xref: /optee_os/core/mm/core_mmu.c (revision 79f8990d9d28539864d8f97f9f1cb32e289e595f)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <mm/core_memprot.h>
22 #include <mm/core_mmu.h>
23 #include <mm/mobj.h>
24 #include <mm/pgt_cache.h>
25 #include <mm/tee_pager.h>
26 #include <mm/vm.h>
27 #include <platform_config.h>
28 #include <string.h>
29 #include <trace.h>
30 #include <util.h>
31 
32 #ifndef DEBUG_XLAT_TABLE
33 #define DEBUG_XLAT_TABLE 0
34 #endif
35 
36 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
37 
38 #ifdef CFG_CORE_PHYS_RELOCATABLE
39 unsigned long core_mmu_tee_load_pa __nex_bss;
40 #else
41 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
42 #endif
43 
44 /*
45  * These variables are initialized before .bss is cleared. To avoid
46  * resetting them when .bss is cleared we're storing them in .data instead,
47  * even if they initially are zero.
48  */
49 
50 #ifdef CFG_CORE_RESERVED_SHM
51 /* Default NSec shared memory allocated from NSec world */
52 unsigned long default_nsec_shm_size __nex_bss;
53 unsigned long default_nsec_shm_paddr __nex_bss;
54 #endif
55 
56 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS
57 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE)
58 						+ 1
59 #endif
60 						+ 1] __nex_bss;
61 
62 /* Define the platform's memory layout. */
63 struct memaccess_area {
64 	paddr_t paddr;
65 	size_t size;
66 };
67 
68 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
69 
70 static struct memaccess_area secure_only[] __nex_data = {
71 #ifdef CFG_CORE_PHYS_RELOCATABLE
72 	MEMACCESS_AREA(0, 0),
73 #else
74 #ifdef TRUSTED_SRAM_BASE
75 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
76 #endif
77 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
78 #endif
79 };
80 
81 static struct memaccess_area nsec_shared[] __nex_data = {
82 #ifdef CFG_CORE_RESERVED_SHM
83 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
84 #endif
85 };
86 
87 #if defined(CFG_SECURE_DATA_PATH)
88 static const char *tz_sdp_match = "linaro,secure-heap";
89 static struct memaccess_area sec_sdp;
90 #ifdef CFG_TEE_SDP_MEM_BASE
91 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
92 #endif
93 #ifdef TEE_SDP_TEST_MEM_BASE
94 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
95 #endif
96 #endif
97 
98 #ifdef CFG_CORE_RESERVED_SHM
99 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
100 #endif
101 static unsigned int mmu_spinlock;
102 
103 static uint32_t mmu_lock(void)
104 {
105 	return cpu_spin_lock_xsave(&mmu_spinlock);
106 }
107 
108 static void mmu_unlock(uint32_t exceptions)
109 {
110 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
111 }
112 
113 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
114 {
115 	/*
116 	 * The first range is always used to cover OP-TEE core memory, but
117 	 * depending on configuration it may cover more than that.
118 	 */
119 	*base = secure_only[0].paddr;
120 	*size = secure_only[0].size;
121 }
122 
123 void core_mmu_set_secure_memory(paddr_t base, size_t size)
124 {
125 #ifdef CFG_CORE_PHYS_RELOCATABLE
126 	static_assert(ARRAY_SIZE(secure_only) == 1);
127 #endif
128 	runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE));
129 	assert(!secure_only[0].size);
130 	assert(base && size);
131 
132 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
133 	secure_only[0].paddr = base;
134 	secure_only[0].size = size;
135 }
136 
137 void core_mmu_get_ta_range(paddr_t *base, size_t *size)
138 {
139 	paddr_t b = 0;
140 	size_t s = 0;
141 
142 	static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE));
143 #ifdef TA_RAM_START
144 	b = TA_RAM_START;
145 	s = TA_RAM_SIZE;
146 #else
147 	static_assert(ARRAY_SIZE(secure_only) <= 2);
148 	if (ARRAY_SIZE(secure_only) == 1) {
149 		vaddr_t load_offs = 0;
150 
151 		assert(core_mmu_tee_load_pa >= secure_only[0].paddr);
152 		load_offs = core_mmu_tee_load_pa - secure_only[0].paddr;
153 
154 		assert(secure_only[0].size >
155 		       load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE);
156 		b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE;
157 		s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE -
158 		    TEE_SDP_TEST_MEM_SIZE;
159 	} else {
160 		assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE);
161 		b = secure_only[1].paddr;
162 		s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE;
163 	}
164 #endif
165 	if (base)
166 		*base = b;
167 	if (size)
168 		*size = s;
169 }
170 
171 static struct tee_mmap_region *get_memory_map(void)
172 {
173 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
174 		struct tee_mmap_region *map = virt_get_memory_map();
175 
176 		if (map)
177 			return map;
178 	}
179 
180 	return static_memory_map;
181 }
182 
183 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
184 			     paddr_t pa, size_t size)
185 {
186 	size_t n;
187 
188 	for (n = 0; n < alen; n++)
189 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
190 			return true;
191 	return false;
192 }
193 
194 #define pbuf_intersects(a, pa, size) \
195 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
196 
197 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
198 			    paddr_t pa, size_t size)
199 {
200 	size_t n;
201 
202 	for (n = 0; n < alen; n++)
203 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
204 			return true;
205 	return false;
206 }
207 
208 #define pbuf_is_inside(a, pa, size) \
209 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
210 
211 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
212 {
213 	paddr_t end_pa = 0;
214 
215 	if (!map)
216 		return false;
217 
218 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
219 		return false;
220 
221 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
222 }
223 
224 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
225 {
226 	if (!map)
227 		return false;
228 	return (va >= map->va && va <= (map->va + map->size - 1));
229 }
230 
231 /* check if target buffer fits in a core default map area */
232 static bool pbuf_inside_map_area(unsigned long p, size_t l,
233 				 struct tee_mmap_region *map)
234 {
235 	return core_is_buffer_inside(p, l, map->pa, map->size);
236 }
237 
238 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
239 {
240 	struct tee_mmap_region *map;
241 
242 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++)
243 		if (map->type == type)
244 			return map;
245 	return NULL;
246 }
247 
248 static struct tee_mmap_region *
249 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
250 {
251 	struct tee_mmap_region *map;
252 
253 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
254 		if (map->type != type)
255 			continue;
256 		if (pa_is_in_map(map, pa, len))
257 			return map;
258 	}
259 	return NULL;
260 }
261 
262 static struct tee_mmap_region *find_map_by_va(void *va)
263 {
264 	struct tee_mmap_region *map = get_memory_map();
265 	unsigned long a = (unsigned long)va;
266 
267 	while (!core_mmap_is_end_of_table(map)) {
268 		if (a >= map->va && a <= (map->va - 1 + map->size))
269 			return map;
270 		map++;
271 	}
272 	return NULL;
273 }
274 
275 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
276 {
277 	struct tee_mmap_region *map = get_memory_map();
278 
279 	while (!core_mmap_is_end_of_table(map)) {
280 		if (pa >= map->pa && pa <= (map->pa + map->size - 1))
281 			return map;
282 		map++;
283 	}
284 	return NULL;
285 }
286 
287 #if defined(CFG_SECURE_DATA_PATH)
288 static bool dtb_get_sdp_region(void)
289 {
290 	void *fdt = NULL;
291 	int node = 0;
292 	int tmp_node = 0;
293 	paddr_t tmp_addr = 0;
294 	size_t tmp_size = 0;
295 
296 	if (!IS_ENABLED(CFG_EMBED_DTB))
297 		return false;
298 
299 	fdt = get_embedded_dt();
300 	if (!fdt)
301 		panic("No DTB found");
302 
303 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
304 	if (node < 0) {
305 		DMSG("No %s compatible node found", tz_sdp_match);
306 		return false;
307 	}
308 	tmp_node = node;
309 	while (tmp_node >= 0) {
310 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
311 							 tz_sdp_match);
312 		if (tmp_node >= 0)
313 			DMSG("Ignore SDP pool node %s, supports only 1 node",
314 			     fdt_get_name(fdt, tmp_node, NULL));
315 	}
316 
317 	tmp_addr = fdt_reg_base_address(fdt, node);
318 	if (tmp_addr == DT_INFO_INVALID_REG) {
319 		EMSG("%s: Unable to get base addr from DT", tz_sdp_match);
320 		return false;
321 	}
322 
323 	tmp_size = fdt_reg_size(fdt, node);
324 	if (tmp_size == DT_INFO_INVALID_REG_SIZE) {
325 		EMSG("%s: Unable to get size of base addr from DT",
326 		     tz_sdp_match);
327 		return false;
328 	}
329 
330 	sec_sdp.paddr = tmp_addr;
331 	sec_sdp.size = tmp_size;
332 
333 	return true;
334 }
335 #endif
336 
337 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
338 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
339 				const struct core_mmu_phys_mem *start,
340 				const struct core_mmu_phys_mem *end)
341 {
342 	const struct core_mmu_phys_mem *mem;
343 
344 	for (mem = start; mem < end; mem++) {
345 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
346 			return true;
347 	}
348 
349 	return false;
350 }
351 #endif
352 
353 #ifdef CFG_CORE_DYN_SHM
354 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
355 			       paddr_t pa, size_t size)
356 {
357 	struct core_mmu_phys_mem *m = *mem;
358 	size_t n = 0;
359 
360 	while (true) {
361 		if (n >= *nelems) {
362 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
363 			     pa, size);
364 			return;
365 		}
366 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
367 			break;
368 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
369 			panic();
370 		n++;
371 	}
372 
373 	if (pa == m[n].addr && size == m[n].size) {
374 		/* Remove this entry */
375 		(*nelems)--;
376 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
377 		m = nex_realloc(m, sizeof(*m) * *nelems);
378 		if (!m)
379 			panic();
380 		*mem = m;
381 	} else if (pa == m[n].addr) {
382 		m[n].addr += size;
383 		m[n].size -= size;
384 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
385 		m[n].size -= size;
386 	} else {
387 		/* Need to split the memory entry */
388 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
389 		if (!m)
390 			panic();
391 		*mem = m;
392 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
393 		(*nelems)++;
394 		m[n].size = pa - m[n].addr;
395 		m[n + 1].size -= size + m[n].size;
396 		m[n + 1].addr = pa + size;
397 	}
398 }
399 
400 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
401 				      size_t nelems,
402 				      struct tee_mmap_region *map)
403 {
404 	size_t n;
405 
406 	for (n = 0; n < nelems; n++) {
407 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
408 					    map->pa, map->size)) {
409 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
410 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
411 			     start[n].addr, start[n].size,
412 			     map->type, map->pa, map->size);
413 			panic();
414 		}
415 	}
416 }
417 
418 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
419 static size_t discovered_nsec_ddr_nelems __nex_bss;
420 
421 static int cmp_pmem_by_addr(const void *a, const void *b)
422 {
423 	const struct core_mmu_phys_mem *pmem_a = a;
424 	const struct core_mmu_phys_mem *pmem_b = b;
425 
426 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
427 }
428 
429 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
430 				      size_t nelems)
431 {
432 	struct core_mmu_phys_mem *m = start;
433 	size_t num_elems = nelems;
434 	struct tee_mmap_region *map = static_memory_map;
435 	const struct core_mmu_phys_mem __maybe_unused *pmem;
436 	size_t n = 0;
437 
438 	assert(!discovered_nsec_ddr_start);
439 	assert(m && num_elems);
440 
441 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
442 
443 	/*
444 	 * Non-secure shared memory and also secure data
445 	 * path memory are supposed to reside inside
446 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
447 	 * are used for a specific purpose make holes for
448 	 * those memory in the normal non-secure memory.
