1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016, 2022 Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 */ 6 7 #include <assert.h> 8 #include <config.h> 9 #include <kernel/boot.h> 10 #include <kernel/linker.h> 11 #include <kernel/panic.h> 12 #include <kernel/spinlock.h> 13 #include <kernel/tee_l2cc_mutex.h> 14 #include <kernel/tee_misc.h> 15 #include <kernel/tlb_helpers.h> 16 #include <kernel/user_mode_ctx.h> 17 #include <kernel/virtualization.h> 18 #include <mm/core_memprot.h> 19 #include <mm/core_mmu.h> 20 #include <mm/mobj.h> 21 #include <mm/pgt_cache.h> 22 #include <mm/tee_pager.h> 23 #include <mm/vm.h> 24 #include <platform_config.h> 25 #include <string.h> 26 #include <trace.h> 27 #include <util.h> 28 29 #ifndef DEBUG_XLAT_TABLE 30 #define DEBUG_XLAT_TABLE 0 31 #endif 32 33 #define SHM_VASPACE_SIZE (1024 * 1024 * 32) 34 35 /* 36 * These variables are initialized before .bss is cleared. To avoid 37 * resetting them when .bss is cleared we're storing them in .data instead, 38 * even if they initially are zero. 39 */ 40 41 #ifdef CFG_CORE_RESERVED_SHM 42 /* Default NSec shared memory allocated from NSec world */ 43 unsigned long default_nsec_shm_size __nex_bss; 44 unsigned long default_nsec_shm_paddr __nex_bss; 45 #endif 46 47 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS 48 #ifdef CFG_CORE_ASLR 49 + 1 50 #endif 51 + 1] __nex_bss; 52 53 /* Define the platform's memory layout. */ 54 struct memaccess_area { 55 paddr_t paddr; 56 size_t size; 57 }; 58 59 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } 60 61 static struct memaccess_area secure_only[] __nex_data = { 62 #ifdef TRUSTED_SRAM_BASE 63 MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), 64 #endif 65 MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), 66 }; 67 68 static struct memaccess_area nsec_shared[] __nex_data = { 69 #ifdef CFG_CORE_RESERVED_SHM 70 MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), 71 #endif 72 }; 73 74 #if defined(CFG_SECURE_DATA_PATH) 75 #ifdef CFG_TEE_SDP_MEM_BASE 76 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); 77 #endif 78 #ifdef TEE_SDP_TEST_MEM_BASE 79 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); 80 #endif 81 #endif 82 83 #ifdef CFG_CORE_RWDATA_NOEXEC 84 register_phys_mem_ul(MEM_AREA_TEE_RAM_RO, TEE_RAM_START, 85 VCORE_UNPG_RX_PA - TEE_RAM_START); 86 register_phys_mem_ul(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, 87 VCORE_UNPG_RX_SZ_UNSAFE); 88 register_phys_mem_ul(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, 89 VCORE_UNPG_RO_SZ_UNSAFE); 90 91 #ifdef CFG_VIRTUALIZATION 92 register_phys_mem_ul(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, 93 VCORE_UNPG_RW_SZ_UNSAFE); 94 register_phys_mem_ul(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, 95 VCORE_NEX_RW_SZ_UNSAFE); 96 #else 97 register_phys_mem_ul(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, 98 VCORE_UNPG_RW_SZ_UNSAFE); 99 #endif 100 101 #ifdef CFG_WITH_PAGER 102 register_phys_mem_ul(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, 103 VCORE_INIT_RX_SZ_UNSAFE); 104 register_phys_mem_ul(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, 105 VCORE_INIT_RO_SZ_UNSAFE); 106 #endif /*CFG_WITH_PAGER*/ 107 #else /*!CFG_CORE_RWDATA_NOEXEC*/ 108 register_phys_mem(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); 109 #endif /*!CFG_CORE_RWDATA_NOEXEC*/ 110 111 #ifdef CFG_VIRTUALIZATION 112 register_phys_mem(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE, 113 TRUSTED_DRAM_SIZE); 114 #endif 115 116 #if defined(CFG_CORE_SANITIZE_KADDRESS) && defined(CFG_WITH_PAGER) 117 /* Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is disabled */ 118 register_phys_mem_ul(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); 119 #endif 120 121 #ifndef CFG_VIRTUALIZATION 122 /* Every guest will have own TA RAM if virtualization support is enabled */ 123 register_phys_mem(MEM_AREA_TA_RAM, TA_RAM_START, TA_RAM_SIZE); 124 #endif 125 #ifdef CFG_CORE_RESERVED_SHM 126 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); 127 #endif 128 129 static unsigned int mmu_spinlock; 130 131 static uint32_t mmu_lock(void) 132 { 133 return cpu_spin_lock_xsave(&mmu_spinlock); 134 } 135 136 static void mmu_unlock(uint32_t exceptions) 137 { 138 cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); 139 } 140 141 static struct tee_mmap_region *get_memory_map(void) 142 { 143 if (IS_ENABLED(CFG_VIRTUALIZATION)) { 144 struct tee_mmap_region *map = virt_get_memory_map(); 145 146 if (map) 147 return map; 148 } 149 150 return static_memory_map; 151 } 152 153 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, 154 paddr_t pa, size_t size) 155 { 156 size_t n; 157 158 for (n = 0; n < alen; n++) 159 if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) 160 return true; 161 return false; 162 } 163 164 #define pbuf_intersects(a, pa, size) \ 165 _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) 166 167 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, 168 paddr_t pa, size_t size) 169 { 170 size_t n; 171 172 for (n = 0; n < alen; n++) 173 if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) 174 return true; 175 return false; 176 } 177 178 #define pbuf_is_inside(a, pa, size) \ 179 _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) 180 181 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) 182 { 183 paddr_t end_pa = 0; 184 185 if (!map) 186 return false; 187 188 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 189 return false; 190 191 return (pa >= map->pa && end_pa <= map->pa + map->size - 1); 192 } 193 194 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) 195 { 196 if (!map) 197 return false; 198 return (va >= map->va && va <= (map->va + map->size - 1)); 199 } 200 201 /* check if target buffer fits in a core default map area */ 202 static bool pbuf_inside_map_area(unsigned long p, size_t l, 203 struct tee_mmap_region *map) 204 { 205 return core_is_buffer_inside(p, l, map->pa, map->size); 206 } 207 208 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) 209 { 210 struct tee_mmap_region *map; 211 212 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) 213 if (map->type == type) 214 return map; 215 return NULL; 216 } 217 218 static struct tee_mmap_region * 219 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) 220 { 221 struct tee_mmap_region *map; 222 223 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 224 if (map->type != type) 225 continue; 226 if (pa_is_in_map(map, pa, len)) 227 return map; 228 } 229 return NULL; 230 } 231 232 static struct tee_mmap_region *find_map_by_va(void *va) 233 { 234 struct tee_mmap_region *map = get_memory_map(); 235 unsigned long a = (unsigned long)va; 236 237 while (!core_mmap_is_end_of_table(map)) { 238 if (a >= map->va && a <= (map->va - 1 + map->size)) 239 return map; 240 map++; 241 } 242 return NULL; 243 } 244 245 static struct tee_mmap_region *find_map_by_pa(unsigned long pa) 246 { 247 struct tee_mmap_region *map = get_memory_map(); 248 249 while (!core_mmap_is_end_of_table(map)) { 250 if (pa >= map->pa && pa <= (map->pa + map->size - 1)) 251 return map; 252 map++; 253 } 254 return NULL; 255 } 256 257 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) 258 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, 259 const struct core_mmu_phys_mem *start, 260 const struct core_mmu_phys_mem *end) 261 { 262 const struct core_mmu_phys_mem *mem; 263 264 for (mem = start; mem < end; mem++) { 265 if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) 266 return true; 267 } 268 269 return false; 270 } 271 #endif 272 273 #ifdef CFG_CORE_DYN_SHM 274 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, 275 paddr_t pa, size_t size) 276 { 277 struct core_mmu_phys_mem *m = *mem; 278 size_t n = 0; 279 280 while (true) { 281 if (n >= *nelems) { 282 DMSG("No need to carve out %#" PRIxPA " size %#zx", 283 pa, size); 284 return; 285 } 286 if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size)) 287 break; 288 if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size)) 289 panic(); 290 n++; 291 } 292 293 if (pa == m[n].addr && size == m[n].size) { 294 /* Remove this entry */ 295 (*nelems)--; 296 memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n)); 297 m = nex_realloc(m, sizeof(*m) * *nelems); 298 if (!m) 299 panic(); 300 *mem = m; 301 } else if (pa == m[n].addr) { 302 m[n].addr += size; 303 m[n].size -= size; 304 } else if ((pa + size) == (m[n].addr + m[n].size)) { 305 m[n].size -= size; 306 } else { 307 /* Need to split the memory entry */ 308 m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); 309 if (!m) 310 panic(); 311 *mem = m; 312 memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n)); 313 (*nelems)++; 314 m[n].size = pa - m[n].addr; 315 m[n + 1].size -= size + m[n].size; 316 m[n + 1].addr = pa + size; 317 } 318 } 319 320 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, 321 size_t nelems, 322 struct tee_mmap_region *map) 323 { 324 size_t n; 325 326 for (n = 0; n < nelems; n++) { 327 if (!core_is_buffer_outside(start[n].addr, start[n].size, 328 map->pa, map->size)) { 329 EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ 330 ") overlaps map (type %d %#" PRIxPA ":%#zx)", 331 start[n].addr, start[n].size, 332 map->type, map->pa, map->size); 333 panic(); 334 } 335 } 336 } 337 338 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; 339 static size_t discovered_nsec_ddr_nelems __nex_bss; 340 341 static int cmp_pmem_by_addr(const void *a, const void *b) 342 { 343 const struct core_mmu_phys_mem *pmem_a = a; 344 const struct core_mmu_phys_mem *pmem_b = b; 345 346 return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); 347 } 348 349 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 350 size_t nelems) 351 { 352 struct core_mmu_phys_mem *m = start; 353 size_t num_elems = nelems; 354 struct tee_mmap_region *map = static_memory_map; 355 const struct core_mmu_phys_mem __maybe_unused *pmem; 356 357 assert(!discovered_nsec_ddr_start); 358 assert(m && num_elems); 359 360 qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); 361 362 /* 363 * Non-secure shared memory and also secure data 364 * path memory are supposed to reside inside 365 * non-secure memory. Since NSEC_SHM and SDP_MEM 366 * are used for a specific purpose make holes for 367 * those memory in the normal non-secure memory. 368 * 369 * This has to be done since for instance QEMU 370 * isn't aware of which memory range in the 371 * non-secure memory is used for NSEC_SHM. 372 */ 373 374 #ifdef CFG_SECURE_DATA_PATH 375 for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) 376 carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); 377 #endif 378 379 carve_out_phys_mem(&m, &num_elems, TEE_RAM_START, TEE_RAM_PH_SIZE); 380 carve_out_phys_mem(&m, &num_elems, TA_RAM_START, TA_RAM_SIZE); 381 382 for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) { 383 switch (map->type) { 384 case MEM_AREA_NSEC_SHM: 385 carve_out_phys_mem(&m, &num_elems, map->pa, map->size); 386 break; 387 case MEM_AREA_EXT_DT: 388 case MEM_AREA_RES_VASPACE: 389 case MEM_AREA_SHM_VASPACE: 390 case MEM_AREA_TS_VASPACE: 391 case MEM_AREA_PAGER_VASPACE: 392 break; 393 default: 394 check_phys_mem_is_outside(m, num_elems, map); 395 } 396 } 397 398 discovered_nsec_ddr_start = m; 399 discovered_nsec_ddr_nelems = num_elems; 400 401 if (!core_mmu_check_end_pa(m[num_elems - 1].addr, 402 m[num_elems - 1].size)) 403 panic(); 404 } 405 406 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, 407 const struct core_mmu_phys_mem **end) 408 { 409 if (!discovered_nsec_ddr_start) 410 return false; 411 412 *start = discovered_nsec_ddr_start; 413 *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; 414 415 return true; 416 } 417 418 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) 419 { 420 const struct core_mmu_phys_mem *start; 421 const struct core_mmu_phys_mem *end; 422 423 if (!get_discovered_nsec_ddr(&start, &end)) 424 return false; 425 426 return pbuf_is_special_mem(pbuf, len, start, end); 427 } 428 429 bool core_mmu_nsec_ddr_is_defined(void) 430 { 431 const struct core_mmu_phys_mem *start; 432 const struct core_mmu_phys_mem *end; 433 434 if (!get_discovered_nsec_ddr(&start, &end)) 435 return false; 436 437 return start != end; 438 } 439 #else 440 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) 441 { 442 return false; 443 } 444 #endif /*CFG_CORE_DYN_SHM*/ 445 446 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ 447 EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ 448 pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) 449 450 #ifdef CFG_SECURE_DATA_PATH 451 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) 452 { 453 return pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, 454 phys_sdp_mem_end); 455 } 456 457 struct mobj **core_sdp_mem_create_mobjs(void) 458 { 459 const struct core_mmu_phys_mem *mem; 460 struct mobj **mobj_base; 461 struct mobj **mobj; 462 int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; 463 464 /* SDP mobjs table must end with a NULL entry */ 465 mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); 466 if (!mobj_base) 467 panic("Out of memory"); 468 469 for (mem = phys_sdp_mem_begin, mobj = mobj_base; 470 mem < phys_sdp_mem_end; mem++, mobj++) { 471 *mobj = mobj_phys_alloc(mem->addr, mem->size, 472 TEE_MATTR_MEM_TYPE_CACHED, 473 CORE_MEM_SDP_MEM); 474 if (!*mobj) 475 panic("can't create SDP physical memory object"); 476 } 477 return mobj_base; 478 } 479 480 #else /* CFG_SECURE_DATA_PATH */ 481 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) 482 { 483 return false; 484 } 485 486 #endif /* CFG_SECURE_DATA_PATH */ 487 488 /* Check special memories comply with registered memories */ 489 static void verify_special_mem_areas(struct tee_mmap_region *mem_map, 490 size_t len, 491 const struct core_mmu_phys_mem *start, 492 const struct core_mmu_phys_mem *end, 493 const char *area_name __maybe_unused) 494 { 495 const struct core_mmu_phys_mem *mem; 496 const struct core_mmu_phys_mem *mem2; 497 struct tee_mmap_region *mmap; 498 size_t n; 499 500 if (start == end) { 501 DMSG("No %s memory area defined", area_name); 502 return; 503 } 504 505 for (mem = start; mem < end; mem++) 506 DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", 507 area_name, mem->addr, (uint64_t)mem->addr + mem->size); 508 509 /* Check memories do not intersect each other */ 510 for (mem = start; mem + 1 < end; mem++) { 511 for (mem2 = mem + 1; mem2 < end; mem2++) { 512 if (core_is_buffer_intersect(mem2->addr, mem2->size, 513 mem->addr, mem->size)) { 514 MSG_MEM_INSTERSECT(mem2->addr, mem2->size, 515 mem->addr, mem->size); 516 panic("Special memory intersection"); 517 } 518 } 519 } 520 521 /* 522 * Check memories do not intersect any mapped memory. 523 * This is called before reserved VA space is loaded in mem_map. 524 */ 525 for (mem = start; mem < end; mem++) { 526 for (mmap = mem_map, n = 0; n < len; mmap++, n++) { 527 if (core_is_buffer_intersect(mem->addr, mem->size, 528 mmap->pa, mmap->size)) { 529 MSG_MEM_INSTERSECT(mem->addr, mem->size, 530 mmap->pa, mmap->size); 531 panic("Special memory intersection"); 532 } 533 } 534 } 535 } 536 537 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems, 538 const struct core_mmu_phys_mem *mem, size_t *last) 539 { 540 size_t n = 0; 541 paddr_t pa; 542 paddr_size_t size; 543 544 /* 545 * If some ranges of memory of the same type do overlap 546 * each others they are coalesced into one entry. To help this 547 * added entries are sorted by increasing physical. 548 * 549 * Note that it's valid to have the same physical memory as several 550 * different memory types, for instance the same device memory 551 * mapped as both secure and non-secure. This will probably not 552 * happen often in practice. 