1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016-2025 Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved. 6 */ 7 8 #include <assert.h> 9 #include <config.h> 10 #include <kernel/boot.h> 11 #include <kernel/dt.h> 12 #include <kernel/linker.h> 13 #include <kernel/panic.h> 14 #include <kernel/spinlock.h> 15 #include <kernel/tee_l2cc_mutex.h> 16 #include <kernel/tee_misc.h> 17 #include <kernel/tlb_helpers.h> 18 #include <kernel/user_mode_ctx.h> 19 #include <kernel/virtualization.h> 20 #include <libfdt.h> 21 #include <memtag.h> 22 #include <mm/core_memprot.h> 23 #include <mm/core_mmu.h> 24 #include <mm/mobj.h> 25 #include <mm/pgt_cache.h> 26 #include <mm/phys_mem.h> 27 #include <mm/tee_pager.h> 28 #include <mm/vm.h> 29 #include <platform_config.h> 30 #include <stdalign.h> 31 #include <string.h> 32 #include <trace.h> 33 #include <util.h> 34 35 #ifndef DEBUG_XLAT_TABLE 36 #define DEBUG_XLAT_TABLE 0 37 #endif 38 39 #define SHM_VASPACE_SIZE (1024 * 1024 * 32) 40 41 /* Virtual memory pool for core mappings */ 42 tee_mm_pool_t core_virt_mem_pool; 43 44 /* Virtual memory pool for shared memory mappings */ 45 tee_mm_pool_t core_virt_shm_pool; 46 47 #ifdef CFG_CORE_PHYS_RELOCATABLE 48 unsigned long core_mmu_tee_load_pa __nex_bss; 49 #else 50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR; 51 #endif 52 53 /* 54 * These variables are initialized before .bss is cleared. To avoid 55 * resetting them when .bss is cleared we're storing them in .data instead, 56 * even if they initially are zero. 57 */ 58 59 #ifdef CFG_CORE_RESERVED_SHM 60 /* Default NSec shared memory allocated from NSec world */ 61 unsigned long default_nsec_shm_size __nex_bss; 62 unsigned long default_nsec_shm_paddr __nex_bss; 63 #endif 64 65 static struct memory_map static_memory_map __nex_bss; 66 void (*memory_map_realloc_func)(struct memory_map *mem_map) __nex_bss; 67 68 /* Offset of the first TEE RAM mapping from start of secure RAM */ 69 static size_t tee_ram_initial_offs __nex_bss; 70 71 /* Define the platform's memory layout. */ 72 struct memaccess_area { 73 paddr_t paddr; 74 size_t size; 75 }; 76 77 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } 78 79 static struct memaccess_area secure_only[] __nex_data = { 80 #ifdef CFG_CORE_PHYS_RELOCATABLE 81 MEMACCESS_AREA(0, 0), 82 #else 83 #ifdef TRUSTED_SRAM_BASE 84 MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), 85 #endif 86 MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), 87 #endif 88 }; 89 90 static struct memaccess_area nsec_shared[] __nex_data = { 91 #ifdef CFG_CORE_RESERVED_SHM 92 MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), 93 #endif 94 }; 95 96 #if defined(CFG_SECURE_DATA_PATH) 97 static const char *tz_sdp_match = "linaro,secure-heap"; 98 static struct memaccess_area sec_sdp; 99 #ifdef CFG_TEE_SDP_MEM_BASE 100 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); 101 #endif 102 #ifdef TEE_SDP_TEST_MEM_BASE 103 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); 104 #endif 105 #endif 106 107 #ifdef CFG_CORE_RESERVED_SHM 108 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); 109 #endif 110 static unsigned int mmu_spinlock; 111 112 static uint32_t mmu_lock(void) 113 { 114 return cpu_spin_lock_xsave(&mmu_spinlock); 115 } 116 117 static void mmu_unlock(uint32_t exceptions) 118 { 119 cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); 120 } 121 122 static void heap_realloc_memory_map(struct memory_map *mem_map) 123 { 124 struct tee_mmap_region *m = NULL; 125 struct tee_mmap_region *old = mem_map->map; 126 size_t old_sz = sizeof(*old) * mem_map->alloc_count; 127 size_t sz = old_sz + sizeof(*m); 128 129 assert(nex_malloc_buffer_is_within_alloced(old, old_sz)); 130 m = nex_realloc(old, sz); 131 if (!m) 132 panic(); 133 mem_map->map = m; 134 mem_map->alloc_count++; 135 } 136 137 static void boot_mem_realloc_memory_map(struct memory_map *mem_map) 138 { 139 struct tee_mmap_region *m = NULL; 140 struct tee_mmap_region *old = mem_map->map; 141 size_t old_sz = sizeof(*old) * mem_map->alloc_count; 142 size_t sz = old_sz * 2; 143 144 m = boot_mem_alloc_tmp(sz, alignof(*m)); 145 memcpy(m, old, old_sz); 146 mem_map->map = m; 147 mem_map->alloc_count *= 2; 148 } 149 150 static void grow_mem_map(struct memory_map *mem_map) 151 { 152 if (mem_map->count == mem_map->alloc_count) { 153 if (!memory_map_realloc_func) { 154 EMSG("Out of entries (%zu) in mem_map", 155 mem_map->alloc_count); 156 panic(); 157 } 158 memory_map_realloc_func(mem_map); 159 } 160 mem_map->count++; 161 } 162 163 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size) 164 { 165 /* 166 * The first range is always used to cover OP-TEE core memory, but 167 * depending on configuration it may cover more than that. 168 */ 169 *base = secure_only[0].paddr; 170 *size = secure_only[0].size; 171 } 172 173 void core_mmu_set_secure_memory(paddr_t base, size_t size) 174 { 175 #ifdef CFG_CORE_PHYS_RELOCATABLE 176 static_assert(ARRAY_SIZE(secure_only) == 1); 177 #endif 178 runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)); 179 assert(!secure_only[0].size); 180 assert(base && size); 181 182 DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size); 183 secure_only[0].paddr = base; 184 secure_only[0].size = size; 185 } 186 187 static struct memory_map *get_memory_map(void) 188 { 189 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 190 struct memory_map *map = virt_get_memory_map(); 191 192 if (map) 193 return map; 194 } 195 196 return &static_memory_map; 197 } 198 199 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, 200 paddr_t pa, size_t size) 201 { 202 size_t n; 203 204 for (n = 0; n < alen; n++) 205 if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) 206 return true; 207 return false; 208 } 209 210 #define pbuf_intersects(a, pa, size) \ 211 _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) 212 213 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, 214 paddr_t pa, size_t size) 215 { 216 size_t n; 217 218 for (n = 0; n < alen; n++) 219 if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) 220 return true; 221 return false; 222 } 223 224 #define pbuf_is_inside(a, pa, size) \ 225 _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) 226 227 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) 228 { 229 paddr_t end_pa = 0; 230 231 if (!map) 232 return false; 233 234 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 235 return false; 236 237 return (pa >= map->pa && end_pa <= map->pa + map->size - 1); 238 } 239 240 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) 241 { 242 if (!map) 243 return false; 244 return (va >= map->va && va <= (map->va + map->size - 1)); 245 } 246 247 /* check if target buffer fits in a core default map area */ 248 static bool pbuf_inside_map_area(unsigned long p, size_t l, 249 struct tee_mmap_region *map) 250 { 251 return core_is_buffer_inside(p, l, map->pa, map->size); 252 } 253 254 TEE_Result core_mmu_for_each_map(void *ptr, 255 TEE_Result (*fn)(struct tee_mmap_region *map, 256 void *ptr)) 257 { 258 struct memory_map *mem_map = get_memory_map(); 259 TEE_Result res = TEE_SUCCESS; 260 size_t n = 0; 261 262 for (n = 0; n < mem_map->count; n++) { 263 res = fn(mem_map->map + n, ptr); 264 if (res) 265 return res; 266 } 267 268 return TEE_SUCCESS; 269 } 270 271 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) 272 { 273 struct memory_map *mem_map = get_memory_map(); 274 size_t n = 0; 275 276 for (n = 0; n < mem_map->count; n++) { 277 if (mem_map->map[n].type == type) 278 return mem_map->map + n; 279 } 280 return NULL; 281 } 282 283 static struct tee_mmap_region * 284 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) 285 { 286 struct memory_map *mem_map = get_memory_map(); 287 size_t n = 0; 288 289 for (n = 0; n < mem_map->count; n++) { 290 if (mem_map->map[n].type != type) 291 continue; 292 if (pa_is_in_map(mem_map->map + n, pa, len)) 293 return mem_map->map + n; 294 } 295 return NULL; 296 } 297 298 static struct tee_mmap_region *find_map_by_va(void *va) 299 { 300 struct memory_map *mem_map = get_memory_map(); 301 vaddr_t a = (vaddr_t)va; 302 size_t n = 0; 303 304 for (n = 0; n < mem_map->count; n++) { 305 if (a >= mem_map->map[n].va && 306 a <= (mem_map->map[n].va - 1 + mem_map->map[n].size)) 307 return mem_map->map + n; 308 } 309 310 return NULL; 311 } 312 313 static struct tee_mmap_region *find_map_by_pa(unsigned long pa) 314 { 315 struct memory_map *mem_map = get_memory_map(); 316 size_t n = 0; 317 318 for (n = 0; n < mem_map->count; n++) { 319 /* Skip unmapped regions */ 320 if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) && 321 pa >= mem_map->map[n].pa && 322 pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size)) 323 return mem_map->map + n; 324 } 325 326 return NULL; 327 } 328 329 #if defined(CFG_SECURE_DATA_PATH) 330 static bool dtb_get_sdp_region(void) 331 { 332 void *fdt = NULL; 333 int node = 0; 334 int tmp_node = 0; 335 paddr_t tmp_addr = 0; 336 size_t tmp_size = 0; 337 338 if (!IS_ENABLED(CFG_EMBED_DTB)) 339 return false; 340 341 fdt = get_embedded_dt(); 342 if (!fdt) 343 panic("No DTB found"); 344 345 node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match); 346 if (node < 0) { 347 DMSG("No %s compatible node found", tz_sdp_match); 348 return false; 349 } 350 tmp_node = node; 351 while (tmp_node >= 0) { 352 tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node, 353 tz_sdp_match); 354 if (tmp_node >= 0) 355 DMSG("Ignore SDP pool node %s, supports only 1 node", 356 fdt_get_name(fdt, tmp_node, NULL)); 357 } 358 359 if (fdt_reg_info(fdt, node, &tmp_addr, &tmp_size)) { 360 EMSG("%s: Unable to get base addr or size from DT", 361 tz_sdp_match); 362 return false; 363 } 364 365 sec_sdp.paddr = tmp_addr; 366 sec_sdp.size = tmp_size; 367 368 return true; 369 } 370 #endif 371 372 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) 373 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, 374 const struct core_mmu_phys_mem *start, 375 const struct core_mmu_phys_mem *end) 376 { 377 const struct core_mmu_phys_mem *mem; 378 379 for (mem = start; mem < end; mem++) { 380 if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) 381 return true; 382 } 383 384 return false; 385 } 386 #endif 387 388 #ifdef CFG_CORE_DYN_SHM 389 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, 390 paddr_t pa, size_t size) 391 { 392 struct core_mmu_phys_mem *m = *mem; 393 size_t n = 0; 394 395 while (n < *nelems) { 396 if (!core_is_buffer_intersect(pa, size, m[n].addr, m[n].size)) { 397 n++; 398 continue; 399 } 400 401 if (core_is_buffer_inside(m[n].addr, m[n].size, pa, size)) { 402 /* m[n] is completely covered by pa:size */ 403 rem_array_elem(m, *nelems, sizeof(*m), n); 404 (*nelems)--; 405 m = nex_realloc(m, sizeof(*m) * *nelems); 406 if (!m) 407 panic(); 408 *mem = m; 409 continue; 410 } 411 412 if (pa > m[n].addr && 413 pa + size - 1 < m[n].addr + m[n].size - 1) { 414 /* 415 * pa:size is strictly inside m[n] range so split 416 * m[n] entry. 