1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016, 2022 Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved. 6 */ 7 8 #include <assert.h> 9 #include <config.h> 10 #include <kernel/boot.h> 11 #include <kernel/dt.h> 12 #include <kernel/linker.h> 13 #include <kernel/panic.h> 14 #include <kernel/spinlock.h> 15 #include <kernel/tee_l2cc_mutex.h> 16 #include <kernel/tee_misc.h> 17 #include <kernel/tlb_helpers.h> 18 #include <kernel/user_mode_ctx.h> 19 #include <kernel/virtualization.h> 20 #include <libfdt.h> 21 #include <mm/core_memprot.h> 22 #include <mm/core_mmu.h> 23 #include <mm/mobj.h> 24 #include <mm/pgt_cache.h> 25 #include <mm/tee_pager.h> 26 #include <mm/vm.h> 27 #include <platform_config.h> 28 #include <string.h> 29 #include <trace.h> 30 #include <util.h> 31 32 #ifndef DEBUG_XLAT_TABLE 33 #define DEBUG_XLAT_TABLE 0 34 #endif 35 36 #define SHM_VASPACE_SIZE (1024 * 1024 * 32) 37 38 #ifdef CFG_CORE_PHYS_RELOCATABLE 39 unsigned long core_mmu_tee_load_pa __nex_bss; 40 #else 41 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR; 42 #endif 43 44 /* 45 * These variables are initialized before .bss is cleared. To avoid 46 * resetting them when .bss is cleared we're storing them in .data instead, 47 * even if they initially are zero. 48 */ 49 50 #ifdef CFG_CORE_RESERVED_SHM 51 /* Default NSec shared memory allocated from NSec world */ 52 unsigned long default_nsec_shm_size __nex_bss; 53 unsigned long default_nsec_shm_paddr __nex_bss; 54 #endif 55 56 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS 57 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE) 58 + 1 59 #endif 60 + 1] __nex_bss; 61 62 /* Define the platform's memory layout. */ 63 struct memaccess_area { 64 paddr_t paddr; 65 size_t size; 66 }; 67 68 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } 69 70 static struct memaccess_area secure_only[] __nex_data = { 71 #ifdef CFG_CORE_PHYS_RELOCATABLE 72 MEMACCESS_AREA(0, 0), 73 #else 74 #ifdef TRUSTED_SRAM_BASE 75 MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), 76 #endif 77 MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), 78 #endif 79 }; 80 81 static struct memaccess_area nsec_shared[] __nex_data = { 82 #ifdef CFG_CORE_RESERVED_SHM 83 MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), 84 #endif 85 }; 86 87 #if defined(CFG_SECURE_DATA_PATH) 88 static const char *tz_sdp_match = "linaro,secure-heap"; 89 static struct memaccess_area sec_sdp; 90 #ifdef CFG_TEE_SDP_MEM_BASE 91 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); 92 #endif 93 #ifdef TEE_SDP_TEST_MEM_BASE 94 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); 95 #endif 96 #endif 97 98 #ifdef CFG_CORE_RESERVED_SHM 99 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); 100 #endif 101 static unsigned int mmu_spinlock; 102 103 static uint32_t mmu_lock(void) 104 { 105 return cpu_spin_lock_xsave(&mmu_spinlock); 106 } 107 108 static void mmu_unlock(uint32_t exceptions) 109 { 110 cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); 111 } 112 113 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size) 114 { 115 /* 116 * The first range is always used to cover OP-TEE core memory, but 117 * depending on configuration it may cover more than that. 118 */ 119 *base = secure_only[0].paddr; 120 *size = secure_only[0].size; 121 } 122 123 #ifdef CFG_CORE_PHYS_RELOCATABLE 124 void core_mmu_set_secure_memory(paddr_t base, size_t size) 125 { 126 static_assert(ARRAY_SIZE(secure_only) == 1); 127 assert(!secure_only[0].size); 128 assert(base && size); 129 130 DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size); 131 secure_only[0].paddr = base; 132 secure_only[0].size = size; 133 } 134 #endif 135 136 void core_mmu_get_ta_range(paddr_t *base, size_t *size) 137 { 138 paddr_t b = 0; 139 size_t s = 0; 140 141 static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE)); 142 #ifdef TA_RAM_START 143 b = TA_RAM_START; 144 s = TA_RAM_SIZE; 145 #else 146 static_assert(ARRAY_SIZE(secure_only) <= 2); 147 if (ARRAY_SIZE(secure_only) == 1) { 148 vaddr_t load_offs = 0; 149 150 assert(core_mmu_tee_load_pa >= secure_only[0].paddr); 151 load_offs = core_mmu_tee_load_pa - secure_only[0].paddr; 152 153 assert(secure_only[0].size > 154 load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE); 155 b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE; 156 s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE - 157 TEE_SDP_TEST_MEM_SIZE; 158 } else { 159 assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE); 160 b = secure_only[1].paddr; 161 s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE; 162 } 163 #endif 164 if (base) 165 *base = b; 166 if (size) 167 *size = s; 168 } 169 170 static struct tee_mmap_region *get_memory_map(void) 171 { 172 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 173 struct tee_mmap_region *map = virt_get_memory_map(); 174 175 if (map) 176 return map; 177 } 178 179 return static_memory_map; 180 } 181 182 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, 183 paddr_t pa, size_t size) 184 { 185 size_t n; 186 187 for (n = 0; n < alen; n++) 188 if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) 189 return true; 190 return false; 191 } 192 193 #define pbuf_intersects(a, pa, size) \ 194 _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) 195 196 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, 197 paddr_t pa, size_t size) 198 { 199 size_t n; 200 201 for (n = 0; n < alen; n++) 202 if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) 203 return true; 204 return false; 205 } 206 207 #define pbuf_is_inside(a, pa, size) \ 208 _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) 209 210 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) 211 { 212 paddr_t end_pa = 0; 213 214 if (!map) 215 return false; 216 217 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 218 return false; 219 220 return (pa >= map->pa && end_pa <= map->pa + map->size - 1); 221 } 222 223 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) 224 { 225 if (!map) 226 return false; 227 return (va >= map->va && va <= (map->va + map->size - 1)); 228 } 229 230 /* check if target buffer fits in a core default map area */ 231 static bool pbuf_inside_map_area(unsigned long p, size_t l, 232 struct tee_mmap_region *map) 233 { 234 return core_is_buffer_inside(p, l, map->pa, map->size); 235 } 236 237 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) 238 { 239 struct tee_mmap_region *map; 240 241 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) 242 if (map->type == type) 243 return map; 244 return NULL; 245 } 246 247 static struct tee_mmap_region * 248 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) 249 { 250 struct tee_mmap_region *map; 251 252 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 253 if (map->type != type) 254 continue; 255 if (pa_is_in_map(map, pa, len)) 256 return map; 257 } 258 return NULL; 259 } 260 261 static struct tee_mmap_region *find_map_by_va(void *va) 262 { 263 struct tee_mmap_region *map = get_memory_map(); 264 unsigned long a = (unsigned long)va; 265 266 while (!core_mmap_is_end_of_table(map)) { 267 if (a >= map->va && a <= (map->va - 1 + map->size)) 268 return map; 269 map++; 270 } 271 return NULL; 272 } 273 274 static struct tee_mmap_region *find_map_by_pa(unsigned long pa) 275 { 276 struct tee_mmap_region *map = get_memory_map(); 277 278 while (!core_mmap_is_end_of_table(map)) { 279 if (pa >= map->pa && pa <= (map->pa + map->size - 1)) 280 return map; 281 map++; 282 } 283 return NULL; 284 } 285 286 #if defined(CFG_SECURE_DATA_PATH) 287 static bool dtb_get_sdp_region(void) 288 { 289 void *fdt = NULL; 290 int node = 0; 291 int tmp_node = 0; 292 paddr_t tmp_addr = 0; 293 size_t tmp_size = 0; 294 295 if (!IS_ENABLED(CFG_EMBED_DTB)) 296 return false; 297 298 fdt = get_embedded_dt(); 299 if (!fdt) 300 panic("No DTB found"); 301 302 node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match); 303 if (node < 0) { 304 DMSG("No %s compatible node found", tz_sdp_match); 305 return false; 306 } 307 tmp_node = node; 308 while (tmp_node >= 0) { 309 tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node, 310 tz_sdp_match); 311 if (tmp_node >= 0) 312 DMSG("Ignore SDP pool node %s, supports only 1 node", 313 fdt_get_name(fdt, tmp_node, NULL)); 314 } 315 316 tmp_addr = fdt_reg_base_address(fdt, node); 317 if (tmp_addr == DT_INFO_INVALID_REG) { 318 EMSG("%s: Unable to get base addr from DT", tz_sdp_match); 319 return false; 320 } 321 322 tmp_size = fdt_reg_size(fdt, node); 323 if (tmp_size == DT_INFO_INVALID_REG_SIZE) { 324 EMSG("%s: Unable to get size of base addr from DT", 325 tz_sdp_match); 326 return false; 327 } 328 329 sec_sdp.paddr = tmp_addr; 330 sec_sdp.size = tmp_size; 331 332 return true; 333 } 334 #endif 335 336 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) 337 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, 338 const struct