1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016-2025 Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved. 6 */ 7 8 #include <assert.h> 9 #include <config.h> 10 #include <kernel/boot.h> 11 #include <kernel/dt.h> 12 #include <kernel/linker.h> 13 #include <kernel/panic.h> 14 #include <kernel/spinlock.h> 15 #include <kernel/tee_l2cc_mutex.h> 16 #include <kernel/tee_misc.h> 17 #include <kernel/tlb_helpers.h> 18 #include <kernel/user_mode_ctx.h> 19 #include <kernel/virtualization.h> 20 #include <libfdt.h> 21 #include <memtag.h> 22 #include <mm/core_memprot.h> 23 #include <mm/core_mmu.h> 24 #include <mm/mobj.h> 25 #include <mm/pgt_cache.h> 26 #include <mm/phys_mem.h> 27 #include <mm/tee_pager.h> 28 #include <mm/vm.h> 29 #include <platform_config.h> 30 #include <stdalign.h> 31 #include <string.h> 32 #include <trace.h> 33 #include <util.h> 34 35 #ifndef DEBUG_XLAT_TABLE 36 #define DEBUG_XLAT_TABLE 0 37 #endif 38 39 #define SHM_VASPACE_SIZE (1024 * 1024 * 32) 40 41 /* Virtual memory pool for core mappings */ 42 tee_mm_pool_t core_virt_mem_pool; 43 44 /* Virtual memory pool for shared memory mappings */ 45 tee_mm_pool_t core_virt_shm_pool; 46 47 #ifdef CFG_CORE_PHYS_RELOCATABLE 48 unsigned long core_mmu_tee_load_pa __nex_bss; 49 #else 50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR; 51 #endif 52 53 /* 54 * These variables are initialized before .bss is cleared. To avoid 55 * resetting them when .bss is cleared we're storing them in .data instead, 56 * even if they initially are zero. 57 */ 58 59 #ifdef CFG_CORE_RESERVED_SHM 60 /* Default NSec shared memory allocated from NSec world */ 61 unsigned long default_nsec_shm_size __nex_bss; 62 unsigned long default_nsec_shm_paddr __nex_bss; 63 #endif 64 65 static struct memory_map static_memory_map __nex_bss; 66 void (*memory_map_realloc_func)(struct memory_map *mem_map) __nex_bss; 67 68 /* Offset of the first TEE RAM mapping from start of secure RAM */ 69 static size_t tee_ram_initial_offs __nex_bss; 70 71 /* Define the platform's memory layout. */ 72 struct memaccess_area { 73 paddr_t paddr; 74 size_t size; 75 }; 76 77 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } 78 79 static struct memaccess_area secure_only[] __nex_data = { 80 #ifdef CFG_CORE_PHYS_RELOCATABLE 81 MEMACCESS_AREA(0, 0), 82 #else 83 #ifdef TRUSTED_SRAM_BASE 84 MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), 85 #endif 86 MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), 87 #endif 88 }; 89 90 static struct memaccess_area nsec_shared[] __nex_data = { 91 #ifdef CFG_CORE_RESERVED_SHM 92 MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), 93 #endif 94 }; 95 96 #if defined(CFG_SECURE_DATA_PATH) 97 static const char *tz_sdp_match = "linaro,secure-heap"; 98 static struct memaccess_area sec_sdp; 99 #ifdef CFG_TEE_SDP_MEM_BASE 100 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); 101 #endif 102 #ifdef TEE_SDP_TEST_MEM_BASE 103 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); 104 #endif 105 #endif 106 107 #ifdef CFG_CORE_RESERVED_SHM 108 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); 109 #endif 110 static unsigned int mmu_spinlock; 111 112 static uint32_t mmu_lock(void) 113 { 114 return cpu_spin_lock_xsave(&mmu_spinlock); 115 } 116 117 static void mmu_unlock(uint32_t exceptions) 118 { 119 cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); 120 } 121 122 static void heap_realloc_memory_map(struct memory_map *mem_map) 123 { 124 struct tee_mmap_region *m = NULL; 125 struct tee_mmap_region *old = mem_map->map; 126 size_t old_sz = sizeof(*old) * mem_map->alloc_count; 127 size_t sz = old_sz + sizeof(*m); 128 129 assert(nex_malloc_buffer_is_within_alloced(old, old_sz)); 130 m = nex_realloc(old, sz); 131 if (!m) 132 panic(); 133 mem_map->map = m; 134 mem_map->alloc_count++; 135 } 136 137 static void boot_mem_realloc_memory_map(struct memory_map *mem_map) 138 { 139 struct tee_mmap_region *m = NULL; 140 struct tee_mmap_region *old = mem_map->map; 141 size_t old_sz = sizeof(*old) * mem_map->alloc_count; 142 size_t sz = old_sz * 2; 143 144 m = boot_mem_alloc_tmp(sz, alignof(*m)); 145 memcpy(m, old, old_sz); 146 mem_map->map = m; 147 mem_map->alloc_count *= 2; 148 } 149 150 static void grow_mem_map(struct memory_map *mem_map) 151 { 152 if (mem_map->count == mem_map->alloc_count) { 153 if (!memory_map_realloc_func) { 154 EMSG("Out of entries (%zu) in mem_map", 155 mem_map->alloc_count); 156 panic(); 157 } 158 memory_map_realloc_func(mem_map); 159 } 160 mem_map->count++; 161 } 162 163 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size) 164 { 165 /* 166 * The first range is always used to cover OP-TEE core memory, but 167 * depending on configuration it may cover more than that. 168 */ 169 *base = secure_only[0].paddr; 170 *size = secure_only[0].size; 171 } 172 173 void core_mmu_set_secure_memory(paddr_t base, size_t size) 174 { 175 #ifdef CFG_CORE_PHYS_RELOCATABLE 176 static_assert(ARRAY_SIZE(secure_only) == 1); 177 #endif 178 runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)); 179 assert(!secure_only[0].size); 180 assert(base && size); 181 182 DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size); 183 secure_only[0].paddr = base; 184 secure_only[0].size = size; 185 } 186 187 static struct memory_map *get_memory_map(void) 188 { 189 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 190 struct memory_map *map = virt_get_memory_map(); 191 192 if (map) 193 return map; 194 } 195 196 return &static_memory_map; 197 } 198 199 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, 200 paddr_t pa, size_t size) 201 { 202 size_t n; 203 204 for (n = 0; n < alen; n++) 205 if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) 206 return true; 207 return false; 208 } 209 210 #define pbuf_intersects(a, pa, size) \ 211 _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) 212 213 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, 214 paddr_t pa, size_t size) 215 { 216 size_t n; 217 218 for (n = 0; n < alen; n++) 219 if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) 220 return true; 221 return false; 222 } 223 224 #define pbuf_is_inside(a, pa, size) \ 225 _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) 226 227 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) 228 { 229 paddr_t end_pa = 0; 230 231 if (!map) 232 return false; 233 234 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 235 return false; 236 237 return (pa >= map->pa && end_pa <= map->pa + map->size - 1); 238 } 239 240 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) 241 { 242 if (!map) 243 return false; 244 return (va >= map->va && va <= (map->va + map->size - 1)); 245 } 246 247 /* check if target buffer fits in a core default map area */ 248 static bool pbuf_inside_map_area(unsigned long p, size_t l, 249 struct tee_mmap_region *map) 250 { 251 return core_is_buffer_inside(p, l, map->pa, map->size); 252 } 253 254 TEE_Result core_mmu_for_each_map(void *ptr, 255 TEE_Result (*fn)(struct tee_mmap_region *map, 256 void *ptr)) 257 { 258 struct memory_map *mem_map = get_memory_map(); 259 TEE_Result res = TEE_SUCCESS; 260 size_t n = 0; 261 262 for (n = 0; n < mem_map->count; n++) { 263 res = fn(mem_map->map + n, ptr); 264 if (res) 265 return res; 266 } 267 268 return TEE_SUCCESS; 269 } 270 271 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) 272 { 273 struct memory_map *mem_map = get_memory_map(); 274 size_t n = 0; 275 276 for (n = 0; n < mem_map->count; n++) { 277 if (mem_map->map[n].type == type) 278 return mem_map->map + n; 279 } 280 return NULL; 281 } 282 283 static struct tee_mmap_region * 284 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) 285 { 286 struct memory_map *mem_map = get_memory_map(); 287 size_t n = 0; 288 289 for (n = 0; n < mem_map->count; n++) { 290 if (mem_map->map[n].type != type) 291 continue; 292 if (pa_is_in_map(mem_map->map + n, pa, len)) 293 return mem_map->map + n; 294 } 295 return NULL; 296 } 297 298 static struct tee_mmap_region *find_map_by_va(void *va) 299 { 300 struct memory_map *mem_map = get_memory_map(); 301 vaddr_t a = (vaddr_t)va; 302 size_t n = 0; 303 304 for (n = 0; n < mem_map->count; n++) { 305 if (a >= mem_map->map[n].va && 306 a <= (mem_map->map[n].va - 1 + mem_map->map[n].size)) 307 return mem_map->map + n; 308 } 309 310 return NULL; 311 } 312 313 static struct tee_mmap_region *find_map_by_pa(unsigned long pa) 314 { 315 struct memory_map *mem_map = get_memory_map(); 316 size_t n = 0; 317 318 for (n = 0; n < mem_map->count; n++) { 319 /* Skip unmapped regions */ 320 if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) && 321 pa >= mem_map->map[n].pa && 322 pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size)) 323 return mem_map->map + n; 324 } 325 326 return NULL; 327 } 328 329 #if defined(CFG_SECURE_DATA_PATH) 330 static bool dtb_get_sdp_region(void) 331 { 332 void *fdt = NULL; 333 int node = 0; 334 int tmp_node = 0; 335 paddr_t tmp_addr = 0; 336 size_t tmp_size = 0; 337 338 if (!IS_ENABLED(CFG_EMBED_DTB)) 339 return false; 340 341 fdt = get_embedded_dt(); 342 if (!fdt) 343 panic("No DTB found"); 344 345 node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match); 346 if (node < 0) { 347 DMSG("No %s compatible node found", tz_sdp_match); 348 return false; 349 } 350 tmp_node = node; 351 while (tmp_node >= 0) { 352 tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node, 353 tz_sdp_match); 354 if (tmp_node >= 0) 355 DMSG("Ignore SDP pool node %s, supports only 1 node", 356 fdt_get_name(fdt, tmp_node, NULL)); 357 } 358 359 if (fdt_reg_info(fdt, node, &tmp_addr, &tmp_size)) { 360 EMSG("%s: Unable to get base addr or size from DT", 361 tz_sdp_match); 362 return false; 363 } 364 365 sec_sdp.paddr = tmp_addr; 366 sec_sdp.size = tmp_size; 367 368 return true; 369 } 370 #endif 371 372 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) 373 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, 374 const struct core_mmu_phys_mem *start, 375 const struct core_mmu_phys_mem *end) 376 { 377 const struct core_mmu_phys_mem *mem; 378 379 for (mem = start; mem < end; mem++) { 380 if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) 381 return true; 382 } 383 384 return false; 385 } 386 #endif 387 388 #ifdef CFG_CORE_DYN_SHM 389 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, 390 paddr_t pa, size_t size) 391 { 392 struct core_mmu_phys_mem *m = *mem; 393 size_t n = 0; 394 395 while (n < *nelems) { 396 if (!core_is_buffer_intersect(pa, size, m[n].addr, m[n].size)) { 397 n++; 398 continue; 399 } 400 401 if (core_is_buffer_inside(m[n].addr, m[n].size, pa, size)) { 402 /* m[n] is completely covered by pa:size */ 403 rem_array_elem(m, *nelems, sizeof(*m), n); 404 (*nelems)--; 405 m = nex_realloc(m, sizeof(*m) * *nelems); 406 if (!m) 407 panic(); 408 *mem = m; 409 continue; 410 } 411 412 if (pa > m[n].addr && 413 pa + size - 1 < m[n].addr + m[n].size - 1) { 414 /* 415 * pa:size is strictly inside m[n] range so split 416 * m[n] entry. 