1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016, 2022 Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved. 6 */ 7 8 #include <assert.h> 9 #include <config.h> 10 #include <kernel/boot.h> 11 #include <kernel/dt.h> 12 #include <kernel/linker.h> 13 #include <kernel/panic.h> 14 #include <kernel/spinlock.h> 15 #include <kernel/tee_l2cc_mutex.h> 16 #include <kernel/tee_misc.h> 17 #include <kernel/tlb_helpers.h> 18 #include <kernel/user_mode_ctx.h> 19 #include <kernel/virtualization.h> 20 #include <libfdt.h> 21 #include <mm/core_memprot.h> 22 #include <mm/core_mmu.h> 23 #include <mm/mobj.h> 24 #include <mm/pgt_cache.h> 25 #include <mm/tee_pager.h> 26 #include <mm/vm.h> 27 #include <platform_config.h> 28 #include <string.h> 29 #include <trace.h> 30 #include <util.h> 31 32 #ifndef DEBUG_XLAT_TABLE 33 #define DEBUG_XLAT_TABLE 0 34 #endif 35 36 #define SHM_VASPACE_SIZE (1024 * 1024 * 32) 37 38 #ifdef CFG_CORE_PHYS_RELOCATABLE 39 unsigned long core_mmu_tee_load_pa __nex_bss; 40 #else 41 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR; 42 #endif 43 44 /* 45 * These variables are initialized before .bss is cleared. To avoid 46 * resetting them when .bss is cleared we're storing them in .data instead, 47 * even if they initially are zero. 48 */ 49 50 #ifdef CFG_CORE_RESERVED_SHM 51 /* Default NSec shared memory allocated from NSec world */ 52 unsigned long default_nsec_shm_size __nex_bss; 53 unsigned long default_nsec_shm_paddr __nex_bss; 54 #endif 55 56 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS 57 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE) 58 + 1 59 #endif 60 + 1] __nex_bss; 61 62 /* Define the platform's memory layout. */ 63 struct memaccess_area { 64 paddr_t paddr; 65 size_t size; 66 }; 67 68 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } 69 70 static struct memaccess_area secure_only[] __nex_data = { 71 #ifdef CFG_CORE_PHYS_RELOCATABLE 72 MEMACCESS_AREA(0, 0), 73 #else 74 #ifdef TRUSTED_SRAM_BASE 75 MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), 76 #endif 77 MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), 78 #endif 79 }; 80 81 static struct memaccess_area nsec_shared[] __nex_data = { 82 #ifdef CFG_CORE_RESERVED_SHM 83 MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), 84 #endif 85 }; 86 87 #if defined(CFG_SECURE_DATA_PATH) 88 static const char *tz_sdp_match = "linaro,secure-heap"; 89 static struct memaccess_area sec_sdp; 90 #ifdef CFG_TEE_SDP_MEM_BASE 91 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); 92 #endif 93 #ifdef TEE_SDP_TEST_MEM_BASE 94 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); 95 #endif 96 #endif 97 98 #ifdef CFG_CORE_RESERVED_SHM 99 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); 100 #endif 101 static unsigned int mmu_spinlock; 102 103 static uint32_t mmu_lock(void) 104 { 105 return cpu_spin_lock_xsave(&mmu_spinlock); 106 } 107 108 static void mmu_unlock(uint32_t exceptions) 109 { 110 cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); 111 } 112 113 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size) 114 { 115 /* 116 * The first range is always used to cover OP-TEE core memory, but 117 * depending on configuration it may cover more than that. 118 */ 119 *base = secure_only[0].paddr; 120 *size = secure_only[0].size; 121 } 122 123 void core_mmu_set_secure_memory(paddr_t base, size_t size) 124 { 125 #ifdef CFG_CORE_PHYS_RELOCATABLE 126 static_assert(ARRAY_SIZE(secure_only) == 1); 127 #endif 128 runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)); 129 assert(!secure_only[0].size); 130 assert(base && size); 131 132 DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size); 133 secure_only[0].paddr = base; 134 secure_only[0].size = size; 135 } 136 137 void core_mmu_get_ta_range(paddr_t *base, size_t *size) 138 { 139 paddr_t b = 0; 140 size_t s = 0; 141 142 static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE)); 143 #ifdef TA_RAM_START 144 b = TA_RAM_START; 145 s = TA_RAM_SIZE; 146 #else 147 static_assert(ARRAY_SIZE(secure_only) <= 2); 148 if (ARRAY_SIZE(secure_only) == 1) { 149 vaddr_t load_offs = 0; 150 151 assert(core_mmu_tee_load_pa >= secure_only[0].paddr); 152 load_offs = core_mmu_tee_load_pa - secure_only[0].paddr; 153 154 assert(secure_only[0].size > 155 load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE); 156 b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE; 157 s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE - 158 TEE_SDP_TEST_MEM_SIZE; 159 } else { 160 assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE); 161 b = secure_only[1].paddr; 162 s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE; 163 } 164 #endif 165 if (base) 166 *base = b; 167 if (size) 168 *size = s; 169 } 170 171 static struct tee_mmap_region *get_memory_map(void) 172 { 173 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 174 struct tee_mmap_region *map = virt_get_memory_map(); 175 176 if (map) 177 return map; 178 } 179 180 return static_memory_map; 181 } 182 183 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, 184 paddr_t pa, size_t size) 185 { 186 size_t n; 187 188 for (n = 0; n < alen; n++) 189 if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) 190 return true; 191 return false; 192 } 193 194 #define pbuf_intersects(a, pa, size) \ 195 _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) 196 197 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, 198 paddr_t pa, size_t size) 199 { 200 size_t n; 201 202 for (n = 0; n < alen; n++) 203 if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) 204 return true; 205 return false; 206 } 207 208 #define pbuf_is_inside(a, pa, size) \ 209 _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) 210 211 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) 212 { 213 paddr_t end_pa = 0; 214 215 if (!map) 216 return false; 217 218 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 219 return false; 220 221 return (pa >= map->pa && end_pa <= map->pa + map->size - 1); 222 } 223 224 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) 225 { 226 if (!map) 227 return false; 228 return (va >= map->va && va <= (map->va + map->size - 1)); 229 } 230 231 /* check if target buffer fits in a core default map area */ 232 static bool pbuf_inside_map_area(unsigned long p, size_t l, 233 struct tee_mmap_region *map) 234 { 235 return core_is_buffer_inside(p, l, map->pa, map->size); 236 } 237 238 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) 239 { 240 struct tee_mmap_region *map; 241 242 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) 243 if (map->type == type) 244 return map; 245 return NULL; 246 } 247 248 static struct tee_mmap_region * 249 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) 250 { 251 struct tee_mmap_region *map; 252 253 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 254 if (map->type != type) 255 continue; 256 if (pa_is_in_map(map, pa, len)) 257 return map; 258 } 259 return NULL; 260 } 261 262 static struct tee_mmap_region *find_map_by_va(void *va) 263 { 264 struct tee_mmap_region *map = get_memory_map(); 265 unsigned long a = (unsigned long)va; 266 267 while (!core_mmap_is_end_of_table(map)) { 268 if (a >= map->va && a <= (map->va - 1 + map->size)) 269 return map; 270 map++; 271 } 272 return NULL; 273 } 274 275 static struct tee_mmap_region *find_map_by_pa(unsigned long pa) 276 { 277 struct tee_mmap_region *map = get_memory_map(); 278 279 while (!core_mmap_is_end_of_table(map)) { 280 if (pa >= map->pa && pa <= (map->pa + map->size - 1)) 281 return map; 282 map++; 283 } 284 return NULL; 285 } 286 287 #if defined(CFG_SECURE_DATA_PATH) 288 static bool dtb_get_sdp_region(void) 289 { 290 void *fdt = NULL; 291 int node = 0; 292 int tmp_node = 0; 293 paddr_t tmp_addr = 0; 294 size_t tmp_size = 0; 295 296 if (!IS_ENABLED(CFG_EMBED_DTB)) 297 return false; 298 299 fdt = get_embedded_dt(); 300 if (!fdt) 301 panic("No DTB found"); 302 303 node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match); 304 if (node < 0) { 305 DMSG("No %s compatible node found", tz_sdp_match); 306 return false; 307 } 308 tmp_node = node; 309 while (tmp_node >= 0) { 310 tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node, 311 tz_sdp_match); 312 if (tmp_node >= 0) 313 DMSG("Ignore SDP pool node %s, supports only 1 node", 314 fdt_get_name(fdt, tmp_node, NULL)); 315 } 316 317 tmp_addr = fdt_reg_base_address(fdt, node); 318 if (tmp_addr == DT_INFO_INVALID_REG) { 319 EMSG("%s: Unable to get base addr from DT", tz_sdp_match); 320 return false; 321 } 322 323 tmp_size = fdt_reg_size(fdt, node); 324 if (tmp_size == DT_INFO_INVALID_REG_SIZE) { 325 EMSG("%s: Unable to get size of base addr from DT", 326 tz_sdp_match); 327 return false; 328 } 329 330 sec_sdp.paddr = tmp_addr; 331 sec_sdp.size = tmp_size; 332 333 return true; 334 } 335 #endif 336 337 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) 338 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, 