignore MEM_AREA_SEC_RAM_OVERALL since it covers 691 * TEE_SDP_TEST_MEM too. 692 */ 693 if (mem->addr == TEE_SDP_TEST_MEM_BASE && 694 mem->size == TEE_SDP_TEST_MEM_SIZE && 695 mem_map->map[n].type == MEM_AREA_SEC_RAM_OVERALL) 696 continue; 697 #endif 698 if (core_is_buffer_intersect(mem->addr, mem->size, 699 mem_map->map[n].pa, 700 mem_map->map[n].size)) { 701 MSG_MEM_INSTERSECT(mem->addr, mem->size, 702 mem_map->map[n].pa, 703 mem_map->map[n].size); 704 panic("Special memory intersection"); 705 } 706 } 707 } 708 } 709 710 static void merge_mmaps(struct tee_mmap_region *dst, 711 const struct tee_mmap_region *src) 712 { 713 paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1); 714 paddr_t pa = MIN(dst->pa, src->pa); 715 716 DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA, 717 dst->pa, dst->pa + dst->size - 1, src->pa, 718 src->pa + src->size - 1); 719 dst->pa = pa; 720 dst->size = end_pa - pa + 1; 721 } 722 723 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1, 724 const struct tee_mmap_region *r2) 725 { 726 if (r1->type != r2->type) 727 return false; 728 729 if (r1->pa == r2->pa) 730 return true; 731 732 if (r1->pa < r2->pa) 733 return r1->pa + r1->size >= r2->pa; 734 else 735 return r2->pa + r2->size >= r1->pa; 736 } 737 738 static void add_phys_mem(struct memory_map *mem_map, 739 const char *mem_name __maybe_unused, 740 enum teecore_memtypes mem_type, 741 paddr_t mem_addr, paddr_size_t mem_size) 742 { 743 size_t n = 0; 744 const struct tee_mmap_region m0 = { 745 .type = mem_type, 746 .pa = mem_addr, 747 .size = mem_size, 748 }; 749 750 if (!mem_size) /* Discard null size entries */ 751 return; 752 753 /* 754 * If some ranges of memory of the same type do overlap 755 * each others they are coalesced into one entry. To help this 756 * added entries are sorted by increasing physical. 757 * 758 * Note that it's valid to have the same physical memory as several 759 * different memory types, for instance the same device memory 760 * mapped as both secure and non-secure. This will probably not 761 * happen often in practice. 762 */ 763 DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, 764 mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size); 765 for (n = 0; n < mem_map->count; n++) { 766 if (mmaps_are_mergeable(mem_map->map + n, &m0)) { 767 merge_mmaps(mem_map->map + n, &m0); 768 /* 769 * The merged result might be mergeable with the 770 * next or previous entry. 771 */ 772 if (n + 1 < mem_map->count && 773 mmaps_are_mergeable(mem_map->map + n, 774 mem_map->map + n + 1)) { 775 merge_mmaps(mem_map->map + n, 776 mem_map->map + n + 1); 777 rem_array_elem(mem_map->map, mem_map->count, 778 sizeof(*mem_map->map), n + 1); 779 mem_map->count--; 780 } 781 if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1, 782 mem_map->map + n)) { 783 merge_mmaps(mem_map->map + n - 1, 784 mem_map->map + n); 785 rem_array_elem(mem_map->map, mem_map->count, 786 sizeof(*mem_map->map), n); 787 mem_map->count--; 788 } 789 return; 790 } 791 if (mem_type < mem_map->map[n].type || 792 (mem_type == mem_map->map[n].type && 793 mem_addr < mem_map->map[n].pa)) 794 break; /* found the spot where to insert this memory */ 795 } 796 797 grow_mem_map(mem_map); 798 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 799 n, &m0); 800 } 801 802 static void add_va_space(struct memory_map *mem_map, 803 enum teecore_memtypes type, size_t size) 804 { 805 size_t n = 0; 806 807 DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); 808 for (n = 0; n < mem_map->count; n++) { 809 if (type < mem_map->map[n].type) 810 break; 811 } 812 813 grow_mem_map(mem_map); 814 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 815 n, NULL); 816 mem_map->map[n] = (struct tee_mmap_region){ 817 .type = type, 818 .size = size, 819 }; 820 } 821 822 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) 823 { 824 const uint32_t attr = TEE_MATTR_VALID_BLOCK; 825 const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED << 826 TEE_MATTR_MEM_TYPE_SHIFT; 827 const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << 828 TEE_MATTR_MEM_TYPE_SHIFT; 829 const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << 830 TEE_MATTR_MEM_TYPE_SHIFT; 831 832 switch (t) { 833 case MEM_AREA_TEE_RAM: 834 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged; 835 case MEM_AREA_TEE_RAM_RX: 836 case MEM_AREA_INIT_RAM_RX: 837 case MEM_AREA_IDENTITY_MAP_RX: 838 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged; 839 case MEM_AREA_TEE_RAM_RO: 840 case MEM_AREA_INIT_RAM_RO: 841 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged; 842 case MEM_AREA_TEE_RAM_RW: 843 case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ 844 case MEM_AREA_NEX_RAM_RW: 845 case MEM_AREA_NEX_DYN_VASPACE: 846 case MEM_AREA_TEE_DYN_VASPACE: 847 case MEM_AREA_TEE_ASAN: 848 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 849 case MEM_AREA_TEE_COHERENT: 850 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; 851 case MEM_AREA_NSEC_SHM: 852 case MEM_AREA_NEX_NSEC_SHM: 853 return attr | TEE_MATTR_PRW | cached; 854 case MEM_AREA_MANIFEST_DT: 855 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 856 case MEM_AREA_TRANSFER_LIST: 857 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 858 case MEM_AREA_EXT_DT: 859 /* 860 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device 861 * tree as secure non-cached memory, otherwise, fall back to 862 * non-secure mapping. 863 */ 864 if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE)) 865 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | 866 noncache; 867 fallthrough; 868 case MEM_AREA_IO_NSEC: 869 return attr | TEE_MATTR_PRW | noncache; 870 case MEM_AREA_IO_SEC: 871 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; 872 case MEM_AREA_RAM_NSEC: 873 return attr | TEE_MATTR_PRW | cached; 874 case MEM_AREA_RAM_SEC: 875 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 876 case MEM_AREA_SEC_RAM_OVERALL: 877 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 878 case MEM_AREA_ROM_SEC: 879 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 880 case MEM_AREA_RES_VASPACE: 881 case MEM_AREA_SHM_VASPACE: 882 return 0; 883 case MEM_AREA_PAGER_VASPACE: 884 return TEE_MATTR_SECURE; 885 default: 886 panic("invalid type"); 887 } 888 } 889 890 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) 891 { 892 switch (mm->type) { 893 case MEM_AREA_TEE_RAM: 894 case MEM_AREA_TEE_RAM_RX: 895 case MEM_AREA_TEE_RAM_RO: 896 case MEM_AREA_TEE_RAM_RW: 897 case MEM_AREA_INIT_RAM_RX: 898 case MEM_AREA_INIT_RAM_RO: 899 case MEM_AREA_NEX_RAM_RW: 900 case MEM_AREA_NEX_RAM_RO: 901 case MEM_AREA_TEE_ASAN: 902 return true; 903 default: 904 return false; 905 } 906 } 907 908 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) 909 { 910 return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); 911 } 912 913 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) 914 { 915 return mm->region_size == CORE_MMU_PGDIR_SIZE; 916 } 917 918 static int cmp_mmap_by_lower_va(const void *a, const void *b) 919 { 920 const struct tee_mmap_region *mm_a = a; 921 const struct tee_mmap_region *mm_b = b; 922 923 return CMP_TRILEAN(mm_a->va, mm_b->va); 924 } 925 926 static void dump_mmap_table(struct memory_map *mem_map) 927 { 928 size_t n = 0; 929 930 for (n = 0; n < mem_map->count; n++) { 931 struct tee_mmap_region *map __maybe_unused = mem_map->map + n; 932 933 DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA 934 " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", 935 teecore_memtype_name(map->type), map->va, 936 map->va + map->size - 1, map->pa, 937 (paddr_t)(map->pa + map->size - 1), map->size, 938 map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); 939 } 940 } 941 942 #if