553 */ 554 DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, 555 mem->name, teecore_memtype_name(mem->type), mem->addr, mem->size); 556 while (true) { 557 if (n >= (num_elems - 1)) { 558 EMSG("Out of entries (%zu) in memory_map", num_elems); 559 panic(); 560 } 561 if (n == *last) 562 break; 563 pa = memory_map[n].pa; 564 size = memory_map[n].size; 565 if (mem->type == memory_map[n].type && 566 ((pa <= (mem->addr + (mem->size - 1))) && 567 (mem->addr <= (pa + (size - 1))))) { 568 DMSG("Physical mem map overlaps 0x%" PRIxPA, mem->addr); 569 memory_map[n].pa = MIN(pa, mem->addr); 570 memory_map[n].size = MAX(size, mem->size) + 571 (pa - memory_map[n].pa); 572 return; 573 } 574 if (mem->type < memory_map[n].type || 575 (mem->type == memory_map[n].type && mem->addr < pa)) 576 break; /* found the spot where to insert this memory */ 577 n++; 578 } 579 580 memmove(memory_map + n + 1, memory_map + n, 581 sizeof(struct tee_mmap_region) * (*last - n)); 582 (*last)++; 583 memset(memory_map + n, 0, sizeof(memory_map[0])); 584 memory_map[n].type = mem->type; 585 memory_map[n].pa = mem->addr; 586 memory_map[n].size = mem->size; 587 } 588 589 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems, 590 enum teecore_memtypes type, size_t size, size_t *last) 591 { 592 size_t n = 0; 593 594 DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); 595 while (true) { 596 if (n >= (num_elems - 1)) { 597 EMSG("Out of entries (%zu) in memory_map", num_elems); 598 panic(); 599 } 600 if (n == *last) 601 break; 602 if (type < memory_map[n].type) 603 break; 604 n++; 605 } 606 607 memmove(memory_map + n + 1, memory_map + n, 608 sizeof(struct tee_mmap_region) * (*last - n)); 609 (*last)++; 610 memset(memory_map + n, 0, sizeof(memory_map[0])); 611 memory_map[n].type = type; 612 memory_map[n].size = size; 613 } 614 615 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) 616 { 617 const uint32_t attr = TEE_MATTR_VALID_BLOCK; 618 const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << 619 TEE_MATTR_MEM_TYPE_SHIFT; 620 const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << 621 TEE_MATTR_MEM_TYPE_SHIFT; 622 623 switch (t) { 624 case MEM_AREA_TEE_RAM: 625 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | cached; 626 case MEM_AREA_TEE_RAM_RX: 627 case MEM_AREA_INIT_RAM_RX: 628 case MEM_AREA_IDENTITY_MAP_RX: 629 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | cached; 630 case MEM_AREA_TEE_RAM_RO: 631 case MEM_AREA_INIT_RAM_RO: 632 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 633 case MEM_AREA_TEE_RAM_RW: 634 case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ 635 case MEM_AREA_NEX_RAM_RW: 636 case MEM_AREA_TEE_ASAN: 637 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 638 case MEM_AREA_TEE_COHERENT: 639 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; 640 case MEM_AREA_TA_RAM: 641 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 642 case MEM_AREA_NSEC_SHM: 643 return attr | TEE_MATTR_PRW | cached; 644 case MEM_AREA_EXT_DT: 645 case MEM_AREA_IO_NSEC: 646 return attr | TEE_MATTR_PRW | noncache; 647 case MEM_AREA_IO_SEC: 648 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; 649 case MEM_AREA_RAM_NSEC: 650 return attr | TEE_MATTR_PRW | cached; 651 case MEM_AREA_RAM_SEC: 652 case MEM_AREA_SEC_RAM_OVERALL: 653 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 654 case MEM_AREA_RES_VASPACE: 655 case MEM_AREA_SHM_VASPACE: 656 return 0; 657 case MEM_AREA_PAGER_VASPACE: 658 return TEE_MATTR_SECURE; 659 default: 660 panic("invalid type"); 661 } 662 } 663 664 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) 665 { 666 switch (mm->type) { 667 case MEM_AREA_TEE_RAM: 668 case MEM_AREA_TEE_RAM_RX: 669 case MEM_AREA_TEE_RAM_RO: 670 case MEM_AREA_TEE_RAM_RW: 671 case MEM_AREA_INIT_RAM_RX: 672 case MEM_AREA_INIT_RAM_RO: 673 case MEM_AREA_NEX_RAM_RW: 674 case MEM_AREA_NEX_RAM_RO: 675 case MEM_AREA_TEE_ASAN: 676 return true; 677 default: 678 return false; 679 } 680 } 681 682 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) 683 { 684 return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); 685 } 686 687 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) 688 { 689 return mm->region_size == CORE_MMU_PGDIR_SIZE; 690 } 691 692 static int cmp_mmap_by_lower_va(const void *a, const void *b) 693 { 694 const struct tee_mmap_region *mm_a = a; 695 const struct tee_mmap_region *mm_b = b; 696 697 return CMP_TRILEAN(mm_a->va, mm_b->va); 698 } 699 700 static void dump_mmap_table(struct tee_mmap_region *memory_map) 701 { 702 struct tee_mmap_region *map; 703 704 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 705 vaddr_t __maybe_unused vstart; 706 707 vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1)); 708 DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA 709 " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", 710 teecore_memtype_name(map->type), vstart, 711 vstart + map->size - 1, map->pa, 712 (paddr_t)(map->pa + map->size - 1), map->size, 713 map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); 714 } 715 } 716 717 #if DEBUG_XLAT_TABLE 718 719 static void dump_xlat_table(vaddr_t va, unsigned int level) 720 { 721 struct core_mmu_table_info tbl_info; 722 unsigned int idx = 0; 723 paddr_t pa; 724 uint32_t attr; 725 726 core_mmu_find_table(NULL, va, level, &tbl_info); 727 va = tbl_info.va_base; 728 for (idx = 0; idx < tbl_info.num_entries; idx++) { 729 core_mmu_get_entry(&tbl_info, idx, &pa, &attr); 730 if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { 731 const char *security_bit = ""; 732 733 if (core_mmu_entry_have_security_bit(attr)) { 734 if (attr & TEE_MATTR_SECURE) 735 security_bit = "S"; 736 else 737 security_bit = "NS"; 738 } 739 740 if (attr & TEE_MATTR_TABLE) { 741 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 742 " TBL:0x%010" PRIxPA " %s", 743 level * 2, "", level, va, pa, 744 security_bit); 745 dump_xlat_table(va, level + 1); 746 } else if (attr) { 747 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 748 " PA:0x%010" PRIxPA " %s-%s-%s-%s", 749 level * 2, "", level, va, pa, 750 attr & (TEE_MATTR_MEM_TYPE_CACHED << 751 TEE_MATTR_MEM_TYPE_SHIFT) ? "MEM" : 752 "DEV", 753 attr & TEE_MATTR_PW ? "RW" : "RO", 754 attr & TEE_MATTR_PX ? "X " : "XN", 755 security_bit); 756 } else { 757 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 758 " INVALID\n", 759 level * 2, "", level, va); 760 } 761 } 762 va += BIT64(tbl_info.shift); 763 } 764 } 765 766 #else 767 768 static void dump_xlat_table(vaddr_t va __unused, int level __unused) 769 { 770 } 771 772 #endif 773 774 /* 775 * Reserves virtual memory space for pager usage. 776 * 777 * From the start of the first memory used by the link script + 778 * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty 779 * mapping for pager usage. This adds translation tables as needed for the 780 * pager to operate. 781 */ 782 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems, 783 size_t *last) 784 { 785 paddr_t begin = 0; 786 paddr_t end = 0; 787 size_t size = 0; 788 size_t pos = 0; 789 size_t n = 0; 790 791 if (*last >= (num_elems - 1)) { 792 EMSG("Out of entries (%zu) in memory map", num_elems); 793 panic(); 794 } 795 796 for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) { 797 if (map_is_tee_ram(mmap + n)) { 798 if (!begin) 799 begin = mmap[n].pa; 800 pos = n + 1; 801 } 802 } 803 804 end = mmap[pos - 1].pa + mmap[pos - 1].size; 805 size = TEE_RAM_VA_SIZE - (end - begin); 806 if (!size) 807 return; 808 809 assert(pos <= *last); 810 memmove(mmap + pos + 1, mmap + pos, 811 sizeof(struct tee_mmap_region) * (*last - pos)); 812 (*last)++; 813 memset(mmap + pos, 0, sizeof(mmap[0])); 814 mmap[pos].type = MEM_AREA_PAGER_VASPACE; 815 mmap[pos].va = 0; 816 mmap[pos].size = size; 817 mmap[pos].region_size = SMALL_PAGE_SIZE; 818 mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE); 819 } 820 821 static void check_sec_nsec_mem_config(void) 822 { 823 size_t n = 0; 824 825 for (n = 0; n < ARRAY_SIZE(secure_only); n++) { 826 if (pbuf_intersects(nsec_shared, secure_only[n].paddr, 827 secure_only[n].size)) 828 panic("Invalid memory access config: sec/nsec"); 829 } 830 } 831 832 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map, 833 size_t num_elems) 834 { 835 const struct core_mmu_phys_mem *mem = NULL; 836 size_t last = 0; 837 838 for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { 839 struct core_mmu_phys_mem m = *mem; 840 841 /* Discard null size entries */ 842 if (!m.size) 843 continue; 844 845 /* Only unmapped virtual range may have a null phys addr */ 846 assert(m.addr || !core_mmu_type_to_attr(m.type)); 847 848 add_phys_mem(memory_map, num_elems, &m, &last); 849 } 850 851 if (IS_ENABLED(CFG_SECURE_DATA_PATH)) 852 verify_special_mem_areas(memory_map, num_elems, 853 phys_sdp_mem_begin, 854 phys_sdp_mem_end, "SDP"); 855 856 add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE, 857 CFG_RESERVED_VASPACE_SIZE, &last); 858 859 add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE, 860 SHM_VASPACE_SIZE, &last); 861 862 memory_map[last].type = MEM_AREA_END; 863 864 return last; 865 } 866 867 static void assign_mem_granularity(struct tee_mmap_region *memory_map) 868 { 869 struct tee_mmap_region *map = NULL; 870 871 /* 872 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses 873 * SMALL_PAGE_SIZE. 874 */ 875 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 876 paddr_t mask = map->pa | map->size; 877 878 if (!