1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016, 2022 Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved. 6 */ 7 8 #include <assert.h> 9 #include <config.h> 10 #include <kernel/boot.h> 11 #include <kernel/dt.h> 12 #include <kernel/linker.h> 13 #include <kernel/panic.h> 14 #include <kernel/spinlock.h> 15 #include <kernel/tee_l2cc_mutex.h> 16 #include <kernel/tee_misc.h> 17 #include <kernel/tlb_helpers.h> 18 #include <kernel/user_mode_ctx.h> 19 #include <kernel/virtualization.h> 20 #include <libfdt.h> 21 #include <mm/core_memprot.h> 22 #include <mm/core_mmu.h> 23 #include <mm/mobj.h> 24 #include <mm/pgt_cache.h> 25 #include <mm/tee_pager.h> 26 #include <mm/vm.h> 27 #include <platform_config.h> 28 #include <string.h> 29 #include <trace.h> 30 #include <util.h> 31 32 #ifndef DEBUG_XLAT_TABLE 33 #define DEBUG_XLAT_TABLE 0 34 #endif 35 36 #define SHM_VASPACE_SIZE (1024 * 1024 * 32) 37 38 #ifdef CFG_CORE_PHYS_RELOCATABLE 39 unsigned long core_mmu_tee_load_pa __nex_bss; 40 #else 41 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR; 42 #endif 43 44 /* 45 * These variables are initialized before .bss is cleared. To avoid 46 * resetting them when .bss is cleared we're storing them in .data instead, 47 * even if they initially are zero. 48 */ 49 50 #ifdef CFG_CORE_RESERVED_SHM 51 /* Default NSec shared memory allocated from NSec world */ 52 unsigned long default_nsec_shm_size __nex_bss; 53 unsigned long default_nsec_shm_paddr __nex_bss; 54 #endif 55 56 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS 57 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE) 58 + 1 59 #endif 60 + 1] __nex_bss; 61 62 /* Define the platform's memory layout. */ 63 struct memaccess_area { 64 paddr_t paddr; 65 size_t size; 66 }; 67 68 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } 69 70 static struct memaccess_area secure_only[] __nex_data = { 71 #ifdef CFG_CORE_PHYS_RELOCATABLE 72 MEMACCESS_AREA(0, 0), 73 #else 74 #ifdef TRUSTED_SRAM_BASE 75 MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), 76 #endif 77 MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), 78 #endif 79 }; 80 81 static struct memaccess_area nsec_shared[] __nex_data = { 82 #ifdef CFG_CORE_RESERVED_SHM 83 MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), 84 #endif 85 }; 86 87 #if defined(CFG_SECURE_DATA_PATH) 88 static const char *tz_sdp_match = "linaro,secure-heap"; 89 static struct memaccess_area sec_sdp; 90 #ifdef CFG_TEE_SDP_MEM_BASE 91 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); 92 #endif 93 #ifdef TEE_SDP_TEST_MEM_BASE 94 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); 95 #endif 96 #endif 97 98 #ifdef CFG_CORE_RESERVED_SHM 99 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); 100 #endif 101 static unsigned int mmu_spinlock; 102 103 static uint32_t mmu_lock(void) 104 { 105 return cpu_spin_lock_xsave(&mmu_spinlock); 106 } 107 108 static void mmu_unlock(uint32_t exceptions) 109 { 110 cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); 111 } 112 113 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size) 114 { 115 /* 116 * The first range is always used to cover OP-TEE core memory, but 117 * depending on configuration it may cover more than that. 118 */ 119 *base = secure_only[0].paddr; 120 *size = secure_only[0].size; 121 } 122 123 void core_mmu_set_secure_memory(paddr_t base, size_t size) 124 { 125 #ifdef CFG_CORE_PHYS_RELOCATABLE 126 static_assert(ARRAY_SIZE(secure_only) == 1); 127 #endif 128 runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)); 129 assert(!secure_only[0].size); 130 assert(base && size); 131 132 DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size); 133 secure_only[0].paddr = base; 134 secure_only[0].size = size; 135 } 136 137 void core_mmu_get_ta_range(paddr_t *base, size_t *size) 138 { 139 paddr_t b = 0; 140 size_t s = 0; 141 142 static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE)); 143 #ifdef TA_RAM_START 144 b = TA_RAM_START; 145 s = TA_RAM_SIZE; 146 #else 147 static_assert(ARRAY_SIZE(secure_only) <= 2); 148 if (ARRAY_SIZE(secure_only) == 1) { 149 vaddr_t load_offs = 0; 150 151 assert(core_mmu_tee_load_pa >= secure_only[0].paddr); 152 load_offs = core_mmu_tee_load_pa - secure_only[0].paddr; 153 154 assert(secure_only[0].size > 155 load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE); 156 b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE; 157 s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE - 158 TEE_SDP_TEST_MEM_SIZE; 159 } else { 160 assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE); 161 b = secure_only[1].paddr; 162 s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE; 163 } 164 #endif 165 if (base) 166 *base = b; 167 if (size) 168 *size = s; 169 } 170 171 static struct tee_mmap_region *get_memory_map(void) 172 { 173 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 174 struct tee_mmap_region *map = virt_get_memory_map(); 175 176 if (map) 177 return map; 178 } 179 180 return static_memory_map; 181 } 182 183 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, 184 paddr_t pa, size_t size) 185 { 186 size_t n; 187 188 for (n = 0; n < alen; n++) 189 if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) 190 return true; 191 return false; 192 } 193 194 #define pbuf_intersects(a, pa, size) \ 195 _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) 196 197 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, 198 paddr_t pa, size_t size) 199 { 200 size_t n; 201 202 for (n = 0; n < alen; n++) 203 if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) 204 return true; 205 return false; 206 } 207 208 #define pbuf_is_inside(a, pa, size) \ 209 _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) 210 211 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) 212 { 213 paddr_t end_pa = 0; 214 215 if (!map) 216 return false; 217 218 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 219 return false; 220 221 return (pa >= map->pa && end_pa <= map->pa + map->size - 1); 222 } 223 224 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) 225 { 226 if (!map) 227 return false; 228 return (va >= map->va && va <= (map->va + map->size - 1)); 229 } 230 231 /* check if target buffer fits in a core default map area */ 232 static bool pbuf_inside_map_area(unsigned long p, size_t l, 233 struct tee_mmap_region *map) 234 { 235 return core_is_buffer_inside(p, l, map->pa, map->size); 236 } 237 238 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) 239 { 240 struct tee_mmap_region *map; 241 242 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) 243 if (map->type == type) 244 return map; 245 return NULL; 246 } 247 248 static struct tee_mmap_region * 249 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) 250 { 251 struct tee_mmap_region *map; 252 253 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 254 if (map->type != type) 255 continue; 256 if (pa_is_in_map(map, pa, len)) 257 return map; 258 } 259 return NULL; 260 } 261 262 static struct tee_mmap_region *find_map_by_va(void *va) 263 { 264 struct tee_mmap_region *map = get_memory_map(); 265 unsigned long a = (unsigned long)va; 266 267 while (!core_mmap_is_end_of_table(map)) { 268 if (a >= map->va && a <= (map->va - 1 + map->size)) 269 return map; 270 map++; 271 } 272 return NULL; 273 } 274 275 static struct tee_mmap_region *find_map_by_pa(unsigned long pa) 276 { 277 struct tee_mmap_region *map = get_memory_map(); 278 279 while (!core_mmap_is_end_of_table(map)) { 280 if (pa >= map->pa && pa <= (map->pa + map->size - 1)) 281 return map; 282 map++; 283 } 284 return NULL; 285 } 286 287 #if defined(CFG_SECURE_DATA_PATH) 288 static bool dtb_get_sdp_region(void) 289 { 290 void *fdt = NULL; 291 int node = 0; 292 int tmp_node = 0; 293 paddr_t tmp_addr = 0; 294 size_t tmp_size = 0; 295 296 if (!IS_ENABLED(CFG_EMBED_DTB)) 297 return false; 298 299 fdt = get_embedded_dt(); 300 if (!fdt) 301 panic("No DTB found"); 302 303 node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match); 304 if (node < 0) { 305 DMSG("No %s compatible node found", tz_sdp_match); 306 return false; 307 } 308 tmp_node = node; 309 while (tmp_node >= 0) { 310 tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node, 311 tz_sdp_match); 312 if (tmp_node >= 0) 313 DMSG("Ignore SDP pool node %s, supports only 1 node", 314 fdt_get_name(fdt, tmp_node, NULL)); 315 } 316 317 tmp_addr = fdt_reg_base_address(fdt, node); 318 if (tmp_addr == DT_INFO_INVALID_REG) { 319 EMSG("%s: Unable to get base addr from DT", tz_sdp_match); 320 return false; 321 } 322 323 tmp_size = fdt_reg_size(fdt, node); 324 if (tmp_size == DT_INFO_INVALID_REG_SIZE) { 325 EMSG("%s: Unable to get size of base addr from DT", 326 tz_sdp_match); 327 return false; 328 } 329 330 sec_sdp.paddr = tmp_addr; 331 sec_sdp.size = tmp_size; 332 333 return true; 334 } 335 #endif 336 337 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) 338 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, 339 const struct core_mmu_phys_mem *start, 340 const struct core_mmu_phys_mem *end) 341 { 342 const struct core_mmu_phys_mem *mem; 343 344 for (mem = start; mem < end; mem++) { 