DEBUG_XLAT_TABLE 943 944 static void dump_xlat_table(vaddr_t va, unsigned int level) 945 { 946 struct core_mmu_table_info tbl_info; 947 unsigned int idx = 0; 948 paddr_t pa; 949 uint32_t attr; 950 951 core_mmu_find_table(NULL, va, level, &tbl_info); 952 va = tbl_info.va_base; 953 for (idx = 0; idx < tbl_info.num_entries; idx++) { 954 core_mmu_get_entry(&tbl_info, idx, &pa, &attr); 955 if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { 956 const char *security_bit = ""; 957 958 if (core_mmu_entry_have_security_bit(attr)) { 959 if (attr & TEE_MATTR_SECURE) 960 security_bit = "S"; 961 else 962 security_bit = "NS"; 963 } 964 965 if (attr & TEE_MATTR_TABLE) { 966 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 967 " TBL:0x%010" PRIxPA " %s", 968 level * 2, "", level, va, pa, 969 security_bit); 970 dump_xlat_table(va, level + 1); 971 } else if (attr) { 972 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 973 " PA:0x%010" PRIxPA " %s-%s-%s-%s", 974 level * 2, "", level, va, pa, 975 mattr_is_cached(attr) ? "MEM" : 976 "DEV", 977 attr & TEE_MATTR_PW ? "RW" : "RO", 978 attr & TEE_MATTR_PX ? "X " : "XN", 979 security_bit); 980 } else { 981 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 982 " INVALID\n", 983 level * 2, "", level, va); 984 } 985 } 986 va += BIT64(tbl_info.shift); 987 } 988 } 989 990 #else 991 992 static void dump_xlat_table(vaddr_t va __unused, int level __unused) 993 { 994 } 995 996 #endif 997 998 /* 999 * Reserves virtual memory space for pager usage. 1000 * 1001 * From the start of the first memory used by the link script + 1002 * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty 1003 * mapping for pager usage. This adds translation tables as needed for the 1004 * pager to operate. 1005 */ 1006 static void add_pager_vaspace(struct memory_map *mem_map) 1007 { 1008 paddr_t begin = 0; 1009 paddr_t end = 0; 1010 size_t size = 0; 1011 size_t pos = 0; 1012 size_t n = 0; 1013 1014 1015 for (n = 0; n < mem_map->count; n++) { 1016 if (map_is_tee_ram(mem_map->map + n)) { 1017 if (!begin) 1018 begin = mem_map->map[n].pa; 1019 pos = n + 1; 1020 } 1021 } 1022 1023 end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size; 1024 assert(end - begin < TEE_RAM_VA_SIZE); 1025 size = TEE_RAM_VA_SIZE - (end - begin); 1026 1027 grow_mem_map(mem_map); 1028 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 1029 n, NULL); 1030 mem_map->map[n] = (struct tee_mmap_region){ 1031 .type = MEM_AREA_PAGER_VASPACE, 1032 .size = size, 1033 .region_size = SMALL_PAGE_SIZE, 1034 .attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE), 1035 }; 1036 } 1037 1038 static void check_sec_nsec_mem_config(void) 1039 { 1040 size_t n = 0; 1041 1042 for (n = 0; n < ARRAY_SIZE(secure_only); n++) { 1043 if (pbuf_intersects(nsec_shared, secure_only[n].paddr, 1044 secure_only[n].size)) 1045 panic("Invalid memory access config: sec/nsec"); 1046 } 1047 } 1048 1049 static void collect_device_mem_ranges(struct memory_map *mem_map) 1050 { 1051 const char *compatible = "arm,ffa-manifest-device-regions"; 1052 void *fdt = get_manifest_dt(); 1053 const char *name = NULL; 1054 uint64_t page_count = 0; 1055 uint64_t base = 0; 1056 int subnode = 0; 1057 int node = 0; 1058 1059 assert(fdt); 1060 1061 node = fdt_node_offset_by_compatible(fdt, 0, compatible); 1062 if (node < 0) 1063 return; 1064 1065 fdt_for_each_subnode(subnode, fdt, node) { 1066 name = fdt_get_name(fdt, subnode, NULL); 1067 if (!name) 1068 continue; 1069 1070 if (dt_getprop_as_number(fdt, subnode, "base-address", 1071 &base)) { 1072 EMSG("Mandatory field is missing: base-address"); 1073 continue; 1074 } 1075 1076 if (base & SMALL_PAGE_MASK) { 1077 EMSG("base-address is not page aligned"); 1078 continue; 1079 } 1080 1081 if (dt_getprop_as_number(fdt, subnode, "pages-count", 1082 &page_count)) { 1083 EMSG("Mandatory field is missing: pages-count"); 1084 continue; 1085 } 1086 1087 add_phys_mem(mem_map, name, MEM_AREA_IO_SEC, 1088 base, page_count * SMALL_PAGE_SIZE); 1089 } 1090 } 1091 1092 static void collect_mem_ranges(struct memory_map *mem_map) 1093 { 1094 const struct core_mmu_phys_mem *mem = NULL; 1095 vaddr_t ram_start = secure_only[0].paddr; 1096 size_t n = 0; 1097 1098 #define ADD_PHYS_MEM(_type, _addr, _size) \ 1099 add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size)) 1100 1101 if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) { 1102 paddr_t next_pa = 0; 1103 1104 /* 1105 * Read-only and read-execute physical memory areas must 1106 * not be mapped by MEM_AREA_SEC_RAM_OVERALL, but all the 1107 * read/write should. 1108 */ 1109 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, ram_start, 1110 VCORE_UNPG_RX_PA - ram_start); 1111 assert(VCORE_UNPG_RX_PA >= ram_start); 1112 tee_ram_initial_offs = VCORE_UNPG_RX_PA - ram_start; 1113 DMSG("tee_ram_initial_offs %#zx", tee_ram_initial_offs); 1114 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, 1115 VCORE_UNPG_RX_SZ); 1116 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, 1117 VCORE_UNPG_RO_SZ); 1118 1119 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1120 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, 1121 VCORE_UNPG_RW_SZ); 1122 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA, 1123 VCORE_UNPG_RW_SZ); 1124 1125 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, 1126 VCORE_NEX_RW_SZ); 1127 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_NEX_RW_PA, 1128 VCORE_NEX_RW_SZ); 1129 1130 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_FREE_PA, 1131 VCORE_FREE_SZ); 1132 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA, 1133 VCORE_FREE_SZ); 1134 next_pa = VCORE_FREE_PA + VCORE_FREE_SZ; 1135 } else { 1136 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, 1137 VCORE_UNPG_RW_SZ); 1138 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA, 1139 VCORE_UNPG_RW_SZ); 1140 1141 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_FREE_PA, 1142 VCORE_FREE_SZ); 1143 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA, 1144 VCORE_FREE_SZ); 1145 next_pa = VCORE_FREE_PA + VCORE_FREE_SZ; 1146 } 1147 1148 if (IS_ENABLED(CFG_WITH_PAGER)) { 1149 paddr_t pa = 0; 1150 size_t sz = 0; 1151 1152 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, 1153 VCORE_INIT_RX_SZ); 1154 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, 1155 VCORE_INIT_RO_SZ); 1156 /* 1157 * Core init mapping shall cover up to end of the 1158 * physical RAM. This is required since the hash 1159 * table is appended to the binary data after the 1160 * firmware build sequence. 1161 */ 1162 pa = VCORE_INIT_RO_PA + VCORE_INIT_RO_SZ; 1163 sz = TEE_RAM_START + TEE_RAM_PH_SIZE - pa; 1164 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, pa, sz); 1165 } else { 1166 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, next_pa, 1167 secure_only[0].paddr + 1168 secure_only[0].size - next_pa); 1169 } 1170 } else { 1171 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); 1172 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr, 1173 secure_only[0].size); 1174 } 1175 1176 for (n = 1; n < ARRAY_SIZE(secure_only); n++) 1177 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr, 1178 secure_only[n].size); 1179 1180 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) && 1181 IS_ENABLED(CFG_WITH_PAGER)) { 1182 /* 1183 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is 1184 * disabled. 