449 	 *
450 	 * This has to be done since for instance QEMU
451 	 * isn't aware of which memory range in the
452 	 * non-secure memory is used for NSEC_SHM.
453 	 */
454 
455 #ifdef CFG_SECURE_DATA_PATH
456 	if (dtb_get_sdp_region())
457 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
458 
459 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
460 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
461 #endif
462 
463 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
464 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
465 				   secure_only[n].size);
466 
467 	for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) {
468 		switch (map->type) {
469 		case MEM_AREA_NSEC_SHM:
470 			carve_out_phys_mem(&m, &num_elems, map->pa, map->size);
471 			break;
472 		case MEM_AREA_EXT_DT:
473 		case MEM_AREA_MANIFEST_DT:
474 		case MEM_AREA_RAM_NSEC:
475 		case MEM_AREA_RES_VASPACE:
476 		case MEM_AREA_SHM_VASPACE:
477 		case MEM_AREA_TS_VASPACE:
478 		case MEM_AREA_PAGER_VASPACE:
479 			break;
480 		default:
481 			check_phys_mem_is_outside(m, num_elems, map);
482 		}
483 	}
484 
485 	discovered_nsec_ddr_start = m;
486 	discovered_nsec_ddr_nelems = num_elems;
487 
488 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
489 				   m[num_elems - 1].size))
490 		panic();
491 }
492 
493 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
494 				    const struct core_mmu_phys_mem **end)
495 {
496 	if (!discovered_nsec_ddr_start)
497 		return false;
498 
499 	*start = discovered_nsec_ddr_start;
500 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
501 
502 	return true;
503 }
504 
505 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
506 {
507 	const struct core_mmu_phys_mem *start;
508 	const struct core_mmu_phys_mem *end;
509 
510 	if (!get_discovered_nsec_ddr(&start, &end))
511 		return false;
512 
513 	return pbuf_is_special_mem(pbuf, len, start, end);
514 }
515 
516 bool core_mmu_nsec_ddr_is_defined(void)
517 {
518 	const struct core_mmu_phys_mem *start;
519 	const struct core_mmu_phys_mem *end;
520 
521 	if (!get_discovered_nsec_ddr(&start, &end))
522 		return false;
523 
524 	return start != end;
525 }
526 #else
527 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
528 {
529 	return false;
530 }
531 #endif /*CFG_CORE_DYN_SHM*/
532 
533 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
534 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
535 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
536 
537 #ifdef CFG_SECURE_DATA_PATH
538 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
539 {
540 	bool is_sdp_mem = false;
541 
542 	if (sec_sdp.size)
543 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
544 						   sec_sdp.size);
545 
546 	if (!is_sdp_mem)
547 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
548 						 phys_sdp_mem_end);
549 
550 	return is_sdp_mem;
551 }
552 
553 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
554 {
555 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
556 					    CORE_MEM_SDP_MEM);
557 
558 	if (!mobj)
559 		panic("can't create SDP physical memory object");
560 
561 	return mobj;
562 }
563 
564 struct mobj **core_sdp_mem_create_mobjs(void)
565 {
566 	const struct core_mmu_phys_mem *mem = NULL;
567 	struct mobj **mobj_base = NULL;
568 	struct mobj **mobj = NULL;
569 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
570 
571 	if (sec_sdp.size)
572 		cnt++;
573 
574 	/* SDP mobjs table must end with a NULL entry */
575 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
576 	if (!mobj_base)
577 		panic("Out of memory");
578 
579 	mobj = mobj_base;
580 
581 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
582 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
583 
584 	if (sec_sdp.size)
585 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
586 
587 	return mobj_base;
588 }
589 
590 #else /* CFG_SECURE_DATA_PATH */
591 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
592 {
593 	return false;
594 }
595 
596 #endif /* CFG_SECURE_DATA_PATH */
597 
598 /* Check special memories comply with registered memories */
599 static void verify_special_mem_areas(struct tee_mmap_region *mem_map,
600 				     const struct core_mmu_phys_mem *start,
601 				     const struct core_mmu_phys_mem *end,
602 				     const char *area_name __maybe_unused)
603 {
604 	const struct core_mmu_phys_mem *mem;
605 	const struct core_mmu_phys_mem *mem2;
606 	struct tee_mmap_region *mmap;
607 
608 	if (start == end) {
609 		DMSG("No %s memory area defined", area_name);
610 		return;
611 	}
612 
613 	for (mem = start; mem < end; mem++)
614 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
615 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
616 
617 	/* Check memories do not intersect each other */
618 	for (mem = start; mem + 1 < end; mem++) {
619 		for (mem2 = mem + 1; mem2 < end; mem2++) {
620 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
621 						     mem->addr, mem->size)) {
622 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
623 						   mem->addr, mem->size);
624 				panic("Special memory intersection");
625 			}
626 		}
627 	}
628 
629 	/*
630 	 * Check memories do not intersect any mapped memory.
631 	 * This is called before reserved VA space is loaded in mem_map.
632 	 */
633 	for (mem = start; mem < end; mem++) {
634 		for (mmap = mem_map; mmap->type != MEM_AREA_END; mmap++) {
635 			if (core_is_buffer_intersect(mem->addr, mem->size,
636 						     mmap->pa, mmap->size)) {
637 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
638 						   mmap->pa, mmap->size);
639 				panic("Special memory intersection");
640 			}
641 		}
642 	}
643 }
644 
645 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems,
646 			 const char *mem_name __maybe_unused,
647 			 enum teecore_memtypes mem_type,
648 			 paddr_t mem_addr, paddr_size_t mem_size, size_t *last)
649 {
650 	size_t n = 0;
651 	paddr_t pa;
652 	paddr_size_t size;
653 
654 	if (!mem_size)	/* Discard null size entries */
655 		return;
656 	/*
657 	 * If some ranges of memory of the same type do overlap
658 	 * each others they are coalesced into one entry. To help this
659 	 * added entries are sorted by increasing physical.
660 	 *
661 	 * Note that it's valid to have the same physical memory as several
662 	 * different memory types, for instance the same device memory
663 	 * mapped as both secure and non-secure. This will probably not
664 	 * happen often in practice.