417 */ 418 m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); 419 if (!m) 420 panic(); 421 *mem = m; 422 (*nelems)++; 423 ins_array_elem(m, *nelems, sizeof(*m), n + 1, NULL); 424 m[n + 1].addr = pa + size; 425 m[n + 1].size = m[n].addr + m[n].size - pa - size; 426 m[n].size = pa - m[n].addr; 427 n++; 428 } else if (pa <= m[n].addr) { 429 /* 430 * pa:size is overlapping (possibly partially) at the 431 * beginning of m[n]. 432 */ 433 m[n].size = m[n].addr + m[n].size - pa - size; 434 m[n].addr = pa + size; 435 } else { 436 /* 437 * pa:size is overlapping (possibly partially) at 438 * the end of m[n]. 439 */ 440 m[n].size = pa - m[n].addr; 441 } 442 n++; 443 } 444 } 445 446 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, 447 size_t nelems, 448 struct tee_mmap_region *map) 449 { 450 size_t n; 451 452 for (n = 0; n < nelems; n++) { 453 if (!core_is_buffer_outside(start[n].addr, start[n].size, 454 map->pa, map->size)) { 455 EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ 456 ") overlaps map (type %d %#" PRIxPA ":%#zx)", 457 start[n].addr, start[n].size, 458 map->type, map->pa, map->size); 459 panic(); 460 } 461 } 462 } 463 464 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; 465 static size_t discovered_nsec_ddr_nelems __nex_bss; 466 467 static int cmp_pmem_by_addr(const void *a, const void *b) 468 { 469 const struct core_mmu_phys_mem *pmem_a = a; 470 const struct core_mmu_phys_mem *pmem_b = b; 471 472 return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); 473 } 474 475 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 476 size_t nelems) 477 { 478 struct core_mmu_phys_mem *m = start; 479 size_t num_elems = nelems; 480 struct memory_map *mem_map = &static_memory_map; 481 const struct core_mmu_phys_mem __maybe_unused *pmem; 482 size_t n = 0; 483 484 assert(!discovered_nsec_ddr_start); 485 assert(m && num_elems); 486 487 qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); 488 489 /* 490 * Non-secure shared memory and also secure data 491 * path memory are supposed to reside inside 492 * non-secure memory. Since NSEC_SHM and SDP_MEM 493 * are used for a specific purpose make holes for 494 * those memory in the normal non-secure memory. 495 * 496 * This has to be done since for instance QEMU 497 * isn't aware of which memory range in the 498 * non-secure memory is used for NSEC_SHM. 499 */ 500 501 #ifdef CFG_SECURE_DATA_PATH 502 if (dtb_get_sdp_region()) 503 carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size); 504 505 for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) 506 carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); 507 #endif 508 509 for (n = 0; n < ARRAY_SIZE(secure_only); n++) 510 carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr, 511 secure_only[n].size); 512 513 for (n = 0; n < mem_map->count; n++) { 514 switch (mem_map->map[n].type) { 515 case MEM_AREA_NSEC_SHM: 516 carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa, 517 mem_map->map[n].size); 518 break; 519 case MEM_AREA_EXT_DT: 520 case MEM_AREA_MANIFEST_DT: 521 case MEM_AREA_RAM_NSEC: 522 case MEM_AREA_RES_VASPACE: 523 case MEM_AREA_SHM_VASPACE: 524 case MEM_AREA_TS_VASPACE: 525 case MEM_AREA_PAGER_VASPACE: 526 case MEM_AREA_NEX_DYN_VASPACE: 527 case MEM_AREA_TEE_DYN_VASPACE: 528 break; 529 default: 530 check_phys_mem_is_outside(m, num_elems, 531 mem_map->map + n); 532 } 533 } 534 535 discovered_nsec_ddr_start = m; 536 discovered_nsec_ddr_nelems = num_elems; 537 538 DMSG("Non-secure RAM:"); 539 for (n = 0; n < num_elems; n++) 540 DMSG("%zu: pa %#"PRIxPA"..%#"PRIxPA" sz %#"PRIxPASZ, 541 n, m[n].addr, m[n].addr + m[n].size - 1, m[n].size); 542 543 if (!core_mmu_check_end_pa(m[num_elems - 1].addr, 544 m[num_elems - 1].size)) 545 panic(); 546 } 547 548 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, 549 const struct core_mmu_phys_mem **end) 550 { 551 if (!discovered_nsec_ddr_start) 552 return false; 553 554 *start = discovered_nsec_ddr_start; 555 *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; 556 557 return true; 558 } 559 560 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) 561 { 562 const struct core_mmu_phys_mem *start; 563 const struct core_mmu_phys_mem *end; 564 565 if (!get_discovered_nsec_ddr(&start, &end)) 566 return false; 567 568 return pbuf_is_special_mem(pbuf, len, start, end); 569 } 570 571 bool core_mmu_nsec_ddr_is_defined(void) 572 { 573 const struct core_mmu_phys_mem *start; 574 const struct core_mmu_phys_mem *end; 575 576 if (!get_discovered_nsec_ddr(&start, &end)) 577 return false; 578 579 return start != end; 580 } 581 #else 582 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) 583 { 584 return false; 585 } 586 #endif /*CFG_CORE_DYN_SHM*/ 587 588 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ 589 EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ 590 pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) 591 592 #ifdef CFG_SECURE_DATA_PATH 593 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) 594 { 595 bool is_sdp_mem = false; 596 597 if (sec_sdp.size) 598 is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr, 599 sec_sdp.size); 600 601 if (!is_sdp_mem) 602 is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, 603 phys_sdp_mem_end); 604 605 if (!is_sdp_mem) { 606 struct mobj *m = mobj_protmem_get_by_pa(pbuf, len); 607 608 if (!m) 609 m = mobj_ffa_protmem_get_by_pa(pbuf, len); 610 if (m) { 611 mobj_put(m); 612 is_sdp_mem = true; 613 } 614 } 615 616 return is_sdp_mem; 617 } 618 619 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size) 620 { 621 struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED, 622 CORE_MEM_SDP_MEM); 623 624 if (!mobj) 625 panic("can't create SDP physical memory object"); 626 627 return mobj; 628 } 629 630 struct mobj **core_sdp_mem_create_mobjs(void) 631 { 632 const struct core_mmu_phys_mem *mem = NULL; 633 struct mobj **mobj_base = NULL; 634 struct mobj **mobj = NULL; 635 int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; 636 637 if (sec_sdp.size) 638 cnt++; 639 640 /* SDP mobjs table must end with a NULL entry */ 641 mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); 642 if (!mobj_base) 643 panic("Out of memory"); 644 645 mobj = mobj_base; 646 647 for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++) 648 *mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size); 649 650 if (sec_sdp.size) 651 *mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size); 652 653 return mobj_base; 654 } 655 656 #else /* CFG_SECURE_DATA_PATH */ 657 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) 658 { 659 return false; 660 } 661 662 #endif /* CFG_SECURE_DATA_PATH */ 663 664 /* Check special memories comply with registered memories */ 665 static void verify_special_mem_areas(struct memory_map *mem_map, 666 const struct core_mmu_phys_mem *start, 667 const struct core_mmu_phys_mem *end, 668 const char *area_name __maybe_unused) 669 { 670 const struct core_mmu_phys_mem *mem = NULL; 671 const struct core_mmu_phys_mem *mem2 = NULL; 672 size_t n = 0; 673 674 if (start == end) { 675 DMSG("No %s memory area defined", area_name); 676 return; 677 } 678 679 for (mem = start; mem < end; mem++) 680 DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", 681 area_name, mem->addr, (uint64_t)mem->addr + mem->size); 682 683 /* Check memories do not intersect each other */ 684 for (mem = start; mem + 1 < end; mem++) { 685 for (mem2 = mem + 1; mem2 < end; mem2++) { 686 if (core_is_buffer_intersect(mem2->addr, mem2->size, 687 mem->addr, mem->size)) { 688 MSG_MEM_INSTERSECT(mem2->addr, mem2->size, 689 mem->addr, mem->size); 690 panic("Special memory intersection"); 691 } 692 } 693 } 694 695 /* 696 * Check memories do not intersect any mapped memory. 697 * This is called before reserved VA space is loaded in mem_map. 698 */ 699 for (mem = start; mem < end; mem++) { 700 for (n = 0; n < mem_map->count; n++) { 701 #ifdef TEE_SDP_TEST_MEM_BASE 702 /* 703 * Ignore MEM_AREA_SEC_RAM_OVERALL since it covers 704 * TEE_SDP_TEST_MEM too. 705 */ 706 if (mem->addr == TEE_SDP_TEST_MEM_BASE && 707 mem->size == TEE_SDP_TEST_MEM_SIZE && 708 mem_map->map[n].type == MEM_AREA_SEC_RAM_OVERALL) 709 continue; 710 #endif 711 if (core_is_buffer_intersect(mem->addr, mem->size, 712 mem_map->map[n].pa, 713 mem_map->map[n].size)) { 714 MSG_MEM_INSTERSECT(mem->addr, mem->size, 715 mem_map->map[n].pa, 716 mem_map->map[n].size); 717 panic("Special memory intersection"); 718 } 719 } 720 } 721 } 722 723 static void merge_mmaps(struct tee_mmap_region *dst, 724 const struct tee_mmap_region *src) 725 { 726 paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1); 727 paddr_t pa = MIN(dst->pa, src->pa); 728 729 DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA, 730 dst->pa, dst->pa + dst->size - 1, src->pa, 731 src->pa + src->size - 1); 732 dst->pa = pa; 733 dst->size = end_pa - pa + 1; 734 } 735 736 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1, 737 const struct tee_mmap_region *r2) 738 { 739 if (r1->type != r2->type) 740 return false; 741 742 if (r1->pa == r2->pa) 743 return true; 744 745 if (r1->pa < r2->pa) 746 return r1->pa + r1->size >= r2->pa; 747 else 748 return r2->pa + r2->size >= r1->pa; 749 } 750 751 static void add_phys_mem(struct memory_map *mem_map, 752 const char *mem_name __maybe_unused, 753 enum teecore_memtypes mem_type, 754 paddr_t mem_addr, paddr_size_t mem_size) 755 { 756 size_t n = 0; 757 const struct tee_mmap_region m0 = { 758 .type = mem_type, 759 .pa = mem_addr, 760 .size = mem_size, 761 }; 762 763 if (!mem_size) /* Discard null size entries */ 764 return; 765 766 /* 767 * If some ranges of memory of the same type do overlap 768 * each others they are coalesced into one entry. To help this 769 * added entries are sorted by increasing physical. 