core_mmu_phys_mem *start, 339 const struct core_mmu_phys_mem *end) 340 { 341 const struct core_mmu_phys_mem *mem; 342 343 for (mem = start; mem < end; mem++) { 344 if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) 345 return true; 346 } 347 348 return false; 349 } 350 #endif 351 352 #ifdef CFG_CORE_DYN_SHM 353 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, 354 paddr_t pa, size_t size) 355 { 356 struct core_mmu_phys_mem *m = *mem; 357 size_t n = 0; 358 359 while (true) { 360 if (n >= *nelems) { 361 DMSG("No need to carve out %#" PRIxPA " size %#zx", 362 pa, size); 363 return; 364 } 365 if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size)) 366 break; 367 if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size)) 368 panic(); 369 n++; 370 } 371 372 if (pa == m[n].addr && size == m[n].size) { 373 /* Remove this entry */ 374 (*nelems)--; 375 memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n)); 376 m = nex_realloc(m, sizeof(*m) * *nelems); 377 if (!m) 378 panic(); 379 *mem = m; 380 } else if (pa == m[n].addr) { 381 m[n].addr += size; 382 m[n].size -= size; 383 } else if ((pa + size) == (m[n].addr + m[n].size)) { 384 m[n].size -= size; 385 } else { 386 /* Need to split the memory entry */ 387 m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); 388 if (!m) 389 panic(); 390 *mem = m; 391 memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n)); 392 (*nelems)++; 393 m[n].size = pa - m[n].addr; 394 m[n + 1].size -= size + m[n].size; 395 m[n + 1].addr = pa + size; 396 } 397 } 398 399 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, 400 size_t nelems, 401 struct tee_mmap_region *map) 402 { 403 size_t n; 404 405 for (n = 0; n < nelems; n++) { 406 if (!core_is_buffer_outside(start[n].addr, start[n].size, 407 map->pa, map->size)) { 408 EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ 409 ") overlaps map (type %d %#" PRIxPA ":%#zx)", 410 start[n].addr, start[n].size, 411 map->type, map->pa, map->size); 412 panic(); 413 } 414 } 415 } 416 417 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; 418 static size_t discovered_nsec_ddr_nelems __nex_bss; 419 420 static int cmp_pmem_by_addr(const void *a, const void *b) 421 { 422 const struct core_mmu_phys_mem *pmem_a = a; 423 const struct core_mmu_phys_mem *pmem_b = b; 424 425 return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); 426 } 427 428 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 429 size_t nelems) 430 { 431 struct core_mmu_phys_mem *m = start; 432 size_t num_elems = nelems; 433 struct tee_mmap_region *map = static_memory_map; 434 const struct core_mmu_phys_mem __maybe_unused *pmem; 435 size_t n = 0; 436 437 assert(!discovered_nsec_ddr_start); 438 assert(m && num_elems); 439 440 qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); 441 442 /* 443 * Non-secure shared memory and also secure data 444 * path memory are supposed to reside inside 445 * non-secure memory. Since NSEC_SHM and SDP_MEM 446 * are used for a specific purpose make holes for 447 * those memory in the normal non-secure memory. 448 * 449 * This has to be done since for instance QEMU 450 * isn't aware of which memory range in the 451 * non-secure memory is used for NSEC_SHM. 452 */ 453 454 #ifdef CFG_SECURE_DATA_PATH 455 if (dtb_get_sdp_region()) 456 carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size); 457 458 for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) 459 carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); 460 #endif 461 462 for (n = 0; n < ARRAY_SIZE(secure_only); n++) 463 carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr, 464 secure_only[n].size); 465 466 for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) { 467 switch (map->type) { 468 case MEM_AREA_NSEC_SHM: 469 carve_out_phys_mem(&m, &num_elems, map->pa, map->size); 470 break; 471 case MEM_AREA_EXT_DT: 472 case MEM_AREA_RES_VASPACE: 473 case MEM_AREA_SHM_VASPACE: 474 case MEM_AREA_TS_VASPACE: 475 case MEM_AREA_PAGER_VASPACE: 476 break; 477 default: 478 check_phys_mem_is_outside(m, num_elems, map); 479 } 480 } 481 482 discovered_nsec_ddr_start = m; 483 discovered_nsec_ddr_nelems = num_elems; 484 485 if (!core_mmu_check_end_pa(m[num_elems - 1].addr, 486 m[num_elems - 1].size)) 487 panic(); 488 } 489 490 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, 491 const struct core_mmu_phys_mem **end) 492 { 493 if (!discovered_nsec_ddr_start) 494 return false; 495 496 *start = discovered_nsec_ddr_start; 497 *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; 498 499 return true; 500 } 501 502 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) 503 { 504 const struct core_mmu_phys_mem *start; 505 const struct core_mmu_phys_mem *end; 506 507 if (!get_discovered_nsec_ddr(&start, &end)) 508 return false; 509 510 return pbuf_is_special_mem(pbuf, len, start, end); 511 } 512 513 bool core_mmu_nsec_ddr_is_defined(void) 514 { 515 const struct core_mmu_phys_mem *start; 516 const struct core_mmu_phys_mem *end; 517 518 if (!get_discovered_nsec_ddr(&start, &end)) 519 return false; 520 521 return start != end; 522 } 523 #else 524 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) 525 { 526 return false; 527 } 528 #endif /*CFG_CORE_DYN_SHM*/ 529 530 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ 531 EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ 532 pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) 533 534 #ifdef CFG_SECURE_DATA_PATH 535 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) 536 { 537 bool is_sdp_mem = false; 538 539 if (sec_sdp.size) 540 is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr, 541 sec_sdp.size); 542 543 if (!is_sdp_mem) 544 is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, 545 phys_sdp_mem_end); 546 547 return is_sdp_mem; 548 } 549 550 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size) 551 { 552 struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED, 553 CORE_MEM_SDP_MEM); 554 555 if (!mobj) 556 panic("can't create SDP physical memory object"); 557 558 return mobj; 559 } 560 561 struct mobj **core_sdp_mem_create_mobjs(void) 562 { 563 const struct core_mmu_phys_mem *mem = NULL; 564 struct mobj **mobj_base = NULL; 565 struct mobj **mobj = NULL; 566 int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; 567 568 if (sec_sdp.size) 569 cnt++; 570 571 /* SDP mobjs table must end with a NULL entry */ 572 mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); 573 if (!mobj_base) 574 panic("Out of memory"); 575 576 mobj = mobj_base; 577 578 for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++) 579 *mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size); 580 581 if (sec_sdp.size) 582 *mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size); 583 584 return mobj_base; 585 } 586 587 #else /* CFG_SECURE_DATA_PATH */ 588 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) 589 { 590 return false; 591 } 592 593 #endif /* CFG_SECURE_DATA_PATH */ 594 595 /* Check special memories comply with registered memories */ 596 static void verify_special_mem_areas(struct tee_mmap_region *mem_map, 597 size_t len, 598 const struct core_mmu_phys_mem *start, 599 const struct core_mmu_phys_mem *end, 600 const char *area_name __maybe_unused) 601 { 602 const struct core_mmu_phys_mem *mem; 603 const struct core_mmu_phys_mem *mem2; 604 struct tee_mmap_region *mmap; 605 size_t n; 606 607 if (start == end) { 608 DMSG("No %s memory area defined", area_name); 609 return; 610 } 611 612 for (mem = start; mem < end; mem++) 613 DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", 614 area_name, mem->addr, (uint64_t)mem->addr + mem->size); 615 616 /* Check memories do not intersect each other */ 617 for (mem = start; mem + 1 < end; mem++) { 618 for (mem2 = mem + 1; mem2 < end; mem2++) { 619 if (core_is_buffer_intersect(mem2->addr, mem2->size, 620 mem->addr, mem->size)) { 621 MSG_MEM_INSTERSECT(mem2->addr, mem2->size, 622 mem->addr, mem->size); 623 panic("Special memory intersection"); 624 } 625 } 626 } 627 628 /* 629 * Check memories do not intersect any mapped memory. 630 * This is called before reserved VA space is loaded in mem_map. 631 */ 632 for (mem = start; mem < end; mem++) { 633 for (mmap = mem_map, n = 0; n < len; mmap++, n++) { 634 if (core_is_buffer_intersect(mem->addr, mem->size, 635 mmap->pa, mmap->size)) { 636 MSG_MEM_INSTERSECT(mem->addr, mem->size, 637 mmap->pa, mmap->size); 638 panic("Special memory intersection"); 639 } 640 } 641 } 642 } 643 644 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems, 645 const char *mem_name __maybe_unused, 646 enum teecore_memtypes mem_type, 647 paddr_t mem_addr, paddr_size_t mem_size, size_t *last) 648 { 649 size_t n = 0; 650 paddr_t pa; 651 paddr_size_t size; 652 653 if (!mem_size) /* Discard null size entries */ 654 return; 655 /* 656 * If some ranges of memory of the same type do overlap 657 * each others they are coalesced into one entry. To help this 658 * added entries are sorted by increasing physical. 