xref: /optee_os/core/mm/core_mmu.c (revision 55a4d839310ce46aca79a12015ab8e1da9f110e5)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <memtag.h>
22 #include <mm/core_memprot.h>
23 #include <mm/core_mmu.h>
24 #include <mm/mobj.h>
25 #include <mm/pgt_cache.h>
26 #include <mm/phys_mem.h>
27 #include <mm/tee_pager.h>
28 #include <mm/vm.h>
29 #include <platform_config.h>
30 #include <stdalign.h>
31 #include <string.h>
32 #include <trace.h>
33 #include <util.h>
34 
35 #ifndef DEBUG_XLAT_TABLE
36 #define DEBUG_XLAT_TABLE 0
37 #endif
38 
39 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
40 
41 /* Virtual memory pool for core mappings */
42 tee_mm_pool_t core_virt_mem_pool;
43 
44 /* Virtual memory pool for shared memory mappings */
45 tee_mm_pool_t core_virt_shm_pool;
46 
47 #ifdef CFG_CORE_PHYS_RELOCATABLE
48 unsigned long core_mmu_tee_load_pa __nex_bss;
49 #else
50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
51 #endif
52 
53 /*
54  * These variables are initialized before .bss is cleared. To avoid
55  * resetting them when .bss is cleared we're storing them in .data instead,
56  * even if they initially are zero.
57  */
58 
59 #ifdef CFG_CORE_RESERVED_SHM
60 /* Default NSec shared memory allocated from NSec world */
61 unsigned long default_nsec_shm_size __nex_bss;
62 unsigned long default_nsec_shm_paddr __nex_bss;
63 #endif
64 
65 static struct tee_mmap_region static_mmap_regions[CFG_MMAP_REGIONS
66 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE)
67 						+ 1
68 #endif
69 						+ 1] __nex_bss;
70 static struct memory_map static_memory_map __nex_data = {
71 	.map = static_mmap_regions,
72 	.alloc_count = ARRAY_SIZE(static_mmap_regions),
73 };
74 
75 /* Define the platform's memory layout. */
76 struct memaccess_area {
77 	paddr_t paddr;
78 	size_t size;
79 };
80 
81 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
82 
83 static struct memaccess_area secure_only[] __nex_data = {
84 #ifdef CFG_CORE_PHYS_RELOCATABLE
85 	MEMACCESS_AREA(0, 0),
86 #else
87 #ifdef TRUSTED_SRAM_BASE
88 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
89 #endif
90 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
91 #endif
92 };
93 
94 static struct memaccess_area nsec_shared[] __nex_data = {
95 #ifdef CFG_CORE_RESERVED_SHM
96 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
97 #endif
98 };
99 
100 #if defined(CFG_SECURE_DATA_PATH)
101 static const char *tz_sdp_match = "linaro,secure-heap";
102 static struct memaccess_area sec_sdp;
103 #ifdef CFG_TEE_SDP_MEM_BASE
104 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
105 #endif
106 #ifdef TEE_SDP_TEST_MEM_BASE
107 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
108 #endif
109 #endif
110 
111 #ifdef CFG_CORE_RESERVED_SHM
112 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
113 #endif
114 static unsigned int mmu_spinlock;
115 
116 static uint32_t mmu_lock(void)
117 {
118 	return cpu_spin_lock_xsave(&mmu_spinlock);
119 }
120 
121 static void mmu_unlock(uint32_t exceptions)
122 {
123 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
124 }
125 
126 static void grow_mem_map(struct memory_map *mem_map)
127 {
128 	if (mem_map->count == mem_map->alloc_count) {
129 		EMSG("Out of entries (%zu) in mem_map", mem_map->alloc_count);
130 		panic();
131 	}
132 	mem_map->count++;
133 }
134 
135 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
136 {
137 	/*
138 	 * The first range is always used to cover OP-TEE core memory, but
139 	 * depending on configuration it may cover more than that.