339 const struct core_mmu_phys_mem *start, 340 const struct core_mmu_phys_mem *end) 341 { 342 const struct core_mmu_phys_mem *mem; 343 344 for (mem = start; mem < end; mem++) { 345 if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) 346 return true; 347 } 348 349 return false; 350 } 351 #endif 352 353 #ifdef CFG_CORE_DYN_SHM 354 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, 355 paddr_t pa, size_t size) 356 { 357 struct core_mmu_phys_mem *m = *mem; 358 size_t n = 0; 359 360 while (true) { 361 if (n >= *nelems) { 362 DMSG("No need to carve out %#" PRIxPA " size %#zx", 363 pa, size); 364 return; 365 } 366 if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size)) 367 break; 368 if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size)) 369 panic(); 370 n++; 371 } 372 373 if (pa == m[n].addr && size == m[n].size) { 374 /* Remove this entry */ 375 (*nelems)--; 376 memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n)); 377 m = nex_realloc(m, sizeof(*m) * *nelems); 378 if (!m) 379 panic(); 380 *mem = m; 381 } else if (pa == m[n].addr) { 382 m[n].addr += size; 383 m[n].size -= size; 384 } else if ((pa + size) == (m[n].addr + m[n].size)) { 385 m[n].size -= size; 386 } else { 387 /* Need to split the memory entry */ 388 m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); 389 if (!m) 390 panic(); 391 *mem = m; 392 memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n)); 393 (*nelems)++; 394 m[n].size = pa - m[n].addr; 395 m[n + 1].size -= size + m[n].size; 396 m[n + 1].addr = pa + size; 397 } 398 } 399 400 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, 401 size_t nelems, 402 struct tee_mmap_region *map) 403 { 404 size_t n; 405 406 for (n = 0; n < nelems; n++) { 407 if (!core_is_buffer_outside(start[n].addr, start[n].size, 408 map->pa, map->size)) { 409 EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ 410 ") overlaps map (type %d %#" PRIxPA ":%#zx)", 411 start[n].addr, start[n].size, 412 map->type, map->pa, map->size); 413 panic(); 414 } 415 } 416 } 417 418 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; 419 static size_t discovered_nsec_ddr_nelems __nex_bss; 420 421 static int cmp_pmem_by_addr(const void *a, const void *b) 422 { 423 const struct core_mmu_phys_mem *pmem_a = a; 424 const struct core_mmu_phys_mem *pmem_b = b; 425 426 return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); 427 } 428 429 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 430 size_t nelems) 431 { 432 struct core_mmu_phys_mem *m = start; 433 size_t num_elems = nelems; 434 struct tee_mmap_region *map = static_memory_map; 435 const struct core_mmu_phys_mem __maybe_unused *pmem; 436 size_t n = 0; 437 438 assert(!discovered_nsec_ddr_start); 439 assert(m && num_elems); 440 441 qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); 442 443 /* 444 * Non-secure shared memory and also secure data 445 * path memory are supposed to reside inside 446 * non-secure memory. Since NSEC_SHM and SDP_MEM 447 * are used for a specific purpose make holes for 448 * those memory in the normal non-secure memory. 449 * 450 * This has to be done since for instance QEMU 451 * isn't aware of which memory range in the 452 * non-secure memory is used for NSEC_SHM. 453 */ 454 455 #ifdef CFG_SECURE_DATA_PATH 456 if (dtb_get_sdp_region()) 457 carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size); 458 459 for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) 460 carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); 461 #endif 462 463 for (n = 0; n < ARRAY_SIZE(secure_only); n++) 464 carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr, 465 secure_only[n].size); 466 467 for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) { 468 switch (map->type) { 469 case MEM_AREA_NSEC_SHM: 470 carve_out_phys_mem(&m, &num_elems, map->pa, map->size); 471 break; 472 case MEM_AREA_EXT_DT: 473 case MEM_AREA_MANIFEST_DT: 474 case MEM_AREA_RES_VASPACE: 475 case MEM_AREA_SHM_VASPACE: 476 case MEM_AREA_TS_VASPACE: 477 case MEM_AREA_PAGER_VASPACE: 478 break; 479 default: 480 check_phys_mem_is_outside(m, num_elems, map); 481 } 482 } 483 484 discovered_nsec_ddr_start = m; 485 discovered_nsec_ddr_nelems = num_elems; 486 487 if (!core_mmu_check_end_pa(m[num_elems - 1].addr, 488 m[num_elems - 1].size)) 489 panic(); 490 } 491 492 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, 493 const struct core_mmu_phys_mem **end) 494 { 495 if (!discovered_nsec_ddr_start) 496 return false; 497 498 *start = discovered_nsec_ddr_start; 499 *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; 500 501 return true; 502 } 503 504 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) 505 { 506 const struct core_mmu_phys_mem *start; 507 const struct core_mmu_phys_mem *end; 508 509 if (!get_discovered_nsec_ddr(&start, &end)) 510 return false; 511 512 return pbuf_is_special_mem(pbuf, len, start, end); 513 } 514 515 bool core_mmu_nsec_ddr_is_defined(void) 516 { 517 const struct core_mmu_phys_mem *start; 518 const struct core_mmu_phys_mem *end; 519 520 if (!get_discovered_nsec_ddr(&start, &end)) 521 return false; 522 523 return start != end; 524 } 525 #else 526 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) 527 { 528 return false; 529 } 530 #endif /*CFG_CORE_DYN_SHM*/ 531 532 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ 533 EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ 534 pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) 535 536 #ifdef CFG_SECURE_DATA_PATH 537 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) 538 { 539 bool is_sdp_mem = false; 540 541 if (sec_sdp.size) 542 is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr, 543 sec_sdp.size); 544 545 if (!is_sdp_mem) 546 is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, 547 phys_sdp_mem_end); 548 549 return is_sdp_mem; 550 } 551 552 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size) 553 { 554 struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED, 555 CORE_MEM_SDP_MEM); 556 557 if (!mobj) 558 panic("can't create SDP physical memory object"); 559 560 return mobj; 561 } 562 563 struct mobj **core_sdp_mem_create_mobjs(void) 564 { 565 const struct core_mmu_phys_mem *mem = NULL; 566 struct mobj **mobj_base = NULL; 567 struct mobj **mobj = NULL; 568 int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; 569 570 if (sec_sdp.size) 571 cnt++; 572 573 /* SDP mobjs table must end with a NULL entry */ 574 mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); 575 if (!mobj_base) 576 panic("Out of memory"); 577 578 mobj = mobj_base; 579 580 for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++) 581 *mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size); 582 583 if (sec_sdp.size) 584 *mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size); 585 586 return mobj_base; 587 } 588 589 #else /* CFG_SECURE_DATA_PATH */ 590 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) 591 { 592 return false; 593 } 594 595 #endif /* CFG_SECURE_DATA_PATH */ 596 597 /* Check special memories comply with registered memories */ 598 static void verify_special_mem_areas(struct tee_mmap_region *mem_map, 599 size_t len, 600 const struct core_mmu_phys_mem *start, 601 const struct core_mmu_phys_mem *end, 602 const char *area_name __maybe_unused) 603 { 604 const struct core_mmu_phys_mem *mem; 605 const struct core_mmu_phys_mem *mem2; 606 struct tee_mmap_region *mmap; 607 size_t n; 608 609 if (start == end) { 610 DMSG("No %s memory area defined", area_name); 611 return; 612 } 613 614 for (mem = start; mem < end; mem++) 615 DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", 616 area_name, mem->addr, (uint64_t)mem->addr + mem->size); 617 618 /* Check memories do not intersect each other */ 619 for (mem = start; mem + 1 < end; mem++) { 620 for (mem2 = mem + 1; mem2 < end; mem2++) { 621 if (core_is_buffer_intersect(mem2->addr, mem2->size, 622 mem->addr, mem->size)) { 623 MSG_MEM_INSTERSECT(mem2->addr, mem2->size, 624 mem->addr, mem->size); 625 panic("Special memory intersection"); 626 } 627 } 628 } 629 630 /* 631 * Check memories do not intersect any mapped memory. 632 * This is called before reserved VA space is loaded in mem_map. 633 */ 634 for (mem = start; mem < end; mem++) { 635 for (mmap = mem_map, n = 0; n < len; mmap++, n++) { 636 if (core_is_buffer_intersect(mem->addr, mem->size, 637 mmap->pa, mmap->size)) { 638 MSG_MEM_INSTERSECT(mem->addr, mem->size, 639 mmap->pa, mmap->size); 640 panic("Special memory intersection"); 641 } 642 } 643 } 644 } 645 646 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems, 647 const char *mem_name __maybe_unused, 648 enum teecore_memtypes mem_type, 649 paddr_t mem_addr, paddr_size_t mem_size, size_t *last) 650 { 651 size_t n = 0; 652 paddr_t pa; 653 paddr_size_t size; 654 655 if (!mem_size) /* Discard null size entries */ 656 return; 657 /* 658 * If some ranges of memory of the same type do overlap 659 * each others they are coalesced into one entry. To help this 660 * added entries are sorted by increasing physical. 