xref: /optee_os/core/mm/core_mmu.c (revision 68045ae95313b78298e98fe4646a161e135ec17b)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <mm/core_memprot.h>
22 #include <mm/core_mmu.h>
23 #include <mm/mobj.h>
24 #include <mm/pgt_cache.h>
25 #include <mm/tee_pager.h>
26 #include <mm/vm.h>
27 #include <platform_config.h>
28 #include <string.h>
29 #include <trace.h>
30 #include <util.h>
31 
32 #ifndef DEBUG_XLAT_TABLE
33 #define DEBUG_XLAT_TABLE 0
34 #endif
35 
36 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
37 
38 #ifdef CFG_CORE_PHYS_RELOCATABLE
39 unsigned long core_mmu_tee_load_pa __nex_bss;
40 #else
41 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
42 #endif
43 
44 /*
45  * These variables are initialized before .bss is cleared. To avoid
46  * resetting them when .bss is cleared we're storing them in .data instead,
47  * even if they initially are zero.
48  */
49 
50 #ifdef CFG_CORE_RESERVED_SHM
51 /* Default NSec shared memory allocated from NSec world */
52 unsigned long default_nsec_shm_size __nex_bss;
53 unsigned long default_nsec_shm_paddr __nex_bss;
54 #endif
55 
56 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS
57 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE)
58 						+ 1
59 #endif
60 						+ 1] __nex_bss;
61 
62 /* Define the platform's memory layout. */
63 struct memaccess_area {
64 	paddr_t paddr;
65 	size_t size;
66 };
67 
68 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
69 
70 static struct memaccess_area secure_only[] __nex_data = {
71 #ifdef CFG_CORE_PHYS_RELOCATABLE
72 	MEMACCESS_AREA(0, 0),
73 #else
74 #ifdef TRUSTED_SRAM_BASE
75 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
76 #endif
77 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
78 #endif
79 };
80 
81 static struct memaccess_area nsec_shared[] __nex_data = {
82 #ifdef CFG_CORE_RESERVED_SHM
83 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
84 #endif
85 };
86 
87 #if defined(CFG_SECURE_DATA_PATH)
88 static const char *tz_sdp_match = "linaro,secure-heap";
89 static struct memaccess_area sec_sdp;
90 #ifdef CFG_TEE_SDP_MEM_BASE
91 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
92 #endif
93 #ifdef TEE_SDP_TEST_MEM_BASE
94 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
95 #endif
96 #endif
97 
98 #ifdef CFG_CORE_RESERVED_SHM
99 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
100 #endif
101 static unsigned int mmu_spinlock;
102 
103 static uint32_t mmu_lock(void)
104 {
105 	return cpu_spin_lock_xsave(&mmu_spinlock);
106 }
107 
108 static void mmu_unlock(uint32_t exceptions)
109 {
110 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
111 }
112 
113 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
114 {
115 	/*
116 	 * The first range is always used to cover OP-TEE core memory, but
117 	 * depending on configuration it may cover more than that.
118 	 */
119 	*base = secure_only[0].paddr;
120 	*size = secure_only[0].size;
121 }
122 
123 void core_mmu_set_secure_memory(paddr_t base, size_t size)
124 {
125 #ifdef CFG_CORE_PHYS_RELOCATABLE
126 	static_assert(ARRAY_SIZE(secure_only) == 1);
127 #endif
128 	runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE));
129 	assert(!secure_only[0].size);
130 	assert(base && size);
131 
132 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
133 	secure_only[0].paddr = base;
134 	secure_only[0].size = size;
135 }
136 
137 void core_mmu_get_ta_range(paddr_t *base, size_t *size)
138 {
139 	paddr_t b = 0;
140 	size_t s = 0;
141 
142 	static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE));
143 #ifdef TA_RAM_START
144 	b = TA_RAM_START;
145 	s = TA_RAM_SIZE;
146 #else
147 	static_assert(ARRAY_SIZE(secure_only) <= 2);
148 	if (ARRAY_SIZE(secure_only) == 1) {
149 		vaddr_t load_offs = 0;
150 
151 		assert(core_mmu_tee_load_pa >= secure_only[0].paddr);
152 		load_offs = core_mmu_tee_load_pa - secure_only[0].paddr;
153 
154 		assert(secure_only[0].size >
155 		       load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE);
156 		b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE;
157 		s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE -
158 		    TEE_SDP_TEST_MEM_SIZE;
159 	} else {
160 		assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE);
161 		b = secure_only[1].paddr;
162 		s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE;
163 	}
164 #endif
165 	if (base)
166 		*base = b;
167 	if (size)
168 		*size = s;
169 }
170 
171 static struct tee_mmap_region *get_memory_map(void)
172 {
173 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
174 		struct tee_mmap_region *map = virt_get_memory_map();
175 
176 		if (map)
177 			return map;
178 	}
179 
180 	return static_memory_map;
181 }
182 
183 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
184 			     paddr_t pa, size_t size)
185 {
186 	size_t n;
187 
188 	for (n = 0; n < alen; n++)
189 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
190 			return true;
191 	return false;
192 }
193 
194 #define pbuf_intersects(a, pa, size) \
195 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
196 
197 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
198 			    paddr_t pa, size_t size)
199 {
200 	size_t n;
201 
202 	for (n = 0; n < alen; n++)
203 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
204 			return true;
205 	return false;
206 }
207 
208 #define pbuf_is_inside(a, pa, size) \
209 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
210 
211 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
212 {
213 	paddr_t end_pa = 0;
214 
215 	if (!map)
216 		return false;
217 
218 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
219 		return false;
220 
221 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
222 }
223 
224 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
225 {
226 	if (!map)
227 		return false;
228 	return (va >= map->va && va <= (map->va + map->size - 1));
229 }
230 
231 /* check if target buffer fits in a core default map area */
232 static bool pbuf_inside_map_area(unsigned long p, size_t l,
233 				 struct tee_mmap_region *map)
234 {
235 	return core_is_buffer_inside(p, l, map->pa, map->size);
236 }
237 
238 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
239 {
240 	struct tee_mmap_region *map;
241 
242 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++)
243 		if (map->type == type)
244 			return map;
245 	return NULL;
246 }
247 
248 static struct tee_mmap_region *
249 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
250 {
251 	struct tee_mmap_region *map;
252 
253 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
254 		if (map->type != type)
255 			continue;
256 		if (pa_is_in_map(map, pa, len))
257 			return map;
258 	}
259 	return NULL;
260 }
261 
262 static struct tee_mmap_region *find_map_by_va(void *va)
263 {
264 	struct tee_mmap_region *map = get_memory_map();
265 	unsigned long a = (unsigned long)va;
266 
267 	while (!core_mmap_is_end_of_table(map)) {
268 		if (a >= map->va && a <= (map->va - 1 + map->size))
269 			return map;
270 		map++;
271 	}
272 	return NULL;
273 }
274 
275 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
276 {
277 	struct tee_mmap_region *map = get_memory_map();
278 
279 	while (!core_mmap_is_end_of_table(map)) {
280 		if (pa >= map->pa && pa <= (map->pa + map->size - 1))
281 			return map;
282 		map++;
283 	}
284 	return NULL;
285 }
286 
287 #if defined(CFG_SECURE_DATA_PATH)
288 static bool dtb_get_sdp_region(void)
289 {
290 	void *fdt = NULL;
291 	int node = 0;
292 	int tmp_node = 0;
293 	paddr_t tmp_addr = 0;
294 	size_t tmp_size = 0;
295 
296 	if (!IS_ENABLED(CFG_EMBED_DTB))
297 		return false;
298 
299 	fdt = get_embedded_dt();
300 	if (!fdt)
301 		panic("No DTB found");
302 
303 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
304 	if (node < 0) {
305 		DMSG("No %s compatible node found", tz_sdp_match);
306 		return false;
307 	}
308 	tmp_node = node;
309 	while (tmp_node >= 0) {
310 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
311 							 tz_sdp_match);
312 		if (tmp_node >= 0)
313 			DMSG("Ignore SDP pool node %s, supports only 1 node",
314 			     fdt_get_name(fdt, tmp_node, NULL));
315 	}
316 
317 	tmp_addr = fdt_reg_base_address(fdt, node);
318 	if (tmp_addr == DT_INFO_INVALID_REG) {
319 		EMSG("%s: Unable to get base addr from DT", tz_sdp_match);
320 		return false;
321 	}
322 
323 	tmp_size = fdt_reg_size(fdt, node);
324 	if (tmp_size == DT_INFO_INVALID_REG_SIZE) {
325 		EMSG("%s: Unable to get size of base addr from DT",
326 		     tz_sdp_match);
327 		return false;
328 	}
329 
330 	sec_sdp.paddr = tmp_addr;
331 	sec_sdp.size = tmp_size;
332 
333 	return true;
334 }
335 #endif
336 
337 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
338 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
339 				const struct core_mmu_phys_mem *start,
340 				const struct core_mmu_phys_mem *end)
341 {
342 	const struct core_mmu_phys_mem *mem;
343 
344 	for (mem = start; mem < end; mem++) {
345 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
346 			return true;
347 	}
348 
349 	return false;
350 }
351 #endif
352 
353 #ifdef CFG_CORE_DYN_SHM
354 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
355 			       paddr_t pa, size_t size)
356 {
357 	struct core_mmu_phys_mem *m = *mem;
358 	size_t n = 0;
359 
360 	while (true) {
361 		if (n >= *nelems) {
362 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
363 			     pa, size);
364 			return;
365 		}
366 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
367 			break;
368 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
369 			panic();
370 		n++;
371 	}
372 
373 	if (pa == m[n].addr && size == m[n].size) {
374 		/* Remove this entry */
375 		(*nelems)--;
376 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
377 		m = nex_realloc(m, sizeof(*m) * *nelems);
378 		if (!m)
379 			panic();
380 		*mem = m;
381 	} else if (pa == m[n].addr) {
382 		m[n].addr += size;
383 		m[n].size -= size;
384 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
385 		m[n].size -= size;
386 	} else {
387 		/* Need to split the memory entry */
388 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
389 		if (!m)
390 			panic();
391 		*mem = m;
392 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
393 		(*nelems)++;
394 		m[n].size = pa - m[n].addr;
395 		m[n + 1].size -= size + m[n].size;
396 		m[n + 1].addr = pa + size;
397 	}
398 }
399 
400 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
401 				      size_t nelems,
402 				      struct tee_mmap_region *map)
403 {
404 	size_t n;
405 
406 	for (n = 0; n < nelems; n++) {
407 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
408 					    map->pa, map->size)) {
409 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
410 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
411 			     start[n].addr, start[n].size,
412 			     map->type, map->pa, map->size);
413 			panic();
414 		}
415 	}
416 }
417 
418 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
419 static size_t discovered_nsec_ddr_nelems __nex_bss;
420 
421 static int cmp_pmem_by_addr(const void *a, const void *b)
422 {
423 	const struct core_mmu_phys_mem *pmem_a = a;
424 	const struct core_mmu_phys_mem *pmem_b = b;
425 
426 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
427 }
428 
429 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
430 				      size_t nelems)
431 {
432 	struct core_mmu_phys_mem *m = start;
433 	size_t num_elems = nelems;
434 	struct tee_mmap_region *map = static_memory_map;
435 	const struct core_mmu_phys_mem __maybe_unused *pmem;
436 	size_t n = 0;
437 
438 	assert(!discovered_nsec_ddr_start);
439 	assert(m && num_elems);
440 
441 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
442 
443 	/*
444 	 * Non-secure shared memory and also secure data
445 	 * path memory are supposed to reside inside
446 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
447 	 * are used for a specific purpose make holes for
448 	 * those memory in the normal non-secure memory.