417 */ 418 m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); 419 if (!m) 420 panic(); 421 *mem = m; 422 (*nelems)++; 423 ins_array_elem(m, *nelems, sizeof(*m), n + 1, NULL); 424 m[n + 1].addr = pa + size; 425 m[n + 1].size = m[n].addr + m[n].size - pa - size; 426 m[n].size = pa - m[n].addr; 427 n++; 428 } else if (pa <= m[n].addr) { 429 /* 430 * pa:size is overlapping (possibly partially) at the 431 * beginning of m[n]. 432 */ 433 m[n].size = m[n].addr + m[n].size - pa - size; 434 m[n].addr = pa + size; 435 } else { 436 /* 437 * pa:size is overlapping (possibly partially) at 438 * the end of m[n]. 439 */ 440 m[n].size = pa - m[n].addr; 441 } 442 n++; 443 } 444 } 445 446 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, 447 size_t nelems, 448 struct tee_mmap_region *map) 449 { 450 size_t n; 451 452 for (n = 0; n < nelems; n++) { 453 if (!core_is_buffer_outside(start[n].addr, start[n].size, 454 map->pa, map->size)) { 455 EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ 456 ") overlaps map (type %d %#" PRIxPA ":%#zx)", 457 start[n].addr, start[n].size, 458 map->type, map->pa, map->size); 459 panic(); 460 } 461 } 462 } 463 464 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; 465 static size_t discovered_nsec_ddr_nelems __nex_bss; 466 467 static int cmp_pmem_by_addr(const void *a, const void *b) 468 { 469 const struct core_mmu_phys_mem *pmem_a = a; 470 const struct core_mmu_phys_mem *pmem_b = b; 471 472 return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); 473 } 474 475 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 476 size_t nelems) 477 { 478 struct core_mmu_phys_mem *m = start; 479 size_t num_elems = nelems; 480 struct memory_map *mem_map = &static_memory_map; 481 const struct core_mmu_phys_mem __maybe_unused *pmem; 482 size_t n = 0; 483 484 assert(!discovered_nsec_ddr_start); 485 assert(m && num_elems); 486 487 qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); 488 489 /* 490 * Non-secure shared memory and also secure data 491 * path memory are supposed to reside inside 492 * non-secure memory. Since NSEC_SHM and SDP_MEM 493 * are used for a specific purpose make holes for 494 * those memory in the normal non-secure memory. 495 * 496 * This has to be done since for instance QEMU 497 * isn't aware of which memory range in the 498 * non-secure memory is used for NSEC_SHM. 499 */ 500 501 #ifdef CFG_SECURE_DATA_PATH 502 if (dtb_get_sdp_region()) 503 carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size); 504 505 for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) 506 carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); 507 #endif 508 509 for (n = 0; n < ARRAY_SIZE(secure_only); n++) 510 carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr, 511 secure_only[n].size); 512 513 for (n = 0; n < mem_map->count; n++) { 514 switch (mem_map->map[n].type) { 515 case MEM_AREA_NSEC_SHM: 516 carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa, 517 mem_map->map[n].size); 518 break; 519 case MEM_AREA_EXT_DT: 520 case MEM_AREA_MANIFEST_DT: 521 case MEM_AREA_RAM_NSEC: 522 case MEM_AREA_RES_VASPACE: 523 case MEM_AREA_SHM_VASPACE: 524 case MEM_AREA_TS_VASPACE: 525 case MEM_AREA_PAGER_VASPACE: 526 case MEM_AREA_NEX_DYN_VASPACE: 527 case MEM_AREA_TEE_DYN_VASPACE: 528 break; 529 default: 530 check_phys_mem_is_outside(m, num_elems, 531 mem_map->map + n); 532 } 533 } 534 535 discovered_nsec_ddr_start = m; 536 discovered_nsec_ddr_nelems = num_elems; 537 538 DMSG("Non-secure RAM:"); 539 for (n = 0; n < num_elems; n++) 540 DMSG("%zu: pa %#"PRIxPA"..%#"PRIxPA" sz %#"PRIxPASZ, 541 n, m[n].addr, m[n].addr + m[n].size - 1, m[n].size); 542 543 if (!core_mmu_check_end_pa(m[num_elems - 1].addr, 544 m[num_elems - 1].size)) 545 panic(); 546 } 547 548 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, 549 const struct core_mmu_phys_mem **end) 550 { 551 if (!discovered_nsec_ddr_start) 552 return false; 553 554 *start = discovered_nsec_ddr_start; 555 *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; 556 557 return true; 558 } 559 560 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) 561 { 562 const struct core_mmu_phys_mem *start; 563 const struct core_mmu_phys_mem *end; 564 565 if (!get_discovered_nsec_ddr(&start, &end)) 566 return false; 567 568 return pbuf_is_special_mem(pbuf, len, start, end); 569 } 570 571 bool core_mmu_nsec_ddr_is_defined(void) 572 { 573 const struct core_mmu_phys_mem *start; 574 const struct core_mmu_phys_mem *end; 575 576 if (!get_discovered_nsec_ddr(&start, &end)) 577 return false; 578 579 return start != end; 580 } 581 #else 582 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) 583 { 584 return false; 585 } 586 #endif /*CFG_CORE_DYN_SHM*/ 587 588 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ 589 EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ 590 pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) 591 592 #ifdef CFG_SECURE_DATA_PATH 593 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) 594 { 595 bool is_sdp_mem = false; 596 597 if (sec_sdp.size) 598 is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr, 599 sec_sdp.size); 600 601 if (!is_sdp_mem) 602 is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, 603 phys_sdp_mem_end); 604 605 return is_sdp_mem; 606 } 607 608 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size) 609 { 610 struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED, 611 CORE_MEM_SDP_MEM); 612 613 if (!mobj) 614 panic("can't create SDP physical memory object"); 615 616 return mobj; 617 } 618 619 struct mobj **core_sdp_mem_create_mobjs(void) 620 { 621 const struct core_mmu_phys_mem *mem = NULL; 622 struct mobj **mobj_base = NULL; 623 struct mobj **mobj = NULL; 624 int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; 625 626 if (sec_sdp.size) 627 cnt++; 628 629 /* SDP mobjs table must end with a NULL entry */ 630 mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); 631 if (!mobj_base) 632 panic("Out of memory"); 633 634 mobj = mobj_base; 635 636 for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++) 637 *mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size); 638 639 if (sec_sdp.size) 640 *mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size); 641 642 return mobj_base; 643 } 644 645 #else /* CFG_SECURE_DATA_PATH */ 646 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) 647 { 648 return false; 649 } 650 651 #endif /* CFG_SECURE_DATA_PATH */ 652 653 /* Check special memories comply with registered memories */ 654 static void verify_special_mem_areas(struct memory_map *mem_map, 655 const struct core_mmu_phys_mem *start, 656 const struct core_mmu_phys_mem *end, 657 const char *area_name __maybe_unused) 658 { 659 const struct core_mmu_phys_mem *mem = NULL; 660 const struct core_mmu_phys_mem *mem2 = NULL; 661 size_t n = 0; 662 663 if (start == end) { 664 DMSG("No %s memory area defined", area_name); 665 return; 666 } 667 668 for (mem = start; mem < end; mem++) 669 DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", 670 area_name, mem->addr, (uint64_t)mem->addr + mem->size); 671 672 /* Check memories do not intersect each other */ 673 for (mem = start; mem + 1 < end; mem++) { 674 for (mem2 = mem + 1; mem2 < end; mem2++) { 675 if (core_is_buffer_intersect(mem2->addr, mem2->size, 676 mem->addr, mem->size)) { 677 MSG_MEM_INSTERSECT(mem2->addr, mem2->size, 678 mem->addr, mem->size); 679 panic("Special memory intersection"); 680 } 681 } 682 } 683 684 /* 685 * Check memories do not intersect any mapped memory. 686 * This is called before reserved VA space is loaded in mem_map. 687 */ 688 for (mem = start; mem < end; mem++) { 689 for (n = 0; n < mem_map->count; n++) { 690 #ifdef TEE_SDP_TEST_MEM_BASE 691 /* 692 * Ignore MEM_AREA_SEC_RAM_OVERALL since it covers 693 * TEE_SDP_TEST_MEM too. 694 */ 695 if (mem->addr == TEE_SDP_TEST_MEM_BASE && 696 mem->size == TEE_SDP_TEST_MEM_SIZE && 697 mem_map->map[n].type == MEM_AREA_SEC_RAM_OVERALL) 698 continue; 699 #endif 700 if (core_is_buffer_intersect(mem->addr, mem->size, 701 mem_map->map[n].pa, 702 mem_map->map[n].size)) { 703 MSG_MEM_INSTERSECT(mem->addr, mem->size, 704 mem_map->map[n].pa, 705 mem_map->map[n].size); 706 panic("Special memory intersection"); 707 } 708 } 709 } 710 } 711 712 static void merge_mmaps(struct tee_mmap_region *dst, 713 const struct tee_mmap_region *src) 714 { 715 paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1); 716 paddr_t pa = MIN(dst->pa, src->pa); 717 718 DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA, 719 dst->pa, dst->pa + dst->size - 1, src->pa, 720 src->pa + src->size - 1); 721 dst->pa = pa; 722 dst->size = end_pa - pa + 1; 723 } 724 725 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1, 726 const struct tee_mmap_region *r2) 727 { 728 if (r1->type != r2->type) 729 return false; 730 731 if (r1->pa == r2->pa) 732 return true; 733 734 if (r1->pa < r2->pa) 735 return r1->pa + r1->size >= r2->pa; 736 else 737 return r2->pa + r2->size >= r1->pa; 738 } 739 740 static void add_phys_mem(struct memory_map *mem_map, 741 const char *mem_name __maybe_unused, 742 enum teecore_memtypes mem_type, 743 paddr_t mem_addr, paddr_size_t mem_size) 744 { 745 size_t n = 0; 746 const struct tee_mmap_region m0 = { 747 .type = mem_type, 748 .pa = mem_addr, 749 .size = mem_size, 750 }; 751 752 if (!mem_size) /* Discard null size entries */ 753 return; 754 755 /* 756 * If some ranges of memory of the same type do overlap 757 * each others they are coalesced into one entry. To help this 758 * added entries are sorted by increasing physical. 