140 	 */
141 	*base = secure_only[0].paddr;
142 	*size = secure_only[0].size;
143 }
144 
145 void core_mmu_set_secure_memory(paddr_t base, size_t size)
146 {
147 #ifdef CFG_CORE_PHYS_RELOCATABLE
148 	static_assert(ARRAY_SIZE(secure_only) == 1);
149 #endif
150 	runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE));
151 	assert(!secure_only[0].size);
152 	assert(base && size);
153 
154 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
155 	secure_only[0].paddr = base;
156 	secure_only[0].size = size;
157 }
158 
159 void core_mmu_get_ta_range(paddr_t *base, size_t *size)
160 {
161 	paddr_t b = 0;
162 	size_t s = 0;
163 
164 	static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE));
165 #ifdef TA_RAM_START
166 	b = TA_RAM_START;
167 	s = TA_RAM_SIZE;
168 #else
169 	static_assert(ARRAY_SIZE(secure_only) <= 2);
170 	if (ARRAY_SIZE(secure_only) == 1) {
171 		vaddr_t load_offs = 0;
172 
173 		assert(core_mmu_tee_load_pa >= secure_only[0].paddr);
174 		load_offs = core_mmu_tee_load_pa - secure_only[0].paddr;
175 
176 		assert(secure_only[0].size >
177 		       load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE);
178 		b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE;
179 		s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE -
180 		    TEE_SDP_TEST_MEM_SIZE;
181 	} else {
182 		assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE);
183 		b = secure_only[1].paddr;
184 		s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE;
185 	}
186 #endif
187 	if (base)
188 		*base = b;
189 	if (size)
190 		*size = s;
191 }
192 
193 static struct memory_map *get_memory_map(void)
194 {
195 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
196 		struct memory_map *map = virt_get_memory_map();
197 
198 		if (map)
199 			return map;
200 	}
201 
202 	return &static_memory_map;
203 }
204 
205 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
206 			     paddr_t pa, size_t size)
207 {
208 	size_t n;
209 
210 	for (n = 0; n < alen; n++)
211 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
212 			return true;
213 	return false;
214 }
215 
216 #define pbuf_intersects(a, pa, size) \
217 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
218 
219 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
220 			    paddr_t pa, size_t size)
221 {
222 	size_t n;
223 
224 	for (n = 0; n < alen; n++)
225 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
226 			return true;
227 	return false;
228 }
229 
230 #define pbuf_is_inside(a, pa, size) \
231 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
232 
233 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
234 {
235 	paddr_t end_pa = 0;
236 
237 	if (!map)
238 		return false;
239 
240 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
241 		return false;
242 
243 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
244 }
245 
246 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
247 {
248 	if (!map)
249 		return false;
250 	return (va >= map->va && va <= (map->va + map->size - 1));
251 }
252 
253 /* check if target buffer fits in a core default map area */
254 static bool pbuf_inside_map_area(unsigned long p, size_t l,
255 				 struct tee_mmap_region *map)
256 {
257 	return core_is_buffer_inside(p, l, map->pa, map->size);
258 }
259 
260 TEE_Result core_mmu_for_each_map(void *ptr,
261 				 TEE_Result (*fn)(struct tee_mmap_region *map,
262 						  void *ptr))
263 {
264 	struct memory_map *mem_map = get_memory_map();
265 	TEE_Result res = TEE_SUCCESS;
266 	size_t n = 0;
267 
268 	for (n = 0; n < mem_map->count; n++) {
269 		res = fn(mem_map->map + n, ptr);
270 		if (res)
271 			return res;
272 	}
273 
274 	return TEE_SUCCESS;
275 }
276 
277 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
278 {
279 	struct memory_map *mem_map = get_memory_map();
280 	size_t n = 0;
281 
282 	for (n = 0; n < mem_map->count; n++) {
283 		if (mem_map->map[n].type == type)
284 			return mem_map->map + n;
285 	}
286 	return NULL;
287 }
288 
289 static struct tee_mmap_region *
290 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
291 {
292 	struct memory_map *mem_map = get_memory_map();
293 	size_t n = 0;
294 
295 	for (n = 0; n < mem_map->count; n++) {
296 		if (mem_map->map[n].type != type)
297 			continue;
