xref: /optee_os/core/mm/core_mmu.c (revision 8cf8403b7f1ddbb2c0c9e4e5ef1bc04fa402024b)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <memtag.h>
22 #include <mm/core_memprot.h>
23 #include <mm/core_mmu.h>
24 #include <mm/mobj.h>
25 #include <mm/pgt_cache.h>
26 #include <mm/phys_mem.h>
27 #include <mm/tee_pager.h>
28 #include <mm/vm.h>
29 #include <platform_config.h>
30 #include <stdalign.h>
31 #include <string.h>
32 #include <trace.h>
33 #include <util.h>
34 
35 #ifndef DEBUG_XLAT_TABLE
36 #define DEBUG_XLAT_TABLE 0
37 #endif
38 
39 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
40 
41 /* Virtual memory pool for core mappings */
42 tee_mm_pool_t core_virt_mem_pool;
43 
44 /* Virtual memory pool for shared memory mappings */
45 tee_mm_pool_t core_virt_shm_pool;
46 
47 #ifdef CFG_CORE_PHYS_RELOCATABLE
48 unsigned long core_mmu_tee_load_pa __nex_bss;
49 #else
50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
51 #endif
52 
53 /*
54  * These variables are initialized before .bss is cleared. To avoid
55  * resetting them when .bss is cleared we're storing them in .data instead,
56  * even if they initially are zero.
57  */
58 
59 #ifdef CFG_CORE_RESERVED_SHM
60 /* Default NSec shared memory allocated from NSec world */
61 unsigned long default_nsec_shm_size __nex_bss;
62 unsigned long default_nsec_shm_paddr __nex_bss;
63 #endif
64 
65 #ifdef CFG_BOOT_MEM
66 static struct memory_map static_memory_map __nex_bss;
67 #else
68 static struct tee_mmap_region static_mmap_regions[CFG_MMAP_REGIONS
69 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE)
70 						+ 1
71 #endif
72 						+ 4] __nex_bss;
73 static struct memory_map static_memory_map __nex_data = {
74 	.map = static_mmap_regions,
75 	.alloc_count = ARRAY_SIZE(static_mmap_regions),
76 };
77 #endif
78 void (*memory_map_realloc_func)(struct memory_map *mem_map) __nex_bss;
79 
80 /* Offset of the first TEE RAM mapping from start of secure RAM */
81 static size_t tee_ram_initial_offs __nex_bss;
82 
83 /* Define the platform's memory layout. */
84 struct memaccess_area {
85 	paddr_t paddr;
86 	size_t size;
87 };
88 
89 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
90 
91 static struct memaccess_area secure_only[] __nex_data = {
92 #ifdef CFG_CORE_PHYS_RELOCATABLE
93 	MEMACCESS_AREA(0, 0),
94 #else
95 #ifdef TRUSTED_SRAM_BASE
96 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
97 #endif
98 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
99 #endif
100 };
101 
102 static struct memaccess_area nsec_shared[] __nex_data = {
103 #ifdef CFG_CORE_RESERVED_SHM
104 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
105 #endif
106 };
107 
108 #if defined(CFG_SECURE_DATA_PATH)
109 static const char *tz_sdp_match = "linaro,secure-heap";
110 static struct memaccess_area sec_sdp;
111 #ifdef CFG_TEE_SDP_MEM_BASE
112 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
113 #endif
114 #ifdef TEE_SDP_TEST_MEM_BASE
115 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
116 #endif
117 #endif
118 
119 #ifdef CFG_CORE_RESERVED_SHM
120 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
121 #endif
122 static unsigned int mmu_spinlock;
123 
124 static uint32_t mmu_lock(void)
125 {
126 	return cpu_spin_lock_xsave(&mmu_spinlock);
127 }
128 
129 static void mmu_unlock(uint32_t exceptions)
130 {
131 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
132 }
133 
134 static void heap_realloc_memory_map(struct memory_map *mem_map)
135 {
136 	struct tee_mmap_region *m = NULL;
137 	struct tee_mmap_region *old = mem_map->map;
138 	size_t old_sz = sizeof(*old) * mem_map->alloc_count;
139 	size_t sz = old_sz + sizeof(*m);
140 
141 	assert(nex_malloc_buffer_is_within_alloced(old, old_sz));
142 	m = nex_realloc(old, sz);
143 	if (!m)
144 		panic();
145 	mem_map->map = m;
146 	mem_map->alloc_count++;
147 }
148 
149 static void boot_mem_realloc_memory_map(struct memory_map *mem_map)
150 {
151 	struct tee_mmap_region *m = NULL;
152 	struct tee_mmap_region *old = mem_map->map;
153 	size_t old_sz = sizeof(*old) * mem_map->alloc_count;
154 	size_t sz = old_sz * 2;
155 
156 	m = boot_mem_alloc_tmp(sz, alignof(*m));
157 	memcpy(m, old, old_sz);
158 	mem_map->map = m;
159 	mem_map->alloc_count *= 2;
160 }
161 
162 static void grow_mem_map(struct memory_map *mem_map)
163 {
164 	if (mem_map->count == mem_map->alloc_count) {
165 		if (!memory_map_realloc_func) {
166 			EMSG("Out of entries (%zu) in mem_map",
167 			     mem_map->alloc_count);
168 			panic();
169 		}
170 		memory_map_realloc_func(mem_map);
171 	}
172 	mem_map->count++;
173 }
174 
175 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
176 {
177 	/*
178 	 * The first range is always used to cover OP-TEE core memory, but
179 	 * depending on configuration it may cover more than that.
180 	 */
181 	*base = secure_only[0].paddr;
182 	*size = secure_only[0].size;
183 }
184 
185 void core_mmu_set_secure_memory(paddr_t base, size_t size)
186 {
187 #ifdef CFG_CORE_PHYS_RELOCATABLE
188 	static_assert(ARRAY_SIZE(secure_only) == 1);
189 #endif
190 	runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE));
191 	assert(!secure_only[0].size);
192 	assert(base && size);
193 
194 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
195 	secure_only[0].paddr = base;
196 	secure_only[0].size = size;
197 }
198 
199 static struct memory_map *get_memory_map(void)
200 {
201 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
202 		struct memory_map *map = virt_get_memory_map();
203 
204 		if (map)
205 			return map;
206 	}
207 
208 	return &static_memory_map;
209 }
210 
211 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
212 			     paddr_t pa, size_t size)
213 {
214 	size_t n;
215 
216 	for (n = 0; n < alen; n++)
217 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
218 			return true;
219 	return false;
220 }
221 
222 #define pbuf_intersects(a, pa, size) \
223 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
224 
225 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
226 			    paddr_t pa, size_t size)
227 {
228 	size_t n;
229 
230 	for (n = 0; n < alen; n++)
231 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
232 			return true;
233 	return false;
234 }
235 
236 #define pbuf_is_inside(a, pa, size) \
237 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
238 
239 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
240 {
241 	paddr_t end_pa = 0;
242 
243 	if (!map)
244 		return false;
245 
246 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
247 		return false;
248 
249 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
250 }
251 
252 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
253 {
254 	if (!map)
255 		return false;
256 	return (va >= map->va && va <= (map->va + map->size - 1));
257 }
258 
259 /* check if target buffer fits in a core default map area */
260 static bool pbuf_inside_map_area(unsigned long p, size_t l,
261 				 struct tee_mmap_region *map)
262 {
263 	return core_is_buffer_inside(p, l, map->pa, map->size);
264 }
265 
266 TEE_Result core_mmu_for_each_map(void *ptr,
267 				 TEE_Result (*fn)(struct tee_mmap_region *map,
268 						  void *ptr))
269 {
270 	struct memory_map *mem_map = get_memory_map();
271 	TEE_Result res = TEE_SUCCESS;
272 	size_t n = 0;
273 
274 	for (n = 0; n < mem_map->count; n++) {
275 		res = fn(mem_map->map + n, ptr);
276 		if (res)
277 			return res;
278 	}
279 
280 	return TEE_SUCCESS;
281 }
282 
283 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
284 {
285 	struct memory_map *mem_map = get_memory_map();
286 	size_t n = 0;
287 
288 	for (n = 0; n < mem_map->count; n++) {
289 		if (mem_map->map[n].type == type)
290 			return mem_map->map + n;
291 	}
292 	return NULL;
293 }
294 
295 static struct tee_mmap_region *
296 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
297 {
298 	struct memory_map *mem_map = get_memory_map();
299 	size_t n = 0;
300 
301 	for (n = 0; n < mem_map->count; n++) {
302 		if (mem_map->map[n].type != type)
303 			continue;
304 		if (pa_is_in_map(mem_map->map + n, pa, len))
305 			return mem_map->map + n;
306 	}
307 	return NULL;
308 }
309 
310 static struct tee_mmap_region *find_map_by_va(void *va)
311 {
312 	struct memory_map *mem_map = get_memory_map();
313 	vaddr_t a = (vaddr_t)va;
314 	size_t n = 0;
315 
316 	for (n = 0; n < mem_map->count; n++) {
317 		if (a >= mem_map->map[n].va &&
318 		    a <= (mem_map->map[n].va - 1 + mem_map->map[n].size))
319 			return mem_map->map + n;
320 	}
321 
322 	return NULL;
323 }
324 
325 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
326 {
327 	struct memory_map *mem_map = get_memory_map();
328 	size_t n = 0;
329 
330 	for (n = 0; n < mem_map->count; n++) {
331 		/* Skip unmapped regions */
332 		if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) &&
333 		    pa >= mem_map->map[n].pa &&
334 		    pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size))
335 			return mem_map->map + n;
336 	}
337 
338 	return NULL;
339 }
340 
341 #if defined(CFG_SECURE_DATA_PATH)
342 static bool dtb_get_sdp_region(void)
343 {
344 	void *fdt = NULL;
345 	int node = 0;
346 	int tmp_node = 0;
347 	paddr_t tmp_addr = 0;
348 	size_t tmp_size = 0;
349 
350 	if (!IS_ENABLED(CFG_EMBED_DTB))
351 		return false;
352 
353 	fdt = get_embedded_dt();
354 	if (!fdt)
355 		panic("No DTB found");
356 
357 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
358 	if (node < 0) {
359 		DMSG("No %s compatible node found", tz_sdp_match);
360 		return false;
361 	}
362 	tmp_node = node;
363 	while (tmp_node >= 0) {
364 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
365 							 tz_sdp_match);
366 		if (tmp_node >= 0)
367 			DMSG("Ignore SDP pool node %s, supports only 1 node",
368 			     fdt_get_name(fdt, tmp_node, NULL));
369 	}
370 
371 	if (fdt_reg_info(fdt, node, &tmp_addr, &tmp_size)) {
372 		EMSG("%s: Unable to get base addr or size from DT",
373 		     tz_sdp_match);
374 		return false;
375 	}
376 
377 	sec_sdp.paddr = tmp_addr;
378 	sec_sdp.size = tmp_size;
379 
380 	return true;
381 }
382 #endif
383 
384 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
385 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
386 				const struct core_mmu_phys_mem *start,
387 				const struct core_mmu_phys_mem *end)
388 {
389 	const struct core_mmu_phys_mem *mem;
390 
391 	for (mem = start; mem < end; mem++) {
392 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