770 * 771 * Note that it's valid to have the same physical memory as several 772 * different memory types, for instance the same device memory 773 * mapped as both secure and non-secure. This will probably not 774 * happen often in practice. 775 */ 776 DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, 777 mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size); 778 for (n = 0; n < mem_map->count; n++) { 779 if (mmaps_are_mergeable(mem_map->map + n, &m0)) { 780 merge_mmaps(mem_map->map + n, &m0); 781 /* 782 * The merged result might be mergeable with the 783 * next or previous entry. 784 */ 785 if (n + 1 < mem_map->count && 786 mmaps_are_mergeable(mem_map->map + n, 787 mem_map->map + n + 1)) { 788 merge_mmaps(mem_map->map + n, 789 mem_map->map + n + 1); 790 rem_array_elem(mem_map->map, mem_map->count, 791 sizeof(*mem_map->map), n + 1); 792 mem_map->count--; 793 } 794 if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1, 795 mem_map->map + n)) { 796 merge_mmaps(mem_map->map + n - 1, 797 mem_map->map + n); 798 rem_array_elem(mem_map->map, mem_map->count, 799 sizeof(*mem_map->map), n); 800 mem_map->count--; 801 } 802 return; 803 } 804 if (mem_type < mem_map->map[n].type || 805 (mem_type == mem_map->map[n].type && 806 mem_addr < mem_map->map[n].pa)) 807 break; /* found the spot where to insert this memory */ 808 } 809 810 grow_mem_map(mem_map); 811 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 812 n, &m0); 813 } 814 815 static void add_va_space(struct memory_map *mem_map, 816 enum teecore_memtypes type, size_t size) 817 { 818 size_t n = 0; 819 820 DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); 821 for (n = 0; n < mem_map->count; n++) { 822 if (type < mem_map->map[n].type) 823 break; 824 } 825 826 grow_mem_map(mem_map); 827 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 828 n, NULL); 829 mem_map->map[n] = (struct tee_mmap_region){ 830 .type = type, 831 .size = size, 832 }; 833 } 834 835 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) 836 { 837 const uint32_t attr = TEE_MATTR_VALID_BLOCK; 838 const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED << 839 TEE_MATTR_MEM_TYPE_SHIFT; 840 const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << 841 TEE_MATTR_MEM_TYPE_SHIFT; 842 const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << 843 TEE_MATTR_MEM_TYPE_SHIFT; 844 845 switch (t) { 846 case MEM_AREA_TEE_RAM: 847 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged; 848 case MEM_AREA_TEE_RAM_RX: 849 case MEM_AREA_INIT_RAM_RX: 850 case MEM_AREA_IDENTITY_MAP_RX: 851 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged; 852 case MEM_AREA_TEE_RAM_RO: 853 case MEM_AREA_INIT_RAM_RO: 854 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged; 855 case MEM_AREA_TEE_RAM_RW: 856 case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ 857 case MEM_AREA_NEX_RAM_RW: 858 case MEM_AREA_NEX_DYN_VASPACE: 859 case MEM_AREA_TEE_DYN_VASPACE: 860 case MEM_AREA_TEE_ASAN: 861 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 862 case MEM_AREA_TEE_COHERENT: 863 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; 864 case MEM_AREA_NSEC_SHM: 865 case MEM_AREA_NEX_NSEC_SHM: 866 return attr | TEE_MATTR_PRW | cached; 867 case MEM_AREA_MANIFEST_DT: 868 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 869 case MEM_AREA_TRANSFER_LIST: 870 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 871 case MEM_AREA_EXT_DT: 872 /* 873 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device 874 * tree as secure non-cached memory, otherwise, fall back to 875 * non-secure mapping. 876 */ 877 if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE)) 878 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | 879 noncache; 880 fallthrough; 881 case MEM_AREA_IO_NSEC: 882 return attr | TEE_MATTR_PRW | noncache; 883 case MEM_AREA_IO_SEC: 884 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; 885 case MEM_AREA_RAM_NSEC: 886 return attr | TEE_MATTR_PRW | cached; 887 case MEM_AREA_RAM_SEC: 888 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 889 case MEM_AREA_SEC_RAM_OVERALL: 890 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 891 case MEM_AREA_ROM_SEC: 892 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 893 case MEM_AREA_RES_VASPACE: 894 case MEM_AREA_SHM_VASPACE: 895 return 0; 896 case MEM_AREA_PAGER_VASPACE: 897 return TEE_MATTR_SECURE; 898 default: 899 panic("invalid type"); 900 } 901 } 902 903 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) 904 { 905 switch (mm->type) { 906 case MEM_AREA_TEE_RAM: 907 case MEM_AREA_TEE_RAM_RX: 908 case MEM_AREA_TEE_RAM_RO: 909 case MEM_AREA_TEE_RAM_RW: 910 case MEM_AREA_INIT_RAM_RX: 911 case MEM_AREA_INIT_RAM_RO: 912 case MEM_AREA_NEX_RAM_RW: 913 case MEM_AREA_NEX_RAM_RO: 914 case MEM_AREA_TEE_ASAN: 915 return true; 916 default: 917 return false; 918 } 919 } 920 921 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) 922 { 923 return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); 924 } 925 926 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) 927 { 928 return mm->region_size == CORE_MMU_PGDIR_SIZE; 929 } 930 931 static int cmp_mmap_by_lower_va(const void *a, const void *b) 932 { 933 const struct tee_mmap_region *mm_a = a; 934 const struct tee_mmap_region *mm_b = b; 935 936 return CMP_TRILEAN(mm_a->va, mm_b->va); 937 } 938 939 static void dump_mmap_table(struct memory_map *mem_map) 940 { 941 size_t n = 0; 942 943 for (n = 0; n < mem_map->count; n++) { 944 struct tee_mmap_region *map __maybe_unused = mem_map->map + n; 945 946 DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA 947 " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", 948 teecore_memtype_name(map->type), map->va, 949 map->va + map->size - 1, map->pa, 950 (paddr_t)(map->pa + map->size - 1), map->size, 951 map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); 952 } 953 } 954 955 #if DEBUG_XLAT_TABLE 956 957 static void dump_xlat_table(vaddr_t va, unsigned int level) 958 { 959 struct core_mmu_table_info tbl_info; 960 unsigned int idx = 0; 961 paddr_t pa; 962 uint32_t attr; 963 964 core_mmu_find_table(NULL, va, level, &tbl_info); 965 va = tbl_info.va_base; 966 for (idx = 0; idx < tbl_info.num_entries; idx++) { 967 core_mmu_get_entry(&tbl_info, idx, &pa, &attr); 968 if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { 969 const char *security_bit = ""; 970 971 if (core_mmu_entry_have_security_bit(attr)) { 972 if (attr & TEE_MATTR_SECURE) 973 security_bit = "S"; 974 else 975 security_bit = "NS"; 976 } 977 978 if (attr & TEE_MATTR_TABLE) { 979 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 980 " TBL:0x%010" PRIxPA " %s", 981 level * 2, "", level, va, pa, 982 security_bit); 983 dump_xlat_table(va, level + 1); 984 } else if (attr) { 985 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 986 " PA:0x%010" PRIxPA " %s-%s-%s-%s", 987 level * 2, "", level, va, pa, 988 mattr_is_cached(attr) ? "MEM" : 989 "DEV", 990 attr & TEE_MATTR_PW ? "RW" : "RO", 991 attr & TEE_MATTR_PX ? "X " : "XN", 992 security_bit); 993 } else { 994 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 995 " INVALID\n", 996 level * 2, "", level, va); 997 } 998 } 999 va += BIT64(tbl_info.shift); 1000 } 1001 } 1002 1003 #else 1004 1005 static void dump_xlat_table(vaddr_t va __unused, int level __unused) 1006 { 1007 } 1008 1009 #endif 1010 1011 /* 1012 * Reserves virtual memory space for pager usage. 1013 * 1014 * From the start of the first memory used by the link script + 1015 * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty 1016 * mapping for pager usage. This adds translation tables as needed for the 1017 * pager to operate. 1018 */ 1019 static void add_pager_vaspace(struct memory_map *mem_map) 1020 { 1021 paddr_t begin = 0; 1022 paddr_t end = 0; 1023 size_t size = 0; 1024 size_t pos = 0; 1025 size_t n = 0; 1026 1027 1028 for (n = 0; n < mem_map->count; n++) { 1029 if (map_is_tee_ram(mem_map->map + n)) { 1030 if (!begin) 1031 begin = mem_map->map[n].pa; 1032 pos = n + 1; 1033 } 1034 } 1035 1036 end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size; 1037 assert(end - begin < TEE_RAM_VA_SIZE); 1038 size = TEE_RAM_VA_SIZE - (end - begin); 1039 1040 grow_mem_map(mem_map); 1041 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 1042 n, NULL); 1043 mem_map->map[n] = (struct tee_mmap_region){ 1044 .type = MEM_AREA_PAGER_VASPACE, 1045 .size = size, 1046 .region_size = SMALL_PAGE_SIZE, 1047 .attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE), 1048 }; 1049 } 1050 1051 static void check_sec_nsec_mem_config(void) 1052 { 1053 size_t n = 0; 1054 1055 for (n = 0; n < ARRAY_SIZE(secure_only); n++) { 1056 if (pbuf_intersects(nsec_shared, secure_only[n].paddr, 1057 secure_only[n].size)) 1058 panic("Invalid memory access config: sec/nsec"); 1059 } 1060 } 1061 1062 static void collect_device_mem_ranges(struct memory_map *mem_map) 1063 { 1064 const char *compatible = "arm,ffa-manifest-device-regions"; 1065 void *fdt = get_manifest_dt(); 1066 const char *name = NULL; 1067 uint64_t page_count = 0; 1068 uint64_t base = 0; 1069 int subnode = 0; 1070 int node = 0; 1071 1072 assert(fdt); 1073 1074 node = fdt_node_offset_by_compatible(fdt, 0, compatible); 1075 if (node < 0) 1076 return; 1077 1078 fdt_for_each_subnode(subnode, fdt, node) { 1079 name = fdt_get_name(fdt, subnode, NULL); 1080 if (!name) 1081 continue; 1082 1083 if (dt_getprop_as_number(fdt, subnode, "base-address", 1084 &base)) { 1085 EMSG("Mandatory field is missing: base-address"); 1086 continue; 1087 } 1088 1089 if (base & SMALL_PAGE_MASK) { 1090 EMSG("base-address is not page aligned"); 1091 continue; 1092 } 1093 1094 if (dt_getprop_as_number(fdt, subnode, "pages-count", 1095 &page_count)) { 1096 EMSG("Mandatory field is missing: pages-count"); 1097 continue; 1098 } 1099 1100 add_phys_mem(mem_map, name, MEM_AREA_IO_SEC, 1101 base, page_count * SMALL_PAGE_SIZE); 1102 } 1103 } 1104 1105 static void collect_mem_ranges(struct memory_map *mem_map) 1106 { 1107 const struct core_mmu_phys_mem *mem = NULL; 1108 vaddr_t ram_start = secure_only[0].paddr; 1109 size_t n = 0; 1110 1111 #define ADD_PHYS_MEM(_type, _addr, _size) \ 1112 add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size)) 1113 1114 if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) { 1115 paddr_t next_pa = 0; 1116 1117 /* 1118 * Read-only and read-execute physical memory areas must 1119 * not be mapped by MEM_AREA_SEC_RAM_OVERALL, but all the 1120 * read/write should. 