665 	 */
666 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
667 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
668 	while (true) {
669 		if (n >= (num_elems - 1)) {
670 			EMSG("Out of entries (%zu) in memory_map", num_elems);
671 			panic();
672 		}
673 		if (n == *last)
674 			break;
675 		pa = memory_map[n].pa;
676 		size = memory_map[n].size;
677 		if (mem_type == memory_map[n].type &&
678 		    ((pa <= (mem_addr + (mem_size - 1))) &&
679 		    (mem_addr <= (pa + (size - 1))))) {
680 			DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr);
681 			memory_map[n].pa = MIN(pa, mem_addr);
682 			memory_map[n].size = MAX(size, mem_size) +
683 					     (pa - memory_map[n].pa);
684 			return;
685 		}
686 		if (mem_type < memory_map[n].type ||
687 		    (mem_type == memory_map[n].type && mem_addr < pa))
688 			break; /* found the spot where to insert this memory */
689 		n++;
690 	}
691 
692 	memmove(memory_map + n + 1, memory_map + n,
693 		sizeof(struct tee_mmap_region) * (*last - n));
694 	(*last)++;
695 	memset(memory_map + n, 0, sizeof(memory_map[0]));
696 	memory_map[n].type = mem_type;
697 	memory_map[n].pa = mem_addr;
698 	memory_map[n].size = mem_size;
699 }
700 
701 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems,
702 			 enum teecore_memtypes type, size_t size, size_t *last)
703 {
704 	size_t n = 0;
705 
706 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
707 	while (true) {
708 		if (n >= (num_elems - 1)) {
709 			EMSG("Out of entries (%zu) in memory_map", num_elems);
710 			panic();
711 		}
712 		if (n == *last)
713 			break;
714 		if (type < memory_map[n].type)
715 			break;
716 		n++;
717 	}
718 
719 	memmove(memory_map + n + 1, memory_map + n,
720 		sizeof(struct tee_mmap_region) * (*last - n));
721 	(*last)++;
722 	memset(memory_map + n, 0, sizeof(memory_map[0]));
723 	memory_map[n].type = type;
724 	memory_map[n].size = size;
725 }
726 
727 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
728 {
729 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
730 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
731 				TEE_MATTR_MEM_TYPE_SHIFT;
732 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
733 				TEE_MATTR_MEM_TYPE_SHIFT;
734 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
735 				  TEE_MATTR_MEM_TYPE_SHIFT;
736 
737 	switch (t) {
738 	case MEM_AREA_TEE_RAM:
739 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
740 	case MEM_AREA_TEE_RAM_RX:
741 	case MEM_AREA_INIT_RAM_RX:
742 	case MEM_AREA_IDENTITY_MAP_RX:
743 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
744 	case MEM_AREA_TEE_RAM_RO:
745 	case MEM_AREA_INIT_RAM_RO:
746 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
747 	case MEM_AREA_TEE_RAM_RW:
748 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
749 	case MEM_AREA_NEX_RAM_RW:
750 	case MEM_AREA_TEE_ASAN:
751 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
752 	case MEM_AREA_TEE_COHERENT:
753 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
754 	case MEM_AREA_TA_RAM:
755 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
756 	case MEM_AREA_NSEC_SHM:
757 	case MEM_AREA_NEX_NSEC_SHM:
758 		return attr | TEE_MATTR_PRW | cached;
759 	case MEM_AREA_MANIFEST_DT:
760 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
761 	case MEM_AREA_TRANSFER_LIST:
762 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
763 	case MEM_AREA_EXT_DT:
764 		/*
765 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
766 		 * tree as secure non-cached memory, otherwise, fall back to
767 		 * non-secure mapping.
768 		 */
769 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
770 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
771 			       noncache;
772 		fallthrough;
773 	case MEM_AREA_IO_NSEC:
774 		return attr | TEE_MATTR_PRW | noncache;
775 	case MEM_AREA_IO_SEC:
776 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
777 	case MEM_AREA_RAM_NSEC:
778 		return attr | TEE_MATTR_PRW | cached;
779 	case MEM_AREA_RAM_SEC:
780 	case MEM_AREA_SEC_RAM_OVERALL:
781 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
782 	case MEM_AREA_ROM_SEC:
783 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
784 	case MEM_AREA_RES_VASPACE:
785 	case MEM_AREA_SHM_VASPACE:
786 		return 0;
787 	case MEM_AREA_PAGER_VASPACE:
788 		return TEE_MATTR_SECURE;
789 	default:
790 		panic("invalid type");
791 	}
792 }
793 
794 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
795 {
796 	switch (mm->type) {
797 	case MEM_AREA_TEE_RAM:
798 	case MEM_AREA_TEE_RAM_RX:
799 	case MEM_AREA_TEE_RAM_RO:
800 	case MEM_AREA_TEE_RAM_RW:
801 	case MEM_AREA_INIT_RAM_RX:
802 	case MEM_AREA_INIT_RAM_RO:
803 	case MEM_AREA_NEX_RAM_RW:
804 	case MEM_AREA_NEX_RAM_RO:
805 	case MEM_AREA_TEE_ASAN:
806 		return true;
807 	default:
808 		return false;
809 	}
810 }
811 
812 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
813 {
814 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
815 }
816 
817 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
818 {
819 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
820 }
821 
822 static int cmp_mmap_by_lower_va(const void *a, const void *b)
823 {
824 	const struct tee_mmap_region *mm_a = a;
825 	const struct tee_mmap_region *mm_b = b;
826 
827 	return CMP_TRILEAN(mm_a->va, mm_b->va);
828 }
829 
830 static void dump_mmap_table(struct tee_mmap_region *memory_map)
831 {
832 	struct tee_mmap_region *map;
833 
834 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
835 		vaddr_t __maybe_unused vstart;
836 
837 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
838 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
839 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
840 		     teecore_memtype_name(map->type), vstart,
841 		     vstart + map->size - 1, map->pa,
842 		     (paddr_t)(map->pa + map->size - 1), map->size,
843 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
844 	}
845 }
846 
847 #if DEBUG_XLAT_TABLE
848 
849 static void dump_xlat_table(vaddr_t va, unsigned int level)
850 {
851 	struct core_mmu_table_info tbl_info;
852 	unsigned int idx = 0;
853 	paddr_t pa;
854 	uint32_t attr;
855 
856 	core_mmu_find_table(NULL, va, level, &tbl_info);
857 	va = tbl_info.va_base;
858 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
859 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
860 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
861 			const char *security_bit = "";
862 
863 			if (core_mmu_entry_have_security_bit(attr)) {
864 				if (attr & TEE_MATTR_SECURE)
865 					security_bit = "S";
866 				else
867 					security_bit = "NS";
868 			}
869 
870 			if (attr & TEE_MATTR_TABLE) {
871 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
872 					" TBL:0x%010" PRIxPA " %s",
873 					level * 2, "", level, va, pa,
874 					security_bit);
875 				dump_xlat_table(va, level + 1);
876 			} else if (attr) {
877 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
878 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
879 					level * 2, "", level, va, pa,
880 					mattr_is_cached(attr) ? "MEM" :
881 					"DEV",
882 					attr & TEE_MATTR_PW ? "RW" : "RO",
883 					attr & TEE_MATTR_PX ? "X " : "XN",
884 					security_bit);
885 			} else {
886 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
887 					    " INVALID\n",
888 					    level * 2, "", level, va);
889 			}
890 		}
891 		va += BIT64(tbl_info.shift);
892 	}
893 }
894 
895 #else
896 
897 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
898 {
899 }
900 
901 #endif
902 
903 /*
904  * Reserves virtual memory space for pager usage.
905  *
906  * From the start of the first memory used by the link script +
907  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
908  * mapping for pager usage. This adds translation tables as needed for the
909  * pager to operate.
910  */
911 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems,
912 			      size_t *last)
913 {
914 	paddr_t begin = 0;
915 	paddr_t end = 0;
916 	size_t size = 0;
917 	size_t pos = 0;
918 	size_t n = 0;
919 
920 	if (*last >= (num_elems - 1)) {
921 		EMSG("Out of entries (%zu) in memory map", num_elems);
922 		panic();
923 	}
924 
925 	for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) {
926 		if (map_is_tee_ram(mmap + n)) {
927 			if (!begin)
928 				begin = mmap[n].pa;
929 			pos = n + 1;
930 		}
931 	}
932 
933 	end = mmap[pos - 1].pa + mmap[pos - 1].size;
934 	assert(end - begin < TEE_RAM_VA_SIZE);
935 	size = TEE_RAM_VA_SIZE - (end - begin);
936 
937 	assert(pos <= *last);
938 	memmove(mmap + pos + 1, mmap + pos,
939 		sizeof(struct tee_mmap_region) * (*last - pos));
940 	(*last)++;
941 	memset(mmap + pos, 0, sizeof(mmap[0]));
942 	mmap[pos].type = MEM_AREA_PAGER_VASPACE;
943 	mmap[pos].va = 0;
944 	mmap[pos].size = size;
945 	mmap[pos].region_size = SMALL_PAGE_SIZE;
946 	mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE);
947 }
948 
949 static void check_sec_nsec_mem_config(void)
950 {
951 	size_t n = 0;
952 
953 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
954 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
955 				    secure_only[n].size))
956 			panic("Invalid memory access config: sec/nsec");
957 	}
958 }
959 
960 static void collect_device_mem_ranges(struct tee_mmap_region *memory_map,
961 				      size_t num_elems, size_t *last)
962 {
963 	const char *compatible = "arm,ffa-manifest-device-regions";
964 	void *fdt = get_manifest_dt();
965 	const char *name = NULL;
966 	uint64_t page_count = 0;
967 	uint64_t base = 0;
968 	int subnode = 0;
969 	int node = 0;
970 
971 	node = fdt_node_offset_by_compatible(fdt, 0, compatible);
972 	if (node < 0)
973 		return;
974 
975 	fdt_for_each_subnode(subnode, fdt, node) {
976 		name = fdt_get_name(fdt, subnode, NULL);
977 		if (!name)
978 			continue;
979 
980 		if (dt_getprop_as_number(fdt, subnode, "base-address",
981 					 &base)) {
982 			EMSG("Mandatory field is missing: base-address");
983 			continue;
984 		}
985 
986 		if (base & SMALL_PAGE_MASK) {
987 			EMSG("base-address is not page aligned");
988 			continue;
989 		}
990 
991 		if (dt_getprop_as_number(fdt, subnode, "pages-count",
992 					 &page_count)) {
993 			EMSG("Mandatory field is missing: pages-count");
994 			continue;
995 		}
996 
997 		add_phys_mem(memory_map, num_elems, name, MEM_AREA_IO_SEC,
998 			     base, base + page_count * SMALL_PAGE_SIZE, last);
999 	}
1000 }
1001 
1002 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map,
1003 				 size_t num_elems)
1004 {
1005 	const struct core_mmu_phys_mem *mem = NULL;
1006 	vaddr_t ram_start = secure_only[0].paddr;
1007 	size_t last = 0;
1008 
1009 
1010 #define ADD_PHYS_MEM(_type, _addr, _size) \
1011 		add_phys_mem(memory_map, num_elems, #_addr, (_type), \
1012 			     (_addr), (_size),  &last)
1013 
1014 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
1015 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start,
1016 			     VCORE_UNPG_RX_PA - ram_start);
1017 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
1018 			     VCORE_UNPG_RX_SZ);
1019 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
1020 			     VCORE_UNPG_RO_SZ);
1021 
1022 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1023 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
1024 				     VCORE_UNPG_RW_SZ);
1025 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
1026 				     VCORE_NEX_RW_SZ);
1027 		} else {
1028 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
1029 				     VCORE_UNPG_RW_SZ);
1030 		}
1031 
1032 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1033 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
1034 				     VCORE_INIT_RX_SZ);
1035 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
1036 				     VCORE_INIT_RO_SZ);
1037 		}
1038 	} else {
1039 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
1040 	}
1041 
1042 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1043 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
1044 			     TRUSTED_DRAM_SIZE);
1045 	} else {
1046 		/*
1047 		 * Every guest will have own TA RAM if virtualization
1048 		 * support is enabled.