(mask & CORE_MMU_PGDIR_MASK)) 879 map->region_size = CORE_MMU_PGDIR_SIZE; 880 else if (!(mask & SMALL_PAGE_MASK)) 881 map->region_size = SMALL_PAGE_SIZE; 882 else 883 panic("Impossible memory alignment"); 884 885 if (map_is_tee_ram(map)) 886 map->region_size = SMALL_PAGE_SIZE; 887 } 888 } 889 890 static bool assign_mem_va(vaddr_t tee_ram_va, 891 struct tee_mmap_region *memory_map) 892 { 893 struct tee_mmap_region *map = NULL; 894 vaddr_t va = tee_ram_va; 895 bool va_is_secure = true; 896 897 /* 898 * Check that we're not overlapping with the user VA range. 899 */ 900 if (IS_ENABLED(CFG_WITH_LPAE)) { 901 /* 902 * User VA range is supposed to be defined after these 903 * mappings have been established. 904 */ 905 assert(!core_mmu_user_va_range_is_defined()); 906 } else { 907 vaddr_t user_va_base = 0; 908 size_t user_va_size = 0; 909 910 assert(core_mmu_user_va_range_is_defined()); 911 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 912 if (tee_ram_va < (user_va_base + user_va_size)) 913 return false; 914 } 915 916 /* Clear eventual previous assignments */ 917 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 918 map->va = 0; 919 920 /* 921 * TEE RAM regions are always aligned with region_size. 922 * 923 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here 924 * since it handles virtual memory which covers the part of the ELF 925 * that cannot fit directly into memory. 926 */ 927 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 928 if (map_is_tee_ram(map) || 929 map->type == MEM_AREA_PAGER_VASPACE) { 930 assert(!(va & (map->region_size - 1))); 931 assert(!(map->size & (map->region_size - 1))); 932 map->va = va; 933 if (ADD_OVERFLOW(va, map->size, &va)) 934 return false; 935 if (va >= BIT64(core_mmu_get_va_width())) 936 return false; 937 } 938 } 939 940 if (core_mmu_place_tee_ram_at_top(tee_ram_va)) { 941 /* 942 * Map non-tee ram regions at addresses lower than the tee 943 * ram region. 944 */ 945 va = tee_ram_va; 946 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 947 map->attr = core_mmu_type_to_attr(map->type); 948 if (map->va) 949 continue; 950 951 if (!IS_ENABLED(CFG_WITH_LPAE) && 952 va_is_secure != map_is_secure(map)) { 953 va_is_secure = !va_is_secure; 954 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 955 } 956 957 if (SUB_OVERFLOW(va, map->size, &va)) 958 return false; 959 va = ROUNDDOWN(va, map->region_size); 960 /* 961 * Make sure that va is aligned with pa for 962 * efficient pgdir mapping. Basically pa & 963 * pgdir_mask should be == va & pgdir_mask 964 */ 965 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 966 if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) 967 return false; 968 va += (map->pa - va) & CORE_MMU_PGDIR_MASK; 969 } 970 map->va = va; 971 } 972 } else { 973 /* 974 * Map non-tee ram regions at addresses higher than the tee 975 * ram region. 976 */ 977 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 978 map->attr = core_mmu_type_to_attr(map->type); 979 if (map->va) 980 continue; 981 982 if (!IS_ENABLED(CFG_WITH_LPAE) && 983 va_is_secure != map_is_secure(map)) { 984 va_is_secure = !va_is_secure; 985 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 986 &va)) 987 return false; 988 } 989 990 if (ROUNDUP_OVERFLOW(va, map->region_size, &va)) 991 return false; 992 /* 993 * Make sure that va is aligned with pa for 994 * efficient pgdir mapping. Basically pa & 995 * pgdir_mask should be == va & pgdir_mask 996 */ 997 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 998 vaddr_t offs = (map->pa - va) & 999 CORE_MMU_PGDIR_MASK; 1000 1001 if (ADD_OVERFLOW(va, offs, &va)) 1002 return false; 1003 } 1004 1005 map->va = va; 1006 if (ADD_OVERFLOW(va, map->size, &va)) 1007 return false; 1008 if (va >= BIT64(core_mmu_get_va_width())) 1009 return false; 1010 } 1011 } 1012 1013 return true; 1014 } 1015 1016 static int cmp_init_mem_map(const void *a, const void *b) 1017 { 1018 const struct tee_mmap_region *mm_a = a; 1019 const struct tee_mmap_region *mm_b = b; 1020 int rc = 0; 1021 1022 rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); 1023 if (!rc) 1024 rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); 1025 /* 1026 * 32bit MMU descriptors cannot mix secure and non-secure mapping in 1027 * the same level2 table. Hence sort secure mapping from non-secure 1028 * mapping. 1029 */ 1030 if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) 1031 rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); 1032 1033 return rc; 1034 } 1035 1036 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map, 1037 size_t num_elems, size_t *last, 1038 vaddr_t id_map_start, vaddr_t id_map_end) 1039 { 1040 struct tee_mmap_region *map = NULL; 1041 vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); 1042 vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); 1043 size_t len = end - start; 1044 1045 if (*last >= num_elems - 1) { 1046 EMSG("Out of entries (%zu) in memory map", num_elems); 1047 panic(); 1048 } 1049 1050 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 1051 if (core_is_buffer_intersect(map->va, map->size, start, len)) 1052 return false; 1053 1054 *map = (struct tee_mmap_region){ 1055 .type = MEM_AREA_IDENTITY_MAP_RX, 1056 /* 1057 * Could use CORE_MMU_PGDIR_SIZE to potentially save a 1058 * translation table, at the increased risk of clashes with 1059 * the rest of the memory map. 1060 */ 1061 .region_size = SMALL_PAGE_SIZE, 1062 .pa = start, 1063 .va = start, 1064 .size = len, 1065 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1066 }; 1067 1068 (*last)++; 1069 1070 return true; 1071 } 1072 1073 static unsigned long init_mem_map(struct tee_mmap_region *memory_map, 1074 size_t num_elems, unsigned long seed) 1075 { 1076 /* 1077 * @id_map_start and @id_map_end describes a physical memory range 1078 * that must be mapped Read-Only eXecutable at identical virtual 1079 * addresses. 1080 */ 1081 vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; 1082 vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; 1083 unsigned long offs = 0; 1084 size_t last = 0; 1085 1086 last = collect_mem_ranges(memory_map, num_elems); 1087 assign_mem_granularity(memory_map); 1088 1089 /* 1090 * To ease mapping and lower use of xlat tables, sort mapping 1091 * description moving small-page regions after the pgdir regions. 