1121 */ 1122 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, ram_start, 1123 VCORE_UNPG_RX_PA - ram_start); 1124 assert(VCORE_UNPG_RX_PA >= ram_start); 1125 tee_ram_initial_offs = VCORE_UNPG_RX_PA - ram_start; 1126 DMSG("tee_ram_initial_offs %#zx", tee_ram_initial_offs); 1127 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, 1128 VCORE_UNPG_RX_SZ); 1129 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, 1130 VCORE_UNPG_RO_SZ); 1131 1132 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1133 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, 1134 VCORE_UNPG_RW_SZ); 1135 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA, 1136 VCORE_UNPG_RW_SZ); 1137 1138 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, 1139 VCORE_NEX_RW_SZ); 1140 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_NEX_RW_PA, 1141 VCORE_NEX_RW_SZ); 1142 1143 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_FREE_PA, 1144 VCORE_FREE_SZ); 1145 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA, 1146 VCORE_FREE_SZ); 1147 next_pa = VCORE_FREE_PA + VCORE_FREE_SZ; 1148 } else { 1149 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, 1150 VCORE_UNPG_RW_SZ); 1151 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA, 1152 VCORE_UNPG_RW_SZ); 1153 1154 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_FREE_PA, 1155 VCORE_FREE_SZ); 1156 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA, 1157 VCORE_FREE_SZ); 1158 next_pa = VCORE_FREE_PA + VCORE_FREE_SZ; 1159 } 1160 1161 if (IS_ENABLED(CFG_WITH_PAGER)) { 1162 paddr_t pa = 0; 1163 size_t sz = 0; 1164 1165 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, 1166 VCORE_INIT_RX_SZ); 1167 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, 1168 VCORE_INIT_RO_SZ); 1169 /* 1170 * Core init mapping shall cover up to end of the 1171 * physical RAM. This is required since the hash 1172 * table is appended to the binary data after the 1173 * firmware build sequence. 1174 */ 1175 pa = VCORE_INIT_RO_PA + VCORE_INIT_RO_SZ; 1176 sz = TEE_RAM_START + TEE_RAM_PH_SIZE - pa; 1177 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, pa, sz); 1178 } else { 1179 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, next_pa, 1180 secure_only[0].paddr + 1181 secure_only[0].size - next_pa); 1182 } 1183 } else { 1184 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); 1185 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr, 1186 secure_only[0].size); 1187 } 1188 1189 for (n = 1; n < ARRAY_SIZE(secure_only); n++) 1190 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr, 1191 secure_only[n].size); 1192 1193 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) 1194 ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); 1195 1196 #undef ADD_PHYS_MEM 1197 1198 /* Collect device memory info from SP manifest */ 1199 if (IS_ENABLED(CFG_CORE_SEL2_SPMC)) 1200 collect_device_mem_ranges(mem_map); 1201 1202 for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { 1203 /* Only unmapped virtual range may have a null phys addr */ 1204 assert(mem->addr || !core_mmu_type_to_attr(mem->type)); 1205 1206 add_phys_mem(mem_map, mem->name, mem->type, 1207 mem->addr, mem->size); 1208 } 1209 1210 if (IS_ENABLED(CFG_SECURE_DATA_PATH)) 1211 verify_special_mem_areas(mem_map, phys_sdp_mem_begin, 1212 phys_sdp_mem_end, "SDP"); 1213 1214 add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE); 1215 add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE); 1216 if (IS_ENABLED(CFG_DYN_CONFIG)) { 1217 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) 1218 add_va_space(mem_map, MEM_AREA_NEX_DYN_VASPACE, 1219 ROUNDUP(CFG_NEX_DYN_VASPACE_SIZE, 1220 CORE_MMU_PGDIR_SIZE)); 1221 add_va_space(mem_map, MEM_AREA_TEE_DYN_VASPACE, 1222 CFG_TEE_DYN_VASPACE_SIZE); 1223 } 1224 } 1225 1226 static void assign_mem_granularity(struct memory_map *mem_map) 1227 { 1228 size_t n = 0; 1229 1230 /* 1231 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses 1232 * SMALL_PAGE_SIZE. 1233 */ 1234 for (n = 0; n < mem_map->count; n++) { 1235 paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size; 1236 1237 if (mask & SMALL_PAGE_MASK) 1238 panic("Impossible memory alignment"); 1239 1240 if (map_is_tee_ram(mem_map->map + n)) 1241 mem_map->map[n].region_size = SMALL_PAGE_SIZE; 1242 else 1243 mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE; 1244 } 1245 } 1246 1247 static bool place_tee_ram_at_top(paddr_t paddr) 1248 { 1249 return paddr > BIT64(core_mmu_get_va_width()) / 2; 1250 } 1251 1252 /* 1253 * MMU arch driver shall override this function if it helps 1254 * optimizing the memory footprint of the address translation tables. 1255 */ 1256 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr) 1257 { 1258 return place_tee_ram_at_top(paddr); 1259 } 1260 1261 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map, 1262 bool tee_ram_at_top) 1263 { 1264 struct tee_mmap_region *map = NULL; 1265 bool va_is_nex_shared = false; 1266 bool va_is_secure = true; 1267 vaddr_t va = 0; 1268 size_t n = 0; 1269 1270 /* 1271 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y. 1272 * 0 is by design an invalid va, so return false directly. 1273 */ 1274 if (!tee_ram_va) 1275 return false; 1276 1277 /* Clear eventual previous assignments */ 1278 for (n = 0; n < mem_map->count; n++) 1279 mem_map->map[n].va = 0; 1280 1281 /* 1282 * TEE RAM regions are always aligned with region_size. 1283 * 1284 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here 1285 * since it handles virtual memory which covers the part of the ELF 1286 * that cannot fit directly into memory. 1287 */ 1288 va = tee_ram_va + tee_ram_initial_offs; 1289 for (n = 0; n < mem_map->count; n++) { 1290 map = mem_map->map + n; 1291 if (map_is_tee_ram(map) || 1292 map->type == MEM_AREA_PAGER_VASPACE) { 1293 assert(!(va & (map->region_size - 1))); 1294 assert(!(map->size & (map->region_size - 1))); 1295 map->va = va; 1296 if (ADD_OVERFLOW(va, map->size, &va)) 1297 return false; 1298 if (!core_mmu_va_is_valid(va)) 1299 return false; 1300 } 1301 } 1302 1303 if (tee_ram_at_top) { 1304 /* 1305 * Map non-tee ram regions at addresses lower than the tee 1306 * ram region. 1307 */ 1308 va = tee_ram_va; 1309 for (n = 0; n < mem_map->count; n++) { 1310 map = mem_map->map + n; 1311 map->attr = core_mmu_type_to_attr(map->type); 1312 if (map->va) 1313 continue; 1314 1315 if (!IS_ENABLED(CFG_WITH_LPAE) && 1316 va_is_secure != map_is_secure(map)) { 1317 va_is_secure = !va_is_secure; 1318 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1319 } else if (va_is_nex_shared != 1320 core_mmu_type_is_nex_shared(map->type)) { 1321 va_is_nex_shared = !va_is_nex_shared; 1322 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1323 } 1324 1325 if (SUB_OVERFLOW(va, map->size, &va)) 1326 return false; 1327 va = ROUNDDOWN2(va, map->region_size); 1328 /* 1329 * Make sure that va is aligned with pa for 1330 * efficient pgdir mapping. Basically pa & 1331 * pgdir_mask should be == va & pgdir_mask 1332 */ 1333 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1334 if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) 1335 return false; 1336 va += (map->pa - va) & CORE_MMU_PGDIR_MASK; 1337 } 1338 map->va = va; 1339 } 1340 } else { 1341 /* 1342 * Map non-tee ram regions at addresses higher than the tee 1343 * ram region. 1344 */ 1345 for (n = 0; n < mem_map->count; n++) { 1346 map = mem_map->map + n; 1347 map->attr = core_mmu_type_to_attr(map->type); 1348 if (map->va) 1349 continue; 1350 1351 if (!IS_ENABLED(CFG_WITH_LPAE) && 1352 va_is_secure != map_is_secure(map)) { 1353 va_is_secure = !va_is_secure; 1354 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1355 &va)) 1356 return false; 1357 } else if (va_is_nex_shared != 1358 core_mmu_type_is_nex_shared(map->type)) { 1359 va_is_nex_shared = !va_is_nex_shared; 1360 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1361 &va)) 1362 return false; 1363 } 1364 1365 if (ROUNDUP2_OVERFLOW(va, map->region_size, &va)) 1366 return false; 1367 /* 1368 * Make sure that va is aligned with pa for 1369 * efficient pgdir mapping. Basically pa & 1370 * pgdir_mask should be == va & pgdir_mask 1371 */ 1372 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1373 vaddr_t offs = (map->pa - va) & 1374 CORE_MMU_PGDIR_MASK; 1375 1376 if (ADD_OVERFLOW(va, offs, &va)) 1377 return false; 1378 } 1379 1380 map->va = va; 1381 if (ADD_OVERFLOW(va, map->size, &va)) 1382 return false; 1383 if (!core_mmu_va_is_valid(va)) 1384 return false; 1385 } 1386 } 1387 1388 return true; 1389 } 1390 1391 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map) 1392 { 1393 bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va); 1394 1395 /* 1396 * Check that we're not overlapping with the user VA range. 1397 */ 1398 if (IS_ENABLED(CFG_WITH_LPAE)) { 1399 /* 1400 * User VA range is supposed to be defined after these 1401 * mappings have been established. 