xref: /optee_os/core/mm/core_mmu.c (revision 92d75aefed568a557dbd9152d749a4bc320fa9f2)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <mm/core_memprot.h>
22 #include <mm/core_mmu.h>
23 #include <mm/mobj.h>
24 #include <mm/pgt_cache.h>
25 #include <mm/tee_pager.h>
26 #include <mm/vm.h>
27 #include <platform_config.h>
28 #include <string.h>
29 #include <trace.h>
30 #include <util.h>
31 
32 #ifndef DEBUG_XLAT_TABLE
33 #define DEBUG_XLAT_TABLE 0
34 #endif
35 
36 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
37 
38 /*
39  * These variables are initialized before .bss is cleared. To avoid
40  * resetting them when .bss is cleared we're storing them in .data instead,
41  * even if they initially are zero.
42  */
43 
44 #ifdef CFG_CORE_RESERVED_SHM
45 /* Default NSec shared memory allocated from NSec world */
46 unsigned long default_nsec_shm_size __nex_bss;
47 unsigned long default_nsec_shm_paddr __nex_bss;
48 #endif
49 
50 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS
51 #ifdef CFG_CORE_ASLR
52 						+ 1
53 #endif
54 						+ 1] __nex_bss;
55 
56 /* Define the platform's memory layout. */
57 struct memaccess_area {
58 	paddr_t paddr;
59 	size_t size;
60 };
61 
62 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
63 
64 static struct memaccess_area secure_only[] __nex_data = {
65 #ifdef TRUSTED_SRAM_BASE
66 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
67 #endif
68 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
69 };
70 
71 static struct memaccess_area nsec_shared[] __nex_data = {
72 #ifdef CFG_CORE_RESERVED_SHM
73 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
74 #endif
75 };
76 
77 #if defined(CFG_SECURE_DATA_PATH)
78 static const char *tz_sdp_match = "linaro,secure-heap";
79 static struct memaccess_area sec_sdp;
80 #ifdef CFG_TEE_SDP_MEM_BASE
81 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
82 #endif
83 #ifdef TEE_SDP_TEST_MEM_BASE
84 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
85 #endif
86 #endif
87 
88 #ifdef CFG_CORE_RESERVED_SHM
89 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
90 #endif
91 static unsigned int mmu_spinlock;
92 
93 static uint32_t mmu_lock(void)
94 {
95 	return cpu_spin_lock_xsave(&mmu_spinlock);
96 }
97 
98 static void mmu_unlock(uint32_t exceptions)
99 {
100 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
101 }
102 
103 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
104 {
105 	/*
106 	 * The first range is always used to cover OP-TEE core memory, but
107 	 * depending on configuration it may cover more than that.
108 	 */
109 	*base = secure_only[0].paddr;
110 	*size = secure_only[0].size;
111 }
112 
113 static struct tee_mmap_region *get_memory_map(void)
114 {
115 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
116 		struct tee_mmap_region *map = virt_get_memory_map();
117 
118 		if (map)
119 			return map;
120 	}
121 
122 	return static_memory_map;
123 }
124 
125 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
126 			     paddr_t pa, size_t size)
127 {
128 	size_t n;
129 
130 	for (n = 0; n < alen; n++)
131 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
132 			return true;
133 	return false;
134 }
135 
136 #define pbuf_intersects(a, pa, size) \
137 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
138 
139 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
140 			    paddr_t pa, size_t size)
141 {
142 	size_t n;
143 
144 	for (n = 0; n < alen; n++)
145 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
146 			return true;
147 	return false;
148 }
149 
150 #define pbuf_is_inside(a, pa, size) \
151 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
152 
153 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
154 {
155 	paddr_t end_pa = 0;
156 
157 	if (!map)
158 		return false;
159 
160 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
161 		return false;
162 
163 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
164 }
165 
166 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
167 {
168 	if (!map)
169 		return false;
170 	return (va >= map->va && va <= (map->va + map->size - 1));
171 }
172 
173 /* check if target buffer fits in a core default map area */
174 static bool pbuf_inside_map_area(unsigned long p, size_t l,
175 				 struct tee_mmap_region *map)
176 {
177 	return core_is_buffer_inside(p, l, map->pa, map->size);
178 }
179 
180 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
181 {
182 	struct tee_mmap_region *map;
183 
184 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++)
185 		if (map->type == type)
186 			return map;
187 	return NULL;
188 }
189 
190 static struct tee_mmap_region *
191 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
192 {
193 	struct tee_mmap_region *map;
194 
195 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
196 		if (map->type != type)
197 			continue;
198 		if (pa_is_in_map(map, pa, len))
199 			return map;
200 	}
201 	return NULL;
202 }
203 
204 static struct tee_mmap_region *find_map_by_va(void *va)
205 {
206 	struct tee_mmap_region *map = get_memory_map();
207 	unsigned long a = (unsigned long)va;
208 
209 	while (!core_mmap_is_end_of_table(map)) {
210 		if (a >= map->va && a <= (map->va - 1 + map->size))
211 			return map;
212 		map++;
213 	}
214 	return NULL;
215 }
216 
217 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
218 {
219 	struct tee_mmap_region *map = get_memory_map();
220 
221 	while (!core_mmap_is_end_of_table(map)) {
222 		if (pa >= map->pa && pa <= (map->pa + map->size - 1))
223 			return map;
224 		map++;
225 	}
226 	return NULL;
227 }
228 
229 #if defined(CFG_SECURE_DATA_PATH)
230 static bool dtb_get_sdp_region(void)
231 {
232 	void *fdt = NULL;
233 	int node = 0;
234 	int tmp_node = 0;
235 	paddr_t tmp_addr = 0;
236 	size_t tmp_size = 0;
237 
238 	if (!IS_ENABLED(CFG_EMBED_DTB))
239 		return false;
240 
241 	fdt = get_embedded_dt();
242 	if (!fdt)
243 		panic("No DTB found");
244 
245 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
246 	if (node < 0) {
247 		DMSG("No %s compatible node found", tz_sdp_match);
248 		return false;
249 	}
250 	tmp_node = node;
251 	while (tmp_node >= 0) {
252 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
253 							 tz_sdp_match);
254 		if (tmp_node >= 0)
255 			DMSG("Ignore SDP pool node %s, supports only 1 node",
256 			     fdt_get_name(fdt, tmp_node, NULL));
257 	}
258 
259 	tmp_addr = fdt_reg_base_address(fdt, node);
260 	if (tmp_addr == DT_INFO_INVALID_REG) {
261 		EMSG("%s: Unable to get base addr from DT", tz_sdp_match);
262 		return false;
263 	}
264 
265 	tmp_size = fdt_reg_size(fdt, node);
266 	if (tmp_size == DT_INFO_INVALID_REG_SIZE) {
267 		EMSG("%s: Unable to get size of base addr from DT",
268 		     tz_sdp_match);
269 		return false;
270 	}
271 
272 	sec_sdp.paddr = tmp_addr;
273 	sec_sdp.size = tmp_size;
274 
275 	return true;
276 }
277 #endif
278 
279 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
280 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
281 				const struct core_mmu_phys_mem *start,
282 				const struct core_mmu_phys_mem *end)
283 {
284 	const struct core_mmu_phys_mem *mem;
285 
286 	for (mem = start; mem < end; mem++) {
287 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
288 			return true;
289 	}
290 
291 	return false;
292 }
293 #endif
294 
295 #ifdef CFG_CORE_DYN_SHM
296 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
297 			       paddr_t pa, size_t size)
298 {
299 	struct core_mmu_phys_mem *m = *mem;
300 	size_t n = 0;
301 
302 	while (true) {
303 		if (n >= *nelems) {
304 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
305 			     pa, size);
306 			return;
307 		}
308 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
309 			break;
310 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
311 			panic();
312 		n++;
313 	}
314 
315 	if (pa == m[n].addr && size == m[n].size) {
316 		/* Remove this entry */
317 		(*nelems)--;
318 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
319 		m = nex_realloc(m, sizeof(*m) * *nelems);
320 		if (!m)
321 			panic();
322 		*mem = m;
323 	} else if (pa == m[n].addr) {
324 		m[n].addr += size;
325 		m[n].size -= size;
326 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
327 		m[n].size -= size;
328 	} else {
329 		/* Need to split the memory entry */
330 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
331 		if (!m)
332 			panic();
333 		*mem = m;
334 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
335 		(*nelems)++;
336 		m[n].size = pa - m[n].addr;
337 		m[n + 1].size -= size + m[n].size;
338 		m[n + 1].addr = pa + size;
339 	}
340 }
341 
342 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
343 				      size_t nelems,
344 				      struct tee_mmap_region *map)
345 {
346 	size_t n;
347 
348 	for (n = 0; n < nelems; n++) {
349 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
350 					    map->pa, map->size)) {
351 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
352 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
353 			     start[n].addr, start[n].size,
354 			     map->type, map->pa, map->size);
355 			panic();
356 		}
357 	}
358 }
359 
360 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
361 static size_t discovered_nsec_ddr_nelems __nex_bss;
362 
363 static int cmp_pmem_by_addr(const void *a, const void *b)
364 {
365 	const struct core_mmu_phys_mem *pmem_a = a;
366 	const struct core_mmu_phys_mem *pmem_b = b;
367 
368 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
369 }
370 
371 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
372 				      size_t nelems)
373 {
374 	struct core_mmu_phys_mem *m = start;
375 	size_t num_elems = nelems;
376 	struct tee_mmap_region *map = static_memory_map;
377 	const struct core_mmu_phys_mem __maybe_unused *pmem;
378 
379 	assert(!discovered_nsec_ddr_start);
380 	assert(m && num_elems);
381 
382 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
383 
384 	/*
385 	 * Non-secure shared memory and also secure data
386 	 * path memory are supposed to reside inside
387 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
388 	 * are used for a specific purpose make holes for
389 	 * those memory in the normal non-secure memory.
