xref: /optee_os/core/mm/core_mmu.c (revision 8b427282e7479226409b14fdcb24edb7be51c7ee)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  */
6 
7 #include <assert.h>
8 #include <config.h>
9 #include <kernel/boot.h>
10 #include <kernel/linker.h>
11 #include <kernel/panic.h>
12 #include <kernel/spinlock.h>
13 #include <kernel/tee_l2cc_mutex.h>
14 #include <kernel/tee_misc.h>
15 #include <kernel/tlb_helpers.h>
16 #include <kernel/user_mode_ctx.h>
17 #include <kernel/virtualization.h>
18 #include <mm/core_memprot.h>
19 #include <mm/core_mmu.h>
20 #include <mm/mobj.h>
21 #include <mm/pgt_cache.h>
22 #include <mm/tee_pager.h>
23 #include <mm/vm.h>
24 #include <platform_config.h>
25 #include <string.h>
26 #include <trace.h>
27 #include <util.h>
28 
29 #ifndef DEBUG_XLAT_TABLE
30 #define DEBUG_XLAT_TABLE 0
31 #endif
32 
33 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
34 
35 /*
36  * These variables are initialized before .bss is cleared. To avoid
37  * resetting them when .bss is cleared we're storing them in .data instead,
38  * even if they initially are zero.
39  */
40 
41 #ifdef CFG_CORE_RESERVED_SHM
42 /* Default NSec shared memory allocated from NSec world */
43 unsigned long default_nsec_shm_size __nex_bss;
44 unsigned long default_nsec_shm_paddr __nex_bss;
45 #endif
46 
47 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS
48 #ifdef CFG_CORE_ASLR
49 						+ 1
50 #endif
51 						+ 1] __nex_bss;
52 
53 /* Define the platform's memory layout. */
54 struct memaccess_area {
55 	paddr_t paddr;
56 	size_t size;
57 };
58 
59 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
60 
61 static struct memaccess_area secure_only[] __nex_data = {
62 #ifdef TRUSTED_SRAM_BASE
63 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
64 #endif
65 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
66 };
67 
68 static struct memaccess_area nsec_shared[] __nex_data = {
69 #ifdef CFG_CORE_RESERVED_SHM
70 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
71 #endif
72 };
73 
74 #if defined(CFG_SECURE_DATA_PATH)
75 #ifdef CFG_TEE_SDP_MEM_BASE
76 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
77 #endif
78 #ifdef TEE_SDP_TEST_MEM_BASE
79 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
80 #endif
81 #endif
82 
83 #ifdef CFG_CORE_RWDATA_NOEXEC
84 register_phys_mem_ul(MEM_AREA_TEE_RAM_RO, TEE_RAM_START,
85 		     VCORE_UNPG_RX_PA - TEE_RAM_START);
86 register_phys_mem_ul(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
87 		     VCORE_UNPG_RX_SZ_UNSAFE);
88 register_phys_mem_ul(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
89 		     VCORE_UNPG_RO_SZ_UNSAFE);
90 
91 #ifdef CFG_VIRTUALIZATION
92 register_phys_mem_ul(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
93 		     VCORE_UNPG_RW_SZ_UNSAFE);
94 register_phys_mem_ul(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
95 		     VCORE_NEX_RW_SZ_UNSAFE);
96 #else
97 register_phys_mem_ul(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
98 		     VCORE_UNPG_RW_SZ_UNSAFE);
99 #endif
100 
101 #ifdef CFG_WITH_PAGER
102 register_phys_mem_ul(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
103 		     VCORE_INIT_RX_SZ_UNSAFE);
104 register_phys_mem_ul(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
105 		     VCORE_INIT_RO_SZ_UNSAFE);
106 #endif /*CFG_WITH_PAGER*/
107 #else /*!CFG_CORE_RWDATA_NOEXEC*/
108 register_phys_mem(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
109 #endif /*!CFG_CORE_RWDATA_NOEXEC*/
110 
111 #ifdef CFG_VIRTUALIZATION
112 register_phys_mem(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
113 		  TRUSTED_DRAM_SIZE);
114 #endif
115 
116 #if defined(CFG_CORE_SANITIZE_KADDRESS) && defined(CFG_WITH_PAGER)
117 /* Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is disabled */
118 register_phys_mem_ul(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
119 #endif
120 
121 #ifndef CFG_VIRTUALIZATION
122 /* Every guest will have own TA RAM if virtualization support is enabled */
123 register_phys_mem(MEM_AREA_TA_RAM, TA_RAM_START, TA_RAM_SIZE);
124 #endif
125 #ifdef CFG_CORE_RESERVED_SHM
126 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
127 #endif
128 
129 static unsigned int mmu_spinlock;
130 
131 static uint32_t mmu_lock(void)
132 {
133 	return cpu_spin_lock_xsave(&mmu_spinlock);
134 }
135 
136 static void mmu_unlock(uint32_t exceptions)
137 {
138 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
139 }
140 
141 static struct tee_mmap_region *get_memory_map(void)
142 {
143 	if (IS_ENABLED(CFG_VIRTUALIZATION)) {
144 		struct tee_mmap_region *map = virt_get_memory_map();
145 
146 		if (map)
147 			return map;
148 	}
149 
150 	return static_memory_map;
151 }
152 
153 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
154 			     paddr_t pa, size_t size)
155 {
156 	size_t n;
157 
158 	for (n = 0; n < alen; n++)
159 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
160 			return true;
161 	return false;
162 }
163 
164 #define pbuf_intersects(a, pa, size) \
165 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
166 
167 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
168 			    paddr_t pa, size_t size)
169 {
170 	size_t n;
171 
172 	for (n = 0; n < alen; n++)
173 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
174 			return true;
175 	return false;
176 }
177 
178 #define pbuf_is_inside(a, pa, size) \
179 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
180 
181 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
182 {
183 	paddr_t end_pa = 0;
184 
185 	if (!map)
186 		return false;
187 
188 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
189 		return false;
190 
191 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
192 }
193 
194 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
195 {
196 	if (!map)
197 		return false;
198 	return (va >= map->va && va <= (map->va + map->size - 1));
199 }
200 
201 /* check if target buffer fits in a core default map area */
202 static bool pbuf_inside_map_area(unsigned long p, size_t l,
203 				 struct tee_mmap_region *map)
204 {
205 	return core_is_buffer_inside(p, l, map->pa, map->size);
206 }
207 
208 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
209 {
210 	struct tee_mmap_region *map;
211 
212 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++)
213 		if (map->type == type)
214 			return map;
215 	return NULL;
216 }
217 
218 static struct tee_mmap_region *
219 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
220 {
221 	struct tee_mmap_region *map;
222 
223 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
224 		if (map->type != type)
225 			continue;
226 		if (pa_is_in_map(map, pa, len))
227 			return map;
228 	}
229 	return NULL;
230 }
231 
232 static struct tee_mmap_region *find_map_by_va(void *va)
233 {
234 	struct tee_mmap_region *map = get_memory_map();
235 	unsigned long a = (unsigned long)va;
236 
237 	while (!core_mmap_is_end_of_table(map)) {
238 		if (a >= map->va && a <= (map->va - 1 + map->size))
239 			return map;
240 		map++;
241 	}
242 	return NULL;
243 }
244 
245 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
246 {
247 	struct tee_mmap_region *map = get_memory_map();
248 
249 	while (!core_mmap_is_end_of_table(map)) {
250 		if (pa >= map->pa && pa <= (map->pa + map->size - 1))
251 			return map;
252 		map++;
253 	}
254 	return NULL;
255 }
256 
257 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
258 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
259 				const struct core_mmu_phys_mem *start,
260 				const struct core_mmu_phys_mem *end)
261 {
262 	const struct core_mmu_phys_mem *mem;
263 
264 	for (mem = start; mem < end; mem++) {
265 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
266 			return true;
267 	}
268 
269 	return false;
270 }
271 #endif
272 
273 #ifdef CFG_CORE_DYN_SHM
274 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
275 			       paddr_t pa, size_t size)
276 {
277 	struct core_mmu_phys_mem *m = *mem;
278 	size_t n = 0;
279 
280 	while (true) {
281 		if (n >= *nelems) {
282 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
283 			     pa, size);
284 			return;
285 		}
286 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
287 			break;
288 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
289 			panic();
290 		n++;
291 	}
292 
293 	if (pa == m[n].addr && size == m[n].size) {
294 		/* Remove this entry */
295 		(*nelems)--;
296 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
297 		m = nex_realloc(m, sizeof(*m) * *nelems);
298 		if (!m)
299 			panic();
300 		*mem = m;
301 	} else if (pa == m[n].addr) {
302 		m[n].addr += size;
303 		m[n].size -= size;
304 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
305 		m[n].size -= size;
306 	} else {
307 		/* Need to split the memory entry */
308 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
309 		if (!m)
310 			panic();
311 		*mem = m;
312 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
313 		(*nelems)++;
314 		m[n].size = pa - m[n].addr;
315 		m[n + 1].size -= size + m[n].size;
316 		m[n + 1].addr = pa + size;
317 	}
318 }
319 
320 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
321 				      size_t nelems,
322 				      struct tee_mmap_region *map)
323 {
324 	size_t n;
325 
326 	for (n = 0; n < nelems; n++) {
327 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
328 					    map->pa, map->size)) {
329 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
330 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
331 			     start[n].addr, start[n].size,
332 			     map->type, map->pa, map->size);
333 			panic();
334 		}
335 	}
336 }
337 
338 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
339 static size_t discovered_nsec_ddr_nelems __nex_bss;
340 
341 static int cmp_pmem_by_addr(const void *a, const void *b)
342 {
343 	const struct core_mmu_phys_mem *pmem_a = a;
344 	const struct core_mmu_phys_mem *pmem_b = b;
345 
346 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
347 }
348 
349 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
350 				      size_t nelems)
351 {
352 	struct core_mmu_phys_mem *m = start;
353 	size_t num_elems = nelems;
354 	struct tee_mmap_region *map = static_memory_map;
355 	const struct core_mmu_phys_mem __maybe_unused *pmem;
356 
357 	assert(!discovered_nsec_ddr_start);
358 	assert(m && num_elems);
359 
360 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
361 
362 	/*
363 	 * Non-secure shared memory and also secure data
364 	 * path memory are supposed to reside inside
365 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
366 	 * are used for a specific purpose make holes for
367 	 * those memory in the normal non-secure memory.