1402 */ 1403 assert(!core_mmu_user_va_range_is_defined()); 1404 } else { 1405 vaddr_t user_va_base = 0; 1406 size_t user_va_size = 0; 1407 1408 assert(core_mmu_user_va_range_is_defined()); 1409 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 1410 if (tee_ram_va < (user_va_base + user_va_size)) 1411 return false; 1412 } 1413 1414 if (IS_ENABLED(CFG_WITH_PAGER)) { 1415 bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va); 1416 1417 /* Try whole mapping covered by a single base xlat entry */ 1418 if (prefered_dir != tee_ram_at_top && 1419 assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir)) 1420 return true; 1421 } 1422 1423 return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top); 1424 } 1425 1426 static int cmp_init_mem_map(const void *a, const void *b) 1427 { 1428 const struct tee_mmap_region *mm_a = a; 1429 const struct tee_mmap_region *mm_b = b; 1430 int rc = 0; 1431 1432 rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); 1433 if (!rc) 1434 rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); 1435 /* 1436 * 32bit MMU descriptors cannot mix secure and non-secure mapping in 1437 * the same level2 table. Hence sort secure mapping from non-secure 1438 * mapping. 1439 */ 1440 if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) 1441 rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); 1442 1443 /* 1444 * Nexus mappings shared between partitions should not be mixed 1445 * with other mappings in the same translation table. Hence sort 1446 * nexus shared mappings from other mappings. 1447 */ 1448 if (!rc) 1449 rc = CMP_TRILEAN(core_mmu_type_is_nex_shared(mm_a->type), 1450 core_mmu_type_is_nex_shared(mm_b->type)); 1451 1452 return rc; 1453 } 1454 1455 static bool mem_map_add_id_map(struct memory_map *mem_map, 1456 vaddr_t id_map_start, vaddr_t id_map_end) 1457 { 1458 vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); 1459 vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); 1460 size_t len = end - start; 1461 size_t n = 0; 1462 1463 1464 for (n = 0; n < mem_map->count; n++) 1465 if (core_is_buffer_intersect(mem_map->map[n].va, 1466 mem_map->map[n].size, start, len)) 1467 return false; 1468 1469 grow_mem_map(mem_map); 1470 mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){ 1471 .type = MEM_AREA_IDENTITY_MAP_RX, 1472 /* 1473 * Could use CORE_MMU_PGDIR_SIZE to potentially save a 1474 * translation table, at the increased risk of clashes with 1475 * the rest of the memory map. 1476 */ 1477 .region_size = SMALL_PAGE_SIZE, 1478 .pa = start, 1479 .va = start, 1480 .size = len, 1481 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1482 }; 1483 1484 return true; 1485 } 1486 1487 static struct memory_map *init_mem_map(struct memory_map *mem_map, 1488 unsigned long seed, 1489 unsigned long *ret_offs) 1490 { 1491 /* 1492 * @id_map_start and @id_map_end describes a physical memory range 1493 * that must be mapped Read-Only eXecutable at identical virtual 1494 * addresses. 1495 */ 1496 vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; 1497 vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; 1498 vaddr_t start_addr = secure_only[0].paddr; 1499 unsigned long offs = 0; 1500 1501 collect_mem_ranges(mem_map); 1502 assign_mem_granularity(mem_map); 1503 1504 /* 1505 * To ease mapping and lower use of xlat tables, sort mapping 1506 * description moving small-page regions after the pgdir regions. 1507 */ 1508 qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), 1509 cmp_init_mem_map); 1510 1511 if (IS_ENABLED(CFG_WITH_PAGER)) 1512 add_pager_vaspace(mem_map); 1513 1514 if (IS_ENABLED(CFG_CORE_ASLR) && seed) { 1515 vaddr_t ba = 0; 1516 size_t n = 0; 1517 1518 for (n = 0; n < 3; n++) { 1519 ba = arch_aslr_base_addr(start_addr, seed, n); 1520 if (assign_mem_va(ba, mem_map) && 1521 mem_map_add_id_map(mem_map, id_map_start, 1522 id_map_end)) { 1523 offs = ba - start_addr; 1524 DMSG("Mapping core at %#"PRIxVA" offs %#lx", 1525 ba, offs); 1526 goto out; 1527 } else { 1528 DMSG("Failed to map core at %#"PRIxVA, ba); 1529 } 1530 } 1531 EMSG("Failed to map core with seed %#lx", seed); 1532 } 1533 1534 if (!assign_mem_va(start_addr, mem_map)) 1535 panic(); 1536 1537 out: 1538 qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), 1539 cmp_mmap_by_lower_va); 1540 1541 dump_mmap_table(mem_map); 1542 1543 *ret_offs = offs; 1544 return mem_map; 1545 } 1546 1547 static void check_mem_map(struct memory_map *mem_map) 1548 { 1549 struct tee_mmap_region *m = NULL; 1550 size_t n = 0; 1551 1552 for (n = 0; n < mem_map->count; n++) { 1553 m = mem_map->map + n; 1554 switch (m->type) { 1555 case MEM_AREA_TEE_RAM: 1556 case MEM_AREA_TEE_RAM_RX: 1557 case MEM_AREA_TEE_RAM_RO: 1558 case MEM_AREA_TEE_RAM_RW: 1559 case MEM_AREA_INIT_RAM_RX: 1560 case MEM_AREA_INIT_RAM_RO: 1561 case MEM_AREA_NEX_RAM_RW: 1562 case MEM_AREA_NEX_RAM_RO: 1563 case MEM_AREA_IDENTITY_MAP_RX: 1564 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1565 panic("TEE_RAM can't fit in secure_only"); 1566 break; 1567 case MEM_AREA_SEC_RAM_OVERALL: 1568 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1569 panic("SEC_RAM_OVERALL can't fit in secure_only"); 1570 break; 1571 case MEM_AREA_NSEC_SHM: 1572 if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) 1573 panic("NS_SHM can't fit in nsec_shared"); 1574 break; 1575 case MEM_AREA_TEE_COHERENT: 1576 case MEM_AREA_TEE_ASAN: 1577 case MEM_AREA_IO_SEC: 1578 case MEM_AREA_IO_NSEC: 1579 case MEM_AREA_EXT_DT: 1580 case MEM_AREA_MANIFEST_DT: 1581 case MEM_AREA_TRANSFER_LIST: 1582 case MEM_AREA_RAM_SEC: 1583 case MEM_AREA_RAM_NSEC: 1584 case MEM_AREA_ROM_SEC: 1585 case MEM_AREA_RES_VASPACE: 1586 case MEM_AREA_SHM_VASPACE: 1587 case MEM_AREA_PAGER_VASPACE: 1588 case MEM_AREA_NEX_DYN_VASPACE: 1589 case MEM_AREA_TEE_DYN_VASPACE: 1590 break; 1591 default: 1592 EMSG("Uhandled memtype %d", m->type); 1593 panic(); 1594 } 1595 } 1596 } 1597 1598 /* 1599 * core_init_mmu_map() - init tee core default memory mapping 1600 * 1601 * This routine sets the static default TEE core mapping. If @seed is > 0 1602 * and configured with CFG_CORE_ASLR it will map tee core at a location 1603 * based on the seed and return the offset from the link address. 1604 * 1605 * If an error happened: core_init_mmu_map is expected to panic. 1606 * 1607 * Note: this function is weak just to make it possible to exclude it from 1608 * the unpaged area. 1609 */ 1610 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) 1611 { 1612 #ifndef CFG_NS_VIRTUALIZATION 1613 vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); 1614 #else 1615 vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, 1616 SMALL_PAGE_SIZE); 1617 #endif 1618 #ifdef CFG_DYN_CONFIG 1619 vaddr_t len = ROUNDUP(VCORE_FREE_END_PA, SMALL_PAGE_SIZE) - start; 1620 #else 1621 vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; 1622 #endif 1623 struct tee_mmap_region tmp_mmap_region = { }; 1624 struct memory_map mem_map = { }; 1625 unsigned long offs = 0; 1626 1627 if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) && 1628 (core_mmu_tee_load_pa & SMALL_PAGE_MASK)) 1629 panic("OP-TEE load address is not page aligned"); 1630 1631 check_sec_nsec_mem_config(); 1632 1633 mem_map.alloc_count = CFG_MMAP_REGIONS; 1634 mem_map.map = boot_mem_alloc_tmp(mem_map.alloc_count * 1635 sizeof(*mem_map.map), 1636 alignof(*mem_map.map)); 1637 memory_map_realloc_func = boot_mem_realloc_memory_map; 1638 1639 static_memory_map = (struct memory_map){ 1640 .map = &tmp_mmap_region, 1641 .alloc_count = 1, 1642 .count = 1, 1643 }; 1644 /* 1645 * Add a entry covering the translation tables which will be 1646 * involved in some virt_to_phys() and phys_to_virt() conversions. 1647 */ 1648 static_memory_map.map[0] = (struct tee_mmap_region){ 1649 .type = MEM_AREA_TEE_RAM, 1650 .region_size = SMALL_PAGE_SIZE, 1651 .pa = start, 1652 .va = start, 1653 .size = len, 1654 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1655 }; 1656 1657 init_mem_map(&mem_map, seed, &offs); 1658 1659 check_mem_map(&mem_map); 1660 core_init_mmu(&mem_map); 1661 dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); 1662 core_init_mmu_regs(cfg); 1663 cfg->map_offset = offs; 1664 static_memory_map = mem_map; 1665 boot_mem_add_reloc(&static_memory_map.map); 1666 } 1667 1668 void core_mmu_save_mem_map(void) 1669 { 1670 size_t alloc_count = static_memory_map.count + 5; 1671 size_t elem_sz = sizeof(*static_memory_map.map); 1672 void *p = NULL; 1673 1674 p = nex_calloc(alloc_count, elem_sz); 1675 if (!p) 1676 panic(); 1677 memcpy(p, static_memory_map.map, static_memory_map.count * elem_sz); 1678 static_memory_map.map = p; 1679 static_memory_map.alloc_count = alloc_count; 1680 memory_map_realloc_func = heap_realloc_memory_map; 1681 } 1682 1683 bool core_mmu_mattr_is_ok(uint32_t mattr) 1684 { 1685 /* 1686 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and 1687 * core_mmu_v7.c:mattr_to_texcb 1688 */ 1689 1690 switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { 1691 case TEE_MATTR_MEM_TYPE_DEV: 1692 case TEE_MATTR_MEM_TYPE_STRONGLY_O: 1693 case TEE_MATTR_MEM_TYPE_CACHED: 1694 case TEE_MATTR_MEM_TYPE_TAGGED: 1695 return true; 1696 default: 1697 return false; 1698 } 1699 } 1700 1701 /* 1702 * test attributes of target physical buffer 1703 * 1704 * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). 1705 * 1706 */ 1707 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) 1708 { 1709 struct tee_mmap_region *map; 1710 1711 /* Empty buffers complies with anything */ 1712 if (len == 0) 1713 return true; 1714 1715 switch (attr) { 1716 case CORE_MEM_SEC: 1717 return pbuf_is_inside(secure_only, pbuf, len); 1718 case CORE_MEM_NON_SEC: 1719 return pbuf_is_inside(nsec_shared, pbuf, len) || 1720 pbuf_is_nsec_ddr(pbuf, len); 1721 case CORE_MEM_TEE_RAM: 1722 return core_is_buffer_inside(pbuf, len, TEE_RAM_START, 1723 TEE_RAM_PH_SIZE); 1724 #ifdef CFG_CORE_RESERVED_SHM 1725 case CORE_MEM_NSEC_SHM: 1726 return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, 1727 TEE_SHMEM_SIZE); 1728 #endif 1729 case CORE_MEM_SDP_MEM: 1730 return pbuf_is_sdp_mem(pbuf, len); 1731 case CORE_MEM_CACHED: 1732 map = find_map_by_pa(pbuf); 1733 if (!map || !pbuf_inside_map_area(pbuf, len, map)) 1734 return false; 1735 return mattr_is_cached(map->attr); 1736 default: 1737 return false; 1738 } 1739 } 1740 1741 /* test attributes of target virtual buffer (in core mapping) */ 1742 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) 1743 { 1744 paddr_t p; 1745 1746 /* Empty buffers complies with anything */ 1747 if (len == 0) 1748 return true; 1749 1750 p = virt_to_phys((void *)vbuf); 1751 if (!p) 1752 return false; 1753 1754 return core_pbuf_is(attr, p, len); 1755 } 1756 1757 /* core_va2pa - teecore exported service */ 1758 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) 1759 { 1760 struct tee_mmap_region *map; 1761 1762 map = find_map_by_va(va); 1763 if (!va_is_in_map(map, (vaddr_t)va)) 1764 return -1; 1765 1766 /* 1767 * We can calculate PA for static map. Virtual address ranges 1768 * reserved to core dynamic mapping return a 'match' (return 0;) 1769 * together with an invalid null physical address. 