659 * 660 * Note that it's valid to have the same physical memory as several 661 * different memory types, for instance the same device memory 662 * mapped as both secure and non-secure. This will probably not 663 * happen often in practice. 664 */ 665 DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, 666 mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size); 667 while (true) { 668 if (n >= (num_elems - 1)) { 669 EMSG("Out of entries (%zu) in memory_map", num_elems); 670 panic(); 671 } 672 if (n == *last) 673 break; 674 pa = memory_map[n].pa; 675 size = memory_map[n].size; 676 if (mem_type == memory_map[n].type && 677 ((pa <= (mem_addr + (mem_size - 1))) && 678 (mem_addr <= (pa + (size - 1))))) { 679 DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr); 680 memory_map[n].pa = MIN(pa, mem_addr); 681 memory_map[n].size = MAX(size, mem_size) + 682 (pa - memory_map[n].pa); 683 return; 684 } 685 if (mem_type < memory_map[n].type || 686 (mem_type == memory_map[n].type && mem_addr < pa)) 687 break; /* found the spot where to insert this memory */ 688 n++; 689 } 690 691 memmove(memory_map + n + 1, memory_map + n, 692 sizeof(struct tee_mmap_region) * (*last - n)); 693 (*last)++; 694 memset(memory_map + n, 0, sizeof(memory_map[0])); 695 memory_map[n].type = mem_type; 696 memory_map[n].pa = mem_addr; 697 memory_map[n].size = mem_size; 698 } 699 700 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems, 701 enum teecore_memtypes type, size_t size, size_t *last) 702 { 703 size_t n = 0; 704 705 DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); 706 while (true) { 707 if (n >= (num_elems - 1)) { 708 EMSG("Out of entries (%zu) in memory_map", num_elems); 709 panic(); 710 } 711 if (n == *last) 712 break; 713 if (type < memory_map[n].type) 714 break; 715 n++; 716 } 717 718 memmove(memory_map + n + 1, memory_map + n, 719 sizeof(struct tee_mmap_region) * (*last - n)); 720 (*last)++; 721 memset(memory_map + n, 0, sizeof(memory_map[0])); 722 memory_map[n].type = type; 723 memory_map[n].size = size; 724 } 725 726 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) 727 { 728 const uint32_t attr = TEE_MATTR_VALID_BLOCK; 729 const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED << 730 TEE_MATTR_MEM_TYPE_SHIFT; 731 const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << 732 TEE_MATTR_MEM_TYPE_SHIFT; 733 const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << 734 TEE_MATTR_MEM_TYPE_SHIFT; 735 736 switch (t) { 737 case MEM_AREA_TEE_RAM: 738 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged; 739 case MEM_AREA_TEE_RAM_RX: 740 case MEM_AREA_INIT_RAM_RX: 741 case MEM_AREA_IDENTITY_MAP_RX: 742 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged; 743 case MEM_AREA_TEE_RAM_RO: 744 case MEM_AREA_INIT_RAM_RO: 745 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged; 746 case MEM_AREA_TEE_RAM_RW: 747 case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ 748 case MEM_AREA_NEX_RAM_RW: 749 case MEM_AREA_TEE_ASAN: 750 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 751 case MEM_AREA_TEE_COHERENT: 752 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; 753 case MEM_AREA_TA_RAM: 754 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 755 case MEM_AREA_NSEC_SHM: 756 return attr | TEE_MATTR_PRW | cached; 757 case MEM_AREA_EXT_DT: 758 /* 759 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device 760 * tree as secure non-cached memory, otherwise, fall back to 761 * non-secure mapping. 762 */ 763 if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE)) 764 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | 765 noncache; 766 fallthrough; 767 case MEM_AREA_IO_NSEC: 768 return attr | TEE_MATTR_PRW | noncache; 769 case MEM_AREA_IO_SEC: 770 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; 771 case MEM_AREA_RAM_NSEC: 772 return attr | TEE_MATTR_PRW | cached; 773 case MEM_AREA_RAM_SEC: 774 case MEM_AREA_SEC_RAM_OVERALL: 775 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 776 case MEM_AREA_RES_VASPACE: 777 case MEM_AREA_SHM_VASPACE: 778 return 0; 779 case MEM_AREA_PAGER_VASPACE: 780 return TEE_MATTR_SECURE; 781 default: 782 panic("invalid type"); 783 } 784 } 785 786 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) 787 { 788 switch (mm->type) { 789 case MEM_AREA_TEE_RAM: 790 case MEM_AREA_TEE_RAM_RX: 791 case MEM_AREA_TEE_RAM_RO: 792 case MEM_AREA_TEE_RAM_RW: 793 case MEM_AREA_INIT_RAM_RX: 794 case MEM_AREA_INIT_RAM_RO: 795 case MEM_AREA_NEX_RAM_RW: 796 case MEM_AREA_NEX_RAM_RO: 797 case MEM_AREA_TEE_ASAN: 798 return true; 799 default: 800 return false; 801 } 802 } 803 804 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) 805 { 806 return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); 807 } 808 809 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) 810 { 811 return mm->region_size == CORE_MMU_PGDIR_SIZE; 812 } 813 814 static int cmp_mmap_by_lower_va(const void *a, const void *b) 815 { 816 const struct tee_mmap_region *mm_a = a; 817 const struct tee_mmap_region *mm_b = b; 818 819 return CMP_TRILEAN(mm_a->va, mm_b->va); 820 } 821 822 static void dump_mmap_table(struct tee_mmap_region *memory_map) 823 { 824 struct tee_mmap_region *map; 825 826 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 827 vaddr_t __maybe_unused vstart; 828 829 vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1)); 830 DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA 831 " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", 832 teecore_memtype_name(map->type), vstart, 833 vstart + map->size - 1, map->pa, 834 (paddr_t)(map->pa + map->size - 1), map->size, 835 map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); 836 } 837 } 838 839 #if DEBUG_XLAT_TABLE 840 841 static void dump_xlat_table(vaddr_t va, unsigned int level) 842 { 843 struct core_mmu_table_info tbl_info; 844 unsigned int idx = 0; 845 paddr_t pa; 846 uint32_t attr; 847 848 core_mmu_find_table(NULL, va, level, &tbl_info); 849 va = tbl_info.va_base; 850 for (idx = 0; idx < tbl_info.num_entries; idx++) { 851 core_mmu_get_entry(&tbl_info, idx, &pa, &attr); 852 if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { 853 const char *security_bit = ""; 854 855 if (core_mmu_entry_have_security_bit(attr)) { 856 if (attr & TEE_MATTR_SECURE) 857 security_bit = "S"; 858 else 859 security_bit = "NS"; 860 } 861 862 if (attr & TEE_MATTR_TABLE) { 863 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 864 " TBL:0x%010" PRIxPA " %s", 865 level * 2, "", level, va, pa, 866 security_bit); 867 dump_xlat_table(va, level + 1); 868 } else if (attr) { 869 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 870 " PA:0x%010" PRIxPA " %s-%s-%s-%s", 871 level * 2, "", level, va, pa, 872 mattr_is_cached(attr) ? "MEM" : 873 "DEV", 874 attr & TEE_MATTR_PW ? "RW" : "RO", 875 attr & TEE_MATTR_PX ? "X " : "XN", 876 security_bit); 877 } else { 878 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 879 " INVALID\n", 880 level * 2, "", level, va); 881 } 882 } 883 va += BIT64(tbl_info.shift); 884 } 885 } 886 887 #else 888 889 static void dump_xlat_table(vaddr_t va __unused, int level __unused) 890 { 891 } 892 893 #endif 894 895 /* 896 * Reserves virtual memory space for pager usage. 897 * 898 * From the start of the first memory used by the link script + 899 * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty 900 * mapping for pager usage. This adds translation tables as needed for the 901 * pager to operate. 902 */ 903 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems, 904 size_t *last) 905 { 906 paddr_t begin = 0; 907 paddr_t end = 0; 908 size_t size = 0; 909 size_t pos = 0; 910 size_t n = 0; 911 912 if (*last >= (num_elems - 1)) { 913 EMSG("Out of entries (%zu) in memory map", num_elems); 914 panic(); 915 } 916 917 for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) { 918 if (map_is_tee_ram(mmap + n)) { 919 if (!begin) 920 begin = mmap[n].pa; 921 pos = n + 1; 922 } 923 } 924 925 end = mmap[pos - 1].pa + mmap[pos - 1].size; 926 assert(end - begin < TEE_RAM_VA_SIZE); 927 size = TEE_RAM_VA_SIZE - (end - begin); 928 929 assert(pos <= *last); 930 memmove(mmap + pos + 1, mmap + pos, 931 sizeof(struct tee_mmap_region) * (*last - pos)); 932 (*last)++; 933 memset(mmap + pos, 0, sizeof(mmap[0])); 934 mmap[pos].type = MEM_AREA_PAGER_VASPACE; 935 mmap[pos].va = 0; 936 mmap[pos].size = size; 937 mmap[pos].region_size = SMALL_PAGE_SIZE; 938 mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE); 939 } 940 941 static void check_sec_nsec_mem_config(void) 942 { 943 size_t n = 0; 944 945 for (n = 0; n < ARRAY_SIZE(secure_only); n++) { 946 if (pbuf_intersects(nsec_shared, secure_only[n].paddr, 947 secure_only[n].size)) 948 panic("Invalid memory access config: sec/nsec"); 949 } 950 } 951 952 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map, 953 