1092 */ 1093 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1094 cmp_init_mem_map); 1095 1096 add_pager_vaspace(memory_map, num_elems, &last); 1097 if (IS_ENABLED(CFG_CORE_ASLR) && seed) { 1098 vaddr_t base_addr = TEE_RAM_START + seed; 1099 const unsigned int va_width = core_mmu_get_va_width(); 1100 const vaddr_t va_mask = GENMASK_64(va_width - 1, 1101 SMALL_PAGE_SHIFT); 1102 vaddr_t ba = base_addr; 1103 size_t n = 0; 1104 1105 for (n = 0; n < 3; n++) { 1106 if (n) 1107 ba = base_addr ^ BIT64(va_width - n); 1108 ba &= va_mask; 1109 if (assign_mem_va(ba, memory_map) && 1110 mem_map_add_id_map(memory_map, num_elems, &last, 1111 id_map_start, id_map_end)) { 1112 offs = ba - TEE_RAM_START; 1113 DMSG("Mapping core at %#"PRIxVA" offs %#lx", 1114 ba, offs); 1115 goto out; 1116 } else { 1117 DMSG("Failed to map core at %#"PRIxVA, ba); 1118 } 1119 } 1120 EMSG("Failed to map core with seed %#lx", seed); 1121 } 1122 1123 if (!assign_mem_va(TEE_RAM_START, memory_map)) 1124 panic(); 1125 1126 out: 1127 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1128 cmp_mmap_by_lower_va); 1129 1130 dump_mmap_table(memory_map); 1131 1132 return offs; 1133 } 1134 1135 static void check_mem_map(struct tee_mmap_region *map) 1136 { 1137 struct tee_mmap_region *m = NULL; 1138 1139 for (m = map; !core_mmap_is_end_of_table(m); m++) { 1140 switch (m->type) { 1141 case MEM_AREA_TEE_RAM: 1142 case MEM_AREA_TEE_RAM_RX: 1143 case MEM_AREA_TEE_RAM_RO: 1144 case MEM_AREA_TEE_RAM_RW: 1145 case MEM_AREA_INIT_RAM_RX: 1146 case MEM_AREA_INIT_RAM_RO: 1147 case MEM_AREA_NEX_RAM_RW: 1148 case MEM_AREA_NEX_RAM_RO: 1149 case MEM_AREA_IDENTITY_MAP_RX: 1150 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1151 panic("TEE_RAM can't fit in secure_only"); 1152 break; 1153 case MEM_AREA_TA_RAM: 1154 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1155 panic("TA_RAM can't fit in secure_only"); 1156 break; 1157 case MEM_AREA_NSEC_SHM: 1158 if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) 1159 panic("NS_SHM can't fit in nsec_shared"); 1160 break; 1161 case MEM_AREA_SEC_RAM_OVERALL: 1162 case MEM_AREA_TEE_COHERENT: 1163 case MEM_AREA_TEE_ASAN: 1164 case MEM_AREA_IO_SEC: 1165 case MEM_AREA_IO_NSEC: 1166 case MEM_AREA_EXT_DT: 1167 case MEM_AREA_RAM_SEC: 1168 case MEM_AREA_RAM_NSEC: 1169 case MEM_AREA_RES_VASPACE: 1170 case MEM_AREA_SHM_VASPACE: 1171 case MEM_AREA_PAGER_VASPACE: 1172 break; 1173 default: 1174 EMSG("Uhandled memtype %d", m->type); 1175 panic(); 1176 } 1177 } 1178 } 1179 1180 static struct tee_mmap_region *get_tmp_mmap(void) 1181 { 1182 struct tee_mmap_region *tmp_mmap = (void *)__heap1_start; 1183 1184 #ifdef CFG_WITH_PAGER 1185 if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map)) 1186 tmp_mmap = (void *)__heap2_start; 1187 #endif 1188 1189 memset(tmp_mmap, 0, sizeof(static_memory_map)); 1190 1191 return tmp_mmap; 1192 } 1193 1194 /* 1195 * core_init_mmu_map() - init tee core default memory mapping 1196 * 1197 * This routine sets the static default TEE core mapping. If @seed is > 0 1198 * and configured with CFG_CORE_ASLR it will map tee core at a location 1199 * based on the seed and return the offset from the link address. 1200 * 1201 * If an error happened: core_init_mmu_map is expected to panic. 1202 * 1203 * Note: this function is weak just to make it possible to exclude it from 1204 * the unpaged area. 1205 */ 1206 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) 1207 { 1208 #ifndef CFG_VIRTUALIZATION 1209 vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); 1210 #else 1211 vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, 1212 SMALL_PAGE_SIZE); 1213 #endif 1214 vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; 1215 struct tee_mmap_region *tmp_mmap = get_tmp_mmap(); 1216 unsigned long offs = 0; 1217 1218 check_sec_nsec_mem_config(); 1219 1220 /* 1221 * Add a entry covering the translation tables which will be 1222 * involved in some virt_to_phys() and phys_to_virt() conversions. 1223 */ 1224 static_memory_map[0] = (struct tee_mmap_region){ 1225 .type = MEM_AREA_TEE_RAM, 1226 .region_size = SMALL_PAGE_SIZE, 1227 .pa = start, 1228 .va = start, 1229 .size = len, 1230 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1231 }; 1232 1233 COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13); 1234 offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed); 1235 1236 check_mem_map(tmp_mmap); 1237 core_init_mmu(tmp_mmap); 1238 dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); 1239 core_init_mmu_regs(cfg); 1240 cfg->load_offset = offs; 1241 memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map)); 1242 } 1243 1244 bool core_mmu_mattr_is_ok(uint32_t mattr) 1245 { 1246 /* 1247 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and 1248 * core_mmu_v7.c:mattr_to_texcb 1249 */ 1250 1251 switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { 1252 case TEE_MATTR_MEM_TYPE_DEV: 1253 case TEE_MATTR_MEM_TYPE_CACHED: 1254 return true; 1255 default: 1256 return false; 1257 } 1258 } 1259 1260 /* 1261 * test attributes of target physical buffer 1262 * 1263 * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). 1264 * 1265 */ 1266 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) 1267 { 1268 struct tee_mmap_region *map; 1269 1270 /* Empty buffers complies with anything */ 1271 if (len == 0) 1272 return true; 1273 1274 switch (attr) { 1275 case CORE_MEM_SEC: 1276 return pbuf_is_inside(secure_only, pbuf, len); 1277 case CORE_MEM_NON_SEC: 1278 return pbuf_is_inside(nsec_shared, pbuf, len) || 1279 pbuf_is_nsec_ddr(pbuf, len); 1280 case CORE_MEM_TEE_RAM: 1281 return core_is_buffer_inside(pbuf, len, TEE_RAM_START, 1282 TEE_RAM_PH_SIZE); 1283 case CORE_MEM_TA_RAM: 1284 return core_is_buffer_inside(pbuf, len, TA_RAM_START, 1285 TA_RAM_SIZE); 1286 #ifdef CFG_CORE_RESERVED_SHM 1287 case CORE_MEM_NSEC_SHM: 1288 return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, 1289 TEE_SHMEM_SIZE); 1290 #endif 1291 case CORE_MEM_SDP_MEM: 1292 return pbuf_is_sdp_mem(pbuf, len); 1293 case CORE_MEM_CACHED: 1294 map = find_map_by_pa(pbuf); 1295 if (!map || !pbuf_inside_map_area(pbuf, len, map)) 1296 return false; 1297 return map->attr >> TEE_MATTR_MEM_TYPE_SHIFT == 1298 TEE_MATTR_MEM_TYPE_CACHED; 1299 default: 1300 return false; 1301 } 1302 } 1303 1304 /* test attributes of target virtual buffer (in core mapping) */ 1305 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) 1306 { 1307 paddr_t p; 1308 1309 /* Empty buffers complies with anything */ 1310 if (len == 0) 1311 return true; 1312 1313 p = virt_to_phys((void *)vbuf); 1314 if (!p) 1315 return false; 1316 1317 return core_pbuf_is(attr, p, len); 1318 } 1319 1320 /* core_va2pa - teecore exported service */ 1321 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) 1322 { 1323 struct tee_mmap_region *map; 1324 1325 map = find_map_by_va(va); 1326 if (!va_is_in_map(map, (vaddr_t)va)) 1327 return -1; 1328 1329 /* 1330 * We can calculate PA for static map. Virtual address ranges 1331 * reserved to core dynamic mapping return a 'match' (return 0;) 1332 * together with an invalid null physical address. 1333 */ 1334 if (map->pa) 1335 *pa = map->pa + (vaddr_t)va - map->va; 1336 else 1337 *pa = 0; 1338 1339 return 0; 1340 } 1341 1342 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) 1343 { 1344 if (!pa_is_in_map(map, pa, len)) 1345 return NULL; 1346 1347 return (void *)(vaddr_t)(map->va + pa - map->pa); 1348 } 1349 1350 /* 1351 * teecore gets some memory area definitions 1352 */ 1353 void core_mmu_get_mem_by_type(unsigned int type, vaddr_t *s, vaddr_t *e) 1354 { 1355 struct tee_mmap_region *map = find_map_by_type(type); 1356 1357 if (map) { 1358 *s = map->va; 1359 *e = map->va + map->size; 1360 } else { 1361 *s = 0; 1362 *e = 0; 1363 } 1364 } 1365 1366 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) 1367 { 1368 struct tee_mmap_region *map = find_map_by_pa(pa); 1369 1370 if (!map) 1371 return MEM_AREA_MAXTYPE; 1372 return map->type; 1373 } 1374 1375 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1376 paddr_t pa, uint32_t attr) 1377 { 1378 assert(idx < tbl_info->num_entries); 1379 core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, 1380 idx, pa, attr); 1381 } 1382 1383 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1384 paddr_t *pa, uint32_t *attr) 1385 { 1386 assert(idx < tbl_info->num_entries); 1387 core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, 1388 idx, pa, attr); 1389 } 1390 1391 static void clear_region(struct core_mmu_table_info *tbl_info, 1392 struct tee_mmap_region *region) 1393 { 1394 unsigned int end = 0; 1395 unsigned int idx = 0; 1396 1397 /* va, len and pa should be block aligned */ 1398 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1399 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1400 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1401 1402 idx = core_mmu_va2idx(tbl_info, region->va); 1403 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1404 