1770 */ 1771 if (map->pa) 1772 *pa = map->pa + (vaddr_t)va - map->va; 1773 else 1774 *pa = 0; 1775 1776 return 0; 1777 } 1778 1779 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) 1780 { 1781 if (!pa_is_in_map(map, pa, len)) 1782 return NULL; 1783 1784 return (void *)(vaddr_t)(map->va + pa - map->pa); 1785 } 1786 1787 /* 1788 * teecore gets some memory area definitions 1789 */ 1790 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s, 1791 vaddr_t *e) 1792 { 1793 struct tee_mmap_region *map = find_map_by_type(type); 1794 1795 if (map) { 1796 *s = map->va; 1797 *e = map->va + map->size; 1798 } else { 1799 *s = 0; 1800 *e = 0; 1801 } 1802 } 1803 1804 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) 1805 { 1806 struct tee_mmap_region *map = find_map_by_pa(pa); 1807 1808 /* VA spaces have no valid PAs in the memory map */ 1809 if (!map || map->type == MEM_AREA_RES_VASPACE || 1810 map->type == MEM_AREA_SHM_VASPACE) 1811 return MEM_AREA_MAXTYPE; 1812 return map->type; 1813 } 1814 1815 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1816 paddr_t pa, uint32_t attr) 1817 { 1818 assert(idx < tbl_info->num_entries); 1819 core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, 1820 idx, pa, attr); 1821 } 1822 1823 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1824 paddr_t *pa, uint32_t *attr) 1825 { 1826 assert(idx < tbl_info->num_entries); 1827 core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, 1828 idx, pa, attr); 1829 } 1830 1831 static void clear_region(struct core_mmu_table_info *tbl_info, 1832 struct tee_mmap_region *region) 1833 { 1834 unsigned int end = 0; 1835 unsigned int idx = 0; 1836 1837 /* va, len and pa should be block aligned */ 1838 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1839 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1840 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1841 1842 idx = core_mmu_va2idx(tbl_info, region->va); 1843 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1844 1845 while (idx < end) { 1846 core_mmu_set_entry(tbl_info, idx, 0, 0); 1847 idx++; 1848 } 1849 } 1850 1851 static void set_region(struct core_mmu_table_info *tbl_info, 1852 struct tee_mmap_region *region) 1853 { 1854 unsigned int end; 1855 unsigned int idx; 1856 paddr_t pa; 1857 1858 /* va, len and pa should be block aligned */ 1859 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1860 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1861 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1862 1863 idx = core_mmu_va2idx(tbl_info, region->va); 1864 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1865 pa = region->pa; 1866 1867 while (idx < end) { 1868 core_mmu_set_entry(tbl_info, idx, pa, region->attr); 1869 idx++; 1870 pa += BIT64(tbl_info->shift); 1871 } 1872 } 1873 1874 static void set_pg_region(struct core_mmu_table_info *dir_info, 1875 struct vm_region *region, struct pgt **pgt, 1876 struct core_mmu_table_info *pg_info) 1877 { 1878 struct tee_mmap_region r = { 1879 .va = region->va, 1880 .size = region->size, 1881 .attr = region->attr, 1882 }; 1883 vaddr_t end = r.va + r.size; 1884 uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; 1885 1886 while (r.va < end) { 1887 if (!pg_info->table || 1888 r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { 1889 /* 1890 * We're assigning a new translation table. 1891 */ 1892 unsigned int idx; 1893 1894 /* Virtual addresses must grow */ 1895 assert(r.va > pg_info->va_base); 1896 1897 idx = core_mmu_va2idx(dir_info, r.va); 1898 pg_info->va_base = core_mmu_idx2va(dir_info, idx); 1899 1900 /* 1901 * Advance pgt to va_base, note that we may need to 1902 * skip multiple page tables if there are large 1903 * holes in the vm map. 1904 */ 1905 while ((*pgt)->vabase < pg_info->va_base) { 1906 *pgt = SLIST_NEXT(*pgt, link); 1907 /* We should have allocated enough */ 1908 assert(*pgt); 1909 } 1910 assert((*pgt)->vabase == pg_info->va_base); 1911 pg_info->table = (*pgt)->tbl; 1912 1913 core_mmu_set_entry(dir_info, idx, 1914 virt_to_phys(pg_info->table), 1915 pgt_attr); 1916 } 1917 1918 r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), 1919 end - r.va); 1920 1921 if (!(*pgt)->populated && !mobj_is_paged(region->mobj)) { 1922 size_t granule = BIT(pg_info->shift); 1923 size_t offset = r.va - region->va + region->offset; 1924 1925 r.size = MIN(r.size, 1926 mobj_get_phys_granule(region->mobj)); 1927 r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); 1928 1929 if (mobj_get_pa(region->mobj, offset, granule, 1930 &r.pa) != TEE_SUCCESS) 1931 panic("Failed to get PA of unpaged mobj"); 1932 set_region(pg_info, &r); 1933 } 1934 r.va += r.size; 1935 } 1936 } 1937 1938 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, 1939 size_t size_left, paddr_t block_size, 1940 struct tee_mmap_region *mm) 1941 { 1942 /* VA and PA are aligned to block size at current level */ 1943 if ((vaddr | paddr) & (block_size - 1)) 1944 return false; 1945 1946 /* Remainder fits into block at current level */ 1947 if (size_left < block_size) 1948 return false; 1949 1950 /* 1951 * The required block size of the region is compatible with the 1952 * block size of the current level. 1953 */ 1954 if (mm->region_size < block_size) 1955 return false; 1956 1957 #ifdef CFG_WITH_PAGER 1958 /* 1959 * If pager is enabled, we need to map TEE RAM and the whole pager 1960 * regions with small pages only 1961 */ 1962 if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) && 1963 block_size != SMALL_PAGE_SIZE) 1964 return false; 1965 #endif 1966 1967 return true; 1968 } 1969 1970 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) 1971 { 1972 struct core_mmu_table_info tbl_info = { }; 1973 unsigned int idx = 0; 1974 vaddr_t vaddr = mm->va; 1975 paddr_t paddr = mm->pa; 1976 ssize_t size_left = mm->size; 1977 uint32_t attr = mm->attr; 1978 unsigned int level = 0; 1979 bool table_found = false; 1980 uint32_t old_attr = 0; 1981 1982 assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); 1983 if (!paddr) 1984 attr = 0; 1985 1986 while (size_left > 0) { 1987 level = CORE_MMU_BASE_TABLE_LEVEL; 1988 1989 while (true) { 1990 paddr_t block_size = 0; 1991 1992 assert(core_mmu_level_in_range(level)); 1993 1994 table_found = core_mmu_find_table(prtn, vaddr, level, 1995 &tbl_info); 1996 if (!table_found) 1997 panic("can't find table for mapping"); 1998 1999 block_size = BIT64(tbl_info.shift); 2000 2001 idx = core_mmu_va2idx(&tbl_info, vaddr); 2002 if (!can_map_at_level(paddr, vaddr, size_left, 2003 block_size, mm)) { 2004 bool secure = mm->attr & TEE_MATTR_SECURE; 2005 2006 /* 2007 * This part of the region can't be mapped at 2008 * this level. Need to go deeper. 2009 */ 2010 if (!core_mmu_entry_to_finer_grained(&tbl_info, 2011 idx, 2012 secure)) 2013 panic("Can't divide MMU entry"); 2014 level = tbl_info.next_level; 2015 continue; 2016 } 2017 2018 /* We can map part of the region at current level */ 2019 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2020 if (old_attr) 2021 panic("Page is already mapped"); 2022 2023 core_mmu_set_entry(&tbl_info, idx, paddr, attr); 2024 /* 2025 * Dynamic vaspace regions don't have a physical 2026 * address initially but we need to allocate and 2027 * initialize the translation tables now for later 2028 * updates to work properly. 2029 */ 2030 if (paddr) 2031 paddr += block_size; 2032 vaddr += block_size; 2033 size_left -= block_size; 2034 2035 break; 2036 } 2037 } 2038 } 2039 2040 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 2041 enum teecore_memtypes memtype) 2042 { 2043 TEE_Result ret; 2044 struct core_mmu_table_info tbl_info; 2045 struct tee_mmap_region *mm; 2046 unsigned int idx; 2047 uint32_t old_attr; 2048 uint32_t exceptions; 2049 vaddr_t vaddr = vstart; 2050 size_t i; 2051 bool secure; 2052 2053 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 2054 2055 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 2056 2057 if (vaddr & SMALL_PAGE_MASK) 2058 return TEE_ERROR_BAD_PARAMETERS; 2059 2060 exceptions = mmu_lock(); 2061 2062 mm = find_map_by_va((void *)vaddr); 2063 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 2064 panic("VA does not belong to any known mm region"); 2065 2066 if (!core_mmu_is_dynamic_vaspace(mm)) 2067 panic("Trying to map into static region"); 2068 2069 for (i = 0; i < num_pages; i++) { 2070 if (pages[i] & SMALL_PAGE_MASK) { 2071 ret = TEE_ERROR_BAD_PARAMETERS; 2072 goto err; 2073 } 2074 2075 while (true) { 2076 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 2077 &tbl_info)) 2078 panic("Can't find pagetable for vaddr "); 2079 2080 idx = core_mmu_va2idx(&tbl_info, vaddr); 2081 if (tbl_info.shift == SMALL_PAGE_SHIFT) 2082 break; 2083 2084 /* This is supertable. Need to divide it. */ 2085 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 2086 secure)) 2087 panic("Failed to spread pgdir on small tables"); 2088 } 2089 2090 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2091 if (old_attr) 2092 panic("Page is already mapped"); 2093 2094 core_mmu_set_entry(&tbl_info, idx, pages[i], 2095 core_mmu_type_to_attr(memtype)); 2096 vaddr += SMALL_PAGE_SIZE; 2097 } 2098 2099 /* 2100 * Make sure all the changes to translation tables are visible 2101 * before returning. TLB doesn't need to be invalidated as we are 2102 * guaranteed that there's no valid mapping in this range. 