1049 		 */
1050 		paddr_t ta_base = 0;
1051 		size_t ta_size = 0;
1052 
1053 		core_mmu_get_ta_range(&ta_base, &ta_size);
1054 		ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size);
1055 	}
1056 
1057 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
1058 	    IS_ENABLED(CFG_WITH_PAGER)) {
1059 		/*
1060 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
1061 		 * disabled.
1062 		 */
1063 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1064 	}
1065 
1066 #undef ADD_PHYS_MEM
1067 
1068 	/* Collect device memory info from SP manifest */
1069 	if (IS_ENABLED(CFG_CORE_SEL2_SPMC))
1070 		collect_device_mem_ranges(memory_map, num_elems, &last);
1071 
1072 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1073 		/* Only unmapped virtual range may have a null phys addr */
1074 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1075 
1076 		add_phys_mem(memory_map, num_elems, mem->name, mem->type,
1077 			     mem->addr, mem->size, &last);
1078 	}
1079 
1080 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1081 		verify_special_mem_areas(memory_map, phys_sdp_mem_begin,
1082 					 phys_sdp_mem_end, "SDP");
1083 
1084 	add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE,
1085 		     CFG_RESERVED_VASPACE_SIZE, &last);
1086 
1087 	add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE,
1088 		     SHM_VASPACE_SIZE, &last);
1089 
1090 	memory_map[last].type = MEM_AREA_END;
1091 
1092 	return last;
1093 }
1094 
1095 static void assign_mem_granularity(struct tee_mmap_region *memory_map)
1096 {
1097 	struct tee_mmap_region *map = NULL;
1098 
1099 	/*
1100 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1101 	 * SMALL_PAGE_SIZE.
1102 	 */
1103 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1104 		paddr_t mask = map->pa | map->size;
1105 
1106 		if (!(mask & CORE_MMU_PGDIR_MASK))
1107 			map->region_size = CORE_MMU_PGDIR_SIZE;
1108 		else if (!(mask & SMALL_PAGE_MASK))
1109 			map->region_size = SMALL_PAGE_SIZE;
1110 		else
1111 			panic("Impossible memory alignment");
1112 
1113 		if (map_is_tee_ram(map))
1114 			map->region_size = SMALL_PAGE_SIZE;
1115 	}
1116 }
1117 
1118 static bool place_tee_ram_at_top(paddr_t paddr)
1119 {
1120 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1121 }
1122 
1123 /*
1124  * MMU arch driver shall override this function if it helps
1125  * optimizing the memory footprint of the address translation tables.
1126  */
1127 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1128 {
1129 	return place_tee_ram_at_top(paddr);
1130 }
1131 
1132 static bool assign_mem_va_dir(vaddr_t tee_ram_va,
1133 			      struct tee_mmap_region *memory_map,
1134 			      bool tee_ram_at_top)
1135 {
1136 	struct tee_mmap_region *map = NULL;
1137 	vaddr_t va = 0;
1138 	bool va_is_secure = true;
1139 
1140 	/*
1141 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1142 	 * 0 is by design an invalid va, so return false directly.
1143 	 */
1144 	if (!tee_ram_va)
1145 		return false;
1146 
1147 	/* Clear eventual previous assignments */
1148 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1149 		map->va = 0;
1150 
1151 	/*
1152 	 * TEE RAM regions are always aligned with region_size.
1153 	 *
1154 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1155 	 * since it handles virtual memory which covers the part of the ELF
1156 	 * that cannot fit directly into memory.
1157 	 */
1158 	va = tee_ram_va;
1159 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1160 		if (map_is_tee_ram(map) ||
1161 		    map->type == MEM_AREA_PAGER_VASPACE) {
1162 			assert(!(va & (map->region_size - 1)));
1163 			assert(!(map->size & (map->region_size - 1)));
1164 			map->va = va;
1165 			if (ADD_OVERFLOW(va, map->size, &va))
1166 				return false;
1167 			if (va >= BIT64(core_mmu_get_va_width()))
1168 				return false;
1169 		}
1170 	}
1171 
1172 	if (tee_ram_at_top) {
1173 		/*
1174 		 * Map non-tee ram regions at addresses lower than the tee
1175 		 * ram region.
1176 		 */
1177 		va = tee_ram_va;
1178 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1179 			map->attr = core_mmu_type_to_attr(map->type);
1180 			if (map->va)
1181 				continue;
1182 
1183 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1184 			    va_is_secure != map_is_secure(map)) {
1185 				va_is_secure = !va_is_secure;
1186 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1187 			}
1188 
1189 			if (SUB_OVERFLOW(va, map->size, &va))
1190 				return false;
1191 			va = ROUNDDOWN(va, map->region_size);
1192 			/*
1193 			 * Make sure that va is aligned with pa for
1194 			 * efficient pgdir mapping. Basically pa &
1195 			 * pgdir_mask should be == va & pgdir_mask
1196 			 */
1197 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1198 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1199 					return false;
1200 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1201 			}
1202 			map->va = va;
1203 		}
1204 	} else {
1205 		/*
1206 		 * Map non-tee ram regions at addresses higher than the tee
1207 		 * ram region.
1208 		 */
1209 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1210 			map->attr = core_mmu_type_to_attr(map->type);
1211 			if (map->va)
1212 				continue;
1213 
1214 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1215 			    va_is_secure != map_is_secure(map)) {
1216 				va_is_secure = !va_is_secure;
1217 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1218 						     &va))
1219 					return false;
1220 			}
1221 
1222 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1223 				return false;
1224 			/*
1225 			 * Make sure that va is aligned with pa for
1226 			 * efficient pgdir mapping. Basically pa &
1227 			 * pgdir_mask should be == va & pgdir_mask
1228 			 */
1229 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1230 				vaddr_t offs = (map->pa - va) &
1231 					       CORE_MMU_PGDIR_MASK;
1232 
1233 				if (ADD_OVERFLOW(va, offs, &va))
1234 					return false;
1235 			}
1236 
1237 			map->va = va;
1238 			if (ADD_OVERFLOW(va, map->size, &va))
1239 				return false;
1240 			if (va >= BIT64(core_mmu_get_va_width()))
1241 				return false;
1242 		}
1243 	}
1244 
1245 	return true;
1246 }
1247 
1248 static bool assign_mem_va(vaddr_t tee_ram_va,
1249 			  struct tee_mmap_region *memory_map)
1250 {
1251 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1252 
1253 	/*
1254 	 * Check that we're not overlapping with the user VA range.
1255 	 */
1256 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1257 		/*
1258 		 * User VA range is supposed to be defined after these
1259 		 * mappings have been established.
1260 		 */
1261 		assert(!core_mmu_user_va_range_is_defined());
1262 	} else {
1263 		vaddr_t user_va_base = 0;
1264 		size_t user_va_size = 0;
1265 
1266 		assert(core_mmu_user_va_range_is_defined());
1267 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1268 		if (tee_ram_va < (user_va_base + user_va_size))
1269 			return false;
1270 	}
1271 
1272 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1273 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1274 
1275 		/* Try whole mapping covered by a single base xlat entry */
1276 		if (prefered_dir != tee_ram_at_top &&
1277 		    assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir))
1278 			return true;
1279 	}
1280 
1281 	return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top);
1282 }
1283 
1284 static int cmp_init_mem_map(const void *a, const void *b)
1285 {
1286 	const struct tee_mmap_region *mm_a = a;
1287 	const struct tee_mmap_region *mm_b = b;
1288 	int rc = 0;
1289 
1290 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1291 	if (!rc)
1292 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1293 	/*
1294 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1295 	 * the same level2 table. Hence sort secure mapping from non-secure
1296 	 * mapping.
1297 	 */
1298 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1299 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1300 
1301 	return rc;
1302 }
1303 
1304 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map,
1305 			       size_t num_elems, size_t *last,
1306 			       vaddr_t id_map_start, vaddr_t id_map_end)
1307 {
1308 	struct tee_mmap_region *map = NULL;
1309 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1310 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1311 	size_t len = end - start;
1312 
1313 	if (*last >= num_elems - 1) {
1314 		EMSG("Out of entries (%zu) in memory map", num_elems);
1315 		panic();
1316 	}
1317 
1318 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1319 		if (core_is_buffer_intersect(map->va, map->size, start, len))
1320 			return false;
1321 
1322 	*map = (struct tee_mmap_region){
1323 		.type = MEM_AREA_IDENTITY_MAP_RX,
1324 		/*
1325 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1326 		 * translation table, at the increased risk of clashes with
1327 		 * the rest of the memory map.