390 	 *
391 	 * This has to be done since for instance QEMU
392 	 * isn't aware of which memory range in the
393 	 * non-secure memory is used for NSEC_SHM.
394 	 */
395 
396 #ifdef CFG_SECURE_DATA_PATH
397 	if (dtb_get_sdp_region())
398 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
399 
400 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
401 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
402 #endif
403 
404 	carve_out_phys_mem(&m, &num_elems, TEE_RAM_START, TEE_RAM_PH_SIZE);
405 	carve_out_phys_mem(&m, &num_elems, TA_RAM_START, TA_RAM_SIZE);
406 
407 	for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) {
408 		switch (map->type) {
409 		case MEM_AREA_NSEC_SHM:
410 			carve_out_phys_mem(&m, &num_elems, map->pa, map->size);
411 			break;
412 		case MEM_AREA_EXT_DT:
413 		case MEM_AREA_RES_VASPACE:
414 		case MEM_AREA_SHM_VASPACE:
415 		case MEM_AREA_TS_VASPACE:
416 		case MEM_AREA_PAGER_VASPACE:
417 			break;
418 		default:
419 			check_phys_mem_is_outside(m, num_elems, map);
420 		}
421 	}
422 
423 	discovered_nsec_ddr_start = m;
424 	discovered_nsec_ddr_nelems = num_elems;
425 
426 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
427 				   m[num_elems - 1].size))
428 		panic();
429 }
430 
431 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
432 				    const struct core_mmu_phys_mem **end)
433 {
434 	if (!discovered_nsec_ddr_start)
435 		return false;
436 
437 	*start = discovered_nsec_ddr_start;
438 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
439 
440 	return true;
441 }
442 
443 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
444 {
445 	const struct core_mmu_phys_mem *start;
446 	const struct core_mmu_phys_mem *end;
447 
448 	if (!get_discovered_nsec_ddr(&start, &end))
449 		return false;
450 
451 	return pbuf_is_special_mem(pbuf, len, start, end);
452 }
453 
454 bool core_mmu_nsec_ddr_is_defined(void)
455 {
456 	const struct core_mmu_phys_mem *start;
457 	const struct core_mmu_phys_mem *end;
458 
459 	if (!get_discovered_nsec_ddr(&start, &end))
460 		return false;
461 
462 	return start != end;
463 }
464 #else
465 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
466 {
467 	return false;
468 }
469 #endif /*CFG_CORE_DYN_SHM*/
470 
471 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
472 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
473 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
474 
475 #ifdef CFG_SECURE_DATA_PATH
476 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
477 {
478 	bool is_sdp_mem = false;
479 
480 	if (sec_sdp.size)
481 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
482 						   sec_sdp.size);
483 
484 	if (!is_sdp_mem)
485 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
486 						 phys_sdp_mem_end);
487 
488 	return is_sdp_mem;
489 }
490 
491 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
492 {
493 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
494 					    CORE_MEM_SDP_MEM);
495 
496 	if (!mobj)
497 		panic("can't create SDP physical memory object");
498 
499 	return mobj;
500 }
501 
502 struct mobj **core_sdp_mem_create_mobjs(void)
503 {
504 	const struct core_mmu_phys_mem *mem = NULL;
505 	struct mobj **mobj_base = NULL;
506 	struct mobj **mobj = NULL;
507 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
508 
509 	if (sec_sdp.size)
510 		cnt++;
511 
512 	/* SDP mobjs table must end with a NULL entry */
513 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
514 	if (!mobj_base)
515 		panic("Out of memory");
516 
517 	mobj = mobj_base;
518 
519 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
520 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
521 
522 	if (sec_sdp.size)
523 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
524 
525 	return mobj_base;
526 }
527 
528 #else /* CFG_SECURE_DATA_PATH */
529 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
530 {
531 	return false;
532 }
533 
534 #endif /* CFG_SECURE_DATA_PATH */
535 
536 /* Check special memories comply with registered memories */
537 static void verify_special_mem_areas(struct tee_mmap_region *mem_map,
538 				     size_t len,
539 				     const struct core_mmu_phys_mem *start,
540 				     const struct core_mmu_phys_mem *end,
541 				     const char *area_name __maybe_unused)
542 {
543 	const struct core_mmu_phys_mem *mem;
544 	const struct core_mmu_phys_mem *mem2;
545 	struct tee_mmap_region *mmap;
546 	size_t n;
547 
548 	if (start == end) {
549 		DMSG("No %s memory area defined", area_name);
550 		return;
551 	}
552 
553 	for (mem = start; mem < end; mem++)
554 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
555 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
556 
557 	/* Check memories do not intersect each other */
558 	for (mem = start; mem + 1 < end; mem++) {
559 		for (mem2 = mem + 1; mem2 < end; mem2++) {
560 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
561 						     mem->addr, mem->size)) {
562 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
563 						   mem->addr, mem->size);
564 				panic("Special memory intersection");
565 			}
566 		}
567 	}
568 
569 	/*
570 	 * Check memories do not intersect any mapped memory.
571 	 * This is called before reserved VA space is loaded in mem_map.
572 	 */
573 	for (mem = start; mem < end; mem++) {
574 		for (mmap = mem_map, n = 0; n < len; mmap++, n++) {
575 			if (core_is_buffer_intersect(mem->addr, mem->size,
576 						     mmap->pa, mmap->size)) {
577 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
578 						   mmap->pa, mmap->size);
579 				panic("Special memory intersection");
580 			}
581 		}
582 	}
583 }
584 
585 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems,
586 			 const char *mem_name __maybe_unused,
587 			 enum teecore_memtypes mem_type,
588 			 paddr_t mem_addr, paddr_size_t mem_size, size_t *last)
589 {
590 	size_t n = 0;
591 	paddr_t pa;
592 	paddr_size_t size;
593 
594 	if (!mem_size)	/* Discard null size entries */
595 		return;
596 	/*
597 	 * If some ranges of memory of the same type do overlap
598 	 * each others they are coalesced into one entry. To help this
599 	 * added entries are sorted by increasing physical.
600 	 *
601 	 * Note that it's valid to have the same physical memory as several
602 	 * different memory types, for instance the same device memory
603 	 * mapped as both secure and non-secure. This will probably not
604 	 * happen often in practice.
605 	 */
606 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
607 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
608 	while (true) {
609 		if (n >= (num_elems - 1)) {
610 			EMSG("Out of entries (%zu) in memory_map", num_elems);
611 			panic();
612 		}
613 		if (n == *last)
614 			break;
615 		pa = memory_map[n].pa;
616 		size = memory_map[n].size;
617 		if (mem_type == memory_map[n].type &&
618 		    ((pa <= (mem_addr + (mem_size - 1))) &&
619 		    (mem_addr <= (pa + (size - 1))))) {
620 			DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr);
621 			memory_map[n].pa = MIN(pa, mem_addr);
622 			memory_map[n].size = MAX(size, mem_size) +
623 					     (pa - memory_map[n].pa);
624 			return;
625 		}
626 		if (mem_type < memory_map[n].type ||
627 		    (mem_type == memory_map[n].type && mem_addr < pa))
628 			break; /* found the spot where to insert this memory */
629 		n++;
630 	}
631 
632 	memmove(memory_map + n + 1, memory_map + n,
633 		sizeof(struct tee_mmap_region) * (*last - n));
634 	(*last)++;
635 	memset(memory_map + n, 0, sizeof(memory_map[0]));
636 	memory_map[n].type = mem_type;
637 	memory_map[n].pa = mem_addr;
638 	memory_map[n].size = mem_size;
639 }
640 
641 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems,
642 			 enum teecore_memtypes type, size_t size, size_t *last)
643 {
644 	size_t n = 0;
645 
646 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
647 	while (true) {
648 		if (n >= (num_elems - 1)) {
649 			EMSG("Out of entries (%zu) in memory_map", num_elems);
650 			panic();
651 		}
652 		if (n == *last)
653 			break;
654 		if (type < memory_map[n].type)
655 			break;
656 		n++;
657 	}
658 
659 	memmove(memory_map + n + 1, memory_map + n,
660 		sizeof(struct tee_mmap_region) * (*last - n));
661 	(*last)++;
662 	memset(memory_map + n, 0, sizeof(memory_map[0]));
663 	memory_map[n].type = type;
664 	memory_map[n].size = size;
665 }
666 
667 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
668 {
669 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
670 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
671 				TEE_MATTR_MEM_TYPE_SHIFT;
672 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
673 				TEE_MATTR_MEM_TYPE_SHIFT;
674 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
675 				  TEE_MATTR_MEM_TYPE_SHIFT;
676 
677 	switch (t) {
678 	case MEM_AREA_TEE_RAM:
679 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
680 	case MEM_AREA_TEE_RAM_RX:
681 	case MEM_AREA_INIT_RAM_RX:
682 	case MEM_AREA_IDENTITY_MAP_RX:
683 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
684 	case MEM_AREA_TEE_RAM_RO:
685 	case MEM_AREA_INIT_RAM_RO:
686 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
687 	case MEM_AREA_TEE_RAM_RW:
688 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
689 	case MEM_AREA_NEX_RAM_RW:
690 	case MEM_AREA_TEE_ASAN:
691 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
692 	case MEM_AREA_TEE_COHERENT:
693 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
694 	case MEM_AREA_TA_RAM:
695 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
696 	case MEM_AREA_NSEC_SHM:
697 		return attr | TEE_MATTR_PRW | cached;
698 	case MEM_AREA_EXT_DT:
699 		/*
700 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
701 		 * tree as secure non-cached memory, otherwise, fall back to
702 		 * non-secure mapping.