368 	 *
369 	 * This has to be done since for instance QEMU
370 	 * isn't aware of which memory range in the
371 	 * non-secure memory is used for NSEC_SHM.
372 	 */
373 
374 #ifdef CFG_SECURE_DATA_PATH
375 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
376 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
377 #endif
378 
379 	carve_out_phys_mem(&m, &num_elems, TEE_RAM_START, TEE_RAM_PH_SIZE);
380 	carve_out_phys_mem(&m, &num_elems, TA_RAM_START, TA_RAM_SIZE);
381 
382 	for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) {
383 		switch (map->type) {
384 		case MEM_AREA_NSEC_SHM:
385 			carve_out_phys_mem(&m, &num_elems, map->pa, map->size);
386 			break;
387 		case MEM_AREA_EXT_DT:
388 		case MEM_AREA_RES_VASPACE:
389 		case MEM_AREA_SHM_VASPACE:
390 		case MEM_AREA_TS_VASPACE:
391 		case MEM_AREA_PAGER_VASPACE:
392 			break;
393 		default:
394 			check_phys_mem_is_outside(m, num_elems, map);
395 		}
396 	}
397 
398 	discovered_nsec_ddr_start = m;
399 	discovered_nsec_ddr_nelems = num_elems;
400 
401 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
402 				   m[num_elems - 1].size))
403 		panic();
404 }
405 
406 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
407 				    const struct core_mmu_phys_mem **end)
408 {
409 	if (!discovered_nsec_ddr_start)
410 		return false;
411 
412 	*start = discovered_nsec_ddr_start;
413 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
414 
415 	return true;
416 }
417 
418 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
419 {
420 	const struct core_mmu_phys_mem *start;
421 	const struct core_mmu_phys_mem *end;
422 
423 	if (!get_discovered_nsec_ddr(&start, &end))
424 		return false;
425 
426 	return pbuf_is_special_mem(pbuf, len, start, end);
427 }
428 
429 bool core_mmu_nsec_ddr_is_defined(void)
430 {
431 	const struct core_mmu_phys_mem *start;
432 	const struct core_mmu_phys_mem *end;
433 
434 	if (!get_discovered_nsec_ddr(&start, &end))
435 		return false;
436 
437 	return start != end;
438 }
439 #else
440 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
441 {
442 	return false;
443 }
444 #endif /*CFG_CORE_DYN_SHM*/
445 
446 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
447 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
448 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
449 
450 #ifdef CFG_SECURE_DATA_PATH
451 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
452 {
453 	return pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
454 				   phys_sdp_mem_end);
455 }
456 
457 struct mobj **core_sdp_mem_create_mobjs(void)
458 {
459 	const struct core_mmu_phys_mem *mem;
460 	struct mobj **mobj_base;
461 	struct mobj **mobj;
462 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
463 
464 	/* SDP mobjs table must end with a NULL entry */
465 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
466 	if (!mobj_base)
467 		panic("Out of memory");
468 
469 	for (mem = phys_sdp_mem_begin, mobj = mobj_base;
470 	     mem < phys_sdp_mem_end; mem++, mobj++) {
471 		*mobj = mobj_phys_alloc(mem->addr, mem->size,
472 					TEE_MATTR_MEM_TYPE_CACHED,
473 					CORE_MEM_SDP_MEM);
474 		if (!*mobj)
475 			panic("can't create SDP physical memory object");
476 	}
477 	return mobj_base;
478 }
479 
480 #else /* CFG_SECURE_DATA_PATH */
481 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
482 {
483 	return false;
484 }
485 
486 #endif /* CFG_SECURE_DATA_PATH */
487 
488 /* Check special memories comply with registered memories */
489 static void verify_special_mem_areas(struct tee_mmap_region *mem_map,
490 				     size_t len,
491 				     const struct core_mmu_phys_mem *start,
492 				     const struct core_mmu_phys_mem *end,
493 				     const char *area_name __maybe_unused)
494 {
495 	const struct core_mmu_phys_mem *mem;
496 	const struct core_mmu_phys_mem *mem2;
497 	struct tee_mmap_region *mmap;
498 	size_t n;
499 
500 	if (start == end) {
501 		DMSG("No %s memory area defined", area_name);
502 		return;
503 	}
504 
505 	for (mem = start; mem < end; mem++)
506 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
507 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
508 
509 	/* Check memories do not intersect each other */
510 	for (mem = start; mem + 1 < end; mem++) {
511 		for (mem2 = mem + 1; mem2 < end; mem2++) {
512 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
513 						     mem->addr, mem->size)) {
514 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
515 						   mem->addr, mem->size);
516 				panic("Special memory intersection");
517 			}
518 		}
519 	}
520 
521 	/*
522 	 * Check memories do not intersect any mapped memory.
523 	 * This is called before reserved VA space is loaded in mem_map.
524 	 */
525 	for (mem = start; mem < end; mem++) {
526 		for (mmap = mem_map, n = 0; n < len; mmap++, n++) {
527 			if (core_is_buffer_intersect(mem->addr, mem->size,
528 						     mmap->pa, mmap->size)) {
529 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
530 						   mmap->pa, mmap->size);
531 				panic("Special memory intersection");
532 			}
533 		}
534 	}
535 }
536 
537 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems,
538 			 const struct core_mmu_phys_mem *mem, size_t *last)
539 {
540 	size_t n = 0;
541 	paddr_t pa;
542 	paddr_size_t size;
543 
544 	/*
545 	 * If some ranges of memory of the same type do overlap
546 	 * each others they are coalesced into one entry. To help this
547 	 * added entries are sorted by increasing physical.
548 	 *
549 	 * Note that it's valid to have the same physical memory as several
550 	 * different memory types, for instance the same device memory
551 	 * mapped as both secure and non-secure. This will probably not
552 	 * happen often in practice.