449 	 *
450 	 * This has to be done since for instance QEMU
451 	 * isn't aware of which memory range in the
452 	 * non-secure memory is used for NSEC_SHM.
453 	 */
454 
455 #ifdef CFG_SECURE_DATA_PATH
456 	if (dtb_get_sdp_region())
457 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
458 
459 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
460 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
461 #endif
462 
463 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
464 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
465 				   secure_only[n].size);
466 
467 	for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) {
468 		switch (map->type) {
469 		case MEM_AREA_NSEC_SHM:
470 			carve_out_phys_mem(&m, &num_elems, map->pa, map->size);
471 			break;
472 		case MEM_AREA_EXT_DT:
473 		case MEM_AREA_MANIFEST_DT:
474 		case MEM_AREA_RES_VASPACE:
475 		case MEM_AREA_SHM_VASPACE:
476 		case MEM_AREA_TS_VASPACE:
477 		case MEM_AREA_PAGER_VASPACE:
478 			break;
479 		default:
480 			check_phys_mem_is_outside(m, num_elems, map);
481 		}
482 	}
483 
484 	discovered_nsec_ddr_start = m;
485 	discovered_nsec_ddr_nelems = num_elems;
486 
487 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
488 				   m[num_elems - 1].size))
489 		panic();
490 }
491 
492 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
493 				    const struct core_mmu_phys_mem **end)
494 {
495 	if (!discovered_nsec_ddr_start)
496 		return false;
497 
498 	*start = discovered_nsec_ddr_start;
499 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
500 
501 	return true;
502 }
503 
504 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
505 {
506 	const struct core_mmu_phys_mem *start;
507 	const struct core_mmu_phys_mem *end;
508 
509 	if (!get_discovered_nsec_ddr(&start, &end))
510 		return false;
511 
512 	return pbuf_is_special_mem(pbuf, len, start, end);
513 }
514 
515 bool core_mmu_nsec_ddr_is_defined(void)
516 {
517 	const struct core_mmu_phys_mem *start;
518 	const struct core_mmu_phys_mem *end;
519 
520 	if (!get_discovered_nsec_ddr(&start, &end))
521 		return false;
522 
523 	return start != end;
524 }
525 #else
526 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
527 {
528 	return false;
529 }
530 #endif /*CFG_CORE_DYN_SHM*/
531 
532 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
533 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
534 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
535 
536 #ifdef CFG_SECURE_DATA_PATH
537 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
538 {
539 	bool is_sdp_mem = false;
540 
541 	if (sec_sdp.size)
542 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
543 						   sec_sdp.size);
544 
545 	if (!is_sdp_mem)
546 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
547 						 phys_sdp_mem_end);
548 
549 	return is_sdp_mem;
550 }
551 
552 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
553 {
554 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
555 					    CORE_MEM_SDP_MEM);
556 
557 	if (!mobj)
558 		panic("can't create SDP physical memory object");
559 
560 	return mobj;
561 }
562 
563 struct mobj **core_sdp_mem_create_mobjs(void)
564 {
565 	const struct core_mmu_phys_mem *mem = NULL;
566 	struct mobj **mobj_base = NULL;
567 	struct mobj **mobj = NULL;
568 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
569 
570 	if (sec_sdp.size)
571 		cnt++;
572 
573 	/* SDP mobjs table must end with a NULL entry */
574 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
575 	if (!mobj_base)
576 		panic("Out of memory");
577 
578 	mobj = mobj_base;
579 
580 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
581 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
582 
583 	if (sec_sdp.size)
584 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
585 
586 	return mobj_base;
587 }
588 
589 #else /* CFG_SECURE_DATA_PATH */
590 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
591 {
592 	return false;
593 }
594 
595 #endif /* CFG_SECURE_DATA_PATH */
596 
597 /* Check special memories comply with registered memories */
598 static void verify_special_mem_areas(struct tee_mmap_region *mem_map,
599 				     size_t len,
600 				     const struct core_mmu_phys_mem *start,
601 				     const struct core_mmu_phys_mem *end,
602 				     const char *area_name __maybe_unused)
603 {
604 	const struct core_mmu_phys_mem *mem;
605 	const struct core_mmu_phys_mem *mem2;
606 	struct tee_mmap_region *mmap;
607 	size_t n;
608 
609 	if (start == end) {
610 		DMSG("No %s memory area defined", area_name);
611 		return;
612 	}
613 
614 	for (mem = start; mem < end; mem++)
615 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
616 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
617 
618 	/* Check memories do not intersect each other */
619 	for (mem = start; mem + 1 < end; mem++) {
620 		for (mem2 = mem + 1; mem2 < end; mem2++) {
621 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
622 						     mem->addr, mem->size)) {
623 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
624 						   mem->addr, mem->size);
625 				panic("Special memory intersection");
626 			}
627 		}
628 	}
629 
630 	/*
631 	 * Check memories do not intersect any mapped memory.
632 	 * This is called before reserved VA space is loaded in mem_map.
633 	 */
634 	for (mem = start; mem < end; mem++) {
635 		for (mmap = mem_map, n = 0; n < len; mmap++, n++) {
636 			if (core_is_buffer_intersect(mem->addr, mem->size,
637 						     mmap->pa, mmap->size)) {
638 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
639 						   mmap->pa, mmap->size);
640 				panic("Special memory intersection");
641 			}
642 		}
643 	}
644 }
645 
646 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems,
647 			 const char *mem_name __maybe_unused,
648 			 enum teecore_memtypes mem_type,
649 			 paddr_t mem_addr, paddr_size_t mem_size, size_t *last)
650 {
651 	size_t n = 0;
652 	paddr_t pa;
653 	paddr_size_t size;
654 
655 	if (!mem_size)	/* Discard null size entries */
656 		return;
657 	/*
658 	 * If some ranges of memory of the same type do overlap
659 	 * each others they are coalesced into one entry. To help this
660 	 * added entries are sorted by increasing physical.
661 	 *
662 	 * Note that it's valid to have the same physical memory as several
663 	 * different memory types, for instance the same device memory
664 	 * mapped as both secure and non-secure. This will probably not
665 	 * happen often in practice.