661 * 662 * Note that it's valid to have the same physical memory as several 663 * different memory types, for instance the same device memory 664 * mapped as both secure and non-secure. This will probably not 665 * happen often in practice. 666 */ 667 DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, 668 mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size); 669 while (true) { 670 if (n >= (num_elems - 1)) { 671 EMSG("Out of entries (%zu) in memory_map", num_elems); 672 panic(); 673 } 674 if (n == *last) 675 break; 676 pa = memory_map[n].pa; 677 size = memory_map[n].size; 678 if (mem_type == memory_map[n].type && 679 ((pa <= (mem_addr + (mem_size - 1))) && 680 (mem_addr <= (pa + (size - 1))))) { 681 DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr); 682 memory_map[n].pa = MIN(pa, mem_addr); 683 memory_map[n].size = MAX(size, mem_size) + 684 (pa - memory_map[n].pa); 685 return; 686 } 687 if (mem_type < memory_map[n].type || 688 (mem_type == memory_map[n].type && mem_addr < pa)) 689 break; /* found the spot where to insert this memory */ 690 n++; 691 } 692 693 memmove(memory_map + n + 1, memory_map + n, 694 sizeof(struct tee_mmap_region) * (*last - n)); 695 (*last)++; 696 memset(memory_map + n, 0, sizeof(memory_map[0])); 697 memory_map[n].type = mem_type; 698 memory_map[n].pa = mem_addr; 699 memory_map[n].size = mem_size; 700 } 701 702 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems, 703 enum teecore_memtypes type, size_t size, size_t *last) 704 { 705 size_t n = 0; 706 707 DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); 708 while (true) { 709 if (n >= (num_elems - 1)) { 710 EMSG("Out of entries (%zu) in memory_map", num_elems); 711 panic(); 712 } 713 if (n == *last) 714 break; 715 if (type < memory_map[n].type) 716 break; 717 n++; 718 } 719 720 memmove(memory_map + n + 1, memory_map + n, 721 sizeof(struct tee_mmap_region) * (*last - n)); 722 (*last)++; 723 memset(memory_map + n, 0, sizeof(memory_map[0])); 724 memory_map[n].type = type; 725 memory_map[n].size = size; 726 } 727 728 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) 729 { 730 const uint32_t attr = TEE_MATTR_VALID_BLOCK; 731 const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED << 732 TEE_MATTR_MEM_TYPE_SHIFT; 733 const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << 734 TEE_MATTR_MEM_TYPE_SHIFT; 735 const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << 736 TEE_MATTR_MEM_TYPE_SHIFT; 737 738 switch (t) { 739 case MEM_AREA_TEE_RAM: 740 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged; 741 case MEM_AREA_TEE_RAM_RX: 742 case MEM_AREA_INIT_RAM_RX: 743 case MEM_AREA_IDENTITY_MAP_RX: 744 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged; 745 case MEM_AREA_TEE_RAM_RO: 746 case MEM_AREA_INIT_RAM_RO: 747 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged; 748 case MEM_AREA_TEE_RAM_RW: 749 case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ 750 case MEM_AREA_NEX_RAM_RW: 751 case MEM_AREA_TEE_ASAN: 752 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 753 case MEM_AREA_TEE_COHERENT: 754 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; 755 case MEM_AREA_TA_RAM: 756 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 757 case MEM_AREA_NSEC_SHM: 758 case MEM_AREA_NEX_NSEC_SHM: 759 return attr | TEE_MATTR_PRW | cached; 760 case MEM_AREA_MANIFEST_DT: 761 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 762 case MEM_AREA_EXT_DT: 763 /* 764 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device 765 * tree as secure non-cached memory, otherwise, fall back to 766 * non-secure mapping. 767 */ 768 if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE)) 769 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | 770 noncache; 771 fallthrough; 772 case MEM_AREA_IO_NSEC: 773 return attr | TEE_MATTR_PRW | noncache; 774 case MEM_AREA_IO_SEC: 775 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; 776 case MEM_AREA_RAM_NSEC: 777 return attr | TEE_MATTR_PRW | cached; 778 case MEM_AREA_RAM_SEC: 779 case MEM_AREA_SEC_RAM_OVERALL: 780 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 781 case MEM_AREA_RES_VASPACE: 782 case MEM_AREA_SHM_VASPACE: 783 return 0; 784 case MEM_AREA_PAGER_VASPACE: 785 return TEE_MATTR_SECURE; 786 default: 787 panic("invalid type"); 788 } 789 } 790 791 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) 792 { 793 switch (mm->type) { 794 case MEM_AREA_TEE_RAM: 795 case MEM_AREA_TEE_RAM_RX: 796 case MEM_AREA_TEE_RAM_RO: 797 case MEM_AREA_TEE_RAM_RW: 798 case MEM_AREA_INIT_RAM_RX: 799 case MEM_AREA_INIT_RAM_RO: 800 case MEM_AREA_NEX_RAM_RW: 801 case MEM_AREA_NEX_RAM_RO: 802 case MEM_AREA_TEE_ASAN: 803 return true; 804 default: 805 return false; 806 } 807 } 808 809 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) 810 { 811 return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); 812 } 813 814 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) 815 { 816 return mm->region_size == CORE_MMU_PGDIR_SIZE; 817 } 818 819 static int cmp_mmap_by_lower_va(const void *a, const void *b) 820 { 821 const struct tee_mmap_region *mm_a = a; 822 const struct tee_mmap_region *mm_b = b; 823 824 return CMP_TRILEAN(mm_a->va, mm_b->va); 825 } 826 827 static void dump_mmap_table(struct tee_mmap_region *memory_map) 828 { 829 struct tee_mmap_region *map; 830 831 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 832 vaddr_t __maybe_unused vstart; 833 834 vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1)); 835 DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA 836 " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", 837 teecore_memtype_name(map->type), vstart, 838 vstart + map->size - 1, map->pa, 839 (paddr_t)(map->pa + map->size - 1), map->size, 840 map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); 841 } 842 } 843 844 #if DEBUG_XLAT_TABLE 845 846 static void dump_xlat_table(vaddr_t va, unsigned int level) 847 { 848 struct core_mmu_table_info tbl_info; 849 unsigned int idx = 0; 850 paddr_t pa; 851 uint32_t attr; 852 853 core_mmu_find_table(NULL, va, level, &tbl_info); 854 va = tbl_info.va_base; 855 for (idx = 0; idx < tbl_info.num_entries; idx++) { 856 core_mmu_get_entry(&tbl_info, idx, &pa, &attr); 857 if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { 858 const char *security_bit = ""; 859 860 if (core_mmu_entry_have_security_bit(attr)) { 861 if (attr & TEE_MATTR_SECURE) 862 security_bit = "S"; 863 else 864 security_bit = "NS"; 865 } 866 867 if (attr & TEE_MATTR_TABLE) { 868 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 869 " TBL:0x%010" PRIxPA " %s", 870 level * 2, "", level, va, pa, 871 security_bit); 872 dump_xlat_table(va, level + 1); 873 } else if (attr) { 874 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 875 " PA:0x%010" PRIxPA " %s-%s-%s-%s", 876 level * 2, "", level, va, pa, 877 mattr_is_cached(attr) ? "MEM" : 878 "DEV", 879 attr & TEE_MATTR_PW ? "RW" : "RO", 880 attr & TEE_MATTR_PX ? "X " : "XN", 881 security_bit); 882 } else { 883 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 884 " INVALID\n", 885 level * 2, "", level, va); 886 } 887 } 888 va += BIT64(tbl_info.shift); 889 } 890 } 891 892 #else 893 894 static void dump_xlat_table(vaddr_t va __unused, int level __unused) 895 { 896 } 897 898 #endif 899 900 /* 901 * Reserves virtual memory space for pager usage. 902 * 903 * From the start of the first memory used by the link script + 904 * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty 905 * mapping for pager usage. This adds translation tables as needed for the 906 * pager to operate. 