553 	 */
554 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
555 	     mem->name, teecore_memtype_name(mem->type), mem->addr, mem->size);
556 	while (true) {
557 		if (n >= (num_elems - 1)) {
558 			EMSG("Out of entries (%zu) in memory_map", num_elems);
559 			panic();
560 		}
561 		if (n == *last)
562 			break;
563 		pa = memory_map[n].pa;
564 		size = memory_map[n].size;
565 		if (mem->type == memory_map[n].type &&
566 		    ((pa <= (mem->addr + (mem->size - 1))) &&
567 		    (mem->addr <= (pa + (size - 1))))) {
568 			DMSG("Physical mem map overlaps 0x%" PRIxPA, mem->addr);
569 			memory_map[n].pa = MIN(pa, mem->addr);
570 			memory_map[n].size = MAX(size, mem->size) +
571 					     (pa - memory_map[n].pa);
572 			return;
573 		}
574 		if (mem->type < memory_map[n].type ||
575 		    (mem->type == memory_map[n].type && mem->addr < pa))
576 			break; /* found the spot where to insert this memory */
577 		n++;
578 	}
579 
580 	memmove(memory_map + n + 1, memory_map + n,
581 		sizeof(struct tee_mmap_region) * (*last - n));
582 	(*last)++;
583 	memset(memory_map + n, 0, sizeof(memory_map[0]));
584 	memory_map[n].type = mem->type;
585 	memory_map[n].pa = mem->addr;
586 	memory_map[n].size = mem->size;
587 }
588 
589 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems,
590 			 enum teecore_memtypes type, size_t size, size_t *last)
591 {
592 	size_t n = 0;
593 
594 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
595 	while (true) {
596 		if (n >= (num_elems - 1)) {
597 			EMSG("Out of entries (%zu) in memory_map", num_elems);
598 			panic();
599 		}
600 		if (n == *last)
601 			break;
602 		if (type < memory_map[n].type)
603 			break;
604 		n++;
605 	}
606 
607 	memmove(memory_map + n + 1, memory_map + n,
608 		sizeof(struct tee_mmap_region) * (*last - n));
609 	(*last)++;
610 	memset(memory_map + n, 0, sizeof(memory_map[0]));
611 	memory_map[n].type = type;
612 	memory_map[n].size = size;
613 }
614 
615 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
616 {
617 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
618 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
619 				TEE_MATTR_MEM_TYPE_SHIFT;
620 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
621 				  TEE_MATTR_MEM_TYPE_SHIFT;
622 
623 	switch (t) {
624 	case MEM_AREA_TEE_RAM:
625 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | cached;
626 	case MEM_AREA_TEE_RAM_RX:
627 	case MEM_AREA_INIT_RAM_RX:
628 	case MEM_AREA_IDENTITY_MAP_RX:
629 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | cached;
630 	case MEM_AREA_TEE_RAM_RO:
631 	case MEM_AREA_INIT_RAM_RO:
632 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
633 	case MEM_AREA_TEE_RAM_RW:
634 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
635 	case MEM_AREA_NEX_RAM_RW:
636 	case MEM_AREA_TEE_ASAN:
637 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
638 	case MEM_AREA_TEE_COHERENT:
639 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
640 	case MEM_AREA_TA_RAM:
641 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
642 	case MEM_AREA_NSEC_SHM:
643 		return attr | TEE_MATTR_PRW | cached;
644 	case MEM_AREA_EXT_DT:
645 	case MEM_AREA_IO_NSEC:
646 		return attr | TEE_MATTR_PRW | noncache;
647 	case MEM_AREA_IO_SEC:
648 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
649 	case MEM_AREA_RAM_NSEC:
650 		return attr | TEE_MATTR_PRW | cached;
651 	case MEM_AREA_RAM_SEC:
652 	case MEM_AREA_SEC_RAM_OVERALL:
653 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
654 	case MEM_AREA_RES_VASPACE:
655 	case MEM_AREA_SHM_VASPACE:
656 		return 0;
657 	case MEM_AREA_PAGER_VASPACE:
658 		return TEE_MATTR_SECURE;
659 	default:
660 		panic("invalid type");
661 	}
662 }
663 
664 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
665 {
666 	switch (mm->type) {
667 	case MEM_AREA_TEE_RAM:
668 	case MEM_AREA_TEE_RAM_RX:
669 	case MEM_AREA_TEE_RAM_RO:
670 	case MEM_AREA_TEE_RAM_RW:
671 	case MEM_AREA_INIT_RAM_RX:
672 	case MEM_AREA_INIT_RAM_RO:
673 	case MEM_AREA_NEX_RAM_RW:
674 	case MEM_AREA_NEX_RAM_RO:
675 	case MEM_AREA_TEE_ASAN:
676 		return true;
677 	default:
678 		return false;
679 	}
680 }
681 
682 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
683 {
684 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
685 }
686 
687 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
688 {
689 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
690 }
691 
692 static int cmp_mmap_by_lower_va(const void *a, const void *b)
693 {
694 	const struct tee_mmap_region *mm_a = a;
695 	const struct tee_mmap_region *mm_b = b;
696 
697 	return CMP_TRILEAN(mm_a->va, mm_b->va);
698 }
699 
700 static void dump_mmap_table(struct tee_mmap_region *memory_map)
701 {
702 	struct tee_mmap_region *map;
703 
704 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
705 		vaddr_t __maybe_unused vstart;
706 
707 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
708 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
709 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
710 		     teecore_memtype_name(map->type), vstart,
711 		     vstart + map->size - 1, map->pa,
712 		     (paddr_t)(map->pa + map->size - 1), map->size,
713 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
714 	}
715 }
716 
717 #if DEBUG_XLAT_TABLE
718 
719 static void dump_xlat_table(vaddr_t va, unsigned int level)
720 {
721 	struct core_mmu_table_info tbl_info;
722 	unsigned int idx = 0;
723 	paddr_t pa;
724 	uint32_t attr;
725 
726 	core_mmu_find_table(NULL, va, level, &tbl_info);
727 	va = tbl_info.va_base;
728 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
729 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
730 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
731 			const char *security_bit = "";
732 
733 			if (core_mmu_entry_have_security_bit(attr)) {
734 				if (attr & TEE_MATTR_SECURE)
735 					security_bit = "S";
736 				else
737 					security_bit = "NS";
738 			}
739 
740 			if (attr & TEE_MATTR_TABLE) {
741 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
742 					" TBL:0x%010" PRIxPA " %s",
743 					level * 2, "", level, va, pa,
744 					security_bit);
745 				dump_xlat_table(va, level + 1);
746 			} else if (attr) {
747 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
748 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
749 					level * 2, "", level, va, pa,
750 					attr & (TEE_MATTR_MEM_TYPE_CACHED <<
751 					TEE_MATTR_MEM_TYPE_SHIFT) ? "MEM" :
752 					"DEV",
753 					attr & TEE_MATTR_PW ? "RW" : "RO",
754 					attr & TEE_MATTR_PX ? "X " : "XN",
755 					security_bit);
756 			} else {
757 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
758 					    " INVALID\n",
759 					    level * 2, "", level, va);
760 			}
761 		}
762 		va += BIT64(tbl_info.shift);
763 	}
764 }
765 
766 #else
767 
768 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
769 {
770 }
771 
772 #endif
773 
774 /*
775  * Reserves virtual memory space for pager usage.
776  *
777  * From the start of the first memory used by the link script +
778  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
779  * mapping for pager usage. This adds translation tables as needed for the
780  * pager to operate.
781  */
782 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems,
783 			      size_t *last)
784 {
785 	paddr_t begin = 0;
786 	paddr_t end = 0;
787 	size_t size = 0;
788 	size_t pos = 0;
789 	size_t n = 0;
790 
791 	if (*last >= (num_elems - 1)) {
792 		EMSG("Out of entries (%zu) in memory map", num_elems);
793 		panic();
794 	}
795 
796 	for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) {
797 		if (map_is_tee_ram(mmap + n)) {
798 			if (!begin)
799 				begin = mmap[n].pa;
800 			pos = n + 1;
801 		}
802 	}
803 
804 	end = mmap[pos - 1].pa + mmap[pos - 1].size;
805 	size = TEE_RAM_VA_SIZE - (end - begin);
806 	if (!size)
807 		return;
808 
809 	assert(pos <= *last);
810 	memmove(mmap + pos + 1, mmap + pos,
811 		sizeof(struct tee_mmap_region) * (*last - pos));
812 	(*last)++;
813 	memset(mmap + pos, 0, sizeof(mmap[0]));
814 	mmap[pos].type = MEM_AREA_PAGER_VASPACE;
815 	mmap[pos].va = 0;
816 	mmap[pos].size = size;
817 	mmap[pos].region_size = SMALL_PAGE_SIZE;
818 	mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE);
819 }
820 
821 static void check_sec_nsec_mem_config(void)
822 {
823 	size_t n = 0;
824 
825 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
826 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
827 				    secure_only[n].size))
828 			panic("Invalid memory access config: sec/nsec");
829 	}
830 }
831 
832 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map,
833 				 size_t num_elems)
834 {
835 	const struct core_mmu_phys_mem *mem = NULL;
836 	size_t last = 0;
837 
838 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
839 		struct core_mmu_phys_mem m = *mem;
840 
841 		/* Discard null size entries */
842 		if (!m.size)
843 			continue;
844 
845 		/* Only unmapped virtual range may have a null phys addr */
846 		assert(m.addr || !core_mmu_type_to_attr(m.type));
847 
848 		add_phys_mem(memory_map, num_elems, &m, &last);
849 	}
850 
851 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
852 		verify_special_mem_areas(memory_map, num_elems,
853 					 phys_sdp_mem_begin,
854 					 phys_sdp_mem_end, "SDP");
855 
856 	add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE,
857 		     CFG_RESERVED_VASPACE_SIZE, &last);
858 
859 	add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE,
860 		     SHM_VASPACE_SIZE, &last);
861 
862 	memory_map[last].type = MEM_AREA_END;
863 
864 	return last;
865 }
866 
867 static void assign_mem_granularity(struct tee_mmap_region *memory_map)
868 {
869 	struct tee_mmap_region *map = NULL;
870 
871 	/*
872 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
873 	 * SMALL_PAGE_SIZE.