666 	 */
667 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
668 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
669 	while (true) {
670 		if (n >= (num_elems - 1)) {
671 			EMSG("Out of entries (%zu) in memory_map", num_elems);
672 			panic();
673 		}
674 		if (n == *last)
675 			break;
676 		pa = memory_map[n].pa;
677 		size = memory_map[n].size;
678 		if (mem_type == memory_map[n].type &&
679 		    ((pa <= (mem_addr + (mem_size - 1))) &&
680 		    (mem_addr <= (pa + (size - 1))))) {
681 			DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr);
682 			memory_map[n].pa = MIN(pa, mem_addr);
683 			memory_map[n].size = MAX(size, mem_size) +
684 					     (pa - memory_map[n].pa);
685 			return;
686 		}
687 		if (mem_type < memory_map[n].type ||
688 		    (mem_type == memory_map[n].type && mem_addr < pa))
689 			break; /* found the spot where to insert this memory */
690 		n++;
691 	}
692 
693 	memmove(memory_map + n + 1, memory_map + n,
694 		sizeof(struct tee_mmap_region) * (*last - n));
695 	(*last)++;
696 	memset(memory_map + n, 0, sizeof(memory_map[0]));
697 	memory_map[n].type = mem_type;
698 	memory_map[n].pa = mem_addr;
699 	memory_map[n].size = mem_size;
700 }
701 
702 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems,
703 			 enum teecore_memtypes type, size_t size, size_t *last)
704 {
705 	size_t n = 0;
706 
707 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
708 	while (true) {
709 		if (n >= (num_elems - 1)) {
710 			EMSG("Out of entries (%zu) in memory_map", num_elems);
711 			panic();
712 		}
713 		if (n == *last)
714 			break;
715 		if (type < memory_map[n].type)
716 			break;
717 		n++;
718 	}
719 
720 	memmove(memory_map + n + 1, memory_map + n,
721 		sizeof(struct tee_mmap_region) * (*last - n));
722 	(*last)++;
723 	memset(memory_map + n, 0, sizeof(memory_map[0]));
724 	memory_map[n].type = type;
725 	memory_map[n].size = size;
726 }
727 
728 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
729 {
730 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
731 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
732 				TEE_MATTR_MEM_TYPE_SHIFT;
733 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
734 				TEE_MATTR_MEM_TYPE_SHIFT;
735 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
736 				  TEE_MATTR_MEM_TYPE_SHIFT;
737 
738 	switch (t) {
739 	case MEM_AREA_TEE_RAM:
740 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
741 	case MEM_AREA_TEE_RAM_RX:
742 	case MEM_AREA_INIT_RAM_RX:
743 	case MEM_AREA_IDENTITY_MAP_RX:
744 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
745 	case MEM_AREA_TEE_RAM_RO:
746 	case MEM_AREA_INIT_RAM_RO:
747 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
748 	case MEM_AREA_TEE_RAM_RW:
749 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
750 	case MEM_AREA_NEX_RAM_RW:
751 	case MEM_AREA_TEE_ASAN:
752 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
753 	case MEM_AREA_TEE_COHERENT:
754 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
755 	case MEM_AREA_TA_RAM:
756 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
757 	case MEM_AREA_NSEC_SHM:
758 	case MEM_AREA_NEX_NSEC_SHM:
759 		return attr | TEE_MATTR_PRW | cached;
760 	case MEM_AREA_MANIFEST_DT:
761 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
762 	case MEM_AREA_EXT_DT:
763 		/*
764 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
765 		 * tree as secure non-cached memory, otherwise, fall back to
766 		 * non-secure mapping.
767 		 */
768 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
769 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
770 			       noncache;
771 		fallthrough;
772 	case MEM_AREA_IO_NSEC:
773 		return attr | TEE_MATTR_PRW | noncache;
774 	case MEM_AREA_IO_SEC:
775 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
776 	case MEM_AREA_RAM_NSEC:
777 		return attr | TEE_MATTR_PRW | cached;
778 	case MEM_AREA_RAM_SEC:
779 	case MEM_AREA_SEC_RAM_OVERALL:
780 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
781 	case MEM_AREA_RES_VASPACE:
782 	case MEM_AREA_SHM_VASPACE:
783 		return 0;
784 	case MEM_AREA_PAGER_VASPACE:
785 		return TEE_MATTR_SECURE;
786 	default:
787 		panic("invalid type");
788 	}
789 }
790 
791 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
792 {
793 	switch (mm->type) {
794 	case MEM_AREA_TEE_RAM:
795 	case MEM_AREA_TEE_RAM_RX:
796 	case MEM_AREA_TEE_RAM_RO:
797 	case MEM_AREA_TEE_RAM_RW:
798 	case MEM_AREA_INIT_RAM_RX:
799 	case MEM_AREA_INIT_RAM_RO:
800 	case MEM_AREA_NEX_RAM_RW:
801 	case MEM_AREA_NEX_RAM_RO:
802 	case MEM_AREA_TEE_ASAN:
803 		return true;
804 	default:
805 		return false;
806 	}
807 }
808 
809 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
810 {
811 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
812 }
813 
814 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
815 {
816 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
817 }
818 
819 static int cmp_mmap_by_lower_va(const void *a, const void *b)
820 {
821 	const struct tee_mmap_region *mm_a = a;
822 	const struct tee_mmap_region *mm_b = b;
823 
824 	return CMP_TRILEAN(mm_a->va, mm_b->va);
825 }
826 
827 static void dump_mmap_table(struct tee_mmap_region *memory_map)
828 {
829 	struct tee_mmap_region *map;
830 
831 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
832 		vaddr_t __maybe_unused vstart;
833 
834 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
835 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
836 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
837 		     teecore_memtype_name(map->type), vstart,
838 		     vstart + map->size - 1, map->pa,
839 		     (paddr_t)(map->pa + map->size - 1), map->size,
840 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
841 	}
842 }
843 
844 #if DEBUG_XLAT_TABLE
845 
846 static void dump_xlat_table(vaddr_t va, unsigned int level)
847 {
848 	struct core_mmu_table_info tbl_info;
849 	unsigned int idx = 0;
850 	paddr_t pa;
851 	uint32_t attr;
852 
853 	core_mmu_find_table(NULL, va, level, &tbl_info);
854 	va = tbl_info.va_base;
855 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
856 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
857 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
858 			const char *security_bit = "";
859 
860 			if (core_mmu_entry_have_security_bit(attr)) {
861 				if (attr & TEE_MATTR_SECURE)
862 					security_bit = "S";
863 				else
864 					security_bit = "NS";
865 			}
866 
867 			if (attr & TEE_MATTR_TABLE) {
868 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
869 					" TBL:0x%010" PRIxPA " %s",
870 					level * 2, "", level, va, pa,
871 					security_bit);
872 				dump_xlat_table(va, level + 1);
873 			} else if (attr) {
874 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
875 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
876 					level * 2, "", level, va, pa,
877 					mattr_is_cached(attr) ? "MEM" :
878 					"DEV",
879 					attr & TEE_MATTR_PW ? "RW" : "RO",
880 					attr & TEE_MATTR_PX ? "X " : "XN",
881 					security_bit);
882 			} else {
883 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
884 					    " INVALID\n",
885 					    level * 2, "", level, va);
886 			}
887 		}
888 		va += BIT64(tbl_info.shift);
889 	}
890 }
891 
892 #else
893 
894 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
895 {
896 }
897 
898 #endif
899 
900 /*
901  * Reserves virtual memory space for pager usage.
902  *
903  * From the start of the first memory used by the link script +
904  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
905  * mapping for pager usage. This adds translation tables as needed for the
906  * pager to operate.
907  */
908 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems,
909 			      size_t *last)
910 {
911 	paddr_t begin = 0;
912 	paddr_t end = 0;
913 	size_t size = 0;
914 	size_t pos = 0;
915 	size_t n = 0;
916 
917 	if (*last >= (num_elems - 1)) {
918 		EMSG("Out of entries (%zu) in memory map", num_elems);
919 		panic();
920 	}
921 
922 	for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) {
923 		if (map_is_tee_ram(mmap + n)) {
924 			if (!begin)
925 				begin = mmap[n].pa;
926 			pos = n + 1;
927 		}
928 	}
929 
930 	end = mmap[pos - 1].pa + mmap[pos - 1].size;
931 	assert(end - begin < TEE_RAM_VA_SIZE);
932 	size = TEE_RAM_VA_SIZE - (end - begin);
933 
934 	assert(pos <= *last);
935 	memmove(mmap + pos + 1, mmap + pos,
936 		sizeof(struct tee_mmap_region) * (*last - pos));
937 	(*last)++;
938 	memset(mmap + pos, 0, sizeof(mmap[0]));
939 	mmap[pos].type = MEM_AREA_PAGER_VASPACE;
940 	mmap[pos].va = 0;
941 	mmap[pos].size = size;
942 	mmap[pos].region_size = SMALL_PAGE_SIZE;
943 	mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE);
944 }
945 
946 static void check_sec_nsec_mem_config(void)
947 {
948 	size_t n = 0;
949 
950 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
951 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
952 				    secure_only[n].size))
953 			panic("Invalid memory access config: sec/nsec");
954 	}
955 }
956 
957 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map,
958 				 size_t num_elems)
959 {
960 	const struct core_mmu_phys_mem *mem = NULL;
961 	vaddr_t ram_start = secure_only[0].paddr;
962 	size_t last = 0;
963 
964 
965 #define ADD_PHYS_MEM(_type, _addr, _size) \
966 		add_phys_mem(memory_map, num_elems, #_addr, (_type), \
967 			     (_addr), (_size),  &last)
968 
969 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
970 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start,
971 			     VCORE_UNPG_RX_PA - ram_start);
972 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
973 			     VCORE_UNPG_RX_SZ);
974 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
975 			     VCORE_UNPG_RO_SZ);
976 
977 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
978 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
979 				     VCORE_UNPG_RW_SZ);
980 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
981 				     VCORE_NEX_RW_SZ);
982 		} else {
983 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
984 				     VCORE_UNPG_RW_SZ);
985 		}
986 
987 		if (IS_ENABLED(CFG_WITH_PAGER)) {
988 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
989 				     VCORE_INIT_RX_SZ);
990 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
991 				     VCORE_INIT_RO_SZ);
992 		}
993 	} else {
994 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
995 	}
996 
997 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
998 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
999 			     TRUSTED_DRAM_SIZE);
1000 	} else {
1001 		/*
1002 		 * Every guest will have own TA RAM if virtualization
1003 		 * support is enabled.