907 */ 908 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems, 909 size_t *last) 910 { 911 paddr_t begin = 0; 912 paddr_t end = 0; 913 size_t size = 0; 914 size_t pos = 0; 915 size_t n = 0; 916 917 if (*last >= (num_elems - 1)) { 918 EMSG("Out of entries (%zu) in memory map", num_elems); 919 panic(); 920 } 921 922 for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) { 923 if (map_is_tee_ram(mmap + n)) { 924 if (!begin) 925 begin = mmap[n].pa; 926 pos = n + 1; 927 } 928 } 929 930 end = mmap[pos - 1].pa + mmap[pos - 1].size; 931 assert(end - begin < TEE_RAM_VA_SIZE); 932 size = TEE_RAM_VA_SIZE - (end - begin); 933 934 assert(pos <= *last); 935 memmove(mmap + pos + 1, mmap + pos, 936 sizeof(struct tee_mmap_region) * (*last - pos)); 937 (*last)++; 938 memset(mmap + pos, 0, sizeof(mmap[0])); 939 mmap[pos].type = MEM_AREA_PAGER_VASPACE; 940 mmap[pos].va = 0; 941 mmap[pos].size = size; 942 mmap[pos].region_size = SMALL_PAGE_SIZE; 943 mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE); 944 } 945 946 static void check_sec_nsec_mem_config(void) 947 { 948 size_t n = 0; 949 950 for (n = 0; n < ARRAY_SIZE(secure_only); n++) { 951 if (pbuf_intersects(nsec_shared, secure_only[n].paddr, 952 secure_only[n].size)) 953 panic("Invalid memory access config: sec/nsec"); 954 } 955 } 956 957 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map, 958 size_t num_elems) 959 { 960 const struct core_mmu_phys_mem *mem = NULL; 961 vaddr_t ram_start = secure_only[0].paddr; 962 size_t last = 0; 963 964 965 #define ADD_PHYS_MEM(_type, _addr, _size) \ 966 add_phys_mem(memory_map, num_elems, #_addr, (_type), \ 967 (_addr), (_size), &last) 968 969 if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) { 970 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start, 971 VCORE_UNPG_RX_PA - ram_start); 972 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, 973 VCORE_UNPG_RX_SZ); 974 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, 975 VCORE_UNPG_RO_SZ); 976 977 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 978 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, 979 VCORE_UNPG_RW_SZ); 980 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, 981 VCORE_NEX_RW_SZ); 982 } else { 983 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, 984 VCORE_UNPG_RW_SZ); 985 } 986 987 if (IS_ENABLED(CFG_WITH_PAGER)) { 988 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, 989 VCORE_INIT_RX_SZ); 990 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, 991 VCORE_INIT_RO_SZ); 992 } 993 } else { 994 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); 995 } 996 997 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 998 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE, 999 TRUSTED_DRAM_SIZE); 1000 } else { 1001 /* 1002 * Every guest will have own TA RAM if virtualization 1003 * support is enabled. 1004 */ 1005 paddr_t ta_base = 0; 1006 size_t ta_size = 0; 1007 1008 core_mmu_get_ta_range(&ta_base, &ta_size); 1009 ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size); 1010 } 1011 1012 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) && 1013 IS_ENABLED(CFG_WITH_PAGER)) { 1014 /* 1015 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is 1016 * disabled. 1017 */ 1018 ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); 1019 } 1020 1021 #undef ADD_PHYS_MEM 1022 1023 for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { 1024 /* Only unmapped virtual range may have a null phys addr */ 1025 assert(mem->addr || !core_mmu_type_to_attr(mem->type)); 1026 1027 add_phys_mem(memory_map, num_elems, mem->name, mem->type, 1028 mem->addr, mem->size, &last); 1029 } 1030 1031 if (IS_ENABLED(CFG_SECURE_DATA_PATH)) 1032 verify_special_mem_areas(memory_map, num_elems, 1033 phys_sdp_mem_begin, 1034 phys_sdp_mem_end, "SDP"); 1035 1036 add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE, 1037 CFG_RESERVED_VASPACE_SIZE, &last); 1038 1039 add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE, 1040 SHM_VASPACE_SIZE, &last); 1041 1042 memory_map[last].type = MEM_AREA_END; 1043 1044 return last; 1045 } 1046 1047 static void assign_mem_granularity(struct tee_mmap_region *memory_map) 1048 { 1049 struct tee_mmap_region *map = NULL; 1050 1051 /* 1052 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses 1053 * SMALL_PAGE_SIZE. 1054 */ 1055 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1056 paddr_t mask = map->pa | map->size; 1057 1058 if (!(mask & CORE_MMU_PGDIR_MASK)) 1059 map->region_size = CORE_MMU_PGDIR_SIZE; 1060 else if (!(mask & SMALL_PAGE_MASK)) 1061 map->region_size = SMALL_PAGE_SIZE; 1062 else 1063 panic("Impossible memory alignment"); 1064 1065 if (map_is_tee_ram(map)) 1066 map->region_size = SMALL_PAGE_SIZE; 1067 } 1068 } 1069 1070 static bool place_tee_ram_at_top(paddr_t paddr) 1071 { 1072 return paddr > BIT64(core_mmu_get_va_width()) / 2; 1073 } 1074 1075 /* 1076 * MMU arch driver shall override this function if it helps 1077 * optimizing the memory footprint of the address translation tables. 1078 */ 1079 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr) 1080 { 1081 return place_tee_ram_at_top(paddr); 1082 } 1083 1084 static bool assign_mem_va_dir(vaddr_t tee_ram_va, 1085 struct tee_mmap_region *memory_map, 1086 bool tee_ram_at_top) 1087 { 1088 struct tee_mmap_region *map = NULL; 1089 vaddr_t va = 0; 1090 bool va_is_secure = true; 1091 1092 /* 1093 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y. 1094 * 0 is by design an invalid va, so return false directly. 1095 */ 1096 if (!tee_ram_va) 1097 return false; 1098 1099 /* Clear eventual previous assignments */ 1100 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 1101 map->va = 0; 1102 1103 /* 1104 * TEE RAM regions are always aligned with region_size. 1105 * 1106 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here 1107 * since it handles virtual memory which covers the part of the ELF 1108 * that cannot fit directly into memory. 1109 */ 1110 va = tee_ram_va; 1111 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1112 if (map_is_tee_ram(map) || 1113 map->type == MEM_AREA_PAGER_VASPACE) { 1114 assert(!(va & (map->region_size - 1))); 1115 assert(!(map->size & (map->region_size - 1))); 1116 map->va = va; 1117 if (ADD_OVERFLOW(va, map->size, &va)) 1118 return false; 1119 if (va >= BIT64(core_mmu_get_va_width())) 1120 return false; 1121 } 1122 } 1123 1124 if (tee_ram_at_top) { 1125 /* 1126 * Map non-tee ram regions at addresses lower than the tee 1127 * ram region. 1128 */ 1129 va = tee_ram_va; 1130 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1131 map->attr = core_mmu_type_to_attr(map->type); 1132 if (map->va) 1133 continue; 1134 1135 if (!IS_ENABLED(CFG_WITH_LPAE) && 1136 va_is_secure != map_is_secure(map)) { 1137 va_is_secure = !va_is_secure; 1138 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1139 } 1140 1141 if (SUB_OVERFLOW(va, map->size, &va)) 1142 return false; 1143 va = ROUNDDOWN(va, map->region_size); 1144 /* 1145 * Make sure that va is aligned with pa for 1146 * efficient pgdir mapping. Basically pa & 1147 * pgdir_mask should be == va & pgdir_mask 1148 */ 1149 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1150 if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) 1151 return false; 1152 va += (map->pa - va) & CORE_MMU_PGDIR_MASK; 1153 } 1154 map->va = va; 1155 } 1156 } else { 1157 /* 1158 * Map non-tee ram regions at addresses higher than the tee 1159 * ram region. 1160 */ 1161 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1162 map->attr = core_mmu_type_to_attr(map->type); 1163 if (map->va) 1164 continue; 1165 1166 if (!IS_ENABLED(CFG_WITH_LPAE) && 1167 va_is_secure != map_is_secure(map)) { 1168 va_is_secure = !va_is_secure; 1169 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1170 &va)) 1171 return false; 1172 } 1173 1174 if (ROUNDUP_OVERFLOW(va, map->region_size, &va)) 1175 return false; 1176 /* 1177 * Make sure that va is aligned with pa for 1178 * efficient pgdir mapping. Basically pa & 1179 * pgdir_mask should be == va & pgdir_mask 1180 */ 1181 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1182 vaddr_t offs = (map->pa - va) & 1183 CORE_MMU_PGDIR_MASK; 1184 1185 if (ADD_OVERFLOW(va, offs, &va)) 1186 return false; 1187 } 1188 1189 map->va = va; 1190 if (ADD_OVERFLOW(va, map->size, &va)) 1191 return false; 1192 if (va >= BIT64(core_mmu_get_va_width())) 1193 return false; 1194 } 1195 } 1196 1197 return true; 1198 } 1199 1200 static bool assign_mem_va(vaddr_t tee_ram_va, 1201 struct tee_mmap_region *memory_map) 1202 { 1203 bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va); 1204 1205 /* 1206 * Check that we're not overlapping with the user VA range. 1207 */ 1208 if (IS_ENABLED(CFG_WITH_LPAE)) { 1209 /* 1210 * User VA range is supposed to be defined after these 1211 * mappings have been established. 1212 */ 1213 assert(!core_mmu_user_va_range_is_defined()); 1214 } else { 1215 vaddr_t user_va_base = 0; 1216 size_t user_va_size = 0; 1217 1218 assert(core_mmu_user_va_range_is_defined()); 1219 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 1220 if (tee_ram_va < (user_va_base + user_va_size)) 1221 return false; 1222 } 1223 1224 if (IS_ENABLED(CFG_WITH_PAGER)) { 1225 bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va); 1226 1227 /* Try whole mapping covered by a single base xlat entry */ 1228 if (prefered_dir != tee_ram_at_top && 1229 assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir)) 1230 return true; 1231 } 1232 1233 return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top); 1234 } 1235 1236 static int cmp_init_mem_map(const void *a, const void *b) 1237 { 1238 const struct tee_mmap_region *mm_a = a; 1239 const struct tee_mmap_region *mm_b = b; 1240 int rc = 0; 1241 1242 rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); 1243 if (!rc) 1244 rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); 1245 /* 1246 * 32bit MMU descriptors cannot mix secure and non-secure mapping in 1247 * the same level2 table. Hence sort secure mapping from non-secure 1248 * mapping. 