size_t num_elems) 954 { 955 const struct core_mmu_phys_mem *mem = NULL; 956 vaddr_t ram_start = secure_only[0].paddr; 957 size_t last = 0; 958 959 960 #define ADD_PHYS_MEM(_type, _addr, _size) \ 961 add_phys_mem(memory_map, num_elems, #_addr, (_type), \ 962 (_addr), (_size), &last) 963 964 if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) { 965 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start, 966 VCORE_UNPG_RX_PA - ram_start); 967 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, 968 VCORE_UNPG_RX_SZ); 969 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, 970 VCORE_UNPG_RO_SZ); 971 972 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 973 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, 974 VCORE_UNPG_RW_SZ); 975 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, 976 VCORE_NEX_RW_SZ); 977 } else { 978 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, 979 VCORE_UNPG_RW_SZ); 980 } 981 982 if (IS_ENABLED(CFG_WITH_PAGER)) { 983 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, 984 VCORE_INIT_RX_SZ); 985 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, 986 VCORE_INIT_RO_SZ); 987 } 988 } else { 989 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); 990 } 991 992 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 993 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE, 994 TRUSTED_DRAM_SIZE); 995 } else { 996 /* 997 * Every guest will have own TA RAM if virtualization 998 * support is enabled. 999 */ 1000 paddr_t ta_base = 0; 1001 size_t ta_size = 0; 1002 1003 core_mmu_get_ta_range(&ta_base, &ta_size); 1004 ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size); 1005 } 1006 1007 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) && 1008 IS_ENABLED(CFG_WITH_PAGER)) { 1009 /* 1010 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is 1011 * disabled. 1012 */ 1013 ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); 1014 } 1015 1016 #undef ADD_PHYS_MEM 1017 1018 for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { 1019 /* Only unmapped virtual range may have a null phys addr */ 1020 assert(mem->addr || !core_mmu_type_to_attr(mem->type)); 1021 1022 add_phys_mem(memory_map, num_elems, mem->name, mem->type, 1023 mem->addr, mem->size, &last); 1024 } 1025 1026 if (IS_ENABLED(CFG_SECURE_DATA_PATH)) 1027 verify_special_mem_areas(memory_map, num_elems, 1028 phys_sdp_mem_begin, 1029 phys_sdp_mem_end, "SDP"); 1030 1031 add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE, 1032 CFG_RESERVED_VASPACE_SIZE, &last); 1033 1034 add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE, 1035 SHM_VASPACE_SIZE, &last); 1036 1037 memory_map[last].type = MEM_AREA_END; 1038 1039 return last; 1040 } 1041 1042 static void assign_mem_granularity(struct tee_mmap_region *memory_map) 1043 { 1044 struct tee_mmap_region *map = NULL; 1045 1046 /* 1047 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses 1048 * SMALL_PAGE_SIZE. 1049 */ 1050 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1051 paddr_t mask = map->pa | map->size; 1052 1053 if (!(mask & CORE_MMU_PGDIR_MASK)) 1054 map->region_size = CORE_MMU_PGDIR_SIZE; 1055 else if (!(mask & SMALL_PAGE_MASK)) 1056 map->region_size = SMALL_PAGE_SIZE; 1057 else 1058 panic("Impossible memory alignment"); 1059 1060 if (map_is_tee_ram(map)) 1061 map->region_size = SMALL_PAGE_SIZE; 1062 } 1063 } 1064 1065 static bool place_tee_ram_at_top(paddr_t paddr) 1066 { 1067 return paddr > BIT64(core_mmu_get_va_width()) / 2; 1068 } 1069 1070 /* 1071 * MMU arch driver shall override this function if it helps 1072 * optimizing the memory footprint of the address translation tables. 1073 */ 1074 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr) 1075 { 1076 return place_tee_ram_at_top(paddr); 1077 } 1078 1079 static bool assign_mem_va_dir(vaddr_t tee_ram_va, 1080 struct tee_mmap_region *memory_map, 1081 bool tee_ram_at_top) 1082 { 1083 struct tee_mmap_region *map = NULL; 1084 vaddr_t va = 0; 1085 bool va_is_secure = true; 1086 1087 /* 1088 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y. 1089 * 0 is by design an invalid va, so return false directly. 1090 */ 1091 if (!tee_ram_va) 1092 return false; 1093 1094 /* Clear eventual previous assignments */ 1095 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 1096 map->va = 0; 1097 1098 /* 1099 * TEE RAM regions are always aligned with region_size. 1100 * 1101 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here 1102 * since it handles virtual memory which covers the part of the ELF 1103 * that cannot fit directly into memory. 1104 */ 1105 va = tee_ram_va; 1106 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1107 if (map_is_tee_ram(map) || 1108 map->type == MEM_AREA_PAGER_VASPACE) { 1109 assert(!(va & (map->region_size - 1))); 1110 assert(!(map->size & (map->region_size - 1))); 1111 map->va = va; 1112 if (ADD_OVERFLOW(va, map->size, &va)) 1113 return false; 1114 if (va >= BIT64(core_mmu_get_va_width())) 1115 return false; 1116 } 1117 } 1118 1119 if (tee_ram_at_top) { 1120 /* 1121 * Map non-tee ram regions at addresses lower than the tee 1122 * ram region. 1123 */ 1124 va = tee_ram_va; 1125 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1126 map->attr = core_mmu_type_to_attr(map->type); 1127 if (map->va) 1128 continue; 1129 1130 if (!IS_ENABLED(CFG_WITH_LPAE) && 1131 va_is_secure != map_is_secure(map)) { 1132 va_is_secure = !va_is_secure; 1133 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1134 } 1135 1136 if (SUB_OVERFLOW(va, map->size, &va)) 1137 return false; 1138 va = ROUNDDOWN(va, map->region_size); 1139 /* 1140 * Make sure that va is aligned with pa for 1141 * efficient pgdir mapping. Basically pa & 1142 * pgdir_mask should be == va & pgdir_mask 1143 */ 1144 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1145 if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) 1146 return false; 1147 va += (map->pa - va) & CORE_MMU_PGDIR_MASK; 1148 } 1149 map->va = va; 1150 } 1151 } else { 1152 /* 1153 * Map non-tee ram regions at addresses higher than the tee 1154 * ram region. 1155 */ 1156 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1157 map->attr = core_mmu_type_to_attr(map->type); 1158 if (map->va) 1159 continue; 1160 1161 if (!IS_ENABLED(CFG_WITH_LPAE) && 1162 va_is_secure != map_is_secure(map)) { 1163 va_is_secure = !va_is_secure; 1164 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1165 &va)) 1166 return false; 1167 } 1168 1169 if (ROUNDUP_OVERFLOW(va, map->region_size, &va)) 1170 return false; 1171 /* 1172 * Make sure that va is aligned with pa for 1173 * efficient pgdir mapping. Basically pa & 1174 * pgdir_mask should be == va & pgdir_mask 1175 */ 1176 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1177 vaddr_t offs = (map->pa - va) & 1178 CORE_MMU_PGDIR_MASK; 1179 1180 if (ADD_OVERFLOW(va, offs, &va)) 1181 return false; 1182 } 1183 1184 map->va = va; 1185 if (ADD_OVERFLOW(va, map->size, &va)) 1186 return false; 1187 if (va >= BIT64(core_mmu_get_va_width())) 1188 return false; 1189 } 1190 } 1191 1192 return true; 1193 } 1194 1195 static bool assign_mem_va(vaddr_t tee_ram_va, 1196 struct tee_mmap_region *memory_map) 1197 { 1198 bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va); 1199 1200 /* 1201 * Check that we're not overlapping with the user VA range. 1202 */ 1203 if (IS_ENABLED(CFG_WITH_LPAE)) { 1204 /* 1205 * User VA range is supposed to be defined after these 1206 * mappings have been established. 1207 */ 1208 assert(!core_mmu_user_va_range_is_defined()); 1209 } else { 1210 vaddr_t user_va_base = 0; 1211 size_t user_va_size = 0; 1212 1213 assert(core_mmu_user_va_range_is_defined()); 1214 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 1215 if (tee_ram_va < (user_va_base + user_va_size)) 1216 return false; 1217 } 1218 1219 if (IS_ENABLED(CFG_WITH_PAGER)) { 1220 bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va); 1221 1222 /* Try whole mapping covered by a single base xlat entry */ 1223 if (prefered_dir != tee_ram_at_top && 1224 assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir)) 1225 return true; 1226 } 1227 1228 return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top); 1229 } 1230 1231 static int cmp_init_mem_map(const void *a, const void *b) 1232 { 1233 const struct tee_mmap_region *mm_a = a; 1234 const struct tee_mmap_region *mm_b = b; 1235 int rc = 0; 1236 1237 rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); 1238 if (!rc) 1239 rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); 1240 /* 1241 * 32bit MMU descriptors cannot mix secure and non-secure mapping in 1242 * the same level2 table. Hence sort secure mapping from non-secure 1243 * mapping. 