703 		 */
704 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
705 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
706 			       noncache;
707 		fallthrough;
708 	case MEM_AREA_IO_NSEC:
709 		return attr | TEE_MATTR_PRW | noncache;
710 	case MEM_AREA_IO_SEC:
711 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
712 	case MEM_AREA_RAM_NSEC:
713 		return attr | TEE_MATTR_PRW | cached;
714 	case MEM_AREA_RAM_SEC:
715 	case MEM_AREA_SEC_RAM_OVERALL:
716 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
717 	case MEM_AREA_RES_VASPACE:
718 	case MEM_AREA_SHM_VASPACE:
719 		return 0;
720 	case MEM_AREA_PAGER_VASPACE:
721 		return TEE_MATTR_SECURE;
722 	default:
723 		panic("invalid type");
724 	}
725 }
726 
727 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
728 {
729 	switch (mm->type) {
730 	case MEM_AREA_TEE_RAM:
731 	case MEM_AREA_TEE_RAM_RX:
732 	case MEM_AREA_TEE_RAM_RO:
733 	case MEM_AREA_TEE_RAM_RW:
734 	case MEM_AREA_INIT_RAM_RX:
735 	case MEM_AREA_INIT_RAM_RO:
736 	case MEM_AREA_NEX_RAM_RW:
737 	case MEM_AREA_NEX_RAM_RO:
738 	case MEM_AREA_TEE_ASAN:
739 		return true;
740 	default:
741 		return false;
742 	}
743 }
744 
745 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
746 {
747 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
748 }
749 
750 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
751 {
752 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
753 }
754 
755 static int cmp_mmap_by_lower_va(const void *a, const void *b)
756 {
757 	const struct tee_mmap_region *mm_a = a;
758 	const struct tee_mmap_region *mm_b = b;
759 
760 	return CMP_TRILEAN(mm_a->va, mm_b->va);
761 }
762 
763 static void dump_mmap_table(struct tee_mmap_region *memory_map)
764 {
765 	struct tee_mmap_region *map;
766 
767 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
768 		vaddr_t __maybe_unused vstart;
769 
770 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
771 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
772 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
773 		     teecore_memtype_name(map->type), vstart,
774 		     vstart + map->size - 1, map->pa,
775 		     (paddr_t)(map->pa + map->size - 1), map->size,
776 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
777 	}
778 }
779 
780 #if DEBUG_XLAT_TABLE
781 
782 static void dump_xlat_table(vaddr_t va, unsigned int level)
783 {
784 	struct core_mmu_table_info tbl_info;
785 	unsigned int idx = 0;
786 	paddr_t pa;
787 	uint32_t attr;
788 
789 	core_mmu_find_table(NULL, va, level, &tbl_info);
790 	va = tbl_info.va_base;
791 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
792 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
793 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
794 			const char *security_bit = "";
795 
796 			if (core_mmu_entry_have_security_bit(attr)) {
797 				if (attr & TEE_MATTR_SECURE)
798 					security_bit = "S";
799 				else
800 					security_bit = "NS";
801 			}
802 
803 			if (attr & TEE_MATTR_TABLE) {
804 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
805 					" TBL:0x%010" PRIxPA " %s",
806 					level * 2, "", level, va, pa,
807 					security_bit);
808 				dump_xlat_table(va, level + 1);
809 			} else if (attr) {
810 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
811 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
812 					level * 2, "", level, va, pa,
813 					mattr_is_cached(attr) ? "MEM" :
814 					"DEV",
815 					attr & TEE_MATTR_PW ? "RW" : "RO",
816 					attr & TEE_MATTR_PX ? "X " : "XN",
817 					security_bit);
818 			} else {
819 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
820 					    " INVALID\n",
821 					    level * 2, "", level, va);
822 			}
823 		}
824 		va += BIT64(tbl_info.shift);
825 	}
826 }
827 
828 #else
829 
830 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
831 {
832 }
833 
834 #endif
835 
836 /*
837  * Reserves virtual memory space for pager usage.
838  *
839  * From the start of the first memory used by the link script +
840  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
841  * mapping for pager usage. This adds translation tables as needed for the
842  * pager to operate.
843  */
844 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems,
845 			      size_t *last)
846 {
847 	paddr_t begin = 0;
848 	paddr_t end = 0;
849 	size_t size = 0;
850 	size_t pos = 0;
851 	size_t n = 0;
852 
853 	if (*last >= (num_elems - 1)) {
854 		EMSG("Out of entries (%zu) in memory map", num_elems);
855 		panic();
856 	}
857 
858 	for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) {
859 		if (map_is_tee_ram(mmap + n)) {
860 			if (!begin)
861 				begin = mmap[n].pa;
862 			pos = n + 1;
863 		}
864 	}
865 
866 	end = mmap[pos - 1].pa + mmap[pos - 1].size;
867 	size = TEE_RAM_VA_SIZE - (end - begin);
868 	if (!size)
869 		return;
870 
871 	assert(pos <= *last);
872 	memmove(mmap + pos + 1, mmap + pos,
873 		sizeof(struct tee_mmap_region) * (*last - pos));
874 	(*last)++;
875 	memset(mmap + pos, 0, sizeof(mmap[0]));
876 	mmap[pos].type = MEM_AREA_PAGER_VASPACE;
877 	mmap[pos].va = 0;
878 	mmap[pos].size = size;
879 	mmap[pos].region_size = SMALL_PAGE_SIZE;
880 	mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE);
881 }
882 
883 static void check_sec_nsec_mem_config(void)
884 {
885 	size_t n = 0;
886 
887 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
888 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
889 				    secure_only[n].size))
890 			panic("Invalid memory access config: sec/nsec");
891 	}
892 }
893 
894 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map,
895 				 size_t num_elems)
896 {
897 	const struct core_mmu_phys_mem *mem = NULL;
898 	size_t last = 0;
899 
900 
901 #define ADD_PHYS_MEM(_type, _addr, _size) \
902 		add_phys_mem(memory_map, num_elems, #_addr, (_type), \
903 			     (_addr), (_size),  &last)
904 
905 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
906 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, TEE_RAM_START,
907 			     VCORE_UNPG_RX_PA - TEE_RAM_START);
908 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
909 			     VCORE_UNPG_RX_SZ);
910 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
911 			     VCORE_UNPG_RO_SZ);
912 
913 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
914 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
915 				     VCORE_UNPG_RW_SZ);
916 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
917 				     VCORE_NEX_RW_SZ);
918 		} else {
919 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
920 				     VCORE_UNPG_RW_SZ);
921 		}
922 
923 		if (IS_ENABLED(CFG_WITH_PAGER)) {
924 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
925 				     VCORE_INIT_RX_SZ);
926 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
927 				     VCORE_INIT_RO_SZ);
928 		}
929 	} else {
930 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
931 	}
932 
933 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
934 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
935 			     TRUSTED_DRAM_SIZE);
936 	} else {
937 		/*
938 		 * Every guest will have own TA RAM if virtualization
939 		 * support is enabled.
940 		 */
941 		ADD_PHYS_MEM(MEM_AREA_TA_RAM, TA_RAM_START, TA_RAM_SIZE);
942 	}
943 
944 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
945 	    IS_ENABLED(CFG_WITH_PAGER)) {
946 		/*
947 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
948 		 * disabled.