1249 */ 1250 if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) 1251 rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); 1252 1253 return rc; 1254 } 1255 1256 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map, 1257 size_t num_elems, size_t *last, 1258 vaddr_t id_map_start, vaddr_t id_map_end) 1259 { 1260 struct tee_mmap_region *map = NULL; 1261 vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); 1262 vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); 1263 size_t len = end - start; 1264 1265 if (*last >= num_elems - 1) { 1266 EMSG("Out of entries (%zu) in memory map", num_elems); 1267 panic(); 1268 } 1269 1270 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 1271 if (core_is_buffer_intersect(map->va, map->size, start, len)) 1272 return false; 1273 1274 *map = (struct tee_mmap_region){ 1275 .type = MEM_AREA_IDENTITY_MAP_RX, 1276 /* 1277 * Could use CORE_MMU_PGDIR_SIZE to potentially save a 1278 * translation table, at the increased risk of clashes with 1279 * the rest of the memory map. 1280 */ 1281 .region_size = SMALL_PAGE_SIZE, 1282 .pa = start, 1283 .va = start, 1284 .size = len, 1285 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1286 }; 1287 1288 (*last)++; 1289 1290 return true; 1291 } 1292 1293 static unsigned long init_mem_map(struct tee_mmap_region *memory_map, 1294 size_t num_elems, unsigned long seed) 1295 { 1296 /* 1297 * @id_map_start and @id_map_end describes a physical memory range 1298 * that must be mapped Read-Only eXecutable at identical virtual 1299 * addresses. 1300 */ 1301 vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; 1302 vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; 1303 vaddr_t start_addr = secure_only[0].paddr; 1304 unsigned long offs = 0; 1305 size_t last = 0; 1306 1307 last = collect_mem_ranges(memory_map, num_elems); 1308 assign_mem_granularity(memory_map); 1309 1310 /* 1311 * To ease mapping and lower use of xlat tables, sort mapping 1312 * description moving small-page regions after the pgdir regions. 1313 */ 1314 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1315 cmp_init_mem_map); 1316 1317 if (IS_ENABLED(CFG_WITH_PAGER)) 1318 add_pager_vaspace(memory_map, num_elems, &last); 1319 1320 if (IS_ENABLED(CFG_CORE_ASLR) && seed) { 1321 vaddr_t base_addr = start_addr + seed; 1322 const unsigned int va_width = core_mmu_get_va_width(); 1323 const vaddr_t va_mask = GENMASK_64(va_width - 1, 1324 SMALL_PAGE_SHIFT); 1325 vaddr_t ba = base_addr; 1326 size_t n = 0; 1327 1328 for (n = 0; n < 3; n++) { 1329 if (n) 1330 ba = base_addr ^ BIT64(va_width - n); 1331 ba &= va_mask; 1332 if (assign_mem_va(ba, memory_map) && 1333 mem_map_add_id_map(memory_map, num_elems, &last, 1334 id_map_start, id_map_end)) { 1335 offs = ba - start_addr; 1336 DMSG("Mapping core at %#"PRIxVA" offs %#lx", 1337 ba, offs); 1338 goto out; 1339 } else { 1340 DMSG("Failed to map core at %#"PRIxVA, ba); 1341 } 1342 } 1343 EMSG("Failed to map core with seed %#lx", seed); 1344 } 1345 1346 if (!assign_mem_va(start_addr, memory_map)) 1347 panic(); 1348 1349 out: 1350 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1351 cmp_mmap_by_lower_va); 1352 1353 dump_mmap_table(memory_map); 1354 1355 return offs; 1356 } 1357 1358 static void check_mem_map(struct tee_mmap_region *map) 1359 { 1360 struct tee_mmap_region *m = NULL; 1361 1362 for (m = map; !core_mmap_is_end_of_table(m); m++) { 1363 switch (m->type) { 1364 case MEM_AREA_TEE_RAM: 1365 case MEM_AREA_TEE_RAM_RX: 1366 case MEM_AREA_TEE_RAM_RO: 1367 case MEM_AREA_TEE_RAM_RW: 1368 case MEM_AREA_INIT_RAM_RX: 1369 case MEM_AREA_INIT_RAM_RO: 1370 case MEM_AREA_NEX_RAM_RW: 1371 case MEM_AREA_NEX_RAM_RO: 1372 case MEM_AREA_IDENTITY_MAP_RX: 1373 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1374 panic("TEE_RAM can't fit in secure_only"); 1375 break; 1376 case MEM_AREA_TA_RAM: 1377 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1378 panic("TA_RAM can't fit in secure_only"); 1379 break; 1380 case MEM_AREA_NSEC_SHM: 1381 if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) 1382 panic("NS_SHM can't fit in nsec_shared"); 1383 break; 1384 case MEM_AREA_SEC_RAM_OVERALL: 1385 case MEM_AREA_TEE_COHERENT: 1386 case MEM_AREA_TEE_ASAN: 1387 case MEM_AREA_IO_SEC: 1388 case MEM_AREA_IO_NSEC: 1389 case MEM_AREA_EXT_DT: 1390 case MEM_AREA_MANIFEST_DT: 1391 case MEM_AREA_RAM_SEC: 1392 case MEM_AREA_RAM_NSEC: 1393 case MEM_AREA_RES_VASPACE: 1394 case MEM_AREA_SHM_VASPACE: 1395 case MEM_AREA_PAGER_VASPACE: 1396 break; 1397 default: 1398 EMSG("Uhandled memtype %d", m->type); 1399 panic(); 1400 } 1401 } 1402 } 1403 1404 static struct tee_mmap_region *get_tmp_mmap(void) 1405 { 1406 struct tee_mmap_region *tmp_mmap = (void *)__heap1_start; 1407 1408 #ifdef CFG_WITH_PAGER 1409 if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map)) 1410 tmp_mmap = (void *)__heap2_start; 1411 #endif 1412 1413 memset(tmp_mmap, 0, sizeof(static_memory_map)); 1414 1415 return tmp_mmap; 1416 } 1417 1418 /* 1419 * core_init_mmu_map() - init tee core default memory mapping 1420 * 1421 * This routine sets the static default TEE core mapping. If @seed is > 0 1422 * and configured with CFG_CORE_ASLR it will map tee core at a location 1423 * based on the seed and return the offset from the link address. 1424 * 1425 * If an error happened: core_init_mmu_map is expected to panic. 1426 * 1427 * Note: this function is weak just to make it possible to exclude it from 1428 * the unpaged area. 1429 */ 1430 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) 1431 { 1432 #ifndef CFG_NS_VIRTUALIZATION 1433 vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); 1434 #else 1435 vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, 1436 SMALL_PAGE_SIZE); 1437 #endif 1438 vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; 1439 struct tee_mmap_region *tmp_mmap = get_tmp_mmap(); 1440 unsigned long offs = 0; 1441 1442 if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) && 1443 (core_mmu_tee_load_pa & SMALL_PAGE_MASK)) 1444 panic("OP-TEE load address is not page aligned"); 1445 1446 check_sec_nsec_mem_config(); 1447 1448 /* 1449 * Add a entry covering the translation tables which will be 1450 * involved in some virt_to_phys() and phys_to_virt() conversions. 1451 */ 1452 static_memory_map[0] = (struct tee_mmap_region){ 1453 .type = MEM_AREA_TEE_RAM, 1454 .region_size = SMALL_PAGE_SIZE, 1455 .pa = start, 1456 .va = start, 1457 .size = len, 1458 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1459 }; 1460 1461 COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13); 1462 offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed); 1463 1464 check_mem_map(tmp_mmap); 1465 core_init_mmu(tmp_mmap); 1466 dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); 1467 core_init_mmu_regs(cfg); 1468 cfg->map_offset = offs; 1469 memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map)); 1470 } 1471 1472 bool core_mmu_mattr_is_ok(uint32_t mattr) 1473 { 1474 /* 1475 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and 1476 * core_mmu_v7.c:mattr_to_texcb 1477 */ 1478 1479 switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { 1480 case TEE_MATTR_MEM_TYPE_DEV: 1481 case TEE_MATTR_MEM_TYPE_STRONGLY_O: 1482 case TEE_MATTR_MEM_TYPE_CACHED: 1483 case TEE_MATTR_MEM_TYPE_TAGGED: 1484 return true; 1485 default: 1486 return false; 1487 } 1488 } 1489 1490 /* 1491 * test attributes of target physical buffer 1492 * 1493 * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). 1494 * 1495 */ 1496 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) 1497 { 1498 paddr_t ta_base = 0; 1499 size_t ta_size = 0; 1500 struct tee_mmap_region *map; 1501 1502 /* Empty buffers complies with anything */ 1503 if (len == 0) 1504 return true; 1505 1506 switch (attr) { 1507 case CORE_MEM_SEC: 1508 return pbuf_is_inside(secure_only, pbuf, len); 1509 case CORE_MEM_NON_SEC: 1510 return pbuf_is_inside(nsec_shared, pbuf, len) || 1511 pbuf_is_nsec_ddr(pbuf, len); 1512 case CORE_MEM_TEE_RAM: 1513 return core_is_buffer_inside(pbuf, len, TEE_RAM_START, 1514 TEE_RAM_PH_SIZE); 1515 case CORE_MEM_TA_RAM: 1516 core_mmu_get_ta_range(&ta_base, &ta_size); 1517 return core_is_buffer_inside(pbuf, len, ta_base, ta_size); 1518 #ifdef CFG_CORE_RESERVED_SHM 1519 case CORE_MEM_NSEC_SHM: 1520 return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, 1521 TEE_SHMEM_SIZE); 1522 #endif 1523 case CORE_MEM_SDP_MEM: 1524 return pbuf_is_sdp_mem(pbuf, len); 1525 case CORE_MEM_CACHED: 1526 map = find_map_by_pa(pbuf); 1527 if (!map || !pbuf_inside_map_area(pbuf, len, map)) 1528 return false; 1529 return mattr_is_cached(map->attr); 1530 default: 1531 return false; 1532 } 1533 } 1534 1535 /* test attributes of target virtual buffer (in core mapping) */ 1536 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) 1537 { 1538 paddr_t p; 1539 1540 /* Empty buffers complies with anything */ 1541 if (len == 0) 1542 return true; 1543 1544 p = virt_to_phys((void *)vbuf); 1545 if (!p) 1546 return false; 1547 1548 return core_pbuf_is(attr, p, len); 1549 } 1550 1551 /* core_va2pa - teecore exported service */ 1552 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) 1553 { 1554 struct tee_mmap_region *map; 1555 1556 map = find_map_by_va(va); 1557 if (!va_is_in_map(map, (vaddr_t)va)) 1558 return -1; 1559 1560 /* 1561 * We can calculate PA for static map. Virtual address ranges 1562 * reserved to core dynamic mapping return a 'match' (return 0;) 1563 * together with an invalid null physical address. 