393 			return true;
394 	}
395 
396 	return false;
397 }
398 #endif
399 
400 #ifdef CFG_CORE_DYN_SHM
401 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
402 			       paddr_t pa, size_t size)
403 {
404 	struct core_mmu_phys_mem *m = *mem;
405 	size_t n = 0;
406 
407 	while (true) {
408 		if (n >= *nelems) {
409 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
410 			     pa, size);
411 			return;
412 		}
413 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
414 			break;
415 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
416 			panic();
417 		n++;
418 	}
419 
420 	if (pa == m[n].addr && size == m[n].size) {
421 		/* Remove this entry */
422 		(*nelems)--;
423 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
424 		m = nex_realloc(m, sizeof(*m) * *nelems);
425 		if (!m)
426 			panic();
427 		*mem = m;
428 	} else if (pa == m[n].addr) {
429 		m[n].addr += size;
430 		m[n].size -= size;
431 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
432 		m[n].size -= size;
433 	} else {
434 		/* Need to split the memory entry */
435 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
436 		if (!m)
437 			panic();
438 		*mem = m;
439 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
440 		(*nelems)++;
441 		m[n].size = pa - m[n].addr;
442 		m[n + 1].size -= size + m[n].size;
443 		m[n + 1].addr = pa + size;
444 	}
445 }
446 
447 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
448 				      size_t nelems,
449 				      struct tee_mmap_region *map)
450 {
451 	size_t n;
452 
453 	for (n = 0; n < nelems; n++) {
454 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
455 					    map->pa, map->size)) {
456 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
457 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
458 			     start[n].addr, start[n].size,
459 			     map->type, map->pa, map->size);
460 			panic();
461 		}
462 	}
463 }
464 
465 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
466 static size_t discovered_nsec_ddr_nelems __nex_bss;
467 
468 static int cmp_pmem_by_addr(const void *a, const void *b)
469 {
470 	const struct core_mmu_phys_mem *pmem_a = a;
471 	const struct core_mmu_phys_mem *pmem_b = b;
472 
473 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
474 }
475 
476 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
477 				      size_t nelems)
478 {
479 	struct core_mmu_phys_mem *m = start;
480 	size_t num_elems = nelems;
481 	struct memory_map *mem_map = &static_memory_map;
482 	const struct core_mmu_phys_mem __maybe_unused *pmem;
483 	size_t n = 0;
484 
485 	assert(!discovered_nsec_ddr_start);
486 	assert(m && num_elems);
487 
488 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
489 
490 	/*
491 	 * Non-secure shared memory and also secure data
492 	 * path memory are supposed to reside inside
493 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
494 	 * are used for a specific purpose make holes for
495 	 * those memory in the normal non-secure memory.
496 	 *
497 	 * This has to be done since for instance QEMU
498 	 * isn't aware of which memory range in the
499 	 * non-secure memory is used for NSEC_SHM.
500 	 */
501 
502 #ifdef CFG_SECURE_DATA_PATH
503 	if (dtb_get_sdp_region())
504 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
505 
506 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
507 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
508 #endif
509 
510 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
511 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
512 				   secure_only[n].size);
513 
514 	for  (n = 0; n < mem_map->count; n++) {
515 		switch (mem_map->map[n].type) {
516 		case MEM_AREA_NSEC_SHM:
517 			carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa,
518 					   mem_map->map[n].size);
519 			break;
520 		case MEM_AREA_EXT_DT:
521 		case MEM_AREA_MANIFEST_DT:
522 		case MEM_AREA_RAM_NSEC:
523 		case MEM_AREA_RES_VASPACE:
524 		case MEM_AREA_SHM_VASPACE:
525 		case MEM_AREA_TS_VASPACE:
526 		case MEM_AREA_PAGER_VASPACE:
527 			break;
528 		default:
529 			check_phys_mem_is_outside(m, num_elems,
530 						  mem_map->map + n);
531 		}
532 	}
533 
534 	discovered_nsec_ddr_start = m;
535 	discovered_nsec_ddr_nelems = num_elems;
536 
537 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
538 				   m[num_elems - 1].size))
539 		panic();
540 }
541 
542 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
543 				    const struct core_mmu_phys_mem **end)
544 {
545 	if (!discovered_nsec_ddr_start)
546 		return false;
547 
548 	*start = discovered_nsec_ddr_start;
549 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
550 
551 	return true;
552 }
553 
554 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
555 {
556 	const struct core_mmu_phys_mem *start;
557 	const struct core_mmu_phys_mem *end;
558 
559 	if (!get_discovered_nsec_ddr(&start, &end))
560 		return false;
561 
562 	return pbuf_is_special_mem(pbuf, len, start, end);
563 }
564 
565 bool core_mmu_nsec_ddr_is_defined(void)
566 {
567 	const struct core_mmu_phys_mem *start;
568 	const struct core_mmu_phys_mem *end;
569 
570 	if (!get_discovered_nsec_ddr(&start, &end))
571 		return false;
572 
573 	return start != end;
574 }
575 #else
576 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
577 {
578 	return false;
579 }
580 #endif /*CFG_CORE_DYN_SHM*/
581 
582 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
583 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
584 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
585 
586 #ifdef CFG_SECURE_DATA_PATH
587 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
588 {
589 	bool is_sdp_mem = false;
590 
591 	if (sec_sdp.size)
592 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
593 						   sec_sdp.size);
594 
595 	if (!is_sdp_mem)
596 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
597 						 phys_sdp_mem_end);
598 
599 	return is_sdp_mem;
600 }
601 
602 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
603 {
604 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
605 					    CORE_MEM_SDP_MEM);
606 
607 	if (!mobj)
608 		panic("can't create SDP physical memory object");
609 
610 	return mobj;
611 }
612 
613 struct mobj **core_sdp_mem_create_mobjs(void)
614 {
615 	const struct core_mmu_phys_mem *mem = NULL;
616 	struct mobj **mobj_base = NULL;
617 	struct mobj **mobj = NULL;
618 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
619 
620 	if (sec_sdp.size)
621 		cnt++;
622 
623 	/* SDP mobjs table must end with a NULL entry */
624 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
625 	if (!mobj_base)
626 		panic("Out of memory");
627 
628 	mobj = mobj_base;
629 
630 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
631 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
632 
633 	if (sec_sdp.size)
634 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
635 
636 	return mobj_base;
637 }
638 
639 #else /* CFG_SECURE_DATA_PATH */
640 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
641 {
642 	return false;
643 }
644 
645 #endif /* CFG_SECURE_DATA_PATH */
646 
647 /* Check special memories comply with registered memories */
648 static void verify_special_mem_areas(struct memory_map *mem_map,
649 				     const struct core_mmu_phys_mem *start,
650 				     const struct core_mmu_phys_mem *end,
651 				     const char *area_name __maybe_unused)
652 {
653 	const struct core_mmu_phys_mem *mem = NULL;
654 	const struct core_mmu_phys_mem *mem2 = NULL;
655 	size_t n = 0;
656 
657 	if (start == end) {
658 		DMSG("No %s memory area defined", area_name);
659 		return;
660 	}
661 
662 	for (mem = start; mem < end; mem++)
663 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
664 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
665 
666 	/* Check memories do not intersect each other */
667 	for (mem = start; mem + 1 < end; mem++) {
668 		for (mem2 = mem + 1; mem2 < end; mem2++) {
669 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
670 						     mem->addr, mem->size)) {
671 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
672 						   mem->addr, mem->size);
673 				panic("Special memory intersection");
674 			}
675 		}
676 	}
677 
678 	/*
679 	 * Check memories do not intersect any mapped memory.
680 	 * This is called before reserved VA space is loaded in mem_map.
681 	 */
682 	for (mem = start; mem < end; mem++) {
683 		for (n = 0; n < mem_map->count; n++) {
684 			if (core_is_buffer_intersect(mem->addr, mem->size,
685 						     mem_map->map[n].pa,
686 						     mem_map->map[n].size)) {
687 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
688 						   mem_map->map[n].pa,
689 						   mem_map->map[n].size);
690 				panic("Special memory intersection");
691 			}
692 		}
693 	}
694 }
695 
696 static void merge_mmaps(struct tee_mmap_region *dst,
697 			const struct tee_mmap_region *src)
698 {
699 	paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1);
700 	paddr_t pa = MIN(dst->pa, src->pa);
701 
702 	DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA,
703 	     dst->pa, dst->pa + dst->size - 1, src->pa,
704 	     src->pa + src->size - 1);
705 	dst->pa = pa;
706 	dst->size = end_pa - pa + 1;
707 }
708 
709 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1,
710 				const struct tee_mmap_region *r2)
711 {
712 	if (r1->type != r2->type)
713 		return false;
714 
715 	if (r1->pa == r2->pa)
716 		return true;
717 
718 	if (r1->pa < r2->pa)
719 		return r1->pa + r1->size >= r2->pa;
720 	else
721 		return r2->pa + r2->size >= r1->pa;
722 }
723 
724 static void add_phys_mem(struct memory_map *mem_map,
725 			 const char *mem_name __maybe_unused,
726 			 enum teecore_memtypes mem_type,
727 			 paddr_t mem_addr, paddr_size_t mem_size)
728 {
729 	size_t n = 0;
730 	const struct tee_mmap_region m0 = {
731 		.type = mem_type,
732 		.pa = mem_addr,
733 		.size = mem_size,
734 	};
735 
736 	if (!mem_size)	/* Discard null size entries */
737 		return;
738 
739 	/*
740 	 * If some ranges of memory of the same type do overlap
741 	 * each others they are coalesced into one entry. To help this
742 	 * added entries are sorted by increasing physical.
743 	 *
744 	 * Note that it's valid to have the same physical memory as several
745 	 * different memory types, for instance the same device memory
746 	 * mapped as both secure and non-secure. This will probably not
747 	 * happen often in practice.