759 * 760 * Note that it's valid to have the same physical memory as several 761 * different memory types, for instance the same device memory 762 * mapped as both secure and non-secure. This will probably not 763 * happen often in practice. 764 */ 765 DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, 766 mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size); 767 for (n = 0; n < mem_map->count; n++) { 768 if (mmaps_are_mergeable(mem_map->map + n, &m0)) { 769 merge_mmaps(mem_map->map + n, &m0); 770 /* 771 * The merged result might be mergeable with the 772 * next or previous entry. 773 */ 774 if (n + 1 < mem_map->count && 775 mmaps_are_mergeable(mem_map->map + n, 776 mem_map->map + n + 1)) { 777 merge_mmaps(mem_map->map + n, 778 mem_map->map + n + 1); 779 rem_array_elem(mem_map->map, mem_map->count, 780 sizeof(*mem_map->map), n + 1); 781 mem_map->count--; 782 } 783 if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1, 784 mem_map->map + n)) { 785 merge_mmaps(mem_map->map + n - 1, 786 mem_map->map + n); 787 rem_array_elem(mem_map->map, mem_map->count, 788 sizeof(*mem_map->map), n); 789 mem_map->count--; 790 } 791 return; 792 } 793 if (mem_type < mem_map->map[n].type || 794 (mem_type == mem_map->map[n].type && 795 mem_addr < mem_map->map[n].pa)) 796 break; /* found the spot where to insert this memory */ 797 } 798 799 grow_mem_map(mem_map); 800 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 801 n, &m0); 802 } 803 804 static void add_va_space(struct memory_map *mem_map, 805 enum teecore_memtypes type, size_t size) 806 { 807 size_t n = 0; 808 809 DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); 810 for (n = 0; n < mem_map->count; n++) { 811 if (type < mem_map->map[n].type) 812 break; 813 } 814 815 grow_mem_map(mem_map); 816 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 817 n, NULL); 818 mem_map->map[n] = (struct tee_mmap_region){ 819 .type = type, 820 .size = size, 821 }; 822 } 823 824 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) 825 { 826 const uint32_t attr = TEE_MATTR_VALID_BLOCK; 827 const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED << 828 TEE_MATTR_MEM_TYPE_SHIFT; 829 const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << 830 TEE_MATTR_MEM_TYPE_SHIFT; 831 const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << 832 TEE_MATTR_MEM_TYPE_SHIFT; 833 834 switch (t) { 835 case MEM_AREA_TEE_RAM: 836 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged; 837 case MEM_AREA_TEE_RAM_RX: 838 case MEM_AREA_INIT_RAM_RX: 839 case MEM_AREA_IDENTITY_MAP_RX: 840 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged; 841 case MEM_AREA_TEE_RAM_RO: 842 case MEM_AREA_INIT_RAM_RO: 843 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged; 844 case MEM_AREA_TEE_RAM_RW: 845 case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ 846 case MEM_AREA_NEX_RAM_RW: 847 case MEM_AREA_NEX_DYN_VASPACE: 848 case MEM_AREA_TEE_DYN_VASPACE: 849 case MEM_AREA_TEE_ASAN: 850 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 851 case MEM_AREA_TEE_COHERENT: 852 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; 853 case MEM_AREA_NSEC_SHM: 854 case MEM_AREA_NEX_NSEC_SHM: 855 return attr | TEE_MATTR_PRW | cached; 856 case MEM_AREA_MANIFEST_DT: 857 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 858 case MEM_AREA_TRANSFER_LIST: 859 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 860 case MEM_AREA_EXT_DT: 861 /* 862 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device 863 * tree as secure non-cached memory, otherwise, fall back to 864 * non-secure mapping. 865 */ 866 if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE)) 867 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | 868 noncache; 869 fallthrough; 870 case MEM_AREA_IO_NSEC: 871 return attr | TEE_MATTR_PRW | noncache; 872 case MEM_AREA_IO_SEC: 873 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; 874 case MEM_AREA_RAM_NSEC: 875 return attr | TEE_MATTR_PRW | cached; 876 case MEM_AREA_RAM_SEC: 877 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 878 case MEM_AREA_SEC_RAM_OVERALL: 879 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 880 case MEM_AREA_ROM_SEC: 881 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 882 case MEM_AREA_RES_VASPACE: 883 case MEM_AREA_SHM_VASPACE: 884 return 0; 885 case MEM_AREA_PAGER_VASPACE: 886 return TEE_MATTR_SECURE; 887 default: 888 panic("invalid type"); 889 } 890 } 891 892 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) 893 { 894 switch (mm->type) { 895 case MEM_AREA_TEE_RAM: 896 case MEM_AREA_TEE_RAM_RX: 897 case MEM_AREA_TEE_RAM_RO: 898 case MEM_AREA_TEE_RAM_RW: 899 case MEM_AREA_INIT_RAM_RX: 900 case MEM_AREA_INIT_RAM_RO: 901 case MEM_AREA_NEX_RAM_RW: 902 case MEM_AREA_NEX_RAM_RO: 903 case MEM_AREA_TEE_ASAN: 904 return true; 905 default: 906 return false; 907 } 908 } 909 910 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) 911 { 912 return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); 913 } 914 915 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) 916 { 917 return mm->region_size == CORE_MMU_PGDIR_SIZE; 918 } 919 920 static int cmp_mmap_by_lower_va(const void *a, const void *b) 921 { 922 const struct tee_mmap_region *mm_a = a; 923 const struct tee_mmap_region *mm_b = b; 924 925 return CMP_TRILEAN(mm_a->va, mm_b->va); 926 } 927 928 static void dump_mmap_table(struct memory_map *mem_map) 929 { 930 size_t n = 0; 931 932 for (n = 0; n < mem_map->count; n++) { 933 struct tee_mmap_region *map __maybe_unused = mem_map->map + n; 934 935 DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA 936 " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", 937 teecore_memtype_name(map->type), map->va, 938 map->va + map->size - 1, map->pa, 939 (paddr_t)(map->pa + map->size - 1), map->size, 940 map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); 941 } 942 } 943 944 #if DEBUG_XLAT_TABLE 945 946 static void dump_xlat_table(vaddr_t va, unsigned int level) 947 { 948 struct core_mmu_table_info tbl_info; 949 unsigned int idx = 0; 950 paddr_t pa; 951 uint32_t attr; 952 953 core_mmu_find_table(NULL, va, level, &tbl_info); 954 va = tbl_info.va_base; 955 for (idx = 0; idx < tbl_info.num_entries; idx++) { 956 core_mmu_get_entry(&tbl_info, idx, &pa, &attr); 957 if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { 958 const char *security_bit = ""; 959 960 if (core_mmu_entry_have_security_bit(attr)) { 961 if (attr & TEE_MATTR_SECURE) 962 security_bit = "S"; 963 else 964 security_bit = "NS"; 965 } 966 967 if (attr & TEE_MATTR_TABLE) { 968 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 969 " TBL:0x%010" PRIxPA " %s", 970 level * 2, "", level, va, pa, 971 security_bit); 972 dump_xlat_table(va, level + 1); 973 } else if (attr) { 974 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 975 " PA:0x%010" PRIxPA " %s-%s-%s-%s", 976 level * 2, "", level, va, pa, 977 mattr_is_cached(attr) ? "MEM" : 978 "DEV", 979 attr & TEE_MATTR_PW ? "RW" : "RO", 980 attr & TEE_MATTR_PX ? "X " : "XN", 981 security_bit); 982 } else { 983 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 984 " INVALID\n", 985 level * 2, "", level, va); 986 } 987 } 988 va += BIT64(tbl_info.shift); 989 } 990 } 991 992 #else 993 994 static void dump_xlat_table(vaddr_t va __unused, int level __unused) 995 { 996 } 997 998 #endif 999 1000 /* 1001 * Reserves virtual memory space for pager usage. 1002 * 1003 * From the start of the first memory used by the link script + 1004 * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty 1005 * mapping for pager usage. This adds translation tables as needed for the 1006 * pager to operate. 1007 */ 1008 static void add_pager_vaspace(struct memory_map *mem_map) 1009 { 1010 paddr_t begin = 0; 1011 paddr_t end = 0; 1012 size_t size = 0; 1013 size_t pos = 0; 1014 size_t n = 0; 1015 1016 1017 for (n = 0; n < mem_map->count; n++) { 1018 if (map_is_tee_ram(mem_map->map + n)) { 1019 if (!begin) 1020 begin = mem_map->map[n].pa; 1021 pos = n + 1; 1022 } 1023 } 1024 1025 end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size; 1026 assert(end - begin < TEE_RAM_VA_SIZE); 1027 size = TEE_RAM_VA_SIZE - (end - begin); 1028 1029 grow_mem_map(mem_map); 1030 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 1031 n, NULL); 1032 mem_map->map[n] = (struct tee_mmap_region){ 1033 .type = MEM_AREA_PAGER_VASPACE, 1034 .size = size, 1035 .region_size = SMALL_PAGE_SIZE, 1036 .attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE), 1037 }; 1038 } 1039 1040 static void check_sec_nsec_mem_config(void) 1041 { 1042 size_t n = 0; 1043 1044 for (n = 0; n < ARRAY_SIZE(secure_only); n++) { 1045 if (pbuf_intersects(nsec_shared, secure_only[n].paddr, 1046 secure_only[n].size)) 1047 panic("Invalid memory access config: sec/nsec"); 1048 } 1049 } 1050 1051 static void collect_device_mem_ranges(struct memory_map *mem_map) 1052 { 1053 const char *compatible = "arm,ffa-manifest-device-regions"; 1054 void *fdt = get_manifest_dt(); 1055 const char *name = NULL; 1056 uint64_t page_count = 0; 1057 uint64_t base = 0; 1058 int subnode = 0; 1059 int node = 0; 1060 1061 assert(fdt); 1062 1063 node = fdt_node_offset_by_compatible(fdt, 0, compatible); 1064 if (node < 0) 1065 return; 1066 1067 fdt_for_each_subnode(subnode, fdt, node) { 1068 name = fdt_get_name(fdt, subnode, NULL); 1069 if (!name) 1070 continue; 1071 1072 if (dt_getprop_as_number(fdt, subnode, "base-address", 1073 &base)) { 1074 EMSG("Mandatory field is missing: base-address"); 1075 continue; 1076 } 1077 1078 if (base & SMALL_PAGE_MASK) { 1079 EMSG("base-address is not page aligned"); 1080 continue; 1081 } 1082 1083 if (dt_getprop_as_number(fdt, subnode, "pages-count", 1084 &page_count)) { 1085 EMSG("Mandatory field is missing: pages-count"); 1086 continue; 1087 } 1088 1089 add_phys_mem(mem_map, name, MEM_AREA_IO_SEC, 1090 base, page_count * SMALL_PAGE_SIZE); 1091 } 1092 } 1093 1094 static void collect_mem_ranges(struct memory_map *mem_map) 1095 { 1096 const struct core_mmu_phys_mem *mem = NULL; 1097 vaddr_t ram_start = secure_only[0].paddr; 1098 size_t n = 0; 1099 1100 #define ADD_PHYS_MEM(_type, _addr, _size) \ 1101 add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size)) 1102 1103 if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) { 1104 paddr_t next_pa = 0; 1105 1106 /* 1107 * Read-only and read-execute physical memory areas must 1108 * not be mapped by MEM_AREA_SEC_RAM_OVERALL, but all the 1109 * read/write should. 