345 if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) 346 return true; 347 } 348 349 return false; 350 } 351 #endif 352 353 #ifdef CFG_CORE_DYN_SHM 354 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, 355 paddr_t pa, size_t size) 356 { 357 struct core_mmu_phys_mem *m = *mem; 358 size_t n = 0; 359 360 while (true) { 361 if (n >= *nelems) { 362 DMSG("No need to carve out %#" PRIxPA " size %#zx", 363 pa, size); 364 return; 365 } 366 if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size)) 367 break; 368 if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size)) 369 panic(); 370 n++; 371 } 372 373 if (pa == m[n].addr && size == m[n].size) { 374 /* Remove this entry */ 375 (*nelems)--; 376 memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n)); 377 m = nex_realloc(m, sizeof(*m) * *nelems); 378 if (!m) 379 panic(); 380 *mem = m; 381 } else if (pa == m[n].addr) { 382 m[n].addr += size; 383 m[n].size -= size; 384 } else if ((pa + size) == (m[n].addr + m[n].size)) { 385 m[n].size -= size; 386 } else { 387 /* Need to split the memory entry */ 388 m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); 389 if (!m) 390 panic(); 391 *mem = m; 392 memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n)); 393 (*nelems)++; 394 m[n].size = pa - m[n].addr; 395 m[n + 1].size -= size + m[n].size; 396 m[n + 1].addr = pa + size; 397 } 398 } 399 400 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, 401 size_t nelems, 402 struct tee_mmap_region *map) 403 { 404 size_t n; 405 406 for (n = 0; n < nelems; n++) { 407 if (!core_is_buffer_outside(start[n].addr, start[n].size, 408 map->pa, map->size)) { 409 EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ 410 ") overlaps map (type %d %#" PRIxPA ":%#zx)", 411 start[n].addr, start[n].size, 412 map->type, map->pa, map->size); 413 panic(); 414 } 415 } 416 } 417 418 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; 419 static size_t discovered_nsec_ddr_nelems __nex_bss; 420 421 static int cmp_pmem_by_addr(const void *a, const void *b) 422 { 423 const struct core_mmu_phys_mem *pmem_a = a; 424 const struct core_mmu_phys_mem *pmem_b = b; 425 426 return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); 427 } 428 429 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 430 size_t nelems) 431 { 432 struct core_mmu_phys_mem *m = start; 433 size_t num_elems = nelems; 434 struct tee_mmap_region *map = static_memory_map; 435 const struct core_mmu_phys_mem __maybe_unused *pmem; 436 size_t n = 0; 437 438 assert(!discovered_nsec_ddr_start); 439 assert(m && num_elems); 440 441 qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); 442 443 /* 444 * Non-secure shared memory and also secure data 445 * path memory are supposed to reside inside 446 * non-secure memory. Since NSEC_SHM and SDP_MEM 447 * are used for a specific purpose make holes for 448 * those memory in the normal non-secure memory. 449 * 450 * This has to be done since for instance QEMU 451 * isn't aware of which memory range in the 452 * non-secure memory is used for NSEC_SHM. 453 */ 454 455 #ifdef CFG_SECURE_DATA_PATH 456 if (dtb_get_sdp_region()) 457 carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size); 458 459 for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) 460 carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); 461 #endif 462 463 for (n = 0; n < ARRAY_SIZE(secure_only); n++) 464 carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr, 465 secure_only[n].size); 466 467 for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) { 468 switch (map->type) { 469 case MEM_AREA_NSEC_SHM: 470 carve_out_phys_mem(&m, &num_elems, map->pa, map->size); 471 break; 472 case MEM_AREA_EXT_DT: 473 case MEM_AREA_MANIFEST_DT: 474 case MEM_AREA_RAM_NSEC: 475 case MEM_AREA_RES_VASPACE: 476 case MEM_AREA_SHM_VASPACE: 477 case MEM_AREA_TS_VASPACE: 478 case MEM_AREA_PAGER_VASPACE: 479 break; 480 default: 481 check_phys_mem_is_outside(m, num_elems, map); 482 } 483 } 484 485 discovered_nsec_ddr_start = m; 486 discovered_nsec_ddr_nelems = num_elems; 487 488 if (!core_mmu_check_end_pa(m[num_elems - 1].addr, 489 m[num_elems - 1].size)) 490 panic(); 491 } 492 493 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, 494 const struct core_mmu_phys_mem **end) 495 { 496 if (!discovered_nsec_ddr_start) 497 return false; 498 499 *start = discovered_nsec_ddr_start; 500 *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; 501 502 return true; 503 } 504 505 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) 506 { 507 const struct core_mmu_phys_mem *start; 508 const struct core_mmu_phys_mem *end; 509 510 if (!get_discovered_nsec_ddr(&start, &end)) 511 return false; 512 513 return pbuf_is_special_mem(pbuf, len, start, end); 514 } 515 516 bool core_mmu_nsec_ddr_is_defined(void) 517 { 518 const struct core_mmu_phys_mem *start; 519 const struct core_mmu_phys_mem *end; 520 521 if (!get_discovered_nsec_ddr(&start, &end)) 522 return false; 523 524 return start != end; 525 } 526 #else 527 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) 528 { 529 return false; 530 } 531 #endif /*CFG_CORE_DYN_SHM*/ 532 533 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ 534 EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ 535 pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) 536 537 #ifdef CFG_SECURE_DATA_PATH 538 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) 539 { 540 bool is_sdp_mem = false; 541 542 if (sec_sdp.size) 543 is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr, 544 sec_sdp.size); 545 546 if (!is_sdp_mem) 547 is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, 548 phys_sdp_mem_end); 549 550 return is_sdp_mem; 551 } 552 553 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size) 554 { 555 struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED, 556 CORE_MEM_SDP_MEM); 557 558 if (!mobj) 559 panic("can't create SDP physical memory object"); 560 561 return mobj; 562 } 563 564 struct mobj **core_sdp_mem_create_mobjs(void) 565 { 566 const struct core_mmu_phys_mem *mem = NULL; 567 struct mobj **mobj_base = NULL; 568 struct mobj **mobj = NULL; 569 int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; 570 571 if (sec_sdp.size) 572 cnt++; 573 574 /* SDP mobjs table must end with a NULL entry */ 575 mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); 576 if (!mobj_base) 577 panic("Out of memory"); 578 579 mobj = mobj_base; 580 581 for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++) 582 *mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size); 583 584 if (sec_sdp.size) 585 *mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size); 586 587 return mobj_base; 588 } 589 590 #else /* CFG_SECURE_DATA_PATH */ 591 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) 592 { 593 return false; 594 } 595 596 #endif /* CFG_SECURE_DATA_PATH */ 597 598 /* Check special memories comply with registered memories */ 599 static void verify_special_mem_areas(struct tee_mmap_region *mem_map, 600 const struct core_mmu_phys_mem *start, 601 const struct core_mmu_phys_mem *end, 602 const char *area_name __maybe_unused) 603 { 604 const struct core_mmu_phys_mem *mem; 605 const struct core_mmu_phys_mem *mem2; 606 struct tee_mmap_region *mmap; 607 608 if (start == end) { 609 DMSG("No %s memory area defined", area_name); 610 return; 611 } 612 613 for (mem = start; mem < end; mem++) 614 DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", 615 area_name, mem->addr, (uint64_t)mem->addr + mem->size); 616 617 /* Check memories do not intersect each other */ 618 for (mem = start; mem + 1 < end; mem++) { 619 for (mem2 = mem + 1; mem2 < end; mem2++) { 620 if (core_is_buffer_intersect(mem2->addr, mem2->size, 621 mem->addr, mem->size)) { 622 MSG_MEM_INSTERSECT(mem2->addr, mem2->size, 623 mem->addr, mem->size); 624 panic("Special memory intersection"); 625 } 626 } 627 } 628 629 /* 630 * Check memories do not intersect any mapped memory. 631 * This is called before reserved VA space is loaded in mem_map. 632 */ 633 for (mem = start; mem < end; mem++) { 634 for (mmap = mem_map; mmap->type != MEM_AREA_END; mmap++) { 635 if (core_is_buffer_intersect(mem->addr, mem->size, 636 mmap->pa, mmap->size)) { 637 MSG_MEM_INSTERSECT(mem->addr, mem->size, 638 mmap->pa, mmap->size); 639 panic("Special memory intersection"); 640 } 641 } 642 } 643 } 644 645 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems, 646 const char *mem_name __maybe_unused, 647 enum teecore_memtypes mem_type, 648 paddr_t mem_addr, paddr_size_t mem_size, size_t *last) 649 { 650 size_t n = 0; 651 paddr_t pa; 652 paddr_size_t size; 653 654 if (!mem_size) /* Discard null size entries */ 655 return; 656 /* 657 * If some ranges of memory of the same type do overlap 658 * each others they are coalesced into one entry. To help this 659 * added entries are sorted by increasing physical. 660 * 661 * Note that it's valid to have the same physical memory as several 662 * different memory types, for instance the same device memory 663 * mapped as both secure and non-secure. This will probably not 664 * happen often in practice. 