748 	 */
749 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
750 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
751 	for  (n = 0; n < mem_map->count; n++) {
752 		if (mmaps_are_mergeable(mem_map->map + n, &m0)) {
753 			merge_mmaps(mem_map->map + n, &m0);
754 			/*
755 			 * The merged result might be mergeable with the
756 			 * next or previous entry.
757 			 */
758 			if (n + 1 < mem_map->count &&
759 			    mmaps_are_mergeable(mem_map->map + n,
760 						mem_map->map + n + 1)) {
761 				merge_mmaps(mem_map->map + n,
762 					    mem_map->map + n + 1);
763 				rem_array_elem(mem_map->map, mem_map->count,
764 					       sizeof(*mem_map->map), n + 1);
765 				mem_map->count--;
766 			}
767 			if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1,
768 							 mem_map->map + n)) {
769 				merge_mmaps(mem_map->map + n - 1,
770 					    mem_map->map + n);
771 				rem_array_elem(mem_map->map, mem_map->count,
772 					       sizeof(*mem_map->map), n);
773 				mem_map->count--;
774 			}
775 			return;
776 		}
777 		if (mem_type < mem_map->map[n].type ||
778 		    (mem_type == mem_map->map[n].type &&
779 		     mem_addr < mem_map->map[n].pa))
780 			break; /* found the spot where to insert this memory */
781 	}
782 
783 	grow_mem_map(mem_map);
784 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
785 		       n, &m0);
786 }
787 
788 static void add_va_space(struct memory_map *mem_map,
789 			 enum teecore_memtypes type, size_t size)
790 {
791 	size_t n = 0;
792 
793 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
794 	for  (n = 0; n < mem_map->count; n++) {
795 		if (type < mem_map->map[n].type)
796 			break;
797 	}
798 
799 	grow_mem_map(mem_map);
800 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
801 		       n, NULL);
802 	mem_map->map[n] = (struct tee_mmap_region){
803 		.type = type,
804 		.size = size,
805 	};
806 }
807 
808 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
809 {
810 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
811 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
812 				TEE_MATTR_MEM_TYPE_SHIFT;
813 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
814 				TEE_MATTR_MEM_TYPE_SHIFT;
815 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
816 				  TEE_MATTR_MEM_TYPE_SHIFT;
817 
818 	switch (t) {
819 	case MEM_AREA_TEE_RAM:
820 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
821 	case MEM_AREA_TEE_RAM_RX:
822 	case MEM_AREA_INIT_RAM_RX:
823 	case MEM_AREA_IDENTITY_MAP_RX:
824 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
825 	case MEM_AREA_TEE_RAM_RO:
826 	case MEM_AREA_INIT_RAM_RO:
827 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
828 	case MEM_AREA_TEE_RAM_RW:
829 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
830 	case MEM_AREA_NEX_RAM_RW:
831 	case MEM_AREA_TEE_ASAN:
832 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
833 	case MEM_AREA_TEE_COHERENT:
834 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
835 	case MEM_AREA_NSEC_SHM:
836 	case MEM_AREA_NEX_NSEC_SHM:
837 		return attr | TEE_MATTR_PRW | cached;
838 	case MEM_AREA_MANIFEST_DT:
839 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
840 	case MEM_AREA_TRANSFER_LIST:
841 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
842 	case MEM_AREA_EXT_DT:
843 		/*
844 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
845 		 * tree as secure non-cached memory, otherwise, fall back to
846 		 * non-secure mapping.
847 		 */
848 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
849 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
850 			       noncache;
851 		fallthrough;
852 	case MEM_AREA_IO_NSEC:
853 		return attr | TEE_MATTR_PRW | noncache;
854 	case MEM_AREA_IO_SEC:
855 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
856 	case MEM_AREA_RAM_NSEC:
857 		return attr | TEE_MATTR_PRW | cached;
858 	case MEM_AREA_RAM_SEC:
859 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
860 	case MEM_AREA_SEC_RAM_OVERALL:
861 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
862 	case MEM_AREA_ROM_SEC:
863 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
864 	case MEM_AREA_RES_VASPACE:
865 	case MEM_AREA_SHM_VASPACE:
866 		return 0;
867 	case MEM_AREA_PAGER_VASPACE:
868 		return TEE_MATTR_SECURE;
869 	default:
870 		panic("invalid type");
871 	}
872 }
873 
874 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
875 {
876 	switch (mm->type) {
877 	case MEM_AREA_TEE_RAM:
878 	case MEM_AREA_TEE_RAM_RX:
879 	case MEM_AREA_TEE_RAM_RO:
880 	case MEM_AREA_TEE_RAM_RW:
881 	case MEM_AREA_INIT_RAM_RX:
882 	case MEM_AREA_INIT_RAM_RO:
883 	case MEM_AREA_NEX_RAM_RW:
884 	case MEM_AREA_NEX_RAM_RO:
885 	case MEM_AREA_TEE_ASAN:
886 		return true;
887 	default:
888 		return false;
889 	}
890 }
891 
892 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
893 {
894 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
895 }
896 
897 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
898 {
899 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
900 }
901 
902 static int cmp_mmap_by_lower_va(const void *a, const void *b)
903 {
904 	const struct tee_mmap_region *mm_a = a;
905 	const struct tee_mmap_region *mm_b = b;
906 
907 	return CMP_TRILEAN(mm_a->va, mm_b->va);
908 }
909 
910 static void dump_mmap_table(struct memory_map *mem_map)
911 {
912 	size_t n = 0;
913 
914 	for (n = 0; n < mem_map->count; n++) {
915 		struct tee_mmap_region *map __maybe_unused = mem_map->map + n;
916 
917 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
918 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
919 		     teecore_memtype_name(map->type), map->va,
920 		     map->va + map->size - 1, map->pa,
921 		     (paddr_t)(map->pa + map->size - 1), map->size,
922 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
923 	}
924 }
925 
926 #if DEBUG_XLAT_TABLE
927 
928 static void dump_xlat_table(vaddr_t va, unsigned int level)
929 {
930 	struct core_mmu_table_info tbl_info;
931 	unsigned int idx = 0;
932 	paddr_t pa;
933 	uint32_t attr;
934 
935 	core_mmu_find_table(NULL, va, level, &tbl_info);
936 	va = tbl_info.va_base;
937 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
938 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
939 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
940 			const char *security_bit = "";
941 
942 			if (core_mmu_entry_have_security_bit(attr)) {
943 				if (attr & TEE_MATTR_SECURE)
944 					security_bit = "S";
945 				else
946 					security_bit = "NS";
947 			}
948 
949 			if (attr & TEE_MATTR_TABLE) {
950 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
951 					" TBL:0x%010" PRIxPA " %s",
952 					level * 2, "", level, va, pa,
953 					security_bit);
954 				dump_xlat_table(va, level + 1);
955 			} else if (attr) {
956 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
957 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
958 					level * 2, "", level, va, pa,
959 					mattr_is_cached(attr) ? "MEM" :
960 					"DEV",
961 					attr & TEE_MATTR_PW ? "RW" : "RO",
962 					attr & TEE_MATTR_PX ? "X " : "XN",
963 					security_bit);
964 			} else {
965 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
966 					    " INVALID\n",
967 					    level * 2, "", level, va);
968 			}
969 		}
970 		va += BIT64(tbl_info.shift);
971 	}
972 }
973 
974 #else
975 
976 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
977 {
978 }
979 
980 #endif
981 
982 /*
983  * Reserves virtual memory space for pager usage.
984  *
985  * From the start of the first memory used by the link script +
986  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
987  * mapping for pager usage. This adds translation tables as needed for the
988  * pager to operate.
989  */
990 static void add_pager_vaspace(struct memory_map *mem_map)
991 {
992 	paddr_t begin = 0;
993 	paddr_t end = 0;
994 	size_t size = 0;
995 	size_t pos = 0;
996 	size_t n = 0;
997 
998 
999 	for (n = 0; n < mem_map->count; n++) {
1000 		if (map_is_tee_ram(mem_map->map + n)) {
1001 			if (!begin)
1002 				begin = mem_map->map[n].pa;
1003 			pos = n + 1;
1004 		}
1005 	}
1006 
1007 	end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size;
1008 	assert(end - begin < TEE_RAM_VA_SIZE);
1009 	size = TEE_RAM_VA_SIZE - (end - begin);
1010 
1011 	grow_mem_map(mem_map);
1012 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
1013 		       n, NULL);
1014 	mem_map->map[n] = (struct tee_mmap_region){
1015 		.type = MEM_AREA_PAGER_VASPACE,
1016 		.size = size,
1017 		.region_size = SMALL_PAGE_SIZE,
1018 		.attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE),
1019 	};
1020 }
1021 
1022 static void check_sec_nsec_mem_config(void)
1023 {
1024 	size_t n = 0;
1025 
1026 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
1027 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
1028 				    secure_only[n].size))
1029 			panic("Invalid memory access config: sec/nsec");
1030 	}
1031 }
1032 
1033 static void collect_device_mem_ranges(struct memory_map *mem_map)
1034 {
1035 	const char *compatible = "arm,ffa-manifest-device-regions";
1036 	void *fdt = get_manifest_dt();
1037 	const char *name = NULL;
1038 	uint64_t page_count = 0;
1039 	uint64_t base = 0;
1040 	int subnode = 0;
1041 	int node = 0;
1042 
1043 	assert(fdt);
1044 
1045 	node = fdt_node_offset_by_compatible(fdt, 0, compatible);
1046 	if (node < 0)
1047 		return;
1048 
1049 	fdt_for_each_subnode(subnode, fdt, node) {
1050 		name = fdt_get_name(fdt, subnode, NULL);
1051 		if (!name)
1052 			continue;
1053 
1054 		if (dt_getprop_as_number(fdt, subnode, "base-address",
1055 					 &base)) {
1056 			EMSG("Mandatory field is missing: base-address");
1057 			continue;
1058 		}
1059 
1060 		if (base & SMALL_PAGE_MASK) {
1061 			EMSG("base-address is not page aligned");
1062 			continue;
1063 		}
1064 
1065 		if (dt_getprop_as_number(fdt, subnode, "pages-count",
1066 					 &page_count)) {
1067 			EMSG("Mandatory field is missing: pages-count");
1068 			continue;
1069 		}
1070 
1071 		add_phys_mem(mem_map, name, MEM_AREA_IO_SEC,
1072 			     base, base + page_count * SMALL_PAGE_SIZE);
1073 	}
1074 }
1075 
1076 static void collect_mem_ranges(struct memory_map *mem_map)
1077 {
1078 	const struct core_mmu_phys_mem *mem = NULL;
1079 	vaddr_t ram_start = secure_only[0].paddr;
1080 	size_t n = 0;
1081 
1082 #define ADD_PHYS_MEM(_type, _addr, _size) \
1083 		add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size))
1084 
1085 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
1086 		paddr_t next_pa = 0;
1087 
1088 		/*
1089 		 * Read-only and read-execute physical memory areas must
1090 		 * not be mapped by MEM_AREA_SEC_RAM_OVERALL, but all the
1091 		 * read/write should.