298 		if (pa_is_in_map(mem_map->map + n, pa, len))
299 			return mem_map->map + n;
300 	}
301 	return NULL;
302 }
303 
304 static struct tee_mmap_region *find_map_by_va(void *va)
305 {
306 	struct memory_map *mem_map = get_memory_map();
307 	vaddr_t a = (vaddr_t)va;
308 	size_t n = 0;
309 
310 	for (n = 0; n < mem_map->count; n++) {
311 		if (a >= mem_map->map[n].va &&
312 		    a <= (mem_map->map[n].va - 1 + mem_map->map[n].size))
313 			return mem_map->map + n;
314 	}
315 
316 	return NULL;
317 }
318 
319 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
320 {
321 	struct memory_map *mem_map = get_memory_map();
322 	size_t n = 0;
323 
324 	for (n = 0; n < mem_map->count; n++) {
325 		/* Skip unmapped regions */
326 		if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) &&
327 		    pa >= mem_map->map[n].pa &&
328 		    pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size))
329 			return mem_map->map + n;
330 	}
331 
332 	return NULL;
333 }
334 
335 #if defined(CFG_SECURE_DATA_PATH)
336 static bool dtb_get_sdp_region(void)
337 {
338 	void *fdt = NULL;
339 	int node = 0;
340 	int tmp_node = 0;
341 	paddr_t tmp_addr = 0;
342 	size_t tmp_size = 0;
343 
344 	if (!IS_ENABLED(CFG_EMBED_DTB))
345 		return false;
346 
347 	fdt = get_embedded_dt();
348 	if (!fdt)
349 		panic("No DTB found");
350 
351 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
352 	if (node < 0) {
353 		DMSG("No %s compatible node found", tz_sdp_match);
354 		return false;
355 	}
356 	tmp_node = node;
357 	while (tmp_node >= 0) {
358 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
359 							 tz_sdp_match);
360 		if (tmp_node >= 0)
361 			DMSG("Ignore SDP pool node %s, supports only 1 node",
362 			     fdt_get_name(fdt, tmp_node, NULL));
363 	}
364 
365 	tmp_addr = fdt_reg_base_address(fdt, node);
366 	if (tmp_addr == DT_INFO_INVALID_REG) {
367 		EMSG("%s: Unable to get base addr from DT", tz_sdp_match);
368 		return false;
369 	}
370 
371 	tmp_size = fdt_reg_size(fdt, node);
372 	if (tmp_size == DT_INFO_INVALID_REG_SIZE) {
373 		EMSG("%s: Unable to get size of base addr from DT",
374 		     tz_sdp_match);
375 		return false;
376 	}
377 
378 	sec_sdp.paddr = tmp_addr;
379 	sec_sdp.size = tmp_size;
380 
381 	return true;
382 }
383 #endif
384 
385 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
386 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
387 				const struct core_mmu_phys_mem *start,
388 				const struct core_mmu_phys_mem *end)
389 {
390 	const struct core_mmu_phys_mem *mem;
391 
392 	for (mem = start; mem < end; mem++) {
393 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
394 			return true;
395 	}
396 
397 	return false;
398 }
399 #endif
400 
401 #ifdef CFG_CORE_DYN_SHM
402 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
403 			       paddr_t pa, size_t size)
404 {
405 	struct core_mmu_phys_mem *m = *mem;
406 	size_t n = 0;
407 
408 	while (true) {
409 		if (n >= *nelems) {
410 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
411 			     pa, size);
412 			return;
413 		}
414 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
415 			break;
416 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
417 			panic();
418 		n++;
419 	}
420 
421 	if (pa == m[n].addr && size == m[n].size) {
422 		/* Remove this entry */
423 		(*nelems)--;
424 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
425 		m = nex_realloc(m, sizeof(*m) * *nelems);
426 		if (!m)
427 			panic();
428 		*mem = m;
429 	} else if (pa == m[n].addr) {
430 		m[n].addr += size;
431 		m[n].size -= size;
432 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
433 		m[n].size -= size;
434 	} else {
435 		/* Need to split the memory entry */
436 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
437 		if (!m)
438 			panic();
439 		*mem = m;
440 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
441 		(*nelems)++;
442 		m[n].size = pa - m[n].addr;
443 		m[n + 1].size -= size + m[n].size;
444 		m[n + 1].addr = pa + size;
445 	}
446 }
447 
448 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
449 				      size_t nelems,
450 				      struct tee_mmap_region *map)
451 {
452 	size_t n;
453 
454 	for (n = 0; n < nelems; n++) {
455 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