874 	 */
875 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
876 		paddr_t mask = map->pa | map->size;
877 
878 		if (!(mask & CORE_MMU_PGDIR_MASK))
879 			map->region_size = CORE_MMU_PGDIR_SIZE;
880 		else if (!(mask & SMALL_PAGE_MASK))
881 			map->region_size = SMALL_PAGE_SIZE;
882 		else
883 			panic("Impossible memory alignment");
884 
885 		if (map_is_tee_ram(map))
886 			map->region_size = SMALL_PAGE_SIZE;
887 	}
888 }
889 
890 static bool assign_mem_va(vaddr_t tee_ram_va,
891 			  struct tee_mmap_region *memory_map)
892 {
893 	struct tee_mmap_region *map = NULL;
894 	vaddr_t va = tee_ram_va;
895 	bool va_is_secure = true;
896 
897 	/*
898 	 * Check that we're not overlapping with the user VA range.
899 	 */
900 	if (IS_ENABLED(CFG_WITH_LPAE)) {
901 		/*
902 		 * User VA range is supposed to be defined after these
903 		 * mappings have been established.
904 		 */
905 		assert(!core_mmu_user_va_range_is_defined());
906 	} else {
907 		vaddr_t user_va_base = 0;
908 		size_t user_va_size = 0;
909 
910 		assert(core_mmu_user_va_range_is_defined());
911 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
912 		if (tee_ram_va < (user_va_base + user_va_size))
913 			return false;
914 	}
915 
916 	/* Clear eventual previous assignments */
917 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
918 		map->va = 0;
919 
920 	/*
921 	 * TEE RAM regions are always aligned with region_size.
922 	 *
923 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
924 	 * since it handles virtual memory which covers the part of the ELF
925 	 * that cannot fit directly into memory.
926 	 */
927 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
928 		if (map_is_tee_ram(map) ||
929 		    map->type == MEM_AREA_PAGER_VASPACE) {
930 			assert(!(va & (map->region_size - 1)));
931 			assert(!(map->size & (map->region_size - 1)));
932 			map->va = va;
933 			if (ADD_OVERFLOW(va, map->size, &va))
934 				return false;
935 			if (va >= BIT64(core_mmu_get_va_width()))
936 				return false;
937 		}
938 	}
939 
940 	if (core_mmu_place_tee_ram_at_top(tee_ram_va)) {
941 		/*
942 		 * Map non-tee ram regions at addresses lower than the tee
943 		 * ram region.
944 		 */
945 		va = tee_ram_va;
946 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
947 			map->attr = core_mmu_type_to_attr(map->type);
948 			if (map->va)
949 				continue;
950 
951 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
952 			    va_is_secure != map_is_secure(map)) {
953 				va_is_secure = !va_is_secure;
954 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
955 			}
956 
957 			if (SUB_OVERFLOW(va, map->size, &va))
958 				return false;
959 			va = ROUNDDOWN(va, map->region_size);
960 			/*
961 			 * Make sure that va is aligned with pa for
962 			 * efficient pgdir mapping. Basically pa &
963 			 * pgdir_mask should be == va & pgdir_mask
964 			 */
965 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
966 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
967 					return false;
968 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
969 			}
970 			map->va = va;
971 		}
972 	} else {
973 		/*
974 		 * Map non-tee ram regions at addresses higher than the tee
975 		 * ram region.
976 		 */
977 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
978 			map->attr = core_mmu_type_to_attr(map->type);
979 			if (map->va)
980 				continue;
981 
982 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
983 			    va_is_secure != map_is_secure(map)) {
984 				va_is_secure = !va_is_secure;
985 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
986 						     &va))
987 					return false;
988 			}
989 
990 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
991 				return false;
992 			/*
993 			 * Make sure that va is aligned with pa for
994 			 * efficient pgdir mapping. Basically pa &
995 			 * pgdir_mask should be == va & pgdir_mask
996 			 */
997 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
998 				vaddr_t offs = (map->pa - va) &
999 					       CORE_MMU_PGDIR_MASK;
1000 
1001 				if (ADD_OVERFLOW(va, offs, &va))
1002 					return false;
1003 			}
1004 
1005 			map->va = va;
1006 			if (ADD_OVERFLOW(va, map->size, &va))
1007 				return false;
1008 			if (va >= BIT64(core_mmu_get_va_width()))
1009 				return false;
1010 		}
1011 	}
1012 
1013 	return true;
1014 }
1015 
1016 static int cmp_init_mem_map(const void *a, const void *b)
1017 {
1018 	const struct tee_mmap_region *mm_a = a;
1019 	const struct tee_mmap_region *mm_b = b;
1020 	int rc = 0;
1021 
1022 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1023 	if (!rc)
1024 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1025 	/*
1026 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1027 	 * the same level2 table. Hence sort secure mapping from non-secure
1028 	 * mapping.
1029 	 */
1030 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1031 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1032 
1033 	return rc;
1034 }
1035 
1036 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map,
1037 			       size_t num_elems, size_t *last,
1038 			       vaddr_t id_map_start, vaddr_t id_map_end)
1039 {
1040 	struct tee_mmap_region *map = NULL;
1041 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1042 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1043 	size_t len = end - start;
1044 
1045 	if (*last >= num_elems - 1) {
1046 		EMSG("Out of entries (%zu) in memory map", num_elems);
1047 		panic();
1048 	}
1049 
1050 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1051 		if (core_is_buffer_intersect(map->va, map->size, start, len))
1052 			return false;
1053 
1054 	*map = (struct tee_mmap_region){
1055 		.type = MEM_AREA_IDENTITY_MAP_RX,
1056 		/*
1057 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1058 		 * translation table, at the increased risk of clashes with
1059 		 * the rest of the memory map.
1060 		 */
1061 		.region_size = SMALL_PAGE_SIZE,
1062 		.pa = start,
1063 		.va = start,
1064 		.size = len,
1065 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1066 	};
1067 
1068 	(*last)++;
1069 
1070 	return true;
1071 }
1072 
1073 static unsigned long init_mem_map(struct tee_mmap_region *memory_map,
1074 				  size_t num_elems, unsigned long seed)
1075 {
1076 	/*
1077 	 * @id_map_start and @id_map_end describes a physical memory range
1078 	 * that must be mapped Read-Only eXecutable at identical virtual
1079 	 * addresses.
1080 	 */
1081 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1082 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1083 	unsigned long offs = 0;
1084 	size_t last = 0;
1085 
1086 	last = collect_mem_ranges(memory_map, num_elems);
1087 	assign_mem_granularity(memory_map);
1088 
1089 	/*
1090 	 * To ease mapping and lower use of xlat tables, sort mapping
1091 	 * description moving small-page regions after the pgdir regions.