1185 */ 1186 ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); 1187 } 1188 1189 #undef ADD_PHYS_MEM 1190 1191 /* Collect device memory info from SP manifest */ 1192 if (IS_ENABLED(CFG_CORE_SEL2_SPMC)) 1193 collect_device_mem_ranges(mem_map); 1194 1195 for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { 1196 /* Only unmapped virtual range may have a null phys addr */ 1197 assert(mem->addr || !core_mmu_type_to_attr(mem->type)); 1198 1199 add_phys_mem(mem_map, mem->name, mem->type, 1200 mem->addr, mem->size); 1201 } 1202 1203 if (IS_ENABLED(CFG_SECURE_DATA_PATH)) 1204 verify_special_mem_areas(mem_map, phys_sdp_mem_begin, 1205 phys_sdp_mem_end, "SDP"); 1206 1207 add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE); 1208 add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE); 1209 if (IS_ENABLED(CFG_DYN_CONFIG)) { 1210 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) 1211 add_va_space(mem_map, MEM_AREA_NEX_DYN_VASPACE, 1212 ROUNDUP(CFG_NEX_DYN_VASPACE_SIZE, 1213 CORE_MMU_PGDIR_SIZE)); 1214 add_va_space(mem_map, MEM_AREA_TEE_DYN_VASPACE, 1215 CFG_TEE_DYN_VASPACE_SIZE); 1216 } 1217 } 1218 1219 static void assign_mem_granularity(struct memory_map *mem_map) 1220 { 1221 size_t n = 0; 1222 1223 /* 1224 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses 1225 * SMALL_PAGE_SIZE. 1226 */ 1227 for (n = 0; n < mem_map->count; n++) { 1228 paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size; 1229 1230 if (mask & SMALL_PAGE_MASK) 1231 panic("Impossible memory alignment"); 1232 1233 if (map_is_tee_ram(mem_map->map + n)) 1234 mem_map->map[n].region_size = SMALL_PAGE_SIZE; 1235 else 1236 mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE; 1237 } 1238 } 1239 1240 static bool place_tee_ram_at_top(paddr_t paddr) 1241 { 1242 return paddr > BIT64(core_mmu_get_va_width()) / 2; 1243 } 1244 1245 /* 1246 * MMU arch driver shall override this function if it helps 1247 * optimizing the memory footprint of the address translation tables. 1248 */ 1249 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr) 1250 { 1251 return place_tee_ram_at_top(paddr); 1252 } 1253 1254 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map, 1255 bool tee_ram_at_top) 1256 { 1257 struct tee_mmap_region *map = NULL; 1258 vaddr_t va = 0; 1259 bool va_is_secure = true; 1260 size_t n = 0; 1261 1262 /* 1263 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y. 1264 * 0 is by design an invalid va, so return false directly. 1265 */ 1266 if (!tee_ram_va) 1267 return false; 1268 1269 /* Clear eventual previous assignments */ 1270 for (n = 0; n < mem_map->count; n++) 1271 mem_map->map[n].va = 0; 1272 1273 /* 1274 * TEE RAM regions are always aligned with region_size. 1275 * 1276 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here 1277 * since it handles virtual memory which covers the part of the ELF 1278 * that cannot fit directly into memory. 1279 */ 1280 va = tee_ram_va + tee_ram_initial_offs; 1281 for (n = 0; n < mem_map->count; n++) { 1282 map = mem_map->map + n; 1283 if (map_is_tee_ram(map) || 1284 map->type == MEM_AREA_PAGER_VASPACE) { 1285 assert(!(va & (map->region_size - 1))); 1286 assert(!(map->size & (map->region_size - 1))); 1287 map->va = va; 1288 if (ADD_OVERFLOW(va, map->size, &va)) 1289 return false; 1290 if (va >= BIT64(core_mmu_get_va_width())) 1291 return false; 1292 } 1293 } 1294 1295 if (tee_ram_at_top) { 1296 /* 1297 * Map non-tee ram regions at addresses lower than the tee 1298 * ram region. 1299 */ 1300 va = tee_ram_va; 1301 for (n = 0; n < mem_map->count; n++) { 1302 map = mem_map->map + n; 1303 map->attr = core_mmu_type_to_attr(map->type); 1304 if (map->va) 1305 continue; 1306 1307 if (!IS_ENABLED(CFG_WITH_LPAE) && 1308 va_is_secure != map_is_secure(map)) { 1309 va_is_secure = !va_is_secure; 1310 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1311 } 1312 1313 if (SUB_OVERFLOW(va, map->size, &va)) 1314 return false; 1315 va = ROUNDDOWN2(va, map->region_size); 1316 /* 1317 * Make sure that va is aligned with pa for 1318 * efficient pgdir mapping. Basically pa & 1319 * pgdir_mask should be == va & pgdir_mask 1320 */ 1321 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1322 if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) 1323 return false; 1324 va += (map->pa - va) & CORE_MMU_PGDIR_MASK; 1325 } 1326 map->va = va; 1327 } 1328 } else { 1329 /* 1330 * Map non-tee ram regions at addresses higher than the tee 1331 * ram region. 1332 */ 1333 for (n = 0; n < mem_map->count; n++) { 1334 map = mem_map->map + n; 1335 map->attr = core_mmu_type_to_attr(map->type); 1336 if (map->va) 1337 continue; 1338 1339 if (!IS_ENABLED(CFG_WITH_LPAE) && 1340 va_is_secure != map_is_secure(map)) { 1341 va_is_secure = !va_is_secure; 1342 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1343 &va)) 1344 return false; 1345 } 1346 1347 if (ROUNDUP2_OVERFLOW(va, map->region_size, &va)) 1348 return false; 1349 /* 1350 * Make sure that va is aligned with pa for 1351 * efficient pgdir mapping. Basically pa & 1352 * pgdir_mask should be == va & pgdir_mask 1353 */ 1354 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1355 vaddr_t offs = (map->pa - va) & 1356 CORE_MMU_PGDIR_MASK; 1357 1358 if (ADD_OVERFLOW(va, offs, &va)) 1359 return false; 1360 } 1361 1362 map->va = va; 1363 if (ADD_OVERFLOW(va, map->size, &va)) 1364 return false; 1365 if (va >= BIT64(core_mmu_get_va_width())) 1366 return false; 1367 } 1368 } 1369 1370 return true; 1371 } 1372 1373 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map) 1374 { 1375 bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va); 1376 1377 /* 1378 * Check that we're not overlapping with the user VA range. 1379 */ 1380 if (IS_ENABLED(CFG_WITH_LPAE)) { 1381 /* 1382 * User VA range is supposed to be defined after these 1383 * mappings have been established. 1384 */ 1385 assert(!core_mmu_user_va_range_is_defined()); 1386 } else { 1387 vaddr_t user_va_base = 0; 1388 size_t user_va_size = 0; 1389 1390 assert(core_mmu_user_va_range_is_defined()); 1391 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 1392 if (tee_ram_va < (user_va_base + user_va_size)) 1393 return false; 1394 } 1395 1396 if (IS_ENABLED(CFG_WITH_PAGER)) { 1397 bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va); 1398 1399 /* Try whole mapping covered by a single base xlat entry */ 1400 if (prefered_dir != tee_ram_at_top && 1401 assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir)) 1402 return true; 1403 } 1404 1405 return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top); 1406 } 1407 1408 static int cmp_init_mem_map(const void *a, const void *b) 1409 { 1410 const struct tee_mmap_region *mm_a = a; 1411 const struct tee_mmap_region *mm_b = b; 1412 int rc = 0; 1413 1414 rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); 1415 if (!rc) 1416 rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); 1417 /* 1418 * 32bit MMU descriptors cannot mix secure and non-secure mapping in 1419 * the same level2 table. Hence sort secure mapping from non-secure 1420 * mapping. 1421 */ 1422 if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) 1423 rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); 1424 1425 return rc; 1426 } 1427 1428 static bool mem_map_add_id_map(struct memory_map *mem_map, 1429 vaddr_t id_map_start, vaddr_t id_map_end) 1430 { 1431 vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); 1432 vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); 1433 size_t len = end - start; 1434 size_t n = 0; 1435 1436 1437 for (n = 0; n < mem_map->count; n++) 1438 if (core_is_buffer_intersect(mem_map->map[n].va, 1439 mem_map->map[n].size, start, len)) 1440 return false; 1441 1442 grow_mem_map(mem_map); 1443 mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){ 1444 .type = MEM_AREA_IDENTITY_MAP_RX, 1445 /* 1446 * Could use CORE_MMU_PGDIR_SIZE to potentially save a 1447 * translation table, at the increased risk of clashes with 1448 * the rest of the memory map. 1449 */ 1450 .region_size = SMALL_PAGE_SIZE, 1451 .pa = start, 1452 .va = start, 1453 .size = len, 1454 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1455 }; 1456 1457 return true; 1458 } 1459 1460 static struct memory_map *init_mem_map(struct memory_map *mem_map, 1461 unsigned long seed, 1462 unsigned long *ret_offs) 1463 { 1464 /* 1465 * @id_map_start and @id_map_end describes a physical memory range 1466 * that must be mapped Read-Only eXecutable at identical virtual 1467 * addresses. 