1004 		 */
1005 		paddr_t ta_base = 0;
1006 		size_t ta_size = 0;
1007 
1008 		core_mmu_get_ta_range(&ta_base, &ta_size);
1009 		ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size);
1010 	}
1011 
1012 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
1013 	    IS_ENABLED(CFG_WITH_PAGER)) {
1014 		/*
1015 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
1016 		 * disabled.
1017 		 */
1018 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1019 	}
1020 
1021 #undef ADD_PHYS_MEM
1022 
1023 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1024 		/* Only unmapped virtual range may have a null phys addr */
1025 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1026 
1027 		add_phys_mem(memory_map, num_elems, mem->name, mem->type,
1028 			     mem->addr, mem->size, &last);
1029 	}
1030 
1031 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1032 		verify_special_mem_areas(memory_map, num_elems,
1033 					 phys_sdp_mem_begin,
1034 					 phys_sdp_mem_end, "SDP");
1035 
1036 	add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE,
1037 		     CFG_RESERVED_VASPACE_SIZE, &last);
1038 
1039 	add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE,
1040 		     SHM_VASPACE_SIZE, &last);
1041 
1042 	memory_map[last].type = MEM_AREA_END;
1043 
1044 	return last;
1045 }
1046 
1047 static void assign_mem_granularity(struct tee_mmap_region *memory_map)
1048 {
1049 	struct tee_mmap_region *map = NULL;
1050 
1051 	/*
1052 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1053 	 * SMALL_PAGE_SIZE.
1054 	 */
1055 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1056 		paddr_t mask = map->pa | map->size;
1057 
1058 		if (!(mask & CORE_MMU_PGDIR_MASK))
1059 			map->region_size = CORE_MMU_PGDIR_SIZE;
1060 		else if (!(mask & SMALL_PAGE_MASK))
1061 			map->region_size = SMALL_PAGE_SIZE;
1062 		else
1063 			panic("Impossible memory alignment");
1064 
1065 		if (map_is_tee_ram(map))
1066 			map->region_size = SMALL_PAGE_SIZE;
1067 	}
1068 }
1069 
1070 static bool place_tee_ram_at_top(paddr_t paddr)
1071 {
1072 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1073 }
1074 
1075 /*
1076  * MMU arch driver shall override this function if it helps
1077  * optimizing the memory footprint of the address translation tables.
1078  */
1079 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1080 {
1081 	return place_tee_ram_at_top(paddr);
1082 }
1083 
1084 static bool assign_mem_va_dir(vaddr_t tee_ram_va,
1085 			      struct tee_mmap_region *memory_map,
1086 			      bool tee_ram_at_top)
1087 {
1088 	struct tee_mmap_region *map = NULL;
1089 	vaddr_t va = 0;
1090 	bool va_is_secure = true;
1091 
1092 	/*
1093 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1094 	 * 0 is by design an invalid va, so return false directly.
1095 	 */
1096 	if (!tee_ram_va)
1097 		return false;
1098 
1099 	/* Clear eventual previous assignments */
1100 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1101 		map->va = 0;
1102 
1103 	/*
1104 	 * TEE RAM regions are always aligned with region_size.
1105 	 *
1106 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1107 	 * since it handles virtual memory which covers the part of the ELF
1108 	 * that cannot fit directly into memory.
1109 	 */
1110 	va = tee_ram_va;
1111 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1112 		if (map_is_tee_ram(map) ||
1113 		    map->type == MEM_AREA_PAGER_VASPACE) {
1114 			assert(!(va & (map->region_size - 1)));
1115 			assert(!(map->size & (map->region_size - 1)));
1116 			map->va = va;
1117 			if (ADD_OVERFLOW(va, map->size, &va))
1118 				return false;
1119 			if (va >= BIT64(core_mmu_get_va_width()))
1120 				return false;
1121 		}
1122 	}
1123 
1124 	if (tee_ram_at_top) {
1125 		/*
1126 		 * Map non-tee ram regions at addresses lower than the tee
1127 		 * ram region.
1128 		 */
1129 		va = tee_ram_va;
1130 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1131 			map->attr = core_mmu_type_to_attr(map->type);
1132 			if (map->va)
1133 				continue;
1134 
1135 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1136 			    va_is_secure != map_is_secure(map)) {
1137 				va_is_secure = !va_is_secure;
1138 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1139 			}
1140 
1141 			if (SUB_OVERFLOW(va, map->size, &va))
1142 				return false;
1143 			va = ROUNDDOWN(va, map->region_size);
1144 			/*
1145 			 * Make sure that va is aligned with pa for
1146 			 * efficient pgdir mapping. Basically pa &
1147 			 * pgdir_mask should be == va & pgdir_mask
1148 			 */
1149 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1150 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1151 					return false;
1152 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1153 			}
1154 			map->va = va;
1155 		}
1156 	} else {
1157 		/*
1158 		 * Map non-tee ram regions at addresses higher than the tee
1159 		 * ram region.
1160 		 */
1161 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1162 			map->attr = core_mmu_type_to_attr(map->type);
1163 			if (map->va)
1164 				continue;
1165 
1166 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1167 			    va_is_secure != map_is_secure(map)) {
1168 				va_is_secure = !va_is_secure;
1169 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1170 						     &va))
1171 					return false;
1172 			}
1173 
1174 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1175 				return false;
1176 			/*
1177 			 * Make sure that va is aligned with pa for
1178 			 * efficient pgdir mapping. Basically pa &
1179 			 * pgdir_mask should be == va & pgdir_mask
1180 			 */
1181 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1182 				vaddr_t offs = (map->pa - va) &
1183 					       CORE_MMU_PGDIR_MASK;
1184 
1185 				if (ADD_OVERFLOW(va, offs, &va))
1186 					return false;
1187 			}
1188 
1189 			map->va = va;
1190 			if (ADD_OVERFLOW(va, map->size, &va))
1191 				return false;
1192 			if (va >= BIT64(core_mmu_get_va_width()))
1193 				return false;
1194 		}
1195 	}
1196 
1197 	return true;
1198 }
1199 
1200 static bool assign_mem_va(vaddr_t tee_ram_va,
1201 			  struct tee_mmap_region *memory_map)
1202 {
1203 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1204 
1205 	/*
1206 	 * Check that we're not overlapping with the user VA range.
1207 	 */
1208 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1209 		/*
1210 		 * User VA range is supposed to be defined after these
1211 		 * mappings have been established.
1212 		 */
1213 		assert(!core_mmu_user_va_range_is_defined());
1214 	} else {
1215 		vaddr_t user_va_base = 0;
1216 		size_t user_va_size = 0;
1217 
1218 		assert(core_mmu_user_va_range_is_defined());
1219 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1220 		if (tee_ram_va < (user_va_base + user_va_size))
1221 			return false;
1222 	}
1223 
1224 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1225 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1226 
1227 		/* Try whole mapping covered by a single base xlat entry */
1228 		if (prefered_dir != tee_ram_at_top &&
1229 		    assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir))
1230 			return true;
1231 	}
1232 
1233 	return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top);
1234 }
1235 
1236 static int cmp_init_mem_map(const void *a, const void *b)
1237 {
1238 	const struct tee_mmap_region *mm_a = a;
1239 	const struct tee_mmap_region *mm_b = b;
1240 	int rc = 0;
1241 
1242 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1243 	if (!rc)
1244 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1245 	/*
1246 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1247 	 * the same level2 table. Hence sort secure mapping from non-secure
1248 	 * mapping.
1249 	 */
1250 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1251 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1252 
1253 	return rc;
1254 }
1255 
1256 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map,
1257 			       size_t num_elems, size_t *last,
1258 			       vaddr_t id_map_start, vaddr_t id_map_end)
1259 {
1260 	struct tee_mmap_region *map = NULL;
1261 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1262 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1263 	size_t len = end - start;
1264 
1265 	if (*last >= num_elems - 1) {
1266 		EMSG("Out of entries (%zu) in memory map", num_elems);
1267 		panic();
1268 	}
1269 
1270 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1271 		if (core_is_buffer_intersect(map->va, map->size, start, len))
1272 			return false;
1273 
1274 	*map = (struct tee_mmap_region){
1275 		.type = MEM_AREA_IDENTITY_MAP_RX,
1276 		/*
1277 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1278 		 * translation table, at the increased risk of clashes with
1279 		 * the rest of the memory map.
1280 		 */
1281 		.region_size = SMALL_PAGE_SIZE,
1282 		.pa = start,
1283 		.va = start,
1284 		.size = len,
1285 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1286 	};
1287 
1288 	(*last)++;
1289 
1290 	return true;
1291 }
1292 
1293 static unsigned long init_mem_map(struct tee_mmap_region *memory_map,
1294 				  size_t num_elems, unsigned long seed)
1295 {
1296 	/*
1297 	 * @id_map_start and @id_map_end describes a physical memory range
1298 	 * that must be mapped Read-Only eXecutable at identical virtual
1299 	 * addresses.