456 					    map->pa, map->size)) {
457 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
458 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
459 			     start[n].addr, start[n].size,
460 			     map->type, map->pa, map->size);
461 			panic();
462 		}
463 	}
464 }
465 
466 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
467 static size_t discovered_nsec_ddr_nelems __nex_bss;
468 
469 static int cmp_pmem_by_addr(const void *a, const void *b)
470 {
471 	const struct core_mmu_phys_mem *pmem_a = a;
472 	const struct core_mmu_phys_mem *pmem_b = b;
473 
474 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
475 }
476 
477 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
478 				      size_t nelems)
479 {
480 	struct core_mmu_phys_mem *m = start;
481 	size_t num_elems = nelems;
482 	struct memory_map *mem_map = &static_memory_map;
483 	const struct core_mmu_phys_mem __maybe_unused *pmem;
484 	size_t n = 0;
485 
486 	assert(!discovered_nsec_ddr_start);
487 	assert(m && num_elems);
488 
489 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
490 
491 	/*
492 	 * Non-secure shared memory and also secure data
493 	 * path memory are supposed to reside inside
494 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
495 	 * are used for a specific purpose make holes for
496 	 * those memory in the normal non-secure memory.
497 	 *
498 	 * This has to be done since for instance QEMU
499 	 * isn't aware of which memory range in the
500 	 * non-secure memory is used for NSEC_SHM.
501 	 */
502 
503 #ifdef CFG_SECURE_DATA_PATH
504 	if (dtb_get_sdp_region())
505 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
506 
507 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
508 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
509 #endif
510 
511 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
512 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
513 				   secure_only[n].size);
514 
515 	for  (n = 0; n < mem_map->count; n++) {
516 		switch (mem_map->map[n].type) {
517 		case MEM_AREA_NSEC_SHM:
518 			carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa,
519 					   mem_map->map[n].size);
520 			break;
521 		case MEM_AREA_EXT_DT:
522 		case MEM_AREA_MANIFEST_DT:
523 		case MEM_AREA_RAM_NSEC:
524 		case MEM_AREA_RES_VASPACE:
525 		case MEM_AREA_SHM_VASPACE:
526 		case MEM_AREA_TS_VASPACE:
527 		case MEM_AREA_PAGER_VASPACE:
528 			break;
529 		default:
530 			check_phys_mem_is_outside(m, num_elems,
531 						  mem_map->map + n);
532 		}
533 	}
534 
535 	discovered_nsec_ddr_start = m;
536 	discovered_nsec_ddr_nelems = num_elems;
537 
538 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
539 				   m[num_elems - 1].size))
540 		panic();
541 }
542 
543 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
544 				    const struct core_mmu_phys_mem **end)
545 {
546 	if (!discovered_nsec_ddr_start)
547 		return false;
548 
549 	*start = discovered_nsec_ddr_start;
550 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
551 
552 	return true;
553 }
554 
555 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
556 {
557 	const struct core_mmu_phys_mem *start;
558 	const struct core_mmu_phys_mem *end;
559 
560 	if (!get_discovered_nsec_ddr(&start, &end))
561 		return false;
562 
563 	return pbuf_is_special_mem(pbuf, len, start, end);
564 }
565 
566 bool core_mmu_nsec_ddr_is_defined(void)
567 {
568 	const struct core_mmu_phys_mem *start;
569 	const struct core_mmu_phys_mem *end;
570 
571 	if (!get_discovered_nsec_ddr(&start, &end))
572 		return false;
573 
574 	return start != end;
575 }
576 #else
577 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
578 {
579 	return false;
580 }
581 #endif /*CFG_CORE_DYN_SHM*/
582 
583 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
584 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
585 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
586 
587 #ifdef CFG_SECURE_DATA_PATH
588 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
589 {
590 	bool is_sdp_mem = false;
591 
592 	if (sec_sdp.size)
593 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
594 						   sec_sdp.size);
595 
596 	if (!is_sdp_mem)
597 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
598 						 phys_sdp_mem_end);