1468 */ 1469 vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; 1470 vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; 1471 vaddr_t start_addr = secure_only[0].paddr; 1472 unsigned long offs = 0; 1473 1474 collect_mem_ranges(mem_map); 1475 assign_mem_granularity(mem_map); 1476 1477 /* 1478 * To ease mapping and lower use of xlat tables, sort mapping 1479 * description moving small-page regions after the pgdir regions. 1480 */ 1481 qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), 1482 cmp_init_mem_map); 1483 1484 if (IS_ENABLED(CFG_WITH_PAGER)) 1485 add_pager_vaspace(mem_map); 1486 1487 if (IS_ENABLED(CFG_CORE_ASLR) && seed) { 1488 vaddr_t base_addr = start_addr + seed; 1489 const unsigned int va_width = core_mmu_get_va_width(); 1490 const vaddr_t va_mask = GENMASK_64(va_width - 1, 1491 SMALL_PAGE_SHIFT); 1492 vaddr_t ba = base_addr; 1493 size_t n = 0; 1494 1495 for (n = 0; n < 3; n++) { 1496 if (n) 1497 ba = base_addr ^ BIT64(va_width - n); 1498 ba &= va_mask; 1499 if (assign_mem_va(ba, mem_map) && 1500 mem_map_add_id_map(mem_map, id_map_start, 1501 id_map_end)) { 1502 offs = ba - start_addr; 1503 DMSG("Mapping core at %#"PRIxVA" offs %#lx", 1504 ba, offs); 1505 goto out; 1506 } else { 1507 DMSG("Failed to map core at %#"PRIxVA, ba); 1508 } 1509 } 1510 EMSG("Failed to map core with seed %#lx", seed); 1511 } 1512 1513 if (!assign_mem_va(start_addr, mem_map)) 1514 panic(); 1515 1516 out: 1517 qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), 1518 cmp_mmap_by_lower_va); 1519 1520 dump_mmap_table(mem_map); 1521 1522 *ret_offs = offs; 1523 return mem_map; 1524 } 1525 1526 static void check_mem_map(struct memory_map *mem_map) 1527 { 1528 struct tee_mmap_region *m = NULL; 1529 size_t n = 0; 1530 1531 for (n = 0; n < mem_map->count; n++) { 1532 m = mem_map->map + n; 1533 switch (m->type) { 1534 case MEM_AREA_TEE_RAM: 1535 case MEM_AREA_TEE_RAM_RX: 1536 case MEM_AREA_TEE_RAM_RO: 1537 case MEM_AREA_TEE_RAM_RW: 1538 case MEM_AREA_INIT_RAM_RX: 1539 case MEM_AREA_INIT_RAM_RO: 1540 case MEM_AREA_NEX_RAM_RW: 1541 case MEM_AREA_NEX_RAM_RO: 1542 case MEM_AREA_IDENTITY_MAP_RX: 1543 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1544 panic("TEE_RAM can't fit in secure_only"); 1545 break; 1546 case MEM_AREA_SEC_RAM_OVERALL: 1547 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1548 panic("SEC_RAM_OVERALL can't fit in secure_only"); 1549 break; 1550 case MEM_AREA_NSEC_SHM: 1551 if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) 1552 panic("NS_SHM can't fit in nsec_shared"); 1553 break; 1554 case MEM_AREA_TEE_COHERENT: 1555 case MEM_AREA_TEE_ASAN: 1556 case MEM_AREA_IO_SEC: 1557 case MEM_AREA_IO_NSEC: 1558 case MEM_AREA_EXT_DT: 1559 case MEM_AREA_MANIFEST_DT: 1560 case MEM_AREA_TRANSFER_LIST: 1561 case MEM_AREA_RAM_SEC: 1562 case MEM_AREA_RAM_NSEC: 1563 case MEM_AREA_ROM_SEC: 1564 case MEM_AREA_RES_VASPACE: 1565 case MEM_AREA_SHM_VASPACE: 1566 case MEM_AREA_PAGER_VASPACE: 1567 case MEM_AREA_NEX_DYN_VASPACE: 1568 case MEM_AREA_TEE_DYN_VASPACE: 1569 break; 1570 default: 1571 EMSG("Uhandled memtype %d", m->type); 1572 panic(); 1573 } 1574 } 1575 } 1576 1577 /* 1578 * core_init_mmu_map() - init tee core default memory mapping 1579 * 1580 * This routine sets the static default TEE core mapping. If @seed is > 0 1581 * and configured with CFG_CORE_ASLR it will map tee core at a location 1582 * based on the seed and return the offset from the link address. 1583 * 1584 * If an error happened: core_init_mmu_map is expected to panic. 1585 * 1586 * Note: this function is weak just to make it possible to exclude it from 1587 * the unpaged area. 1588 */ 1589 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) 1590 { 1591 #ifndef CFG_NS_VIRTUALIZATION 1592 vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); 1593 #else 1594 vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, 1595 SMALL_PAGE_SIZE); 1596 #endif 1597 #ifdef CFG_DYN_CONFIG 1598 vaddr_t len = ROUNDUP(VCORE_FREE_END_PA, SMALL_PAGE_SIZE) - start; 1599 #else 1600 vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; 1601 #endif 1602 struct tee_mmap_region tmp_mmap_region = { }; 1603 struct memory_map mem_map = { }; 1604 unsigned long offs = 0; 1605 1606 if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) && 1607 (core_mmu_tee_load_pa & SMALL_PAGE_MASK)) 1608 panic("OP-TEE load address is not page aligned"); 1609 1610 check_sec_nsec_mem_config(); 1611 1612 mem_map.alloc_count = CFG_MMAP_REGIONS; 1613 mem_map.map = boot_mem_alloc_tmp(mem_map.alloc_count * 1614 sizeof(*mem_map.map), 1615 alignof(*mem_map.map)); 1616 memory_map_realloc_func = boot_mem_realloc_memory_map; 1617 1618 static_memory_map = (struct memory_map){ 1619 .map = &tmp_mmap_region, 1620 .alloc_count = 1, 1621 .count = 1, 1622 }; 1623 /* 1624 * Add a entry covering the translation tables which will be 1625 * involved in some virt_to_phys() and phys_to_virt() conversions. 1626 */ 1627 static_memory_map.map[0] = (struct tee_mmap_region){ 1628 .type = MEM_AREA_TEE_RAM, 1629 .region_size = SMALL_PAGE_SIZE, 1630 .pa = start, 1631 .va = start, 1632 .size = len, 1633 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1634 }; 1635 1636 init_mem_map(&mem_map, seed, &offs); 1637 1638 check_mem_map(&mem_map); 1639 core_init_mmu(&mem_map); 1640 dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); 1641 core_init_mmu_regs(cfg); 1642 cfg->map_offset = offs; 1643 static_memory_map = mem_map; 1644 boot_mem_add_reloc(&static_memory_map.map); 1645 } 1646 1647 void core_mmu_save_mem_map(void) 1648 { 1649 size_t alloc_count = static_memory_map.count + 5; 1650 size_t elem_sz = sizeof(*static_memory_map.map); 1651 void *p = NULL; 1652 1653 p = nex_calloc(alloc_count, elem_sz); 1654 if (!p) 1655 panic(); 1656 memcpy(p, static_memory_map.map, static_memory_map.count * elem_sz); 1657 static_memory_map.map = p; 1658 static_memory_map.alloc_count = alloc_count; 1659 memory_map_realloc_func = heap_realloc_memory_map; 1660 } 1661 1662 bool core_mmu_mattr_is_ok(uint32_t mattr) 1663 { 1664 /* 1665 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and 1666 * core_mmu_v7.c:mattr_to_texcb 1667 */ 1668 1669 switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { 1670 case TEE_MATTR_MEM_TYPE_DEV: 1671 case TEE_MATTR_MEM_TYPE_STRONGLY_O: 1672 case TEE_MATTR_MEM_TYPE_CACHED: 1673 case TEE_MATTR_MEM_TYPE_TAGGED: 1674 return true; 1675 default: 1676 return false; 1677 } 1678 } 1679 1680 /* 1681 * test attributes of target physical buffer 1682 * 1683 * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). 