1092 	 */
1093 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1094 	      cmp_init_mem_map);
1095 
1096 	add_pager_vaspace(memory_map, num_elems, &last);
1097 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1098 		vaddr_t base_addr = TEE_RAM_START + seed;
1099 		const unsigned int va_width = core_mmu_get_va_width();
1100 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1101 						   SMALL_PAGE_SHIFT);
1102 		vaddr_t ba = base_addr;
1103 		size_t n = 0;
1104 
1105 		for (n = 0; n < 3; n++) {
1106 			if (n)
1107 				ba = base_addr ^ BIT64(va_width - n);
1108 			ba &= va_mask;
1109 			if (assign_mem_va(ba, memory_map) &&
1110 			    mem_map_add_id_map(memory_map, num_elems, &last,
1111 					       id_map_start, id_map_end)) {
1112 				offs = ba - TEE_RAM_START;
1113 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1114 				     ba, offs);
1115 				goto out;
1116 			} else {
1117 				DMSG("Failed to map core at %#"PRIxVA, ba);
1118 			}
1119 		}
1120 		EMSG("Failed to map core with seed %#lx", seed);
1121 	}
1122 
1123 	if (!assign_mem_va(TEE_RAM_START, memory_map))
1124 		panic();
1125 
1126 out:
1127 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1128 	      cmp_mmap_by_lower_va);
1129 
1130 	dump_mmap_table(memory_map);
1131 
1132 	return offs;
1133 }
1134 
1135 static void check_mem_map(struct tee_mmap_region *map)
1136 {
1137 	struct tee_mmap_region *m = NULL;
1138 
1139 	for (m = map; !core_mmap_is_end_of_table(m); m++) {
1140 		switch (m->type) {
1141 		case MEM_AREA_TEE_RAM:
1142 		case MEM_AREA_TEE_RAM_RX:
1143 		case MEM_AREA_TEE_RAM_RO:
1144 		case MEM_AREA_TEE_RAM_RW:
1145 		case MEM_AREA_INIT_RAM_RX:
1146 		case MEM_AREA_INIT_RAM_RO:
1147 		case MEM_AREA_NEX_RAM_RW:
1148 		case MEM_AREA_NEX_RAM_RO:
1149 		case MEM_AREA_IDENTITY_MAP_RX:
1150 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1151 				panic("TEE_RAM can't fit in secure_only");
1152 			break;
1153 		case MEM_AREA_TA_RAM:
1154 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1155 				panic("TA_RAM can't fit in secure_only");
1156 			break;
1157 		case MEM_AREA_NSEC_SHM:
1158 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1159 				panic("NS_SHM can't fit in nsec_shared");
1160 			break;
1161 		case MEM_AREA_SEC_RAM_OVERALL:
1162 		case MEM_AREA_TEE_COHERENT:
1163 		case MEM_AREA_TEE_ASAN:
1164 		case MEM_AREA_IO_SEC:
1165 		case MEM_AREA_IO_NSEC:
1166 		case MEM_AREA_EXT_DT:
1167 		case MEM_AREA_RAM_SEC:
1168 		case MEM_AREA_RAM_NSEC:
1169 		case MEM_AREA_RES_VASPACE:
1170 		case MEM_AREA_SHM_VASPACE:
1171 		case MEM_AREA_PAGER_VASPACE:
1172 			break;
1173 		default:
1174 			EMSG("Uhandled memtype %d", m->type);
1175 			panic();
1176 		}
1177 	}
1178 }
1179 
1180 static struct tee_mmap_region *get_tmp_mmap(void)
1181 {
1182 	struct tee_mmap_region *tmp_mmap = (void *)__heap1_start;
1183 
1184 #ifdef CFG_WITH_PAGER
1185 	if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map))
1186 		tmp_mmap = (void *)__heap2_start;
1187 #endif
1188 
1189 	memset(tmp_mmap, 0, sizeof(static_memory_map));
1190 
1191 	return tmp_mmap;
1192 }
1193 
1194 /*
1195  * core_init_mmu_map() - init tee core default memory mapping
1196  *
1197  * This routine sets the static default TEE core mapping. If @seed is > 0
1198  * and configured with CFG_CORE_ASLR it will map tee core at a location
1199  * based on the seed and return the offset from the link address.
1200  *
1201  * If an error happened: core_init_mmu_map is expected to panic.
1202  *
1203  * Note: this function is weak just to make it possible to exclude it from
1204  * the unpaged area.
1205  */
1206 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1207 {
1208 #ifndef CFG_VIRTUALIZATION
1209 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1210 #else
1211 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1212 				  SMALL_PAGE_SIZE);
1213 #endif
1214 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1215 	struct tee_mmap_region *tmp_mmap = get_tmp_mmap();
1216 	unsigned long offs = 0;
1217 
1218 	check_sec_nsec_mem_config();
1219 
1220 	/*
1221 	 * Add a entry covering the translation tables which will be
1222 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1223 	 */
1224 	static_memory_map[0] = (struct tee_mmap_region){
1225 		.type = MEM_AREA_TEE_RAM,
1226 		.region_size = SMALL_PAGE_SIZE,
1227 		.pa = start,
1228 		.va = start,
1229 		.size = len,
1230 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1231 	};
1232 
1233 	COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13);
1234 	offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed);
1235 
1236 	check_mem_map(tmp_mmap);
1237 	core_init_mmu(tmp_mmap);
1238 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1239 	core_init_mmu_regs(cfg);
1240 	cfg->load_offset = offs;
1241 	memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map));
1242 }
1243 
1244 bool core_mmu_mattr_is_ok(uint32_t mattr)
1245 {
1246 	/*
1247 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1248 	 * core_mmu_v7.c:mattr_to_texcb
1249 	 */
1250 
1251 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1252 	case TEE_MATTR_MEM_TYPE_DEV:
1253 	case TEE_MATTR_MEM_TYPE_CACHED:
1254 		return true;
1255 	default:
1256 		return false;
1257 	}
1258 }
1259 
1260 /*
1261  * test attributes of target physical buffer
1262  *
1263  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1264  *
1265  */
1266 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1267 {
1268 	struct tee_mmap_region *map;
1269 
1270 	/* Empty buffers complies with anything */
1271 	if (len == 0)
1272 		return true;
1273 
1274 	switch (attr) {
1275 	case CORE_MEM_SEC:
1276 		return pbuf_is_inside(secure_only, pbuf, len);
1277 	case CORE_MEM_NON_SEC:
1278 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1279 			pbuf_is_nsec_ddr(pbuf, len);
1280 	case CORE_MEM_TEE_RAM:
1281 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1282 							TEE_RAM_PH_SIZE);
1283 	case CORE_MEM_TA_RAM:
1284 		return core_is_buffer_inside(pbuf, len, TA_RAM_START,
1285 							TA_RAM_SIZE);
1286 #ifdef CFG_CORE_RESERVED_SHM
1287 	case CORE_MEM_NSEC_SHM:
1288 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1289 							TEE_SHMEM_SIZE);
1290 #endif
1291 	case CORE_MEM_SDP_MEM:
1292 		return pbuf_is_sdp_mem(pbuf, len);
1293 	case CORE_MEM_CACHED:
1294 		map = find_map_by_pa(pbuf);
1295 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1296 			return false;
1297 		return map->attr >> TEE_MATTR_MEM_TYPE_SHIFT ==
1298 		       TEE_MATTR_MEM_TYPE_CACHED;
1299 	default:
1300 		return false;
1301 	}
1302 }
1303 
1304 /* test attributes of target virtual buffer (in core mapping) */
1305 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1306 {
1307 	paddr_t p;
1308 
1309 	/* Empty buffers complies with anything */
1310 	if (len == 0)
1311 		return true;
1312 
1313 	p = virt_to_phys((void *)vbuf);
1314 	if (!p)
1315 		return false;
1316 
1317 	return core_pbuf_is(attr, p, len);
1318 }
1319 
1320 /* core_va2pa - teecore exported service */
1321 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1322 {
1323 	struct tee_mmap_region *map;
1324 
1325 	map = find_map_by_va(va);
1326 	if (!va_is_in_map(map, (vaddr_t)va))
1327 		return -1;
1328 
1329 	/*
1330 	 * We can calculate PA for static map. Virtual address ranges
1331 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1332 	 * together with an invalid null physical address.
1333 	 */
1334 	if (map->pa)
1335 		*pa = map->pa + (vaddr_t)va  - map->va;
1336 	else
1337 		*pa = 0;
1338 
1339 	return 0;
1340 }
1341 
1342 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1343 {
1344 	if (!pa_is_in_map(map, pa, len))
1345 		return NULL;
1346 
1347 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1348 }
1349 
1350 /*
1351  * teecore gets some memory area definitions
1352  */
1353 void core_mmu_get_mem_by_type(unsigned int type, vaddr_t *s, vaddr_t *e)
1354 {
1355 	struct tee_mmap_region *map = find_map_by_type(type);
1356 
1357 	if (map) {
1358 		*s = map->va;
1359 		*e = map->va + map->size;
1360 	} else {
1361 		*s = 0;
1362 		*e = 0;
1363 	}
1364 }
1365 
1366 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1367 {
1368 	struct tee_mmap_region *map = find_map_by_pa(pa);
1369 
1370 	if (!map)
1371 		return MEM_AREA_MAXTYPE;
1372 	return map->type;
1373 }
1374 
1375 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1376 			paddr_t pa, uint32_t attr)
1377 {
1378 	assert(idx < tbl_info->num_entries);
1379 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1380 				     idx, pa, attr);
1381 }
1382 
1383 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1384 			paddr_t *pa, uint32_t *attr)
1385 {
1386 	assert(idx < tbl_info->num_entries);
1387 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1388 				     idx, pa, attr);
1389 }
1390 
1391 static void clear_region(struct core_mmu_table_info *tbl_info,
1392 			 struct tee_mmap_region *region)
1393 {
1394 	unsigned int end = 0;
1395 	unsigned int idx = 0;
1396 
1397 	/* va, len and pa should be block aligned */
1398 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1399 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1400 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1401 
1402 	idx = core_mmu_va2idx(tbl_info, region->va);
1403 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1404 
1405 	while (idx < end) {
1406 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1407 		idx++;
1408 	}
1409 }
1410 
1411 static void set_region(struct core_mmu_table_info *tbl_info,
1412 		       struct tee_mmap_region *region)
1413 {
1414 	unsigned int end;
1415 	unsigned int idx;
1416 	paddr_t pa;
1417 
1418 	/* va, len and pa should be block aligned */
1419 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1420 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1421 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1422 
1423 	idx = core_mmu_va2idx(tbl_info, region->va);
1424 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1425 	pa = region->pa;
1426 
1427 	while (idx < end) {
1428 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1429 		idx++;
1430 		pa += BIT64(tbl_info->shift);
1431 	}
1432 }
1433 
1434 static void set_pg_region(struct core_mmu_table_info *dir_info,
1435 			  struct vm_region *region, struct pgt **pgt,
1436 			  struct core_mmu_table_info *pg_info)
1437 {
1438 	struct tee_mmap_region r = {
1439 		.va = region->va,
1440 		.size = region->size,
1441 		.attr = region->attr,
1442 	};
1443 	vaddr_t end = r.va + r.size;
1444 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1445 
1446 	while (r.va < end) {
1447 		if (!pg_info->table ||
1448 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1449 			/*
1450 			 * We're assigning a new translation table.