1110 */ 1111 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, ram_start, 1112 VCORE_UNPG_RX_PA - ram_start); 1113 assert(VCORE_UNPG_RX_PA >= ram_start); 1114 tee_ram_initial_offs = VCORE_UNPG_RX_PA - ram_start; 1115 DMSG("tee_ram_initial_offs %#zx", tee_ram_initial_offs); 1116 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, 1117 VCORE_UNPG_RX_SZ); 1118 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, 1119 VCORE_UNPG_RO_SZ); 1120 1121 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1122 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, 1123 VCORE_UNPG_RW_SZ); 1124 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA, 1125 VCORE_UNPG_RW_SZ); 1126 1127 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, 1128 VCORE_NEX_RW_SZ); 1129 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_NEX_RW_PA, 1130 VCORE_NEX_RW_SZ); 1131 1132 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_FREE_PA, 1133 VCORE_FREE_SZ); 1134 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA, 1135 VCORE_FREE_SZ); 1136 next_pa = VCORE_FREE_PA + VCORE_FREE_SZ; 1137 } else { 1138 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, 1139 VCORE_UNPG_RW_SZ); 1140 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA, 1141 VCORE_UNPG_RW_SZ); 1142 1143 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_FREE_PA, 1144 VCORE_FREE_SZ); 1145 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA, 1146 VCORE_FREE_SZ); 1147 next_pa = VCORE_FREE_PA + VCORE_FREE_SZ; 1148 } 1149 1150 if (IS_ENABLED(CFG_WITH_PAGER)) { 1151 paddr_t pa = 0; 1152 size_t sz = 0; 1153 1154 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, 1155 VCORE_INIT_RX_SZ); 1156 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, 1157 VCORE_INIT_RO_SZ); 1158 /* 1159 * Core init mapping shall cover up to end of the 1160 * physical RAM. This is required since the hash 1161 * table is appended to the binary data after the 1162 * firmware build sequence. 1163 */ 1164 pa = VCORE_INIT_RO_PA + VCORE_INIT_RO_SZ; 1165 sz = TEE_RAM_START + TEE_RAM_PH_SIZE - pa; 1166 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, pa, sz); 1167 } else { 1168 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, next_pa, 1169 secure_only[0].paddr + 1170 secure_only[0].size - next_pa); 1171 } 1172 } else { 1173 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); 1174 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr, 1175 secure_only[0].size); 1176 } 1177 1178 for (n = 1; n < ARRAY_SIZE(secure_only); n++) 1179 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr, 1180 secure_only[n].size); 1181 1182 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) && 1183 IS_ENABLED(CFG_WITH_PAGER)) { 1184 /* 1185 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is 1186 * disabled. 1187 */ 1188 ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); 1189 } 1190 1191 #undef ADD_PHYS_MEM 1192 1193 /* Collect device memory info from SP manifest */ 1194 if (IS_ENABLED(CFG_CORE_SEL2_SPMC)) 1195 collect_device_mem_ranges(mem_map); 1196 1197 for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { 1198 /* Only unmapped virtual range may have a null phys addr */ 1199 assert(mem->addr || !core_mmu_type_to_attr(mem->type)); 1200 1201 add_phys_mem(mem_map, mem->name, mem->type, 1202 mem->addr, mem->size); 1203 } 1204 1205 if (IS_ENABLED(CFG_SECURE_DATA_PATH)) 1206 verify_special_mem_areas(mem_map, phys_sdp_mem_begin, 1207 phys_sdp_mem_end, "SDP"); 1208 1209 add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE); 1210 add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE); 1211 if (IS_ENABLED(CFG_DYN_CONFIG)) { 1212 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) 1213 add_va_space(mem_map, MEM_AREA_NEX_DYN_VASPACE, 1214 ROUNDUP(CFG_NEX_DYN_VASPACE_SIZE, 1215 CORE_MMU_PGDIR_SIZE)); 1216 add_va_space(mem_map, MEM_AREA_TEE_DYN_VASPACE, 1217 CFG_TEE_DYN_VASPACE_SIZE); 1218 } 1219 } 1220 1221 static void assign_mem_granularity(struct memory_map *mem_map) 1222 { 1223 size_t n = 0; 1224 1225 /* 1226 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses 1227 * SMALL_PAGE_SIZE. 1228 */ 1229 for (n = 0; n < mem_map->count; n++) { 1230 paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size; 1231 1232 if (mask & SMALL_PAGE_MASK) 1233 panic("Impossible memory alignment"); 1234 1235 if (map_is_tee_ram(mem_map->map + n)) 1236 mem_map->map[n].region_size = SMALL_PAGE_SIZE; 1237 else 1238 mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE; 1239 } 1240 } 1241 1242 static bool place_tee_ram_at_top(paddr_t paddr) 1243 { 1244 return paddr > BIT64(core_mmu_get_va_width()) / 2; 1245 } 1246 1247 /* 1248 * MMU arch driver shall override this function if it helps 1249 * optimizing the memory footprint of the address translation tables. 1250 */ 1251 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr) 1252 { 1253 return place_tee_ram_at_top(paddr); 1254 } 1255 1256 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map, 1257 bool tee_ram_at_top) 1258 { 1259 struct tee_mmap_region *map = NULL; 1260 bool va_is_nex_shared = false; 1261 bool va_is_secure = true; 1262 vaddr_t va = 0; 1263 size_t n = 0; 1264 1265 /* 1266 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y. 1267 * 0 is by design an invalid va, so return false directly. 1268 */ 1269 if (!tee_ram_va) 1270 return false; 1271 1272 /* Clear eventual previous assignments */ 1273 for (n = 0; n < mem_map->count; n++) 1274 mem_map->map[n].va = 0; 1275 1276 /* 1277 * TEE RAM regions are always aligned with region_size. 1278 * 1279 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here 1280 * since it handles virtual memory which covers the part of the ELF 1281 * that cannot fit directly into memory. 1282 */ 1283 va = tee_ram_va + tee_ram_initial_offs; 1284 for (n = 0; n < mem_map->count; n++) { 1285 map = mem_map->map + n; 1286 if (map_is_tee_ram(map) || 1287 map->type == MEM_AREA_PAGER_VASPACE) { 1288 assert(!(va & (map->region_size - 1))); 1289 assert(!(map->size & (map->region_size - 1))); 1290 map->va = va; 1291 if (ADD_OVERFLOW(va, map->size, &va)) 1292 return false; 1293 if (va >= BIT64(core_mmu_get_va_width())) 1294 return false; 1295 } 1296 } 1297 1298 if (tee_ram_at_top) { 1299 /* 1300 * Map non-tee ram regions at addresses lower than the tee 1301 * ram region. 1302 */ 1303 va = tee_ram_va; 1304 for (n = 0; n < mem_map->count; n++) { 1305 map = mem_map->map + n; 1306 map->attr = core_mmu_type_to_attr(map->type); 1307 if (map->va) 1308 continue; 1309 1310 if (!IS_ENABLED(CFG_WITH_LPAE) && 1311 va_is_secure != map_is_secure(map)) { 1312 va_is_secure = !va_is_secure; 1313 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1314 } else if (va_is_nex_shared != 1315 core_mmu_type_is_nex_shared(map->type)) { 1316 va_is_nex_shared = !va_is_nex_shared; 1317 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1318 } 1319 1320 if (SUB_OVERFLOW(va, map->size, &va)) 1321 return false; 1322 va = ROUNDDOWN2(va, map->region_size); 1323 /* 1324 * Make sure that va is aligned with pa for 1325 * efficient pgdir mapping. Basically pa & 1326 * pgdir_mask should be == va & pgdir_mask 1327 */ 1328 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1329 if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) 1330 return false; 1331 va += (map->pa - va) & CORE_MMU_PGDIR_MASK; 1332 } 1333 map->va = va; 1334 } 1335 } else { 1336 /* 1337 * Map non-tee ram regions at addresses higher than the tee 1338 * ram region. 1339 */ 1340 for (n = 0; n < mem_map->count; n++) { 1341 map = mem_map->map + n; 1342 map->attr = core_mmu_type_to_attr(map->type); 1343 if (map->va) 1344 continue; 1345 1346 if (!IS_ENABLED(CFG_WITH_LPAE) && 1347 va_is_secure != map_is_secure(map)) { 1348 va_is_secure = !va_is_secure; 1349 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1350 &va)) 1351 return false; 1352 } else if (va_is_nex_shared != 1353 core_mmu_type_is_nex_shared(map->type)) { 1354 va_is_nex_shared = !va_is_nex_shared; 1355 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1356 &va)) 1357 return false; 1358 } 1359 1360 if (ROUNDUP2_OVERFLOW(va, map->region_size, &va)) 1361 return false; 1362 /* 1363 * Make sure that va is aligned with pa for 1364 * efficient pgdir mapping. Basically pa & 1365 * pgdir_mask should be == va & pgdir_mask 1366 */ 1367 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1368 vaddr_t offs = (map->pa - va) & 1369 CORE_MMU_PGDIR_MASK; 1370 1371 if (ADD_OVERFLOW(va, offs, &va)) 1372 return false; 1373 } 1374 1375 map->va = va; 1376 if (ADD_OVERFLOW(va, map->size, &va)) 1377 return false; 1378 if (va >= BIT64(core_mmu_get_va_width())) 1379 return false; 1380 } 1381 } 1382 1383 return true; 1384 } 1385 1386 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map) 1387 { 1388 bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va); 1389 1390 /* 1391 * Check that we're not overlapping with the user VA range. 1392 */ 1393 if (IS_ENABLED(CFG_WITH_LPAE)) { 1394 /* 1395 * User VA range is supposed to be defined after these 1396 * mappings have been established. 