1092 		 */
1093 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, ram_start,
1094 			     VCORE_UNPG_RX_PA - ram_start);
1095 		assert(VCORE_UNPG_RX_PA >= ram_start);
1096 		tee_ram_initial_offs = VCORE_UNPG_RX_PA - ram_start;
1097 		DMSG("tee_ram_initial_offs %#zx", tee_ram_initial_offs);
1098 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
1099 			     VCORE_UNPG_RX_SZ);
1100 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
1101 			     VCORE_UNPG_RO_SZ);
1102 
1103 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1104 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
1105 				     VCORE_UNPG_RW_SZ);
1106 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA,
1107 				     VCORE_UNPG_RW_SZ);
1108 
1109 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
1110 				     VCORE_NEX_RW_SZ);
1111 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_NEX_RW_PA,
1112 				     VCORE_NEX_RW_SZ);
1113 
1114 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_FREE_PA,
1115 				     VCORE_FREE_SZ);
1116 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA,
1117 				     VCORE_FREE_SZ);
1118 			next_pa = VCORE_FREE_PA + VCORE_FREE_SZ;
1119 		} else {
1120 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
1121 				     VCORE_UNPG_RW_SZ);
1122 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA,
1123 				     VCORE_UNPG_RW_SZ);
1124 
1125 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_FREE_PA,
1126 				     VCORE_FREE_SZ);
1127 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA,
1128 				     VCORE_FREE_SZ);
1129 			next_pa = VCORE_FREE_PA + VCORE_FREE_SZ;
1130 		}
1131 
1132 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1133 			paddr_t pa = 0;
1134 			size_t sz = 0;
1135 
1136 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
1137 				     VCORE_INIT_RX_SZ);
1138 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
1139 				     VCORE_INIT_RO_SZ);
1140 			/*
1141 			 * Core init mapping shall cover up to end of the
1142 			 * physical RAM.  This is required since the hash
1143 			 * table is appended to the binary data after the
1144 			 * firmware build sequence.
1145 			 */
1146 			pa = VCORE_INIT_RO_PA + VCORE_INIT_RO_SZ;
1147 			sz = TEE_RAM_START + TEE_RAM_PH_SIZE - pa;
1148 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM, pa, sz);
1149 		} else {
1150 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, next_pa,
1151 				     secure_only[0].paddr +
1152 				     secure_only[0].size - next_pa);
1153 		}
1154 	} else {
1155 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
1156 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr,
1157 			     secure_only[0].size);
1158 	}
1159 
1160 	for (n = 1; n < ARRAY_SIZE(secure_only); n++)
1161 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr,
1162 			     secure_only[n].size);
1163 
1164 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
1165 	    IS_ENABLED(CFG_WITH_PAGER)) {
1166 		/*
1167 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
1168 		 * disabled.
1169 		 */
1170 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1171 	}
1172 
1173 #undef ADD_PHYS_MEM
1174 
1175 	/* Collect device memory info from SP manifest */
1176 	if (IS_ENABLED(CFG_CORE_SEL2_SPMC))
1177 		collect_device_mem_ranges(mem_map);
1178 
1179 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1180 		/* Only unmapped virtual range may have a null phys addr */
1181 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1182 
1183 		add_phys_mem(mem_map, mem->name, mem->type,
1184 			     mem->addr, mem->size);
1185 	}
1186 
1187 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1188 		verify_special_mem_areas(mem_map, phys_sdp_mem_begin,
1189 					 phys_sdp_mem_end, "SDP");
1190 
1191 	add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE);
1192 	add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE);
1193 }
1194 
1195 static void assign_mem_granularity(struct memory_map *mem_map)
1196 {
1197 	size_t n = 0;
1198 
1199 	/*
1200 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1201 	 * SMALL_PAGE_SIZE.
1202 	 */
1203 	for  (n = 0; n < mem_map->count; n++) {
1204 		paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size;
1205 
1206 		if (mask & SMALL_PAGE_MASK)
1207 			panic("Impossible memory alignment");
1208 
1209 		if (map_is_tee_ram(mem_map->map + n))
1210 			mem_map->map[n].region_size = SMALL_PAGE_SIZE;
1211 		else
1212 			mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE;
1213 	}
1214 }
1215 
1216 static bool place_tee_ram_at_top(paddr_t paddr)
1217 {
1218 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1219 }
1220 
1221 /*
1222  * MMU arch driver shall override this function if it helps
1223  * optimizing the memory footprint of the address translation tables.
1224  */
1225 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1226 {
1227 	return place_tee_ram_at_top(paddr);
1228 }
1229 
1230 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map,
1231 			      bool tee_ram_at_top)
1232 {
1233 	struct tee_mmap_region *map = NULL;
1234 	vaddr_t va = 0;
1235 	bool va_is_secure = true;
1236 	size_t n = 0;
1237 
1238 	/*
1239 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1240 	 * 0 is by design an invalid va, so return false directly.
1241 	 */
1242 	if (!tee_ram_va)
1243 		return false;
1244 
1245 	/* Clear eventual previous assignments */
1246 	for (n = 0; n < mem_map->count; n++)
1247 		mem_map->map[n].va = 0;
1248 
1249 	/*
1250 	 * TEE RAM regions are always aligned with region_size.
1251 	 *
1252 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1253 	 * since it handles virtual memory which covers the part of the ELF
1254 	 * that cannot fit directly into memory.
1255 	 */
1256 	va = tee_ram_va + tee_ram_initial_offs;
1257 	for (n = 0; n < mem_map->count; n++) {
1258 		map = mem_map->map + n;
1259 		if (map_is_tee_ram(map) ||
1260 		    map->type == MEM_AREA_PAGER_VASPACE) {
1261 			assert(!(va & (map->region_size - 1)));
1262 			assert(!(map->size & (map->region_size - 1)));
1263 			map->va = va;
1264 			if (ADD_OVERFLOW(va, map->size, &va))
1265 				return false;
1266 			if (va >= BIT64(core_mmu_get_va_width()))
1267 				return false;
1268 		}
1269 	}
1270 
1271 	if (tee_ram_at_top) {
1272 		/*
1273 		 * Map non-tee ram regions at addresses lower than the tee
1274 		 * ram region.
1275 		 */
1276 		va = tee_ram_va;
1277 		for (n = 0; n < mem_map->count; n++) {
1278 			map = mem_map->map + n;
1279 			map->attr = core_mmu_type_to_attr(map->type);
1280 			if (map->va)
1281 				continue;
1282 
1283 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1284 			    va_is_secure != map_is_secure(map)) {
1285 				va_is_secure = !va_is_secure;
1286 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1287 			}
1288 
1289 			if (SUB_OVERFLOW(va, map->size, &va))
1290 				return false;
1291 			va = ROUNDDOWN(va, map->region_size);
1292 			/*
1293 			 * Make sure that va is aligned with pa for
1294 			 * efficient pgdir mapping. Basically pa &
1295 			 * pgdir_mask should be == va & pgdir_mask
1296 			 */
1297 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1298 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1299 					return false;
1300 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1301 			}
1302 			map->va = va;
1303 		}
1304 	} else {
1305 		/*
1306 		 * Map non-tee ram regions at addresses higher than the tee
1307 		 * ram region.
1308 		 */
1309 		for (n = 0; n < mem_map->count; n++) {
1310 			map = mem_map->map + n;
1311 			map->attr = core_mmu_type_to_attr(map->type);
1312 			if (map->va)
1313 				continue;
1314 
1315 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1316 			    va_is_secure != map_is_secure(map)) {
1317 				va_is_secure = !va_is_secure;
1318 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1319 						     &va))
1320 					return false;
1321 			}
1322 
1323 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1324 				return false;
1325 			/*
1326 			 * Make sure that va is aligned with pa for
1327 			 * efficient pgdir mapping. Basically pa &
1328 			 * pgdir_mask should be == va & pgdir_mask
1329 			 */
1330 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1331 				vaddr_t offs = (map->pa - va) &
1332 					       CORE_MMU_PGDIR_MASK;
1333 
1334 				if (ADD_OVERFLOW(va, offs, &va))
1335 					return false;
1336 			}
1337 
1338 			map->va = va;
1339 			if (ADD_OVERFLOW(va, map->size, &va))
1340 				return false;
1341 			if (va >= BIT64(core_mmu_get_va_width()))
1342 				return false;
1343 		}
1344 	}
1345 
1346 	return true;
1347 }
1348 
1349 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map)
1350 {
1351 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1352 
1353 	/*
1354 	 * Check that we're not overlapping with the user VA range.
1355 	 */
1356 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1357 		/*
1358 		 * User VA range is supposed to be defined after these
1359 		 * mappings have been established.
1360 		 */
1361 		assert(!core_mmu_user_va_range_is_defined());
1362 	} else {
1363 		vaddr_t user_va_base = 0;
1364 		size_t user_va_size = 0;
1365 
1366 		assert(core_mmu_user_va_range_is_defined());
1367 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1368 		if (tee_ram_va < (user_va_base + user_va_size))
1369 			return false;
1370 	}
1371 
1372 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1373 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1374 
1375 		/* Try whole mapping covered by a single base xlat entry */
1376 		if (prefered_dir != tee_ram_at_top &&
1377 		    assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir))
1378 			return true;
1379 	}
1380 
1381 	return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top);
1382 }
1383 
1384 static int cmp_init_mem_map(const void *a, const void *b)
1385 {
1386 	const struct tee_mmap_region *mm_a = a;
1387 	const struct tee_mmap_region *mm_b = b;
1388 	int rc = 0;
1389 
1390 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1391 	if (!rc)
1392 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1393 	/*
1394 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1395 	 * the same level2 table. Hence sort secure mapping from non-secure
1396 	 * mapping.