949 		 */
950 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
951 	}
952 
953 #undef ADD_PHYS_MEM
954 
955 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
956 		/* Only unmapped virtual range may have a null phys addr */
957 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
958 
959 		add_phys_mem(memory_map, num_elems, mem->name, mem->type,
960 			     mem->addr, mem->size, &last);
961 	}
962 
963 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
964 		verify_special_mem_areas(memory_map, num_elems,
965 					 phys_sdp_mem_begin,
966 					 phys_sdp_mem_end, "SDP");
967 
968 	add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE,
969 		     CFG_RESERVED_VASPACE_SIZE, &last);
970 
971 	add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE,
972 		     SHM_VASPACE_SIZE, &last);
973 
974 	memory_map[last].type = MEM_AREA_END;
975 
976 	return last;
977 }
978 
979 static void assign_mem_granularity(struct tee_mmap_region *memory_map)
980 {
981 	struct tee_mmap_region *map = NULL;
982 
983 	/*
984 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
985 	 * SMALL_PAGE_SIZE.
986 	 */
987 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
988 		paddr_t mask = map->pa | map->size;
989 
990 		if (!(mask & CORE_MMU_PGDIR_MASK))
991 			map->region_size = CORE_MMU_PGDIR_SIZE;
992 		else if (!(mask & SMALL_PAGE_MASK))
993 			map->region_size = SMALL_PAGE_SIZE;
994 		else
995 			panic("Impossible memory alignment");
996 
997 		if (map_is_tee_ram(map))
998 			map->region_size = SMALL_PAGE_SIZE;
999 	}
1000 }
1001 
1002 static bool place_tee_ram_at_top(paddr_t paddr)
1003 {
1004 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1005 }
1006 
1007 /*
1008  * MMU arch driver shall override this function if it helps
1009  * optimizing the memory footprint of the address translation tables.
1010  */
1011 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1012 {
1013 	return place_tee_ram_at_top(paddr);
1014 }
1015 
1016 static bool assign_mem_va_dir(vaddr_t tee_ram_va,
1017 			      struct tee_mmap_region *memory_map,
1018 			      bool tee_ram_at_top)
1019 {
1020 	struct tee_mmap_region *map = NULL;
1021 	vaddr_t va = 0;
1022 	bool va_is_secure = true;
1023 
1024 	/*
1025 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1026 	 * 0 is by design an invalid va, so return false directly.
1027 	 */
1028 	if (!tee_ram_va)
1029 		return false;
1030 
1031 	/* Clear eventual previous assignments */
1032 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1033 		map->va = 0;
1034 
1035 	/*
1036 	 * TEE RAM regions are always aligned with region_size.
1037 	 *
1038 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1039 	 * since it handles virtual memory which covers the part of the ELF
1040 	 * that cannot fit directly into memory.
1041 	 */
1042 	va = tee_ram_va;
1043 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1044 		if (map_is_tee_ram(map) ||
1045 		    map->type == MEM_AREA_PAGER_VASPACE) {
1046 			assert(!(va & (map->region_size - 1)));
1047 			assert(!(map->size & (map->region_size - 1)));
1048 			map->va = va;
1049 			if (ADD_OVERFLOW(va, map->size, &va))
1050 				return false;
1051 			if (va >= BIT64(core_mmu_get_va_width()))
1052 				return false;
1053 		}
1054 	}
1055 
1056 	if (tee_ram_at_top) {
1057 		/*
1058 		 * Map non-tee ram regions at addresses lower than the tee
1059 		 * ram region.
1060 		 */
1061 		va = tee_ram_va;
1062 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1063 			map->attr = core_mmu_type_to_attr(map->type);
1064 			if (map->va)
1065 				continue;
1066 
1067 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1068 			    va_is_secure != map_is_secure(map)) {
1069 				va_is_secure = !va_is_secure;
1070 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1071 			}
1072 
1073 			if (SUB_OVERFLOW(va, map->size, &va))
1074 				return false;
1075 			va = ROUNDDOWN(va, map->region_size);
1076 			/*
1077 			 * Make sure that va is aligned with pa for
1078 			 * efficient pgdir mapping. Basically pa &
1079 			 * pgdir_mask should be == va & pgdir_mask
1080 			 */
1081 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1082 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1083 					return false;
1084 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1085 			}
1086 			map->va = va;
1087 		}
1088 	} else {
1089 		/*
1090 		 * Map non-tee ram regions at addresses higher than the tee
1091 		 * ram region.
1092 		 */
1093 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1094 			map->attr = core_mmu_type_to_attr(map->type);
1095 			if (map->va)
1096 				continue;
1097 
1098 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1099 			    va_is_secure != map_is_secure(map)) {
1100 				va_is_secure = !va_is_secure;
1101 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1102 						     &va))
1103 					return false;
1104 			}
1105 
1106 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1107 				return false;
1108 			/*
1109 			 * Make sure that va is aligned with pa for
1110 			 * efficient pgdir mapping. Basically pa &
1111 			 * pgdir_mask should be == va & pgdir_mask
1112 			 */
1113 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1114 				vaddr_t offs = (map->pa - va) &
1115 					       CORE_MMU_PGDIR_MASK;
1116 
1117 				if (ADD_OVERFLOW(va, offs, &va))
1118 					return false;
1119 			}
1120 
1121 			map->va = va;
1122 			if (ADD_OVERFLOW(va, map->size, &va))
1123 				return false;
1124 			if (va >= BIT64(core_mmu_get_va_width()))
1125 				return false;
1126 		}
1127 	}
1128 
1129 	return true;
1130 }
1131 
1132 static bool assign_mem_va(vaddr_t tee_ram_va,
1133 			  struct tee_mmap_region *memory_map)
1134 {
1135 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1136 
1137 	/*
1138 	 * Check that we're not overlapping with the user VA range.
1139 	 */
1140 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1141 		/*
1142 		 * User VA range is supposed to be defined after these
1143 		 * mappings have been established.
1144 		 */
1145 		assert(!core_mmu_user_va_range_is_defined());
1146 	} else {
1147 		vaddr_t user_va_base = 0;
1148 		size_t user_va_size = 0;
1149 
1150 		assert(core_mmu_user_va_range_is_defined());
1151 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1152 		if (tee_ram_va < (user_va_base + user_va_size))
1153 			return false;
1154 	}
1155 
1156 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1157 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1158 
1159 		/* Try whole mapping covered by a single base xlat entry */
1160 		if (prefered_dir != tee_ram_at_top &&
1161 		    assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir))
1162 			return true;
1163 	}
1164 
1165 	return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top);
1166 }
1167 
1168 static int cmp_init_mem_map(const void *a, const void *b)
1169 {
1170 	const struct tee_mmap_region *mm_a = a;
1171 	const struct tee_mmap_region *mm_b = b;
1172 	int rc = 0;
1173 
1174 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1175 	if (!rc)
1176 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1177 	/*
1178 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1179 	 * the same level2 table. Hence sort secure mapping from non-secure
1180 	 * mapping.
1181 	 */
1182 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1183 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1184 
1185 	return rc;
1186 }
1187 
1188 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map,
1189 			       size_t num_elems, size_t *last,
1190 			       vaddr_t id_map_start, vaddr_t id_map_end)
1191 {
1192 	struct tee_mmap_region *map = NULL;
1193 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1194 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1195 	size_t len = end - start;
1196 
1197 	if (*last >= num_elems - 1) {
1198 		EMSG("Out of entries (%zu) in memory map", num_elems);
1199 		panic();
1200 	}
1201 
1202 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1203 		if (core_is_buffer_intersect(map->va, map->size, start, len))
1204 			return false;
1205 
1206 	*map = (struct tee_mmap_region){
1207 		.type = MEM_AREA_IDENTITY_MAP_RX,
1208 		/*
1209 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1210 		 * translation table, at the increased risk of clashes with
1211 		 * the rest of the memory map.
1212 		 */
1213 		.region_size = SMALL_PAGE_SIZE,
1214 		.pa = start,
1215 		.va = start,
1216 		.size = len,
1217 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1218 	};
1219 
1220 	(*last)++;
1221 
1222 	return true;
1223 }
1224 
1225 static unsigned long init_mem_map(struct tee_mmap_region *memory_map,
1226 				  size_t num_elems, unsigned long seed)
1227 {
1228 	/*
1229 	 * @id_map_start and @id_map_end describes a physical memory range
1230 	 * that must be mapped Read-Only eXecutable at identical virtual
1231 	 * addresses.
1232 	 */
1233 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1234 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1235 	unsigned long offs = 0;
1236 	size_t last = 0;
1237 
1238 	last = collect_mem_ranges(memory_map, num_elems);
1239 	assign_mem_granularity(memory_map);
1240 
1241 	/*
1242 	 * To ease mapping and lower use of xlat tables, sort mapping
1243 	 * description moving small-page regions after the pgdir regions.