1244 */ 1245 if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) 1246 rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); 1247 1248 return rc; 1249 } 1250 1251 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map, 1252 size_t num_elems, size_t *last, 1253 vaddr_t id_map_start, vaddr_t id_map_end) 1254 { 1255 struct tee_mmap_region *map = NULL; 1256 vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); 1257 vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); 1258 size_t len = end - start; 1259 1260 if (*last >= num_elems - 1) { 1261 EMSG("Out of entries (%zu) in memory map", num_elems); 1262 panic(); 1263 } 1264 1265 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 1266 if (core_is_buffer_intersect(map->va, map->size, start, len)) 1267 return false; 1268 1269 *map = (struct tee_mmap_region){ 1270 .type = MEM_AREA_IDENTITY_MAP_RX, 1271 /* 1272 * Could use CORE_MMU_PGDIR_SIZE to potentially save a 1273 * translation table, at the increased risk of clashes with 1274 * the rest of the memory map. 1275 */ 1276 .region_size = SMALL_PAGE_SIZE, 1277 .pa = start, 1278 .va = start, 1279 .size = len, 1280 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1281 }; 1282 1283 (*last)++; 1284 1285 return true; 1286 } 1287 1288 static unsigned long init_mem_map(struct tee_mmap_region *memory_map, 1289 size_t num_elems, unsigned long seed) 1290 { 1291 /* 1292 * @id_map_start and @id_map_end describes a physical memory range 1293 * that must be mapped Read-Only eXecutable at identical virtual 1294 * addresses. 1295 */ 1296 vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; 1297 vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; 1298 vaddr_t start_addr = secure_only[0].paddr; 1299 unsigned long offs = 0; 1300 size_t last = 0; 1301 1302 last = collect_mem_ranges(memory_map, num_elems); 1303 assign_mem_granularity(memory_map); 1304 1305 /* 1306 * To ease mapping and lower use of xlat tables, sort mapping 1307 * description moving small-page regions after the pgdir regions. 1308 */ 1309 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1310 cmp_init_mem_map); 1311 1312 if (IS_ENABLED(CFG_WITH_PAGER)) 1313 add_pager_vaspace(memory_map, num_elems, &last); 1314 1315 if (IS_ENABLED(CFG_CORE_ASLR) && seed) { 1316 vaddr_t base_addr = start_addr + seed; 1317 const unsigned int va_width = core_mmu_get_va_width(); 1318 const vaddr_t va_mask = GENMASK_64(va_width - 1, 1319 SMALL_PAGE_SHIFT); 1320 vaddr_t ba = base_addr; 1321 size_t n = 0; 1322 1323 for (n = 0; n < 3; n++) { 1324 if (n) 1325 ba = base_addr ^ BIT64(va_width - n); 1326 ba &= va_mask; 1327 if (assign_mem_va(ba, memory_map) && 1328 mem_map_add_id_map(memory_map, num_elems, &last, 1329 id_map_start, id_map_end)) { 1330 offs = ba - start_addr; 1331 DMSG("Mapping core at %#"PRIxVA" offs %#lx", 1332 ba, offs); 1333 goto out; 1334 } else { 1335 DMSG("Failed to map core at %#"PRIxVA, ba); 1336 } 1337 } 1338 EMSG("Failed to map core with seed %#lx", seed); 1339 } 1340 1341 if (!assign_mem_va(start_addr, memory_map)) 1342 panic(); 1343 1344 out: 1345 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1346 cmp_mmap_by_lower_va); 1347 1348 dump_mmap_table(memory_map); 1349 1350 return offs; 1351 } 1352 1353 static void check_mem_map(struct tee_mmap_region *map) 1354 { 1355 struct tee_mmap_region *m = NULL; 1356 1357 for (m = map; !core_mmap_is_end_of_table(m); m++) { 1358 switch (m->type) { 1359 case MEM_AREA_TEE_RAM: 1360 case MEM_AREA_TEE_RAM_RX: 1361 case MEM_AREA_TEE_RAM_RO: 1362 case MEM_AREA_TEE_RAM_RW: 1363 case MEM_AREA_INIT_RAM_RX: 1364 case MEM_AREA_INIT_RAM_RO: 1365 case MEM_AREA_NEX_RAM_RW: 1366 case MEM_AREA_NEX_RAM_RO: 1367 case MEM_AREA_IDENTITY_MAP_RX: 1368 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1369 panic("TEE_RAM can't fit in secure_only"); 1370 break; 1371 case MEM_AREA_TA_RAM: 1372 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1373 panic("TA_RAM can't fit in secure_only"); 1374 break; 1375 case MEM_AREA_NSEC_SHM: 1376 if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) 1377 panic("NS_SHM can't fit in nsec_shared"); 1378 break; 1379 case MEM_AREA_SEC_RAM_OVERALL: 1380 case MEM_AREA_TEE_COHERENT: 1381 case MEM_AREA_TEE_ASAN: 1382 case MEM_AREA_IO_SEC: 1383 case MEM_AREA_IO_NSEC: 1384 case MEM_AREA_EXT_DT: 1385 case MEM_AREA_RAM_SEC: 1386 case MEM_AREA_RAM_NSEC: 1387 case MEM_AREA_RES_VASPACE: 1388 case MEM_AREA_SHM_VASPACE: 1389 case MEM_AREA_PAGER_VASPACE: 1390 break; 1391 default: 1392 EMSG("Uhandled memtype %d", m->type); 1393 panic(); 1394 } 1395 } 1396 } 1397 1398 static struct tee_mmap_region *get_tmp_mmap(void) 1399 { 1400 struct tee_mmap_region *tmp_mmap = (void *)__heap1_start; 1401 1402 #ifdef CFG_WITH_PAGER 1403 if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map)) 1404 tmp_mmap = (void *)__heap2_start; 1405 #endif 1406 1407 memset(tmp_mmap, 0, sizeof(static_memory_map)); 1408 1409 return tmp_mmap; 1410 } 1411 1412 /* 1413 * core_init_mmu_map() - init tee core default memory mapping 1414 * 1415 * This routine sets the static default TEE core mapping. If @seed is > 0 1416 * and configured with CFG_CORE_ASLR it will map tee core at a location 1417 * based on the seed and return the offset from the link address. 1418 * 1419 * If an error happened: core_init_mmu_map is expected to panic. 1420 * 1421 * Note: this function is weak just to make it possible to exclude it from 1422 * the unpaged area. 1423 */ 1424 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) 1425 { 1426 #ifndef CFG_NS_VIRTUALIZATION 1427 vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); 1428 #else 1429 vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, 1430 SMALL_PAGE_SIZE); 1431 #endif 1432 vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; 1433 struct tee_mmap_region *tmp_mmap = get_tmp_mmap(); 1434 unsigned long offs = 0; 1435 1436 if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) && 1437 (core_mmu_tee_load_pa & SMALL_PAGE_MASK)) 1438 panic("OP-TEE load address is not page aligned"); 1439 1440 check_sec_nsec_mem_config(); 1441 1442 /* 1443 * Add a entry covering the translation tables which will be 1444 * involved in some virt_to_phys() and phys_to_virt() conversions. 1445 */ 1446 static_memory_map[0] = (struct tee_mmap_region){ 1447 .type = MEM_AREA_TEE_RAM, 1448 .region_size = SMALL_PAGE_SIZE, 1449 .pa = start, 1450 .va = start, 1451 .size = len, 1452 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1453 }; 1454 1455 COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13); 1456 offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed); 1457 1458 check_mem_map(tmp_mmap); 1459 core_init_mmu(tmp_mmap); 1460 dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); 1461 core_init_mmu_regs(cfg); 1462 cfg->map_offset = offs; 1463 memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map)); 1464 } 1465 1466 bool core_mmu_mattr_is_ok(uint32_t mattr) 1467 { 1468 /* 1469 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and 1470 * core_mmu_v7.c:mattr_to_texcb 1471 */ 1472 1473 switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { 1474 case TEE_MATTR_MEM_TYPE_DEV: 1475 case TEE_MATTR_MEM_TYPE_STRONGLY_O: 1476 case TEE_MATTR_MEM_TYPE_CACHED: 1477 case TEE_MATTR_MEM_TYPE_TAGGED: 1478 return true; 1479 default: 1480 return false; 1481 } 1482 } 1483 1484 /* 1485 * test attributes of target physical buffer 1486 * 1487 * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). 1488 * 1489 */ 1490 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) 1491 { 1492 paddr_t ta_base = 0; 1493 size_t ta_size = 0; 1494 struct tee_mmap_region *map; 1495 1496 /* Empty buffers complies with anything */ 1497 if (len == 0) 1498 return true; 1499 1500 switch (attr) { 1501 case CORE_MEM_SEC: 1502 return pbuf_is_inside(secure_only, pbuf, len); 1503 case CORE_MEM_NON_SEC: 1504 return pbuf_is_inside(nsec_shared, pbuf, len) || 1505 pbuf_is_nsec_ddr(pbuf, len); 1506 case CORE_MEM_TEE_RAM: 1507 return core_is_buffer_inside(pbuf, len, TEE_RAM_START, 1508 TEE_RAM_PH_SIZE); 1509 case CORE_MEM_TA_RAM: 1510 core_mmu_get_ta_range(&ta_base, &ta_size); 1511 return core_is_buffer_inside(pbuf, len, ta_base, ta_size); 1512 #ifdef CFG_CORE_RESERVED_SHM 1513 case CORE_MEM_NSEC_SHM: 1514 return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, 1515 TEE_SHMEM_SIZE); 1516 #endif 1517 case CORE_MEM_SDP_MEM: 1518 return pbuf_is_sdp_mem(pbuf, len); 1519 case CORE_MEM_CACHED: 1520 map = find_map_by_pa(pbuf); 1521 if (!map || !pbuf_inside_map_area(pbuf, len, map)) 1522 return false; 1523 return mattr_is_cached(map->attr); 1524 default: 1525 return false; 1526 } 1527 } 1528 1529 /* test attributes of target virtual buffer (in core mapping) */ 1530 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) 1531 { 1532 paddr_t p; 1533 1534 /* Empty buffers complies with anything */ 1535 if (len == 0) 1536 return true; 1537 1538 p = virt_to_phys((void *)vbuf); 1539 if (!p) 1540 return false; 1541 1542 return core_pbuf_is(attr, p, len); 1543 } 1544 1545 /* core_va2pa - teecore exported service */ 1546 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) 1547 { 1548 struct tee_mmap_region *map; 1549 1550 map = find_map_by_va(va); 1551 if (!va_is_in_map(map, (vaddr_t)va)) 1552 return -1; 1553 1554 /* 1555 * We can calculate PA for static map. Virtual address ranges 1556 * reserved to core dynamic mapping return a 'match' (return 0;) 1557 * together with an invalid null physical address. 