1397 */ 1398 assert(!core_mmu_user_va_range_is_defined()); 1399 } else { 1400 vaddr_t user_va_base = 0; 1401 size_t user_va_size = 0; 1402 1403 assert(core_mmu_user_va_range_is_defined()); 1404 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 1405 if (tee_ram_va < (user_va_base + user_va_size)) 1406 return false; 1407 } 1408 1409 if (IS_ENABLED(CFG_WITH_PAGER)) { 1410 bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va); 1411 1412 /* Try whole mapping covered by a single base xlat entry */ 1413 if (prefered_dir != tee_ram_at_top && 1414 assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir)) 1415 return true; 1416 } 1417 1418 return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top); 1419 } 1420 1421 static int cmp_init_mem_map(const void *a, const void *b) 1422 { 1423 const struct tee_mmap_region *mm_a = a; 1424 const struct tee_mmap_region *mm_b = b; 1425 int rc = 0; 1426 1427 rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); 1428 if (!rc) 1429 rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); 1430 /* 1431 * 32bit MMU descriptors cannot mix secure and non-secure mapping in 1432 * the same level2 table. Hence sort secure mapping from non-secure 1433 * mapping. 1434 */ 1435 if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) 1436 rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); 1437 1438 /* 1439 * Nexus mappings shared between partitions should not be mixed 1440 * with other mappings in the same translation table. Hence sort 1441 * nexus shared mappings from other mappings. 1442 */ 1443 if (!rc) 1444 rc = CMP_TRILEAN(core_mmu_type_is_nex_shared(mm_a->type), 1445 core_mmu_type_is_nex_shared(mm_b->type)); 1446 1447 return rc; 1448 } 1449 1450 static bool mem_map_add_id_map(struct memory_map *mem_map, 1451 vaddr_t id_map_start, vaddr_t id_map_end) 1452 { 1453 vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); 1454 vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); 1455 size_t len = end - start; 1456 size_t n = 0; 1457 1458 1459 for (n = 0; n < mem_map->count; n++) 1460 if (core_is_buffer_intersect(mem_map->map[n].va, 1461 mem_map->map[n].size, start, len)) 1462 return false; 1463 1464 grow_mem_map(mem_map); 1465 mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){ 1466 .type = MEM_AREA_IDENTITY_MAP_RX, 1467 /* 1468 * Could use CORE_MMU_PGDIR_SIZE to potentially save a 1469 * translation table, at the increased risk of clashes with 1470 * the rest of the memory map. 1471 */ 1472 .region_size = SMALL_PAGE_SIZE, 1473 .pa = start, 1474 .va = start, 1475 .size = len, 1476 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1477 }; 1478 1479 return true; 1480 } 1481 1482 static struct memory_map *init_mem_map(struct memory_map *mem_map, 1483 unsigned long seed, 1484 unsigned long *ret_offs) 1485 { 1486 /* 1487 * @id_map_start and @id_map_end describes a physical memory range 1488 * that must be mapped Read-Only eXecutable at identical virtual 1489 * addresses. 1490 */ 1491 vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; 1492 vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; 1493 vaddr_t start_addr = secure_only[0].paddr; 1494 unsigned long offs = 0; 1495 1496 collect_mem_ranges(mem_map); 1497 assign_mem_granularity(mem_map); 1498 1499 /* 1500 * To ease mapping and lower use of xlat tables, sort mapping 1501 * description moving small-page regions after the pgdir regions. 1502 */ 1503 qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), 1504 cmp_init_mem_map); 1505 1506 if (IS_ENABLED(CFG_WITH_PAGER)) 1507 add_pager_vaspace(mem_map); 1508 1509 if (IS_ENABLED(CFG_CORE_ASLR) && seed) { 1510 vaddr_t base_addr = start_addr + seed; 1511 const unsigned int va_width = core_mmu_get_va_width(); 1512 const vaddr_t va_mask = GENMASK_64(va_width - 1, 1513 SMALL_PAGE_SHIFT); 1514 vaddr_t ba = base_addr; 1515 size_t n = 0; 1516 1517 for (n = 0; n < 3; n++) { 1518 if (n) 1519 ba = base_addr ^ BIT64(va_width - n); 1520 ba &= va_mask; 1521 if (assign_mem_va(ba, mem_map) && 1522 mem_map_add_id_map(mem_map, id_map_start, 1523 id_map_end)) { 1524 offs = ba - start_addr; 1525 DMSG("Mapping core at %#"PRIxVA" offs %#lx", 1526 ba, offs); 1527 goto out; 1528 } else { 1529 DMSG("Failed to map core at %#"PRIxVA, ba); 1530 } 1531 } 1532 EMSG("Failed to map core with seed %#lx", seed); 1533 } 1534 1535 if (!assign_mem_va(start_addr, mem_map)) 1536 panic(); 1537 1538 out: 1539 qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), 1540 cmp_mmap_by_lower_va); 1541 1542 dump_mmap_table(mem_map); 1543 1544 *ret_offs = offs; 1545 return mem_map; 1546 } 1547 1548 static void check_mem_map(struct memory_map *mem_map) 1549 { 1550 struct tee_mmap_region *m = NULL; 1551 size_t n = 0; 1552 1553 for (n = 0; n < mem_map->count; n++) { 1554 m = mem_map->map + n; 1555 switch (m->type) { 1556 case MEM_AREA_TEE_RAM: 1557 case MEM_AREA_TEE_RAM_RX: 1558 case MEM_AREA_TEE_RAM_RO: 1559 case MEM_AREA_TEE_RAM_RW: 1560 case MEM_AREA_INIT_RAM_RX: 1561 case MEM_AREA_INIT_RAM_RO: 1562 case MEM_AREA_NEX_RAM_RW: 1563 case MEM_AREA_NEX_RAM_RO: 1564 case MEM_AREA_IDENTITY_MAP_RX: 1565 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1566 panic("TEE_RAM can't fit in secure_only"); 1567 break; 1568 case MEM_AREA_SEC_RAM_OVERALL: 1569 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1570 panic("SEC_RAM_OVERALL can't fit in secure_only"); 1571 break; 1572 case MEM_AREA_NSEC_SHM: 1573 if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) 1574 panic("NS_SHM can't fit in nsec_shared"); 1575 break; 1576 case MEM_AREA_TEE_COHERENT: 1577 case MEM_AREA_TEE_ASAN: 1578 case MEM_AREA_IO_SEC: 1579 case MEM_AREA_IO_NSEC: 1580 case MEM_AREA_EXT_DT: 1581 case MEM_AREA_MANIFEST_DT: 1582 case MEM_AREA_TRANSFER_LIST: 1583 case MEM_AREA_RAM_SEC: 1584 case MEM_AREA_RAM_NSEC: 1585 case MEM_AREA_ROM_SEC: 1586 case MEM_AREA_RES_VASPACE: 1587 case MEM_AREA_SHM_VASPACE: 1588 case MEM_AREA_PAGER_VASPACE: 1589 case MEM_AREA_NEX_DYN_VASPACE: 1590 case MEM_AREA_TEE_DYN_VASPACE: 1591 break; 1592 default: 1593 EMSG("Uhandled memtype %d", m->type); 1594 panic(); 1595 } 1596 } 1597 } 1598 1599 /* 1600 * core_init_mmu_map() - init tee core default memory mapping 1601 * 1602 * This routine sets the static default TEE core mapping. If @seed is > 0 1603 * and configured with CFG_CORE_ASLR it will map tee core at a location 1604 * based on the seed and return the offset from the link address. 1605 * 1606 * If an error happened: core_init_mmu_map is expected to panic. 1607 * 1608 * Note: this function is weak just to make it possible to exclude it from 1609 * the unpaged area. 1610 */ 1611 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) 1612 { 1613 #ifndef CFG_NS_VIRTUALIZATION 1614 vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); 1615 #else 1616 vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, 1617 SMALL_PAGE_SIZE); 1618 #endif 1619 #ifdef CFG_DYN_CONFIG 1620 vaddr_t len = ROUNDUP(VCORE_FREE_END_PA, SMALL_PAGE_SIZE) - start; 1621 #else 1622 vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; 1623 #endif 1624 struct tee_mmap_region tmp_mmap_region = { }; 1625 struct memory_map mem_map = { }; 1626 unsigned long offs = 0; 1627 1628 if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) && 1629 (core_mmu_tee_load_pa & SMALL_PAGE_MASK)) 1630 panic("OP-TEE load address is not page aligned"); 1631 1632 check_sec_nsec_mem_config(); 1633 1634 mem_map.alloc_count = CFG_MMAP_REGIONS; 1635 mem_map.map = boot_mem_alloc_tmp(mem_map.alloc_count * 1636 sizeof(*mem_map.map), 1637 alignof(*mem_map.map)); 1638 memory_map_realloc_func = boot_mem_realloc_memory_map; 1639 1640 static_memory_map = (struct memory_map){ 1641 .map = &tmp_mmap_region, 1642 .alloc_count = 1, 1643 .count = 1, 1644 }; 1645 /* 1646 * Add a entry covering the translation tables which will be 1647 * involved in some virt_to_phys() and phys_to_virt() conversions. 1648 */ 1649 static_memory_map.map[0] = (struct tee_mmap_region){ 1650 .type = MEM_AREA_TEE_RAM, 1651 .region_size = SMALL_PAGE_SIZE, 1652 .pa = start, 1653 .va = start, 1654 .size = len, 1655 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1656 }; 1657 1658 init_mem_map(&mem_map, seed, &offs); 1659 1660 check_mem_map(&mem_map); 1661 core_init_mmu(&mem_map); 1662 dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); 1663 core_init_mmu_regs(cfg); 1664 cfg->map_offset = offs; 1665 static_memory_map = mem_map; 1666 boot_mem_add_reloc(&static_memory_map.map); 1667 } 1668 1669 void core_mmu_save_mem_map(void) 1670 { 1671 size_t alloc_count = static_memory_map.count + 5; 1672 size_t elem_sz = sizeof(*static_memory_map.map); 1673 void *p = NULL; 1674 1675 p = nex_calloc(alloc_count, elem_sz); 1676 if (!p) 1677 panic(); 1678 memcpy(p, static_memory_map.map, static_memory_map.count * elem_sz); 1679 static_memory_map.map = p; 1680 static_memory_map.alloc_count = alloc_count; 1681 memory_map_realloc_func = heap_realloc_memory_map; 1682 } 1683 1684 bool core_mmu_mattr_is_ok(uint32_t mattr) 1685 { 1686 /* 1687 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and 1688 * core_mmu_v7.c:mattr_to_texcb 1689 */ 1690 1691 switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { 1692 case TEE_MATTR_MEM_TYPE_DEV: 1693 case TEE_MATTR_MEM_TYPE_STRONGLY_O: 1694 case TEE_MATTR_MEM_TYPE_CACHED: 1695 case TEE_MATTR_MEM_TYPE_TAGGED: 1696 return true; 1697 default: 1698 return false; 1699 } 1700 } 1701 1702 /* 1703 * test attributes of target physical buffer 1704 * 1705 * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). 1706 * 1707 */ 1708 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) 1709 { 1710 struct tee_mmap_region *map; 1711 1712 /* Empty buffers complies with anything */ 1713 if (len == 0) 1714 return true; 1715 1716 switch (attr) { 1717 case CORE_MEM_SEC: 1718 return pbuf_is_inside(secure_only, pbuf, len); 1719 case CORE_MEM_NON_SEC: 1720 return pbuf_is_inside(nsec_shared, pbuf, len) || 1721 pbuf_is_nsec_ddr(pbuf, len); 1722 case CORE_MEM_TEE_RAM: 1723 return core_is_buffer_inside(pbuf, len, TEE_RAM_START, 1724 TEE_RAM_PH_SIZE); 1725 #ifdef CFG_CORE_RESERVED_SHM 1726 case CORE_MEM_NSEC_SHM: 1727 return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, 1728 TEE_SHMEM_SIZE); 1729 #endif 1730 case CORE_MEM_SDP_MEM: 1731 return pbuf_is_sdp_mem(pbuf, len); 1732 case CORE_MEM_CACHED: 1733 map = find_map_by_pa(pbuf); 1734 if (!map || !pbuf_inside_map_area(pbuf, len, map)) 1735 return false; 1736 return mattr_is_cached(map->attr); 1737 default: 1738 return false; 1739 } 1740 } 1741 1742 /* test attributes of target virtual buffer (in core mapping) */ 1743 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) 1744 { 1745 paddr_t p; 1746 1747 /* Empty buffers complies with anything */ 1748 if (len == 0) 1749 return true; 1750 1751 p = virt_to_phys((void *)vbuf); 1752 if (!p) 1753 return false; 1754 1755 return core_pbuf_is(attr, p, len); 1756 } 1757 1758 /* core_va2pa - teecore exported service */ 1759 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) 1760 { 1761 struct tee_mmap_region *map; 1762 1763 map = find_map_by_va(va); 1764 if (!va_is_in_map(map, (vaddr_t)va)) 1765 return -1; 1766 1767 /* 1768 * We can calculate PA for static map. Virtual address ranges 1769 * reserved to core dynamic mapping return a 'match' (return 0;) 1770 * together with an invalid null physical address. 