1300 	 */
1301 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1302 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1303 	vaddr_t start_addr = secure_only[0].paddr;
1304 	unsigned long offs = 0;
1305 	size_t last = 0;
1306 
1307 	last = collect_mem_ranges(memory_map, num_elems);
1308 	assign_mem_granularity(memory_map);
1309 
1310 	/*
1311 	 * To ease mapping and lower use of xlat tables, sort mapping
1312 	 * description moving small-page regions after the pgdir regions.
1313 	 */
1314 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1315 	      cmp_init_mem_map);
1316 
1317 	if (IS_ENABLED(CFG_WITH_PAGER))
1318 		add_pager_vaspace(memory_map, num_elems, &last);
1319 
1320 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1321 		vaddr_t base_addr = start_addr + seed;
1322 		const unsigned int va_width = core_mmu_get_va_width();
1323 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1324 						   SMALL_PAGE_SHIFT);
1325 		vaddr_t ba = base_addr;
1326 		size_t n = 0;
1327 
1328 		for (n = 0; n < 3; n++) {
1329 			if (n)
1330 				ba = base_addr ^ BIT64(va_width - n);
1331 			ba &= va_mask;
1332 			if (assign_mem_va(ba, memory_map) &&
1333 			    mem_map_add_id_map(memory_map, num_elems, &last,
1334 					       id_map_start, id_map_end)) {
1335 				offs = ba - start_addr;
1336 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1337 				     ba, offs);
1338 				goto out;
1339 			} else {
1340 				DMSG("Failed to map core at %#"PRIxVA, ba);
1341 			}
1342 		}
1343 		EMSG("Failed to map core with seed %#lx", seed);
1344 	}
1345 
1346 	if (!assign_mem_va(start_addr, memory_map))
1347 		panic();
1348 
1349 out:
1350 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1351 	      cmp_mmap_by_lower_va);
1352 
1353 	dump_mmap_table(memory_map);
1354 
1355 	return offs;
1356 }
1357 
1358 static void check_mem_map(struct tee_mmap_region *map)
1359 {
1360 	struct tee_mmap_region *m = NULL;
1361 
1362 	for (m = map; !core_mmap_is_end_of_table(m); m++) {
1363 		switch (m->type) {
1364 		case MEM_AREA_TEE_RAM:
1365 		case MEM_AREA_TEE_RAM_RX:
1366 		case MEM_AREA_TEE_RAM_RO:
1367 		case MEM_AREA_TEE_RAM_RW:
1368 		case MEM_AREA_INIT_RAM_RX:
1369 		case MEM_AREA_INIT_RAM_RO:
1370 		case MEM_AREA_NEX_RAM_RW:
1371 		case MEM_AREA_NEX_RAM_RO:
1372 		case MEM_AREA_IDENTITY_MAP_RX:
1373 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1374 				panic("TEE_RAM can't fit in secure_only");
1375 			break;
1376 		case MEM_AREA_TA_RAM:
1377 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1378 				panic("TA_RAM can't fit in secure_only");
1379 			break;
1380 		case MEM_AREA_NSEC_SHM:
1381 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1382 				panic("NS_SHM can't fit in nsec_shared");
1383 			break;
1384 		case MEM_AREA_SEC_RAM_OVERALL:
1385 		case MEM_AREA_TEE_COHERENT:
1386 		case MEM_AREA_TEE_ASAN:
1387 		case MEM_AREA_IO_SEC:
1388 		case MEM_AREA_IO_NSEC:
1389 		case MEM_AREA_EXT_DT:
1390 		case MEM_AREA_MANIFEST_DT:
1391 		case MEM_AREA_RAM_SEC:
1392 		case MEM_AREA_RAM_NSEC:
1393 		case MEM_AREA_RES_VASPACE:
1394 		case MEM_AREA_SHM_VASPACE:
1395 		case MEM_AREA_PAGER_VASPACE:
1396 			break;
1397 		default:
1398 			EMSG("Uhandled memtype %d", m->type);
1399 			panic();
1400 		}
1401 	}
1402 }
1403 
1404 static struct tee_mmap_region *get_tmp_mmap(void)
1405 {
1406 	struct tee_mmap_region *tmp_mmap = (void *)__heap1_start;
1407 
1408 #ifdef CFG_WITH_PAGER
1409 	if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map))
1410 		tmp_mmap = (void *)__heap2_start;
1411 #endif
1412 
1413 	memset(tmp_mmap, 0, sizeof(static_memory_map));
1414 
1415 	return tmp_mmap;
1416 }
1417 
1418 /*
1419  * core_init_mmu_map() - init tee core default memory mapping
1420  *
1421  * This routine sets the static default TEE core mapping. If @seed is > 0
1422  * and configured with CFG_CORE_ASLR it will map tee core at a location
1423  * based on the seed and return the offset from the link address.
1424  *
1425  * If an error happened: core_init_mmu_map is expected to panic.
1426  *
1427  * Note: this function is weak just to make it possible to exclude it from
1428  * the unpaged area.
1429  */
1430 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1431 {
1432 #ifndef CFG_NS_VIRTUALIZATION
1433 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1434 #else
1435 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1436 				  SMALL_PAGE_SIZE);
1437 #endif
1438 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1439 	struct tee_mmap_region *tmp_mmap = get_tmp_mmap();
1440 	unsigned long offs = 0;
1441 
1442 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1443 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1444 		panic("OP-TEE load address is not page aligned");
1445 
1446 	check_sec_nsec_mem_config();
1447 
1448 	/*
1449 	 * Add a entry covering the translation tables which will be
1450 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1451 	 */
1452 	static_memory_map[0] = (struct tee_mmap_region){
1453 		.type = MEM_AREA_TEE_RAM,
1454 		.region_size = SMALL_PAGE_SIZE,
1455 		.pa = start,
1456 		.va = start,
1457 		.size = len,
1458 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1459 	};
1460 
1461 	COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13);
1462 	offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed);
1463 
1464 	check_mem_map(tmp_mmap);
1465 	core_init_mmu(tmp_mmap);
1466 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1467 	core_init_mmu_regs(cfg);
1468 	cfg->map_offset = offs;
1469 	memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map));
1470 }
1471 
1472 bool core_mmu_mattr_is_ok(uint32_t mattr)
1473 {
1474 	/*
1475 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1476 	 * core_mmu_v7.c:mattr_to_texcb
1477 	 */
1478 
1479 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1480 	case TEE_MATTR_MEM_TYPE_DEV:
1481 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1482 	case TEE_MATTR_MEM_TYPE_CACHED:
1483 	case TEE_MATTR_MEM_TYPE_TAGGED:
1484 		return true;
1485 	default:
1486 		return false;
1487 	}
1488 }
1489 
1490 /*
1491  * test attributes of target physical buffer
1492  *
1493  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1494  *
1495  */
1496 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1497 {
1498 	paddr_t ta_base = 0;
1499 	size_t ta_size = 0;
1500 	struct tee_mmap_region *map;
1501 
1502 	/* Empty buffers complies with anything */
1503 	if (len == 0)
1504 		return true;
1505 
1506 	switch (attr) {
1507 	case CORE_MEM_SEC:
1508 		return pbuf_is_inside(secure_only, pbuf, len);
1509 	case CORE_MEM_NON_SEC:
1510 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1511 			pbuf_is_nsec_ddr(pbuf, len);
1512 	case CORE_MEM_TEE_RAM:
1513 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1514 							TEE_RAM_PH_SIZE);
1515 	case CORE_MEM_TA_RAM:
1516 		core_mmu_get_ta_range(&ta_base, &ta_size);
1517 		return core_is_buffer_inside(pbuf, len, ta_base, ta_size);
1518 #ifdef CFG_CORE_RESERVED_SHM
1519 	case CORE_MEM_NSEC_SHM:
1520 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1521 							TEE_SHMEM_SIZE);
1522 #endif
1523 	case CORE_MEM_SDP_MEM:
1524 		return pbuf_is_sdp_mem(pbuf, len);
1525 	case CORE_MEM_CACHED:
1526 		map = find_map_by_pa(pbuf);
1527 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1528 			return false;
1529 		return mattr_is_cached(map->attr);
1530 	default:
1531 		return false;
1532 	}
1533 }
1534 
1535 /* test attributes of target virtual buffer (in core mapping) */
1536 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1537 {
1538 	paddr_t p;
1539 
1540 	/* Empty buffers complies with anything */
1541 	if (len == 0)
1542 		return true;
1543 
1544 	p = virt_to_phys((void *)vbuf);
1545 	if (!p)
1546 		return false;
1547 
1548 	return core_pbuf_is(attr, p, len);
1549 }
1550 
1551 /* core_va2pa - teecore exported service */
1552 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1553 {
1554 	struct tee_mmap_region *map;
1555 
1556 	map = find_map_by_va(va);
1557 	if (!va_is_in_map(map, (vaddr_t)va))
1558 		return -1;
1559 
1560 	/*
1561 	 * We can calculate PA for static map. Virtual address ranges
1562 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1563 	 * together with an invalid null physical address.