665 */ 666 DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, 667 mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size); 668 while (true) { 669 if (n >= (num_elems - 1)) { 670 EMSG("Out of entries (%zu) in memory_map", num_elems); 671 panic(); 672 } 673 if (n == *last) 674 break; 675 pa = memory_map[n].pa; 676 size = memory_map[n].size; 677 if (mem_type == memory_map[n].type && 678 ((pa <= (mem_addr + (mem_size - 1))) && 679 (mem_addr <= (pa + (size - 1))))) { 680 DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr); 681 memory_map[n].pa = MIN(pa, mem_addr); 682 memory_map[n].size = MAX(size, mem_size) + 683 (pa - memory_map[n].pa); 684 return; 685 } 686 if (mem_type < memory_map[n].type || 687 (mem_type == memory_map[n].type && mem_addr < pa)) 688 break; /* found the spot where to insert this memory */ 689 n++; 690 } 691 692 memmove(memory_map + n + 1, memory_map + n, 693 sizeof(struct tee_mmap_region) * (*last - n)); 694 (*last)++; 695 memset(memory_map + n, 0, sizeof(memory_map[0])); 696 memory_map[n].type = mem_type; 697 memory_map[n].pa = mem_addr; 698 memory_map[n].size = mem_size; 699 } 700 701 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems, 702 enum teecore_memtypes type, size_t size, size_t *last) 703 { 704 size_t n = 0; 705 706 DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); 707 while (true) { 708 if (n >= (num_elems - 1)) { 709 EMSG("Out of entries (%zu) in memory_map", num_elems); 710 panic(); 711 } 712 if (n == *last) 713 break; 714 if (type < memory_map[n].type) 715 break; 716 n++; 717 } 718 719 memmove(memory_map + n + 1, memory_map + n, 720 sizeof(struct tee_mmap_region) * (*last - n)); 721 (*last)++; 722 memset(memory_map + n, 0, sizeof(memory_map[0])); 723 memory_map[n].type = type; 724 memory_map[n].size = size; 725 } 726 727 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) 728 { 729 const uint32_t attr = TEE_MATTR_VALID_BLOCK; 730 const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED << 731 TEE_MATTR_MEM_TYPE_SHIFT; 732 const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << 733 TEE_MATTR_MEM_TYPE_SHIFT; 734 const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << 735 TEE_MATTR_MEM_TYPE_SHIFT; 736 737 switch (t) { 738 case MEM_AREA_TEE_RAM: 739 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged; 740 case MEM_AREA_TEE_RAM_RX: 741 case MEM_AREA_INIT_RAM_RX: 742 case MEM_AREA_IDENTITY_MAP_RX: 743 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged; 744 case MEM_AREA_TEE_RAM_RO: 745 case MEM_AREA_INIT_RAM_RO: 746 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged; 747 case MEM_AREA_TEE_RAM_RW: 748 case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ 749 case MEM_AREA_NEX_RAM_RW: 750 case MEM_AREA_TEE_ASAN: 751 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 752 case MEM_AREA_TEE_COHERENT: 753 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; 754 case MEM_AREA_TA_RAM: 755 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 756 case MEM_AREA_NSEC_SHM: 757 case MEM_AREA_NEX_NSEC_SHM: 758 return attr | TEE_MATTR_PRW | cached; 759 case MEM_AREA_MANIFEST_DT: 760 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 761 case MEM_AREA_TRANSFER_LIST: 762 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 763 case MEM_AREA_EXT_DT: 764 /* 765 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device 766 * tree as secure non-cached memory, otherwise, fall back to 767 * non-secure mapping. 768 */ 769 if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE)) 770 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | 771 noncache; 772 fallthrough; 773 case MEM_AREA_IO_NSEC: 774 return attr | TEE_MATTR_PRW | noncache; 775 case MEM_AREA_IO_SEC: 776 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; 777 case MEM_AREA_RAM_NSEC: 778 return attr | TEE_MATTR_PRW | cached; 779 case MEM_AREA_RAM_SEC: 780 case MEM_AREA_SEC_RAM_OVERALL: 781 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 782 case MEM_AREA_ROM_SEC: 783 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 784 case MEM_AREA_RES_VASPACE: 785 case MEM_AREA_SHM_VASPACE: 786 return 0; 787 case MEM_AREA_PAGER_VASPACE: 788 return TEE_MATTR_SECURE; 789 default: 790 panic("invalid type"); 791 } 792 } 793 794 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) 795 { 796 switch (mm->type) { 797 case MEM_AREA_TEE_RAM: 798 case MEM_AREA_TEE_RAM_RX: 799 case MEM_AREA_TEE_RAM_RO: 800 case MEM_AREA_TEE_RAM_RW: 801 case MEM_AREA_INIT_RAM_RX: 802 case MEM_AREA_INIT_RAM_RO: 803 case MEM_AREA_NEX_RAM_RW: 804 case MEM_AREA_NEX_RAM_RO: 805 case MEM_AREA_TEE_ASAN: 806 return true; 807 default: 808 return false; 809 } 810 } 811 812 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) 813 { 814 return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); 815 } 816 817 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) 818 { 819 return mm->region_size == CORE_MMU_PGDIR_SIZE; 820 } 821 822 static int cmp_mmap_by_lower_va(const void *a, const void *b) 823 { 824 const struct tee_mmap_region *mm_a = a; 825 const struct tee_mmap_region *mm_b = b; 826 827 return CMP_TRILEAN(mm_a->va, mm_b->va); 828 } 829 830 static void dump_mmap_table(struct tee_mmap_region *memory_map) 831 { 832 struct tee_mmap_region *map; 833 834 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 835 vaddr_t __maybe_unused vstart; 836 837 vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1)); 838 DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA 839 " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", 840 teecore_memtype_name(map->type), vstart, 841 vstart + map->size - 1, map->pa, 842 (paddr_t)(map->pa + map->size - 1), map->size, 843 map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); 844 } 845 } 846 847 #if DEBUG_XLAT_TABLE 848 849 static void dump_xlat_table(vaddr_t va, unsigned int level) 850 { 851 struct core_mmu_table_info tbl_info; 852 unsigned int idx = 0; 853 paddr_t pa; 854 uint32_t attr; 855 856 core_mmu_find_table(NULL, va, level, &tbl_info); 857 va = tbl_info.va_base; 858 for (idx = 0; idx < tbl_info.num_entries; idx++) { 859 core_mmu_get_entry(&tbl_info, idx, &pa, &attr); 860 if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { 861 const char *security_bit = ""; 862 863 if (core_mmu_entry_have_security_bit(attr)) { 864 if (attr & TEE_MATTR_SECURE) 865 security_bit = "S"; 866 else 867 security_bit = "NS"; 868 } 869 870 if (attr & TEE_MATTR_TABLE) { 871 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 872 " TBL:0x%010" PRIxPA " %s", 873 level * 2, "", level, va, pa, 874 security_bit); 875 dump_xlat_table(va, level + 1); 876 } else if (attr) { 877 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 878 " PA:0x%010" PRIxPA " %s-%s-%s-%s", 879 level * 2, "", level, va, pa, 880 mattr_is_cached(attr) ? "MEM" : 881 "DEV", 882 attr & TEE_MATTR_PW ? "RW" : "RO", 883 attr & TEE_MATTR_PX ? "X " : "XN", 884 security_bit); 885 } else { 886 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 887 " INVALID\n", 888 level * 2, "", level, va); 889 } 890 } 891 va += BIT64(tbl_info.shift); 892 } 893 } 894 895 #else 896 897 static void dump_xlat_table(vaddr_t va __unused, int level __unused) 898 { 899 } 900 901 #endif 902 903 /* 904 * Reserves virtual memory space for pager usage. 905 * 906 * From the start of the first memory used by the link script + 907 * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty 908 * mapping for pager usage. This adds translation tables as needed for the 909 * pager to operate. 910 */ 911 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems, 912 size_t *last) 913 { 914 paddr_t begin = 0; 915 paddr_t end = 0; 916 size_t size = 0; 917 size_t pos = 0; 918 size_t n = 0; 919 920 if (*last >= (num_elems - 1)) { 921 EMSG("Out of entries (%zu) in memory map", num_elems); 922 panic(); 923 } 924 925 for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) { 926 if (map_is_tee_ram(mmap + n)) { 927 if (!begin) 928 begin = mmap[n].pa; 929 pos = n + 1; 930 } 931 } 932 933 end = mmap[pos - 1].pa + mmap[pos - 1].size; 934 assert(end - begin < TEE_RAM_VA_SIZE); 935 size = TEE_RAM_VA_SIZE - (end - begin); 936 937 assert(pos <= *last); 938 memmove(mmap + pos + 1, mmap + pos, 939 sizeof(struct tee_mmap_region) * (*last - pos)); 940 (*last)++; 941 memset(mmap + pos, 0, sizeof(mmap[0])); 942 mmap[pos].type = MEM_AREA_PAGER_VASPACE; 943 mmap[pos].va = 0; 944 mmap[pos].size = size; 945 mmap[pos].region_size = SMALL_PAGE_SIZE; 946 mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE); 947 } 948 949 static void check_sec_nsec_mem_config(void) 950 { 951 size_t n = 0; 952 953 for (n = 0; n < ARRAY_SIZE(secure_only); n++) { 954 if (pbuf_intersects(nsec_shared, secure_only[n].paddr, 955 secure_only[n].size)) 956 panic("Invalid memory access config: sec/nsec"); 957 } 958 } 959 960 static void collect_device_mem_ranges(struct tee_mmap_region *memory_map, 961 size_t num_elems, size_t *last) 962 { 963 const char *compatible = "arm,ffa-manifest-device-regions"; 964 void *fdt = get_manifest_dt(); 965 const char *name = NULL; 966 uint64_t page_count = 0; 967 uint64_t base = 0; 968 int subnode = 0; 969 int node = 