1328 		 */
1329 		.region_size = SMALL_PAGE_SIZE,
1330 		.pa = start,
1331 		.va = start,
1332 		.size = len,
1333 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1334 	};
1335 
1336 	(*last)++;
1337 
1338 	return true;
1339 }
1340 
1341 static unsigned long init_mem_map(struct tee_mmap_region *memory_map,
1342 				  size_t num_elems, unsigned long seed)
1343 {
1344 	/*
1345 	 * @id_map_start and @id_map_end describes a physical memory range
1346 	 * that must be mapped Read-Only eXecutable at identical virtual
1347 	 * addresses.
1348 	 */
1349 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1350 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1351 	vaddr_t start_addr = secure_only[0].paddr;
1352 	unsigned long offs = 0;
1353 	size_t last = 0;
1354 
1355 	last = collect_mem_ranges(memory_map, num_elems);
1356 	assign_mem_granularity(memory_map);
1357 
1358 	/*
1359 	 * To ease mapping and lower use of xlat tables, sort mapping
1360 	 * description moving small-page regions after the pgdir regions.
1361 	 */
1362 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1363 	      cmp_init_mem_map);
1364 
1365 	if (IS_ENABLED(CFG_WITH_PAGER))
1366 		add_pager_vaspace(memory_map, num_elems, &last);
1367 
1368 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1369 		vaddr_t base_addr = start_addr + seed;
1370 		const unsigned int va_width = core_mmu_get_va_width();
1371 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1372 						   SMALL_PAGE_SHIFT);
1373 		vaddr_t ba = base_addr;
1374 		size_t n = 0;
1375 
1376 		for (n = 0; n < 3; n++) {
1377 			if (n)
1378 				ba = base_addr ^ BIT64(va_width - n);
1379 			ba &= va_mask;
1380 			if (assign_mem_va(ba, memory_map) &&
1381 			    mem_map_add_id_map(memory_map, num_elems, &last,
1382 					       id_map_start, id_map_end)) {
1383 				offs = ba - start_addr;
1384 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1385 				     ba, offs);
1386 				goto out;
1387 			} else {
1388 				DMSG("Failed to map core at %#"PRIxVA, ba);
1389 			}
1390 		}
1391 		EMSG("Failed to map core with seed %#lx", seed);
1392 	}
1393 
1394 	if (!assign_mem_va(start_addr, memory_map))
1395 		panic();
1396 
1397 out:
1398 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1399 	      cmp_mmap_by_lower_va);
1400 
1401 	dump_mmap_table(memory_map);
1402 
1403 	return offs;
1404 }
1405 
1406 static void check_mem_map(struct tee_mmap_region *map)
1407 {
1408 	struct tee_mmap_region *m = NULL;
1409 
1410 	for (m = map; !core_mmap_is_end_of_table(m); m++) {
1411 		switch (m->type) {
1412 		case MEM_AREA_TEE_RAM:
1413 		case MEM_AREA_TEE_RAM_RX:
1414 		case MEM_AREA_TEE_RAM_RO:
1415 		case MEM_AREA_TEE_RAM_RW:
1416 		case MEM_AREA_INIT_RAM_RX:
1417 		case MEM_AREA_INIT_RAM_RO:
1418 		case MEM_AREA_NEX_RAM_RW:
1419 		case MEM_AREA_NEX_RAM_RO:
1420 		case MEM_AREA_IDENTITY_MAP_RX:
1421 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1422 				panic("TEE_RAM can't fit in secure_only");
1423 			break;
1424 		case MEM_AREA_TA_RAM:
1425 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1426 				panic("TA_RAM can't fit in secure_only");
1427 			break;
1428 		case MEM_AREA_NSEC_SHM:
1429 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1430 				panic("NS_SHM can't fit in nsec_shared");
1431 			break;
1432 		case MEM_AREA_SEC_RAM_OVERALL:
1433 		case MEM_AREA_TEE_COHERENT:
1434 		case MEM_AREA_TEE_ASAN:
1435 		case MEM_AREA_IO_SEC:
1436 		case MEM_AREA_IO_NSEC:
1437 		case MEM_AREA_EXT_DT:
1438 		case MEM_AREA_MANIFEST_DT:
1439 		case MEM_AREA_TRANSFER_LIST:
1440 		case MEM_AREA_RAM_SEC:
1441 		case MEM_AREA_RAM_NSEC:
1442 		case MEM_AREA_RES_VASPACE:
1443 		case MEM_AREA_SHM_VASPACE:
1444 		case MEM_AREA_PAGER_VASPACE:
1445 			break;
1446 		default:
1447 			EMSG("Uhandled memtype %d", m->type);
1448 			panic();
1449 		}
1450 	}
1451 }
1452 
1453 static struct tee_mmap_region *get_tmp_mmap(void)
1454 {
1455 	struct tee_mmap_region *tmp_mmap = (void *)__heap1_start;
1456 
1457 #ifdef CFG_WITH_PAGER
1458 	if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map))
1459 		tmp_mmap = (void *)__heap2_start;
1460 #endif
1461 
1462 	memset(tmp_mmap, 0, sizeof(static_memory_map));
1463 
1464 	return tmp_mmap;
1465 }
1466 
1467 /*
1468  * core_init_mmu_map() - init tee core default memory mapping
1469  *
1470  * This routine sets the static default TEE core mapping. If @seed is > 0
1471  * and configured with CFG_CORE_ASLR it will map tee core at a location
1472  * based on the seed and return the offset from the link address.
1473  *
1474  * If an error happened: core_init_mmu_map is expected to panic.
1475  *
1476  * Note: this function is weak just to make it possible to exclude it from
1477  * the unpaged area.
1478  */
1479 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1480 {
1481 #ifndef CFG_NS_VIRTUALIZATION
1482 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1483 #else
1484 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1485 				  SMALL_PAGE_SIZE);
1486 #endif
1487 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1488 	struct tee_mmap_region *tmp_mmap = get_tmp_mmap();
1489 	unsigned long offs = 0;
1490 
1491 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1492 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1493 		panic("OP-TEE load address is not page aligned");
1494 
1495 	check_sec_nsec_mem_config();
1496 
1497 	/*
1498 	 * Add a entry covering the translation tables which will be
1499 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1500 	 */
1501 	static_memory_map[0] = (struct tee_mmap_region){
1502 		.type = MEM_AREA_TEE_RAM,
1503 		.region_size = SMALL_PAGE_SIZE,
1504 		.pa = start,
1505 		.va = start,
1506 		.size = len,
1507 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1508 	};
1509 
1510 	COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13);
1511 	offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed);
1512 
1513 	check_mem_map(tmp_mmap);
1514 	core_init_mmu(tmp_mmap);
1515 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1516 	core_init_mmu_regs(cfg);
1517 	cfg->map_offset = offs;
1518 	memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map));
1519 }
1520 
1521 bool core_mmu_mattr_is_ok(uint32_t mattr)
1522 {
1523 	/*
1524 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1525 	 * core_mmu_v7.c:mattr_to_texcb
1526 	 */
1527 
1528 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1529 	case TEE_MATTR_MEM_TYPE_DEV:
1530 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1531 	case TEE_MATTR_MEM_TYPE_CACHED:
1532 	case TEE_MATTR_MEM_TYPE_TAGGED:
1533 		return true;
1534 	default:
1535 		return false;
1536 	}
1537 }
1538 
1539 /*
1540  * test attributes of target physical buffer
1541  *
1542  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1543  *
1544  */
1545 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1546 {
1547 	paddr_t ta_base = 0;
1548 	size_t ta_size = 0;
1549 	struct tee_mmap_region *map;
1550 
1551 	/* Empty buffers complies with anything */
1552 	if (len == 0)
1553 		return true;
1554 
1555 	switch (attr) {
1556 	case CORE_MEM_SEC:
1557 		return pbuf_is_inside(secure_only, pbuf, len);
1558 	case CORE_MEM_NON_SEC:
1559 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1560 			pbuf_is_nsec_ddr(pbuf, len);
1561 	case CORE_MEM_TEE_RAM:
1562 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1563 							TEE_RAM_PH_SIZE);
1564 	case CORE_MEM_TA_RAM:
1565 		core_mmu_get_ta_range(&ta_base, &ta_size);
1566 		return core_is_buffer_inside(pbuf, len, ta_base, ta_size);
1567 #ifdef CFG_CORE_RESERVED_SHM
1568 	case CORE_MEM_NSEC_SHM:
1569 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1570 							TEE_SHMEM_SIZE);
1571 #endif
1572 	case CORE_MEM_SDP_MEM:
1573 		return pbuf_is_sdp_mem(pbuf, len);
1574 	case CORE_MEM_CACHED:
1575 		map = find_map_by_pa(pbuf);
1576 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1577 			return false;
1578 		return mattr_is_cached(map->attr);
1579 	default:
1580 		return false;
1581 	}
1582 }
1583 
1584 /* test attributes of target virtual buffer (in core mapping) */
1585 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1586 {
1587 	paddr_t p;
1588 
1589 	/* Empty buffers complies with anything */
1590 	if (len == 0)
1591 		return true;
1592 
1593 	p = virt_to_phys((void *)vbuf);
1594 	if (!p)
1595 		return false;
1596 
1597 	return core_pbuf_is(attr, p, len);
1598 }
1599 
1600 /* core_va2pa - teecore exported service */
1601 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1602 {
1603 	struct tee_mmap_region *map;
1604 
1605 	map = find_map_by_va(va);
1606 	if (!va_is_in_map(map, (vaddr_t)va))
1607 		return -1;
1608 
1609 	/*
1610 	 * We can calculate PA for static map. Virtual address ranges
1611 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1612 	 * together with an invalid null physical address.