1558 */ 1559 if (map->pa) 1560 *pa = map->pa + (vaddr_t)va - map->va; 1561 else 1562 *pa = 0; 1563 1564 return 0; 1565 } 1566 1567 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) 1568 { 1569 if (!pa_is_in_map(map, pa, len)) 1570 return NULL; 1571 1572 return (void *)(vaddr_t)(map->va + pa - map->pa); 1573 } 1574 1575 /* 1576 * teecore gets some memory area definitions 1577 */ 1578 void core_mmu_get_mem_by_type(unsigned int type, vaddr_t *s, vaddr_t *e) 1579 { 1580 struct tee_mmap_region *map = find_map_by_type(type); 1581 1582 if (map) { 1583 *s = map->va; 1584 *e = map->va + map->size; 1585 } else { 1586 *s = 0; 1587 *e = 0; 1588 } 1589 } 1590 1591 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) 1592 { 1593 struct tee_mmap_region *map = find_map_by_pa(pa); 1594 1595 if (!map) 1596 return MEM_AREA_MAXTYPE; 1597 return map->type; 1598 } 1599 1600 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1601 paddr_t pa, uint32_t attr) 1602 { 1603 assert(idx < tbl_info->num_entries); 1604 core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, 1605 idx, pa, attr); 1606 } 1607 1608 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1609 paddr_t *pa, uint32_t *attr) 1610 { 1611 assert(idx < tbl_info->num_entries); 1612 core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, 1613 idx, pa, attr); 1614 } 1615 1616 static void clear_region(struct core_mmu_table_info *tbl_info, 1617 struct tee_mmap_region *region) 1618 { 1619 unsigned int end = 0; 1620 unsigned int idx = 0; 1621 1622 /* va, len and pa should be block aligned */ 1623 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1624 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1625 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1626 1627 idx = core_mmu_va2idx(tbl_info, region->va); 1628 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1629 1630 while (idx < end) { 1631 core_mmu_set_entry(tbl_info, idx, 0, 0); 1632 idx++; 1633 } 1634 } 1635 1636 static void set_region(struct core_mmu_table_info *tbl_info, 1637 struct tee_mmap_region *region) 1638 { 1639 unsigned int end; 1640 unsigned int idx; 1641 paddr_t pa; 1642 1643 /* va, len and pa should be block aligned */ 1644 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1645 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1646 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1647 1648 idx = core_mmu_va2idx(tbl_info, region->va); 1649 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1650 pa = region->pa; 1651 1652 while (idx < end) { 1653 core_mmu_set_entry(tbl_info, idx, pa, region->attr); 1654 idx++; 1655 pa += BIT64(tbl_info->shift); 1656 } 1657 } 1658 1659 static void set_pg_region(struct core_mmu_table_info *dir_info, 1660 struct vm_region *region, struct pgt **pgt, 1661 struct core_mmu_table_info *pg_info) 1662 { 1663 struct tee_mmap_region r = { 1664 .va = region->va, 1665 .size = region->size, 1666 .attr = region->attr, 1667 }; 1668 vaddr_t end = r.va + r.size; 1669 uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; 1670 1671 while (r.va < end) { 1672 if (!pg_info->table || 1673 r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { 1674 /* 1675 * We're assigning a new translation table. 1676 */ 1677 unsigned int idx; 1678 1679 /* Virtual addresses must grow */ 1680 assert(r.va > pg_info->va_base); 1681 1682 idx = core_mmu_va2idx(dir_info, r.va); 1683 pg_info->va_base = core_mmu_idx2va(dir_info, idx); 1684 1685 /* 1686 * Advance pgt to va_base, note that we may need to 1687 * skip multiple page tables if there are large 1688 * holes in the vm map. 1689 */ 1690 while ((*pgt)->vabase < pg_info->va_base) { 1691 *pgt = SLIST_NEXT(*pgt, link); 1692 /* We should have allocated enough */ 1693 assert(*pgt); 1694 } 1695 assert((*pgt)->vabase == pg_info->va_base); 1696 pg_info->table = (*pgt)->tbl; 1697 1698 core_mmu_set_entry(dir_info, idx, 1699 virt_to_phys(pg_info->table), 1700 pgt_attr); 1701 } 1702 1703 r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), 1704 end - r.va); 1705 1706 if (!(*pgt)->populated && !mobj_is_paged(region->mobj)) { 1707 size_t granule = BIT(pg_info->shift); 1708 size_t offset = r.va - region->va + region->offset; 1709 1710 r.size = MIN(r.size, 1711 mobj_get_phys_granule(region->mobj)); 1712 r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); 1713 1714 if (mobj_get_pa(region->mobj, offset, granule, 1715 &r.pa) != TEE_SUCCESS) 1716 panic("Failed to get PA of unpaged mobj"); 1717 set_region(pg_info, &r); 1718 } 1719 r.va += r.size; 1720 } 1721 } 1722 1723 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, 1724 size_t size_left, paddr_t block_size, 1725 struct tee_mmap_region *mm __maybe_unused) 1726 { 1727 /* VA and PA are aligned to block size at current level */ 1728 if ((vaddr | paddr) & (block_size - 1)) 1729 return false; 1730 1731 /* Remainder fits into block at current level */ 1732 if (size_left < block_size) 1733 return false; 1734 1735 #ifdef CFG_WITH_PAGER 1736 /* 1737 * If pager is enabled, we need to map tee ram 1738 * regions with small pages only 1739 */ 1740 if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE) 1741 return false; 1742 #endif 1743 1744 return true; 1745 } 1746 1747 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) 1748 { 1749 struct core_mmu_table_info tbl_info; 1750 unsigned int idx; 1751 vaddr_t vaddr = mm->va; 1752 paddr_t paddr = mm->pa; 1753 ssize_t size_left = mm->size; 1754 unsigned int level; 1755 bool table_found; 1756 uint32_t old_attr; 1757 1758 assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); 1759 1760 while (size_left > 0) { 1761 level = CORE_MMU_BASE_TABLE_LEVEL; 1762 1763 while (true) { 1764 paddr_t block_size = 0; 1765 1766 assert(level <= CORE_MMU_PGDIR_LEVEL); 1767 1768 table_found = core_mmu_find_table(prtn, vaddr, level, 1769 &tbl_info); 1770 if (!table_found) 1771 panic("can't find table for mapping"); 1772 1773 block_size = BIT64(tbl_info.shift); 1774 1775 idx = core_mmu_va2idx(&tbl_info, vaddr); 1776 if (!can_map_at_level(paddr, vaddr, size_left, 1777 block_size, mm)) { 1778 bool secure = mm->attr & TEE_MATTR_SECURE; 1779 1780 /* 1781 * This part of the region can't be mapped at 1782 * this level. Need to go deeper. 1783 */ 1784 if (!core_mmu_entry_to_finer_grained(&tbl_info, 1785 idx, 1786 secure)) 1787 panic("Can't divide MMU entry"); 1788 level++; 1789 continue; 1790 } 1791 1792 /* We can map part of the region at current level */ 1793 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1794 if (old_attr) 1795 panic("Page is already mapped"); 1796 1797 core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr); 1798 paddr += block_size; 1799 vaddr += block_size; 1800 size_left -= block_size; 1801 1802 break; 1803 } 1804 } 1805 } 1806 1807 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 1808 enum teecore_memtypes memtype) 1809 { 1810 TEE_Result ret; 1811 struct core_mmu_table_info tbl_info; 1812 struct tee_mmap_region *mm; 1813 unsigned int idx; 1814 uint32_t old_attr; 1815 uint32_t exceptions; 1816 vaddr_t vaddr = vstart; 1817 size_t i; 1818 bool secure; 1819 1820 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1821 1822 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1823 1824 if (vaddr & SMALL_PAGE_MASK) 1825 return TEE_ERROR_BAD_PARAMETERS; 1826 1827 exceptions = mmu_lock(); 1828 1829 mm = find_map_by_va((void *)vaddr); 1830 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1831 panic("VA does not belong to any known mm region"); 1832 1833 if (!core_mmu_is_dynamic_vaspace(mm)) 1834 panic("Trying to map into static region"); 1835 1836 for (i = 0; i < num_pages; i++) { 1837 if (pages[i] & SMALL_PAGE_MASK) { 1838 ret = TEE_ERROR_BAD_PARAMETERS; 1839 goto err; 1840 } 1841 1842 while (true) { 1843 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1844 &tbl_info)) 1845 panic("Can't find pagetable for vaddr "); 1846 1847 idx = core_mmu_va2idx(&tbl_info, vaddr); 1848 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1849 break; 1850 1851 /* This is supertable. Need to divide it. */ 1852 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1853 secure)) 1854 panic("Failed to spread pgdir on small tables"); 1855 } 1856 1857 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1858 if (old_attr) 1859 panic("Page is already mapped"); 1860 1861 core_mmu_set_entry(&tbl_info, idx, pages[i], 1862 core_mmu_type_to_attr(memtype)); 1863 vaddr += SMALL_PAGE_SIZE; 1864 } 1865 1866 /* 1867 * Make sure all the changes to translation tables are visible 1868 * before returning. TLB doesn't need to be invalidated as we are 1869 * guaranteed that there's no valid mapping in this range. 