1244 	 */
1245 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1246 	      cmp_init_mem_map);
1247 
1248 	add_pager_vaspace(memory_map, num_elems, &last);
1249 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1250 		vaddr_t base_addr = TEE_RAM_START + seed;
1251 		const unsigned int va_width = core_mmu_get_va_width();
1252 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1253 						   SMALL_PAGE_SHIFT);
1254 		vaddr_t ba = base_addr;
1255 		size_t n = 0;
1256 
1257 		for (n = 0; n < 3; n++) {
1258 			if (n)
1259 				ba = base_addr ^ BIT64(va_width - n);
1260 			ba &= va_mask;
1261 			if (assign_mem_va(ba, memory_map) &&
1262 			    mem_map_add_id_map(memory_map, num_elems, &last,
1263 					       id_map_start, id_map_end)) {
1264 				offs = ba - TEE_RAM_START;
1265 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1266 				     ba, offs);
1267 				goto out;
1268 			} else {
1269 				DMSG("Failed to map core at %#"PRIxVA, ba);
1270 			}
1271 		}
1272 		EMSG("Failed to map core with seed %#lx", seed);
1273 	}
1274 
1275 	if (!assign_mem_va(TEE_RAM_START, memory_map))
1276 		panic();
1277 
1278 out:
1279 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1280 	      cmp_mmap_by_lower_va);
1281 
1282 	dump_mmap_table(memory_map);
1283 
1284 	return offs;
1285 }
1286 
1287 static void check_mem_map(struct tee_mmap_region *map)
1288 {
1289 	struct tee_mmap_region *m = NULL;
1290 
1291 	for (m = map; !core_mmap_is_end_of_table(m); m++) {
1292 		switch (m->type) {
1293 		case MEM_AREA_TEE_RAM:
1294 		case MEM_AREA_TEE_RAM_RX:
1295 		case MEM_AREA_TEE_RAM_RO:
1296 		case MEM_AREA_TEE_RAM_RW:
1297 		case MEM_AREA_INIT_RAM_RX:
1298 		case MEM_AREA_INIT_RAM_RO:
1299 		case MEM_AREA_NEX_RAM_RW:
1300 		case MEM_AREA_NEX_RAM_RO:
1301 		case MEM_AREA_IDENTITY_MAP_RX:
1302 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1303 				panic("TEE_RAM can't fit in secure_only");
1304 			break;
1305 		case MEM_AREA_TA_RAM:
1306 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1307 				panic("TA_RAM can't fit in secure_only");
1308 			break;
1309 		case MEM_AREA_NSEC_SHM:
1310 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1311 				panic("NS_SHM can't fit in nsec_shared");
1312 			break;
1313 		case MEM_AREA_SEC_RAM_OVERALL:
1314 		case MEM_AREA_TEE_COHERENT:
1315 		case MEM_AREA_TEE_ASAN:
1316 		case MEM_AREA_IO_SEC:
1317 		case MEM_AREA_IO_NSEC:
1318 		case MEM_AREA_EXT_DT:
1319 		case MEM_AREA_RAM_SEC:
1320 		case MEM_AREA_RAM_NSEC:
1321 		case MEM_AREA_RES_VASPACE:
1322 		case MEM_AREA_SHM_VASPACE:
1323 		case MEM_AREA_PAGER_VASPACE:
1324 			break;
1325 		default:
1326 			EMSG("Uhandled memtype %d", m->type);
1327 			panic();
1328 		}
1329 	}
1330 }
1331 
1332 static struct tee_mmap_region *get_tmp_mmap(void)
1333 {
1334 	struct tee_mmap_region *tmp_mmap = (void *)__heap1_start;
1335 
1336 #ifdef CFG_WITH_PAGER
1337 	if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map))
1338 		tmp_mmap = (void *)__heap2_start;
1339 #endif
1340 
1341 	memset(tmp_mmap, 0, sizeof(static_memory_map));
1342 
1343 	return tmp_mmap;
1344 }
1345 
1346 /*
1347  * core_init_mmu_map() - init tee core default memory mapping
1348  *
1349  * This routine sets the static default TEE core mapping. If @seed is > 0
1350  * and configured with CFG_CORE_ASLR it will map tee core at a location
1351  * based on the seed and return the offset from the link address.
1352  *
1353  * If an error happened: core_init_mmu_map is expected to panic.
1354  *
1355  * Note: this function is weak just to make it possible to exclude it from
1356  * the unpaged area.
1357  */
1358 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1359 {
1360 #ifndef CFG_NS_VIRTUALIZATION
1361 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1362 #else
1363 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1364 				  SMALL_PAGE_SIZE);
1365 #endif
1366 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1367 	struct tee_mmap_region *tmp_mmap = get_tmp_mmap();
1368 	unsigned long offs = 0;
1369 
1370 	check_sec_nsec_mem_config();
1371 
1372 	/*
1373 	 * Add a entry covering the translation tables which will be
1374 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1375 	 */
1376 	static_memory_map[0] = (struct tee_mmap_region){
1377 		.type = MEM_AREA_TEE_RAM,
1378 		.region_size = SMALL_PAGE_SIZE,
1379 		.pa = start,
1380 		.va = start,
1381 		.size = len,
1382 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1383 	};
1384 
1385 	COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13);
1386 	offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed);
1387 
1388 	check_mem_map(tmp_mmap);
1389 	core_init_mmu(tmp_mmap);
1390 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1391 	core_init_mmu_regs(cfg);
1392 	cfg->map_offset = offs;
1393 	memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map));
1394 }
1395 
1396 bool core_mmu_mattr_is_ok(uint32_t mattr)
1397 {
1398 	/*
1399 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1400 	 * core_mmu_v7.c:mattr_to_texcb
1401 	 */
1402 
1403 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1404 	case TEE_MATTR_MEM_TYPE_DEV:
1405 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1406 	case TEE_MATTR_MEM_TYPE_CACHED:
1407 	case TEE_MATTR_MEM_TYPE_TAGGED:
1408 		return true;
1409 	default:
1410 		return false;
1411 	}
1412 }
1413 
1414 /*
1415  * test attributes of target physical buffer
1416  *
1417  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1418  *
1419  */
1420 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1421 {
1422 	struct tee_mmap_region *map;
1423 
1424 	/* Empty buffers complies with anything */
1425 	if (len == 0)
1426 		return true;
1427 
1428 	switch (attr) {
1429 	case CORE_MEM_SEC:
1430 		return pbuf_is_inside(secure_only, pbuf, len);
1431 	case CORE_MEM_NON_SEC:
1432 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1433 			pbuf_is_nsec_ddr(pbuf, len);
1434 	case CORE_MEM_TEE_RAM:
1435 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1436 							TEE_RAM_PH_SIZE);
1437 	case CORE_MEM_TA_RAM:
1438 		return core_is_buffer_inside(pbuf, len, TA_RAM_START,
1439 							TA_RAM_SIZE);
1440 #ifdef CFG_CORE_RESERVED_SHM
1441 	case CORE_MEM_NSEC_SHM:
1442 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1443 							TEE_SHMEM_SIZE);
1444 #endif
1445 	case CORE_MEM_SDP_MEM:
1446 		return pbuf_is_sdp_mem(pbuf, len);
1447 	case CORE_MEM_CACHED:
1448 		map = find_map_by_pa(pbuf);
1449 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1450 			return false;
1451 		return mattr_is_cached(map->attr);
1452 	default:
1453 		return false;
1454 	}
1455 }
1456 
1457 /* test attributes of target virtual buffer (in core mapping) */
1458 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1459 {
1460 	paddr_t p;
1461 
1462 	/* Empty buffers complies with anything */
1463 	if (len == 0)
1464 		return true;
1465 
1466 	p = virt_to_phys((void *)vbuf);
1467 	if (!p)
1468 		return false;
1469 
1470 	return core_pbuf_is(attr, p, len);
1471 }
1472 
1473 /* core_va2pa - teecore exported service */
1474 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1475 {
1476 	struct tee_mmap_region *map;
1477 
1478 	map = find_map_by_va(va);
1479 	if (!va_is_in_map(map, (vaddr_t)va))
1480 		return -1;
1481 
1482 	/*
1483 	 * We can calculate PA for static map. Virtual address ranges
1484 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1485 	 * together with an invalid null physical address.