1397 	 */
1398 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1399 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1400 
1401 	return rc;
1402 }
1403 
1404 static bool mem_map_add_id_map(struct memory_map *mem_map,
1405 			       vaddr_t id_map_start, vaddr_t id_map_end)
1406 {
1407 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1408 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1409 	size_t len = end - start;
1410 	size_t n = 0;
1411 
1412 
1413 	for (n = 0; n < mem_map->count; n++)
1414 		if (core_is_buffer_intersect(mem_map->map[n].va,
1415 					     mem_map->map[n].size, start, len))
1416 			return false;
1417 
1418 	grow_mem_map(mem_map);
1419 	mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){
1420 		.type = MEM_AREA_IDENTITY_MAP_RX,
1421 		/*
1422 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1423 		 * translation table, at the increased risk of clashes with
1424 		 * the rest of the memory map.
1425 		 */
1426 		.region_size = SMALL_PAGE_SIZE,
1427 		.pa = start,
1428 		.va = start,
1429 		.size = len,
1430 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1431 	};
1432 
1433 	return true;
1434 }
1435 
1436 static struct memory_map *init_mem_map(struct memory_map *mem_map,
1437 				       unsigned long seed,
1438 				       unsigned long *ret_offs)
1439 {
1440 	/*
1441 	 * @id_map_start and @id_map_end describes a physical memory range
1442 	 * that must be mapped Read-Only eXecutable at identical virtual
1443 	 * addresses.
1444 	 */
1445 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1446 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1447 	vaddr_t start_addr = secure_only[0].paddr;
1448 	unsigned long offs = 0;
1449 
1450 	collect_mem_ranges(mem_map);
1451 	assign_mem_granularity(mem_map);
1452 
1453 	/*
1454 	 * To ease mapping and lower use of xlat tables, sort mapping
1455 	 * description moving small-page regions after the pgdir regions.
1456 	 */
1457 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1458 	      cmp_init_mem_map);
1459 
1460 	if (IS_ENABLED(CFG_WITH_PAGER))
1461 		add_pager_vaspace(mem_map);
1462 
1463 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1464 		vaddr_t base_addr = start_addr + seed;
1465 		const unsigned int va_width = core_mmu_get_va_width();
1466 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1467 						   SMALL_PAGE_SHIFT);
1468 		vaddr_t ba = base_addr;
1469 		size_t n = 0;
1470 
1471 		for (n = 0; n < 3; n++) {
1472 			if (n)
1473 				ba = base_addr ^ BIT64(va_width - n);
1474 			ba &= va_mask;
1475 			if (assign_mem_va(ba, mem_map) &&
1476 			    mem_map_add_id_map(mem_map, id_map_start,
1477 					       id_map_end)) {
1478 				offs = ba - start_addr;
1479 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1480 				     ba, offs);
1481 				goto out;
1482 			} else {
1483 				DMSG("Failed to map core at %#"PRIxVA, ba);
1484 			}
1485 		}
1486 		EMSG("Failed to map core with seed %#lx", seed);
1487 	}
1488 
1489 	if (!assign_mem_va(start_addr, mem_map))
1490 		panic();
1491 
1492 out:
1493 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1494 	      cmp_mmap_by_lower_va);
1495 
1496 	dump_mmap_table(mem_map);
1497 
1498 	*ret_offs = offs;
1499 	return mem_map;
1500 }
1501 
1502 static void check_mem_map(struct memory_map *mem_map)
1503 {
1504 	struct tee_mmap_region *m = NULL;
1505 	size_t n = 0;
1506 
1507 	for (n = 0; n < mem_map->count; n++) {
1508 		m = mem_map->map + n;
1509 		switch (m->type) {
1510 		case MEM_AREA_TEE_RAM:
1511 		case MEM_AREA_TEE_RAM_RX:
1512 		case MEM_AREA_TEE_RAM_RO:
1513 		case MEM_AREA_TEE_RAM_RW:
1514 		case MEM_AREA_INIT_RAM_RX:
1515 		case MEM_AREA_INIT_RAM_RO:
1516 		case MEM_AREA_NEX_RAM_RW:
1517 		case MEM_AREA_NEX_RAM_RO:
1518 		case MEM_AREA_IDENTITY_MAP_RX:
1519 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1520 				panic("TEE_RAM can't fit in secure_only");
1521 			break;
1522 		case MEM_AREA_SEC_RAM_OVERALL:
1523 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1524 				panic("SEC_RAM_OVERALL can't fit in secure_only");
1525 			break;
1526 		case MEM_AREA_NSEC_SHM:
1527 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1528 				panic("NS_SHM can't fit in nsec_shared");
1529 			break;
1530 		case MEM_AREA_TEE_COHERENT:
1531 		case MEM_AREA_TEE_ASAN:
1532 		case MEM_AREA_IO_SEC:
1533 		case MEM_AREA_IO_NSEC:
1534 		case MEM_AREA_EXT_DT:
1535 		case MEM_AREA_MANIFEST_DT:
1536 		case MEM_AREA_TRANSFER_LIST:
1537 		case MEM_AREA_RAM_SEC:
1538 		case MEM_AREA_RAM_NSEC:
1539 		case MEM_AREA_ROM_SEC:
1540 		case MEM_AREA_RES_VASPACE:
1541 		case MEM_AREA_SHM_VASPACE:
1542 		case MEM_AREA_PAGER_VASPACE:
1543 			break;
1544 		default:
1545 			EMSG("Uhandled memtype %d", m->type);
1546 			panic();
1547 		}
1548 	}
1549 }
1550 
1551 /*
1552  * core_init_mmu_map() - init tee core default memory mapping
1553  *
1554  * This routine sets the static default TEE core mapping. If @seed is > 0
1555  * and configured with CFG_CORE_ASLR it will map tee core at a location
1556  * based on the seed and return the offset from the link address.
1557  *
1558  * If an error happened: core_init_mmu_map is expected to panic.
1559  *
1560  * Note: this function is weak just to make it possible to exclude it from
1561  * the unpaged area.
1562  */
1563 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1564 {
1565 #ifndef CFG_NS_VIRTUALIZATION
1566 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1567 #else
1568 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1569 				  SMALL_PAGE_SIZE);
1570 #endif
1571 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1572 	struct tee_mmap_region tmp_mmap_region = { };
1573 	struct memory_map mem_map = { };
1574 	unsigned long offs = 0;
1575 
1576 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1577 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1578 		panic("OP-TEE load address is not page aligned");
1579 
1580 	check_sec_nsec_mem_config();
1581 
1582 	if (IS_ENABLED(CFG_BOOT_MEM)) {
1583 		mem_map.alloc_count = CFG_MMAP_REGIONS;
1584 		mem_map.map = boot_mem_alloc_tmp(mem_map.alloc_count *
1585 							sizeof(*mem_map.map),
1586 						 alignof(*mem_map.map));
1587 		memory_map_realloc_func = boot_mem_realloc_memory_map;
1588 	} else {
1589 		mem_map = static_memory_map;
1590 	}
1591 
1592 	static_memory_map = (struct memory_map){
1593 		.map = &tmp_mmap_region,
1594 		.alloc_count = 1,
1595 		.count = 1,
1596 	};
1597 	/*
1598 	 * Add a entry covering the translation tables which will be
1599 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1600 	 */
1601 	static_memory_map.map[0] = (struct tee_mmap_region){
1602 		.type = MEM_AREA_TEE_RAM,
1603 		.region_size = SMALL_PAGE_SIZE,
1604 		.pa = start,
1605 		.va = start,
1606 		.size = len,
1607 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1608 	};
1609 
1610 	init_mem_map(&mem_map, seed, &offs);
1611 
1612 	check_mem_map(&mem_map);
1613 	core_init_mmu(&mem_map);
1614 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1615 	core_init_mmu_regs(cfg);
1616 	cfg->map_offset = offs;
1617 	static_memory_map = mem_map;
1618 	boot_mem_add_reloc(&static_memory_map.map);
1619 }
1620 
1621 void core_mmu_save_mem_map(void)
1622 {
1623 	if (IS_ENABLED(CFG_BOOT_MEM)) {
1624 		size_t alloc_count = static_memory_map.count + 5;
1625 		size_t elem_sz = sizeof(*static_memory_map.map);
1626 		void *p = NULL;
1627 
1628 		p = nex_calloc(alloc_count, elem_sz);
1629 		if (!p)
1630 			panic();
1631 		memcpy(p, static_memory_map.map,
1632 		       static_memory_map.count * elem_sz);
1633 		static_memory_map.map = p;
1634 		static_memory_map.alloc_count = alloc_count;
1635 		memory_map_realloc_func = heap_realloc_memory_map;
1636 	}
1637 }
1638 
1639 bool core_mmu_mattr_is_ok(uint32_t mattr)
1640 {
1641 	/*
1642 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1643 	 * core_mmu_v7.c:mattr_to_texcb
1644 	 */
1645 
1646 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1647 	case TEE_MATTR_MEM_TYPE_DEV:
1648 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1649 	case TEE_MATTR_MEM_TYPE_CACHED:
1650 	case TEE_MATTR_MEM_TYPE_TAGGED:
1651 		return true;
1652 	default:
1653 		return false;
1654 	}
1655 }
1656 
1657 /*
1658  * test attributes of target physical buffer
1659  *
1660  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1661  *
1662  */
1663 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1664 {
1665 	struct tee_mmap_region *map;
1666 
1667 	/* Empty buffers complies with anything */
1668 	if (len == 0)
1669 		return true;
1670 
1671 	switch (attr) {
1672 	case CORE_MEM_SEC:
1673 		return pbuf_is_inside(secure_only, pbuf, len);
1674 	case CORE_MEM_NON_SEC:
1675 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1676 			pbuf_is_nsec_ddr(pbuf, len);
1677 	case CORE_MEM_TEE_RAM:
1678 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1679 							TEE_RAM_PH_SIZE);
1680 #ifdef CFG_CORE_RESERVED_SHM
1681 	case CORE_MEM_NSEC_SHM:
1682 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1683 							TEE_SHMEM_SIZE);
1684 #endif
1685 	case CORE_MEM_SDP_MEM:
1686 		return pbuf_is_sdp_mem(pbuf, len);
1687 	case CORE_MEM_CACHED:
1688 		map = find_map_by_pa(pbuf);
1689 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1690 			return false;
1691 		return mattr_is_cached(map->attr);
1692 	default:
1693 		return false;
1694 	}
1695 }
1696 
1697 /* test attributes of target virtual buffer (in core mapping) */
1698 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1699 {
1700 	paddr_t p;
1701 
1702 	/* Empty buffers complies with anything */
1703 	if (len == 0)
1704 		return true;
1705 
1706 	p = virt_to_phys((void *)vbuf);
1707 	if (!p)
1708 		return false;
1709 
1710 	return core_pbuf_is(attr, p, len);
1711 }
1712 
1713 /* core_va2pa - teecore exported service */
1714 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1715 {
1716 	struct tee_mmap_region *map;
1717 
1718 	map = find_map_by_va(va);
1719 	if (!va_is_in_map(map, (vaddr_t)va))
1720 		return -1;
1721 
1722 	/*
1723 	 * We can calculate PA for static map. Virtual address ranges
1724 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1725 	 * together with an invalid null physical address.