1564 */ 1565 if (map->pa) 1566 *pa = map->pa + (vaddr_t)va - map->va; 1567 else 1568 *pa = 0; 1569 1570 return 0; 1571 } 1572 1573 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) 1574 { 1575 if (!pa_is_in_map(map, pa, len)) 1576 return NULL; 1577 1578 return (void *)(vaddr_t)(map->va + pa - map->pa); 1579 } 1580 1581 /* 1582 * teecore gets some memory area definitions 1583 */ 1584 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s, 1585 vaddr_t *e) 1586 { 1587 struct tee_mmap_region *map = find_map_by_type(type); 1588 1589 if (map) { 1590 *s = map->va; 1591 *e = map->va + map->size; 1592 } else { 1593 *s = 0; 1594 *e = 0; 1595 } 1596 } 1597 1598 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) 1599 { 1600 struct tee_mmap_region *map = find_map_by_pa(pa); 1601 1602 if (!map) 1603 return MEM_AREA_MAXTYPE; 1604 return map->type; 1605 } 1606 1607 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1608 paddr_t pa, uint32_t attr) 1609 { 1610 assert(idx < tbl_info->num_entries); 1611 core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, 1612 idx, pa, attr); 1613 } 1614 1615 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1616 paddr_t *pa, uint32_t *attr) 1617 { 1618 assert(idx < tbl_info->num_entries); 1619 core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, 1620 idx, pa, attr); 1621 } 1622 1623 static void clear_region(struct core_mmu_table_info *tbl_info, 1624 struct tee_mmap_region *region) 1625 { 1626 unsigned int end = 0; 1627 unsigned int idx = 0; 1628 1629 /* va, len and pa should be block aligned */ 1630 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1631 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1632 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1633 1634 idx = core_mmu_va2idx(tbl_info, region->va); 1635 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1636 1637 while (idx < end) { 1638 core_mmu_set_entry(tbl_info, idx, 0, 0); 1639 idx++; 1640 } 1641 } 1642 1643 static void set_region(struct core_mmu_table_info *tbl_info, 1644 struct tee_mmap_region *region) 1645 { 1646 unsigned int end; 1647 unsigned int idx; 1648 paddr_t pa; 1649 1650 /* va, len and pa should be block aligned */ 1651 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1652 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1653 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1654 1655 idx = core_mmu_va2idx(tbl_info, region->va); 1656 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1657 pa = region->pa; 1658 1659 while (idx < end) { 1660 core_mmu_set_entry(tbl_info, idx, pa, region->attr); 1661 idx++; 1662 pa += BIT64(tbl_info->shift); 1663 } 1664 } 1665 1666 static void set_pg_region(struct core_mmu_table_info *dir_info, 1667 struct vm_region *region, struct pgt **pgt, 1668 struct core_mmu_table_info *pg_info) 1669 { 1670 struct tee_mmap_region r = { 1671 .va = region->va, 1672 .size = region->size, 1673 .attr = region->attr, 1674 }; 1675 vaddr_t end = r.va + r.size; 1676 uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; 1677 1678 while (r.va < end) { 1679 if (!pg_info->table || 1680 r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { 1681 /* 1682 * We're assigning a new translation table. 1683 */ 1684 unsigned int idx; 1685 1686 /* Virtual addresses must grow */ 1687 assert(r.va > pg_info->va_base); 1688 1689 idx = core_mmu_va2idx(dir_info, r.va); 1690 pg_info->va_base = core_mmu_idx2va(dir_info, idx); 1691 1692 /* 1693 * Advance pgt to va_base, note that we may need to 1694 * skip multiple page tables if there are large 1695 * holes in the vm map. 1696 */ 1697 while ((*pgt)->vabase < pg_info->va_base) { 1698 *pgt = SLIST_NEXT(*pgt, link); 1699 /* We should have allocated enough */ 1700 assert(*pgt); 1701 } 1702 assert((*pgt)->vabase == pg_info->va_base); 1703 pg_info->table = (*pgt)->tbl; 1704 1705 core_mmu_set_entry(dir_info, idx, 1706 virt_to_phys(pg_info->table), 1707 pgt_attr); 1708 } 1709 1710 r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), 1711 end - r.va); 1712 1713 if (!(*pgt)->populated && !mobj_is_paged(region->mobj)) { 1714 size_t granule = BIT(pg_info->shift); 1715 size_t offset = r.va - region->va + region->offset; 1716 1717 r.size = MIN(r.size, 1718 mobj_get_phys_granule(region->mobj)); 1719 r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); 1720 1721 if (mobj_get_pa(region->mobj, offset, granule, 1722 &r.pa) != TEE_SUCCESS) 1723 panic("Failed to get PA of unpaged mobj"); 1724 set_region(pg_info, &r); 1725 } 1726 r.va += r.size; 1727 } 1728 } 1729 1730 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, 1731 size_t size_left, paddr_t block_size, 1732 struct tee_mmap_region *mm __maybe_unused) 1733 { 1734 /* VA and PA are aligned to block size at current level */ 1735 if ((vaddr | paddr) & (block_size - 1)) 1736 return false; 1737 1738 /* Remainder fits into block at current level */ 1739 if (size_left < block_size) 1740 return false; 1741 1742 #ifdef CFG_WITH_PAGER 1743 /* 1744 * If pager is enabled, we need to map tee ram 1745 * regions with small pages only 1746 */ 1747 if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE) 1748 return false; 1749 #endif 1750 1751 return true; 1752 } 1753 1754 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) 1755 { 1756 struct core_mmu_table_info tbl_info; 1757 unsigned int idx; 1758 vaddr_t vaddr = mm->va; 1759 paddr_t paddr = mm->pa; 1760 ssize_t size_left = mm->size; 1761 unsigned int level; 1762 bool table_found; 1763 uint32_t old_attr; 1764 1765 assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); 1766 1767 while (size_left > 0) { 1768 level = CORE_MMU_BASE_TABLE_LEVEL; 1769 1770 while (true) { 1771 paddr_t block_size = 0; 1772 1773 assert(core_mmu_level_in_range(level)); 1774 1775 table_found = core_mmu_find_table(prtn, vaddr, level, 1776 &tbl_info); 1777 if (!table_found) 1778 panic("can't find table for mapping"); 1779 1780 block_size = BIT64(tbl_info.shift); 1781 1782 idx = core_mmu_va2idx(&tbl_info, vaddr); 1783 if (!can_map_at_level(paddr, vaddr, size_left, 1784 block_size, mm)) { 1785 bool secure = mm->attr & TEE_MATTR_SECURE; 1786 1787 /* 1788 * This part of the region can't be mapped at 1789 * this level. Need to go deeper. 1790 */ 1791 if (!core_mmu_entry_to_finer_grained(&tbl_info, 1792 idx, 1793 secure)) 1794 panic("Can't divide MMU entry"); 1795 level = tbl_info.next_level; 1796 continue; 1797 } 1798 1799 /* We can map part of the region at current level */ 1800 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1801 if (old_attr) 1802 panic("Page is already mapped"); 1803 1804 core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr); 1805 paddr += block_size; 1806 vaddr += block_size; 1807 size_left -= block_size; 1808 1809 break; 1810 } 1811 } 1812 } 1813 1814 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 1815 enum teecore_memtypes memtype) 1816 { 1817 TEE_Result ret; 1818 struct core_mmu_table_info tbl_info; 1819 struct tee_mmap_region *mm; 1820 unsigned int idx; 1821 uint32_t old_attr; 1822 uint32_t exceptions; 1823 vaddr_t vaddr = vstart; 1824 size_t i; 1825 bool secure; 1826 1827 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1828 1829 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1830 1831 if (vaddr & SMALL_PAGE_MASK) 1832 return TEE_ERROR_BAD_PARAMETERS; 1833 1834 exceptions = mmu_lock(); 1835 1836 mm = find_map_by_va((void *)vaddr); 1837 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1838 panic("VA does not belong to any known mm region"); 1839 1840 if (!core_mmu_is_dynamic_vaspace(mm)) 1841 panic("Trying to map into static region"); 1842 1843 for (i = 0; i < num_pages; i++) { 1844 if (pages[i] & SMALL_PAGE_MASK) { 1845 ret = TEE_ERROR_BAD_PARAMETERS; 1846 goto err; 1847 } 1848 1849 while (true) { 1850 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1851 &tbl_info)) 1852 panic("Can't find pagetable for vaddr "); 1853 1854 idx = core_mmu_va2idx(&tbl_info, vaddr); 1855 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1856 break; 1857 1858 /* This is supertable. Need to divide it. */ 1859 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1860 secure)) 1861 panic("Failed to spread pgdir on small tables"); 1862 } 1863 1864 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1865 if (old_attr) 1866 panic("Page is already mapped"); 1867 1868 core_mmu_set_entry(&tbl_info, idx, pages[i], 1869 core_mmu_type_to_attr(memtype)); 1870 vaddr += SMALL_PAGE_SIZE; 1871 } 1872 1873 /* 1874 * Make sure all the changes to translation tables are visible 1875 * before returning. TLB doesn't need to be invalidated as we are 1876 * guaranteed that there's no valid mapping in this range. 