1451 			 */
1452 			unsigned int idx;
1453 
1454 			/* Virtual addresses must grow */
1455 			assert(r.va > pg_info->va_base);
1456 
1457 			idx = core_mmu_va2idx(dir_info, r.va);
1458 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1459 
1460 #ifdef CFG_PAGED_USER_TA
1461 			/*
1462 			 * Advance pgt to va_base, note that we may need to
1463 			 * skip multiple page tables if there are large
1464 			 * holes in the vm map.
1465 			 */
1466 			while ((*pgt)->vabase < pg_info->va_base) {
1467 				*pgt = SLIST_NEXT(*pgt, link);
1468 				/* We should have allocated enough */
1469 				assert(*pgt);
1470 			}
1471 			assert((*pgt)->vabase == pg_info->va_base);
1472 			pg_info->table = (*pgt)->tbl;
1473 #else
1474 			assert(*pgt); /* We should have allocated enough */
1475 			pg_info->table = (*pgt)->tbl;
1476 			*pgt = SLIST_NEXT(*pgt, link);
1477 #endif
1478 
1479 			core_mmu_set_entry(dir_info, idx,
1480 					   virt_to_phys(pg_info->table),
1481 					   pgt_attr);
1482 		}
1483 
1484 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1485 			     end - r.va);
1486 
1487 		if (!mobj_is_paged(region->mobj)) {
1488 			size_t granule = BIT(pg_info->shift);
1489 			size_t offset = r.va - region->va + region->offset;
1490 
1491 			r.size = MIN(r.size,
1492 				     mobj_get_phys_granule(region->mobj));
1493 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1494 
1495 			if (mobj_get_pa(region->mobj, offset, granule,
1496 					&r.pa) != TEE_SUCCESS)
1497 				panic("Failed to get PA of unpaged mobj");
1498 			set_region(pg_info, &r);
1499 		}
1500 		r.va += r.size;
1501 	}
1502 }
1503 
1504 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1505 			     size_t size_left, paddr_t block_size,
1506 			     struct tee_mmap_region *mm __maybe_unused)
1507 {
1508 	/* VA and PA are aligned to block size at current level */
1509 	if ((vaddr | paddr) & (block_size - 1))
1510 		return false;
1511 
1512 	/* Remainder fits into block at current level */
1513 	if (size_left < block_size)
1514 		return false;
1515 
1516 #ifdef CFG_WITH_PAGER
1517 	/*
1518 	 * If pager is enabled, we need to map tee ram
1519 	 * regions with small pages only
1520 	 */
1521 	if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE)
1522 		return false;
1523 #endif
1524 
1525 	return true;
1526 }
1527 
1528 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1529 {
1530 	struct core_mmu_table_info tbl_info;
1531 	unsigned int idx;
1532 	vaddr_t vaddr = mm->va;
1533 	paddr_t paddr = mm->pa;
1534 	ssize_t size_left = mm->size;
1535 	unsigned int level;
1536 	bool table_found;
1537 	uint32_t old_attr;
1538 
1539 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1540 
1541 	while (size_left > 0) {
1542 		level = CORE_MMU_BASE_TABLE_LEVEL;
1543 
1544 		while (true) {
1545 			paddr_t block_size = 0;
1546 
1547 			assert(level <= CORE_MMU_PGDIR_LEVEL);
1548 
1549 			table_found = core_mmu_find_table(prtn, vaddr, level,
1550 							  &tbl_info);
1551 			if (!table_found)
1552 				panic("can't find table for mapping");
1553 
1554 			block_size = BIT64(tbl_info.shift);
1555 
1556 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1557 			if (!can_map_at_level(paddr, vaddr, size_left,
1558 					      block_size, mm)) {
1559 				bool secure = mm->attr & TEE_MATTR_SECURE;
1560 
1561 				/*
1562 				 * This part of the region can't be mapped at
1563 				 * this level. Need to go deeper.
1564 				 */
1565 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1566 								     idx,
1567 								     secure))
1568 					panic("Can't divide MMU entry");
1569 				level++;
1570 				continue;
1571 			}
1572 
1573 			/* We can map part of the region at current level */
1574 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1575 			if (old_attr)
1576 				panic("Page is already mapped");
1577 
1578 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1579 			paddr += block_size;
1580 			vaddr += block_size;
1581 			size_left -= block_size;
1582 
1583 			break;
1584 		}
1585 	}
1586 }
1587 
1588 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1589 			      enum teecore_memtypes memtype)
1590 {
1591 	TEE_Result ret;
1592 	struct core_mmu_table_info tbl_info;
1593 	struct tee_mmap_region *mm;
1594 	unsigned int idx;
1595 	uint32_t old_attr;
1596 	uint32_t exceptions;
1597 	vaddr_t vaddr = vstart;
1598 	size_t i;
1599 	bool secure;
1600 
1601 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1602 
1603 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1604 
1605 	if (vaddr & SMALL_PAGE_MASK)
1606 		return TEE_ERROR_BAD_PARAMETERS;
1607 
1608 	exceptions = mmu_lock();
1609 
1610 	mm = find_map_by_va((void *)vaddr);
1611 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1612 		panic("VA does not belong to any known mm region");
1613 
1614 	if (!core_mmu_is_dynamic_vaspace(mm))
1615 		panic("Trying to map into static region");
1616 
1617 	for (i = 0; i < num_pages; i++) {
1618 		if (pages[i] & SMALL_PAGE_MASK) {
1619 			ret = TEE_ERROR_BAD_PARAMETERS;
1620 			goto err;
1621 		}
1622 
1623 		while (true) {
1624 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1625 						 &tbl_info))
1626 				panic("Can't find pagetable for vaddr ");
1627 
1628 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1629 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1630 				break;
1631 
1632 			/* This is supertable. Need to divide it. */
1633 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1634 							     secure))
1635 				panic("Failed to spread pgdir on small tables");
1636 		}
1637 
1638 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1639 		if (old_attr)
1640 			panic("Page is already mapped");
1641 
1642 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1643 				   core_mmu_type_to_attr(memtype));
1644 		vaddr += SMALL_PAGE_SIZE;
1645 	}
1646 
1647 	/*
1648 	 * Make sure all the changes to translation tables are visible
1649 	 * before returning. TLB doesn't need to be invalidated as we are
1650 	 * guaranteed that there's no valid mapping in this range.
1651 	 */
1652 	core_mmu_table_write_barrier();
1653 	mmu_unlock(exceptions);
1654 
1655 	return TEE_SUCCESS;
1656 err:
1657 	mmu_unlock(exceptions);
1658 
1659 	if (i)
1660 		core_mmu_unmap_pages(vstart, i);
1661 
1662 	return ret;
1663 }
1664 
1665 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
1666 					 size_t num_pages,
1667 					 enum teecore_memtypes memtype)
1668 {
1669 	struct core_mmu_table_info tbl_info = { };
1670 	struct tee_mmap_region *mm = NULL;
1671 	unsigned int idx = 0;
1672 	uint32_t old_attr = 0;
1673 	uint32_t exceptions = 0;
1674 	vaddr_t vaddr = vstart;
1675 	paddr_t paddr = pstart;
1676 	size_t i = 0;
1677 	bool secure = false;
1678 
1679 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1680 
1681 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1682 
1683 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
1684 		return TEE_ERROR_BAD_PARAMETERS;
1685 
1686 	exceptions = mmu_lock();
1687 
1688 	mm = find_map_by_va((void *)vaddr);
1689 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1690 		panic("VA does not belong to any known mm region");
1691 
1692 	if (!core_mmu_is_dynamic_vaspace(mm))
1693 		panic("Trying to map into static region");
1694 
1695 	for (i = 0; i < num_pages; i++) {
1696 		while (true) {
1697 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1698 						 &tbl_info))
1699 				panic("Can't find pagetable for vaddr ");
1700 
1701 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1702 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1703 				break;
1704 
1705 			/* This is supertable. Need to divide it. */
1706 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1707 							     secure))
1708 				panic("Failed to spread pgdir on small tables");
1709 		}
1710 
1711 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1712 		if (old_attr)
1713 			panic("Page is already mapped");
1714 
1715 		core_mmu_set_entry(&tbl_info, idx, paddr,
1716 				   core_mmu_type_to_attr(memtype));
1717 		paddr += SMALL_PAGE_SIZE;
1718 		vaddr += SMALL_PAGE_SIZE;
1719 	}
1720 
1721 	/*
1722 	 * Make sure all the changes to translation tables are visible
1723 	 * before returning. TLB doesn't need to be invalidated as we are
1724 	 * guaranteed that there's no valid mapping in this range.