1684 * 1685 */ 1686 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) 1687 { 1688 struct tee_mmap_region *map; 1689 1690 /* Empty buffers complies with anything */ 1691 if (len == 0) 1692 return true; 1693 1694 switch (attr) { 1695 case CORE_MEM_SEC: 1696 return pbuf_is_inside(secure_only, pbuf, len); 1697 case CORE_MEM_NON_SEC: 1698 return pbuf_is_inside(nsec_shared, pbuf, len) || 1699 pbuf_is_nsec_ddr(pbuf, len); 1700 case CORE_MEM_TEE_RAM: 1701 return core_is_buffer_inside(pbuf, len, TEE_RAM_START, 1702 TEE_RAM_PH_SIZE); 1703 #ifdef CFG_CORE_RESERVED_SHM 1704 case CORE_MEM_NSEC_SHM: 1705 return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, 1706 TEE_SHMEM_SIZE); 1707 #endif 1708 case CORE_MEM_SDP_MEM: 1709 return pbuf_is_sdp_mem(pbuf, len); 1710 case CORE_MEM_CACHED: 1711 map = find_map_by_pa(pbuf); 1712 if (!map || !pbuf_inside_map_area(pbuf, len, map)) 1713 return false; 1714 return mattr_is_cached(map->attr); 1715 default: 1716 return false; 1717 } 1718 } 1719 1720 /* test attributes of target virtual buffer (in core mapping) */ 1721 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) 1722 { 1723 paddr_t p; 1724 1725 /* Empty buffers complies with anything */ 1726 if (len == 0) 1727 return true; 1728 1729 p = virt_to_phys((void *)vbuf); 1730 if (!p) 1731 return false; 1732 1733 return core_pbuf_is(attr, p, len); 1734 } 1735 1736 /* core_va2pa - teecore exported service */ 1737 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) 1738 { 1739 struct tee_mmap_region *map; 1740 1741 map = find_map_by_va(va); 1742 if (!va_is_in_map(map, (vaddr_t)va)) 1743 return -1; 1744 1745 /* 1746 * We can calculate PA for static map. Virtual address ranges 1747 * reserved to core dynamic mapping return a 'match' (return 0;) 1748 * together with an invalid null physical address. 1749 */ 1750 if (map->pa) 1751 *pa = map->pa + (vaddr_t)va - map->va; 1752 else 1753 *pa = 0; 1754 1755 return 0; 1756 } 1757 1758 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) 1759 { 1760 if (!pa_is_in_map(map, pa, len)) 1761 return NULL; 1762 1763 return (void *)(vaddr_t)(map->va + pa - map->pa); 1764 } 1765 1766 /* 1767 * teecore gets some memory area definitions 1768 */ 1769 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s, 1770 vaddr_t *e) 1771 { 1772 struct tee_mmap_region *map = find_map_by_type(type); 1773 1774 if (map) { 1775 *s = map->va; 1776 *e = map->va + map->size; 1777 } else { 1778 *s = 0; 1779 *e = 0; 1780 } 1781 } 1782 1783 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) 1784 { 1785 struct tee_mmap_region *map = find_map_by_pa(pa); 1786 1787 if (!map) 1788 return MEM_AREA_MAXTYPE; 1789 return map->type; 1790 } 1791 1792 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1793 paddr_t pa, uint32_t attr) 1794 { 1795 assert(idx < tbl_info->num_entries); 1796 core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, 1797 idx, pa, attr); 1798 } 1799 1800 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1801 paddr_t *pa, uint32_t *attr) 1802 { 1803 assert(idx < tbl_info->num_entries); 1804 core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, 1805 idx, pa, attr); 1806 } 1807 1808 static void clear_region(struct core_mmu_table_info *tbl_info, 1809 struct tee_mmap_region *region) 1810 { 1811 unsigned int end = 0; 1812 unsigned int idx = 0; 1813 1814 /* va, len and pa should be block aligned */ 1815 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1816 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1817 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1818 1819 idx = core_mmu_va2idx(tbl_info, region->va); 1820 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1821 1822 while (idx < end) { 1823 core_mmu_set_entry(tbl_info, idx, 0, 0); 1824 idx++; 1825 } 1826 } 1827 1828 static void set_region(struct core_mmu_table_info *tbl_info, 1829 struct tee_mmap_region *region) 1830 { 1831 unsigned int end; 1832 unsigned int idx; 1833 paddr_t pa; 1834 1835 /* va, len and pa should be block aligned */ 1836 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1837 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1838 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1839 1840 idx = core_mmu_va2idx(tbl_info, region->va); 1841 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1842 pa = region->pa; 1843 1844 while (idx < end) { 1845 core_mmu_set_entry(tbl_info, idx, pa, region->attr); 1846 idx++; 1847 pa += BIT64(tbl_info->shift); 1848 } 1849 } 1850 1851 static void set_pg_region(struct core_mmu_table_info *dir_info, 1852 struct vm_region *region, struct pgt **pgt, 1853 struct core_mmu_table_info *pg_info) 1854 { 1855 struct tee_mmap_region r = { 1856 .va = region->va, 1857 .size = region->size, 1858 .attr = region->attr, 1859 }; 1860 vaddr_t end = r.va + r.size; 1861 uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; 1862 1863 while (r.va < end) { 1864 if (!pg_info->table || 1865 r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { 1866 /* 1867 * We're assigning a new translation table. 1868 */ 1869 unsigned int idx; 1870 1871 /* Virtual addresses must grow */ 1872 assert(r.va > pg_info->va_base); 1873 1874 idx = core_mmu_va2idx(dir_info, r.va); 1875 pg_info->va_base = core_mmu_idx2va(dir_info, idx); 1876 1877 /* 1878 * Advance pgt to va_base, note that we may need to 1879 * skip multiple page tables if there are large 1880 * holes in the vm map. 1881 */ 1882 while ((*pgt)->vabase < pg_info->va_base) { 1883 *pgt = SLIST_NEXT(*pgt, link); 1884 /* We should have allocated enough */ 1885 assert(*pgt); 1886 } 1887 assert((*pgt)->vabase == pg_info->va_base); 1888 pg_info->table = (*pgt)->tbl; 1889 1890 core_mmu_set_entry(dir_info, idx, 1891 virt_to_phys(pg_info->table), 1892 pgt_attr); 1893 } 1894 1895 r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), 1896 end - r.va); 1897 1898 if (!(*pgt)->populated && !mobj_is_paged(region->mobj)) { 1899 size_t granule = BIT(pg_info->shift); 1900 size_t offset = r.va - region->va + region->offset; 1901 1902 r.size = MIN(r.size, 1903 mobj_get_phys_granule(region->mobj)); 1904 r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); 1905 1906 if (mobj_get_pa(region->mobj, offset, granule, 1907 &r.pa) != TEE_SUCCESS) 1908 panic("Failed to get PA of unpaged mobj"); 1909 set_region(pg_info, &r); 1910 } 1911 r.va += r.size; 1912 } 1913 } 1914 1915 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, 1916 size_t size_left, paddr_t block_size, 1917 struct tee_mmap_region *mm) 1918 { 1919 /* VA and PA are aligned to block size at current level */ 1920 if ((vaddr | paddr) & (block_size - 1)) 1921 return false; 1922 1923 /* Remainder fits into block at current level */ 1924 if (size_left < block_size) 1925 return false; 1926 1927 /* 1928 * The required block size of the region is compatible with the 1929 * block size of the current level. 1930 */ 1931 if (mm->region_size < block_size) 1932 return false; 1933 1934 #ifdef CFG_WITH_PAGER 1935 /* 1936 * If pager is enabled, we need to map TEE RAM and the whole pager 1937 * regions with small pages only 1938 */ 1939 if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) && 1940 block_size != SMALL_PAGE_SIZE) 1941 return false; 1942 #endif 1943 1944 return true; 1945 } 1946 1947 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) 1948 { 1949 struct core_mmu_table_info tbl_info = { }; 1950 unsigned int idx = 0; 1951 vaddr_t vaddr = mm->va; 1952 paddr_t paddr = mm->pa; 1953 ssize_t size_left = mm->size; 1954 uint32_t attr = mm->attr; 1955 unsigned int level = 0; 1956 bool table_found = false; 1957 uint32_t old_attr = 0; 1958 1959 assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); 1960 if (!paddr) 1961 attr = 0; 1962 1963 while (size_left > 0) { 1964 level = CORE_MMU_BASE_TABLE_LEVEL; 1965 1966 while (true) { 1967 paddr_t block_size = 0; 1968 1969 assert(core_mmu_level_in_range(level)); 1970 1971 table_found = core_mmu_find_table(prtn, vaddr, level, 1972 &tbl_info); 1973 if (!table_found) 1974 panic("can't find table for mapping"); 1975 1976 block_size = BIT64(tbl_info.shift); 1977 1978 idx = core_mmu_va2idx(&tbl_info, vaddr); 1979 if (!can_map_at_level(paddr, vaddr, size_left, 1980 block_size, mm)) { 1981 bool secure = mm->attr & TEE_MATTR_SECURE; 1982 1983 /* 1984 * This part of the region can't be mapped at 1985 * this level. Need to go deeper. 