1564 	 */
1565 	if (map->pa)
1566 		*pa = map->pa + (vaddr_t)va  - map->va;
1567 	else
1568 		*pa = 0;
1569 
1570 	return 0;
1571 }
1572 
1573 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1574 {
1575 	if (!pa_is_in_map(map, pa, len))
1576 		return NULL;
1577 
1578 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1579 }
1580 
1581 /*
1582  * teecore gets some memory area definitions
1583  */
1584 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1585 			      vaddr_t *e)
1586 {
1587 	struct tee_mmap_region *map = find_map_by_type(type);
1588 
1589 	if (map) {
1590 		*s = map->va;
1591 		*e = map->va + map->size;
1592 	} else {
1593 		*s = 0;
1594 		*e = 0;
1595 	}
1596 }
1597 
1598 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1599 {
1600 	struct tee_mmap_region *map = find_map_by_pa(pa);
1601 
1602 	if (!map)
1603 		return MEM_AREA_MAXTYPE;
1604 	return map->type;
1605 }
1606 
1607 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1608 			paddr_t pa, uint32_t attr)
1609 {
1610 	assert(idx < tbl_info->num_entries);
1611 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1612 				     idx, pa, attr);
1613 }
1614 
1615 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1616 			paddr_t *pa, uint32_t *attr)
1617 {
1618 	assert(idx < tbl_info->num_entries);
1619 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1620 				     idx, pa, attr);
1621 }
1622 
1623 static void clear_region(struct core_mmu_table_info *tbl_info,
1624 			 struct tee_mmap_region *region)
1625 {
1626 	unsigned int end = 0;
1627 	unsigned int idx = 0;
1628 
1629 	/* va, len and pa should be block aligned */
1630 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1631 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1632 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1633 
1634 	idx = core_mmu_va2idx(tbl_info, region->va);
1635 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1636 
1637 	while (idx < end) {
1638 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1639 		idx++;
1640 	}
1641 }
1642 
1643 static void set_region(struct core_mmu_table_info *tbl_info,
1644 		       struct tee_mmap_region *region)
1645 {
1646 	unsigned int end;
1647 	unsigned int idx;
1648 	paddr_t pa;
1649 
1650 	/* va, len and pa should be block aligned */
1651 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1652 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1653 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1654 
1655 	idx = core_mmu_va2idx(tbl_info, region->va);
1656 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1657 	pa = region->pa;
1658 
1659 	while (idx < end) {
1660 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1661 		idx++;
1662 		pa += BIT64(tbl_info->shift);
1663 	}
1664 }
1665 
1666 static void set_pg_region(struct core_mmu_table_info *dir_info,
1667 			  struct vm_region *region, struct pgt **pgt,
1668 			  struct core_mmu_table_info *pg_info)
1669 {
1670 	struct tee_mmap_region r = {
1671 		.va = region->va,
1672 		.size = region->size,
1673 		.attr = region->attr,
1674 	};
1675 	vaddr_t end = r.va + r.size;
1676 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1677 
1678 	while (r.va < end) {
1679 		if (!pg_info->table ||
1680 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1681 			/*
1682 			 * We're assigning a new translation table.
1683 			 */
1684 			unsigned int idx;
1685 
1686 			/* Virtual addresses must grow */
1687 			assert(r.va > pg_info->va_base);
1688 
1689 			idx = core_mmu_va2idx(dir_info, r.va);
1690 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1691 
1692 			/*
1693 			 * Advance pgt to va_base, note that we may need to
1694 			 * skip multiple page tables if there are large
1695 			 * holes in the vm map.
1696 			 */
1697 			while ((*pgt)->vabase < pg_info->va_base) {
1698 				*pgt = SLIST_NEXT(*pgt, link);
1699 				/* We should have allocated enough */
1700 				assert(*pgt);
1701 			}
1702 			assert((*pgt)->vabase == pg_info->va_base);
1703 			pg_info->table = (*pgt)->tbl;
1704 
1705 			core_mmu_set_entry(dir_info, idx,
1706 					   virt_to_phys(pg_info->table),
1707 					   pgt_attr);
1708 		}
1709 
1710 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1711 			     end - r.va);
1712 
1713 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1714 			size_t granule = BIT(pg_info->shift);
1715 			size_t offset = r.va - region->va + region->offset;
1716 
1717 			r.size = MIN(r.size,
1718 				     mobj_get_phys_granule(region->mobj));
1719 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1720 
1721 			if (mobj_get_pa(region->mobj, offset, granule,
1722 					&r.pa) != TEE_SUCCESS)
1723 				panic("Failed to get PA of unpaged mobj");
1724 			set_region(pg_info, &r);
1725 		}
1726 		r.va += r.size;
1727 	}
1728 }
1729 
1730 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1731 			     size_t size_left, paddr_t block_size,
1732 			     struct tee_mmap_region *mm __maybe_unused)
1733 {
1734 	/* VA and PA are aligned to block size at current level */
1735 	if ((vaddr | paddr) & (block_size - 1))
1736 		return false;
1737 
1738 	/* Remainder fits into block at current level */
1739 	if (size_left < block_size)
1740 		return false;
1741 
1742 #ifdef CFG_WITH_PAGER
1743 	/*
1744 	 * If pager is enabled, we need to map tee ram
1745 	 * regions with small pages only
1746 	 */
1747 	if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE)
1748 		return false;
1749 #endif
1750 
1751 	return true;
1752 }
1753 
1754 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1755 {
1756 	struct core_mmu_table_info tbl_info;
1757 	unsigned int idx;
1758 	vaddr_t vaddr = mm->va;
1759 	paddr_t paddr = mm->pa;
1760 	ssize_t size_left = mm->size;
1761 	unsigned int level;
1762 	bool table_found;
1763 	uint32_t old_attr;
1764 
1765 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1766 
1767 	while (size_left > 0) {
1768 		level = CORE_MMU_BASE_TABLE_LEVEL;
1769 
1770 		while (true) {
1771 			paddr_t block_size = 0;
1772 
1773 			assert(core_mmu_level_in_range(level));
1774 
1775 			table_found = core_mmu_find_table(prtn, vaddr, level,
1776 							  &tbl_info);
1777 			if (!table_found)
1778 				panic("can't find table for mapping");
1779 
1780 			block_size = BIT64(tbl_info.shift);
1781 
1782 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1783 			if (!can_map_at_level(paddr, vaddr, size_left,
1784 					      block_size, mm)) {
1785 				bool secure = mm->attr & TEE_MATTR_SECURE;
1786 
1787 				/*
1788 				 * This part of the region can't be mapped at
1789 				 * this level. Need to go deeper.
1790 				 */
1791 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1792 								     idx,
1793 								     secure))
1794 					panic("Can't divide MMU entry");
1795 				level = tbl_info.next_level;
1796 				continue;
1797 			}
1798 
1799 			/* We can map part of the region at current level */
1800 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1801 			if (old_attr)
1802 				panic("Page is already mapped");
1803 
1804 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1805 			paddr += block_size;
1806 			vaddr += block_size;
1807 			size_left -= block_size;
1808 
1809 			break;
1810 		}
1811 	}
1812 }
1813 
1814 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1815 			      enum teecore_memtypes memtype)
1816 {
1817 	TEE_Result ret;
1818 	struct core_mmu_table_info tbl_info;
1819 	struct tee_mmap_region *mm;
1820 	unsigned int idx;
1821 	uint32_t old_attr;
1822 	uint32_t exceptions;
1823 	vaddr_t vaddr = vstart;
1824 	size_t i;
1825 	bool secure;
1826 
1827 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1828 
1829 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1830 
1831 	if (vaddr & SMALL_PAGE_MASK)
1832 		return TEE_ERROR_BAD_PARAMETERS;
1833 
1834 	exceptions = mmu_lock();
1835 
1836 	mm = find_map_by_va((void *)vaddr);
1837 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1838 		panic("VA does not belong to any known mm region");
1839 
1840 	if (!core_mmu_is_dynamic_vaspace(mm))
1841 		panic("Trying to map into static region");
1842 
1843 	for (i = 0; i < num_pages; i++) {
1844 		if (pages[i] & SMALL_PAGE_MASK) {
1845 			ret = TEE_ERROR_BAD_PARAMETERS;
1846 			goto err;
1847 		}
1848 
1849 		while (true) {
1850 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1851 						 &tbl_info))
1852 				panic("Can't find pagetable for vaddr ");
1853 
1854 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1855 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1856 				break;
1857 
1858 			/* This is supertable. Need to divide it. */
1859 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1860 							     secure))
1861 				panic("Failed to spread pgdir on small tables");
1862 		}
1863 
1864 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1865 		if (old_attr)
1866 			panic("Page is already mapped");
1867 
1868 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1869 				   core_mmu_type_to_attr(memtype));
1870 		vaddr += SMALL_PAGE_SIZE;
1871 	}
1872 
1873 	/*
1874 	 * Make sure all the changes to translation tables are visible
1875 	 * before returning. TLB doesn't need to be invalidated as we are
1876 	 * guaranteed that there's no valid mapping in this range.