1771 */ 1772 if (map->pa) 1773 *pa = map->pa + (vaddr_t)va - map->va; 1774 else 1775 *pa = 0; 1776 1777 return 0; 1778 } 1779 1780 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) 1781 { 1782 if (!pa_is_in_map(map, pa, len)) 1783 return NULL; 1784 1785 return (void *)(vaddr_t)(map->va + pa - map->pa); 1786 } 1787 1788 /* 1789 * teecore gets some memory area definitions 1790 */ 1791 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s, 1792 vaddr_t *e) 1793 { 1794 struct tee_mmap_region *map = find_map_by_type(type); 1795 1796 if (map) { 1797 *s = map->va; 1798 *e = map->va + map->size; 1799 } else { 1800 *s = 0; 1801 *e = 0; 1802 } 1803 } 1804 1805 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) 1806 { 1807 struct tee_mmap_region *map = find_map_by_pa(pa); 1808 1809 if (!map) 1810 return MEM_AREA_MAXTYPE; 1811 return map->type; 1812 } 1813 1814 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1815 paddr_t pa, uint32_t attr) 1816 { 1817 assert(idx < tbl_info->num_entries); 1818 core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, 1819 idx, pa, attr); 1820 } 1821 1822 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1823 paddr_t *pa, uint32_t *attr) 1824 { 1825 assert(idx < tbl_info->num_entries); 1826 core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, 1827 idx, pa, attr); 1828 } 1829 1830 static void clear_region(struct core_mmu_table_info *tbl_info, 1831 struct tee_mmap_region *region) 1832 { 1833 unsigned int end = 0; 1834 unsigned int idx = 0; 1835 1836 /* va, len and pa should be block aligned */ 1837 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1838 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1839 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1840 1841 idx = core_mmu_va2idx(tbl_info, region->va); 1842 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1843 1844 while (idx < end) { 1845 core_mmu_set_entry(tbl_info, idx, 0, 0); 1846 idx++; 1847 } 1848 } 1849 1850 static void set_region(struct core_mmu_table_info *tbl_info, 1851 struct tee_mmap_region *region) 1852 { 1853 unsigned int end; 1854 unsigned int idx; 1855 paddr_t pa; 1856 1857 /* va, len and pa should be block aligned */ 1858 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1859 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1860 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1861 1862 idx = core_mmu_va2idx(tbl_info, region->va); 1863 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1864 pa = region->pa; 1865 1866 while (idx < end) { 1867 core_mmu_set_entry(tbl_info, idx, pa, region->attr); 1868 idx++; 1869 pa += BIT64(tbl_info->shift); 1870 } 1871 } 1872 1873 static void set_pg_region(struct core_mmu_table_info *dir_info, 1874 struct vm_region *region, struct pgt **pgt, 1875 struct core_mmu_table_info *pg_info) 1876 { 1877 struct tee_mmap_region r = { 1878 .va = region->va, 1879 .size = region->size, 1880 .attr = region->attr, 1881 }; 1882 vaddr_t end = r.va + r.size; 1883 uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; 1884 1885 while (r.va < end) { 1886 if (!pg_info->table || 1887 r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { 1888 /* 1889 * We're assigning a new translation table. 1890 */ 1891 unsigned int idx; 1892 1893 /* Virtual addresses must grow */ 1894 assert(r.va > pg_info->va_base); 1895 1896 idx = core_mmu_va2idx(dir_info, r.va); 1897 pg_info->va_base = core_mmu_idx2va(dir_info, idx); 1898 1899 /* 1900 * Advance pgt to va_base, note that we may need to 1901 * skip multiple page tables if there are large 1902 * holes in the vm map. 1903 */ 1904 while ((*pgt)->vabase < pg_info->va_base) { 1905 *pgt = SLIST_NEXT(*pgt, link); 1906 /* We should have allocated enough */ 1907 assert(*pgt); 1908 } 1909 assert((*pgt)->vabase == pg_info->va_base); 1910 pg_info->table = (*pgt)->tbl; 1911 1912 core_mmu_set_entry(dir_info, idx, 1913 virt_to_phys(pg_info->table), 1914 pgt_attr); 1915 } 1916 1917 r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), 1918 end - r.va); 1919 1920 if (!(*pgt)->populated && !mobj_is_paged(region->mobj)) { 1921 size_t granule = BIT(pg_info->shift); 1922 size_t offset = r.va - region->va + region->offset; 1923 1924 r.size = MIN(r.size, 1925 mobj_get_phys_granule(region->mobj)); 1926 r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); 1927 1928 if (mobj_get_pa(region->mobj, offset, granule, 1929 &r.pa) != TEE_SUCCESS) 1930 panic("Failed to get PA of unpaged mobj"); 1931 set_region(pg_info, &r); 1932 } 1933 r.va += r.size; 1934 } 1935 } 1936 1937 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, 1938 size_t size_left, paddr_t block_size, 1939 struct tee_mmap_region *mm) 1940 { 1941 /* VA and PA are aligned to block size at current level */ 1942 if ((vaddr | paddr) & (block_size - 1)) 1943 return false; 1944 1945 /* Remainder fits into block at current level */ 1946 if (size_left < block_size) 1947 return false; 1948 1949 /* 1950 * The required block size of the region is compatible with the 1951 * block size of the current level. 1952 */ 1953 if (mm->region_size < block_size) 1954 return false; 1955 1956 #ifdef CFG_WITH_PAGER 1957 /* 1958 * If pager is enabled, we need to map TEE RAM and the whole pager 1959 * regions with small pages only 1960 */ 1961 if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) && 1962 block_size != SMALL_PAGE_SIZE) 1963 return false; 1964 #endif 1965 1966 return true; 1967 } 1968 1969 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) 1970 { 1971 struct core_mmu_table_info tbl_info = { }; 1972 unsigned int idx = 0; 1973 vaddr_t vaddr = mm->va; 1974 paddr_t paddr = mm->pa; 1975 ssize_t size_left = mm->size; 1976 uint32_t attr = mm->attr; 1977 unsigned int level = 0; 1978 bool table_found = false; 1979 uint32_t old_attr = 0; 1980 1981 assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); 1982 if (!paddr) 1983 attr = 0; 1984 1985 while (size_left > 0) { 1986 level = CORE_MMU_BASE_TABLE_LEVEL; 1987 1988 while (true) { 1989 paddr_t block_size = 0; 1990 1991 assert(core_mmu_level_in_range(level)); 1992 1993 table_found = core_mmu_find_table(prtn, vaddr, level, 1994 &tbl_info); 1995 if (!table_found) 1996 panic("can't find table for mapping"); 1997 1998 block_size = BIT64(tbl_info.shift); 1999 2000 idx = core_mmu_va2idx(&tbl_info, vaddr); 2001 if (!can_map_at_level(paddr, vaddr, size_left, 2002 block_size, mm)) { 2003 bool secure = mm->attr & TEE_MATTR_SECURE; 2004 2005 /* 2006 * This part of the region can't be mapped at 2007 * this level. Need to go deeper. 2008 */ 2009 if (!core_mmu_entry_to_finer_grained(&tbl_info, 2010 idx, 2011 secure)) 2012 panic("Can't divide MMU entry"); 2013 level = tbl_info.next_level; 2014 continue; 2015 } 2016 2017 /* We can map part of the region at current level */ 2018 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2019 if (old_attr) 2020 panic("Page is already mapped"); 2021 2022 core_mmu_set_entry(&tbl_info, idx, paddr, attr); 2023 /* 2024 * Dynamic vaspace regions don't have a physical 2025 * address initially but we need to allocate and 2026 * initialize the translation tables now for later 2027 * updates to work properly. 2028 */ 2029 if (paddr) 2030 paddr += block_size; 2031 vaddr += block_size; 2032 size_left -= block_size; 2033 2034 break; 2035 } 2036 } 2037 } 2038 2039 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 2040 enum teecore_memtypes memtype) 2041 { 2042 TEE_Result ret; 2043 struct core_mmu_table_info tbl_info; 2044 struct tee_mmap_region *mm; 2045 unsigned int idx; 2046 uint32_t old_attr; 2047 uint32_t exceptions; 2048 vaddr_t vaddr = vstart; 2049 size_t i; 2050 bool secure; 2051 2052 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 2053 2054 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 2055 2056 if (vaddr & SMALL_PAGE_MASK) 2057 return TEE_ERROR_BAD_PARAMETERS; 2058 2059 exceptions = mmu_lock(); 2060 2061 mm = find_map_by_va((void *)vaddr); 2062 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 2063 panic("VA does not belong to any known mm region"); 2064 2065 if (!core_mmu_is_dynamic_vaspace(mm)) 2066 panic("Trying to map into static region"); 2067 2068 for (i = 0; i < num_pages; i++) { 2069 if (pages[i] & SMALL_PAGE_MASK) { 2070 ret = TEE_ERROR_BAD_PARAMETERS; 2071 goto err; 2072 } 2073 2074 while (true) { 2075 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 2076 &tbl_info)) 2077 panic("Can't find pagetable for vaddr "); 2078 2079 idx = core_mmu_va2idx(&tbl_info, vaddr); 2080 if (tbl_info.shift == SMALL_PAGE_SHIFT) 2081 break; 2082 2083 /* This is supertable. Need to divide it. */ 2084 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 2085 secure)) 2086 panic("Failed to spread pgdir on small tables"); 2087 } 2088 2089 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2090 if (old_attr) 2091 panic("Page is already mapped"); 2092 2093 core_mmu_set_entry(&tbl_info, idx, pages[i], 2094 core_mmu_type_to_attr(memtype)); 2095 vaddr += SMALL_PAGE_SIZE; 2096 } 2097 2098 /* 2099 * Make sure all the changes to translation tables are visible 2100 * before returning. TLB doesn't need to be invalidated as we are 2101 * guaranteed that there's no valid mapping in this range. 