0; 970 971 node = fdt_node_offset_by_compatible(fdt, 0, compatible); 972 if (node < 0) 973 return; 974 975 fdt_for_each_subnode(subnode, fdt, node) { 976 name = fdt_get_name(fdt, subnode, NULL); 977 if (!name) 978 continue; 979 980 if (dt_getprop_as_number(fdt, subnode, "base-address", 981 &base)) { 982 EMSG("Mandatory field is missing: base-address"); 983 continue; 984 } 985 986 if (base & SMALL_PAGE_MASK) { 987 EMSG("base-address is not page aligned"); 988 continue; 989 } 990 991 if (dt_getprop_as_number(fdt, subnode, "pages-count", 992 &page_count)) { 993 EMSG("Mandatory field is missing: pages-count"); 994 continue; 995 } 996 997 add_phys_mem(memory_map, num_elems, name, MEM_AREA_IO_SEC, 998 base, base + page_count * SMALL_PAGE_SIZE, last); 999 } 1000 } 1001 1002 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map, 1003 size_t num_elems) 1004 { 1005 const struct core_mmu_phys_mem *mem = NULL; 1006 vaddr_t ram_start = secure_only[0].paddr; 1007 size_t last = 0; 1008 1009 1010 #define ADD_PHYS_MEM(_type, _addr, _size) \ 1011 add_phys_mem(memory_map, num_elems, #_addr, (_type), \ 1012 (_addr), (_size), &last) 1013 1014 if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) { 1015 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start, 1016 VCORE_UNPG_RX_PA - ram_start); 1017 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, 1018 VCORE_UNPG_RX_SZ); 1019 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, 1020 VCORE_UNPG_RO_SZ); 1021 1022 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1023 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, 1024 VCORE_UNPG_RW_SZ); 1025 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, 1026 VCORE_NEX_RW_SZ); 1027 } else { 1028 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, 1029 VCORE_UNPG_RW_SZ); 1030 } 1031 1032 if (IS_ENABLED(CFG_WITH_PAGER)) { 1033 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, 1034 VCORE_INIT_RX_SZ); 1035 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, 1036 VCORE_INIT_RO_SZ); 1037 } 1038 } else { 1039 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); 1040 } 1041 1042 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1043 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE, 1044 TRUSTED_DRAM_SIZE); 1045 } else { 1046 /* 1047 * Every guest will have own TA RAM if virtualization 1048 * support is enabled. 1049 */ 1050 paddr_t ta_base = 0; 1051 size_t ta_size = 0; 1052 1053 core_mmu_get_ta_range(&ta_base, &ta_size); 1054 ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size); 1055 } 1056 1057 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) && 1058 IS_ENABLED(CFG_WITH_PAGER)) { 1059 /* 1060 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is 1061 * disabled. 1062 */ 1063 ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); 1064 } 1065 1066 #undef ADD_PHYS_MEM 1067 1068 /* Collect device memory info from SP manifest */ 1069 if (IS_ENABLED(CFG_CORE_SEL2_SPMC)) 1070 collect_device_mem_ranges(memory_map, num_elems, &last); 1071 1072 for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { 1073 /* Only unmapped virtual range may have a null phys addr */ 1074 assert(mem->addr || !core_mmu_type_to_attr(mem->type)); 1075 1076 add_phys_mem(memory_map, num_elems, mem->name, mem->type, 1077 mem->addr, mem->size, &last); 1078 } 1079 1080 if (IS_ENABLED(CFG_SECURE_DATA_PATH)) 1081 verify_special_mem_areas(memory_map, phys_sdp_mem_begin, 1082 phys_sdp_mem_end, "SDP"); 1083 1084 add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE, 1085 CFG_RESERVED_VASPACE_SIZE, &last); 1086 1087 add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE, 1088 SHM_VASPACE_SIZE, &last); 1089 1090 memory_map[last].type = MEM_AREA_END; 1091 1092 return last; 1093 } 1094 1095 static void assign_mem_granularity(struct tee_mmap_region *memory_map) 1096 { 1097 struct tee_mmap_region *map = NULL; 1098 1099 /* 1100 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses 1101 * SMALL_PAGE_SIZE. 1102 */ 1103 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1104 paddr_t mask = map->pa | map->size; 1105 1106 if (!(mask & CORE_MMU_PGDIR_MASK)) 1107 map->region_size = CORE_MMU_PGDIR_SIZE; 1108 else if (!(mask & SMALL_PAGE_MASK)) 1109 map->region_size = SMALL_PAGE_SIZE; 1110 else 1111 panic("Impossible memory alignment"); 1112 1113 if (map_is_tee_ram(map)) 1114 map->region_size = SMALL_PAGE_SIZE; 1115 } 1116 } 1117 1118 static bool place_tee_ram_at_top(paddr_t paddr) 1119 { 1120 return paddr > BIT64(core_mmu_get_va_width()) / 2; 1121 } 1122 1123 /* 1124 * MMU arch driver shall override this function if it helps 1125 * optimizing the memory footprint of the address translation tables. 1126 */ 1127 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr) 1128 { 1129 return place_tee_ram_at_top(paddr); 1130 } 1131 1132 static bool assign_mem_va_dir(vaddr_t tee_ram_va, 1133 struct tee_mmap_region *memory_map, 1134 bool tee_ram_at_top) 1135 { 1136 struct tee_mmap_region *map = NULL; 1137 vaddr_t va = 0; 1138 bool va_is_secure = true; 1139 1140 /* 1141 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y. 1142 * 0 is by design an invalid va, so return false directly. 1143 */ 1144 if (!tee_ram_va) 1145 return false; 1146 1147 /* Clear eventual previous assignments */ 1148 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 1149 map->va = 0; 1150 1151 /* 1152 * TEE RAM regions are always aligned with region_size. 1153 * 1154 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here 1155 * since it handles virtual memory which covers the part of the ELF 1156 * that cannot fit directly into memory. 1157 */ 1158 va = tee_ram_va; 1159 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1160 if (map_is_tee_ram(map) || 1161 map->type == MEM_AREA_PAGER_VASPACE) { 1162 assert(!(va & (map->region_size - 1))); 1163 assert(!(map->size & (map->region_size - 1))); 1164 map->va = va; 1165 if (ADD_OVERFLOW(va, map->size, &va)) 1166 return false; 1167 if (va >= BIT64(core_mmu_get_va_width())) 1168 return false; 1169 } 1170 } 1171 1172 if (tee_ram_at_top) { 1173 /* 1174 * Map non-tee ram regions at addresses lower than the tee 1175 * ram region. 1176 */ 1177 va = tee_ram_va; 1178 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1179 map->attr = core_mmu_type_to_attr(map->type); 1180 if (map->va) 1181 continue; 1182 1183 if (!IS_ENABLED(CFG_WITH_LPAE) && 1184 va_is_secure != map_is_secure(map)) { 1185 va_is_secure = !va_is_secure; 1186 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1187 } 1188 1189 if (SUB_OVERFLOW(va, map->size, &va)) 1190 return false; 1191 va = ROUNDDOWN(va, map->region_size); 1192 /* 1193 * Make sure that va is aligned with pa for 1194 * efficient pgdir mapping. Basically pa & 1195 * pgdir_mask should be == va & pgdir_mask 1196 */ 1197 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1198 if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) 1199 return false; 1200 va += (map->pa - va) & CORE_MMU_PGDIR_MASK; 1201 } 1202 map->va = va; 1203 } 1204 } else { 1205 /* 1206 * Map non-tee ram regions at addresses higher than the tee 1207 * ram region. 1208 */ 1209 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1210 map->attr = core_mmu_type_to_attr(map->type); 1211 if (map->va) 1212 continue; 1213 1214 if (!IS_ENABLED(CFG_WITH_LPAE) && 1215 va_is_secure != map_is_secure(map)) { 1216 va_is_secure = !va_is_secure; 1217 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1218 &va)) 1219 return false; 1220 } 1221 1222 if (ROUNDUP_OVERFLOW(va, map->region_size, &va)) 1223 return false; 1224 /* 1225 * Make sure that va is aligned with pa for 1226 * efficient pgdir mapping. Basically pa & 1227 * pgdir_mask should be == va & pgdir_mask 1228 */ 1229 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1230 vaddr_t offs = (map->pa - va) & 1231 CORE_MMU_PGDIR_MASK; 1232 1233 if (ADD_OVERFLOW(va, offs, &va)) 1234 return false; 1235 } 1236 1237 map->va = va; 1238 if (ADD_OVERFLOW(va, map->size, &va)) 1239 return false; 1240 if (va >= BIT64(core_mmu_get_va_width())) 1241 return false; 1242 } 1243 } 1244 1245 return true; 1246 } 1247 1248 static bool assign_mem_va(vaddr_t tee_ram_va, 1249 struct tee_mmap_region *memory_map) 1250 { 1251 bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va); 1252 1253 /* 1254 * Check that we're not overlapping with the user VA range. 1255 */ 1256 if (IS_ENABLED(CFG_WITH_LPAE)) { 1257 /* 1258 * User VA range is supposed to be defined after these 1259 * mappings have been established. 1260 */ 1261 assert(!core_mmu_user_va_range_is_defined()); 1262 } else { 1263 vaddr_t user_va_base = 0; 1264 size_t user_va_size = 0; 1265 1266 assert(core_mmu_user_va_range_is_defined()); 1267 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 1268 if (tee_ram_va < (user_va_base + user_va_size)) 1269 return false; 1270 } 1271 1272 if (IS_ENABLED(CFG_WITH_PAGER)) { 1273 bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va); 1274 1275 /* Try whole mapping covered by a single base xlat entry */ 1276 if (prefered_dir != tee_ram_at_top && 1277 assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir)) 1278 return true; 1279 } 1280 1281 return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top); 1282 } 1283 1284 static int cmp_init_mem_map(const void *a, const void *b) 1285 { 1286 const struct tee_mmap_region *mm_a = a; 1287 const struct tee_mmap_region *mm_b = b; 1288 int rc = 0; 1289 1290 rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); 1291 if (!rc) 1292 rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); 1293 /* 1294 * 32bit MMU descriptors cannot mix secure and non-secure mapping in 1295 * the same level2 table. Hence sort secure mapping from non-secure 1296 * mapping. 