1877 */ 1878 core_mmu_table_write_barrier(); 1879 mmu_unlock(exceptions); 1880 1881 return TEE_SUCCESS; 1882 err: 1883 mmu_unlock(exceptions); 1884 1885 if (i) 1886 core_mmu_unmap_pages(vstart, i); 1887 1888 return ret; 1889 } 1890 1891 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 1892 size_t num_pages, 1893 enum teecore_memtypes memtype) 1894 { 1895 struct core_mmu_table_info tbl_info = { }; 1896 struct tee_mmap_region *mm = NULL; 1897 unsigned int idx = 0; 1898 uint32_t old_attr = 0; 1899 uint32_t exceptions = 0; 1900 vaddr_t vaddr = vstart; 1901 paddr_t paddr = pstart; 1902 size_t i = 0; 1903 bool secure = false; 1904 1905 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1906 1907 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1908 1909 if ((vaddr | paddr) & SMALL_PAGE_MASK) 1910 return TEE_ERROR_BAD_PARAMETERS; 1911 1912 exceptions = mmu_lock(); 1913 1914 mm = find_map_by_va((void *)vaddr); 1915 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1916 panic("VA does not belong to any known mm region"); 1917 1918 if (!core_mmu_is_dynamic_vaspace(mm)) 1919 panic("Trying to map into static region"); 1920 1921 for (i = 0; i < num_pages; i++) { 1922 while (true) { 1923 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1924 &tbl_info)) 1925 panic("Can't find pagetable for vaddr "); 1926 1927 idx = core_mmu_va2idx(&tbl_info, vaddr); 1928 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1929 break; 1930 1931 /* This is supertable. Need to divide it. */ 1932 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1933 secure)) 1934 panic("Failed to spread pgdir on small tables"); 1935 } 1936 1937 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1938 if (old_attr) 1939 panic("Page is already mapped"); 1940 1941 core_mmu_set_entry(&tbl_info, idx, paddr, 1942 core_mmu_type_to_attr(memtype)); 1943 paddr += SMALL_PAGE_SIZE; 1944 vaddr += SMALL_PAGE_SIZE; 1945 } 1946 1947 /* 1948 * Make sure all the changes to translation tables are visible 1949 * before returning. TLB doesn't need to be invalidated as we are 1950 * guaranteed that there's no valid mapping in this range. 1951 */ 1952 core_mmu_table_write_barrier(); 1953 mmu_unlock(exceptions); 1954 1955 return TEE_SUCCESS; 1956 } 1957 1958 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) 1959 { 1960 struct core_mmu_table_info tbl_info; 1961 struct tee_mmap_region *mm; 1962 size_t i; 1963 unsigned int idx; 1964 uint32_t exceptions; 1965 1966 exceptions = mmu_lock(); 1967 1968 mm = find_map_by_va((void *)vstart); 1969 if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) 1970 panic("VA does not belong to any known mm region"); 1971 1972 if (!core_mmu_is_dynamic_vaspace(mm)) 1973 panic("Trying to unmap static region"); 1974 1975 for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { 1976 if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) 1977 panic("Can't find pagetable"); 1978 1979 if (tbl_info.shift != SMALL_PAGE_SHIFT) 1980 panic("Invalid pagetable level"); 1981 1982 idx = core_mmu_va2idx(&tbl_info, vstart); 1983 core_mmu_set_entry(&tbl_info, idx, 0, 0); 1984 } 1985 tlbi_all(); 1986 1987 mmu_unlock(exceptions); 1988 } 1989 1990 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 1991 struct user_mode_ctx *uctx) 1992 { 1993 struct core_mmu_table_info pg_info = { }; 1994 struct pgt_cache *pgt_cache = &uctx->pgt_cache; 1995 struct pgt *pgt = NULL; 1996 struct pgt *p = NULL; 1997 struct vm_region *r = NULL; 1998 1999 if (TAILQ_EMPTY(&uctx->vm_info.regions)) 2000 return; /* Nothing to map */ 2001 2002 /* 2003 * Allocate all page tables in advance. 2004 */ 2005 pgt_get_all(uctx); 2006 pgt = SLIST_FIRST(pgt_cache); 2007 2008 core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL); 2009 2010 TAILQ_FOREACH(r, &uctx->vm_info.regions, link) 2011 set_pg_region(dir_info, r, &pgt, &pg_info); 2012 /* Record that the translation tables now are populated. */ 2013 SLIST_FOREACH(p, pgt_cache, link) { 2014 p->populated = true; 2015 if (p == pgt) 2016 break; 2017 } 2018 assert(p == pgt); 2019 } 2020 2021 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 2022 size_t len) 2023 { 2024 struct core_mmu_table_info tbl_info = { }; 2025 struct tee_mmap_region *res_map = NULL; 2026 struct tee_mmap_region *map = NULL; 2027 paddr_t pa = virt_to_phys(addr); 2028 size_t granule = 0; 2029 ptrdiff_t i = 0; 2030 paddr_t p = 0; 2031 size_t l = 0; 2032 2033 map = find_map_by_type_and_pa(type, pa, len); 2034 if (!map) 2035 return TEE_ERROR_GENERIC; 2036 2037 res_map = find_map_by_type(MEM_AREA_RES_VASPACE); 2038 if (!res_map) 2039 return TEE_ERROR_GENERIC; 2040 if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) 2041 return TEE_ERROR_GENERIC; 2042 granule = BIT(tbl_info.shift); 2043 2044 if (map < static_memory_map || 2045 map >= static_memory_map + ARRAY_SIZE(static_memory_map)) 2046 return TEE_ERROR_GENERIC; 2047 i = map - static_memory_map; 2048 2049 /* Check that we have a full match */ 2050 p = ROUNDDOWN(pa, granule); 2051 l = ROUNDUP(len + pa - p, granule); 2052 if (map->pa != p || map->size != l) 2053 return TEE_ERROR_GENERIC; 2054 2055 clear_region(&tbl_info, map); 2056 tlbi_all(); 2057 2058 /* If possible remove the va range from res_map */ 2059 if (res_map->va - map->size == map->va) { 2060 res_map->va -= map->size; 2061 res_map->size += map->size; 2062 } 2063 2064 /* Remove the entry. */ 2065 memmove(map, map + 1, 2066 (ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map)); 2067 2068 /* Clear the last new entry in case it was used */ 2069 memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1, 2070 0, sizeof(*map)); 2071 2072 return TEE_SUCCESS; 2073 } 2074 2075 struct tee_mmap_region * 2076 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) 2077 { 2078 struct tee_mmap_region *map = NULL; 2079 struct tee_mmap_region *map_found = NULL; 2080 2081 if (!len) 2082 return NULL; 2083 2084 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 2085 if (map->type != type) 2086 continue; 2087 2088 if (map_found) 2089 return NULL; 2090 2091 map_found = map; 2092 } 2093 2094 if (!map_found || map_found->size < len) 2095 return NULL; 2096 2097 return map_found; 2098 } 2099 2100 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) 2101 { 2102 struct core_mmu_table_info tbl_info; 2103 struct tee_mmap_region *map; 2104 size_t n; 2105 size_t granule; 2106 paddr_t p; 2107 size_t l; 2108 2109 if (!len) 2110 return NULL; 2111 2112 if (!core_mmu_check_end_pa(addr, len)) 2113 return NULL; 2114 2115 /* Check if the memory is already mapped */ 2116 map = find_map_by_type_and_pa(type, addr, len); 2117 if (map && pbuf_inside_map_area(addr, len, map)) 2118 return (void *)(vaddr_t)(map->va + addr - map->pa); 2119 2120 /* Find the reserved va space used for late mappings */ 2121 map = find_map_by_type(MEM_AREA_RES_VASPACE); 2122 if (!map) 2123 return NULL; 2124 2125 if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) 2126 return NULL; 2127 2128 granule = BIT64(tbl_info.shift); 2129 p = ROUNDDOWN(addr, granule); 2130 l = ROUNDUP(len + addr - p, granule); 2131 2132 /* Ban overflowing virtual addresses */ 2133 if (map->size < l) 2134 return NULL; 2135 2136 /* 2137 * Something is wrong, we can't fit the va range into the selected 2138 * table. The reserved va range is possibly missaligned with 2139 * granule. 2140 */ 2141 if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) 2142 return NULL; 2143 2144 /* Find end of the memory map */ 2145 n = 0; 2146 while (!core_mmap_is_end_of_table(static_memory_map + n)) 2147 n++; 2148 2149 if (n < (ARRAY_SIZE(static_memory_map) - 1)) { 2150 /* There's room for another entry */ 2151 static_memory_map[n].va = map->va; 2152 static_memory_map[n].size = l; 2153 static_memory_map[n + 1].type = MEM_AREA_END; 2154 map->va += l; 2155 map->size -= l; 2156 map = static_memory_map + n; 2157 } else { 2158 /* 2159 * There isn't room for another entry, steal the reserved 2160 * entry as it's not useful for anything else any longer. 