1486 	 */
1487 	if (map->pa)
1488 		*pa = map->pa + (vaddr_t)va  - map->va;
1489 	else
1490 		*pa = 0;
1491 
1492 	return 0;
1493 }
1494 
1495 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1496 {
1497 	if (!pa_is_in_map(map, pa, len))
1498 		return NULL;
1499 
1500 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1501 }
1502 
1503 /*
1504  * teecore gets some memory area definitions
1505  */
1506 void core_mmu_get_mem_by_type(unsigned int type, vaddr_t *s, vaddr_t *e)
1507 {
1508 	struct tee_mmap_region *map = find_map_by_type(type);
1509 
1510 	if (map) {
1511 		*s = map->va;
1512 		*e = map->va + map->size;
1513 	} else {
1514 		*s = 0;
1515 		*e = 0;
1516 	}
1517 }
1518 
1519 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1520 {
1521 	struct tee_mmap_region *map = find_map_by_pa(pa);
1522 
1523 	if (!map)
1524 		return MEM_AREA_MAXTYPE;
1525 	return map->type;
1526 }
1527 
1528 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1529 			paddr_t pa, uint32_t attr)
1530 {
1531 	assert(idx < tbl_info->num_entries);
1532 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1533 				     idx, pa, attr);
1534 }
1535 
1536 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1537 			paddr_t *pa, uint32_t *attr)
1538 {
1539 	assert(idx < tbl_info->num_entries);
1540 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1541 				     idx, pa, attr);
1542 }
1543 
1544 static void clear_region(struct core_mmu_table_info *tbl_info,
1545 			 struct tee_mmap_region *region)
1546 {
1547 	unsigned int end = 0;
1548 	unsigned int idx = 0;
1549 
1550 	/* va, len and pa should be block aligned */
1551 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1552 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1553 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1554 
1555 	idx = core_mmu_va2idx(tbl_info, region->va);
1556 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1557 
1558 	while (idx < end) {
1559 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1560 		idx++;
1561 	}
1562 }
1563 
1564 static void set_region(struct core_mmu_table_info *tbl_info,
1565 		       struct tee_mmap_region *region)
1566 {
1567 	unsigned int end;
1568 	unsigned int idx;
1569 	paddr_t pa;
1570 
1571 	/* va, len and pa should be block aligned */
1572 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1573 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1574 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1575 
1576 	idx = core_mmu_va2idx(tbl_info, region->va);
1577 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1578 	pa = region->pa;
1579 
1580 	while (idx < end) {
1581 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1582 		idx++;
1583 		pa += BIT64(tbl_info->shift);
1584 	}
1585 }
1586 
1587 static void set_pg_region(struct core_mmu_table_info *dir_info,
1588 			  struct vm_region *region, struct pgt **pgt,
1589 			  struct core_mmu_table_info *pg_info)
1590 {
1591 	struct tee_mmap_region r = {
1592 		.va = region->va,
1593 		.size = region->size,
1594 		.attr = region->attr,
1595 	};
1596 	vaddr_t end = r.va + r.size;
1597 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1598 
1599 	while (r.va < end) {
1600 		if (!pg_info->table ||
1601 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1602 			/*
1603 			 * We're assigning a new translation table.
1604 			 */
1605 			unsigned int idx;
1606 
1607 			/* Virtual addresses must grow */
1608 			assert(r.va > pg_info->va_base);
1609 
1610 			idx = core_mmu_va2idx(dir_info, r.va);
1611 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1612 
1613 			/*
1614 			 * Advance pgt to va_base, note that we may need to
1615 			 * skip multiple page tables if there are large
1616 			 * holes in the vm map.
1617 			 */
1618 			while ((*pgt)->vabase < pg_info->va_base) {
1619 				*pgt = SLIST_NEXT(*pgt, link);
1620 				/* We should have allocated enough */
1621 				assert(*pgt);
1622 			}
1623 			assert((*pgt)->vabase == pg_info->va_base);
1624 			pg_info->table = (*pgt)->tbl;
1625 
1626 			core_mmu_set_entry(dir_info, idx,
1627 					   virt_to_phys(pg_info->table),
1628 					   pgt_attr);
1629 		}
1630 
1631 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1632 			     end - r.va);
1633 
1634 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1635 			size_t granule = BIT(pg_info->shift);
1636 			size_t offset = r.va - region->va + region->offset;
1637 
1638 			r.size = MIN(r.size,
1639 				     mobj_get_phys_granule(region->mobj));
1640 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1641 
1642 			if (mobj_get_pa(region->mobj, offset, granule,
1643 					&r.pa) != TEE_SUCCESS)
1644 				panic("Failed to get PA of unpaged mobj");
1645 			set_region(pg_info, &r);
1646 		}
1647 		r.va += r.size;
1648 	}
1649 }
1650 
1651 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1652 			     size_t size_left, paddr_t block_size,
1653 			     struct tee_mmap_region *mm __maybe_unused)
1654 {
1655 	/* VA and PA are aligned to block size at current level */
1656 	if ((vaddr | paddr) & (block_size - 1))
1657 		return false;
1658 
1659 	/* Remainder fits into block at current level */
1660 	if (size_left < block_size)
1661 		return false;
1662 
1663 #ifdef CFG_WITH_PAGER
1664 	/*
1665 	 * If pager is enabled, we need to map tee ram
1666 	 * regions with small pages only
1667 	 */
1668 	if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE)
1669 		return false;
1670 #endif
1671 
1672 	return true;
1673 }
1674 
1675 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1676 {
1677 	struct core_mmu_table_info tbl_info;
1678 	unsigned int idx;
1679 	vaddr_t vaddr = mm->va;
1680 	paddr_t paddr = mm->pa;
1681 	ssize_t size_left = mm->size;
1682 	unsigned int level;
1683 	bool table_found;
1684 	uint32_t old_attr;
1685 
1686 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1687 
1688 	while (size_left > 0) {
1689 		level = CORE_MMU_BASE_TABLE_LEVEL;
1690 
1691 		while (true) {
1692 			paddr_t block_size = 0;
1693 
1694 			assert(level <= CORE_MMU_PGDIR_LEVEL);
1695 
1696 			table_found = core_mmu_find_table(prtn, vaddr, level,
1697 							  &tbl_info);
1698 			if (!table_found)
1699 				panic("can't find table for mapping");
1700 
1701 			block_size = BIT64(tbl_info.shift);
1702 
1703 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1704 			if (!can_map_at_level(paddr, vaddr, size_left,
1705 					      block_size, mm)) {
1706 				bool secure = mm->attr & TEE_MATTR_SECURE;
1707 
1708 				/*
1709 				 * This part of the region can't be mapped at
1710 				 * this level. Need to go deeper.
1711 				 */
1712 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1713 								     idx,
1714 								     secure))
1715 					panic("Can't divide MMU entry");
1716 				level++;
1717 				continue;
1718 			}
1719 
1720 			/* We can map part of the region at current level */
1721 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1722 			if (old_attr)
1723 				panic("Page is already mapped");
1724 
1725 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1726 			paddr += block_size;
1727 			vaddr += block_size;
1728 			size_left -= block_size;
1729 
1730 			break;
1731 		}
1732 	}
1733 }
1734 
1735 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1736 			      enum teecore_memtypes memtype)
1737 {
1738 	TEE_Result ret;
1739 	struct core_mmu_table_info tbl_info;
1740 	struct tee_mmap_region *mm;
1741 	unsigned int idx;
1742 	uint32_t old_attr;
1743 	uint32_t exceptions;
1744 	vaddr_t vaddr = vstart;
1745 	size_t i;
1746 	bool secure;
1747 
1748 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1749 
1750 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1751 
1752 	if (vaddr & SMALL_PAGE_MASK)
1753 		return TEE_ERROR_BAD_PARAMETERS;
1754 
1755 	exceptions = mmu_lock();
1756 
1757 	mm = find_map_by_va((void *)vaddr);
1758 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1759 		panic("VA does not belong to any known mm region");
1760 
1761 	if (!core_mmu_is_dynamic_vaspace(mm))
1762 		panic("Trying to map into static region");
1763 
1764 	for (i = 0; i < num_pages; i++) {
1765 		if (pages[i] & SMALL_PAGE_MASK) {
1766 			ret = TEE_ERROR_BAD_PARAMETERS;
1767 			goto err;
1768 		}
1769 
1770 		while (true) {
1771 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1772 						 &tbl_info))
1773 				panic("Can't find pagetable for vaddr ");
1774 
1775 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1776 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1777 				break;
1778 
1779 			/* This is supertable. Need to divide it. */
1780 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1781 							     secure))
1782 				panic("Failed to spread pgdir on small tables");
1783 		}
1784 
1785 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1786 		if (old_attr)
1787 			panic("Page is already mapped");
1788 
1789 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1790 				   core_mmu_type_to_attr(memtype));
1791 		vaddr += SMALL_PAGE_SIZE;
1792 	}
1793 
1794 	/*
1795 	 * Make sure all the changes to translation tables are visible
1796 	 * before returning. TLB doesn't need to be invalidated as we are
1797 	 * guaranteed that there's no valid mapping in this range.
1798 	 */
1799 	core_mmu_table_write_barrier();
1800 	mmu_unlock(exceptions);
1801 
1802 	return TEE_SUCCESS;
1803 err:
1804 	mmu_unlock(exceptions);
1805 
1806 	if (i)
1807 		core_mmu_unmap_pages(vstart, i);
1808 
1809 	return ret;
1810 }
1811 
1812 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
1813 					 size_t num_pages,
1814 					 enum teecore_memtypes memtype)
1815 {
1816 	struct core_mmu_table_info tbl_info = { };
1817 	struct tee_mmap_region *mm = NULL;
1818 	unsigned int idx = 0;
1819 	uint32_t old_attr = 0;
1820 	uint32_t exceptions = 0;
1821 	vaddr_t vaddr = vstart;
1822 	paddr_t paddr = pstart;
1823 	size_t i = 0;
1824 	bool secure = false;
1825 
1826 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1827 
1828 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1829 
1830 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
1831 		return TEE_ERROR_BAD_PARAMETERS;
1832 
1833 	exceptions = mmu_lock();
1834 
1835 	mm = find_map_by_va((void *)vaddr);
1836 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1837 		panic("VA does not belong to any known mm region");
1838 
1839 	if (!core_mmu_is_dynamic_vaspace(mm))
1840 		panic("Trying to map into static region");
1841 
1842 	for (i = 0; i < num_pages; i++) {
1843 		while (true) {
1844 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1845 						 &tbl_info))
1846 				panic("Can't find pagetable for vaddr ");
1847 
1848 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1849 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1850 				break;
1851 
1852 			/* This is supertable. Need to divide it. */
1853 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1854 							     secure))
1855 				panic("Failed to spread pgdir on small tables");
1856 		}
1857 
1858 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1859 		if (old_attr)
1860 			panic("Page is already mapped");
1861 
1862 		core_mmu_set_entry(&tbl_info, idx, paddr,
1863 				   core_mmu_type_to_attr(memtype));
1864 		paddr += SMALL_PAGE_SIZE;
1865 		vaddr += SMALL_PAGE_SIZE;
1866 	}
1867 
1868 	/*
1869 	 * Make sure all the changes to translation tables are visible
1870 	 * before returning. TLB doesn't need to be invalidated as we are
1871 	 * guaranteed that there's no valid mapping in this range.