1297 */ 1298 if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) 1299 rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); 1300 1301 return rc; 1302 } 1303 1304 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map, 1305 size_t num_elems, size_t *last, 1306 vaddr_t id_map_start, vaddr_t id_map_end) 1307 { 1308 struct tee_mmap_region *map = NULL; 1309 vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); 1310 vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); 1311 size_t len = end - start; 1312 1313 if (*last >= num_elems - 1) { 1314 EMSG("Out of entries (%zu) in memory map", num_elems); 1315 panic(); 1316 } 1317 1318 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 1319 if (core_is_buffer_intersect(map->va, map->size, start, len)) 1320 return false; 1321 1322 *map = (struct tee_mmap_region){ 1323 .type = MEM_AREA_IDENTITY_MAP_RX, 1324 /* 1325 * Could use CORE_MMU_PGDIR_SIZE to potentially save a 1326 * translation table, at the increased risk of clashes with 1327 * the rest of the memory map. 1328 */ 1329 .region_size = SMALL_PAGE_SIZE, 1330 .pa = start, 1331 .va = start, 1332 .size = len, 1333 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1334 }; 1335 1336 (*last)++; 1337 1338 return true; 1339 } 1340 1341 static unsigned long init_mem_map(struct tee_mmap_region *memory_map, 1342 size_t num_elems, unsigned long seed) 1343 { 1344 /* 1345 * @id_map_start and @id_map_end describes a physical memory range 1346 * that must be mapped Read-Only eXecutable at identical virtual 1347 * addresses. 1348 */ 1349 vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; 1350 vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; 1351 vaddr_t start_addr = secure_only[0].paddr; 1352 unsigned long offs = 0; 1353 size_t last = 0; 1354 1355 last = collect_mem_ranges(memory_map, num_elems); 1356 assign_mem_granularity(memory_map); 1357 1358 /* 1359 * To ease mapping and lower use of xlat tables, sort mapping 1360 * description moving small-page regions after the pgdir regions. 1361 */ 1362 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1363 cmp_init_mem_map); 1364 1365 if (IS_ENABLED(CFG_WITH_PAGER)) 1366 add_pager_vaspace(memory_map, num_elems, &last); 1367 1368 if (IS_ENABLED(CFG_CORE_ASLR) && seed) { 1369 vaddr_t base_addr = start_addr + seed; 1370 const unsigned int va_width = core_mmu_get_va_width(); 1371 const vaddr_t va_mask = GENMASK_64(va_width - 1, 1372 SMALL_PAGE_SHIFT); 1373 vaddr_t ba = base_addr; 1374 size_t n = 0; 1375 1376 for (n = 0; n < 3; n++) { 1377 if (n) 1378 ba = base_addr ^ BIT64(va_width - n); 1379 ba &= va_mask; 1380 if (assign_mem_va(ba, memory_map) && 1381 mem_map_add_id_map(memory_map, num_elems, &last, 1382 id_map_start, id_map_end)) { 1383 offs = ba - start_addr; 1384 DMSG("Mapping core at %#"PRIxVA" offs %#lx", 1385 ba, offs); 1386 goto out; 1387 } else { 1388 DMSG("Failed to map core at %#"PRIxVA, ba); 1389 } 1390 } 1391 EMSG("Failed to map core with seed %#lx", seed); 1392 } 1393 1394 if (!assign_mem_va(start_addr, memory_map)) 1395 panic(); 1396 1397 out: 1398 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1399 cmp_mmap_by_lower_va); 1400 1401 dump_mmap_table(memory_map); 1402 1403 return offs; 1404 } 1405 1406 static void check_mem_map(struct tee_mmap_region *map) 1407 { 1408 struct tee_mmap_region *m = NULL; 1409 1410 for (m = map; !core_mmap_is_end_of_table(m); m++) { 1411 switch (m->type) { 1412 case MEM_AREA_TEE_RAM: 1413 case MEM_AREA_TEE_RAM_RX: 1414 case MEM_AREA_TEE_RAM_RO: 1415 case MEM_AREA_TEE_RAM_RW: 1416 case MEM_AREA_INIT_RAM_RX: 1417 case MEM_AREA_INIT_RAM_RO: 1418 case MEM_AREA_NEX_RAM_RW: 1419 case MEM_AREA_NEX_RAM_RO: 1420 case MEM_AREA_IDENTITY_MAP_RX: 1421 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1422 panic("TEE_RAM can't fit in secure_only"); 1423 break; 1424 case MEM_AREA_TA_RAM: 1425 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1426 panic("TA_RAM can't fit in secure_only"); 1427 break; 1428 case MEM_AREA_NSEC_SHM: 1429 if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) 1430 panic("NS_SHM can't fit in nsec_shared"); 1431 break; 1432 case MEM_AREA_SEC_RAM_OVERALL: 1433 case MEM_AREA_TEE_COHERENT: 1434 case MEM_AREA_TEE_ASAN: 1435 case MEM_AREA_IO_SEC: 1436 case MEM_AREA_IO_NSEC: 1437 case MEM_AREA_EXT_DT: 1438 case MEM_AREA_MANIFEST_DT: 1439 case MEM_AREA_TRANSFER_LIST: 1440 case MEM_AREA_RAM_SEC: 1441 case MEM_AREA_RAM_NSEC: 1442 case MEM_AREA_RES_VASPACE: 1443 case MEM_AREA_SHM_VASPACE: 1444 case MEM_AREA_PAGER_VASPACE: 1445 break; 1446 default: 1447 EMSG("Uhandled memtype %d", m->type); 1448 panic(); 1449 } 1450 } 1451 } 1452 1453 static struct tee_mmap_region *get_tmp_mmap(void) 1454 { 1455 struct tee_mmap_region *tmp_mmap = (void *)__heap1_start; 1456 1457 #ifdef CFG_WITH_PAGER 1458 if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map)) 1459 tmp_mmap = (void *)__heap2_start; 1460 #endif 1461 1462 memset(tmp_mmap, 0, sizeof(static_memory_map)); 1463 1464 return tmp_mmap; 1465 } 1466 1467 /* 1468 * core_init_mmu_map() - init tee core default memory mapping 1469 * 1470 * This routine sets the static default TEE core mapping. If @seed is > 0 1471 * and configured with CFG_CORE_ASLR it will map tee core at a location 1472 * based on the seed and return the offset from the link address. 1473 * 1474 * If an error happened: core_init_mmu_map is expected to panic. 1475 * 1476 * Note: this function is weak just to make it possible to exclude it from 1477 * the unpaged area. 1478 */ 1479 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) 1480 { 1481 #ifndef CFG_NS_VIRTUALIZATION 1482 vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); 1483 #else 1484 vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, 1485 SMALL_PAGE_SIZE); 1486 #endif 1487 vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; 1488 struct tee_mmap_region *tmp_mmap = get_tmp_mmap(); 1489 unsigned long offs = 0; 1490 1491 if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) && 1492 (core_mmu_tee_load_pa & SMALL_PAGE_MASK)) 1493 panic("OP-TEE load address is not page aligned"); 1494 1495 check_sec_nsec_mem_config(); 1496 1497 /* 1498 * Add a entry covering the translation tables which will be 1499 * involved in some virt_to_phys() and phys_to_virt() conversions. 1500 */ 1501 static_memory_map[0] = (struct tee_mmap_region){ 1502 .type = MEM_AREA_TEE_RAM, 1503 .region_size = SMALL_PAGE_SIZE, 1504 .pa = start, 1505 .va = start, 1506 .size = len, 1507 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1508 }; 1509 1510 COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13); 1511 offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed); 1512 1513 check_mem_map(tmp_mmap); 1514 core_init_mmu(tmp_mmap); 1515 dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); 1516 core_init_mmu_regs(cfg); 1517 cfg->map_offset = offs; 1518 memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map)); 1519 } 1520 1521 bool core_mmu_mattr_is_ok(uint32_t mattr) 1522 { 1523 /* 1524 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and 1525 * core_mmu_v7.c:mattr_to_texcb 1526 */ 1527 1528 switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { 1529 case TEE_MATTR_MEM_TYPE_DEV: 1530 case TEE_MATTR_MEM_TYPE_STRONGLY_O: 1531 case TEE_MATTR_MEM_TYPE_CACHED: 1532 case TEE_MATTR_MEM_TYPE_TAGGED: 1533 return true; 1534 default: 1535 return false; 1536 } 1537 } 1538 1539 /* 1540 * test attributes of target physical buffer 1541 * 1542 * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). 1543 * 1544 */ 1545 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) 1546 { 1547 paddr_t ta_base = 0; 1548 size_t ta_size = 0; 1549 struct tee_mmap_region *map; 1550 1551 /* Empty buffers complies with anything */ 1552 if (len == 0) 1553 return true; 1554 1555 switch (attr) { 1556 case CORE_MEM_SEC: 1557 return pbuf_is_inside(secure_only, pbuf, len); 1558 case CORE_MEM_NON_SEC: 1559 return pbuf_is_inside(nsec_shared, pbuf, len) || 1560 pbuf_is_nsec_ddr(pbuf, len); 1561 case CORE_MEM_TEE_RAM: 1562 return core_is_buffer_inside(pbuf, len, TEE_RAM_START, 1563 TEE_RAM_PH_SIZE); 1564 case CORE_MEM_TA_RAM: 1565 core_mmu_get_ta_range(&ta_base, &ta_size); 1566 return core_is_buffer_inside(pbuf, len, ta_base, ta_size); 1567 #ifdef CFG_CORE_RESERVED_SHM 1568 case CORE_MEM_NSEC_SHM: 1569 return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, 1570 TEE_SHMEM_SIZE); 1571 #endif 1572 case CORE_MEM_SDP_MEM: 1573 return pbuf_is_sdp_mem(pbuf, len); 1574 case CORE_MEM_CACHED: 1575 map = find_map_by_pa(pbuf); 1576 if (!map || !pbuf_inside_map_area(pbuf, len, map)) 1577 return false; 1578 return mattr_is_cached(map->attr); 1579 default: 1580 return false; 1581 } 1582 } 1583 1584 /* test attributes of target virtual buffer (in core mapping) */ 1585 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) 1586 { 1587 paddr_t p; 1588 1589 /* Empty buffers complies with anything */ 1590 if (len == 0) 1591 return true; 1592 1593 p = virt_to_phys((void *)vbuf); 1594 if (!p) 1595 return false; 1596 1597 return core_pbuf_is(attr, p, len); 1598 } 1599 1600 /* core_va2pa - teecore exported service */ 1601 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) 1602 { 1603 struct tee_mmap_region *map; 1604 1605 map = find_map_by_va(va); 1606 if (!va_is_in_map(map, (vaddr_t)va)) 1607 return -1; 1608 1609 /* 1610 * We can calculate PA for static map. Virtual address ranges 1611 * reserved to core dynamic mapping return a 'match' (return 0;) 1612 * together with an invalid null physical address. 