1613 	 */
1614 	if (map->pa)
1615 		*pa = map->pa + (vaddr_t)va  - map->va;
1616 	else
1617 		*pa = 0;
1618 
1619 	return 0;
1620 }
1621 
1622 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1623 {
1624 	if (!pa_is_in_map(map, pa, len))
1625 		return NULL;
1626 
1627 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1628 }
1629 
1630 /*
1631  * teecore gets some memory area definitions
1632  */
1633 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1634 			      vaddr_t *e)
1635 {
1636 	struct tee_mmap_region *map = find_map_by_type(type);
1637 
1638 	if (map) {
1639 		*s = map->va;
1640 		*e = map->va + map->size;
1641 	} else {
1642 		*s = 0;
1643 		*e = 0;
1644 	}
1645 }
1646 
1647 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1648 {
1649 	struct tee_mmap_region *map = find_map_by_pa(pa);
1650 
1651 	if (!map)
1652 		return MEM_AREA_MAXTYPE;
1653 	return map->type;
1654 }
1655 
1656 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1657 			paddr_t pa, uint32_t attr)
1658 {
1659 	assert(idx < tbl_info->num_entries);
1660 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1661 				     idx, pa, attr);
1662 }
1663 
1664 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1665 			paddr_t *pa, uint32_t *attr)
1666 {
1667 	assert(idx < tbl_info->num_entries);
1668 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1669 				     idx, pa, attr);
1670 }
1671 
1672 static void clear_region(struct core_mmu_table_info *tbl_info,
1673 			 struct tee_mmap_region *region)
1674 {
1675 	unsigned int end = 0;
1676 	unsigned int idx = 0;
1677 
1678 	/* va, len and pa should be block aligned */
1679 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1680 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1681 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1682 
1683 	idx = core_mmu_va2idx(tbl_info, region->va);
1684 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1685 
1686 	while (idx < end) {
1687 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1688 		idx++;
1689 	}
1690 }
1691 
1692 static void set_region(struct core_mmu_table_info *tbl_info,
1693 		       struct tee_mmap_region *region)
1694 {
1695 	unsigned int end;
1696 	unsigned int idx;
1697 	paddr_t pa;
1698 
1699 	/* va, len and pa should be block aligned */
1700 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1701 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1702 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1703 
1704 	idx = core_mmu_va2idx(tbl_info, region->va);
1705 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1706 	pa = region->pa;
1707 
1708 	while (idx < end) {
1709 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1710 		idx++;
1711 		pa += BIT64(tbl_info->shift);
1712 	}
1713 }
1714 
1715 static void set_pg_region(struct core_mmu_table_info *dir_info,
1716 			  struct vm_region *region, struct pgt **pgt,
1717 			  struct core_mmu_table_info *pg_info)
1718 {
1719 	struct tee_mmap_region r = {
1720 		.va = region->va,
1721 		.size = region->size,
1722 		.attr = region->attr,
1723 	};
1724 	vaddr_t end = r.va + r.size;
1725 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1726 
1727 	while (r.va < end) {
1728 		if (!pg_info->table ||
1729 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1730 			/*
1731 			 * We're assigning a new translation table.
1732 			 */
1733 			unsigned int idx;
1734 
1735 			/* Virtual addresses must grow */
1736 			assert(r.va > pg_info->va_base);
1737 
1738 			idx = core_mmu_va2idx(dir_info, r.va);
1739 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1740 
1741 			/*
1742 			 * Advance pgt to va_base, note that we may need to
1743 			 * skip multiple page tables if there are large
1744 			 * holes in the vm map.
1745 			 */
1746 			while ((*pgt)->vabase < pg_info->va_base) {
1747 				*pgt = SLIST_NEXT(*pgt, link);
1748 				/* We should have allocated enough */
1749 				assert(*pgt);
1750 			}
1751 			assert((*pgt)->vabase == pg_info->va_base);
1752 			pg_info->table = (*pgt)->tbl;
1753 
1754 			core_mmu_set_entry(dir_info, idx,
1755 					   virt_to_phys(pg_info->table),
1756 					   pgt_attr);
1757 		}
1758 
1759 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1760 			     end - r.va);
1761 
1762 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1763 			size_t granule = BIT(pg_info->shift);
1764 			size_t offset = r.va - region->va + region->offset;
1765 
1766 			r.size = MIN(r.size,
1767 				     mobj_get_phys_granule(region->mobj));
1768 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1769 
1770 			if (mobj_get_pa(region->mobj, offset, granule,
1771 					&r.pa) != TEE_SUCCESS)
1772 				panic("Failed to get PA of unpaged mobj");
1773 			set_region(pg_info, &r);
1774 		}
1775 		r.va += r.size;
1776 	}
1777 }
1778 
1779 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1780 			     size_t size_left, paddr_t block_size,
1781 			     struct tee_mmap_region *mm __maybe_unused)
1782 {
1783 	/* VA and PA are aligned to block size at current level */
1784 	if ((vaddr | paddr) & (block_size - 1))
1785 		return false;
1786 
1787 	/* Remainder fits into block at current level */
1788 	if (size_left < block_size)
1789 		return false;
1790 
1791 #ifdef CFG_WITH_PAGER
1792 	/*
1793 	 * If pager is enabled, we need to map tee ram
1794 	 * regions with small pages only
1795 	 */
1796 	if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE)
1797 		return false;
1798 #endif
1799 
1800 	return true;
1801 }
1802 
1803 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1804 {
1805 	struct core_mmu_table_info tbl_info;
1806 	unsigned int idx;
1807 	vaddr_t vaddr = mm->va;
1808 	paddr_t paddr = mm->pa;
1809 	ssize_t size_left = mm->size;
1810 	unsigned int level;
1811 	bool table_found;
1812 	uint32_t old_attr;
1813 
1814 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1815 
1816 	while (size_left > 0) {
1817 		level = CORE_MMU_BASE_TABLE_LEVEL;
1818 
1819 		while (true) {
1820 			paddr_t block_size = 0;
1821 
1822 			assert(core_mmu_level_in_range(level));
1823 
1824 			table_found = core_mmu_find_table(prtn, vaddr, level,
1825 							  &tbl_info);
1826 			if (!table_found)
1827 				panic("can't find table for mapping");
1828 
1829 			block_size = BIT64(tbl_info.shift);
1830 
1831 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1832 			if (!can_map_at_level(paddr, vaddr, size_left,
1833 					      block_size, mm)) {
1834 				bool secure = mm->attr & TEE_MATTR_SECURE;
1835 
1836 				/*
1837 				 * This part of the region can't be mapped at
1838 				 * this level. Need to go deeper.
1839 				 */
1840 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1841 								     idx,
1842 								     secure))
1843 					panic("Can't divide MMU entry");
1844 				level = tbl_info.next_level;
1845 				continue;
1846 			}
1847 
1848 			/* We can map part of the region at current level */
1849 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1850 			if (old_attr)
1851 				panic("Page is already mapped");
1852 
1853 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1854 			paddr += block_size;
1855 			vaddr += block_size;
1856 			size_left -= block_size;
1857 
1858 			break;
1859 		}
1860 	}
1861 }
1862 
1863 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1864 			      enum teecore_memtypes memtype)
1865 {
1866 	TEE_Result ret;
1867 	struct core_mmu_table_info tbl_info;
1868 	struct tee_mmap_region *mm;
1869 	unsigned int idx;
1870 	uint32_t old_attr;
1871 	uint32_t exceptions;
1872 	vaddr_t vaddr = vstart;
1873 	size_t i;
1874 	bool secure;
1875 
1876 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1877 
1878 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1879 
1880 	if (vaddr & SMALL_PAGE_MASK)
1881 		return TEE_ERROR_BAD_PARAMETERS;
1882 
1883 	exceptions = mmu_lock();
1884 
1885 	mm = find_map_by_va((void *)vaddr);
1886 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1887 		panic("VA does not belong to any known mm region");
1888 
1889 	if (!core_mmu_is_dynamic_vaspace(mm))
1890 		panic("Trying to map into static region");
1891 
1892 	for (i = 0; i < num_pages; i++) {
1893 		if (pages[i] & SMALL_PAGE_MASK) {
1894 			ret = TEE_ERROR_BAD_PARAMETERS;
1895 			goto err;
1896 		}
1897 
1898 		while (true) {
1899 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1900 						 &tbl_info))
1901 				panic("Can't find pagetable for vaddr ");
1902 
1903 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1904 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1905 				break;
1906 
1907 			/* This is supertable. Need to divide it. */
1908 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1909 							     secure))
1910 				panic("Failed to spread pgdir on small tables");
1911 		}
1912 
1913 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1914 		if (old_attr)
1915 			panic("Page is already mapped");
1916 
1917 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1918 				   core_mmu_type_to_attr(memtype));
1919 		vaddr += SMALL_PAGE_SIZE;
1920 	}
1921 
1922 	/*
1923 	 * Make sure all the changes to translation tables are visible
1924 	 * before returning. TLB doesn't need to be invalidated as we are
1925 	 * guaranteed that there's no valid mapping in this range.