1405 while (idx < end) { 1406 core_mmu_set_entry(tbl_info, idx, 0, 0); 1407 idx++; 1408 } 1409 } 1410 1411 static void set_region(struct core_mmu_table_info *tbl_info, 1412 struct tee_mmap_region *region) 1413 { 1414 unsigned int end; 1415 unsigned int idx; 1416 paddr_t pa; 1417 1418 /* va, len and pa should be block aligned */ 1419 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1420 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1421 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1422 1423 idx = core_mmu_va2idx(tbl_info, region->va); 1424 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1425 pa = region->pa; 1426 1427 while (idx < end) { 1428 core_mmu_set_entry(tbl_info, idx, pa, region->attr); 1429 idx++; 1430 pa += BIT64(tbl_info->shift); 1431 } 1432 } 1433 1434 static void set_pg_region(struct core_mmu_table_info *dir_info, 1435 struct vm_region *region, struct pgt **pgt, 1436 struct core_mmu_table_info *pg_info) 1437 { 1438 struct tee_mmap_region r = { 1439 .va = region->va, 1440 .size = region->size, 1441 .attr = region->attr, 1442 }; 1443 vaddr_t end = r.va + r.size; 1444 uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; 1445 1446 while (r.va < end) { 1447 if (!pg_info->table || 1448 r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { 1449 /* 1450 * We're assigning a new translation table. 1451 */ 1452 unsigned int idx; 1453 1454 /* Virtual addresses must grow */ 1455 assert(r.va > pg_info->va_base); 1456 1457 idx = core_mmu_va2idx(dir_info, r.va); 1458 pg_info->va_base = core_mmu_idx2va(dir_info, idx); 1459 1460 #ifdef CFG_PAGED_USER_TA 1461 /* 1462 * Advance pgt to va_base, note that we may need to 1463 * skip multiple page tables if there are large 1464 * holes in the vm map. 1465 */ 1466 while ((*pgt)->vabase < pg_info->va_base) { 1467 *pgt = SLIST_NEXT(*pgt, link); 1468 /* We should have allocated enough */ 1469 assert(*pgt); 1470 } 1471 assert((*pgt)->vabase == pg_info->va_base); 1472 pg_info->table = (*pgt)->tbl; 1473 #else 1474 assert(*pgt); /* We should have allocated enough */ 1475 pg_info->table = (*pgt)->tbl; 1476 *pgt = SLIST_NEXT(*pgt, link); 1477 #endif 1478 1479 core_mmu_set_entry(dir_info, idx, 1480 virt_to_phys(pg_info->table), 1481 pgt_attr); 1482 } 1483 1484 r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), 1485 end - r.va); 1486 1487 if (!mobj_is_paged(region->mobj)) { 1488 size_t granule = BIT(pg_info->shift); 1489 size_t offset = r.va - region->va + region->offset; 1490 1491 r.size = MIN(r.size, 1492 mobj_get_phys_granule(region->mobj)); 1493 r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); 1494 1495 if (mobj_get_pa(region->mobj, offset, granule, 1496 &r.pa) != TEE_SUCCESS) 1497 panic("Failed to get PA of unpaged mobj"); 1498 set_region(pg_info, &r); 1499 } 1500 r.va += r.size; 1501 } 1502 } 1503 1504 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, 1505 size_t size_left, paddr_t block_size, 1506 struct tee_mmap_region *mm __maybe_unused) 1507 { 1508 /* VA and PA are aligned to block size at current level */ 1509 if ((vaddr | paddr) & (block_size - 1)) 1510 return false; 1511 1512 /* Remainder fits into block at current level */ 1513 if (size_left < block_size) 1514 return false; 1515 1516 #ifdef CFG_WITH_PAGER 1517 /* 1518 * If pager is enabled, we need to map tee ram 1519 * regions with small pages only 1520 */ 1521 if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE) 1522 return false; 1523 #endif 1524 1525 return true; 1526 } 1527 1528 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) 1529 { 1530 struct core_mmu_table_info tbl_info; 1531 unsigned int idx; 1532 vaddr_t vaddr = mm->va; 1533 paddr_t paddr = mm->pa; 1534 ssize_t size_left = mm->size; 1535 unsigned int level; 1536 bool table_found; 1537 uint32_t old_attr; 1538 1539 assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); 1540 1541 while (size_left > 0) { 1542 level = CORE_MMU_BASE_TABLE_LEVEL; 1543 1544 while (true) { 1545 paddr_t block_size = 0; 1546 1547 assert(level <= CORE_MMU_PGDIR_LEVEL); 1548 1549 table_found = core_mmu_find_table(prtn, vaddr, level, 1550 &tbl_info); 1551 if (!table_found) 1552 panic("can't find table for mapping"); 1553 1554 block_size = BIT64(tbl_info.shift); 1555 1556 idx = core_mmu_va2idx(&tbl_info, vaddr); 1557 if (!can_map_at_level(paddr, vaddr, size_left, 1558 block_size, mm)) { 1559 bool secure = mm->attr & TEE_MATTR_SECURE; 1560 1561 /* 1562 * This part of the region can't be mapped at 1563 * this level. Need to go deeper. 1564 */ 1565 if (!core_mmu_entry_to_finer_grained(&tbl_info, 1566 idx, 1567 secure)) 1568 panic("Can't divide MMU entry"); 1569 level++; 1570 continue; 1571 } 1572 1573 /* We can map part of the region at current level */ 1574 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1575 if (old_attr) 1576 panic("Page is already mapped"); 1577 1578 core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr); 1579 paddr += block_size; 1580 vaddr += block_size; 1581 size_left -= block_size; 1582 1583 break; 1584 } 1585 } 1586 } 1587 1588 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 1589 enum teecore_memtypes memtype) 1590 { 1591 TEE_Result ret; 1592 struct core_mmu_table_info tbl_info; 1593 struct tee_mmap_region *mm; 1594 unsigned int idx; 1595 uint32_t old_attr; 1596 uint32_t exceptions; 1597 vaddr_t vaddr = vstart; 1598 size_t i; 1599 bool secure; 1600 1601 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1602 1603 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1604 1605 if (vaddr & SMALL_PAGE_MASK) 1606 return TEE_ERROR_BAD_PARAMETERS; 1607 1608 exceptions = mmu_lock(); 1609 1610 mm = find_map_by_va((void *)vaddr); 1611 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1612 panic("VA does not belong to any known mm region"); 1613 1614 if (!core_mmu_is_dynamic_vaspace(mm)) 1615 panic("Trying to map into static region"); 1616 1617 for (i = 0; i < num_pages; i++) { 1618 if (pages[i] & SMALL_PAGE_MASK) { 1619 ret = TEE_ERROR_BAD_PARAMETERS; 1620 goto err; 1621 } 1622 1623 while (true) { 1624 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1625 &tbl_info)) 1626 panic("Can't find pagetable for vaddr "); 1627 1628 idx = core_mmu_va2idx(&tbl_info, vaddr); 1629 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1630 break; 1631 1632 /* This is supertable. Need to divide it. */ 1633 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1634 secure)) 1635 panic("Failed to spread pgdir on small tables"); 1636 } 1637 1638 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1639 if (old_attr) 1640 panic("Page is already mapped"); 1641 1642 core_mmu_set_entry(&tbl_info, idx, pages[i], 1643 core_mmu_type_to_attr(memtype)); 1644 vaddr += SMALL_PAGE_SIZE; 1645 } 1646 1647 /* 1648 * Make sure all the changes to translation tables are visible 1649 * before returning. TLB doesn't need to be invalidated as we are 1650 * guaranteed that there's no valid mapping in this range. 1651 */ 1652 core_mmu_table_write_barrier(); 1653 mmu_unlock(exceptions); 1654 1655 return TEE_SUCCESS; 1656 err: 1657 mmu_unlock(exceptions); 1658 1659 if (i) 1660 core_mmu_unmap_pages(vstart, i); 1661 1662 return ret; 1663 } 1664 1665 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 1666 size_t num_pages, 1667 enum teecore_memtypes memtype) 1668 { 1669 struct core_mmu_table_info tbl_info = { }; 1670 struct tee_mmap_region *mm = NULL; 1671 unsigned int idx = 0; 1672 uint32_t old_attr = 0; 1673 uint32_t exceptions = 0; 1674 vaddr_t vaddr = vstart; 1675 paddr_t paddr = pstart; 1676 size_t i = 0; 1677 bool secure = false; 1678 1679 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1680 1681 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1682 1683 if ((vaddr | paddr) & SMALL_PAGE_MASK) 1684 return TEE_ERROR_BAD_PARAMETERS; 1685 1686 exceptions = mmu_lock(); 1687 1688 mm = find_map_by_va((void *)vaddr); 1689 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1690 panic("VA does not belong to any known mm region"); 1691 1692 if (!core_mmu_is_dynamic_vaspace(mm)) 1693 panic("Trying to map into static region"); 1694 1695 for (i = 0; i < num_pages; i++) { 1696 while (true) { 1697 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1698 &tbl_info)) 1699 panic("Can't find pagetable for vaddr "); 1700 1701 idx = core_mmu_va2idx(&tbl_info, vaddr); 1702 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1703 break; 1704 1705 /* This is supertable. Need to divide it. */ 1706 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1707 secure)) 1708 panic("Failed to spread pgdir on small tables"); 1709 } 1710 1711 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1712 if (old_attr) 1713 panic("Page is already mapped"); 1714 1715 core_mmu_set_entry(&tbl_info, idx, paddr, 1716 core_mmu_type_to_attr(memtype)); 1717 paddr += SMALL_PAGE_SIZE; 1718 vaddr += SMALL_PAGE_SIZE; 1719 } 1720 1721 /* 1722 * Make sure all the changes to translation tables are visible 1723 * before returning. TLB doesn't need to be invalidated as we are 1724 * guaranteed that there's no valid mapping in this range. 