1726 	 */
1727 	if (map->pa)
1728 		*pa = map->pa + (vaddr_t)va  - map->va;
1729 	else
1730 		*pa = 0;
1731 
1732 	return 0;
1733 }
1734 
1735 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1736 {
1737 	if (!pa_is_in_map(map, pa, len))
1738 		return NULL;
1739 
1740 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1741 }
1742 
1743 /*
1744  * teecore gets some memory area definitions
1745  */
1746 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1747 			      vaddr_t *e)
1748 {
1749 	struct tee_mmap_region *map = find_map_by_type(type);
1750 
1751 	if (map) {
1752 		*s = map->va;
1753 		*e = map->va + map->size;
1754 	} else {
1755 		*s = 0;
1756 		*e = 0;
1757 	}
1758 }
1759 
1760 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1761 {
1762 	struct tee_mmap_region *map = find_map_by_pa(pa);
1763 
1764 	if (!map)
1765 		return MEM_AREA_MAXTYPE;
1766 	return map->type;
1767 }
1768 
1769 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1770 			paddr_t pa, uint32_t attr)
1771 {
1772 	assert(idx < tbl_info->num_entries);
1773 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1774 				     idx, pa, attr);
1775 }
1776 
1777 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1778 			paddr_t *pa, uint32_t *attr)
1779 {
1780 	assert(idx < tbl_info->num_entries);
1781 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1782 				     idx, pa, attr);
1783 }
1784 
1785 static void clear_region(struct core_mmu_table_info *tbl_info,
1786 			 struct tee_mmap_region *region)
1787 {
1788 	unsigned int end = 0;
1789 	unsigned int idx = 0;
1790 
1791 	/* va, len and pa should be block aligned */
1792 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1793 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1794 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1795 
1796 	idx = core_mmu_va2idx(tbl_info, region->va);
1797 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1798 
1799 	while (idx < end) {
1800 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1801 		idx++;
1802 	}
1803 }
1804 
1805 static void set_region(struct core_mmu_table_info *tbl_info,
1806 		       struct tee_mmap_region *region)
1807 {
1808 	unsigned int end;
1809 	unsigned int idx;
1810 	paddr_t pa;
1811 
1812 	/* va, len and pa should be block aligned */
1813 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1814 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1815 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1816 
1817 	idx = core_mmu_va2idx(tbl_info, region->va);
1818 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1819 	pa = region->pa;
1820 
1821 	while (idx < end) {
1822 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1823 		idx++;
1824 		pa += BIT64(tbl_info->shift);
1825 	}
1826 }
1827 
1828 static void set_pg_region(struct core_mmu_table_info *dir_info,
1829 			  struct vm_region *region, struct pgt **pgt,
1830 			  struct core_mmu_table_info *pg_info)
1831 {
1832 	struct tee_mmap_region r = {
1833 		.va = region->va,
1834 		.size = region->size,
1835 		.attr = region->attr,
1836 	};
1837 	vaddr_t end = r.va + r.size;
1838 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1839 
1840 	while (r.va < end) {
1841 		if (!pg_info->table ||
1842 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1843 			/*
1844 			 * We're assigning a new translation table.
1845 			 */
1846 			unsigned int idx;
1847 
1848 			/* Virtual addresses must grow */
1849 			assert(r.va > pg_info->va_base);
1850 
1851 			idx = core_mmu_va2idx(dir_info, r.va);
1852 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1853 
1854 			/*
1855 			 * Advance pgt to va_base, note that we may need to
1856 			 * skip multiple page tables if there are large
1857 			 * holes in the vm map.
1858 			 */
1859 			while ((*pgt)->vabase < pg_info->va_base) {
1860 				*pgt = SLIST_NEXT(*pgt, link);
1861 				/* We should have allocated enough */
1862 				assert(*pgt);
1863 			}
1864 			assert((*pgt)->vabase == pg_info->va_base);
1865 			pg_info->table = (*pgt)->tbl;
1866 
1867 			core_mmu_set_entry(dir_info, idx,
1868 					   virt_to_phys(pg_info->table),
1869 					   pgt_attr);
1870 		}
1871 
1872 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1873 			     end - r.va);
1874 
1875 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1876 			size_t granule = BIT(pg_info->shift);
1877 			size_t offset = r.va - region->va + region->offset;
1878 
1879 			r.size = MIN(r.size,
1880 				     mobj_get_phys_granule(region->mobj));
1881 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1882 
1883 			if (mobj_get_pa(region->mobj, offset, granule,
1884 					&r.pa) != TEE_SUCCESS)
1885 				panic("Failed to get PA of unpaged mobj");
1886 			set_region(pg_info, &r);
1887 		}
1888 		r.va += r.size;
1889 	}
1890 }
1891 
1892 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1893 			     size_t size_left, paddr_t block_size,
1894 			     struct tee_mmap_region *mm)
1895 {
1896 	/* VA and PA are aligned to block size at current level */
1897 	if ((vaddr | paddr) & (block_size - 1))
1898 		return false;
1899 
1900 	/* Remainder fits into block at current level */
1901 	if (size_left < block_size)
1902 		return false;
1903 
1904 	/*
1905 	 * The required block size of the region is compatible with the
1906 	 * block size of the current level.
1907 	 */
1908 	if (mm->region_size < block_size)
1909 		return false;
1910 
1911 #ifdef CFG_WITH_PAGER
1912 	/*
1913 	 * If pager is enabled, we need to map TEE RAM and the whole pager
1914 	 * regions with small pages only
1915 	 */
1916 	if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) &&
1917 	    block_size != SMALL_PAGE_SIZE)
1918 		return false;
1919 #endif
1920 
1921 	return true;
1922 }
1923 
1924 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1925 {
1926 	struct core_mmu_table_info tbl_info;
1927 	unsigned int idx;
1928 	vaddr_t vaddr = mm->va;
1929 	paddr_t paddr = mm->pa;
1930 	ssize_t size_left = mm->size;
1931 	unsigned int level;
1932 	bool table_found;
1933 	uint32_t old_attr;
1934 
1935 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1936 
1937 	while (size_left > 0) {
1938 		level = CORE_MMU_BASE_TABLE_LEVEL;
1939 
1940 		while (true) {
1941 			paddr_t block_size = 0;
1942 
1943 			assert(core_mmu_level_in_range(level));
1944 
1945 			table_found = core_mmu_find_table(prtn, vaddr, level,
1946 							  &tbl_info);
1947 			if (!table_found)
1948 				panic("can't find table for mapping");
1949 
1950 			block_size = BIT64(tbl_info.shift);
1951 
1952 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1953 			if (!can_map_at_level(paddr, vaddr, size_left,
1954 					      block_size, mm)) {
1955 				bool secure = mm->attr & TEE_MATTR_SECURE;
1956 
1957 				/*
1958 				 * This part of the region can't be mapped at
1959 				 * this level. Need to go deeper.
1960 				 */
1961 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1962 								     idx,
1963 								     secure))
1964 					panic("Can't divide MMU entry");
1965 				level = tbl_info.next_level;
1966 				continue;
1967 			}
1968 
1969 			/* We can map part of the region at current level */
1970 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1971 			if (old_attr)
1972 				panic("Page is already mapped");
1973 
1974 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1975 			paddr += block_size;
1976 			vaddr += block_size;
1977 			size_left -= block_size;
1978 
1979 			break;
1980 		}
1981 	}
1982 }
1983 
1984 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1985 			      enum teecore_memtypes memtype)
1986 {
1987 	TEE_Result ret;
1988 	struct core_mmu_table_info tbl_info;
1989 	struct tee_mmap_region *mm;
1990 	unsigned int idx;
1991 	uint32_t old_attr;
1992 	uint32_t exceptions;
1993 	vaddr_t vaddr = vstart;
1994 	size_t i;
1995 	bool secure;
1996 
1997 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1998 
1999 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
2000 
2001 	if (vaddr & SMALL_PAGE_MASK)
2002 		return TEE_ERROR_BAD_PARAMETERS;
2003 
2004 	exceptions = mmu_lock();
2005 
2006 	mm = find_map_by_va((void *)vaddr);
2007 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
2008 		panic("VA does not belong to any known mm region");
2009 
2010 	if (!core_mmu_is_dynamic_vaspace(mm))
2011 		panic("Trying to map into static region");
2012 
2013 	for (i = 0; i < num_pages; i++) {
2014 		if (pages[i] & SMALL_PAGE_MASK) {
2015 			ret = TEE_ERROR_BAD_PARAMETERS;
2016 			goto err;
2017 		}
2018 
2019 		while (true) {
2020 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
2021 						 &tbl_info))
2022 				panic("Can't find pagetable for vaddr ");
2023 
2024 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2025 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
2026 				break;
2027 
2028 			/* This is supertable. Need to divide it. */
2029 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
2030 							     secure))
2031 				panic("Failed to spread pgdir on small tables");
2032 		}
2033 
2034 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2035 		if (old_attr)
2036 			panic("Page is already mapped");
2037 
2038 		core_mmu_set_entry(&tbl_info, idx, pages[i],
2039 				   core_mmu_type_to_attr(memtype));
2040 		vaddr += SMALL_PAGE_SIZE;
2041 	}
2042 
2043 	/*
2044 	 * Make sure all the changes to translation tables are visible
2045 	 * before returning. TLB doesn't need to be invalidated as we are
2046 	 * guaranteed that there's no valid mapping in this range.