1870 */ 1871 core_mmu_table_write_barrier(); 1872 mmu_unlock(exceptions); 1873 1874 return TEE_SUCCESS; 1875 err: 1876 mmu_unlock(exceptions); 1877 1878 if (i) 1879 core_mmu_unmap_pages(vstart, i); 1880 1881 return ret; 1882 } 1883 1884 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 1885 size_t num_pages, 1886 enum teecore_memtypes memtype) 1887 { 1888 struct core_mmu_table_info tbl_info = { }; 1889 struct tee_mmap_region *mm = NULL; 1890 unsigned int idx = 0; 1891 uint32_t old_attr = 0; 1892 uint32_t exceptions = 0; 1893 vaddr_t vaddr = vstart; 1894 paddr_t paddr = pstart; 1895 size_t i = 0; 1896 bool secure = false; 1897 1898 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1899 1900 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1901 1902 if ((vaddr | paddr) & SMALL_PAGE_MASK) 1903 return TEE_ERROR_BAD_PARAMETERS; 1904 1905 exceptions = mmu_lock(); 1906 1907 mm = find_map_by_va((void *)vaddr); 1908 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1909 panic("VA does not belong to any known mm region"); 1910 1911 if (!core_mmu_is_dynamic_vaspace(mm)) 1912 panic("Trying to map into static region"); 1913 1914 for (i = 0; i < num_pages; i++) { 1915 while (true) { 1916 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1917 &tbl_info)) 1918 panic("Can't find pagetable for vaddr "); 1919 1920 idx = core_mmu_va2idx(&tbl_info, vaddr); 1921 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1922 break; 1923 1924 /* This is supertable. Need to divide it. */ 1925 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1926 secure)) 1927 panic("Failed to spread pgdir on small tables"); 1928 } 1929 1930 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1931 if (old_attr) 1932 panic("Page is already mapped"); 1933 1934 core_mmu_set_entry(&tbl_info, idx, paddr, 1935 core_mmu_type_to_attr(memtype)); 1936 paddr += SMALL_PAGE_SIZE; 1937 vaddr += SMALL_PAGE_SIZE; 1938 } 1939 1940 /* 1941 * Make sure all the changes to translation tables are visible 1942 * before returning. TLB doesn't need to be invalidated as we are 1943 * guaranteed that there's no valid mapping in this range. 1944 */ 1945 core_mmu_table_write_barrier(); 1946 mmu_unlock(exceptions); 1947 1948 return TEE_SUCCESS; 1949 } 1950 1951 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) 1952 { 1953 struct core_mmu_table_info tbl_info; 1954 struct tee_mmap_region *mm; 1955 size_t i; 1956 unsigned int idx; 1957 uint32_t exceptions; 1958 1959 exceptions = mmu_lock(); 1960 1961 mm = find_map_by_va((void *)vstart); 1962 if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) 1963 panic("VA does not belong to any known mm region"); 1964 1965 if (!core_mmu_is_dynamic_vaspace(mm)) 1966 panic("Trying to unmap static region"); 1967 1968 for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { 1969 if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) 1970 panic("Can't find pagetable"); 1971 1972 if (tbl_info.shift != SMALL_PAGE_SHIFT) 1973 panic("Invalid pagetable level"); 1974 1975 idx = core_mmu_va2idx(&tbl_info, vstart); 1976 core_mmu_set_entry(&tbl_info, idx, 0, 0); 1977 } 1978 tlbi_all(); 1979 1980 mmu_unlock(exceptions); 1981 } 1982 1983 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 1984 struct user_mode_ctx *uctx) 1985 { 1986 struct core_mmu_table_info pg_info = { }; 1987 struct pgt_cache *pgt_cache = &uctx->pgt_cache; 1988 struct pgt *pgt = NULL; 1989 struct pgt *p = NULL; 1990 struct vm_region *r = NULL; 1991 1992 if (TAILQ_EMPTY(&uctx->vm_info.regions)) 1993 return; /* Nothing to map */ 1994 1995 /* 1996 * Allocate all page tables in advance. 1997 */ 1998 pgt_get_all(uctx); 1999 pgt = SLIST_FIRST(pgt_cache); 2000 2001 core_mmu_set_info_table(&pg_info, dir_info->level + 1, 0, NULL); 2002 2003 TAILQ_FOREACH(r, &uctx->vm_info.regions, link) 2004 set_pg_region(dir_info, r, &pgt, &pg_info); 2005 /* Record that the translation tables now are populated. */ 2006 SLIST_FOREACH(p, pgt_cache, link) { 2007 p->populated = true; 2008 if (p == pgt) 2009 break; 2010 } 2011 assert(p == pgt); 2012 } 2013 2014 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 2015 size_t len) 2016 { 2017 struct core_mmu_table_info tbl_info = { }; 2018 struct tee_mmap_region *res_map = NULL; 2019 struct tee_mmap_region *map = NULL; 2020 paddr_t pa = virt_to_phys(addr); 2021 size_t granule = 0; 2022 ptrdiff_t i = 0; 2023 paddr_t p = 0; 2024 size_t l = 0; 2025 2026 map = find_map_by_type_and_pa(type, pa, len); 2027 if (!map) 2028 return TEE_ERROR_GENERIC; 2029 2030 res_map = find_map_by_type(MEM_AREA_RES_VASPACE); 2031 if (!res_map) 2032 return TEE_ERROR_GENERIC; 2033 if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) 2034 return TEE_ERROR_GENERIC; 2035 granule = BIT(tbl_info.shift); 2036 2037 if (map < static_memory_map || 2038 map >= static_memory_map + ARRAY_SIZE(static_memory_map)) 2039 return TEE_ERROR_GENERIC; 2040 i = map - static_memory_map; 2041 2042 /* Check that we have a full match */ 2043 p = ROUNDDOWN(pa, granule); 2044 l = ROUNDUP(len + pa - p, granule); 2045 if (map->pa != p || map->size != l) 2046 return TEE_ERROR_GENERIC; 2047 2048 clear_region(&tbl_info, map); 2049 tlbi_all(); 2050 2051 /* If possible remove the va range from res_map */ 2052 if (res_map->va - map->size == map->va) { 2053 res_map->va -= map->size; 2054 res_map->size += map->size; 2055 } 2056 2057 /* Remove the entry. */ 2058 memmove(map, map + 1, 2059 (ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map)); 2060 2061 /* Clear the last new entry in case it was used */ 2062 memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1, 2063 0, sizeof(*map)); 2064 2065 return TEE_SUCCESS; 2066 } 2067 2068 struct tee_mmap_region * 2069 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) 2070 { 2071 struct tee_mmap_region *map = NULL; 2072 struct tee_mmap_region *map_found = NULL; 2073 2074 if (!len) 2075 return NULL; 2076 2077 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 2078 if (map->type != type) 2079 continue; 2080 2081 if (map_found) 2082 return NULL; 2083 2084 map_found = map; 2085 } 2086 2087 if (!map_found || map_found->size < len) 2088 return NULL; 2089 2090 return map_found; 2091 } 2092 2093 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) 2094 { 2095 struct core_mmu_table_info tbl_info; 2096 struct tee_mmap_region *map; 2097 size_t n; 2098 size_t granule; 2099 paddr_t p; 2100 size_t l; 2101 2102 if (!len) 2103 return NULL; 2104 2105 if (!core_mmu_check_end_pa(addr, len)) 2106 return NULL; 2107 2108 /* Check if the memory is already mapped */ 2109 map = find_map_by_type_and_pa(type, addr, len); 2110 if (map && pbuf_inside_map_area(addr, len, map)) 2111 return (void *)(vaddr_t)(map->va + addr - map->pa); 2112 2113 /* Find the reserved va space used for late mappings */ 2114 map = find_map_by_type(MEM_AREA_RES_VASPACE); 2115 if (!map) 2116 return NULL; 2117 2118 if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) 2119 return NULL; 2120 2121 granule = BIT64(tbl_info.shift); 2122 p = ROUNDDOWN(addr, granule); 2123 l = ROUNDUP(len + addr - p, granule); 2124 2125 /* Ban overflowing virtual addresses */ 2126 if (map->size < l) 2127 return NULL; 2128 2129 /* 2130 * Something is wrong, we can't fit the va range into the selected 2131 * table. The reserved va range is possibly missaligned with 2132 * granule. 2133 */ 2134 if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) 2135 return NULL; 2136 2137 /* Find end of the memory map */ 2138 n = 0; 2139 while (!core_mmap_is_end_of_table(static_memory_map + n)) 2140 n++; 2141 2142 if (n < (ARRAY_SIZE(static_memory_map) - 1)) { 2143 /* There's room for another entry */ 2144 static_memory_map[n].va = map->va; 2145 static_memory_map[n].size = l; 2146 static_memory_map[n + 1].type = MEM_AREA_END; 2147 map->va += l; 2148 map->size -= l; 2149 map = static_memory_map + n; 2150 } else { 2151 /* 2152 * There isn't room for another entry, steal the reserved 2153 * entry as it's not useful for anything else any longer. 