1725 	 */
1726 	core_mmu_table_write_barrier();
1727 	mmu_unlock(exceptions);
1728 
1729 	return TEE_SUCCESS;
1730 }
1731 
1732 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
1733 {
1734 	struct core_mmu_table_info tbl_info;
1735 	struct tee_mmap_region *mm;
1736 	size_t i;
1737 	unsigned int idx;
1738 	uint32_t exceptions;
1739 
1740 	exceptions = mmu_lock();
1741 
1742 	mm = find_map_by_va((void *)vstart);
1743 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
1744 		panic("VA does not belong to any known mm region");
1745 
1746 	if (!core_mmu_is_dynamic_vaspace(mm))
1747 		panic("Trying to unmap static region");
1748 
1749 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
1750 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
1751 			panic("Can't find pagetable");
1752 
1753 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
1754 			panic("Invalid pagetable level");
1755 
1756 		idx = core_mmu_va2idx(&tbl_info, vstart);
1757 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
1758 	}
1759 	tlbi_all();
1760 
1761 	mmu_unlock(exceptions);
1762 }
1763 
1764 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
1765 				struct user_mode_ctx *uctx)
1766 {
1767 	struct core_mmu_table_info pg_info = { };
1768 	struct pgt_cache *pgt_cache = &thread_get_tsd()->pgt_cache;
1769 	struct pgt *pgt = NULL;
1770 	struct vm_region *r = NULL;
1771 	struct vm_region *r_last = NULL;
1772 
1773 	/* Find the first and last valid entry */
1774 	r = TAILQ_FIRST(&uctx->vm_info.regions);
1775 	if (!r)
1776 		return; /* Nothing to map */
1777 	r_last = TAILQ_LAST(&uctx->vm_info.regions, vm_region_head);
1778 
1779 	/*
1780 	 * Allocate all page tables in advance.
1781 	 */
1782 	pgt_alloc(pgt_cache, uctx->ts_ctx, r->va,
1783 		  r_last->va + r_last->size - 1);
1784 	pgt = SLIST_FIRST(pgt_cache);
1785 
1786 	core_mmu_set_info_table(&pg_info, dir_info->level + 1, 0, NULL);
1787 
1788 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
1789 		set_pg_region(dir_info, r, &pgt, &pg_info);
1790 }
1791 
1792 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
1793 				   size_t len)
1794 {
1795 	struct core_mmu_table_info tbl_info = { };
1796 	struct tee_mmap_region *res_map = NULL;
1797 	struct tee_mmap_region *map = NULL;
1798 	paddr_t pa = virt_to_phys(addr);
1799 	size_t granule = 0;
1800 	ptrdiff_t i = 0;
1801 	paddr_t p = 0;
1802 	size_t l = 0;
1803 
1804 	map = find_map_by_type_and_pa(type, pa, len);
1805 	if (!map)
1806 		return TEE_ERROR_GENERIC;
1807 
1808 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
1809 	if (!res_map)
1810 		return TEE_ERROR_GENERIC;
1811 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
1812 		return TEE_ERROR_GENERIC;
1813 	granule = BIT(tbl_info.shift);
1814 
1815 	if (map < static_memory_map ||
1816 	    map >= static_memory_map + ARRAY_SIZE(static_memory_map))
1817 		return TEE_ERROR_GENERIC;
1818 	i = map - static_memory_map;
1819 
1820 	/* Check that we have a full match */
1821 	p = ROUNDDOWN(pa, granule);
1822 	l = ROUNDUP(len + pa - p, granule);
1823 	if (map->pa != p || map->size != l)
1824 		return TEE_ERROR_GENERIC;
1825 
1826 	clear_region(&tbl_info, map);
1827 	tlbi_all();
1828 
1829 	/* If possible remove the va range from res_map */
1830 	if (res_map->va - map->size == map->va) {
1831 		res_map->va -= map->size;
1832 		res_map->size += map->size;
1833 	}
1834 
1835 	/* Remove the entry. */
1836 	memmove(map, map + 1,
1837 		(ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map));
1838 
1839 	/* Clear the last new entry in case it was used */
1840 	memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1,
1841 	       0, sizeof(*map));
1842 
1843 	return TEE_SUCCESS;
1844 }
1845 
1846 struct tee_mmap_region *
1847 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
1848 {
1849 	struct tee_mmap_region *map = NULL;
1850 	struct tee_mmap_region *map_found = NULL;
1851 
1852 	if (!len)
1853 		return NULL;
1854 
1855 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
1856 		if (map->type != type)
1857 			continue;
1858 
1859 		if (map_found)
1860 			return NULL;
1861 
1862 		map_found = map;
1863 	}
1864 
1865 	if (!map_found || map_found->size < len)
1866 		return NULL;
1867 
1868 	return map_found;
1869 }
1870 
1871 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
1872 {
1873 	struct core_mmu_table_info tbl_info;
1874 	struct tee_mmap_region *map;
1875 	size_t n;
1876 	size_t granule;
1877 	paddr_t p;
1878 	size_t l;
1879 
1880 	if (!len)
1881 		return NULL;
1882 
1883 	if (!core_mmu_check_end_pa(addr, len))
1884 		return NULL;
1885 
1886 	/* Check if the memory is already mapped */
1887 	map = find_map_by_type_and_pa(type, addr, len);
1888 	if (map && pbuf_inside_map_area(addr, len, map))
1889 		return (void *)(vaddr_t)(map->va + addr - map->pa);
1890 
1891 	/* Find the reserved va space used for late mappings */
1892 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
1893 	if (!map)
1894 		return NULL;
1895 
1896 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
1897 		return NULL;
1898 
1899 	granule = BIT64(tbl_info.shift);
1900 	p = ROUNDDOWN(addr, granule);
1901 	l = ROUNDUP(len + addr - p, granule);
1902 
1903 	/* Ban overflowing virtual addresses */
1904 	if (map->size < l)
1905 		return NULL;
1906 
1907 	/*
1908 	 * Something is wrong, we can't fit the va range into the selected
1909 	 * table. The reserved va range is possibly missaligned with
1910 	 * granule.
1911 	 */
1912 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
1913 		return NULL;
1914 
1915 	/* Find end of the memory map */
1916 	n = 0;
1917 	while (!core_mmap_is_end_of_table(static_memory_map + n))
1918 		n++;
1919 
1920 	if (n < (ARRAY_SIZE(static_memory_map) - 1)) {
1921 		/* There's room for another entry */
1922 		static_memory_map[n].va = map->va;
1923 		static_memory_map[n].size = l;
1924 		static_memory_map[n + 1].type = MEM_AREA_END;
1925 		map->va += l;
1926 		map->size -= l;
1927 		map = static_memory_map + n;
1928 	} else {
1929 		/*
1930 		 * There isn't room for another entry, steal the reserved
1931 		 * entry as it's not useful for anything else any longer.
1932 		 */
1933 		map->size = l;
1934 	}
1935 	map->type = type;
1936 	map->region_size = granule;
1937 	map->attr = core_mmu_type_to_attr(type);
1938 	map->pa = p;
1939 
1940 	set_region(&tbl_info, map);
1941 
1942 	/* Make sure the new entry is visible before continuing. */
1943 	core_mmu_table_write_barrier();
1944 
1945 	return (void *)(vaddr_t)(map->va + addr - map->pa);
1946 }
1947 
1948 #ifdef CFG_WITH_PAGER
1949 static vaddr_t get_linear_map_end(void)
1950 {
1951 	/* this is synced with the generic linker file kern.ld.S */
1952 	return (vaddr_t)__heap2_end;
1953 }
1954 #endif
1955 
1956 #if defined(CFG_TEE_CORE_DEBUG)
1957 static void check_pa_matches_va(void *va, paddr_t pa)
1958 {
1959 	TEE_Result res = TEE_ERROR_GENERIC;
1960 	vaddr_t v = (vaddr_t)va;
1961 	paddr_t p = 0;
1962 	struct core_mmu_table_info ti __maybe_unused = { };
1963 
1964 	if (core_mmu_user_va_range_is_defined()) {
1965 		vaddr_t user_va_base = 0;
1966 		size_t user_va_size = 0;
1967 
1968 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1969 		if (v >= user_va_base &&
1970 		    v <= (user_va_base - 1 + user_va_size)) {
1971 			if (!core_mmu_user_mapping_is_active()) {
1972 				if (pa)
1973 					panic("issue in linear address space");
1974 				return;
1975 			}
1976 
1977 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
1978 				       va, &p);
1979 			if (res == TEE_ERROR_NOT_SUPPORTED)
1980 				return;
1981 			if (res == TEE_SUCCESS && pa != p)
1982 				panic("bad pa");
1983 			if (res != TEE_SUCCESS && pa)
1984 				panic("false pa");
1985 			return;
1986 		}
1987 	}
1988 #ifdef CFG_WITH_PAGER
1989 	if (is_unpaged(va)) {
1990 		if (v - boot_mmu_config.load_offset != pa)
1991 			panic("issue in linear address space");
1992 		return;
1993 	}
1994 
1995 	if (tee_pager_get_table_info(v, &ti)) {
1996 		uint32_t a;
1997 
1998 		/*
1999 		 * Lookups in the page table managed by the pager is
2000 		 * dangerous for addresses in the paged area as those pages
2001 		 * changes all the time. But some ranges are safe,
2002 		 * rw-locked areas when the page is populated for instance.