1725 */ 1726 core_mmu_table_write_barrier(); 1727 mmu_unlock(exceptions); 1728 1729 return TEE_SUCCESS; 1730 } 1731 1732 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) 1733 { 1734 struct core_mmu_table_info tbl_info; 1735 struct tee_mmap_region *mm; 1736 size_t i; 1737 unsigned int idx; 1738 uint32_t exceptions; 1739 1740 exceptions = mmu_lock(); 1741 1742 mm = find_map_by_va((void *)vstart); 1743 if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) 1744 panic("VA does not belong to any known mm region"); 1745 1746 if (!core_mmu_is_dynamic_vaspace(mm)) 1747 panic("Trying to unmap static region"); 1748 1749 for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { 1750 if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) 1751 panic("Can't find pagetable"); 1752 1753 if (tbl_info.shift != SMALL_PAGE_SHIFT) 1754 panic("Invalid pagetable level"); 1755 1756 idx = core_mmu_va2idx(&tbl_info, vstart); 1757 core_mmu_set_entry(&tbl_info, idx, 0, 0); 1758 } 1759 tlbi_all(); 1760 1761 mmu_unlock(exceptions); 1762 } 1763 1764 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 1765 struct user_mode_ctx *uctx) 1766 { 1767 struct core_mmu_table_info pg_info = { }; 1768 struct pgt_cache *pgt_cache = &thread_get_tsd()->pgt_cache; 1769 struct pgt *pgt = NULL; 1770 struct vm_region *r = NULL; 1771 struct vm_region *r_last = NULL; 1772 1773 /* Find the first and last valid entry */ 1774 r = TAILQ_FIRST(&uctx->vm_info.regions); 1775 if (!r) 1776 return; /* Nothing to map */ 1777 r_last = TAILQ_LAST(&uctx->vm_info.regions, vm_region_head); 1778 1779 /* 1780 * Allocate all page tables in advance. 1781 */ 1782 pgt_alloc(pgt_cache, uctx->ts_ctx, r->va, 1783 r_last->va + r_last->size - 1); 1784 pgt = SLIST_FIRST(pgt_cache); 1785 1786 core_mmu_set_info_table(&pg_info, dir_info->level + 1, 0, NULL); 1787 1788 TAILQ_FOREACH(r, &uctx->vm_info.regions, link) 1789 set_pg_region(dir_info, r, &pgt, &pg_info); 1790 } 1791 1792 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 1793 size_t len) 1794 { 1795 struct core_mmu_table_info tbl_info = { }; 1796 struct tee_mmap_region *res_map = NULL; 1797 struct tee_mmap_region *map = NULL; 1798 paddr_t pa = virt_to_phys(addr); 1799 size_t granule = 0; 1800 ptrdiff_t i = 0; 1801 paddr_t p = 0; 1802 size_t l = 0; 1803 1804 map = find_map_by_type_and_pa(type, pa, len); 1805 if (!map) 1806 return TEE_ERROR_GENERIC; 1807 1808 res_map = find_map_by_type(MEM_AREA_RES_VASPACE); 1809 if (!res_map) 1810 return TEE_ERROR_GENERIC; 1811 if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) 1812 return TEE_ERROR_GENERIC; 1813 granule = BIT(tbl_info.shift); 1814 1815 if (map < static_memory_map || 1816 map >= static_memory_map + ARRAY_SIZE(static_memory_map)) 1817 return TEE_ERROR_GENERIC; 1818 i = map - static_memory_map; 1819 1820 /* Check that we have a full match */ 1821 p = ROUNDDOWN(pa, granule); 1822 l = ROUNDUP(len + pa - p, granule); 1823 if (map->pa != p || map->size != l) 1824 return TEE_ERROR_GENERIC; 1825 1826 clear_region(&tbl_info, map); 1827 tlbi_all(); 1828 1829 /* If possible remove the va range from res_map */ 1830 if (res_map->va - map->size == map->va) { 1831 res_map->va -= map->size; 1832 res_map->size += map->size; 1833 } 1834 1835 /* Remove the entry. */ 1836 memmove(map, map + 1, 1837 (ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map)); 1838 1839 /* Clear the last new entry in case it was used */ 1840 memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1, 1841 0, sizeof(*map)); 1842 1843 return TEE_SUCCESS; 1844 } 1845 1846 struct tee_mmap_region * 1847 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) 1848 { 1849 struct tee_mmap_region *map = NULL; 1850 struct tee_mmap_region *map_found = NULL; 1851 1852 if (!len) 1853 return NULL; 1854 1855 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 1856 if (map->type != type) 1857 continue; 1858 1859 if (map_found) 1860 return NULL; 1861 1862 map_found = map; 1863 } 1864 1865 if (!map_found || map_found->size < len) 1866 return NULL; 1867 1868 return map_found; 1869 } 1870 1871 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) 1872 { 1873 struct core_mmu_table_info tbl_info; 1874 struct tee_mmap_region *map; 1875 size_t n; 1876 size_t granule; 1877 paddr_t p; 1878 size_t l; 1879 1880 if (!len) 1881 return NULL; 1882 1883 if (!core_mmu_check_end_pa(addr, len)) 1884 return NULL; 1885 1886 /* Check if the memory is already mapped */ 1887 map = find_map_by_type_and_pa(type, addr, len); 1888 if (map && pbuf_inside_map_area(addr, len, map)) 1889 return (void *)(vaddr_t)(map->va + addr - map->pa); 1890 1891 /* Find the reserved va space used for late mappings */ 1892 map = find_map_by_type(MEM_AREA_RES_VASPACE); 1893 if (!map) 1894 return NULL; 1895 1896 if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) 1897 return NULL; 1898 1899 granule = BIT64(tbl_info.shift); 1900 p = ROUNDDOWN(addr, granule); 1901 l = ROUNDUP(len + addr - p, granule); 1902 1903 /* Ban overflowing virtual addresses */ 1904 if (map->size < l) 1905 return NULL; 1906 1907 /* 1908 * Something is wrong, we can't fit the va range into the selected 1909 * table. The reserved va range is possibly missaligned with 1910 * granule. 1911 */ 1912 if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) 1913 return NULL; 1914 1915 /* Find end of the memory map */ 1916 n = 0; 1917 while (!core_mmap_is_end_of_table(static_memory_map + n)) 1918 n++; 1919 1920 if (n < (ARRAY_SIZE(static_memory_map) - 1)) { 1921 /* There's room for another entry */ 1922 static_memory_map[n].va = map->va; 1923 static_memory_map[n].size = l; 1924 static_memory_map[n + 1].type = MEM_AREA_END; 1925 map->va += l; 1926 map->size -= l; 1927 map = static_memory_map + n; 1928 } else { 1929 /* 1930 * There isn't room for another entry, steal the reserved 1931 * entry as it's not useful for anything else any longer. 1932 */ 1933 map->size = l; 1934 } 1935 map->type = type; 1936 map->region_size = granule; 1937 map->attr = core_mmu_type_to_attr(type); 1938 map->pa = p; 1939 1940 set_region(&tbl_info, map); 1941 1942 /* Make sure the new entry is visible before continuing. */ 1943 core_mmu_table_write_barrier(); 1944 1945 return (void *)(vaddr_t)(map->va + addr - map->pa); 1946 } 1947 1948 #ifdef CFG_WITH_PAGER 1949 static vaddr_t get_linear_map_end(void) 1950 { 1951 /* this is synced with the generic linker file kern.ld.S */ 1952 return (vaddr_t)__heap2_end; 1953 } 1954 #endif 1955 1956 #if defined(CFG_TEE_CORE_DEBUG) 1957 static void check_pa_matches_va(void *va, paddr_t pa) 1958 { 1959 TEE_Result res = TEE_ERROR_GENERIC; 1960 vaddr_t v = (vaddr_t)va; 1961 paddr_t p = 0; 1962 struct core_mmu_table_info ti __maybe_unused = { }; 1963 1964 if (core_mmu_user_va_range_is_defined()) { 1965 vaddr_t user_va_base = 0; 1966 size_t user_va_size = 0; 1967 1968 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 1969 if (v >= user_va_base && 1970 v <= (user_va_base - 1 + user_va_size)) { 1971 if (!core_mmu_user_mapping_is_active()) { 1972 if (pa) 1973 panic("issue in linear address space"); 1974 return; 1975 } 1976 1977 res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), 1978 va, &p); 1979 if (res == TEE_ERROR_NOT_SUPPORTED) 1980 return; 1981 if (res == TEE_SUCCESS && pa != p) 1982 panic("bad pa"); 1983 if (res != TEE_SUCCESS && pa) 1984 panic("false pa"); 1985 return; 1986 } 1987 } 1988 #ifdef CFG_WITH_PAGER 1989 if (is_unpaged(va)) { 1990 if (v - boot_mmu_config.load_offset != pa) 1991 panic("issue in linear address space"); 1992 return; 1993 } 1994 1995 if (tee_pager_get_table_info(v, &ti)) { 1996 uint32_t a; 1997 1998 /* 1999 * Lookups in the page table managed by the pager is 2000 * dangerous for addresses in the paged area as those pages 2001 * changes all the time. But some ranges are safe, 2002 * rw-locked areas when the page is populated for instance. 