2154 */ 2155 map->size = l; 2156 } 2157 map->type = type; 2158 map->region_size = granule; 2159 map->attr = core_mmu_type_to_attr(type); 2160 map->pa = p; 2161 2162 set_region(&tbl_info, map); 2163 2164 /* Make sure the new entry is visible before continuing. */ 2165 core_mmu_table_write_barrier(); 2166 2167 return (void *)(vaddr_t)(map->va + addr - map->pa); 2168 } 2169 2170 #ifdef CFG_WITH_PAGER 2171 static vaddr_t get_linear_map_end_va(void) 2172 { 2173 /* this is synced with the generic linker file kern.ld.S */ 2174 return (vaddr_t)__heap2_end; 2175 } 2176 2177 static paddr_t get_linear_map_end_pa(void) 2178 { 2179 return get_linear_map_end_va() - boot_mmu_config.map_offset; 2180 } 2181 #endif 2182 2183 #if defined(CFG_TEE_CORE_DEBUG) 2184 static void check_pa_matches_va(void *va, paddr_t pa) 2185 { 2186 TEE_Result res = TEE_ERROR_GENERIC; 2187 vaddr_t v = (vaddr_t)va; 2188 paddr_t p = 0; 2189 struct core_mmu_table_info ti __maybe_unused = { }; 2190 2191 if (core_mmu_user_va_range_is_defined()) { 2192 vaddr_t user_va_base = 0; 2193 size_t user_va_size = 0; 2194 2195 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 2196 if (v >= user_va_base && 2197 v <= (user_va_base - 1 + user_va_size)) { 2198 if (!core_mmu_user_mapping_is_active()) { 2199 if (pa) 2200 panic("issue in linear address space"); 2201 return; 2202 } 2203 2204 res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), 2205 va, &p); 2206 if (res == TEE_ERROR_NOT_SUPPORTED) 2207 return; 2208 if (res == TEE_SUCCESS && pa != p) 2209 panic("bad pa"); 2210 if (res != TEE_SUCCESS && pa) 2211 panic("false pa"); 2212 return; 2213 } 2214 } 2215 #ifdef CFG_WITH_PAGER 2216 if (is_unpaged(va)) { 2217 if (v - boot_mmu_config.map_offset != pa) 2218 panic("issue in linear address space"); 2219 return; 2220 } 2221 2222 if (tee_pager_get_table_info(v, &ti)) { 2223 uint32_t a; 2224 2225 /* 2226 * Lookups in the page table managed by the pager is 2227 * dangerous for addresses in the paged area as those pages 2228 * changes all the time. But some ranges are safe, 2229 * rw-locked areas when the page is populated for instance. 2230 */ 2231 core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); 2232 if (a & TEE_MATTR_VALID_BLOCK) { 2233 paddr_t mask = BIT64(ti.shift) - 1; 2234 2235 p |= v & mask; 2236 if (pa != p) 2237 panic(); 2238 } else { 2239 if (pa) 2240 panic(); 2241 } 2242 return; 2243 } 2244 #endif 2245 2246 if (!core_va2pa_helper(va, &p)) { 2247 /* Verfiy only the static mapping (case non null phys addr) */ 2248 if (p && pa != p) { 2249 DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, 2250 va, p, pa); 2251 panic(); 2252 } 2253 } else { 2254 if (pa) { 2255 DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); 2256 panic(); 2257 } 2258 } 2259 } 2260 #else 2261 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) 2262 { 2263 } 2264 #endif 2265 2266 paddr_t virt_to_phys(void *va) 2267 { 2268 paddr_t pa = 0; 2269 2270 if (!arch_va2pa_helper(va, &pa)) 2271 pa = 0; 2272 check_pa_matches_va(va, pa); 2273 return pa; 2274 } 2275 2276 #if defined(CFG_TEE_CORE_DEBUG) 2277 static void check_va_matches_pa(paddr_t pa, void *va) 2278 { 2279 paddr_t p = 0; 2280 2281 if (!va) 2282 return; 2283 2284 p = virt_to_phys(va); 2285 if (p != pa) { 2286 DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); 2287 panic(); 2288 } 2289 } 2290 #else 2291 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) 2292 { 2293 } 2294 #endif 2295 2296 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) 2297 { 2298 if (!core_mmu_user_mapping_is_active()) 2299 return NULL; 2300 2301 return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); 2302 } 2303 2304 #ifdef CFG_WITH_PAGER 2305 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2306 { 2307 paddr_t end_pa = 0; 2308 2309 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 2310 return NULL; 2311 2312 if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) { 2313 if (end_pa > get_linear_map_end_pa()) 2314 return NULL; 2315 return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset); 2316 } 2317 2318 return tee_pager_phys_to_virt(pa, len); 2319 } 2320 #else 2321 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2322 { 2323 struct tee_mmap_region *mmap = NULL; 2324 2325 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); 2326 if (!mmap) 2327 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); 2328 if (!mmap) 2329 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); 2330 if (!mmap) 2331 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); 2332 if (!mmap) 2333 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); 2334 if (!mmap) 2335 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); 2336 /* 2337 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only 2338 * used with pager and not needed here. 2339 */ 2340 return map_pa2va(mmap, pa, len); 2341 } 2342 #endif 2343 2344 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) 2345 { 2346 void *va = NULL; 2347 2348 switch (m) { 2349 case MEM_AREA_TS_VASPACE: 2350 va = phys_to_virt_ts_vaspace(pa, len); 2351 break; 2352 case MEM_AREA_TEE_RAM: 2353 case MEM_AREA_TEE_RAM_RX: 2354 case MEM_AREA_TEE_RAM_RO: 2355 case MEM_AREA_TEE_RAM_RW: 2356 case MEM_AREA_NEX_RAM_RO: 2357 case MEM_AREA_NEX_RAM_RW: 2358 va = phys_to_virt_tee_ram(pa, len); 2359 break; 2360 case MEM_AREA_SHM_VASPACE: 2361 /* Find VA from PA in dynamic SHM is not yet supported */ 2362 va = NULL; 2363 break; 2364 default: 2365 va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); 2366 } 2367 if (m != MEM_AREA_SEC_RAM_OVERALL) 2368 check_va_matches_pa(pa, va); 2369 return va; 2370 } 2371 2372 void *phys_to_virt_io(paddr_t pa, size_t len) 2373 { 2374 struct tee_mmap_region *map = NULL; 2375 void *va = NULL; 2376 2377 map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); 2378 if (!map) 2379 map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); 2380 if (!map) 2381 return NULL; 2382 va = map_pa2va(map, pa, len); 2383 check_va_matches_pa(pa, va); 2384 return va; 2385 } 2386 2387 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) 2388 { 2389 if (cpu_mmu_enabled()) 2390 return (vaddr_t)phys_to_virt(pa, type, len); 2391 2392 return (vaddr_t)pa; 2393 } 2394 2395 #ifdef CFG_WITH_PAGER 2396 bool is_unpaged(void *va) 2397 { 2398 vaddr_t v = (vaddr_t)va; 2399 2400 return v >= VCORE_START_VA && v < get_linear_map_end_va(); 2401 } 2402 #else 2403 bool is_unpaged(void *va __unused) 2404 { 2405 return true; 2406 } 2407 #endif 2408 2409 void core_mmu_init_virtualization(void) 2410 { 2411 paddr_t b1 = 0; 2412 paddr_size_t s1 = 0; 2413 2414 static_assert(ARRAY_SIZE(secure_only) <= 2); 2415 if (ARRAY_SIZE(secure_only) == 2) { 2416 b1 = secure_only[1].paddr; 2417 s1 = secure_only[1].size; 2418 } 2419 virt_init_memory(static_memory_map, secure_only[0].paddr, 2420 secure_only[0].size, b1, s1); 2421 } 2422 2423 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) 2424 { 2425 assert(p->pa); 2426 if (cpu_mmu_enabled()) { 2427 if (!p->va) 2428 p->va = (vaddr_t)phys_to_virt_io(p->pa, len); 2429 assert(p->va); 2430 return p->va; 2431 } 2432 return p->pa; 2433 } 2434 2435 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) 2436 { 2437 assert(p->pa); 2438 if (cpu_mmu_enabled()) { 2439 if (!p->va) 2440 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, 2441 len); 2442 assert(p->va); 2443 return p->va; 2444 } 2445 return p->pa; 2446 } 2447 2448 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) 2449 { 2450 assert(p->pa); 2451 if (cpu_mmu_enabled()) { 2452 if (!p->va) 2453 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, 2454 len); 2455 assert(p->va); 2456 return p->va; 2457 } 2458 return p->pa; 2459 } 2460 2461 #ifdef CFG_CORE_RESERVED_SHM 2462 static TEE_Result teecore_init_pub_ram(void) 2463 { 2464 vaddr_t s = 0; 2465 vaddr_t e = 0; 2466 2467 /* get virtual addr/size of NSec shared mem allocated from teecore */ 2468 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); 2469 2470 if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) 2471 panic("invalid PUB RAM"); 2472 2473 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2474 if (!tee_vbuf_is_non_sec(s, e - s)) 2475 panic("PUB RAM is not non-secure"); 2476 2477 #ifdef CFG_PL310 2478 /* Allocate statically the l2cc mutex */ 2479 tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); 2480 s += sizeof(uint32_t); /* size of a pl310 mutex */ 2481 s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ 2482 #endif 2483 2484 default_nsec_shm_paddr = virt_to_phys((void *)s); 2485 default_nsec_shm_size = e - s; 2486 2487 return TEE_SUCCESS; 2488 } 2489 early_init(teecore_init_pub_ram); 2490 #endif /*CFG_CORE_RESERVED_SHM*/ 2491 2492 void core_mmu_init_ta_ram(void) 2493 { 2494 vaddr_t s = 0; 2495 vaddr_t e = 0; 2496 paddr_t ps = 0; 2497 size_t size = 0; 2498 2499 /* 2500 * Get virtual addr/size of RAM where TA are loaded/executedNSec 2501 * shared mem allocated from teecore. 2502 */ 2503 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) 2504 virt_get_ta_ram(&s, &e); 2505 else 2506 core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e); 2507 2508 ps = virt_to_phys((void *)s); 2509 size = e - s; 2510 2511 if (!ps || (ps & CORE_MMU_USER_CODE_MASK) || 2512 !size || (size & CORE_MMU_USER_CODE_MASK)) 2513 panic("invalid TA RAM"); 2514 2515 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2516 if (!tee_pbuf_is_sec(ps, size)) 2517 panic("TA RAM is not secure"); 2518 2519 if (!tee_mm_is_empty(&tee_mm_sec_ddr)) 2520 panic("TA RAM pool is not empty"); 2521 2522 /* remove previous config and init TA ddr memory pool */ 2523 tee_mm_final(&tee_mm_sec_ddr); 2524 tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT, 2525 TEE_MM_POOL_NO_FLAGS); 2526 } 2527