1877 	 */
1878 	core_mmu_table_write_barrier();
1879 	mmu_unlock(exceptions);
1880 
1881 	return TEE_SUCCESS;
1882 err:
1883 	mmu_unlock(exceptions);
1884 
1885 	if (i)
1886 		core_mmu_unmap_pages(vstart, i);
1887 
1888 	return ret;
1889 }
1890 
1891 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
1892 					 size_t num_pages,
1893 					 enum teecore_memtypes memtype)
1894 {
1895 	struct core_mmu_table_info tbl_info = { };
1896 	struct tee_mmap_region *mm = NULL;
1897 	unsigned int idx = 0;
1898 	uint32_t old_attr = 0;
1899 	uint32_t exceptions = 0;
1900 	vaddr_t vaddr = vstart;
1901 	paddr_t paddr = pstart;
1902 	size_t i = 0;
1903 	bool secure = false;
1904 
1905 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1906 
1907 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1908 
1909 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
1910 		return TEE_ERROR_BAD_PARAMETERS;
1911 
1912 	exceptions = mmu_lock();
1913 
1914 	mm = find_map_by_va((void *)vaddr);
1915 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1916 		panic("VA does not belong to any known mm region");
1917 
1918 	if (!core_mmu_is_dynamic_vaspace(mm))
1919 		panic("Trying to map into static region");
1920 
1921 	for (i = 0; i < num_pages; i++) {
1922 		while (true) {
1923 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1924 						 &tbl_info))
1925 				panic("Can't find pagetable for vaddr ");
1926 
1927 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1928 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1929 				break;
1930 
1931 			/* This is supertable. Need to divide it. */
1932 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1933 							     secure))
1934 				panic("Failed to spread pgdir on small tables");
1935 		}
1936 
1937 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1938 		if (old_attr)
1939 			panic("Page is already mapped");
1940 
1941 		core_mmu_set_entry(&tbl_info, idx, paddr,
1942 				   core_mmu_type_to_attr(memtype));
1943 		paddr += SMALL_PAGE_SIZE;
1944 		vaddr += SMALL_PAGE_SIZE;
1945 	}
1946 
1947 	/*
1948 	 * Make sure all the changes to translation tables are visible
1949 	 * before returning. TLB doesn't need to be invalidated as we are
1950 	 * guaranteed that there's no valid mapping in this range.
1951 	 */
1952 	core_mmu_table_write_barrier();
1953 	mmu_unlock(exceptions);
1954 
1955 	return TEE_SUCCESS;
1956 }
1957 
1958 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
1959 {
1960 	struct core_mmu_table_info tbl_info;
1961 	struct tee_mmap_region *mm;
1962 	size_t i;
1963 	unsigned int idx;
1964 	uint32_t exceptions;
1965 
1966 	exceptions = mmu_lock();
1967 
1968 	mm = find_map_by_va((void *)vstart);
1969 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
1970 		panic("VA does not belong to any known mm region");
1971 
1972 	if (!core_mmu_is_dynamic_vaspace(mm))
1973 		panic("Trying to unmap static region");
1974 
1975 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
1976 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
1977 			panic("Can't find pagetable");
1978 
1979 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
1980 			panic("Invalid pagetable level");
1981 
1982 		idx = core_mmu_va2idx(&tbl_info, vstart);
1983 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
1984 	}
1985 	tlbi_all();
1986 
1987 	mmu_unlock(exceptions);
1988 }
1989 
1990 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
1991 				struct user_mode_ctx *uctx)
1992 {
1993 	struct core_mmu_table_info pg_info = { };
1994 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
1995 	struct pgt *pgt = NULL;
1996 	struct pgt *p = NULL;
1997 	struct vm_region *r = NULL;
1998 
1999 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
2000 		return; /* Nothing to map */
2001 
2002 	/*
2003 	 * Allocate all page tables in advance.
2004 	 */
2005 	pgt_get_all(uctx);
2006 	pgt = SLIST_FIRST(pgt_cache);
2007 
2008 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2009 
2010 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2011 		set_pg_region(dir_info, r, &pgt, &pg_info);
2012 	/* Record that the translation tables now are populated. */
2013 	SLIST_FOREACH(p, pgt_cache, link) {
2014 		p->populated = true;
2015 		if (p == pgt)
2016 			break;
2017 	}
2018 	assert(p == pgt);
2019 }
2020 
2021 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2022 				   size_t len)
2023 {
2024 	struct core_mmu_table_info tbl_info = { };
2025 	struct tee_mmap_region *res_map = NULL;
2026 	struct tee_mmap_region *map = NULL;
2027 	paddr_t pa = virt_to_phys(addr);
2028 	size_t granule = 0;
2029 	ptrdiff_t i = 0;
2030 	paddr_t p = 0;
2031 	size_t l = 0;
2032 
2033 	map = find_map_by_type_and_pa(type, pa, len);
2034 	if (!map)
2035 		return TEE_ERROR_GENERIC;
2036 
2037 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2038 	if (!res_map)
2039 		return TEE_ERROR_GENERIC;
2040 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2041 		return TEE_ERROR_GENERIC;
2042 	granule = BIT(tbl_info.shift);
2043 
2044 	if (map < static_memory_map ||
2045 	    map >= static_memory_map + ARRAY_SIZE(static_memory_map))
2046 		return TEE_ERROR_GENERIC;
2047 	i = map - static_memory_map;
2048 
2049 	/* Check that we have a full match */
2050 	p = ROUNDDOWN(pa, granule);
2051 	l = ROUNDUP(len + pa - p, granule);
2052 	if (map->pa != p || map->size != l)
2053 		return TEE_ERROR_GENERIC;
2054 
2055 	clear_region(&tbl_info, map);
2056 	tlbi_all();
2057 
2058 	/* If possible remove the va range from res_map */
2059 	if (res_map->va - map->size == map->va) {
2060 		res_map->va -= map->size;
2061 		res_map->size += map->size;
2062 	}
2063 
2064 	/* Remove the entry. */
2065 	memmove(map, map + 1,
2066 		(ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map));
2067 
2068 	/* Clear the last new entry in case it was used */
2069 	memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1,
2070 	       0, sizeof(*map));
2071 
2072 	return TEE_SUCCESS;
2073 }
2074 
2075 struct tee_mmap_region *
2076 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2077 {
2078 	struct tee_mmap_region *map = NULL;
2079 	struct tee_mmap_region *map_found = NULL;
2080 
2081 	if (!len)
2082 		return NULL;
2083 
2084 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
2085 		if (map->type != type)
2086 			continue;
2087 
2088 		if (map_found)
2089 			return NULL;
2090 
2091 		map_found = map;
2092 	}
2093 
2094 	if (!map_found || map_found->size < len)
2095 		return NULL;
2096 
2097 	return map_found;
2098 }
2099 
2100 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2101 {
2102 	struct core_mmu_table_info tbl_info;
2103 	struct tee_mmap_region *map;
2104 	size_t n;
2105 	size_t granule;
2106 	paddr_t p;
2107 	size_t l;
2108 
2109 	if (!len)
2110 		return NULL;
2111 
2112 	if (!core_mmu_check_end_pa(addr, len))
2113 		return NULL;
2114 
2115 	/* Check if the memory is already mapped */
2116 	map = find_map_by_type_and_pa(type, addr, len);
2117 	if (map && pbuf_inside_map_area(addr, len, map))
2118 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2119 
2120 	/* Find the reserved va space used for late mappings */
2121 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2122 	if (!map)
2123 		return NULL;
2124 
2125 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2126 		return NULL;
2127 
2128 	granule = BIT64(tbl_info.shift);
2129 	p = ROUNDDOWN(addr, granule);
2130 	l = ROUNDUP(len + addr - p, granule);
2131 
2132 	/* Ban overflowing virtual addresses */
2133 	if (map->size < l)
2134 		return NULL;
2135 
2136 	/*
2137 	 * Something is wrong, we can't fit the va range into the selected
2138 	 * table. The reserved va range is possibly missaligned with
2139 	 * granule.
2140 	 */
2141 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2142 		return NULL;
2143 
2144 	/* Find end of the memory map */
2145 	n = 0;
2146 	while (!core_mmap_is_end_of_table(static_memory_map + n))
2147 		n++;
2148 
2149 	if (n < (ARRAY_SIZE(static_memory_map) - 1)) {
2150 		/* There's room for another entry */
2151 		static_memory_map[n].va = map->va;
2152 		static_memory_map[n].size = l;
2153 		static_memory_map[n + 1].type = MEM_AREA_END;
2154 		map->va += l;
2155 		map->size -= l;
2156 		map = static_memory_map + n;
2157 	} else {
2158 		/*
2159 		 * There isn't room for another entry, steal the reserved
2160 		 * entry as it's not useful for anything else any longer.