1613 */ 1614 if (map->pa) 1615 *pa = map->pa + (vaddr_t)va - map->va; 1616 else 1617 *pa = 0; 1618 1619 return 0; 1620 } 1621 1622 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) 1623 { 1624 if (!pa_is_in_map(map, pa, len)) 1625 return NULL; 1626 1627 return (void *)(vaddr_t)(map->va + pa - map->pa); 1628 } 1629 1630 /* 1631 * teecore gets some memory area definitions 1632 */ 1633 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s, 1634 vaddr_t *e) 1635 { 1636 struct tee_mmap_region *map = find_map_by_type(type); 1637 1638 if (map) { 1639 *s = map->va; 1640 *e = map->va + map->size; 1641 } else { 1642 *s = 0; 1643 *e = 0; 1644 } 1645 } 1646 1647 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) 1648 { 1649 struct tee_mmap_region *map = find_map_by_pa(pa); 1650 1651 if (!map) 1652 return MEM_AREA_MAXTYPE; 1653 return map->type; 1654 } 1655 1656 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1657 paddr_t pa, uint32_t attr) 1658 { 1659 assert(idx < tbl_info->num_entries); 1660 core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, 1661 idx, pa, attr); 1662 } 1663 1664 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1665 paddr_t *pa, uint32_t *attr) 1666 { 1667 assert(idx < tbl_info->num_entries); 1668 core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, 1669 idx, pa, attr); 1670 } 1671 1672 static void clear_region(struct core_mmu_table_info *tbl_info, 1673 struct tee_mmap_region *region) 1674 { 1675 unsigned int end = 0; 1676 unsigned int idx = 0; 1677 1678 /* va, len and pa should be block aligned */ 1679 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1680 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1681 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1682 1683 idx = core_mmu_va2idx(tbl_info, region->va); 1684 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1685 1686 while (idx < end) { 1687 core_mmu_set_entry(tbl_info, idx, 0, 0); 1688 idx++; 1689 } 1690 } 1691 1692 static void set_region(struct core_mmu_table_info *tbl_info, 1693 struct tee_mmap_region *region) 1694 { 1695 unsigned int end; 1696 unsigned int idx; 1697 paddr_t pa; 1698 1699 /* va, len and pa should be block aligned */ 1700 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1701 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1702 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1703 1704 idx = core_mmu_va2idx(tbl_info, region->va); 1705 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1706 pa = region->pa; 1707 1708 while (idx < end) { 1709 core_mmu_set_entry(tbl_info, idx, pa, region->attr); 1710 idx++; 1711 pa += BIT64(tbl_info->shift); 1712 } 1713 } 1714 1715 static void set_pg_region(struct core_mmu_table_info *dir_info, 1716 struct vm_region *region, struct pgt **pgt, 1717 struct core_mmu_table_info *pg_info) 1718 { 1719 struct tee_mmap_region r = { 1720 .va = region->va, 1721 .size = region->size, 1722 .attr = region->attr, 1723 }; 1724 vaddr_t end = r.va + r.size; 1725 uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; 1726 1727 while (r.va < end) { 1728 if (!pg_info->table || 1729 r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { 1730 /* 1731 * We're assigning a new translation table. 1732 */ 1733 unsigned int idx; 1734 1735 /* Virtual addresses must grow */ 1736 assert(r.va > pg_info->va_base); 1737 1738 idx = core_mmu_va2idx(dir_info, r.va); 1739 pg_info->va_base = core_mmu_idx2va(dir_info, idx); 1740 1741 /* 1742 * Advance pgt to va_base, note that we may need to 1743 * skip multiple page tables if there are large 1744 * holes in the vm map. 1745 */ 1746 while ((*pgt)->vabase < pg_info->va_base) { 1747 *pgt = SLIST_NEXT(*pgt, link); 1748 /* We should have allocated enough */ 1749 assert(*pgt); 1750 } 1751 assert((*pgt)->vabase == pg_info->va_base); 1752 pg_info->table = (*pgt)->tbl; 1753 1754 core_mmu_set_entry(dir_info, idx, 1755 virt_to_phys(pg_info->table), 1756 pgt_attr); 1757 } 1758 1759 r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), 1760 end - r.va); 1761 1762 if (!(*pgt)->populated && !mobj_is_paged(region->mobj)) { 1763 size_t granule = BIT(pg_info->shift); 1764 size_t offset = r.va - region->va + region->offset; 1765 1766 r.size = MIN(r.size, 1767 mobj_get_phys_granule(region->mobj)); 1768 r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); 1769 1770 if (mobj_get_pa(region->mobj, offset, granule, 1771 &r.pa) != TEE_SUCCESS) 1772 panic("Failed to get PA of unpaged mobj"); 1773 set_region(pg_info, &r); 1774 } 1775 r.va += r.size; 1776 } 1777 } 1778 1779 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, 1780 size_t size_left, paddr_t block_size, 1781 struct tee_mmap_region *mm __maybe_unused) 1782 { 1783 /* VA and PA are aligned to block size at current level */ 1784 if ((vaddr | paddr) & (block_size - 1)) 1785 return false; 1786 1787 /* Remainder fits into block at current level */ 1788 if (size_left < block_size) 1789 return false; 1790 1791 #ifdef CFG_WITH_PAGER 1792 /* 1793 * If pager is enabled, we need to map tee ram 1794 * regions with small pages only 1795 */ 1796 if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE) 1797 return false; 1798 #endif 1799 1800 return true; 1801 } 1802 1803 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) 1804 { 1805 struct core_mmu_table_info tbl_info; 1806 unsigned int idx; 1807 vaddr_t vaddr = mm->va; 1808 paddr_t paddr = mm->pa; 1809 ssize_t size_left = mm->size; 1810 unsigned int level; 1811 bool table_found; 1812 uint32_t old_attr; 1813 1814 assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); 1815 1816 while (size_left > 0) { 1817 level = CORE_MMU_BASE_TABLE_LEVEL; 1818 1819 while (true) { 1820 paddr_t block_size = 0; 1821 1822 assert(core_mmu_level_in_range(level)); 1823 1824 table_found = core_mmu_find_table(prtn, vaddr, level, 1825 &tbl_info); 1826 if (!table_found) 1827 panic("can't find table for mapping"); 1828 1829 block_size = BIT64(tbl_info.shift); 1830 1831 idx = core_mmu_va2idx(&tbl_info, vaddr); 1832 if (!can_map_at_level(paddr, vaddr, size_left, 1833 block_size, mm)) { 1834 bool secure = mm->attr & TEE_MATTR_SECURE; 1835 1836 /* 1837 * This part of the region can't be mapped at 1838 * this level. Need to go deeper. 1839 */ 1840 if (!core_mmu_entry_to_finer_grained(&tbl_info, 1841 idx, 1842 secure)) 1843 panic("Can't divide MMU entry"); 1844 level = tbl_info.next_level; 1845 continue; 1846 } 1847 1848 /* We can map part of the region at current level */ 1849 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1850 if (old_attr) 1851 panic("Page is already mapped"); 1852 1853 core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr); 1854 paddr += block_size; 1855 vaddr += block_size; 1856 size_left -= block_size; 1857 1858 break; 1859 } 1860 } 1861 } 1862 1863 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 1864 enum teecore_memtypes memtype) 1865 { 1866 TEE_Result ret; 1867 struct core_mmu_table_info tbl_info; 1868 struct tee_mmap_region *mm; 1869 unsigned int idx; 1870 uint32_t old_attr; 1871 uint32_t exceptions; 1872 vaddr_t vaddr = vstart; 1873 size_t i; 1874 bool secure; 1875 1876 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1877 1878 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1879 1880 if (vaddr & SMALL_PAGE_MASK) 1881 return TEE_ERROR_BAD_PARAMETERS; 1882 1883 exceptions = mmu_lock(); 1884 1885 mm = find_map_by_va((void *)vaddr); 1886 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1887 panic("VA does not belong to any known mm region"); 1888 1889 if (!core_mmu_is_dynamic_vaspace(mm)) 1890 panic("Trying to map into static region"); 1891 1892 for (i = 0; i < num_pages; i++) { 1893 if (pages[i] & SMALL_PAGE_MASK) { 1894 ret = TEE_ERROR_BAD_PARAMETERS; 1895 goto err; 1896 } 1897 1898 while (true) { 1899 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1900 &tbl_info)) 1901 panic("Can't find pagetable for vaddr "); 1902 1903 idx = core_mmu_va2idx(&tbl_info, vaddr); 1904 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1905 break; 1906 1907 /* This is supertable. Need to divide it. */ 1908 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1909 secure)) 1910 panic("Failed to spread pgdir on small tables"); 1911 } 1912 1913 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1914 if (old_attr) 1915 panic("Page is already mapped"); 1916 1917 core_mmu_set_entry(&tbl_info, idx, pages[i], 1918 core_mmu_type_to_attr(memtype)); 1919 vaddr += SMALL_PAGE_SIZE; 1920 } 1921 1922 /* 1923 * Make sure all the changes to translation tables are visible 1924 * before returning. TLB doesn't need to be invalidated as we are 1925 * guaranteed that there's no valid mapping in this range. 