2102 */ 2103 core_mmu_table_write_barrier(); 2104 mmu_unlock(exceptions); 2105 2106 return TEE_SUCCESS; 2107 err: 2108 mmu_unlock(exceptions); 2109 2110 if (i) 2111 core_mmu_unmap_pages(vstart, i); 2112 2113 return ret; 2114 } 2115 2116 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 2117 size_t num_pages, 2118 enum teecore_memtypes memtype) 2119 { 2120 struct core_mmu_table_info tbl_info = { }; 2121 struct tee_mmap_region *mm = NULL; 2122 unsigned int idx = 0; 2123 uint32_t old_attr = 0; 2124 uint32_t exceptions = 0; 2125 vaddr_t vaddr = vstart; 2126 paddr_t paddr = pstart; 2127 size_t i = 0; 2128 bool secure = false; 2129 2130 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 2131 2132 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 2133 2134 if ((vaddr | paddr) & SMALL_PAGE_MASK) 2135 return TEE_ERROR_BAD_PARAMETERS; 2136 2137 exceptions = mmu_lock(); 2138 2139 mm = find_map_by_va((void *)vaddr); 2140 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 2141 panic("VA does not belong to any known mm region"); 2142 2143 if (!core_mmu_is_dynamic_vaspace(mm)) 2144 panic("Trying to map into static region"); 2145 2146 for (i = 0; i < num_pages; i++) { 2147 while (true) { 2148 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 2149 &tbl_info)) 2150 panic("Can't find pagetable for vaddr "); 2151 2152 idx = core_mmu_va2idx(&tbl_info, vaddr); 2153 if (tbl_info.shift == SMALL_PAGE_SHIFT) 2154 break; 2155 2156 /* This is supertable. Need to divide it. */ 2157 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 2158 secure)) 2159 panic("Failed to spread pgdir on small tables"); 2160 } 2161 2162 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2163 if (old_attr) 2164 panic("Page is already mapped"); 2165 2166 core_mmu_set_entry(&tbl_info, idx, paddr, 2167 core_mmu_type_to_attr(memtype)); 2168 paddr += SMALL_PAGE_SIZE; 2169 vaddr += SMALL_PAGE_SIZE; 2170 } 2171 2172 /* 2173 * Make sure all the changes to translation tables are visible 2174 * before returning. TLB doesn't need to be invalidated as we are 2175 * guaranteed that there's no valid mapping in this range. 2176 */ 2177 core_mmu_table_write_barrier(); 2178 mmu_unlock(exceptions); 2179 2180 return TEE_SUCCESS; 2181 } 2182 2183 static bool mem_range_is_in_vcore_free(vaddr_t vstart, size_t num_pages) 2184 { 2185 return core_is_buffer_inside(vstart, num_pages * SMALL_PAGE_SIZE, 2186 VCORE_FREE_PA, VCORE_FREE_SZ); 2187 } 2188 2189 static void maybe_remove_from_mem_map(vaddr_t vstart, size_t num_pages) 2190 { 2191 struct memory_map *mem_map = NULL; 2192 struct tee_mmap_region *mm = NULL; 2193 size_t idx = 0; 2194 vaddr_t va = 0; 2195 2196 mm = find_map_by_va((void *)vstart); 2197 if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) 2198 panic("VA does not belong to any known mm region"); 2199 2200 if (core_mmu_is_dynamic_vaspace(mm)) 2201 return; 2202 2203 if (!mem_range_is_in_vcore_free(vstart, num_pages)) 2204 panic("Trying to unmap static region"); 2205 2206 /* 2207 * We're going to remove a memory from the VCORE_FREE memory range. 2208 * Depending where the range is we may need to remove the matching 2209 * mm, peal of a bit from the start or end of the mm, or split it 2210 * into two with a whole in the middle. 2211 */ 2212 2213 va = ROUNDDOWN(vstart, SMALL_PAGE_SIZE); 2214 assert(mm->region_size == SMALL_PAGE_SIZE); 2215 2216 if (va == mm->va && mm->size == num_pages * SMALL_PAGE_SIZE) { 2217 mem_map = get_memory_map(); 2218 idx = mm - mem_map->map; 2219 assert(idx < mem_map->count); 2220 2221 rem_array_elem(mem_map->map, mem_map->count, 2222 sizeof(*mem_map->map), idx); 2223 mem_map->count--; 2224 } else if (va == mm->va) { 2225 mm->va += num_pages * SMALL_PAGE_SIZE; 2226 mm->pa += num_pages * SMALL_PAGE_SIZE; 2227 mm->size -= num_pages * SMALL_PAGE_SIZE; 2228 } else if (va + num_pages * SMALL_PAGE_SIZE == mm->va + mm->size) { 2229 mm->size -= num_pages * SMALL_PAGE_SIZE; 2230 } else { 2231 struct tee_mmap_region m = *mm; 2232 2233 mem_map = get_memory_map(); 2234 idx = mm - mem_map->map; 2235 assert(idx < mem_map->count); 2236 2237 mm->size = va - mm->va; 2238 m.va += mm->size + num_pages * SMALL_PAGE_SIZE; 2239 m.pa += mm->size + num_pages * SMALL_PAGE_SIZE; 2240 m.size -= mm->size + num_pages * SMALL_PAGE_SIZE; 2241 grow_mem_map(mem_map); 2242 ins_array_elem(mem_map->map, mem_map->count, 2243 sizeof(*mem_map->map), idx + 1, &m); 2244 } 2245 } 2246 2247 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) 2248 { 2249 struct core_mmu_table_info tbl_info; 2250 size_t i; 2251 unsigned int idx; 2252 uint32_t exceptions; 2253 2254 exceptions = mmu_lock(); 2255 2256 maybe_remove_from_mem_map(vstart, num_pages); 2257 2258 for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { 2259 if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) 2260 panic("Can't find pagetable"); 2261 2262 if (tbl_info.shift != SMALL_PAGE_SHIFT) 2263 panic("Invalid pagetable level"); 2264 2265 idx = core_mmu_va2idx(&tbl_info, vstart); 2266 core_mmu_set_entry(&tbl_info, idx, 0, 0); 2267 } 2268 tlbi_all(); 2269 2270 mmu_unlock(exceptions); 2271 } 2272 2273 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 2274 struct user_mode_ctx *uctx) 2275 { 2276 struct core_mmu_table_info pg_info = { }; 2277 struct pgt_cache *pgt_cache = &uctx->pgt_cache; 2278 struct pgt *pgt = NULL; 2279 struct pgt *p = NULL; 2280 struct vm_region *r = NULL; 2281 2282 if (TAILQ_EMPTY(&uctx->vm_info.regions)) 2283 return; /* Nothing to map */ 2284 2285 /* 2286 * Allocate all page tables in advance. 2287 */ 2288 pgt_get_all(uctx); 2289 pgt = SLIST_FIRST(pgt_cache); 2290 2291 core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL); 2292 2293 TAILQ_FOREACH(r, &uctx->vm_info.regions, link) 2294 set_pg_region(dir_info, r, &pgt, &pg_info); 2295 /* Record that the translation tables now are populated. */ 2296 SLIST_FOREACH(p, pgt_cache, link) { 2297 p->populated = true; 2298 if (p == pgt) 2299 break; 2300 } 2301 assert(p == pgt); 2302 } 2303 2304 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 2305 size_t len) 2306 { 2307 struct core_mmu_table_info tbl_info = { }; 2308 struct tee_mmap_region *res_map = NULL; 2309 struct tee_mmap_region *map = NULL; 2310 paddr_t pa = virt_to_phys(addr); 2311 size_t granule = 0; 2312 ptrdiff_t i = 0; 2313 paddr_t p = 0; 2314 size_t l = 0; 2315 2316 map = find_map_by_type_and_pa(type, pa, len); 2317 if (!map) 2318 return TEE_ERROR_GENERIC; 2319 2320 res_map = find_map_by_type(MEM_AREA_RES_VASPACE); 2321 if (!res_map) 2322 return TEE_ERROR_GENERIC; 2323 if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) 2324 return TEE_ERROR_GENERIC; 2325 granule = BIT(tbl_info.shift); 2326 2327 if (map < static_memory_map.map || 2328 map >= static_memory_map.map + static_memory_map.count) 2329 return TEE_ERROR_GENERIC; 2330 i = map - static_memory_map.map; 2331 2332 /* Check that we have a full match */ 2333 p = ROUNDDOWN2(pa, granule); 2334 l = ROUNDUP2(len + pa - p, granule); 2335 if (map->pa != p || map->size != l) 2336 return TEE_ERROR_GENERIC; 2337 2338 clear_region(&tbl_info, map); 2339 tlbi_all(); 2340 2341 /* If possible remove the va range from res_map */ 2342 if (res_map->va - map->size == map->va) { 2343 res_map->va -= map->size; 2344 res_map->size += map->size; 2345 } 2346 2347 /* Remove the entry. */ 2348 rem_array_elem(static_memory_map.map, static_memory_map.count, 2349 sizeof(*static_memory_map.map), i); 2350 static_memory_map.count--; 2351 2352 return TEE_SUCCESS; 2353 } 2354 2355 struct tee_mmap_region * 2356 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) 2357 { 2358 struct memory_map *mem_map = get_memory_map(); 2359 struct tee_mmap_region *map_found = NULL; 2360 size_t n = 0; 2361 2362 if (!len) 2363 return NULL; 2364 2365 for (n = 0; n < mem_map->count; n++) { 2366 if (mem_map->map[n].type != type) 2367 continue; 2368 2369 if (map_found) 2370 return NULL; 2371 2372 map_found = mem_map->map + n; 2373 } 2374 2375 if (!map_found || map_found->size < len) 2376 return NULL; 2377 2378 return map_found; 2379 } 2380 2381 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) 2382 { 2383 struct memory_map *mem_map = &static_memory_map; 2384 struct core_mmu_table_info tbl_info = { }; 2385 struct tee_mmap_region *map = NULL; 2386 size_t granule = 0; 2387 paddr_t p = 0; 2388 size_t l = 0; 2389 2390 if (!len) 2391 return NULL; 2392 2393 if (!core_mmu_check_end_pa(addr, len)) 2394 return NULL; 2395 2396 /* Check if the memory is already mapped */ 2397 map = find_map_by_type_and_pa(type, addr, len); 2398 if (map && pbuf_inside_map_area(addr, len, map)) 2399 return (void *)(vaddr_t)(map->va + addr - map->pa); 2400 2401 /* Find the reserved va space used for late mappings */ 2402 map = find_map_by_type(MEM_AREA_RES_VASPACE); 2403 if (!map) 2404 return NULL; 2405 2406 if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) 2407 return NULL; 2408 2409 granule = BIT64(tbl_info.shift); 2410 p = ROUNDDOWN2(addr, granule); 2411 l = ROUNDUP2(len + addr - p, granule); 2412 2413 /* Ban overflowing virtual addresses */ 2414 if (map->size < l) 2415 return NULL; 2416 2417 /* 2418 * Something is wrong, we can't fit the va range into the selected 2419 * table. The reserved va range is possibly missaligned with 2420 * granule. 