1872 	 */
1873 	core_mmu_table_write_barrier();
1874 	mmu_unlock(exceptions);
1875 
1876 	return TEE_SUCCESS;
1877 }
1878 
1879 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
1880 {
1881 	struct core_mmu_table_info tbl_info;
1882 	struct tee_mmap_region *mm;
1883 	size_t i;
1884 	unsigned int idx;
1885 	uint32_t exceptions;
1886 
1887 	exceptions = mmu_lock();
1888 
1889 	mm = find_map_by_va((void *)vstart);
1890 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
1891 		panic("VA does not belong to any known mm region");
1892 
1893 	if (!core_mmu_is_dynamic_vaspace(mm))
1894 		panic("Trying to unmap static region");
1895 
1896 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
1897 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
1898 			panic("Can't find pagetable");
1899 
1900 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
1901 			panic("Invalid pagetable level");
1902 
1903 		idx = core_mmu_va2idx(&tbl_info, vstart);
1904 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
1905 	}
1906 	tlbi_all();
1907 
1908 	mmu_unlock(exceptions);
1909 }
1910 
1911 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
1912 				struct user_mode_ctx *uctx)
1913 {
1914 	struct core_mmu_table_info pg_info = { };
1915 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
1916 	struct pgt *pgt = NULL;
1917 	struct pgt *p = NULL;
1918 	struct vm_region *r = NULL;
1919 
1920 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
1921 		return; /* Nothing to map */
1922 
1923 	/*
1924 	 * Allocate all page tables in advance.
1925 	 */
1926 	pgt_get_all(uctx);
1927 	pgt = SLIST_FIRST(pgt_cache);
1928 
1929 	core_mmu_set_info_table(&pg_info, dir_info->level + 1, 0, NULL);
1930 
1931 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
1932 		set_pg_region(dir_info, r, &pgt, &pg_info);
1933 	/* Record that the translation tables now are populated. */
1934 	SLIST_FOREACH(p, pgt_cache, link) {
1935 		p->populated = true;
1936 		if (p == pgt)
1937 			break;
1938 	}
1939 	assert(p == pgt);
1940 }
1941 
1942 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
1943 				   size_t len)
1944 {
1945 	struct core_mmu_table_info tbl_info = { };
1946 	struct tee_mmap_region *res_map = NULL;
1947 	struct tee_mmap_region *map = NULL;
1948 	paddr_t pa = virt_to_phys(addr);
1949 	size_t granule = 0;
1950 	ptrdiff_t i = 0;
1951 	paddr_t p = 0;
1952 	size_t l = 0;
1953 
1954 	map = find_map_by_type_and_pa(type, pa, len);
1955 	if (!map)
1956 		return TEE_ERROR_GENERIC;
1957 
1958 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
1959 	if (!res_map)
1960 		return TEE_ERROR_GENERIC;
1961 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
1962 		return TEE_ERROR_GENERIC;
1963 	granule = BIT(tbl_info.shift);
1964 
1965 	if (map < static_memory_map ||
1966 	    map >= static_memory_map + ARRAY_SIZE(static_memory_map))
1967 		return TEE_ERROR_GENERIC;
1968 	i = map - static_memory_map;
1969 
1970 	/* Check that we have a full match */
1971 	p = ROUNDDOWN(pa, granule);
1972 	l = ROUNDUP(len + pa - p, granule);
1973 	if (map->pa != p || map->size != l)
1974 		return TEE_ERROR_GENERIC;
1975 
1976 	clear_region(&tbl_info, map);
1977 	tlbi_all();
1978 
1979 	/* If possible remove the va range from res_map */
1980 	if (res_map->va - map->size == map->va) {
1981 		res_map->va -= map->size;
1982 		res_map->size += map->size;
1983 	}
1984 
1985 	/* Remove the entry. */
1986 	memmove(map, map + 1,
1987 		(ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map));
1988 
1989 	/* Clear the last new entry in case it was used */
1990 	memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1,
1991 	       0, sizeof(*map));
1992 
1993 	return TEE_SUCCESS;
1994 }
1995 
1996 struct tee_mmap_region *
1997 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
1998 {
1999 	struct tee_mmap_region *map = NULL;
2000 	struct tee_mmap_region *map_found = NULL;
2001 
2002 	if (!len)
2003 		return NULL;
2004 
2005 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
2006 		if (map->type != type)
2007 			continue;
2008 
2009 		if (map_found)
2010 			return NULL;
2011 
2012 		map_found = map;
2013 	}
2014 
2015 	if (!map_found || map_found->size < len)
2016 		return NULL;
2017 
2018 	return map_found;
2019 }
2020 
2021 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2022 {
2023 	struct core_mmu_table_info tbl_info;
2024 	struct tee_mmap_region *map;
2025 	size_t n;
2026 	size_t granule;
2027 	paddr_t p;
2028 	size_t l;
2029 
2030 	if (!len)
2031 		return NULL;
2032 
2033 	if (!core_mmu_check_end_pa(addr, len))
2034 		return NULL;
2035 
2036 	/* Check if the memory is already mapped */
2037 	map = find_map_by_type_and_pa(type, addr, len);
2038 	if (map && pbuf_inside_map_area(addr, len, map))
2039 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2040 
2041 	/* Find the reserved va space used for late mappings */
2042 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2043 	if (!map)
2044 		return NULL;
2045 
2046 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2047 		return NULL;
2048 
2049 	granule = BIT64(tbl_info.shift);
2050 	p = ROUNDDOWN(addr, granule);
2051 	l = ROUNDUP(len + addr - p, granule);
2052 
2053 	/* Ban overflowing virtual addresses */
2054 	if (map->size < l)
2055 		return NULL;
2056 
2057 	/*
2058 	 * Something is wrong, we can't fit the va range into the selected
2059 	 * table. The reserved va range is possibly missaligned with
2060 	 * granule.
2061 	 */
2062 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2063 		return NULL;
2064 
2065 	/* Find end of the memory map */
2066 	n = 0;
2067 	while (!core_mmap_is_end_of_table(static_memory_map + n))
2068 		n++;
2069 
2070 	if (n < (ARRAY_SIZE(static_memory_map) - 1)) {
2071 		/* There's room for another entry */
2072 		static_memory_map[n].va = map->va;
2073 		static_memory_map[n].size = l;
2074 		static_memory_map[n + 1].type = MEM_AREA_END;
2075 		map->va += l;
2076 		map->size -= l;
2077 		map = static_memory_map + n;
2078 	} else {
2079 		/*
2080 		 * There isn't room for another entry, steal the reserved
2081 		 * entry as it's not useful for anything else any longer.
2082 		 */
2083 		map->size = l;
2084 	}
2085 	map->type = type;
2086 	map->region_size = granule;
2087 	map->attr = core_mmu_type_to_attr(type);
2088 	map->pa = p;
2089 
2090 	set_region(&tbl_info, map);
2091 
2092 	/* Make sure the new entry is visible before continuing. */
2093 	core_mmu_table_write_barrier();
2094 
2095 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2096 }
2097 
2098 #ifdef CFG_WITH_PAGER
2099 static vaddr_t get_linear_map_end_va(void)
2100 {
2101 	/* this is synced with the generic linker file kern.ld.S */
2102 	return (vaddr_t)__heap2_end;
2103 }
2104 
2105 static paddr_t get_linear_map_end_pa(void)
2106 {
2107 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2108 }
2109 #endif
2110 
2111 #if defined(CFG_TEE_CORE_DEBUG)
2112 static void check_pa_matches_va(void *va, paddr_t pa)
2113 {
2114 	TEE_Result res = TEE_ERROR_GENERIC;
2115 	vaddr_t v = (vaddr_t)va;
2116 	paddr_t p = 0;
2117 	struct core_mmu_table_info ti __maybe_unused = { };
2118 
2119 	if (core_mmu_user_va_range_is_defined()) {
2120 		vaddr_t user_va_base = 0;
2121 		size_t user_va_size = 0;
2122 
2123 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2124 		if (v >= user_va_base &&
2125 		    v <= (user_va_base - 1 + user_va_size)) {
2126 			if (!core_mmu_user_mapping_is_active()) {
2127 				if (pa)
2128 					panic("issue in linear address space");
2129 				return;
2130 			}
2131 
2132 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2133 				       va, &p);
2134 			if (res == TEE_ERROR_NOT_SUPPORTED)
2135 				return;
2136 			if (res == TEE_SUCCESS && pa != p)
2137 				panic("bad pa");
2138 			if (res != TEE_SUCCESS && pa)
2139 				panic("false pa");
2140 			return;
2141 		}
2142 	}
2143 #ifdef CFG_WITH_PAGER
2144 	if (is_unpaged(va)) {
2145 		if (v - boot_mmu_config.map_offset != pa)
2146 			panic("issue in linear address space");
2147 		return;
2148 	}
2149 
2150 	if (tee_pager_get_table_info(v, &ti)) {
2151 		uint32_t a;
2152 
2153 		/*
2154 		 * Lookups in the page table managed by the pager is
2155 		 * dangerous for addresses in the paged area as those pages
2156 		 * changes all the time. But some ranges are safe,
2157 		 * rw-locked areas when the page is populated for instance.