1926 	 */
1927 	core_mmu_table_write_barrier();
1928 	mmu_unlock(exceptions);
1929 
1930 	return TEE_SUCCESS;
1931 err:
1932 	mmu_unlock(exceptions);
1933 
1934 	if (i)
1935 		core_mmu_unmap_pages(vstart, i);
1936 
1937 	return ret;
1938 }
1939 
1940 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
1941 					 size_t num_pages,
1942 					 enum teecore_memtypes memtype)
1943 {
1944 	struct core_mmu_table_info tbl_info = { };
1945 	struct tee_mmap_region *mm = NULL;
1946 	unsigned int idx = 0;
1947 	uint32_t old_attr = 0;
1948 	uint32_t exceptions = 0;
1949 	vaddr_t vaddr = vstart;
1950 	paddr_t paddr = pstart;
1951 	size_t i = 0;
1952 	bool secure = false;
1953 
1954 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1955 
1956 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1957 
1958 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
1959 		return TEE_ERROR_BAD_PARAMETERS;
1960 
1961 	exceptions = mmu_lock();
1962 
1963 	mm = find_map_by_va((void *)vaddr);
1964 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1965 		panic("VA does not belong to any known mm region");
1966 
1967 	if (!core_mmu_is_dynamic_vaspace(mm))
1968 		panic("Trying to map into static region");
1969 
1970 	for (i = 0; i < num_pages; i++) {
1971 		while (true) {
1972 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1973 						 &tbl_info))
1974 				panic("Can't find pagetable for vaddr ");
1975 
1976 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1977 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1978 				break;
1979 
1980 			/* This is supertable. Need to divide it. */
1981 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1982 							     secure))
1983 				panic("Failed to spread pgdir on small tables");
1984 		}
1985 
1986 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1987 		if (old_attr)
1988 			panic("Page is already mapped");
1989 
1990 		core_mmu_set_entry(&tbl_info, idx, paddr,
1991 				   core_mmu_type_to_attr(memtype));
1992 		paddr += SMALL_PAGE_SIZE;
1993 		vaddr += SMALL_PAGE_SIZE;
1994 	}
1995 
1996 	/*
1997 	 * Make sure all the changes to translation tables are visible
1998 	 * before returning. TLB doesn't need to be invalidated as we are
1999 	 * guaranteed that there's no valid mapping in this range.
2000 	 */
2001 	core_mmu_table_write_barrier();
2002 	mmu_unlock(exceptions);
2003 
2004 	return TEE_SUCCESS;
2005 }
2006 
2007 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
2008 {
2009 	struct core_mmu_table_info tbl_info;
2010 	struct tee_mmap_region *mm;
2011 	size_t i;
2012 	unsigned int idx;
2013 	uint32_t exceptions;
2014 
2015 	exceptions = mmu_lock();
2016 
2017 	mm = find_map_by_va((void *)vstart);
2018 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
2019 		panic("VA does not belong to any known mm region");
2020 
2021 	if (!core_mmu_is_dynamic_vaspace(mm))
2022 		panic("Trying to unmap static region");
2023 
2024 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
2025 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
2026 			panic("Can't find pagetable");
2027 
2028 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
2029 			panic("Invalid pagetable level");
2030 
2031 		idx = core_mmu_va2idx(&tbl_info, vstart);
2032 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
2033 	}
2034 	tlbi_all();
2035 
2036 	mmu_unlock(exceptions);
2037 }
2038 
2039 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
2040 				struct user_mode_ctx *uctx)
2041 {
2042 	struct core_mmu_table_info pg_info = { };
2043 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
2044 	struct pgt *pgt = NULL;
2045 	struct pgt *p = NULL;
2046 	struct vm_region *r = NULL;
2047 
2048 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
2049 		return; /* Nothing to map */
2050 
2051 	/*
2052 	 * Allocate all page tables in advance.
2053 	 */
2054 	pgt_get_all(uctx);
2055 	pgt = SLIST_FIRST(pgt_cache);
2056 
2057 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2058 
2059 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2060 		set_pg_region(dir_info, r, &pgt, &pg_info);
2061 	/* Record that the translation tables now are populated. */
2062 	SLIST_FOREACH(p, pgt_cache, link) {
2063 		p->populated = true;
2064 		if (p == pgt)
2065 			break;
2066 	}
2067 	assert(p == pgt);
2068 }
2069 
2070 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2071 				   size_t len)
2072 {
2073 	struct core_mmu_table_info tbl_info = { };
2074 	struct tee_mmap_region *res_map = NULL;
2075 	struct tee_mmap_region *map = NULL;
2076 	paddr_t pa = virt_to_phys(addr);
2077 	size_t granule = 0;
2078 	ptrdiff_t i = 0;
2079 	paddr_t p = 0;
2080 	size_t l = 0;
2081 
2082 	map = find_map_by_type_and_pa(type, pa, len);
2083 	if (!map)
2084 		return TEE_ERROR_GENERIC;
2085 
2086 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2087 	if (!res_map)
2088 		return TEE_ERROR_GENERIC;
2089 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2090 		return TEE_ERROR_GENERIC;
2091 	granule = BIT(tbl_info.shift);
2092 
2093 	if (map < static_memory_map ||
2094 	    map >= static_memory_map + ARRAY_SIZE(static_memory_map))
2095 		return TEE_ERROR_GENERIC;
2096 	i = map - static_memory_map;
2097 
2098 	/* Check that we have a full match */
2099 	p = ROUNDDOWN(pa, granule);
2100 	l = ROUNDUP(len + pa - p, granule);
2101 	if (map->pa != p || map->size != l)
2102 		return TEE_ERROR_GENERIC;
2103 
2104 	clear_region(&tbl_info, map);
2105 	tlbi_all();
2106 
2107 	/* If possible remove the va range from res_map */
2108 	if (res_map->va - map->size == map->va) {
2109 		res_map->va -= map->size;
2110 		res_map->size += map->size;
2111 	}
2112 
2113 	/* Remove the entry. */
2114 	memmove(map, map + 1,
2115 		(ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map));
2116 
2117 	/* Clear the last new entry in case it was used */
2118 	memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1,
2119 	       0, sizeof(*map));
2120 
2121 	return TEE_SUCCESS;
2122 }
2123 
2124 struct tee_mmap_region *
2125 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2126 {
2127 	struct tee_mmap_region *map = NULL;
2128 	struct tee_mmap_region *map_found = NULL;
2129 
2130 	if (!len)
2131 		return NULL;
2132 
2133 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
2134 		if (map->type != type)
2135 			continue;
2136 
2137 		if (map_found)
2138 			return NULL;
2139 
2140 		map_found = map;
2141 	}
2142 
2143 	if (!map_found || map_found->size < len)
2144 		return NULL;
2145 
2146 	return map_found;
2147 }
2148 
2149 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2150 {
2151 	struct core_mmu_table_info tbl_info;
2152 	struct tee_mmap_region *map;
2153 	size_t n;
2154 	size_t granule;
2155 	paddr_t p;
2156 	size_t l;
2157 
2158 	if (!len)
2159 		return NULL;
2160 
2161 	if (!core_mmu_check_end_pa(addr, len))
2162 		return NULL;
2163 
2164 	/* Check if the memory is already mapped */
2165 	map = find_map_by_type_and_pa(type, addr, len);
2166 	if (map && pbuf_inside_map_area(addr, len, map))
2167 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2168 
2169 	/* Find the reserved va space used for late mappings */
2170 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2171 	if (!map)
2172 		return NULL;
2173 
2174 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2175 		return NULL;
2176 
2177 	granule = BIT64(tbl_info.shift);
2178 	p = ROUNDDOWN(addr, granule);
2179 	l = ROUNDUP(len + addr - p, granule);
2180 
2181 	/* Ban overflowing virtual addresses */
2182 	if (map->size < l)
2183 		return NULL;
2184 
2185 	/*
2186 	 * Something is wrong, we can't fit the va range into the selected
2187 	 * table. The reserved va range is possibly missaligned with
2188 	 * granule.
2189 	 */
2190 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2191 		return NULL;
2192 
2193 	/* Find end of the memory map */
2194 	n = 0;
2195 	while (!core_mmap_is_end_of_table(static_memory_map + n))
2196 		n++;
2197 
2198 	if (n < (ARRAY_SIZE(static_memory_map) - 1)) {
2199 		/* There's room for another entry */
2200 		static_memory_map[n].va = map->va;
2201 		static_memory_map[n].size = l;
2202 		static_memory_map[n + 1].type = MEM_AREA_END;
2203 		map->va += l;
2204 		map->size -= l;
2205 		map = static_memory_map + n;
2206 	} else {
2207 		/*
2208 		 * There isn't room for another entry, steal the reserved
2209 		 * entry as it's not useful for anything else any longer.