2047 	 */
2048 	core_mmu_table_write_barrier();
2049 	mmu_unlock(exceptions);
2050 
2051 	return TEE_SUCCESS;
2052 err:
2053 	mmu_unlock(exceptions);
2054 
2055 	if (i)
2056 		core_mmu_unmap_pages(vstart, i);
2057 
2058 	return ret;
2059 }
2060 
2061 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
2062 					 size_t num_pages,
2063 					 enum teecore_memtypes memtype)
2064 {
2065 	struct core_mmu_table_info tbl_info = { };
2066 	struct tee_mmap_region *mm = NULL;
2067 	unsigned int idx = 0;
2068 	uint32_t old_attr = 0;
2069 	uint32_t exceptions = 0;
2070 	vaddr_t vaddr = vstart;
2071 	paddr_t paddr = pstart;
2072 	size_t i = 0;
2073 	bool secure = false;
2074 
2075 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
2076 
2077 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
2078 
2079 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
2080 		return TEE_ERROR_BAD_PARAMETERS;
2081 
2082 	exceptions = mmu_lock();
2083 
2084 	mm = find_map_by_va((void *)vaddr);
2085 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
2086 		panic("VA does not belong to any known mm region");
2087 
2088 	if (!core_mmu_is_dynamic_vaspace(mm))
2089 		panic("Trying to map into static region");
2090 
2091 	for (i = 0; i < num_pages; i++) {
2092 		while (true) {
2093 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
2094 						 &tbl_info))
2095 				panic("Can't find pagetable for vaddr ");
2096 
2097 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2098 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
2099 				break;
2100 
2101 			/* This is supertable. Need to divide it. */
2102 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
2103 							     secure))
2104 				panic("Failed to spread pgdir on small tables");
2105 		}
2106 
2107 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2108 		if (old_attr)
2109 			panic("Page is already mapped");
2110 
2111 		core_mmu_set_entry(&tbl_info, idx, paddr,
2112 				   core_mmu_type_to_attr(memtype));
2113 		paddr += SMALL_PAGE_SIZE;
2114 		vaddr += SMALL_PAGE_SIZE;
2115 	}
2116 
2117 	/*
2118 	 * Make sure all the changes to translation tables are visible
2119 	 * before returning. TLB doesn't need to be invalidated as we are
2120 	 * guaranteed that there's no valid mapping in this range.
2121 	 */
2122 	core_mmu_table_write_barrier();
2123 	mmu_unlock(exceptions);
2124 
2125 	return TEE_SUCCESS;
2126 }
2127 
2128 static bool mem_range_is_in_vcore_free(vaddr_t vstart, size_t num_pages)
2129 {
2130 	return core_is_buffer_inside(vstart, num_pages * SMALL_PAGE_SIZE,
2131 				     VCORE_FREE_PA, VCORE_FREE_SZ);
2132 }
2133 
2134 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
2135 {
2136 	struct core_mmu_table_info tbl_info;
2137 	struct tee_mmap_region *mm;
2138 	size_t i;
2139 	unsigned int idx;
2140 	uint32_t exceptions;
2141 
2142 	exceptions = mmu_lock();
2143 
2144 	mm = find_map_by_va((void *)vstart);
2145 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
2146 		panic("VA does not belong to any known mm region");
2147 
2148 	if (!core_mmu_is_dynamic_vaspace(mm) &&
2149 	    !mem_range_is_in_vcore_free(vstart, num_pages))
2150 		panic("Trying to unmap static region");
2151 
2152 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
2153 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
2154 			panic("Can't find pagetable");
2155 
2156 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
2157 			panic("Invalid pagetable level");
2158 
2159 		idx = core_mmu_va2idx(&tbl_info, vstart);
2160 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
2161 	}
2162 	tlbi_all();
2163 
2164 	mmu_unlock(exceptions);
2165 }
2166 
2167 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
2168 				struct user_mode_ctx *uctx)
2169 {
2170 	struct core_mmu_table_info pg_info = { };
2171 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
2172 	struct pgt *pgt = NULL;
2173 	struct pgt *p = NULL;
2174 	struct vm_region *r = NULL;
2175 
2176 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
2177 		return; /* Nothing to map */
2178 
2179 	/*
2180 	 * Allocate all page tables in advance.
2181 	 */
2182 	pgt_get_all(uctx);
2183 	pgt = SLIST_FIRST(pgt_cache);
2184 
2185 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2186 
2187 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2188 		set_pg_region(dir_info, r, &pgt, &pg_info);
2189 	/* Record that the translation tables now are populated. */
2190 	SLIST_FOREACH(p, pgt_cache, link) {
2191 		p->populated = true;
2192 		if (p == pgt)
2193 			break;
2194 	}
2195 	assert(p == pgt);
2196 }
2197 
2198 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2199 				   size_t len)
2200 {
2201 	struct core_mmu_table_info tbl_info = { };
2202 	struct tee_mmap_region *res_map = NULL;
2203 	struct tee_mmap_region *map = NULL;
2204 	paddr_t pa = virt_to_phys(addr);
2205 	size_t granule = 0;
2206 	ptrdiff_t i = 0;
2207 	paddr_t p = 0;
2208 	size_t l = 0;
2209 
2210 	map = find_map_by_type_and_pa(type, pa, len);
2211 	if (!map)
2212 		return TEE_ERROR_GENERIC;
2213 
2214 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2215 	if (!res_map)
2216 		return TEE_ERROR_GENERIC;
2217 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2218 		return TEE_ERROR_GENERIC;
2219 	granule = BIT(tbl_info.shift);
2220 
2221 	if (map < static_memory_map.map ||
2222 	    map >= static_memory_map.map + static_memory_map.count)
2223 		return TEE_ERROR_GENERIC;
2224 	i = map - static_memory_map.map;
2225 
2226 	/* Check that we have a full match */
2227 	p = ROUNDDOWN(pa, granule);
2228 	l = ROUNDUP(len + pa - p, granule);
2229 	if (map->pa != p || map->size != l)
2230 		return TEE_ERROR_GENERIC;
2231 
2232 	clear_region(&tbl_info, map);
2233 	tlbi_all();
2234 
2235 	/* If possible remove the va range from res_map */
2236 	if (res_map->va - map->size == map->va) {
2237 		res_map->va -= map->size;
2238 		res_map->size += map->size;
2239 	}
2240 
2241 	/* Remove the entry. */
2242 	rem_array_elem(static_memory_map.map, static_memory_map.count,
2243 		       sizeof(*static_memory_map.map), i);
2244 	static_memory_map.count--;
2245 
2246 	return TEE_SUCCESS;
2247 }
2248 
2249 struct tee_mmap_region *
2250 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2251 {
2252 	struct memory_map *mem_map = get_memory_map();
2253 	struct tee_mmap_region *map_found = NULL;
2254 	size_t n = 0;
2255 
2256 	if (!len)
2257 		return NULL;
2258 
2259 	for (n = 0; n < mem_map->count; n++) {
2260 		if (mem_map->map[n].type != type)
2261 			continue;
2262 
2263 		if (map_found)
2264 			return NULL;
2265 
2266 		map_found = mem_map->map + n;
2267 	}
2268 
2269 	if (!map_found || map_found->size < len)
2270 		return NULL;
2271 
2272 	return map_found;
2273 }
2274 
2275 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2276 {
2277 	struct memory_map *mem_map = &static_memory_map;
2278 	struct core_mmu_table_info tbl_info = { };
2279 	struct tee_mmap_region *map = NULL;
2280 	size_t granule = 0;
2281 	paddr_t p = 0;
2282 	size_t l = 0;
2283 
2284 	if (!len)
2285 		return NULL;
2286 
2287 	if (!core_mmu_check_end_pa(addr, len))
2288 		return NULL;
2289 
2290 	/* Check if the memory is already mapped */
2291 	map = find_map_by_type_and_pa(type, addr, len);
2292 	if (map && pbuf_inside_map_area(addr, len, map))
2293 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2294 
2295 	/* Find the reserved va space used for late mappings */
2296 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2297 	if (!map)
2298 		return NULL;
2299 
2300 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2301 		return NULL;
2302 
2303 	granule = BIT64(tbl_info.shift);
2304 	p = ROUNDDOWN(addr, granule);
2305 	l = ROUNDUP(len + addr - p, granule);
2306 
2307 	/* Ban overflowing virtual addresses */
2308 	if (map->size < l)
2309 		return NULL;
2310 
2311 	/*
2312 	 * Something is wrong, we can't fit the va range into the selected
2313 	 * table. The reserved va range is possibly missaligned with
2314 	 * granule.
2315 	 */
2316 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2317 		return NULL;
2318 
2319 	if (static_memory_map.count >= static_memory_map.alloc_count)
2320 		return NULL;
2321 
2322 	mem_map->map[mem_map->count] = (struct tee_mmap_region){
2323 		.va = map->va,
2324 		.size = l,
2325 		.type = type,
2326 		.region_size = granule,
2327 		.attr = core_mmu_type_to_attr(type),
2328 		.pa = p,
2329 	};
2330 	map->va += l;
2331 	map->size -= l;
2332 	map = mem_map->map + mem_map->count;
2333 	mem_map->count++;
2334 
2335 	set_region(&tbl_info, map);
2336 
2337 	/* Make sure the new entry is visible before continuing. */
2338 	core_mmu_table_write_barrier();
2339 
2340 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2341 }
2342 
2343 #ifdef CFG_WITH_PAGER
2344 static vaddr_t get_linear_map_end_va(void)
2345 {
2346 	/* this is synced with the generic linker file kern.ld.S */
2347 	return (vaddr_t)__heap2_end;
2348 }
2349 
2350 static paddr_t get_linear_map_end_pa(void)
2351 {
2352 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2353 }
2354 #endif
2355 
2356 #if defined(CFG_TEE_CORE_DEBUG)
2357 static void check_pa_matches_va(void *va, paddr_t pa)
2358 {
2359 	TEE_Result res = TEE_ERROR_GENERIC;
2360 	vaddr_t v = (vaddr_t)va;
2361 	paddr_t p = 0;
2362 	struct core_mmu_table_info ti __maybe_unused = { };
2363 
2364 	if (core_mmu_user_va_range_is_defined()) {
2365 		vaddr_t user_va_base = 0;
2366 		size_t user_va_size = 0;
2367 
2368 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2369 		if (v >= user_va_base &&
2370 		    v <= (user_va_base - 1 + user_va_size)) {
2371 			if (!core_mmu_user_mapping_is_active()) {
2372 				if (pa)
2373 					panic("issue in linear address space");
2374 				return;
2375 			}
2376 
2377 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2378 				       va, &p);
2379 			if (res == TEE_ERROR_NOT_SUPPORTED)
2380 				return;
2381 			if (res == TEE_SUCCESS && pa != p)
2382 				panic("bad pa");
2383 			if (res != TEE_SUCCESS && pa)
2384 				panic("false pa");
2385 			return;
2386 		}
2387 	}
2388 #ifdef CFG_WITH_PAGER
2389 	if (is_unpaged(va)) {
2390 		if (v - boot_mmu_config.map_offset != pa)
2391 			panic("issue in linear address space");
2392 		return;
2393 	}
2394 
2395 	if (tee_pager_get_table_info(v, &ti)) {
2396 		uint32_t a;
2397 
2398 		/*
2399 		 * Lookups in the page table managed by the pager is
2400 		 * dangerous for addresses in the paged area as those pages
2401 		 * changes all the time. But some ranges are safe,
2402 		 * rw-locked areas when the page is populated for instance.