599 
600 	return is_sdp_mem;
601 }
602 
603 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
604 {
605 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
606 					    CORE_MEM_SDP_MEM);
607 
608 	if (!mobj)
609 		panic("can't create SDP physical memory object");
610 
611 	return mobj;
612 }
613 
614 struct mobj **core_sdp_mem_create_mobjs(void)
615 {
616 	const struct core_mmu_phys_mem *mem = NULL;
617 	struct mobj **mobj_base = NULL;
618 	struct mobj **mobj = NULL;
619 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
620 
621 	if (sec_sdp.size)
622 		cnt++;
623 
624 	/* SDP mobjs table must end with a NULL entry */
625 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
626 	if (!mobj_base)
627 		panic("Out of memory");
628 
629 	mobj = mobj_base;
630 
631 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
632 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
633 
634 	if (sec_sdp.size)
635 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
636 
637 	return mobj_base;
638 }
639 
640 #else /* CFG_SECURE_DATA_PATH */
641 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
642 {
643 	return false;
644 }
645 
646 #endif /* CFG_SECURE_DATA_PATH */
647 
648 /* Check special memories comply with registered memories */
649 static void verify_special_mem_areas(struct memory_map *mem_map,
650 				     const struct core_mmu_phys_mem *start,
651 				     const struct core_mmu_phys_mem *end,
652 				     const char *area_name __maybe_unused)
653 {
654 	const struct core_mmu_phys_mem *mem = NULL;
655 	const struct core_mmu_phys_mem *mem2 = NULL;
656 	size_t n = 0;
657 
658 	if (start == end) {
659 		DMSG("No %s memory area defined", area_name);
660 		return;
661 	}
662 
663 	for (mem = start; mem < end; mem++)
664 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
665 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
666 
667 	/* Check memories do not intersect each other */
668 	for (mem = start; mem + 1 < end; mem++) {
669 		for (mem2 = mem + 1; mem2 < end; mem2++) {
670 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
671 						     mem->addr, mem->size)) {
672 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
673 						   mem->addr, mem->size);
674 				panic("Special memory intersection");
675 			}
676 		}
677 	}
678 
679 	/*
680 	 * Check memories do not intersect any mapped memory.
681 	 * This is called before reserved VA space is loaded in mem_map.
682 	 */
683 	for (mem = start; mem < end; mem++) {
684 		for (n = 0; n < mem_map->count; n++) {
685 			if (core_is_buffer_intersect(mem->addr, mem->size,
686 						     mem_map->map[n].pa,
687 						     mem_map->map[n].size)) {
688 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
689 						   mem_map->map[n].pa,
690 						   mem_map->map[n].size);
691 				panic("Special memory intersection");
692 			}
693 		}
694 	}
695 }
696 
697 static void merge_mmaps(struct tee_mmap_region *dst,
698 			const struct tee_mmap_region *src)
699 {
700 	paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1);
701 	paddr_t pa = MIN(dst->pa, src->pa);
702 
703 	DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA,
704 	     dst->pa, dst->pa + dst->size - 1, src->pa,
705 	     src->pa + src->size - 1);
706 	dst->pa = pa;
707 	dst->size = end_pa - pa + 1;
708 }
709 
710 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1,
711 				const struct tee_mmap_region *r2)
712 {
713 	if (r1->type != r2->type)
714 		return false;
715 
716 	if (r1->pa == r2->pa)
717 		return true;
718 
719 	if (r1->pa < r2->pa)
720 		return r1->pa + r1->size >= r2->pa;
721 	else
722 		return r2->pa + r2->size >= r1->pa;
723 }
724 
725 static void add_phys_mem(struct memory_map *mem_map,
726 			 const char *mem_name __maybe_unused,
727 			 enum teecore_memtypes mem_type,
728 			 paddr_t mem_addr, paddr_size_t mem_size)
729 {
730 	size_t n = 0;
731 	const struct tee_mmap_region m0 = {
732 		.type = mem_type,
733 		.pa = mem_addr,
734 		.size = mem_size,
735 	};
736 
737 	if (!mem_size)	/* Discard null size entries */
738 		return;
739 
740 	/*
741 	 * If some ranges of memory of the same type do overlap
742 	 * each others they are coalesced into one entry. To help this
743 	 * added entries are sorted by increasing physical.