2103 */ 2104 core_mmu_table_write_barrier(); 2105 mmu_unlock(exceptions); 2106 2107 return TEE_SUCCESS; 2108 err: 2109 mmu_unlock(exceptions); 2110 2111 if (i) 2112 core_mmu_unmap_pages(vstart, i); 2113 2114 return ret; 2115 } 2116 2117 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 2118 size_t num_pages, 2119 enum teecore_memtypes memtype) 2120 { 2121 struct core_mmu_table_info tbl_info = { }; 2122 struct tee_mmap_region *mm = NULL; 2123 unsigned int idx = 0; 2124 uint32_t old_attr = 0; 2125 uint32_t exceptions = 0; 2126 vaddr_t vaddr = vstart; 2127 paddr_t paddr = pstart; 2128 size_t i = 0; 2129 bool secure = false; 2130 2131 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 2132 2133 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 2134 2135 if ((vaddr | paddr) & SMALL_PAGE_MASK) 2136 return TEE_ERROR_BAD_PARAMETERS; 2137 2138 exceptions = mmu_lock(); 2139 2140 mm = find_map_by_va((void *)vaddr); 2141 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 2142 panic("VA does not belong to any known mm region"); 2143 2144 if (!core_mmu_is_dynamic_vaspace(mm)) 2145 panic("Trying to map into static region"); 2146 2147 for (i = 0; i < num_pages; i++) { 2148 while (true) { 2149 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 2150 &tbl_info)) 2151 panic("Can't find pagetable for vaddr "); 2152 2153 idx = core_mmu_va2idx(&tbl_info, vaddr); 2154 if (tbl_info.shift == SMALL_PAGE_SHIFT) 2155 break; 2156 2157 /* This is supertable. Need to divide it. */ 2158 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 2159 secure)) 2160 panic("Failed to spread pgdir on small tables"); 2161 } 2162 2163 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2164 if (old_attr) 2165 panic("Page is already mapped"); 2166 2167 core_mmu_set_entry(&tbl_info, idx, paddr, 2168 core_mmu_type_to_attr(memtype)); 2169 paddr += SMALL_PAGE_SIZE; 2170 vaddr += SMALL_PAGE_SIZE; 2171 } 2172 2173 /* 2174 * Make sure all the changes to translation tables are visible 2175 * before returning. TLB doesn't need to be invalidated as we are 2176 * guaranteed that there's no valid mapping in this range. 2177 */ 2178 core_mmu_table_write_barrier(); 2179 mmu_unlock(exceptions); 2180 2181 return TEE_SUCCESS; 2182 } 2183 2184 static bool mem_range_is_in_vcore_free(vaddr_t vstart, size_t num_pages) 2185 { 2186 return core_is_buffer_inside(vstart, num_pages * SMALL_PAGE_SIZE, 2187 VCORE_FREE_PA, VCORE_FREE_SZ); 2188 } 2189 2190 static void maybe_remove_from_mem_map(vaddr_t vstart, size_t num_pages) 2191 { 2192 struct memory_map *mem_map = NULL; 2193 struct tee_mmap_region *mm = NULL; 2194 size_t idx = 0; 2195 vaddr_t va = 0; 2196 2197 mm = find_map_by_va((void *)vstart); 2198 if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) 2199 panic("VA does not belong to any known mm region"); 2200 2201 if (core_mmu_is_dynamic_vaspace(mm)) 2202 return; 2203 2204 if (!mem_range_is_in_vcore_free(vstart, num_pages)) 2205 panic("Trying to unmap static region"); 2206 2207 /* 2208 * We're going to remove a memory from the VCORE_FREE memory range. 2209 * Depending where the range is we may need to remove the matching 2210 * mm, peal of a bit from the start or end of the mm, or split it 2211 * into two with a whole in the middle. 2212 */ 2213 2214 va = ROUNDDOWN(vstart, SMALL_PAGE_SIZE); 2215 assert(mm->region_size == SMALL_PAGE_SIZE); 2216 2217 if (va == mm->va && mm->size == num_pages * SMALL_PAGE_SIZE) { 2218 mem_map = get_memory_map(); 2219 idx = mm - mem_map->map; 2220 assert(idx < mem_map->count); 2221 2222 rem_array_elem(mem_map->map, mem_map->count, 2223 sizeof(*mem_map->map), idx); 2224 mem_map->count--; 2225 } else if (va == mm->va) { 2226 mm->va += num_pages * SMALL_PAGE_SIZE; 2227 mm->pa += num_pages * SMALL_PAGE_SIZE; 2228 mm->size -= num_pages * SMALL_PAGE_SIZE; 2229 } else if (va + num_pages * SMALL_PAGE_SIZE == mm->va + mm->size) { 2230 mm->size -= num_pages * SMALL_PAGE_SIZE; 2231 } else { 2232 struct tee_mmap_region m = *mm; 2233 2234 mem_map = get_memory_map(); 2235 idx = mm - mem_map->map; 2236 assert(idx < mem_map->count); 2237 2238 mm->size = va - mm->va; 2239 m.va += mm->size + num_pages * SMALL_PAGE_SIZE; 2240 m.pa += mm->size + num_pages * SMALL_PAGE_SIZE; 2241 m.size -= mm->size + num_pages * SMALL_PAGE_SIZE; 2242 grow_mem_map(mem_map); 2243 ins_array_elem(mem_map->map, mem_map->count, 2244 sizeof(*mem_map->map), idx + 1, &m); 2245 } 2246 } 2247 2248 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) 2249 { 2250 struct core_mmu_table_info tbl_info; 2251 size_t i; 2252 unsigned int idx; 2253 uint32_t exceptions; 2254 2255 exceptions = mmu_lock(); 2256 2257 maybe_remove_from_mem_map(vstart, num_pages); 2258 2259 for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { 2260 if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) 2261 panic("Can't find pagetable"); 2262 2263 if (tbl_info.shift != SMALL_PAGE_SHIFT) 2264 panic("Invalid pagetable level"); 2265 2266 idx = core_mmu_va2idx(&tbl_info, vstart); 2267 core_mmu_set_entry(&tbl_info, idx, 0, 0); 2268 } 2269 tlbi_all(); 2270 2271 mmu_unlock(exceptions); 2272 } 2273 2274 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 2275 struct user_mode_ctx *uctx) 2276 { 2277 struct core_mmu_table_info pg_info = { }; 2278 struct pgt_cache *pgt_cache = &uctx->pgt_cache; 2279 struct pgt *pgt = NULL; 2280 struct pgt *p = NULL; 2281 struct vm_region *r = NULL; 2282 2283 if (TAILQ_EMPTY(&uctx->vm_info.regions)) 2284 return; /* Nothing to map */ 2285 2286 /* 2287 * Allocate all page tables in advance. 2288 */ 2289 pgt_get_all(uctx); 2290 pgt = SLIST_FIRST(pgt_cache); 2291 2292 core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL); 2293 2294 TAILQ_FOREACH(r, &uctx->vm_info.regions, link) 2295 set_pg_region(dir_info, r, &pgt, &pg_info); 2296 /* Record that the translation tables now are populated. */ 2297 SLIST_FOREACH(p, pgt_cache, link) { 2298 p->populated = true; 2299 if (p == pgt) 2300 break; 2301 } 2302 assert(p == pgt); 2303 } 2304 2305 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 2306 size_t len) 2307 { 2308 struct core_mmu_table_info tbl_info = { }; 2309 struct tee_mmap_region *res_map = NULL; 2310 struct tee_mmap_region *map = NULL; 2311 paddr_t pa = virt_to_phys(addr); 2312 size_t granule = 0; 2313 ptrdiff_t i = 0; 2314 paddr_t p = 0; 2315 size_t l = 0; 2316 2317 map = find_map_by_type_and_pa(type, pa, len); 2318 if (!map) 2319 return TEE_ERROR_GENERIC; 2320 2321 res_map = find_map_by_type(MEM_AREA_RES_VASPACE); 2322 if (!res_map) 2323 return TEE_ERROR_GENERIC; 2324 if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) 2325 return TEE_ERROR_GENERIC; 2326 granule = BIT(tbl_info.shift); 2327 2328 if (map < static_memory_map.map || 2329 map >= static_memory_map.map + static_memory_map.count) 2330 return TEE_ERROR_GENERIC; 2331 i = map - static_memory_map.map; 2332 2333 /* Check that we have a full match */ 2334 p = ROUNDDOWN2(pa, granule); 2335 l = ROUNDUP2(len + pa - p, granule); 2336 if (map->pa != p || map->size != l) 2337 return TEE_ERROR_GENERIC; 2338 2339 clear_region(&tbl_info, map); 2340 tlbi_all(); 2341 2342 /* If possible remove the va range from res_map */ 2343 if (res_map->va - map->size == map->va) { 2344 res_map->va -= map->size; 2345 res_map->size += map->size; 2346 } 2347 2348 /* Remove the entry. */ 2349 rem_array_elem(static_memory_map.map, static_memory_map.count, 2350 sizeof(*static_memory_map.map), i); 2351 static_memory_map.count--; 2352 2353 return TEE_SUCCESS; 2354 } 2355 2356 struct tee_mmap_region * 2357 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) 2358 { 2359 struct memory_map *mem_map = get_memory_map(); 2360 struct tee_mmap_region *map_found = NULL; 2361 size_t n = 0; 2362 2363 if (!len) 2364 return NULL; 2365 2366 for (n = 0; n < mem_map->count; n++) { 2367 if (mem_map->map[n].type != type) 2368 continue; 2369 2370 if (map_found) 2371 return NULL; 2372 2373 map_found = mem_map->map + n; 2374 } 2375 2376 if (!map_found || map_found->size < len) 2377 return NULL; 2378 2379 return map_found; 2380 } 2381 2382 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) 2383 { 2384 struct memory_map *mem_map = &static_memory_map; 2385 struct core_mmu_table_info tbl_info = { }; 2386 struct tee_mmap_region *map = NULL; 2387 size_t granule = 0; 2388 paddr_t p = 0; 2389 size_t l = 0; 2390 2391 if (!len) 2392 return NULL; 2393 2394 if (!core_mmu_check_end_pa(addr, len)) 2395 return NULL; 2396 2397 /* Check if the memory is already mapped */ 2398 map = find_map_by_type_and_pa(type, addr, len); 2399 if (map && pbuf_inside_map_area(addr, len, map)) 2400 return (void *)(vaddr_t)(map->va + addr - map->pa); 2401 2402 /* Find the reserved va space used for late mappings */ 2403 map = find_map_by_type(MEM_AREA_RES_VASPACE); 2404 if (!map) 2405 return NULL; 2406 2407 if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) 2408 return NULL; 2409 2410 granule = BIT64(tbl_info.shift); 2411 p = ROUNDDOWN2(addr, granule); 2412 l = ROUNDUP2(len + addr - p, granule); 2413 2414 /* Ban overflowing virtual addresses */ 2415 if (map->size < l) 2416 return NULL; 2417 2418 /* 2419 * Something is wrong, we can't fit the va range into the selected 2420 * table. The reserved va range is possibly missaligned with 2421 * granule. 