2421 */ 2422 if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) 2423 return NULL; 2424 2425 if (static_memory_map.count >= static_memory_map.alloc_count) 2426 return NULL; 2427 2428 mem_map->map[mem_map->count] = (struct tee_mmap_region){ 2429 .va = map->va, 2430 .size = l, 2431 .type = type, 2432 .region_size = granule, 2433 .attr = core_mmu_type_to_attr(type), 2434 .pa = p, 2435 }; 2436 map->va += l; 2437 map->size -= l; 2438 map = mem_map->map + mem_map->count; 2439 mem_map->count++; 2440 2441 set_region(&tbl_info, map); 2442 2443 /* Make sure the new entry is visible before continuing. */ 2444 core_mmu_table_write_barrier(); 2445 2446 return (void *)(vaddr_t)(map->va + addr - map->pa); 2447 } 2448 2449 #ifdef CFG_WITH_PAGER 2450 static vaddr_t get_linear_map_end_va(void) 2451 { 2452 /* this is synced with the generic linker file kern.ld.S */ 2453 return (vaddr_t)__heap2_end; 2454 } 2455 2456 static paddr_t get_linear_map_end_pa(void) 2457 { 2458 return get_linear_map_end_va() - boot_mmu_config.map_offset; 2459 } 2460 #endif 2461 2462 #if defined(CFG_TEE_CORE_DEBUG) 2463 static void check_pa_matches_va(void *va, paddr_t pa) 2464 { 2465 TEE_Result res = TEE_ERROR_GENERIC; 2466 vaddr_t v = (vaddr_t)va; 2467 paddr_t p = 0; 2468 struct core_mmu_table_info ti __maybe_unused = { }; 2469 2470 if (core_mmu_user_va_range_is_defined()) { 2471 vaddr_t user_va_base = 0; 2472 size_t user_va_size = 0; 2473 2474 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 2475 if (v >= user_va_base && 2476 v <= (user_va_base - 1 + user_va_size)) { 2477 if (!core_mmu_user_mapping_is_active()) { 2478 if (pa) 2479 panic("issue in linear address space"); 2480 return; 2481 } 2482 2483 res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), 2484 va, &p); 2485 if (res == TEE_ERROR_NOT_SUPPORTED) 2486 return; 2487 if (res == TEE_SUCCESS && pa != p) 2488 panic("bad pa"); 2489 if (res != TEE_SUCCESS && pa) 2490 panic("false pa"); 2491 return; 2492 } 2493 } 2494 #ifdef CFG_WITH_PAGER 2495 if (is_unpaged(va)) { 2496 if (v - boot_mmu_config.map_offset != pa) 2497 panic("issue in linear address space"); 2498 return; 2499 } 2500 2501 if (tee_pager_get_table_info(v, &ti)) { 2502 uint32_t a; 2503 2504 /* 2505 * Lookups in the page table managed by the pager is 2506 * dangerous for addresses in the paged area as those pages 2507 * changes all the time. But some ranges are safe, 2508 * rw-locked areas when the page is populated for instance. 2509 */ 2510 core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); 2511 if (a & TEE_MATTR_VALID_BLOCK) { 2512 paddr_t mask = BIT64(ti.shift) - 1; 2513 2514 p |= v & mask; 2515 if (pa != p) 2516 panic(); 2517 } else { 2518 if (pa) 2519 panic(); 2520 } 2521 return; 2522 } 2523 #endif 2524 2525 if (!core_va2pa_helper(va, &p)) { 2526 /* Verfiy only the static mapping (case non null phys addr) */ 2527 if (p && pa != p) { 2528 DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, 2529 va, p, pa); 2530 panic(); 2531 } 2532 } else { 2533 if (pa) { 2534 DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); 2535 panic(); 2536 } 2537 } 2538 } 2539 #else 2540 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) 2541 { 2542 } 2543 #endif 2544 2545 paddr_t virt_to_phys(void *va) 2546 { 2547 paddr_t pa = 0; 2548 2549 if (!arch_va2pa_helper(va, &pa)) 2550 pa = 0; 2551 check_pa_matches_va(memtag_strip_tag(va), pa); 2552 return pa; 2553 } 2554 2555 /* 2556 * Don't use check_va_matches_pa() for RISC-V, as its callee 2557 * arch_va2pa_helper() will call it eventually, this creates 2558 * indirect recursion and can lead to a stack overflow. 2559 * Moreover, if arch_va2pa_helper() returns true, it implies 2560 * the va2pa mapping is matched, no need to check it again. 2561 */ 2562 #if defined(CFG_TEE_CORE_DEBUG) && !defined(__riscv) 2563 static void check_va_matches_pa(paddr_t pa, void *va) 2564 { 2565 paddr_t p = 0; 2566 2567 if (!va) 2568 return; 2569 2570 p = virt_to_phys(va); 2571 if (p != pa) { 2572 DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); 2573 panic(); 2574 } 2575 } 2576 #else 2577 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) 2578 { 2579 } 2580 #endif 2581 2582 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) 2583 { 2584 if (!core_mmu_user_mapping_is_active()) 2585 return NULL; 2586 2587 return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); 2588 } 2589 2590 #ifdef CFG_WITH_PAGER 2591 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2592 { 2593 paddr_t end_pa = 0; 2594 2595 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 2596 return NULL; 2597 2598 if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) { 2599 if (end_pa > get_linear_map_end_pa()) 2600 return NULL; 2601 return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset); 2602 } 2603 2604 return tee_pager_phys_to_virt(pa, len); 2605 } 2606 #else 2607 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2608 { 2609 struct tee_mmap_region *mmap = NULL; 2610 2611 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); 2612 if (!mmap) 2613 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); 2614 if (!mmap) 2615 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); 2616 if (!mmap) 2617 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); 2618 if (!mmap) 2619 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); 2620 if (!mmap) 2621 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); 2622 2623 /* 2624 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only 2625 * used with pager and not needed here. 2626 */ 2627 return map_pa2va(mmap, pa, len); 2628 } 2629 #endif 2630 2631 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) 2632 { 2633 void *va = NULL; 2634 2635 switch (m) { 2636 case MEM_AREA_TS_VASPACE: 2637 va = phys_to_virt_ts_vaspace(pa, len); 2638 break; 2639 case MEM_AREA_TEE_RAM: 2640 case MEM_AREA_TEE_RAM_RX: 2641 case MEM_AREA_TEE_RAM_RO: 2642 case MEM_AREA_TEE_RAM_RW: 2643 case MEM_AREA_NEX_RAM_RO: 2644 case MEM_AREA_NEX_RAM_RW: 2645 va = phys_to_virt_tee_ram(pa, len); 2646 break; 2647 case MEM_AREA_SHM_VASPACE: 2648 case MEM_AREA_NEX_DYN_VASPACE: 2649 case MEM_AREA_TEE_DYN_VASPACE: 2650 /* Find VA from PA in dynamic SHM is not yet supported */ 2651 va = NULL; 2652 break; 2653 default: 2654 va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); 2655 } 2656 if (m != MEM_AREA_SEC_RAM_OVERALL) 2657 check_va_matches_pa(pa, va); 2658 return va; 2659 } 2660 2661 void *phys_to_virt_io(paddr_t pa, size_t len) 2662 { 2663 struct tee_mmap_region *map = NULL; 2664 void *va = NULL; 2665 2666 map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); 2667 if (!map) 2668 map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); 2669 if (!map) 2670 return NULL; 2671 va = map_pa2va(map, pa, len); 2672 check_va_matches_pa(pa, va); 2673 return va; 2674 } 2675 2676 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) 2677 { 2678 if (cpu_mmu_enabled()) 2679 return (vaddr_t)phys_to_virt(pa, type, len); 2680 2681 return (vaddr_t)pa; 2682 } 2683 2684 #ifdef CFG_WITH_PAGER 2685 bool is_unpaged(const void *va) 2686 { 2687 vaddr_t v = (vaddr_t)va; 2688 2689 return v >= VCORE_START_VA && v < get_linear_map_end_va(); 2690 } 2691 #endif 2692 2693 #ifdef CFG_NS_VIRTUALIZATION 2694 bool is_nexus(const void *va) 2695 { 2696 vaddr_t v = (vaddr_t)va; 2697 2698 return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ; 2699 } 2700 #endif 2701 2702 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) 2703 { 2704 assert(p->pa); 2705 if (cpu_mmu_enabled()) { 2706 if (!p->va) 2707 p->va = (vaddr_t)phys_to_virt_io(p->pa, len); 2708 assert(p->va); 2709 return p->va; 2710 } 2711 return p->pa; 2712 } 2713 2714 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) 2715 { 2716 assert(p->pa); 2717 if (cpu_mmu_enabled()) { 2718 if (!p->va) 2719 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, 2720 len); 2721 assert(p->va); 2722 return p->va; 2723 } 2724 return p->pa; 2725 } 2726 2727 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) 2728 { 2729 assert(p->pa); 2730 if (cpu_mmu_enabled()) { 2731 if (!p->va) 2732 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, 2733 len); 2734 assert(p->va); 2735 return p->va; 2736 } 2737 return p->pa; 2738 } 2739 2740 #ifdef CFG_CORE_RESERVED_SHM 2741 static TEE_Result teecore_init_pub_ram(void) 2742 { 2743 vaddr_t s = 0; 2744 vaddr_t e = 0; 2745 2746 /* get virtual addr/size of NSec shared mem allocated from teecore */ 2747 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); 2748 2749 if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) 2750 panic("invalid PUB RAM"); 2751 2752 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2753 if (!tee_vbuf_is_non_sec(s, e - s)) 2754 panic("PUB RAM is not non-secure"); 2755 2756 #ifdef CFG_PL310 2757 /* Allocate statically the l2cc mutex */ 2758 tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); 2759 s += sizeof(uint32_t); /* size of a pl310 mutex */ 2760 s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ 2761 #endif 2762 2763 default_nsec_shm_paddr = virt_to_phys((void *)s); 2764 default_nsec_shm_size = e - s; 2765 2766 return TEE_SUCCESS; 2767 } 2768 early_init(teecore_init_pub_ram); 2769 #endif /*CFG_CORE_RESERVED_SHM*/ 2770 2771 static void __maybe_unused carve_out_core_mem(paddr_t pa, paddr_t end_pa) 2772 { 2773 tee_mm_entry_t *mm __maybe_unused = NULL; 2774 2775 DMSG("%#"PRIxPA" .. %#"PRIxPA, pa, end_pa); 2776 mm = phys_mem_alloc2(pa, end_pa - pa); 2777 assert(mm); 2778 } 2779 2780 void core_mmu_init_phys_mem(void) 2781 { 2782 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 2783 paddr_t b1 = 0; 2784 paddr_size_t s1 = 0; 2785 2786 static_assert(ARRAY_SIZE(secure_only) <= 2); 2787 2788 if (ARRAY_SIZE(secure_only) == 2) { 2789 b1 = secure_only[1].paddr; 2790 s1 = secure_only[1].size; 2791 } 2792 virt_init_memory(&static_memory_map, secure_only[0].paddr, 2793 secure_only[0].size, b1, s1); 2794 } else { 2795 #ifdef CFG_WITH_PAGER 2796 /* 2797 * The pager uses all core memory so there's no need to add 2798 * it to the pool. 2799 */ 2800 static_assert(ARRAY_SIZE(secure_only) == 2); 2801 phys_mem_init(0, 0, secure_only[1].paddr, secure_only[1].size); 2802 #else /*!CFG_WITH_PAGER*/ 2803 size_t align = BIT(CORE_MMU_USER_CODE_SHIFT); 2804 paddr_t end_pa = 0; 2805 size_t size = 0; 2806 paddr_t ps = 0; 2807 paddr_t pa = 0; 2808 2809 static_assert(ARRAY_SIZE(secure_only) <= 2); 2810 if (ARRAY_SIZE(secure_only) == 2) { 2811 ps = secure_only[1].paddr; 2812 size = secure_only[1].size; 2813 } 2814 phys_mem_init(secure_only[0].paddr, secure_only[0].size, 2815 ps, size); 2816 2817 /* 2818 * The VCORE macros are relocatable so we need to translate 2819 * the addresses now that the MMU is enabled. 2820 */ 2821 end_pa = vaddr_to_phys(ROUNDUP2(VCORE_FREE_END_PA, 2822 align) - 1) + 1; 2823 /* Carve out the part used by OP-TEE core */ 2824 carve_out_core_mem(vaddr_to_phys(VCORE_UNPG_RX_PA), end_pa); 2825 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) { 2826 pa = vaddr_to_phys(ROUNDUP2(ASAN_MAP_PA, align)); 2827 carve_out_core_mem(pa, pa + ASAN_MAP_SZ); 2828 } 2829 2830 /* Carve out test SDP memory */ 2831 #ifdef TEE_SDP_TEST_MEM_BASE 2832 if (TEE_SDP_TEST_MEM_SIZE) { 2833 pa = TEE_SDP_TEST_MEM_BASE; 2834 carve_out_core_mem(pa, pa + TEE_SDP_TEST_MEM_SIZE); 2835 } 2836 #endif 2837 #endif /*!CFG_WITH_PAGER*/ 2838 } 2839 } 2840