2003 		 */
2004 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2005 		if (a & TEE_MATTR_VALID_BLOCK) {
2006 			paddr_t mask = BIT64(ti.shift) - 1;
2007 
2008 			p |= v & mask;
2009 			if (pa != p)
2010 				panic();
2011 		} else {
2012 			if (pa)
2013 				panic();
2014 		}
2015 		return;
2016 	}
2017 #endif
2018 
2019 	if (!core_va2pa_helper(va, &p)) {
2020 		/* Verfiy only the static mapping (case non null phys addr) */
2021 		if (p && pa != p) {
2022 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2023 			     va, p, pa);
2024 			panic();
2025 		}
2026 	} else {
2027 		if (pa) {
2028 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2029 			panic();
2030 		}
2031 	}
2032 }
2033 #else
2034 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2035 {
2036 }
2037 #endif
2038 
2039 paddr_t virt_to_phys(void *va)
2040 {
2041 	paddr_t pa = 0;
2042 
2043 	if (!arch_va2pa_helper(va, &pa))
2044 		pa = 0;
2045 	check_pa_matches_va(va, pa);
2046 	return pa;
2047 }
2048 
2049 #if defined(CFG_TEE_CORE_DEBUG)
2050 static void check_va_matches_pa(paddr_t pa, void *va)
2051 {
2052 	paddr_t p = 0;
2053 
2054 	if (!va)
2055 		return;
2056 
2057 	p = virt_to_phys(va);
2058 	if (p != pa) {
2059 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2060 		panic();
2061 	}
2062 }
2063 #else
2064 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2065 {
2066 }
2067 #endif
2068 
2069 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2070 {
2071 	if (!core_mmu_user_mapping_is_active())
2072 		return NULL;
2073 
2074 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2075 }
2076 
2077 #ifdef CFG_WITH_PAGER
2078 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2079 {
2080 	paddr_t end_pa = 0;
2081 
2082 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2083 		return NULL;
2084 
2085 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end()) {
2086 		if (end_pa > get_linear_map_end())
2087 			return NULL;
2088 		return (void *)(vaddr_t)(pa + boot_mmu_config.load_offset);
2089 	}
2090 
2091 	return tee_pager_phys_to_virt(pa, len);
2092 }
2093 #else
2094 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2095 {
2096 	struct tee_mmap_region *mmap = NULL;
2097 
2098 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2099 	if (!mmap)
2100 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2101 	if (!mmap)
2102 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2103 	if (!mmap)
2104 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2105 	if (!mmap)
2106 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2107 	if (!mmap)
2108 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2109 	/*
2110 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2111 	 * used with pager and not needed here.
2112 	 */
2113 	return map_pa2va(mmap, pa, len);
2114 }
2115 #endif
2116 
2117 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2118 {
2119 	void *va = NULL;
2120 
2121 	switch (m) {
2122 	case MEM_AREA_TS_VASPACE:
2123 		va = phys_to_virt_ts_vaspace(pa, len);
2124 		break;
2125 	case MEM_AREA_TEE_RAM:
2126 	case MEM_AREA_TEE_RAM_RX:
2127 	case MEM_AREA_TEE_RAM_RO:
2128 	case MEM_AREA_TEE_RAM_RW:
2129 	case MEM_AREA_NEX_RAM_RO:
2130 	case MEM_AREA_NEX_RAM_RW:
2131 		va = phys_to_virt_tee_ram(pa, len);
2132 		break;
2133 	case MEM_AREA_SHM_VASPACE:
2134 		/* Find VA from PA in dynamic SHM is not yet supported */
2135 		va = NULL;
2136 		break;
2137 	default:
2138 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2139 	}
2140 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2141 		check_va_matches_pa(pa, va);
2142 	return va;
2143 }
2144 
2145 void *phys_to_virt_io(paddr_t pa, size_t len)
2146 {
2147 	struct tee_mmap_region *map = NULL;
2148 	void *va = NULL;
2149 
2150 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2151 	if (!map)
2152 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2153 	if (!map)
2154 		return NULL;
2155 	va = map_pa2va(map, pa, len);
2156 	check_va_matches_pa(pa, va);
2157 	return va;
2158 }
2159 
2160 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2161 {
2162 	if (cpu_mmu_enabled())
2163 		return (vaddr_t)phys_to_virt(pa, type, len);
2164 
2165 	return (vaddr_t)pa;
2166 }
2167 
2168 #ifdef CFG_WITH_PAGER
2169 bool is_unpaged(void *va)
2170 {
2171 	vaddr_t v = (vaddr_t)va;
2172 
2173 	return v >= VCORE_START_VA && v < get_linear_map_end();
2174 }
2175 #else
2176 bool is_unpaged(void *va __unused)
2177 {
2178 	return true;
2179 }
2180 #endif
2181 
2182 void core_mmu_init_virtualization(void)
2183 {
2184 	virt_init_memory(static_memory_map);
2185 }
2186 
2187 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2188 {
2189 	assert(p->pa);
2190 	if (cpu_mmu_enabled()) {
2191 		if (!p->va)
2192 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2193 		assert(p->va);
2194 		return p->va;
2195 	}
2196 	return p->pa;
2197 }
2198 
2199 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2200 {
2201 	assert(p->pa);
2202 	if (cpu_mmu_enabled()) {
2203 		if (!p->va)
2204 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2205 						      len);
2206 		assert(p->va);
2207 		return p->va;
2208 	}
2209 	return p->pa;
2210 }
2211 
2212 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2213 {
2214 	assert(p->pa);
2215 	if (cpu_mmu_enabled()) {
2216 		if (!p->va)
2217 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2218 						      len);
2219 		assert(p->va);
2220 		return p->va;
2221 	}
2222 	return p->pa;
2223 }
2224 
2225 #ifdef CFG_CORE_RESERVED_SHM
2226 static TEE_Result teecore_init_pub_ram(void)
2227 {
2228 	vaddr_t s = 0;
2229 	vaddr_t e = 0;
2230 
2231 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2232 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2233 
2234 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2235 		panic("invalid PUB RAM");
2236 
2237 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2238 	if (!tee_vbuf_is_non_sec(s, e - s))
2239 		panic("PUB RAM is not non-secure");
2240 
2241 #ifdef CFG_PL310
2242 	/* Allocate statically the l2cc mutex */
2243 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2244 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2245 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2246 #endif
2247 
2248 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2249 	default_nsec_shm_size = e - s;
2250 
2251 	return TEE_SUCCESS;
2252 }
2253 early_init(teecore_init_pub_ram);
2254 #endif /*CFG_CORE_RESERVED_SHM*/
2255 
2256 void core_mmu_init_ta_ram(void)
2257 {
2258 	vaddr_t s = 0;
2259 	vaddr_t e = 0;
2260 	paddr_t ps = 0;
2261 	size_t size = 0;
2262 
2263 	/*
2264 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2265 	 * shared mem allocated from teecore.
2266 	 */
2267 	if (IS_ENABLED(CFG_VIRTUALIZATION))
2268 		virt_get_ta_ram(&s, &e);
2269 	else
2270 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2271 
2272 	ps = virt_to_phys((void *)s);
2273 	size = e - s;
2274 
2275 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2276 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2277 		panic("invalid TA RAM");
2278 
2279 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2280 	if (!tee_pbuf_is_sec(ps, size))
2281 		panic("TA RAM is not secure");
2282 
2283 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2284 		panic("TA RAM pool is not empty");
2285 
2286 	/* remove previous config and init TA ddr memory pool */
2287 	tee_mm_final(&tee_mm_sec_ddr);
2288 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2289 		    TEE_MM_POOL_NO_FLAGS);
2290 }
2291