2161 		 */
2162 		map->size = l;
2163 	}
2164 	map->type = type;
2165 	map->region_size = granule;
2166 	map->attr = core_mmu_type_to_attr(type);
2167 	map->pa = p;
2168 
2169 	set_region(&tbl_info, map);
2170 
2171 	/* Make sure the new entry is visible before continuing. */
2172 	core_mmu_table_write_barrier();
2173 
2174 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2175 }
2176 
2177 #ifdef CFG_WITH_PAGER
2178 static vaddr_t get_linear_map_end_va(void)
2179 {
2180 	/* this is synced with the generic linker file kern.ld.S */
2181 	return (vaddr_t)__heap2_end;
2182 }
2183 
2184 static paddr_t get_linear_map_end_pa(void)
2185 {
2186 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2187 }
2188 #endif
2189 
2190 #if defined(CFG_TEE_CORE_DEBUG)
2191 static void check_pa_matches_va(void *va, paddr_t pa)
2192 {
2193 	TEE_Result res = TEE_ERROR_GENERIC;
2194 	vaddr_t v = (vaddr_t)va;
2195 	paddr_t p = 0;
2196 	struct core_mmu_table_info ti __maybe_unused = { };
2197 
2198 	if (core_mmu_user_va_range_is_defined()) {
2199 		vaddr_t user_va_base = 0;
2200 		size_t user_va_size = 0;
2201 
2202 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2203 		if (v >= user_va_base &&
2204 		    v <= (user_va_base - 1 + user_va_size)) {
2205 			if (!core_mmu_user_mapping_is_active()) {
2206 				if (pa)
2207 					panic("issue in linear address space");
2208 				return;
2209 			}
2210 
2211 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2212 				       va, &p);
2213 			if (res == TEE_ERROR_NOT_SUPPORTED)
2214 				return;
2215 			if (res == TEE_SUCCESS && pa != p)
2216 				panic("bad pa");
2217 			if (res != TEE_SUCCESS && pa)
2218 				panic("false pa");
2219 			return;
2220 		}
2221 	}
2222 #ifdef CFG_WITH_PAGER
2223 	if (is_unpaged(va)) {
2224 		if (v - boot_mmu_config.map_offset != pa)
2225 			panic("issue in linear address space");
2226 		return;
2227 	}
2228 
2229 	if (tee_pager_get_table_info(v, &ti)) {
2230 		uint32_t a;
2231 
2232 		/*
2233 		 * Lookups in the page table managed by the pager is
2234 		 * dangerous for addresses in the paged area as those pages
2235 		 * changes all the time. But some ranges are safe,
2236 		 * rw-locked areas when the page is populated for instance.
2237 		 */
2238 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2239 		if (a & TEE_MATTR_VALID_BLOCK) {
2240 			paddr_t mask = BIT64(ti.shift) - 1;
2241 
2242 			p |= v & mask;
2243 			if (pa != p)
2244 				panic();
2245 		} else {
2246 			if (pa)
2247 				panic();
2248 		}
2249 		return;
2250 	}
2251 #endif
2252 
2253 	if (!core_va2pa_helper(va, &p)) {
2254 		/* Verfiy only the static mapping (case non null phys addr) */
2255 		if (p && pa != p) {
2256 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2257 			     va, p, pa);
2258 			panic();
2259 		}
2260 	} else {
2261 		if (pa) {
2262 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2263 			panic();
2264 		}
2265 	}
2266 }
2267 #else
2268 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2269 {
2270 }
2271 #endif
2272 
2273 paddr_t virt_to_phys(void *va)
2274 {
2275 	paddr_t pa = 0;
2276 
2277 	if (!arch_va2pa_helper(va, &pa))
2278 		pa = 0;
2279 	check_pa_matches_va(va, pa);
2280 	return pa;
2281 }
2282 
2283 #if defined(CFG_TEE_CORE_DEBUG)
2284 static void check_va_matches_pa(paddr_t pa, void *va)
2285 {
2286 	paddr_t p = 0;
2287 
2288 	if (!va)
2289 		return;
2290 
2291 	p = virt_to_phys(va);
2292 	if (p != pa) {
2293 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2294 		panic();
2295 	}
2296 }
2297 #else
2298 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2299 {
2300 }
2301 #endif
2302 
2303 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2304 {
2305 	if (!core_mmu_user_mapping_is_active())
2306 		return NULL;
2307 
2308 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2309 }
2310 
2311 #ifdef CFG_WITH_PAGER
2312 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2313 {
2314 	paddr_t end_pa = 0;
2315 
2316 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2317 		return NULL;
2318 
2319 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2320 		if (end_pa > get_linear_map_end_pa())
2321 			return NULL;
2322 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2323 	}
2324 
2325 	return tee_pager_phys_to_virt(pa, len);
2326 }
2327 #else
2328 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2329 {
2330 	struct tee_mmap_region *mmap = NULL;
2331 
2332 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2333 	if (!mmap)
2334 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2335 	if (!mmap)
2336 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2337 	if (!mmap)
2338 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2339 	if (!mmap)
2340 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2341 	if (!mmap)
2342 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2343 	/*
2344 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2345 	 * used with pager and not needed here.
2346 	 */
2347 	return map_pa2va(mmap, pa, len);
2348 }
2349 #endif
2350 
2351 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2352 {
2353 	void *va = NULL;
2354 
2355 	switch (m) {
2356 	case MEM_AREA_TS_VASPACE:
2357 		va = phys_to_virt_ts_vaspace(pa, len);
2358 		break;
2359 	case MEM_AREA_TEE_RAM:
2360 	case MEM_AREA_TEE_RAM_RX:
2361 	case MEM_AREA_TEE_RAM_RO:
2362 	case MEM_AREA_TEE_RAM_RW:
2363 	case MEM_AREA_NEX_RAM_RO:
2364 	case MEM_AREA_NEX_RAM_RW:
2365 		va = phys_to_virt_tee_ram(pa, len);
2366 		break;
2367 	case MEM_AREA_SHM_VASPACE:
2368 		/* Find VA from PA in dynamic SHM is not yet supported */
2369 		va = NULL;
2370 		break;
2371 	default:
2372 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2373 	}
2374 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2375 		check_va_matches_pa(pa, va);
2376 	return va;
2377 }
2378 
2379 void *phys_to_virt_io(paddr_t pa, size_t len)
2380 {
2381 	struct tee_mmap_region *map = NULL;
2382 	void *va = NULL;
2383 
2384 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2385 	if (!map)
2386 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2387 	if (!map)
2388 		return NULL;
2389 	va = map_pa2va(map, pa, len);
2390 	check_va_matches_pa(pa, va);
2391 	return va;
2392 }
2393 
2394 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2395 {
2396 	if (cpu_mmu_enabled())
2397 		return (vaddr_t)phys_to_virt(pa, type, len);
2398 
2399 	return (vaddr_t)pa;
2400 }
2401 
2402 #ifdef CFG_WITH_PAGER
2403 bool is_unpaged(void *va)
2404 {
2405 	vaddr_t v = (vaddr_t)va;
2406 
2407 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2408 }
2409 #else
2410 bool is_unpaged(void *va __unused)
2411 {
2412 	return true;
2413 }
2414 #endif
2415 
2416 void core_mmu_init_virtualization(void)
2417 {
2418 	paddr_t b1 = 0;
2419 	paddr_size_t s1 = 0;
2420 
2421 	static_assert(ARRAY_SIZE(secure_only) <= 2);
2422 	if (ARRAY_SIZE(secure_only) == 2) {
2423 		b1 = secure_only[1].paddr;
2424 		s1 = secure_only[1].size;
2425 	}
2426 	virt_init_memory(static_memory_map, secure_only[0].paddr,
2427 			 secure_only[0].size, b1, s1);
2428 }
2429 
2430 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2431 {
2432 	assert(p->pa);
2433 	if (cpu_mmu_enabled()) {
2434 		if (!p->va)
2435 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2436 		assert(p->va);
2437 		return p->va;
2438 	}
2439 	return p->pa;
2440 }
2441 
2442 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2443 {
2444 	assert(p->pa);
2445 	if (cpu_mmu_enabled()) {
2446 		if (!p->va)
2447 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2448 						      len);
2449 		assert(p->va);
2450 		return p->va;
2451 	}
2452 	return p->pa;
2453 }
2454 
2455 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2456 {
2457 	assert(p->pa);
2458 	if (cpu_mmu_enabled()) {
2459 		if (!p->va)
2460 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2461 						      len);
2462 		assert(p->va);
2463 		return p->va;
2464 	}
2465 	return p->pa;
2466 }
2467 
2468 #ifdef CFG_CORE_RESERVED_SHM
2469 static TEE_Result teecore_init_pub_ram(void)
2470 {
2471 	vaddr_t s = 0;
2472 	vaddr_t e = 0;
2473 
2474 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2475 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2476 
2477 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2478 		panic("invalid PUB RAM");
2479 
2480 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2481 	if (!tee_vbuf_is_non_sec(s, e - s))
2482 		panic("PUB RAM is not non-secure");
2483 
2484 #ifdef CFG_PL310
2485 	/* Allocate statically the l2cc mutex */
2486 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2487 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2488 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2489 #endif
2490 
2491 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2492 	default_nsec_shm_size = e - s;
2493 
2494 	return TEE_SUCCESS;
2495 }
2496 early_init(teecore_init_pub_ram);
2497 #endif /*CFG_CORE_RESERVED_SHM*/
2498 
2499 void core_mmu_init_ta_ram(void)
2500 {
2501 	vaddr_t s = 0;
2502 	vaddr_t e = 0;
2503 	paddr_t ps = 0;
2504 	size_t size = 0;
2505 
2506 	/*
2507 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2508 	 * shared mem allocated from teecore.
2509 	 */
2510 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
2511 		virt_get_ta_ram(&s, &e);
2512 	else
2513 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2514 
2515 	ps = virt_to_phys((void *)s);
2516 	size = e - s;
2517 
2518 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2519 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2520 		panic("invalid TA RAM");
2521 
2522 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2523 	if (!tee_pbuf_is_sec(ps, size))
2524 		panic("TA RAM is not secure");
2525 
2526 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2527 		panic("TA RAM pool is not empty");
2528 
2529 	/* remove previous config and init TA ddr memory pool */
2530 	tee_mm_final(&tee_mm_sec_ddr);
2531 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2532 		    TEE_MM_POOL_NO_FLAGS);
2533 }
2534