2422 */ 2423 if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) 2424 return NULL; 2425 2426 if (static_memory_map.count >= static_memory_map.alloc_count) 2427 return NULL; 2428 2429 mem_map->map[mem_map->count] = (struct tee_mmap_region){ 2430 .va = map->va, 2431 .size = l, 2432 .type = type, 2433 .region_size = granule, 2434 .attr = core_mmu_type_to_attr(type), 2435 .pa = p, 2436 }; 2437 map->va += l; 2438 map->size -= l; 2439 map = mem_map->map + mem_map->count; 2440 mem_map->count++; 2441 2442 set_region(&tbl_info, map); 2443 2444 /* Make sure the new entry is visible before continuing. */ 2445 core_mmu_table_write_barrier(); 2446 2447 return (void *)(vaddr_t)(map->va + addr - map->pa); 2448 } 2449 2450 #ifdef CFG_WITH_PAGER 2451 static vaddr_t get_linear_map_end_va(void) 2452 { 2453 /* this is synced with the generic linker file kern.ld.S */ 2454 return (vaddr_t)__heap2_end; 2455 } 2456 2457 static paddr_t get_linear_map_end_pa(void) 2458 { 2459 return get_linear_map_end_va() - boot_mmu_config.map_offset; 2460 } 2461 #endif 2462 2463 #if defined(CFG_TEE_CORE_DEBUG) 2464 static void check_pa_matches_va(void *va, paddr_t pa) 2465 { 2466 TEE_Result res = TEE_ERROR_GENERIC; 2467 vaddr_t v = (vaddr_t)va; 2468 paddr_t p = 0; 2469 struct core_mmu_table_info ti __maybe_unused = { }; 2470 2471 if (core_mmu_user_va_range_is_defined()) { 2472 vaddr_t user_va_base = 0; 2473 size_t user_va_size = 0; 2474 2475 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 2476 if (v >= user_va_base && 2477 v <= (user_va_base - 1 + user_va_size)) { 2478 if (!core_mmu_user_mapping_is_active()) { 2479 if (pa) 2480 panic("issue in linear address space"); 2481 return; 2482 } 2483 2484 res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), 2485 va, &p); 2486 if (res == TEE_ERROR_NOT_SUPPORTED) 2487 return; 2488 if (res == TEE_SUCCESS && pa != p) 2489 panic("bad pa"); 2490 if (res != TEE_SUCCESS && pa) 2491 panic("false pa"); 2492 return; 2493 } 2494 } 2495 #ifdef CFG_WITH_PAGER 2496 if (is_unpaged(va)) { 2497 if (v - boot_mmu_config.map_offset != pa) 2498 panic("issue in linear address space"); 2499 return; 2500 } 2501 2502 if (tee_pager_get_table_info(v, &ti)) { 2503 uint32_t a; 2504 2505 /* 2506 * Lookups in the page table managed by the pager is 2507 * dangerous for addresses in the paged area as those pages 2508 * changes all the time. But some ranges are safe, 2509 * rw-locked areas when the page is populated for instance. 2510 */ 2511 core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); 2512 if (a & TEE_MATTR_VALID_BLOCK) { 2513 paddr_t mask = BIT64(ti.shift) - 1; 2514 2515 p |= v & mask; 2516 if (pa != p) 2517 panic(); 2518 } else { 2519 if (pa) 2520 panic(); 2521 } 2522 return; 2523 } 2524 #endif 2525 2526 if (!core_va2pa_helper(va, &p)) { 2527 /* Verfiy only the static mapping (case non null phys addr) */ 2528 if (p && pa != p) { 2529 DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, 2530 va, p, pa); 2531 panic(); 2532 } 2533 } else { 2534 if (pa) { 2535 DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); 2536 panic(); 2537 } 2538 } 2539 } 2540 #else 2541 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) 2542 { 2543 } 2544 #endif 2545 2546 paddr_t virt_to_phys(void *va) 2547 { 2548 paddr_t pa = 0; 2549 2550 if (!arch_va2pa_helper(va, &pa)) 2551 pa = 0; 2552 check_pa_matches_va(memtag_strip_tag(va), pa); 2553 return pa; 2554 } 2555 2556 /* 2557 * Don't use check_va_matches_pa() for RISC-V, as its callee 2558 * arch_va2pa_helper() will call it eventually, this creates 2559 * indirect recursion and can lead to a stack overflow. 2560 * Moreover, if arch_va2pa_helper() returns true, it implies 2561 * the va2pa mapping is matched, no need to check it again. 2562 */ 2563 #if defined(CFG_TEE_CORE_DEBUG) && !defined(__riscv) 2564 static void check_va_matches_pa(paddr_t pa, void *va) 2565 { 2566 paddr_t p = 0; 2567 2568 if (!va) 2569 return; 2570 2571 p = virt_to_phys(va); 2572 if (p != pa) { 2573 DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); 2574 panic(); 2575 } 2576 } 2577 #else 2578 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) 2579 { 2580 } 2581 #endif 2582 2583 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) 2584 { 2585 if (!core_mmu_user_mapping_is_active()) 2586 return NULL; 2587 2588 return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); 2589 } 2590 2591 #ifdef CFG_WITH_PAGER 2592 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2593 { 2594 paddr_t end_pa = 0; 2595 2596 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 2597 return NULL; 2598 2599 if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) { 2600 if (end_pa > get_linear_map_end_pa()) 2601 return NULL; 2602 return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset); 2603 } 2604 2605 return tee_pager_phys_to_virt(pa, len); 2606 } 2607 #else 2608 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2609 { 2610 struct tee_mmap_region *mmap = NULL; 2611 2612 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); 2613 if (!mmap) 2614 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); 2615 if (!mmap) 2616 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); 2617 if (!mmap) 2618 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); 2619 if (!mmap) 2620 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); 2621 if (!mmap) 2622 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); 2623 2624 /* 2625 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only 2626 * used with pager and not needed here. 2627 */ 2628 return map_pa2va(mmap, pa, len); 2629 } 2630 #endif 2631 2632 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) 2633 { 2634 void *va = NULL; 2635 2636 switch (m) { 2637 case MEM_AREA_TS_VASPACE: 2638 va = phys_to_virt_ts_vaspace(pa, len); 2639 break; 2640 case MEM_AREA_TEE_RAM: 2641 case MEM_AREA_TEE_RAM_RX: 2642 case MEM_AREA_TEE_RAM_RO: 2643 case MEM_AREA_TEE_RAM_RW: 2644 case MEM_AREA_NEX_RAM_RO: 2645 case MEM_AREA_NEX_RAM_RW: 2646 va = phys_to_virt_tee_ram(pa, len); 2647 break; 2648 case MEM_AREA_SHM_VASPACE: 2649 case MEM_AREA_NEX_DYN_VASPACE: 2650 case MEM_AREA_TEE_DYN_VASPACE: 2651 /* Find VA from PA in dynamic SHM is not yet supported */ 2652 va = NULL; 2653 break; 2654 default: 2655 va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); 2656 } 2657 if (m != MEM_AREA_SEC_RAM_OVERALL) 2658 check_va_matches_pa(pa, va); 2659 return va; 2660 } 2661 2662 void *phys_to_virt_io(paddr_t pa, size_t len) 2663 { 2664 struct tee_mmap_region *map = NULL; 2665 void *va = NULL; 2666 2667 map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); 2668 if (!map) 2669 map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); 2670 if (!map) 2671 return NULL; 2672 va = map_pa2va(map, pa, len); 2673 check_va_matches_pa(pa, va); 2674 return va; 2675 } 2676 2677 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) 2678 { 2679 if (cpu_mmu_enabled()) 2680 return (vaddr_t)phys_to_virt(pa, type, len); 2681 2682 return (vaddr_t)pa; 2683 } 2684 2685 #ifdef CFG_WITH_PAGER 2686 bool is_unpaged(const void *va) 2687 { 2688 vaddr_t v = (vaddr_t)va; 2689 2690 return v >= VCORE_START_VA && v < get_linear_map_end_va(); 2691 } 2692 #endif 2693 2694 #ifdef CFG_NS_VIRTUALIZATION 2695 bool is_nexus(const void *va) 2696 { 2697 vaddr_t v = (vaddr_t)va; 2698 2699 return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ; 2700 } 2701 #endif 2702 2703 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) 2704 { 2705 assert(p->pa); 2706 if (cpu_mmu_enabled()) { 2707 if (!p->va) 2708 p->va = (vaddr_t)phys_to_virt_io(p->pa, len); 2709 assert(p->va); 2710 return p->va; 2711 } 2712 return p->pa; 2713 } 2714 2715 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) 2716 { 2717 assert(p->pa); 2718 if (cpu_mmu_enabled()) { 2719 if (!p->va) 2720 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, 2721 len); 2722 assert(p->va); 2723 return p->va; 2724 } 2725 return p->pa; 2726 } 2727 2728 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) 2729 { 2730 assert(p->pa); 2731 if (cpu_mmu_enabled()) { 2732 if (!p->va) 2733 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, 2734 len); 2735 assert(p->va); 2736 return p->va; 2737 } 2738 return p->pa; 2739 } 2740 2741 #ifdef CFG_CORE_RESERVED_SHM 2742 static TEE_Result teecore_init_pub_ram(void) 2743 { 2744 vaddr_t s = 0; 2745 vaddr_t e = 0; 2746 2747 /* get virtual addr/size of NSec shared mem allocated from teecore */ 2748 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); 2749 2750 if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) 2751 panic("invalid PUB RAM"); 2752 2753 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2754 if (!tee_vbuf_is_non_sec(s, e - s)) 2755 panic("PUB RAM is not non-secure"); 2756 2757 #ifdef CFG_PL310 2758 /* Allocate statically the l2cc mutex */ 2759 tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); 2760 s += sizeof(uint32_t); /* size of a pl310 mutex */ 2761 s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ 2762 #endif 2763 2764 default_nsec_shm_paddr = virt_to_phys((void *)s); 2765 default_nsec_shm_size = e - s; 2766 2767 return TEE_SUCCESS; 2768 } 2769 early_init(teecore_init_pub_ram); 2770 #endif /*CFG_CORE_RESERVED_SHM*/ 2771 2772 static void __maybe_unused carve_out_core_mem(paddr_t pa, paddr_t end_pa) 2773 { 2774 tee_mm_entry_t *mm __maybe_unused = NULL; 2775 2776 DMSG("%#"PRIxPA" .. %#"PRIxPA, pa, end_pa); 2777 mm = phys_mem_alloc2(pa, end_pa - pa); 2778 assert(mm); 2779 } 2780 2781 void core_mmu_init_phys_mem(void) 2782 { 2783 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 2784 paddr_t b1 = 0; 2785 paddr_size_t s1 = 0; 2786 2787 static_assert(ARRAY_SIZE(secure_only) <= 2); 2788 2789 if (ARRAY_SIZE(secure_only) == 2) { 2790 b1 = secure_only[1].paddr; 2791 s1 = secure_only[1].size; 2792 } 2793 virt_init_memory(&static_memory_map, secure_only[0].paddr, 2794 secure_only[0].size, b1, s1); 2795 } else { 2796 #ifdef CFG_WITH_PAGER 2797 /* 2798 * The pager uses all core memory so there's no need to add 2799 * it to the pool. 2800 */ 2801 static_assert(ARRAY_SIZE(secure_only) == 2); 2802 phys_mem_init(0, 0, secure_only[1].paddr, secure_only[1].size); 2803 #else /*!CFG_WITH_PAGER*/ 2804 size_t align = BIT(CORE_MMU_USER_CODE_SHIFT); 2805 paddr_t end_pa = 0; 2806 size_t size = 0; 2807 paddr_t ps = 0; 2808 paddr_t pa = 0; 2809 2810 static_assert(ARRAY_SIZE(secure_only) <= 2); 2811 if (ARRAY_SIZE(secure_only) == 2) { 2812 ps = secure_only[1].paddr; 2813 size = secure_only[1].size; 2814 } 2815 phys_mem_init(secure_only[0].paddr, secure_only[0].size, 2816 ps, size); 2817 2818 /* 2819 * The VCORE macros are relocatable so we need to translate 2820 * the addresses now that the MMU is enabled. 2821 */ 2822 end_pa = vaddr_to_phys(ROUNDUP2(VCORE_FREE_END_PA, 2823 align) - 1) + 1; 2824 /* Carve out the part used by OP-TEE core */ 2825 carve_out_core_mem(vaddr_to_phys(VCORE_UNPG_RX_PA), end_pa); 2826 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) { 2827 pa = vaddr_to_phys(ROUNDUP2(ASAN_MAP_PA, align)); 2828 carve_out_core_mem(pa, pa + ASAN_MAP_SZ); 2829 } 2830 2831 /* Carve out test SDP memory */ 2832 #ifdef TEE_SDP_TEST_MEM_BASE 2833 if (TEE_SDP_TEST_MEM_SIZE) { 2834 pa = TEE_SDP_TEST_MEM_BASE; 2835 carve_out_core_mem(pa, pa + TEE_SDP_TEST_MEM_SIZE); 2836 } 2837 #endif 2838 #endif /*!CFG_WITH_PAGER*/ 2839 } 2840 } 2841