2158 		 */
2159 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2160 		if (a & TEE_MATTR_VALID_BLOCK) {
2161 			paddr_t mask = BIT64(ti.shift) - 1;
2162 
2163 			p |= v & mask;
2164 			if (pa != p)
2165 				panic();
2166 		} else {
2167 			if (pa)
2168 				panic();
2169 		}
2170 		return;
2171 	}
2172 #endif
2173 
2174 	if (!core_va2pa_helper(va, &p)) {
2175 		/* Verfiy only the static mapping (case non null phys addr) */
2176 		if (p && pa != p) {
2177 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2178 			     va, p, pa);
2179 			panic();
2180 		}
2181 	} else {
2182 		if (pa) {
2183 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2184 			panic();
2185 		}
2186 	}
2187 }
2188 #else
2189 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2190 {
2191 }
2192 #endif
2193 
2194 paddr_t virt_to_phys(void *va)
2195 {
2196 	paddr_t pa = 0;
2197 
2198 	if (!arch_va2pa_helper(va, &pa))
2199 		pa = 0;
2200 	check_pa_matches_va(va, pa);
2201 	return pa;
2202 }
2203 
2204 #if defined(CFG_TEE_CORE_DEBUG)
2205 static void check_va_matches_pa(paddr_t pa, void *va)
2206 {
2207 	paddr_t p = 0;
2208 
2209 	if (!va)
2210 		return;
2211 
2212 	p = virt_to_phys(va);
2213 	if (p != pa) {
2214 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2215 		panic();
2216 	}
2217 }
2218 #else
2219 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2220 {
2221 }
2222 #endif
2223 
2224 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2225 {
2226 	if (!core_mmu_user_mapping_is_active())
2227 		return NULL;
2228 
2229 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2230 }
2231 
2232 #ifdef CFG_WITH_PAGER
2233 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2234 {
2235 	paddr_t end_pa = 0;
2236 
2237 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2238 		return NULL;
2239 
2240 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2241 		if (end_pa > get_linear_map_end_pa())
2242 			return NULL;
2243 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2244 	}
2245 
2246 	return tee_pager_phys_to_virt(pa, len);
2247 }
2248 #else
2249 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2250 {
2251 	struct tee_mmap_region *mmap = NULL;
2252 
2253 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2254 	if (!mmap)
2255 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2256 	if (!mmap)
2257 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2258 	if (!mmap)
2259 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2260 	if (!mmap)
2261 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2262 	if (!mmap)
2263 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2264 	/*
2265 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2266 	 * used with pager and not needed here.
2267 	 */
2268 	return map_pa2va(mmap, pa, len);
2269 }
2270 #endif
2271 
2272 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2273 {
2274 	void *va = NULL;
2275 
2276 	switch (m) {
2277 	case MEM_AREA_TS_VASPACE:
2278 		va = phys_to_virt_ts_vaspace(pa, len);
2279 		break;
2280 	case MEM_AREA_TEE_RAM:
2281 	case MEM_AREA_TEE_RAM_RX:
2282 	case MEM_AREA_TEE_RAM_RO:
2283 	case MEM_AREA_TEE_RAM_RW:
2284 	case MEM_AREA_NEX_RAM_RO:
2285 	case MEM_AREA_NEX_RAM_RW:
2286 		va = phys_to_virt_tee_ram(pa, len);
2287 		break;
2288 	case MEM_AREA_SHM_VASPACE:
2289 		/* Find VA from PA in dynamic SHM is not yet supported */
2290 		va = NULL;
2291 		break;
2292 	default:
2293 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2294 	}
2295 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2296 		check_va_matches_pa(pa, va);
2297 	return va;
2298 }
2299 
2300 void *phys_to_virt_io(paddr_t pa, size_t len)
2301 {
2302 	struct tee_mmap_region *map = NULL;
2303 	void *va = NULL;
2304 
2305 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2306 	if (!map)
2307 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2308 	if (!map)
2309 		return NULL;
2310 	va = map_pa2va(map, pa, len);
2311 	check_va_matches_pa(pa, va);
2312 	return va;
2313 }
2314 
2315 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2316 {
2317 	if (cpu_mmu_enabled())
2318 		return (vaddr_t)phys_to_virt(pa, type, len);
2319 
2320 	return (vaddr_t)pa;
2321 }
2322 
2323 #ifdef CFG_WITH_PAGER
2324 bool is_unpaged(void *va)
2325 {
2326 	vaddr_t v = (vaddr_t)va;
2327 
2328 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2329 }
2330 #else
2331 bool is_unpaged(void *va __unused)
2332 {
2333 	return true;
2334 }
2335 #endif
2336 
2337 void core_mmu_init_virtualization(void)
2338 {
2339 	paddr_t b1 = 0;
2340 	paddr_size_t s1 = 0;
2341 
2342 	static_assert(ARRAY_SIZE(secure_only) <= 2);
2343 	if (ARRAY_SIZE(secure_only) == 2) {
2344 		b1 = secure_only[1].paddr;
2345 		s1 = secure_only[1].size;
2346 	}
2347 	virt_init_memory(static_memory_map, secure_only[0].paddr,
2348 			 secure_only[0].size, b1, s1);
2349 }
2350 
2351 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2352 {
2353 	assert(p->pa);
2354 	if (cpu_mmu_enabled()) {
2355 		if (!p->va)
2356 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2357 		assert(p->va);
2358 		return p->va;
2359 	}
2360 	return p->pa;
2361 }
2362 
2363 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2364 {
2365 	assert(p->pa);
2366 	if (cpu_mmu_enabled()) {
2367 		if (!p->va)
2368 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2369 						      len);
2370 		assert(p->va);
2371 		return p->va;
2372 	}
2373 	return p->pa;
2374 }
2375 
2376 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2377 {
2378 	assert(p->pa);
2379 	if (cpu_mmu_enabled()) {
2380 		if (!p->va)
2381 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2382 						      len);
2383 		assert(p->va);
2384 		return p->va;
2385 	}
2386 	return p->pa;
2387 }
2388 
2389 #ifdef CFG_CORE_RESERVED_SHM
2390 static TEE_Result teecore_init_pub_ram(void)
2391 {
2392 	vaddr_t s = 0;
2393 	vaddr_t e = 0;
2394 
2395 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2396 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2397 
2398 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2399 		panic("invalid PUB RAM");
2400 
2401 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2402 	if (!tee_vbuf_is_non_sec(s, e - s))
2403 		panic("PUB RAM is not non-secure");
2404 
2405 #ifdef CFG_PL310
2406 	/* Allocate statically the l2cc mutex */
2407 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2408 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2409 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2410 #endif
2411 
2412 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2413 	default_nsec_shm_size = e - s;
2414 
2415 	return TEE_SUCCESS;
2416 }
2417 early_init(teecore_init_pub_ram);
2418 #endif /*CFG_CORE_RESERVED_SHM*/
2419 
2420 void core_mmu_init_ta_ram(void)
2421 {
2422 	vaddr_t s = 0;
2423 	vaddr_t e = 0;
2424 	paddr_t ps = 0;
2425 	size_t size = 0;
2426 
2427 	/*
2428 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2429 	 * shared mem allocated from teecore.
2430 	 */
2431 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
2432 		virt_get_ta_ram(&s, &e);
2433 	else
2434 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2435 
2436 	ps = virt_to_phys((void *)s);
2437 	size = e - s;
2438 
2439 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2440 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2441 		panic("invalid TA RAM");
2442 
2443 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2444 	if (!tee_pbuf_is_sec(ps, size))
2445 		panic("TA RAM is not secure");
2446 
2447 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2448 		panic("TA RAM pool is not empty");
2449 
2450 	/* remove previous config and init TA ddr memory pool */
2451 	tee_mm_final(&tee_mm_sec_ddr);
2452 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2453 		    TEE_MM_POOL_NO_FLAGS);
2454 }
2455