1926 */ 1927 core_mmu_table_write_barrier(); 1928 mmu_unlock(exceptions); 1929 1930 return TEE_SUCCESS; 1931 err: 1932 mmu_unlock(exceptions); 1933 1934 if (i) 1935 core_mmu_unmap_pages(vstart, i); 1936 1937 return ret; 1938 } 1939 1940 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 1941 size_t num_pages, 1942 enum teecore_memtypes memtype) 1943 { 1944 struct core_mmu_table_info tbl_info = { }; 1945 struct tee_mmap_region *mm = NULL; 1946 unsigned int idx = 0; 1947 uint32_t old_attr = 0; 1948 uint32_t exceptions = 0; 1949 vaddr_t vaddr = vstart; 1950 paddr_t paddr = pstart; 1951 size_t i = 0; 1952 bool secure = false; 1953 1954 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1955 1956 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1957 1958 if ((vaddr | paddr) & SMALL_PAGE_MASK) 1959 return TEE_ERROR_BAD_PARAMETERS; 1960 1961 exceptions = mmu_lock(); 1962 1963 mm = find_map_by_va((void *)vaddr); 1964 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1965 panic("VA does not belong to any known mm region"); 1966 1967 if (!core_mmu_is_dynamic_vaspace(mm)) 1968 panic("Trying to map into static region"); 1969 1970 for (i = 0; i < num_pages; i++) { 1971 while (true) { 1972 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1973 &tbl_info)) 1974 panic("Can't find pagetable for vaddr "); 1975 1976 idx = core_mmu_va2idx(&tbl_info, vaddr); 1977 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1978 break; 1979 1980 /* This is supertable. Need to divide it. */ 1981 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1982 secure)) 1983 panic("Failed to spread pgdir on small tables"); 1984 } 1985 1986 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1987 if (old_attr) 1988 panic("Page is already mapped"); 1989 1990 core_mmu_set_entry(&tbl_info, idx, paddr, 1991 core_mmu_type_to_attr(memtype)); 1992 paddr += SMALL_PAGE_SIZE; 1993 vaddr += SMALL_PAGE_SIZE; 1994 } 1995 1996 /* 1997 * Make sure all the changes to translation tables are visible 1998 * before returning. TLB doesn't need to be invalidated as we are 1999 * guaranteed that there's no valid mapping in this range. 2000 */ 2001 core_mmu_table_write_barrier(); 2002 mmu_unlock(exceptions); 2003 2004 return TEE_SUCCESS; 2005 } 2006 2007 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) 2008 { 2009 struct core_mmu_table_info tbl_info; 2010 struct tee_mmap_region *mm; 2011 size_t i; 2012 unsigned int idx; 2013 uint32_t exceptions; 2014 2015 exceptions = mmu_lock(); 2016 2017 mm = find_map_by_va((void *)vstart); 2018 if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) 2019 panic("VA does not belong to any known mm region"); 2020 2021 if (!core_mmu_is_dynamic_vaspace(mm)) 2022 panic("Trying to unmap static region"); 2023 2024 for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { 2025 if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) 2026 panic("Can't find pagetable"); 2027 2028 if (tbl_info.shift != SMALL_PAGE_SHIFT) 2029 panic("Invalid pagetable level"); 2030 2031 idx = core_mmu_va2idx(&tbl_info, vstart); 2032 core_mmu_set_entry(&tbl_info, idx, 0, 0); 2033 } 2034 tlbi_all(); 2035 2036 mmu_unlock(exceptions); 2037 } 2038 2039 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 2040 struct user_mode_ctx *uctx) 2041 { 2042 struct core_mmu_table_info pg_info = { }; 2043 struct pgt_cache *pgt_cache = &uctx->pgt_cache; 2044 struct pgt *pgt = NULL; 2045 struct pgt *p = NULL; 2046 struct vm_region *r = NULL; 2047 2048 if (TAILQ_EMPTY(&uctx->vm_info.regions)) 2049 return; /* Nothing to map */ 2050 2051 /* 2052 * Allocate all page tables in advance. 2053 */ 2054 pgt_get_all(uctx); 2055 pgt = SLIST_FIRST(pgt_cache); 2056 2057 core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL); 2058 2059 TAILQ_FOREACH(r, &uctx->vm_info.regions, link) 2060 set_pg_region(dir_info, r, &pgt, &pg_info); 2061 /* Record that the translation tables now are populated. */ 2062 SLIST_FOREACH(p, pgt_cache, link) { 2063 p->populated = true; 2064 if (p == pgt) 2065 break; 2066 } 2067 assert(p == pgt); 2068 } 2069 2070 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 2071 size_t len) 2072 { 2073 struct core_mmu_table_info tbl_info = { }; 2074 struct tee_mmap_region *res_map = NULL; 2075 struct tee_mmap_region *map = NULL; 2076 paddr_t pa = virt_to_phys(addr); 2077 size_t granule = 0; 2078 ptrdiff_t i = 0; 2079 paddr_t p = 0; 2080 size_t l = 0; 2081 2082 map = find_map_by_type_and_pa(type, pa, len); 2083 if (!map) 2084 return TEE_ERROR_GENERIC; 2085 2086 res_map = find_map_by_type(MEM_AREA_RES_VASPACE); 2087 if (!res_map) 2088 return TEE_ERROR_GENERIC; 2089 if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) 2090 return TEE_ERROR_GENERIC; 2091 granule = BIT(tbl_info.shift); 2092 2093 if (map < static_memory_map || 2094 map >= static_memory_map + ARRAY_SIZE(static_memory_map)) 2095 return TEE_ERROR_GENERIC; 2096 i = map - static_memory_map; 2097 2098 /* Check that we have a full match */ 2099 p = ROUNDDOWN(pa, granule); 2100 l = ROUNDUP(len + pa - p, granule); 2101 if (map->pa != p || map->size != l) 2102 return TEE_ERROR_GENERIC; 2103 2104 clear_region(&tbl_info, map); 2105 tlbi_all(); 2106 2107 /* If possible remove the va range from res_map */ 2108 if (res_map->va - map->size == map->va) { 2109 res_map->va -= map->size; 2110 res_map->size += map->size; 2111 } 2112 2113 /* Remove the entry. */ 2114 memmove(map, map + 1, 2115 (ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map)); 2116 2117 /* Clear the last new entry in case it was used */ 2118 memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1, 2119 0, sizeof(*map)); 2120 2121 return TEE_SUCCESS; 2122 } 2123 2124 struct tee_mmap_region * 2125 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) 2126 { 2127 struct tee_mmap_region *map = NULL; 2128 struct tee_mmap_region *map_found = NULL; 2129 2130 if (!len) 2131 return NULL; 2132 2133 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 2134 if (map->type != type) 2135 continue; 2136 2137 if (map_found) 2138 return NULL; 2139 2140 map_found = map; 2141 } 2142 2143 if (!map_found || map_found->size < len) 2144 return NULL; 2145 2146 return map_found; 2147 } 2148 2149 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) 2150 { 2151 struct core_mmu_table_info tbl_info; 2152 struct tee_mmap_region *map; 2153 size_t n; 2154 size_t granule; 2155 paddr_t p; 2156 size_t l; 2157 2158 if (!len) 2159 return NULL; 2160 2161 if (!core_mmu_check_end_pa(addr, len)) 2162 return NULL; 2163 2164 /* Check if the memory is already mapped */ 2165 map = find_map_by_type_and_pa(type, addr, len); 2166 if (map && pbuf_inside_map_area(addr, len, map)) 2167 return (void *)(vaddr_t)(map->va + addr - map->pa); 2168 2169 /* Find the reserved va space used for late mappings */ 2170 map = find_map_by_type(MEM_AREA_RES_VASPACE); 2171 if (!map) 2172 return NULL; 2173 2174 if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) 2175 return NULL; 2176 2177 granule = BIT64(tbl_info.shift); 2178 p = ROUNDDOWN(addr, granule); 2179 l = ROUNDUP(len + addr - p, granule); 2180 2181 /* Ban overflowing virtual addresses */ 2182 if (map->size < l) 2183 return NULL; 2184 2185 /* 2186 * Something is wrong, we can't fit the va range into the selected 2187 * table. The reserved va range is possibly missaligned with 2188 * granule. 2189 */ 2190 if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) 2191 return NULL; 2192 2193 /* Find end of the memory map */ 2194 n = 0; 2195 while (!core_mmap_is_end_of_table(static_memory_map + n)) 2196 n++; 2197 2198 if (n < (ARRAY_SIZE(static_memory_map) - 1)) { 2199 /* There's room for another entry */ 2200 static_memory_map[n].va = map->va; 2201 static_memory_map[n].size = l; 2202 static_memory_map[n + 1].type = MEM_AREA_END; 2203 map->va += l; 2204 map->size -= l; 2205 map = static_memory_map + n; 2206 } else { 2207 /* 2208 * There isn't room for another entry, steal the reserved 2209 * entry as it's not useful for anything else any longer. 