2210 		 */
2211 		map->size = l;
2212 	}
2213 	map->type = type;
2214 	map->region_size = granule;
2215 	map->attr = core_mmu_type_to_attr(type);
2216 	map->pa = p;
2217 
2218 	set_region(&tbl_info, map);
2219 
2220 	/* Make sure the new entry is visible before continuing. */
2221 	core_mmu_table_write_barrier();
2222 
2223 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2224 }
2225 
2226 #ifdef CFG_WITH_PAGER
2227 static vaddr_t get_linear_map_end_va(void)
2228 {
2229 	/* this is synced with the generic linker file kern.ld.S */
2230 	return (vaddr_t)__heap2_end;
2231 }
2232 
2233 static paddr_t get_linear_map_end_pa(void)
2234 {
2235 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2236 }
2237 #endif
2238 
2239 #if defined(CFG_TEE_CORE_DEBUG)
2240 static void check_pa_matches_va(void *va, paddr_t pa)
2241 {
2242 	TEE_Result res = TEE_ERROR_GENERIC;
2243 	vaddr_t v = (vaddr_t)va;
2244 	paddr_t p = 0;
2245 	struct core_mmu_table_info ti __maybe_unused = { };
2246 
2247 	if (core_mmu_user_va_range_is_defined()) {
2248 		vaddr_t user_va_base = 0;
2249 		size_t user_va_size = 0;
2250 
2251 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2252 		if (v >= user_va_base &&
2253 		    v <= (user_va_base - 1 + user_va_size)) {
2254 			if (!core_mmu_user_mapping_is_active()) {
2255 				if (pa)
2256 					panic("issue in linear address space");
2257 				return;
2258 			}
2259 
2260 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2261 				       va, &p);
2262 			if (res == TEE_ERROR_NOT_SUPPORTED)
2263 				return;
2264 			if (res == TEE_SUCCESS && pa != p)
2265 				panic("bad pa");
2266 			if (res != TEE_SUCCESS && pa)
2267 				panic("false pa");
2268 			return;
2269 		}
2270 	}
2271 #ifdef CFG_WITH_PAGER
2272 	if (is_unpaged(va)) {
2273 		if (v - boot_mmu_config.map_offset != pa)
2274 			panic("issue in linear address space");
2275 		return;
2276 	}
2277 
2278 	if (tee_pager_get_table_info(v, &ti)) {
2279 		uint32_t a;
2280 
2281 		/*
2282 		 * Lookups in the page table managed by the pager is
2283 		 * dangerous for addresses in the paged area as those pages
2284 		 * changes all the time. But some ranges are safe,
2285 		 * rw-locked areas when the page is populated for instance.
2286 		 */
2287 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2288 		if (a & TEE_MATTR_VALID_BLOCK) {
2289 			paddr_t mask = BIT64(ti.shift) - 1;
2290 
2291 			p |= v & mask;
2292 			if (pa != p)
2293 				panic();
2294 		} else {
2295 			if (pa)
2296 				panic();
2297 		}
2298 		return;
2299 	}
2300 #endif
2301 
2302 	if (!core_va2pa_helper(va, &p)) {
2303 		/* Verfiy only the static mapping (case non null phys addr) */
2304 		if (p && pa != p) {
2305 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2306 			     va, p, pa);
2307 			panic();
2308 		}
2309 	} else {
2310 		if (pa) {
2311 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2312 			panic();
2313 		}
2314 	}
2315 }
2316 #else
2317 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2318 {
2319 }
2320 #endif
2321 
2322 paddr_t virt_to_phys(void *va)
2323 {
2324 	paddr_t pa = 0;
2325 
2326 	if (!arch_va2pa_helper(va, &pa))
2327 		pa = 0;
2328 	check_pa_matches_va(va, pa);
2329 	return pa;
2330 }
2331 
2332 #if defined(CFG_TEE_CORE_DEBUG)
2333 static void check_va_matches_pa(paddr_t pa, void *va)
2334 {
2335 	paddr_t p = 0;
2336 
2337 	if (!va)
2338 		return;
2339 
2340 	p = virt_to_phys(va);
2341 	if (p != pa) {
2342 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2343 		panic();
2344 	}
2345 }
2346 #else
2347 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2348 {
2349 }
2350 #endif
2351 
2352 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2353 {
2354 	if (!core_mmu_user_mapping_is_active())
2355 		return NULL;
2356 
2357 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2358 }
2359 
2360 #ifdef CFG_WITH_PAGER
2361 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2362 {
2363 	paddr_t end_pa = 0;
2364 
2365 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2366 		return NULL;
2367 
2368 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2369 		if (end_pa > get_linear_map_end_pa())
2370 			return NULL;
2371 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2372 	}
2373 
2374 	return tee_pager_phys_to_virt(pa, len);
2375 }
2376 #else
2377 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2378 {
2379 	struct tee_mmap_region *mmap = NULL;
2380 
2381 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2382 	if (!mmap)
2383 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2384 	if (!mmap)
2385 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2386 	if (!mmap)
2387 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2388 	if (!mmap)
2389 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2390 	if (!mmap)
2391 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2392 	/*
2393 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2394 	 * used with pager and not needed here.
2395 	 */
2396 	return map_pa2va(mmap, pa, len);
2397 }
2398 #endif
2399 
2400 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2401 {
2402 	void *va = NULL;
2403 
2404 	switch (m) {
2405 	case MEM_AREA_TS_VASPACE:
2406 		va = phys_to_virt_ts_vaspace(pa, len);
2407 		break;
2408 	case MEM_AREA_TEE_RAM:
2409 	case MEM_AREA_TEE_RAM_RX:
2410 	case MEM_AREA_TEE_RAM_RO:
2411 	case MEM_AREA_TEE_RAM_RW:
2412 	case MEM_AREA_NEX_RAM_RO:
2413 	case MEM_AREA_NEX_RAM_RW:
2414 		va = phys_to_virt_tee_ram(pa, len);
2415 		break;
2416 	case MEM_AREA_SHM_VASPACE:
2417 		/* Find VA from PA in dynamic SHM is not yet supported */
2418 		va = NULL;
2419 		break;
2420 	default:
2421 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2422 	}
2423 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2424 		check_va_matches_pa(pa, va);
2425 	return va;
2426 }
2427 
2428 void *phys_to_virt_io(paddr_t pa, size_t len)
2429 {
2430 	struct tee_mmap_region *map = NULL;
2431 	void *va = NULL;
2432 
2433 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2434 	if (!map)
2435 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2436 	if (!map)
2437 		return NULL;
2438 	va = map_pa2va(map, pa, len);
2439 	check_va_matches_pa(pa, va);
2440 	return va;
2441 }
2442 
2443 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2444 {
2445 	if (cpu_mmu_enabled())
2446 		return (vaddr_t)phys_to_virt(pa, type, len);
2447 
2448 	return (vaddr_t)pa;
2449 }
2450 
2451 #ifdef CFG_WITH_PAGER
2452 bool is_unpaged(void *va)
2453 {
2454 	vaddr_t v = (vaddr_t)va;
2455 
2456 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2457 }
2458 #else
2459 bool is_unpaged(void *va __unused)
2460 {
2461 	return true;
2462 }
2463 #endif
2464 
2465 void core_mmu_init_virtualization(void)
2466 {
2467 	paddr_t b1 = 0;
2468 	paddr_size_t s1 = 0;
2469 
2470 	static_assert(ARRAY_SIZE(secure_only) <= 2);
2471 	if (ARRAY_SIZE(secure_only) == 2) {
2472 		b1 = secure_only[1].paddr;
2473 		s1 = secure_only[1].size;
2474 	}
2475 	virt_init_memory(static_memory_map, secure_only[0].paddr,
2476 			 secure_only[0].size, b1, s1);
2477 }
2478 
2479 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2480 {
2481 	assert(p->pa);
2482 	if (cpu_mmu_enabled()) {
2483 		if (!p->va)
2484 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2485 		assert(p->va);
2486 		return p->va;
2487 	}
2488 	return p->pa;
2489 }
2490 
2491 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2492 {
2493 	assert(p->pa);
2494 	if (cpu_mmu_enabled()) {
2495 		if (!p->va)
2496 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2497 						      len);
2498 		assert(p->va);
2499 		return p->va;
2500 	}
2501 	return p->pa;
2502 }
2503 
2504 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2505 {
2506 	assert(p->pa);
2507 	if (cpu_mmu_enabled()) {
2508 		if (!p->va)
2509 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2510 						      len);
2511 		assert(p->va);
2512 		return p->va;
2513 	}
2514 	return p->pa;
2515 }
2516 
2517 #ifdef CFG_CORE_RESERVED_SHM
2518 static TEE_Result teecore_init_pub_ram(void)
2519 {
2520 	vaddr_t s = 0;
2521 	vaddr_t e = 0;
2522 
2523 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2524 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2525 
2526 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2527 		panic("invalid PUB RAM");
2528 
2529 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2530 	if (!tee_vbuf_is_non_sec(s, e - s))
2531 		panic("PUB RAM is not non-secure");
2532 
2533 #ifdef CFG_PL310
2534 	/* Allocate statically the l2cc mutex */
2535 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2536 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2537 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2538 #endif
2539 
2540 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2541 	default_nsec_shm_size = e - s;
2542 
2543 	return TEE_SUCCESS;
2544 }
2545 early_init(teecore_init_pub_ram);
2546 #endif /*CFG_CORE_RESERVED_SHM*/
2547 
2548 void core_mmu_init_ta_ram(void)
2549 {
2550 	vaddr_t s = 0;
2551 	vaddr_t e = 0;
2552 	paddr_t ps = 0;
2553 	size_t size = 0;
2554 
2555 	/*
2556 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2557 	 * shared mem allocated from teecore.
2558 	 */
2559 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
2560 		virt_get_ta_ram(&s, &e);
2561 	else
2562 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2563 
2564 	ps = virt_to_phys((void *)s);
2565 	size = e - s;
2566 
2567 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2568 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2569 		panic("invalid TA RAM");
2570 
2571 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2572 	if (!tee_pbuf_is_sec(ps, size))
2573 		panic("TA RAM is not secure");
2574 
2575 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2576 		panic("TA RAM pool is not empty");
2577 
2578 	/* remove previous config and init TA ddr memory pool */
2579 	tee_mm_final(&tee_mm_sec_ddr);
2580 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2581 		    TEE_MM_POOL_NO_FLAGS);
2582 }
2583