1986 */ 1987 if (!core_mmu_entry_to_finer_grained(&tbl_info, 1988 idx, 1989 secure)) 1990 panic("Can't divide MMU entry"); 1991 level = tbl_info.next_level; 1992 continue; 1993 } 1994 1995 /* We can map part of the region at current level */ 1996 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1997 if (old_attr) 1998 panic("Page is already mapped"); 1999 2000 core_mmu_set_entry(&tbl_info, idx, paddr, attr); 2001 /* 2002 * Dynamic vaspace regions don't have a physical 2003 * address initially but we need to allocate and 2004 * initialize the translation tables now for later 2005 * updates to work properly. 2006 */ 2007 if (paddr) 2008 paddr += block_size; 2009 vaddr += block_size; 2010 size_left -= block_size; 2011 2012 break; 2013 } 2014 } 2015 } 2016 2017 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 2018 enum teecore_memtypes memtype) 2019 { 2020 TEE_Result ret; 2021 struct core_mmu_table_info tbl_info; 2022 struct tee_mmap_region *mm; 2023 unsigned int idx; 2024 uint32_t old_attr; 2025 uint32_t exceptions; 2026 vaddr_t vaddr = vstart; 2027 size_t i; 2028 bool secure; 2029 2030 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 2031 2032 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 2033 2034 if (vaddr & SMALL_PAGE_MASK) 2035 return TEE_ERROR_BAD_PARAMETERS; 2036 2037 exceptions = mmu_lock(); 2038 2039 mm = find_map_by_va((void *)vaddr); 2040 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 2041 panic("VA does not belong to any known mm region"); 2042 2043 if (!core_mmu_is_dynamic_vaspace(mm)) 2044 panic("Trying to map into static region"); 2045 2046 for (i = 0; i < num_pages; i++) { 2047 if (pages[i] & SMALL_PAGE_MASK) { 2048 ret = TEE_ERROR_BAD_PARAMETERS; 2049 goto err; 2050 } 2051 2052 while (true) { 2053 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 2054 &tbl_info)) 2055 panic("Can't find pagetable for vaddr "); 2056 2057 idx = core_mmu_va2idx(&tbl_info, vaddr); 2058 if (tbl_info.shift == SMALL_PAGE_SHIFT) 2059 break; 2060 2061 /* This is supertable. Need to divide it. */ 2062 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 2063 secure)) 2064 panic("Failed to spread pgdir on small tables"); 2065 } 2066 2067 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2068 if (old_attr) 2069 panic("Page is already mapped"); 2070 2071 core_mmu_set_entry(&tbl_info, idx, pages[i], 2072 core_mmu_type_to_attr(memtype)); 2073 vaddr += SMALL_PAGE_SIZE; 2074 } 2075 2076 /* 2077 * Make sure all the changes to translation tables are visible 2078 * before returning. TLB doesn't need to be invalidated as we are 2079 * guaranteed that there's no valid mapping in this range. 2080 */ 2081 core_mmu_table_write_barrier(); 2082 mmu_unlock(exceptions); 2083 2084 return TEE_SUCCESS; 2085 err: 2086 mmu_unlock(exceptions); 2087 2088 if (i) 2089 core_mmu_unmap_pages(vstart, i); 2090 2091 return ret; 2092 } 2093 2094 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 2095 size_t num_pages, 2096 enum teecore_memtypes memtype) 2097 { 2098 struct core_mmu_table_info tbl_info = { }; 2099 struct tee_mmap_region *mm = NULL; 2100 unsigned int idx = 0; 2101 uint32_t old_attr = 0; 2102 uint32_t exceptions = 0; 2103 vaddr_t vaddr = vstart; 2104 paddr_t paddr = pstart; 2105 size_t i = 0; 2106 bool secure = false; 2107 2108 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 2109 2110 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 2111 2112 if ((vaddr | paddr) & SMALL_PAGE_MASK) 2113 return TEE_ERROR_BAD_PARAMETERS; 2114 2115 exceptions = mmu_lock(); 2116 2117 mm = find_map_by_va((void *)vaddr); 2118 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 2119 panic("VA does not belong to any known mm region"); 2120 2121 if (!core_mmu_is_dynamic_vaspace(mm)) 2122 panic("Trying to map into static region"); 2123 2124 for (i = 0; i < num_pages; i++) { 2125 while (true) { 2126 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 2127 &tbl_info)) 2128 panic("Can't find pagetable for vaddr "); 2129 2130 idx = core_mmu_va2idx(&tbl_info, vaddr); 2131 if (tbl_info.shift == SMALL_PAGE_SHIFT) 2132 break; 2133 2134 /* This is supertable. Need to divide it. */ 2135 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 2136 secure)) 2137 panic("Failed to spread pgdir on small tables"); 2138 } 2139 2140 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2141 if (old_attr) 2142 panic("Page is already mapped"); 2143 2144 core_mmu_set_entry(&tbl_info, idx, paddr, 2145 core_mmu_type_to_attr(memtype)); 2146 paddr += SMALL_PAGE_SIZE; 2147 vaddr += SMALL_PAGE_SIZE; 2148 } 2149 2150 /* 2151 * Make sure all the changes to translation tables are visible 2152 * before returning. TLB doesn't need to be invalidated as we are 2153 * guaranteed that there's no valid mapping in this range. 2154 */ 2155 core_mmu_table_write_barrier(); 2156 mmu_unlock(exceptions); 2157 2158 return TEE_SUCCESS; 2159 } 2160 2161 static bool mem_range_is_in_vcore_free(vaddr_t vstart, size_t num_pages) 2162 { 2163 return core_is_buffer_inside(vstart, num_pages * SMALL_PAGE_SIZE, 2164 VCORE_FREE_PA, VCORE_FREE_SZ); 2165 } 2166 2167 static void maybe_remove_from_mem_map(vaddr_t vstart, size_t num_pages) 2168 { 2169 struct memory_map *mem_map = NULL; 2170 struct tee_mmap_region *mm = NULL; 2171 size_t idx = 0; 2172 vaddr_t va = 0; 2173 2174 mm = find_map_by_va((void *)vstart); 2175 if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) 2176 panic("VA does not belong to any known mm region"); 2177 2178 if (core_mmu_is_dynamic_vaspace(mm)) 2179 return; 2180 2181 if (!mem_range_is_in_vcore_free(vstart, num_pages)) 2182 panic("Trying to unmap static region"); 2183 2184 /* 2185 * We're going to remove a memory from the VCORE_FREE memory range. 2186 * Depending where the range is we may need to remove the matching 2187 * mm, peal of a bit from the start or end of the mm, or split it 2188 * into two with a whole in the middle. 2189 */ 2190 2191 va = ROUNDDOWN(vstart, SMALL_PAGE_SIZE); 2192 assert(mm->region_size == SMALL_PAGE_SIZE); 2193 2194 if (va == mm->va && mm->size == num_pages * SMALL_PAGE_SIZE) { 2195 mem_map = get_memory_map(); 2196 idx = mm - mem_map->map; 2197 assert(idx < mem_map->count); 2198 2199 rem_array_elem(mem_map->map, mem_map->count, 2200 sizeof(*mem_map->map), idx); 2201 mem_map->count--; 2202 } else if (va == mm->va) { 2203 mm->va += num_pages * SMALL_PAGE_SIZE; 2204 mm->pa += num_pages * SMALL_PAGE_SIZE; 2205 mm->size -= num_pages * SMALL_PAGE_SIZE; 2206 } else if (va + num_pages * SMALL_PAGE_SIZE == mm->va + mm->size) { 2207 mm->size -= num_pages * SMALL_PAGE_SIZE; 2208 } else { 2209 struct tee_mmap_region m = *mm; 2210 2211 mem_map = get_memory_map(); 2212 idx = mm - mem_map->map; 2213 assert(idx < mem_map->count); 2214 2215 mm->size = va - mm->va; 2216 m.va += mm->size + num_pages * SMALL_PAGE_SIZE; 2217 m.pa += mm->size + num_pages * SMALL_PAGE_SIZE; 2218 m.size -= mm->size + num_pages * SMALL_PAGE_SIZE; 2219 grow_mem_map(mem_map); 2220 ins_array_elem(mem_map->map, mem_map->count, 2221 sizeof(*mem_map->map), idx + 1, &m); 2222 } 2223 } 2224 2225 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) 2226 { 2227 struct core_mmu_table_info tbl_info; 2228 size_t i; 2229 unsigned int idx; 2230 uint32_t exceptions; 2231 2232 exceptions = mmu_lock(); 2233 2234 maybe_remove_from_mem_map(vstart, num_pages); 2235 2236 for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { 2237 if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) 2238 panic("Can't find pagetable"); 2239 2240 if (tbl_info.shift != SMALL_PAGE_SHIFT) 2241 panic("Invalid pagetable level"); 2242 2243 idx = core_mmu_va2idx(&tbl_info, vstart); 2244 core_mmu_set_entry(&tbl_info, idx, 0, 0); 2245 } 2246 tlbi_all(); 2247 2248 mmu_unlock(exceptions); 2249 } 2250 2251 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 2252 struct user_mode_ctx *uctx) 2253 { 2254 struct core_mmu_table_info pg_info = { }; 2255 struct pgt_cache *pgt_cache = &uctx->pgt_cache; 2256 struct pgt *pgt = NULL; 2257 struct pgt *p = NULL; 2258 struct vm_region *r = NULL; 2259 2260 if (TAILQ_EMPTY(&uctx->vm_info.regions)) 2261 return; /* Nothing to map */ 2262 2263 /* 2264 * Allocate all page tables in advance. 