2403 		 */
2404 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2405 		if (a & TEE_MATTR_VALID_BLOCK) {
2406 			paddr_t mask = BIT64(ti.shift) - 1;
2407 
2408 			p |= v & mask;
2409 			if (pa != p)
2410 				panic();
2411 		} else {
2412 			if (pa)
2413 				panic();
2414 		}
2415 		return;
2416 	}
2417 #endif
2418 
2419 	if (!core_va2pa_helper(va, &p)) {
2420 		/* Verfiy only the static mapping (case non null phys addr) */
2421 		if (p && pa != p) {
2422 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2423 			     va, p, pa);
2424 			panic();
2425 		}
2426 	} else {
2427 		if (pa) {
2428 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2429 			panic();
2430 		}
2431 	}
2432 }
2433 #else
2434 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2435 {
2436 }
2437 #endif
2438 
2439 paddr_t virt_to_phys(void *va)
2440 {
2441 	paddr_t pa = 0;
2442 
2443 	if (!arch_va2pa_helper(va, &pa))
2444 		pa = 0;
2445 	check_pa_matches_va(memtag_strip_tag(va), pa);
2446 	return pa;
2447 }
2448 
2449 /*
2450  * Don't use check_va_matches_pa() for RISC-V, as its callee
2451  * arch_va2pa_helper() will call it eventually, this creates
2452  * indirect recursion and can lead to a stack overflow.
2453  * Moreover, if arch_va2pa_helper() returns true, it implies
2454  * the va2pa mapping is matched, no need to check it again.
2455  */
2456 #if defined(CFG_TEE_CORE_DEBUG) && !defined(__riscv)
2457 static void check_va_matches_pa(paddr_t pa, void *va)
2458 {
2459 	paddr_t p = 0;
2460 
2461 	if (!va)
2462 		return;
2463 
2464 	p = virt_to_phys(va);
2465 	if (p != pa) {
2466 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2467 		panic();
2468 	}
2469 }
2470 #else
2471 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2472 {
2473 }
2474 #endif
2475 
2476 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2477 {
2478 	if (!core_mmu_user_mapping_is_active())
2479 		return NULL;
2480 
2481 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2482 }
2483 
2484 #ifdef CFG_WITH_PAGER
2485 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2486 {
2487 	paddr_t end_pa = 0;
2488 
2489 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2490 		return NULL;
2491 
2492 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2493 		if (end_pa > get_linear_map_end_pa())
2494 			return NULL;
2495 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2496 	}
2497 
2498 	return tee_pager_phys_to_virt(pa, len);
2499 }
2500 #else
2501 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2502 {
2503 	struct tee_mmap_region *mmap = NULL;
2504 
2505 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2506 	if (!mmap)
2507 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2508 	if (!mmap)
2509 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2510 	if (!mmap)
2511 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2512 	if (!mmap)
2513 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2514 	if (!mmap)
2515 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2516 	/*
2517 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2518 	 * used with pager and not needed here.
2519 	 */
2520 	return map_pa2va(mmap, pa, len);
2521 }
2522 #endif
2523 
2524 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2525 {
2526 	void *va = NULL;
2527 
2528 	switch (m) {
2529 	case MEM_AREA_TS_VASPACE:
2530 		va = phys_to_virt_ts_vaspace(pa, len);
2531 		break;
2532 	case MEM_AREA_TEE_RAM:
2533 	case MEM_AREA_TEE_RAM_RX:
2534 	case MEM_AREA_TEE_RAM_RO:
2535 	case MEM_AREA_TEE_RAM_RW:
2536 	case MEM_AREA_NEX_RAM_RO:
2537 	case MEM_AREA_NEX_RAM_RW:
2538 		va = phys_to_virt_tee_ram(pa, len);
2539 		break;
2540 	case MEM_AREA_SHM_VASPACE:
2541 		/* Find VA from PA in dynamic SHM is not yet supported */
2542 		va = NULL;
2543 		break;
2544 	default:
2545 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2546 	}
2547 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2548 		check_va_matches_pa(pa, va);
2549 	return va;
2550 }
2551 
2552 void *phys_to_virt_io(paddr_t pa, size_t len)
2553 {
2554 	struct tee_mmap_region *map = NULL;
2555 	void *va = NULL;
2556 
2557 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2558 	if (!map)
2559 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2560 	if (!map)
2561 		return NULL;
2562 	va = map_pa2va(map, pa, len);
2563 	check_va_matches_pa(pa, va);
2564 	return va;
2565 }
2566 
2567 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2568 {
2569 	if (cpu_mmu_enabled())
2570 		return (vaddr_t)phys_to_virt(pa, type, len);
2571 
2572 	return (vaddr_t)pa;
2573 }
2574 
2575 #ifdef CFG_WITH_PAGER
2576 bool is_unpaged(const void *va)
2577 {
2578 	vaddr_t v = (vaddr_t)va;
2579 
2580 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2581 }
2582 #endif
2583 
2584 #ifdef CFG_NS_VIRTUALIZATION
2585 bool is_nexus(const void *va)
2586 {
2587 	vaddr_t v = (vaddr_t)va;
2588 
2589 	return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ;
2590 }
2591 #endif
2592 
2593 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2594 {
2595 	assert(p->pa);
2596 	if (cpu_mmu_enabled()) {
2597 		if (!p->va)
2598 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2599 		assert(p->va);
2600 		return p->va;
2601 	}
2602 	return p->pa;
2603 }
2604 
2605 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2606 {
2607 	assert(p->pa);
2608 	if (cpu_mmu_enabled()) {
2609 		if (!p->va)
2610 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2611 						      len);
2612 		assert(p->va);
2613 		return p->va;
2614 	}
2615 	return p->pa;
2616 }
2617 
2618 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2619 {
2620 	assert(p->pa);
2621 	if (cpu_mmu_enabled()) {
2622 		if (!p->va)
2623 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2624 						      len);
2625 		assert(p->va);
2626 		return p->va;
2627 	}
2628 	return p->pa;
2629 }
2630 
2631 #ifdef CFG_CORE_RESERVED_SHM
2632 static TEE_Result teecore_init_pub_ram(void)
2633 {
2634 	vaddr_t s = 0;
2635 	vaddr_t e = 0;
2636 
2637 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2638 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2639 
2640 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2641 		panic("invalid PUB RAM");
2642 
2643 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2644 	if (!tee_vbuf_is_non_sec(s, e - s))
2645 		panic("PUB RAM is not non-secure");
2646 
2647 #ifdef CFG_PL310
2648 	/* Allocate statically the l2cc mutex */
2649 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2650 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2651 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2652 #endif
2653 
2654 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2655 	default_nsec_shm_size = e - s;
2656 
2657 	return TEE_SUCCESS;
2658 }
2659 early_init(teecore_init_pub_ram);
2660 #endif /*CFG_CORE_RESERVED_SHM*/
2661 
2662 static void __maybe_unused carve_out_core_mem(paddr_t pa, paddr_t end_pa)
2663 {
2664 	tee_mm_entry_t *mm __maybe_unused = NULL;
2665 
2666 	DMSG("%#"PRIxPA" .. %#"PRIxPA, pa, end_pa);
2667 	mm = phys_mem_alloc2(pa, end_pa - pa);
2668 	assert(mm);
2669 }
2670 
2671 void core_mmu_init_phys_mem(void)
2672 {
2673 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
2674 		paddr_t b1 = 0;
2675 		paddr_size_t s1 = 0;
2676 
2677 		static_assert(ARRAY_SIZE(secure_only) <= 2);
2678 
2679 		if (ARRAY_SIZE(secure_only) == 2) {
2680 			b1 = secure_only[1].paddr;
2681 			s1 = secure_only[1].size;
2682 		}
2683 		virt_init_memory(&static_memory_map, secure_only[0].paddr,
2684 				 secure_only[0].size, b1, s1);
2685 	} else {
2686 #ifdef CFG_WITH_PAGER
2687 		/*
2688 		 * The pager uses all core memory so there's no need to add
2689 		 * it to the pool.
2690 		 */
2691 		static_assert(ARRAY_SIZE(secure_only) == 2);
2692 		phys_mem_init(0, 0, secure_only[1].paddr, secure_only[1].size);
2693 #else /*!CFG_WITH_PAGER*/
2694 		size_t align = BIT(CORE_MMU_USER_CODE_SHIFT);
2695 		paddr_t end_pa = 0;
2696 		size_t size = 0;
2697 		paddr_t ps = 0;
2698 		paddr_t pa = 0;
2699 
2700 		static_assert(ARRAY_SIZE(secure_only) <= 2);
2701 		if (ARRAY_SIZE(secure_only) == 2) {
2702 			ps = secure_only[1].paddr;
2703 			size = secure_only[1].size;
2704 		}
2705 		phys_mem_init(secure_only[0].paddr, secure_only[0].size,
2706 			      ps, size);
2707 
2708 		/*
2709 		 * The VCORE macros are relocatable so we need to translate
2710 		 * the addresses now that the MMU is enabled.
2711 		 */
2712 		end_pa = vaddr_to_phys(ROUNDUP(VCORE_FREE_END_PA,
2713 					       align) - 1) + 1;
2714 		/* Carve out the part used by OP-TEE core */
2715 		carve_out_core_mem(vaddr_to_phys(VCORE_UNPG_RX_PA), end_pa);
2716 		if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) {
2717 			pa = vaddr_to_phys(ROUNDUP(ASAN_MAP_PA, align));
2718 			carve_out_core_mem(pa, pa + ASAN_MAP_SZ);
2719 		}
2720 
2721 		/* Carve out test SDP memory */
2722 #ifdef TEE_SDP_TEST_MEM_BASE
2723 		if (TEE_SDP_TEST_MEM_SIZE) {
2724 			pa = vaddr_to_phys(TEE_SDP_TEST_MEM_BASE);
2725 			carve_out_core_mem(pa, pa + TEE_SDP_TEST_MEM_SIZE);
2726 		}
2727 #endif
2728 #endif /*!CFG_WITH_PAGER*/
2729 	}
2730 }
2731