2003 */ 2004 core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); 2005 if (a & TEE_MATTR_VALID_BLOCK) { 2006 paddr_t mask = BIT64(ti.shift) - 1; 2007 2008 p |= v & mask; 2009 if (pa != p) 2010 panic(); 2011 } else { 2012 if (pa) 2013 panic(); 2014 } 2015 return; 2016 } 2017 #endif 2018 2019 if (!core_va2pa_helper(va, &p)) { 2020 /* Verfiy only the static mapping (case non null phys addr) */ 2021 if (p && pa != p) { 2022 DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, 2023 va, p, pa); 2024 panic(); 2025 } 2026 } else { 2027 if (pa) { 2028 DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); 2029 panic(); 2030 } 2031 } 2032 } 2033 #else 2034 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) 2035 { 2036 } 2037 #endif 2038 2039 paddr_t virt_to_phys(void *va) 2040 { 2041 paddr_t pa = 0; 2042 2043 if (!arch_va2pa_helper(va, &pa)) 2044 pa = 0; 2045 check_pa_matches_va(va, pa); 2046 return pa; 2047 } 2048 2049 #if defined(CFG_TEE_CORE_DEBUG) 2050 static void check_va_matches_pa(paddr_t pa, void *va) 2051 { 2052 paddr_t p = 0; 2053 2054 if (!va) 2055 return; 2056 2057 p = virt_to_phys(va); 2058 if (p != pa) { 2059 DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); 2060 panic(); 2061 } 2062 } 2063 #else 2064 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) 2065 { 2066 } 2067 #endif 2068 2069 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) 2070 { 2071 if (!core_mmu_user_mapping_is_active()) 2072 return NULL; 2073 2074 return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); 2075 } 2076 2077 #ifdef CFG_WITH_PAGER 2078 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2079 { 2080 paddr_t end_pa = 0; 2081 2082 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 2083 return NULL; 2084 2085 if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end()) { 2086 if (end_pa > get_linear_map_end()) 2087 return NULL; 2088 return (void *)(vaddr_t)(pa + boot_mmu_config.load_offset); 2089 } 2090 2091 return tee_pager_phys_to_virt(pa, len); 2092 } 2093 #else 2094 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2095 { 2096 struct tee_mmap_region *mmap = NULL; 2097 2098 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); 2099 if (!mmap) 2100 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); 2101 if (!mmap) 2102 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); 2103 if (!mmap) 2104 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); 2105 if (!mmap) 2106 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); 2107 if (!mmap) 2108 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); 2109 /* 2110 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only 2111 * used with pager and not needed here. 2112 */ 2113 return map_pa2va(mmap, pa, len); 2114 } 2115 #endif 2116 2117 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) 2118 { 2119 void *va = NULL; 2120 2121 switch (m) { 2122 case MEM_AREA_TS_VASPACE: 2123 va = phys_to_virt_ts_vaspace(pa, len); 2124 break; 2125 case MEM_AREA_TEE_RAM: 2126 case MEM_AREA_TEE_RAM_RX: 2127 case MEM_AREA_TEE_RAM_RO: 2128 case MEM_AREA_TEE_RAM_RW: 2129 case MEM_AREA_NEX_RAM_RO: 2130 case MEM_AREA_NEX_RAM_RW: 2131 va = phys_to_virt_tee_ram(pa, len); 2132 break; 2133 case MEM_AREA_SHM_VASPACE: 2134 /* Find VA from PA in dynamic SHM is not yet supported */ 2135 va = NULL; 2136 break; 2137 default: 2138 va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); 2139 } 2140 if (m != MEM_AREA_SEC_RAM_OVERALL) 2141 check_va_matches_pa(pa, va); 2142 return va; 2143 } 2144 2145 void *phys_to_virt_io(paddr_t pa, size_t len) 2146 { 2147 struct tee_mmap_region *map = NULL; 2148 void *va = NULL; 2149 2150 map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); 2151 if (!map) 2152 map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); 2153 if (!map) 2154 return NULL; 2155 va = map_pa2va(map, pa, len); 2156 check_va_matches_pa(pa, va); 2157 return va; 2158 } 2159 2160 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) 2161 { 2162 if (cpu_mmu_enabled()) 2163 return (vaddr_t)phys_to_virt(pa, type, len); 2164 2165 return (vaddr_t)pa; 2166 } 2167 2168 #ifdef CFG_WITH_PAGER 2169 bool is_unpaged(void *va) 2170 { 2171 vaddr_t v = (vaddr_t)va; 2172 2173 return v >= VCORE_START_VA && v < get_linear_map_end(); 2174 } 2175 #else 2176 bool is_unpaged(void *va __unused) 2177 { 2178 return true; 2179 } 2180 #endif 2181 2182 void core_mmu_init_virtualization(void) 2183 { 2184 virt_init_memory(static_memory_map); 2185 } 2186 2187 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) 2188 { 2189 assert(p->pa); 2190 if (cpu_mmu_enabled()) { 2191 if (!p->va) 2192 p->va = (vaddr_t)phys_to_virt_io(p->pa, len); 2193 assert(p->va); 2194 return p->va; 2195 } 2196 return p->pa; 2197 } 2198 2199 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) 2200 { 2201 assert(p->pa); 2202 if (cpu_mmu_enabled()) { 2203 if (!p->va) 2204 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, 2205 len); 2206 assert(p->va); 2207 return p->va; 2208 } 2209 return p->pa; 2210 } 2211 2212 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) 2213 { 2214 assert(p->pa); 2215 if (cpu_mmu_enabled()) { 2216 if (!p->va) 2217 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, 2218 len); 2219 assert(p->va); 2220 return p->va; 2221 } 2222 return p->pa; 2223 } 2224 2225 #ifdef CFG_CORE_RESERVED_SHM 2226 static TEE_Result teecore_init_pub_ram(void) 2227 { 2228 vaddr_t s = 0; 2229 vaddr_t e = 0; 2230 2231 /* get virtual addr/size of NSec shared mem allocated from teecore */ 2232 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); 2233 2234 if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) 2235 panic("invalid PUB RAM"); 2236 2237 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2238 if (!tee_vbuf_is_non_sec(s, e - s)) 2239 panic("PUB RAM is not non-secure"); 2240 2241 #ifdef CFG_PL310 2242 /* Allocate statically the l2cc mutex */ 2243 tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); 2244 s += sizeof(uint32_t); /* size of a pl310 mutex */ 2245 s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ 2246 #endif 2247 2248 default_nsec_shm_paddr = virt_to_phys((void *)s); 2249 default_nsec_shm_size = e - s; 2250 2251 return TEE_SUCCESS; 2252 } 2253 early_init(teecore_init_pub_ram); 2254 #endif /*CFG_CORE_RESERVED_SHM*/ 2255 2256 void core_mmu_init_ta_ram(void) 2257 { 2258 vaddr_t s = 0; 2259 vaddr_t e = 0; 2260 paddr_t ps = 0; 2261 size_t size = 0; 2262 2263 /* 2264 * Get virtual addr/size of RAM where TA are loaded/executedNSec 2265 * shared mem allocated from teecore. 2266 */ 2267 if (IS_ENABLED(CFG_VIRTUALIZATION)) 2268 virt_get_ta_ram(&s, &e); 2269 else 2270 core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e); 2271 2272 ps = virt_to_phys((void *)s); 2273 size = e - s; 2274 2275 if (!ps || (ps & CORE_MMU_USER_CODE_MASK) || 2276 !size || (size & CORE_MMU_USER_CODE_MASK)) 2277 panic("invalid TA RAM"); 2278 2279 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2280 if (!tee_pbuf_is_sec(ps, size)) 2281 panic("TA RAM is not secure"); 2282 2283 if (!tee_mm_is_empty(&tee_mm_sec_ddr)) 2284 panic("TA RAM pool is not empty"); 2285 2286 /* remove previous config and init TA ddr memory pool */ 2287 tee_mm_final(&tee_mm_sec_ddr); 2288 tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT, 2289 TEE_MM_POOL_NO_FLAGS); 2290 } 2291