2265 */ 2266 pgt_get_all(uctx); 2267 pgt = SLIST_FIRST(pgt_cache); 2268 2269 core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL); 2270 2271 TAILQ_FOREACH(r, &uctx->vm_info.regions, link) 2272 set_pg_region(dir_info, r, &pgt, &pg_info); 2273 /* Record that the translation tables now are populated. */ 2274 SLIST_FOREACH(p, pgt_cache, link) { 2275 p->populated = true; 2276 if (p == pgt) 2277 break; 2278 } 2279 assert(p == pgt); 2280 } 2281 2282 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 2283 size_t len) 2284 { 2285 struct core_mmu_table_info tbl_info = { }; 2286 struct tee_mmap_region *res_map = NULL; 2287 struct tee_mmap_region *map = NULL; 2288 paddr_t pa = virt_to_phys(addr); 2289 size_t granule = 0; 2290 ptrdiff_t i = 0; 2291 paddr_t p = 0; 2292 size_t l = 0; 2293 2294 map = find_map_by_type_and_pa(type, pa, len); 2295 if (!map) 2296 return TEE_ERROR_GENERIC; 2297 2298 res_map = find_map_by_type(MEM_AREA_RES_VASPACE); 2299 if (!res_map) 2300 return TEE_ERROR_GENERIC; 2301 if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) 2302 return TEE_ERROR_GENERIC; 2303 granule = BIT(tbl_info.shift); 2304 2305 if (map < static_memory_map.map || 2306 map >= static_memory_map.map + static_memory_map.count) 2307 return TEE_ERROR_GENERIC; 2308 i = map - static_memory_map.map; 2309 2310 /* Check that we have a full match */ 2311 p = ROUNDDOWN2(pa, granule); 2312 l = ROUNDUP2(len + pa - p, granule); 2313 if (map->pa != p || map->size != l) 2314 return TEE_ERROR_GENERIC; 2315 2316 clear_region(&tbl_info, map); 2317 tlbi_all(); 2318 2319 /* If possible remove the va range from res_map */ 2320 if (res_map->va - map->size == map->va) { 2321 res_map->va -= map->size; 2322 res_map->size += map->size; 2323 } 2324 2325 /* Remove the entry. */ 2326 rem_array_elem(static_memory_map.map, static_memory_map.count, 2327 sizeof(*static_memory_map.map), i); 2328 static_memory_map.count--; 2329 2330 return TEE_SUCCESS; 2331 } 2332 2333 struct tee_mmap_region * 2334 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) 2335 { 2336 struct memory_map *mem_map = get_memory_map(); 2337 struct tee_mmap_region *map_found = NULL; 2338 size_t n = 0; 2339 2340 if (!len) 2341 return NULL; 2342 2343 for (n = 0; n < mem_map->count; n++) { 2344 if (mem_map->map[n].type != type) 2345 continue; 2346 2347 if (map_found) 2348 return NULL; 2349 2350 map_found = mem_map->map + n; 2351 } 2352 2353 if (!map_found || map_found->size < len) 2354 return NULL; 2355 2356 return map_found; 2357 } 2358 2359 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) 2360 { 2361 struct memory_map *mem_map = &static_memory_map; 2362 struct core_mmu_table_info tbl_info = { }; 2363 struct tee_mmap_region *map = NULL; 2364 size_t granule = 0; 2365 paddr_t p = 0; 2366 size_t l = 0; 2367 2368 if (!len) 2369 return NULL; 2370 2371 if (!core_mmu_check_end_pa(addr, len)) 2372 return NULL; 2373 2374 /* Check if the memory is already mapped */ 2375 map = find_map_by_type_and_pa(type, addr, len); 2376 if (map && pbuf_inside_map_area(addr, len, map)) 2377 return (void *)(vaddr_t)(map->va + addr - map->pa); 2378 2379 /* Find the reserved va space used for late mappings */ 2380 map = find_map_by_type(MEM_AREA_RES_VASPACE); 2381 if (!map) 2382 return NULL; 2383 2384 if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) 2385 return NULL; 2386 2387 granule = BIT64(tbl_info.shift); 2388 p = ROUNDDOWN2(addr, granule); 2389 l = ROUNDUP2(len + addr - p, granule); 2390 2391 /* Ban overflowing virtual addresses */ 2392 if (map->size < l) 2393 return NULL; 2394 2395 /* 2396 * Something is wrong, we can't fit the va range into the selected 2397 * table. The reserved va range is possibly missaligned with 2398 * granule. 2399 */ 2400 if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) 2401 return NULL; 2402 2403 if (static_memory_map.count >= static_memory_map.alloc_count) 2404 return NULL; 2405 2406 mem_map->map[mem_map->count] = (struct tee_mmap_region){ 2407 .va = map->va, 2408 .size = l, 2409 .type = type, 2410 .region_size = granule, 2411 .attr = core_mmu_type_to_attr(type), 2412 .pa = p, 2413 }; 2414 map->va += l; 2415 map->size -= l; 2416 map = mem_map->map + mem_map->count; 2417 mem_map->count++; 2418 2419 set_region(&tbl_info, map); 2420 2421 /* Make sure the new entry is visible before continuing. */ 2422 core_mmu_table_write_barrier(); 2423 2424 return (void *)(vaddr_t)(map->va + addr - map->pa); 2425 } 2426 2427 #ifdef CFG_WITH_PAGER 2428 static vaddr_t get_linear_map_end_va(void) 2429 { 2430 /* this is synced with the generic linker file kern.ld.S */ 2431 return (vaddr_t)__heap2_end; 2432 } 2433 2434 static paddr_t get_linear_map_end_pa(void) 2435 { 2436 return get_linear_map_end_va() - boot_mmu_config.map_offset; 2437 } 2438 #endif 2439 2440 #if defined(CFG_TEE_CORE_DEBUG) 2441 static void check_pa_matches_va(void *va, paddr_t pa) 2442 { 2443 TEE_Result res = TEE_ERROR_GENERIC; 2444 vaddr_t v = (vaddr_t)va; 2445 paddr_t p = 0; 2446 struct core_mmu_table_info ti __maybe_unused = { }; 2447 2448 if (core_mmu_user_va_range_is_defined()) { 2449 vaddr_t user_va_base = 0; 2450 size_t user_va_size = 0; 2451 2452 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 2453 if (v >= user_va_base && 2454 v <= (user_va_base - 1 + user_va_size)) { 2455 if (!core_mmu_user_mapping_is_active()) { 2456 if (pa) 2457 panic("issue in linear address space"); 2458 return; 2459 } 2460 2461 res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), 2462 va, &p); 2463 if (res == TEE_ERROR_NOT_SUPPORTED) 2464 return; 2465 if (res == TEE_SUCCESS && pa != p) 2466 panic("bad pa"); 2467 if (res != TEE_SUCCESS && pa) 2468 panic("false pa"); 2469 return; 2470 } 2471 } 2472 #ifdef CFG_WITH_PAGER 2473 if (is_unpaged(va)) { 2474 if (v - boot_mmu_config.map_offset != pa) 2475 panic("issue in linear address space"); 2476 return; 2477 } 2478 2479 if (tee_pager_get_table_info(v, &ti)) { 2480 uint32_t a; 2481 2482 /* 2483 * Lookups in the page table managed by the pager is 2484 * dangerous for addresses in the paged area as those pages 2485 * changes all the time. But some ranges are safe, 2486 * rw-locked areas when the page is populated for instance. 2487 */ 2488 core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); 2489 if (a & TEE_MATTR_VALID_BLOCK) { 2490 paddr_t mask = BIT64(ti.shift) - 1; 2491 2492 p |= v & mask; 2493 if (pa != p) 2494 panic(); 2495 } else { 2496 if (pa) 2497 panic(); 2498 } 2499 return; 2500 } 2501 #endif 2502 2503 if (!core_va2pa_helper(va, &p)) { 2504 /* Verfiy only the static mapping (case non null phys addr) */ 2505 if (p && pa != p) { 2506 DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, 2507 va, p, pa); 2508 panic(); 2509 } 2510 } else { 2511 if (pa) { 2512 DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); 2513 panic(); 2514 } 2515 } 2516 } 2517 #else 2518 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) 2519 { 2520 } 2521 #endif 2522 2523 paddr_t virt_to_phys(void *va) 2524 { 2525 paddr_t pa = 0; 2526 2527 if (!arch_va2pa_helper(va, &pa)) 2528 pa = 0; 2529 check_pa_matches_va(memtag_strip_tag(va), pa); 2530 return pa; 2531 } 2532 2533 /* 2534 * Don't use check_va_matches_pa() for RISC-V, as its callee 2535 * arch_va2pa_helper() will call it eventually, this creates 2536 * indirect recursion and can lead to a stack overflow. 