2210 */ 2211 map->size = l; 2212 } 2213 map->type = type; 2214 map->region_size = granule; 2215 map->attr = core_mmu_type_to_attr(type); 2216 map->pa = p; 2217 2218 set_region(&tbl_info, map); 2219 2220 /* Make sure the new entry is visible before continuing. */ 2221 core_mmu_table_write_barrier(); 2222 2223 return (void *)(vaddr_t)(map->va + addr - map->pa); 2224 } 2225 2226 #ifdef CFG_WITH_PAGER 2227 static vaddr_t get_linear_map_end_va(void) 2228 { 2229 /* this is synced with the generic linker file kern.ld.S */ 2230 return (vaddr_t)__heap2_end; 2231 } 2232 2233 static paddr_t get_linear_map_end_pa(void) 2234 { 2235 return get_linear_map_end_va() - boot_mmu_config.map_offset; 2236 } 2237 #endif 2238 2239 #if defined(CFG_TEE_CORE_DEBUG) 2240 static void check_pa_matches_va(void *va, paddr_t pa) 2241 { 2242 TEE_Result res = TEE_ERROR_GENERIC; 2243 vaddr_t v = (vaddr_t)va; 2244 paddr_t p = 0; 2245 struct core_mmu_table_info ti __maybe_unused = { }; 2246 2247 if (core_mmu_user_va_range_is_defined()) { 2248 vaddr_t user_va_base = 0; 2249 size_t user_va_size = 0; 2250 2251 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 2252 if (v >= user_va_base && 2253 v <= (user_va_base - 1 + user_va_size)) { 2254 if (!core_mmu_user_mapping_is_active()) { 2255 if (pa) 2256 panic("issue in linear address space"); 2257 return; 2258 } 2259 2260 res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), 2261 va, &p); 2262 if (res == TEE_ERROR_NOT_SUPPORTED) 2263 return; 2264 if (res == TEE_SUCCESS && pa != p) 2265 panic("bad pa"); 2266 if (res != TEE_SUCCESS && pa) 2267 panic("false pa"); 2268 return; 2269 } 2270 } 2271 #ifdef CFG_WITH_PAGER 2272 if (is_unpaged(va)) { 2273 if (v - boot_mmu_config.map_offset != pa) 2274 panic("issue in linear address space"); 2275 return; 2276 } 2277 2278 if (tee_pager_get_table_info(v, &ti)) { 2279 uint32_t a; 2280 2281 /* 2282 * Lookups in the page table managed by the pager is 2283 * dangerous for addresses in the paged area as those pages 2284 * changes all the time. But some ranges are safe, 2285 * rw-locked areas when the page is populated for instance. 2286 */ 2287 core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); 2288 if (a & TEE_MATTR_VALID_BLOCK) { 2289 paddr_t mask = BIT64(ti.shift) - 1; 2290 2291 p |= v & mask; 2292 if (pa != p) 2293 panic(); 2294 } else { 2295 if (pa) 2296 panic(); 2297 } 2298 return; 2299 } 2300 #endif 2301 2302 if (!core_va2pa_helper(va, &p)) { 2303 /* Verfiy only the static mapping (case non null phys addr) */ 2304 if (p && pa != p) { 2305 DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, 2306 va, p, pa); 2307 panic(); 2308 } 2309 } else { 2310 if (pa) { 2311 DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); 2312 panic(); 2313 } 2314 } 2315 } 2316 #else 2317 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) 2318 { 2319 } 2320 #endif 2321 2322 paddr_t virt_to_phys(void *va) 2323 { 2324 paddr_t pa = 0; 2325 2326 if (!arch_va2pa_helper(va, &pa)) 2327 pa = 0; 2328 check_pa_matches_va(va, pa); 2329 return pa; 2330 } 2331 2332 #if defined(CFG_TEE_CORE_DEBUG) 2333 static void check_va_matches_pa(paddr_t pa, void *va) 2334 { 2335 paddr_t p = 0; 2336 2337 if (!va) 2338 return; 2339 2340 p = virt_to_phys(va); 2341 if (p != pa) { 2342 DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); 2343 panic(); 2344 } 2345 } 2346 #else 2347 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) 2348 { 2349 } 2350 #endif 2351 2352 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) 2353 { 2354 if (!core_mmu_user_mapping_is_active()) 2355 return NULL; 2356 2357 return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); 2358 } 2359 2360 #ifdef CFG_WITH_PAGER 2361 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2362 { 2363 paddr_t end_pa = 0; 2364 2365 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 2366 return NULL; 2367 2368 if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) { 2369 if (end_pa > get_linear_map_end_pa()) 2370 return NULL; 2371 return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset); 2372 } 2373 2374 return tee_pager_phys_to_virt(pa, len); 2375 } 2376 #else 2377 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2378 { 2379 struct tee_mmap_region *mmap = NULL; 2380 2381 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); 2382 if (!mmap) 2383 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); 2384 if (!mmap) 2385 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); 2386 if (!mmap) 2387 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); 2388 if (!mmap) 2389 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); 2390 if (!mmap) 2391 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); 2392 /* 2393 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only 2394 * used with pager and not needed here. 2395 */ 2396 return map_pa2va(mmap, pa, len); 2397 } 2398 #endif 2399 2400 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) 2401 { 2402 void *va = NULL; 2403 2404 switch (m) { 2405 case MEM_AREA_TS_VASPACE: 2406 va = phys_to_virt_ts_vaspace(pa, len); 2407 break; 2408 case MEM_AREA_TEE_RAM: 2409 case MEM_AREA_TEE_RAM_RX: 2410 case MEM_AREA_TEE_RAM_RO: 2411 case MEM_AREA_TEE_RAM_RW: 2412 case MEM_AREA_NEX_RAM_RO: 2413 case MEM_AREA_NEX_RAM_RW: 2414 va = phys_to_virt_tee_ram(pa, len); 2415 break; 2416 case MEM_AREA_SHM_VASPACE: 2417 /* Find VA from PA in dynamic SHM is not yet supported */ 2418 va = NULL; 2419 break; 2420 default: 2421 va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); 2422 } 2423 if (m != MEM_AREA_SEC_RAM_OVERALL) 2424 check_va_matches_pa(pa, va); 2425 return va; 2426 } 2427 2428 void *phys_to_virt_io(paddr_t pa, size_t len) 2429 { 2430 struct tee_mmap_region *map = NULL; 2431 void *va = NULL; 2432 2433 map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); 2434 if (!map) 2435 map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); 2436 if (!map) 2437 return NULL; 2438 va = map_pa2va(map, pa, len); 2439 check_va_matches_pa(pa, va); 2440 return va; 2441 } 2442 2443 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) 2444 { 2445 if (cpu_mmu_enabled()) 2446 return (vaddr_t)phys_to_virt(pa, type, len); 2447 2448 return (vaddr_t)pa; 2449 } 2450 2451 #ifdef CFG_WITH_PAGER 2452 bool is_unpaged(void *va) 2453 { 2454 vaddr_t v = (vaddr_t)va; 2455 2456 return v >= VCORE_START_VA && v < get_linear_map_end_va(); 2457 } 2458 #else 2459 bool is_unpaged(void *va __unused) 2460 { 2461 return true; 2462 } 2463 #endif 2464 2465 void core_mmu_init_virtualization(void) 2466 { 2467 paddr_t b1 = 0; 2468 paddr_size_t s1 = 0; 2469 2470 static_assert(ARRAY_SIZE(secure_only) <= 2); 2471 if (ARRAY_SIZE(secure_only) == 2) { 2472 b1 = secure_only[1].paddr; 2473 s1 = secure_only[1].size; 2474 } 2475 virt_init_memory(static_memory_map, secure_only[0].paddr, 2476 secure_only[0].size, b1, s1); 2477 } 2478 2479 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) 2480 { 2481 assert(p->pa); 2482 if (cpu_mmu_enabled()) { 2483 if (!p->va) 2484 p->va = (vaddr_t)phys_to_virt_io(p->pa, len); 2485 assert(p->va); 2486 return p->va; 2487 } 2488 return p->pa; 2489 } 2490 2491 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) 2492 { 2493 assert(p->pa); 2494 if (cpu_mmu_enabled()) { 2495 if (!p->va) 2496 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, 2497 len); 2498 assert(p->va); 2499 return p->va; 2500 } 2501 return p->pa; 2502 } 2503 2504 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) 2505 { 2506 assert(p->pa); 2507 if (cpu_mmu_enabled()) { 2508 if (!p->va) 2509 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, 2510 len); 2511 assert(p->va); 2512 return p->va; 2513 } 2514 return p->pa; 2515 } 2516 2517 #ifdef CFG_CORE_RESERVED_SHM 2518 static TEE_Result teecore_init_pub_ram(void) 2519 { 2520 vaddr_t s = 0; 2521 vaddr_t e = 0; 2522 2523 /* get virtual addr/size of NSec shared mem allocated from teecore */ 2524 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); 2525 2526 if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) 2527 panic("invalid PUB RAM"); 2528 2529 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2530 if (!tee_vbuf_is_non_sec(s, e - s)) 2531 panic("PUB RAM is not non-secure"); 2532 2533 #ifdef CFG_PL310 2534 /* Allocate statically the l2cc mutex */ 2535 tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); 2536 s += sizeof(uint32_t); /* size of a pl310 mutex */ 2537 s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ 2538 #endif 2539 2540 default_nsec_shm_paddr = virt_to_phys((void *)s); 2541 default_nsec_shm_size = e - s; 2542 2543 return TEE_SUCCESS; 2544 } 2545 early_init(teecore_init_pub_ram); 2546 #endif /*CFG_CORE_RESERVED_SHM*/ 2547 2548 void core_mmu_init_ta_ram(void) 2549 { 2550 vaddr_t s = 0; 2551 vaddr_t e = 0; 2552 paddr_t ps = 0; 2553 size_t size = 0; 2554 2555 /* 2556 * Get virtual addr/size of RAM where TA are loaded/executedNSec 2557 * shared mem allocated from teecore. 2558 */ 2559 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) 2560 virt_get_ta_ram(&s, &e); 2561 else 2562 core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e); 2563 2564 ps = virt_to_phys((void *)s); 2565 size = e - s; 2566 2567 if (!ps || (ps & CORE_MMU_USER_CODE_MASK) || 2568 !size || (size & CORE_MMU_USER_CODE_MASK)) 2569 panic("invalid TA RAM"); 2570 2571 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2572 if (!tee_pbuf_is_sec(ps, size)) 2573 panic("TA RAM is not secure"); 2574 2575 if (!tee_mm_is_empty(&tee_mm_sec_ddr)) 2576 panic("TA RAM pool is not empty"); 2577 2578 /* remove previous config and init TA ddr memory pool */ 2579 tee_mm_final(&tee_mm_sec_ddr); 2580 tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT, 2581 TEE_MM_POOL_NO_FLAGS); 2582 } 2583