2161 */ 2162 map->size = l; 2163 } 2164 map->type = type; 2165 map->region_size = granule; 2166 map->attr = core_mmu_type_to_attr(type); 2167 map->pa = p; 2168 2169 set_region(&tbl_info, map); 2170 2171 /* Make sure the new entry is visible before continuing. */ 2172 core_mmu_table_write_barrier(); 2173 2174 return (void *)(vaddr_t)(map->va + addr - map->pa); 2175 } 2176 2177 #ifdef CFG_WITH_PAGER 2178 static vaddr_t get_linear_map_end_va(void) 2179 { 2180 /* this is synced with the generic linker file kern.ld.S */ 2181 return (vaddr_t)__heap2_end; 2182 } 2183 2184 static paddr_t get_linear_map_end_pa(void) 2185 { 2186 return get_linear_map_end_va() - boot_mmu_config.map_offset; 2187 } 2188 #endif 2189 2190 #if defined(CFG_TEE_CORE_DEBUG) 2191 static void check_pa_matches_va(void *va, paddr_t pa) 2192 { 2193 TEE_Result res = TEE_ERROR_GENERIC; 2194 vaddr_t v = (vaddr_t)va; 2195 paddr_t p = 0; 2196 struct core_mmu_table_info ti __maybe_unused = { }; 2197 2198 if (core_mmu_user_va_range_is_defined()) { 2199 vaddr_t user_va_base = 0; 2200 size_t user_va_size = 0; 2201 2202 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 2203 if (v >= user_va_base && 2204 v <= (user_va_base - 1 + user_va_size)) { 2205 if (!core_mmu_user_mapping_is_active()) { 2206 if (pa) 2207 panic("issue in linear address space"); 2208 return; 2209 } 2210 2211 res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), 2212 va, &p); 2213 if (res == TEE_ERROR_NOT_SUPPORTED) 2214 return; 2215 if (res == TEE_SUCCESS && pa != p) 2216 panic("bad pa"); 2217 if (res != TEE_SUCCESS && pa) 2218 panic("false pa"); 2219 return; 2220 } 2221 } 2222 #ifdef CFG_WITH_PAGER 2223 if (is_unpaged(va)) { 2224 if (v - boot_mmu_config.map_offset != pa) 2225 panic("issue in linear address space"); 2226 return; 2227 } 2228 2229 if (tee_pager_get_table_info(v, &ti)) { 2230 uint32_t a; 2231 2232 /* 2233 * Lookups in the page table managed by the pager is 2234 * dangerous for addresses in the paged area as those pages 2235 * changes all the time. But some ranges are safe, 2236 * rw-locked areas when the page is populated for instance. 2237 */ 2238 core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); 2239 if (a & TEE_MATTR_VALID_BLOCK) { 2240 paddr_t mask = BIT64(ti.shift) - 1; 2241 2242 p |= v & mask; 2243 if (pa != p) 2244 panic(); 2245 } else { 2246 if (pa) 2247 panic(); 2248 } 2249 return; 2250 } 2251 #endif 2252 2253 if (!core_va2pa_helper(va, &p)) { 2254 /* Verfiy only the static mapping (case non null phys addr) */ 2255 if (p && pa != p) { 2256 DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, 2257 va, p, pa); 2258 panic(); 2259 } 2260 } else { 2261 if (pa) { 2262 DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); 2263 panic(); 2264 } 2265 } 2266 } 2267 #else 2268 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) 2269 { 2270 } 2271 #endif 2272 2273 paddr_t virt_to_phys(void *va) 2274 { 2275 paddr_t pa = 0; 2276 2277 if (!arch_va2pa_helper(va, &pa)) 2278 pa = 0; 2279 check_pa_matches_va(va, pa); 2280 return pa; 2281 } 2282 2283 #if defined(CFG_TEE_CORE_DEBUG) 2284 static void check_va_matches_pa(paddr_t pa, void *va) 2285 { 2286 paddr_t p = 0; 2287 2288 if (!va) 2289 return; 2290 2291 p = virt_to_phys(va); 2292 if (p != pa) { 2293 DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); 2294 panic(); 2295 } 2296 } 2297 #else 2298 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) 2299 { 2300 } 2301 #endif 2302 2303 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) 2304 { 2305 if (!core_mmu_user_mapping_is_active()) 2306 return NULL; 2307 2308 return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); 2309 } 2310 2311 #ifdef CFG_WITH_PAGER 2312 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2313 { 2314 paddr_t end_pa = 0; 2315 2316 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 2317 return NULL; 2318 2319 if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) { 2320 if (end_pa > get_linear_map_end_pa()) 2321 return NULL; 2322 return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset); 2323 } 2324 2325 return tee_pager_phys_to_virt(pa, len); 2326 } 2327 #else 2328 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2329 { 2330 struct tee_mmap_region *mmap = NULL; 2331 2332 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); 2333 if (!mmap) 2334 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); 2335 if (!mmap) 2336 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); 2337 if (!mmap) 2338 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); 2339 if (!mmap) 2340 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); 2341 if (!mmap) 2342 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); 2343 /* 2344 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only 2345 * used with pager and not needed here. 2346 */ 2347 return map_pa2va(mmap, pa, len); 2348 } 2349 #endif 2350 2351 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) 2352 { 2353 void *va = NULL; 2354 2355 switch (m) { 2356 case MEM_AREA_TS_VASPACE: 2357 va = phys_to_virt_ts_vaspace(pa, len); 2358 break; 2359 case MEM_AREA_TEE_RAM: 2360 case MEM_AREA_TEE_RAM_RX: 2361 case MEM_AREA_TEE_RAM_RO: 2362 case MEM_AREA_TEE_RAM_RW: 2363 case MEM_AREA_NEX_RAM_RO: 2364 case MEM_AREA_NEX_RAM_RW: 2365 va = phys_to_virt_tee_ram(pa, len); 2366 break; 2367 case MEM_AREA_SHM_VASPACE: 2368 /* Find VA from PA in dynamic SHM is not yet supported */ 2369 va = NULL; 2370 break; 2371 default: 2372 va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); 2373 } 2374 if (m != MEM_AREA_SEC_RAM_OVERALL) 2375 check_va_matches_pa(pa, va); 2376 return va; 2377 } 2378 2379 void *phys_to_virt_io(paddr_t pa, size_t len) 2380 { 2381 struct tee_mmap_region *map = NULL; 2382 void *va = NULL; 2383 2384 map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); 2385 if (!map) 2386 map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); 2387 if (!map) 2388 return NULL; 2389 va = map_pa2va(map, pa, len); 2390 check_va_matches_pa(pa, va); 2391 return va; 2392 } 2393 2394 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) 2395 { 2396 if (cpu_mmu_enabled()) 2397 return (vaddr_t)phys_to_virt(pa, type, len); 2398 2399 return (vaddr_t)pa; 2400 } 2401 2402 #ifdef CFG_WITH_PAGER 2403 bool is_unpaged(void *va) 2404 { 2405 vaddr_t v = (vaddr_t)va; 2406 2407 return v >= VCORE_START_VA && v < get_linear_map_end_va(); 2408 } 2409 #else 2410 bool is_unpaged(void *va __unused) 2411 { 2412 return true; 2413 } 2414 #endif 2415 2416 void core_mmu_init_virtualization(void) 2417 { 2418 paddr_t b1 = 0; 2419 paddr_size_t s1 = 0; 2420 2421 static_assert(ARRAY_SIZE(secure_only) <= 2); 2422 if (ARRAY_SIZE(secure_only) == 2) { 2423 b1 = secure_only[1].paddr; 2424 s1 = secure_only[1].size; 2425 } 2426 virt_init_memory(static_memory_map, secure_only[0].paddr, 2427 secure_only[0].size, b1, s1); 2428 } 2429 2430 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) 2431 { 2432 assert(p->pa); 2433 if (cpu_mmu_enabled()) { 2434 if (!p->va) 2435 p->va = (vaddr_t)phys_to_virt_io(p->pa, len); 2436 assert(p->va); 2437 return p->va; 2438 } 2439 return p->pa; 2440 } 2441 2442 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) 2443 { 2444 assert(p->pa); 2445 if (cpu_mmu_enabled()) { 2446 if (!p->va) 2447 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, 2448 len); 2449 assert(p->va); 2450 return p->va; 2451 } 2452 return p->pa; 2453 } 2454 2455 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) 2456 { 2457 assert(p->pa); 2458 if (cpu_mmu_enabled()) { 2459 if (!p->va) 2460 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, 2461 len); 2462 assert(p->va); 2463 return p->va; 2464 } 2465 return p->pa; 2466 } 2467 2468 #ifdef CFG_CORE_RESERVED_SHM 2469 static TEE_Result teecore_init_pub_ram(void) 2470 { 2471 vaddr_t s = 0; 2472 vaddr_t e = 0; 2473 2474 /* get virtual addr/size of NSec shared mem allocated from teecore */ 2475 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); 2476 2477 if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) 2478 panic("invalid PUB RAM"); 2479 2480 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2481 if (!tee_vbuf_is_non_sec(s, e - s)) 2482 panic("PUB RAM is not non-secure"); 2483 2484 #ifdef CFG_PL310 2485 /* Allocate statically the l2cc mutex */ 2486 tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); 2487 s += sizeof(uint32_t); /* size of a pl310 mutex */ 2488 s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ 2489 #endif 2490 2491 default_nsec_shm_paddr = virt_to_phys((void *)s); 2492 default_nsec_shm_size = e - s; 2493 2494 return TEE_SUCCESS; 2495 } 2496 early_init(teecore_init_pub_ram); 2497 #endif /*CFG_CORE_RESERVED_SHM*/ 2498 2499 void core_mmu_init_ta_ram(void) 2500 { 2501 vaddr_t s = 0; 2502 vaddr_t e = 0; 2503 paddr_t ps = 0; 2504 size_t size = 0; 2505 2506 /* 2507 * Get virtual addr/size of RAM where TA are loaded/executedNSec 2508 * shared mem allocated from teecore. 2509 */ 2510 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) 2511 virt_get_ta_ram(&s, &e); 2512 else 2513 core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e); 2514 2515 ps = virt_to_phys((void *)s); 2516 size = e - s; 2517 2518 if (!ps || (ps & CORE_MMU_USER_CODE_MASK) || 2519 !size || (size & CORE_MMU_USER_CODE_MASK)) 2520 panic("invalid TA RAM"); 2521 2522 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2523 if (!tee_pbuf_is_sec(ps, size)) 2524 panic("TA RAM is not secure"); 2525 2526 if (!tee_mm_is_empty(&tee_mm_sec_ddr)) 2527 panic("TA RAM pool is not empty"); 2528 2529 /* remove previous config and init TA ddr memory pool */ 2530 tee_mm_final(&tee_mm_sec_ddr); 2531 tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT, 2532 TEE_MM_POOL_NO_FLAGS); 2533 } 2534