2537 * Moreover, if arch_va2pa_helper() returns true, it implies 2538 * the va2pa mapping is matched, no need to check it again. 2539 */ 2540 #if defined(CFG_TEE_CORE_DEBUG) && !defined(__riscv) 2541 static void check_va_matches_pa(paddr_t pa, void *va) 2542 { 2543 paddr_t p = 0; 2544 2545 if (!va) 2546 return; 2547 2548 p = virt_to_phys(va); 2549 if (p != pa) { 2550 DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); 2551 panic(); 2552 } 2553 } 2554 #else 2555 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) 2556 { 2557 } 2558 #endif 2559 2560 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) 2561 { 2562 if (!core_mmu_user_mapping_is_active()) 2563 return NULL; 2564 2565 return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); 2566 } 2567 2568 #ifdef CFG_WITH_PAGER 2569 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2570 { 2571 paddr_t end_pa = 0; 2572 2573 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 2574 return NULL; 2575 2576 if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) { 2577 if (end_pa > get_linear_map_end_pa()) 2578 return NULL; 2579 return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset); 2580 } 2581 2582 return tee_pager_phys_to_virt(pa, len); 2583 } 2584 #else 2585 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2586 { 2587 struct tee_mmap_region *mmap = NULL; 2588 2589 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); 2590 if (!mmap) 2591 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); 2592 if (!mmap) 2593 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); 2594 if (!mmap) 2595 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); 2596 if (!mmap) 2597 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); 2598 if (!mmap) 2599 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); 2600 2601 /* 2602 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only 2603 * used with pager and not needed here. 2604 */ 2605 return map_pa2va(mmap, pa, len); 2606 } 2607 #endif 2608 2609 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) 2610 { 2611 void *va = NULL; 2612 2613 switch (m) { 2614 case MEM_AREA_TS_VASPACE: 2615 va = phys_to_virt_ts_vaspace(pa, len); 2616 break; 2617 case MEM_AREA_TEE_RAM: 2618 case MEM_AREA_TEE_RAM_RX: 2619 case MEM_AREA_TEE_RAM_RO: 2620 case MEM_AREA_TEE_RAM_RW: 2621 case MEM_AREA_NEX_RAM_RO: 2622 case MEM_AREA_NEX_RAM_RW: 2623 va = phys_to_virt_tee_ram(pa, len); 2624 break; 2625 case MEM_AREA_SHM_VASPACE: 2626 case MEM_AREA_NEX_DYN_VASPACE: 2627 case MEM_AREA_TEE_DYN_VASPACE: 2628 /* Find VA from PA in dynamic SHM is not yet supported */ 2629 va = NULL; 2630 break; 2631 default: 2632 va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); 2633 } 2634 if (m != MEM_AREA_SEC_RAM_OVERALL) 2635 check_va_matches_pa(pa, va); 2636 return va; 2637 } 2638 2639 void *phys_to_virt_io(paddr_t pa, size_t len) 2640 { 2641 struct tee_mmap_region *map = NULL; 2642 void *va = NULL; 2643 2644 map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); 2645 if (!map) 2646 map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); 2647 if (!map) 2648 return NULL; 2649 va = map_pa2va(map, pa, len); 2650 check_va_matches_pa(pa, va); 2651 return va; 2652 } 2653 2654 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) 2655 { 2656 if (cpu_mmu_enabled()) 2657 return (vaddr_t)phys_to_virt(pa, type, len); 2658 2659 return (vaddr_t)pa; 2660 } 2661 2662 #ifdef CFG_WITH_PAGER 2663 bool is_unpaged(const void *va) 2664 { 2665 vaddr_t v = (vaddr_t)va; 2666 2667 return v >= VCORE_START_VA && v < get_linear_map_end_va(); 2668 } 2669 #endif 2670 2671 #ifdef CFG_NS_VIRTUALIZATION 2672 bool is_nexus(const void *va) 2673 { 2674 vaddr_t v = (vaddr_t)va; 2675 2676 return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ; 2677 } 2678 #endif 2679 2680 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) 2681 { 2682 assert(p->pa); 2683 if (cpu_mmu_enabled()) { 2684 if (!p->va) 2685 p->va = (vaddr_t)phys_to_virt_io(p->pa, len); 2686 assert(p->va); 2687 return p->va; 2688 } 2689 return p->pa; 2690 } 2691 2692 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) 2693 { 2694 assert(p->pa); 2695 if (cpu_mmu_enabled()) { 2696 if (!p->va) 2697 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, 2698 len); 2699 assert(p->va); 2700 return p->va; 2701 } 2702 return p->pa; 2703 } 2704 2705 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) 2706 { 2707 assert(p->pa); 2708 if (cpu_mmu_enabled()) { 2709 if (!p->va) 2710 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, 2711 len); 2712 assert(p->va); 2713 return p->va; 2714 } 2715 return p->pa; 2716 } 2717 2718 #ifdef CFG_CORE_RESERVED_SHM 2719 static TEE_Result teecore_init_pub_ram(void) 2720 { 2721 vaddr_t s = 0; 2722 vaddr_t e = 0; 2723 2724 /* get virtual addr/size of NSec shared mem allocated from teecore */ 2725 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); 2726 2727 if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) 2728 panic("invalid PUB RAM"); 2729 2730 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2731 if (!tee_vbuf_is_non_sec(s, e - s)) 2732 panic("PUB RAM is not non-secure"); 2733 2734 #ifdef CFG_PL310 2735 /* Allocate statically the l2cc mutex */ 2736 tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); 2737 s += sizeof(uint32_t); /* size of a pl310 mutex */ 2738 s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ 2739 #endif 2740 2741 default_nsec_shm_paddr = virt_to_phys((void *)s); 2742 default_nsec_shm_size = e - s; 2743 2744 return TEE_SUCCESS; 2745 } 2746 early_init(teecore_init_pub_ram); 2747 #endif /*CFG_CORE_RESERVED_SHM*/ 2748 2749 static void __maybe_unused carve_out_core_mem(paddr_t pa, paddr_t end_pa) 2750 { 2751 tee_mm_entry_t *mm __maybe_unused = NULL; 2752 2753 DMSG("%#"PRIxPA" .. %#"PRIxPA, pa, end_pa); 2754 mm = phys_mem_alloc2(pa, end_pa - pa); 2755 assert(mm); 2756 } 2757 2758 void core_mmu_init_phys_mem(void) 2759 { 2760 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 2761 paddr_t b1 = 0; 2762 paddr_size_t s1 = 0; 2763 2764 static_assert(ARRAY_SIZE(secure_only) <= 2); 2765 2766 if (ARRAY_SIZE(secure_only) == 2) { 2767 b1 = secure_only[1].paddr; 2768 s1 = secure_only[1].size; 2769 } 2770 virt_init_memory(&static_memory_map, secure_only[0].paddr, 2771 secure_only[0].size, b1, s1); 2772 } else { 2773 #ifdef CFG_WITH_PAGER 2774 /* 2775 * The pager uses all core memory so there's no need to add 2776 * it to the pool. 2777 */ 2778 static_assert(ARRAY_SIZE(secure_only) == 2); 2779 phys_mem_init(0, 0, secure_only[1].paddr, secure_only[1].size); 2780 #else /*!CFG_WITH_PAGER*/ 2781 size_t align = BIT(CORE_MMU_USER_CODE_SHIFT); 2782 paddr_t end_pa = 0; 2783 size_t size = 0; 2784 paddr_t ps = 0; 2785 paddr_t pa = 0; 2786 2787 static_assert(ARRAY_SIZE(secure_only) <= 2); 2788 if (ARRAY_SIZE(secure_only) == 2) { 2789 ps = secure_only[1].paddr; 2790 size = secure_only[1].size; 2791 } 2792 phys_mem_init(secure_only[0].paddr, secure_only[0].size, 2793 ps, size); 2794 2795 /* 2796 * The VCORE macros are relocatable so we need to translate 2797 * the addresses now that the MMU is enabled. 2798 */ 2799 end_pa = vaddr_to_phys(ROUNDUP2(VCORE_FREE_END_PA, 2800 align) - 1) + 1; 2801 /* Carve out the part used by OP-TEE core */ 2802 carve_out_core_mem(vaddr_to_phys(VCORE_UNPG_RX_PA), end_pa); 2803 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) { 2804 pa = vaddr_to_phys(ROUNDUP2(ASAN_MAP_PA, align)); 2805 carve_out_core_mem(pa, pa + ASAN_MAP_SZ); 2806 } 2807 2808 /* Carve out test SDP memory */ 2809 #ifdef TEE_SDP_TEST_MEM_BASE 2810 if (TEE_SDP_TEST_MEM_SIZE) { 2811 pa = TEE_SDP_TEST_MEM_BASE; 2812 carve_out_core_mem(pa, pa + TEE_SDP_TEST_MEM_SIZE); 2813 } 2814 #endif 2815 #endif /*!CFG_WITH_PAGER*/ 2816 } 2817 } 2818