744 	 *
745 	 * Note that it's valid to have the same physical memory as several
746 	 * different memory types, for instance the same device memory
747 	 * mapped as both secure and non-secure. This will probably not
748 	 * happen often in practice.
749 	 */
750 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
751 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
752 	for  (n = 0; n < mem_map->count; n++) {
753 		if (mmaps_are_mergeable(mem_map->map + n, &m0)) {
754 			merge_mmaps(mem_map->map + n, &m0);
755 			/*
756 			 * The merged result might be mergeable with the
757 			 * next or previous entry.
758 			 */
759 			if (n + 1 < mem_map->count &&
760 			    mmaps_are_mergeable(mem_map->map + n,
761 						mem_map->map + n + 1)) {
762 				merge_mmaps(mem_map->map + n,
763 					    mem_map->map + n + 1);
764 				rem_array_elem(mem_map->map, mem_map->count,
765 					       sizeof(*mem_map->map), n + 1);
766 				mem_map->count--;
767 			}
768 			if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1,
769 							 mem_map->map + n)) {
770 				merge_mmaps(mem_map->map + n - 1,
771 					    mem_map->map + n);
772 				rem_array_elem(mem_map->map, mem_map->count,
773 					       sizeof(*mem_map->map), n);
774 				mem_map->count--;
775 			}
776 			return;
777 		}
778 		if (mem_type < mem_map->map[n].type ||
779 		    (mem_type == mem_map->map[n].type &&
780 		     mem_addr < mem_map->map[n].pa))
781 			break; /* found the spot where to insert this memory */
782 	}
783 
784 	grow_mem_map(mem_map);
785 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
786 		       n, &m0);
787 }
788 
789 static void add_va_space(struct memory_map *mem_map,
790 			 enum teecore_memtypes type, size_t size)
791 {
792 	size_t n = 0;
793 
794 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
795 	for  (n = 0; n < mem_map->count; n++) {
796 		if (type < mem_map->map[n].type)
797 			break;
798 	}
799 
800 	grow_mem_map(mem_map);
801 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
802 		       n, NULL);
803 	mem_map->map[n] = (struct tee_mmap_region){
804 		.type = type,
805 		.size = size,
806 	};
807 }
808 
809 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
810 {
811 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
812 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
813 				TEE_MATTR_MEM_TYPE_SHIFT;
814 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
815 				TEE_MATTR_MEM_TYPE_SHIFT;
816 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
817 				  TEE_MATTR_MEM_TYPE_SHIFT;
818 
819 	switch (t) {
820 	case MEM_AREA_TEE_RAM:
821 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
822 	case MEM_AREA_TEE_RAM_RX:
823 	case MEM_AREA_INIT_RAM_RX:
824 	case MEM_AREA_IDENTITY_MAP_RX:
825 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
826 	case MEM_AREA_TEE_RAM_RO:
827 	case MEM_AREA_INIT_RAM_RO:
828 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
829 	case MEM_AREA_TEE_RAM_RW:
830 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
831 	case MEM_AREA_NEX_RAM_RW:
832 	case MEM_AREA_TEE_ASAN:
833 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
834 	case MEM_AREA_TEE_COHERENT:
835 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
836 	case MEM_AREA_TA_RAM:
837 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
838 	case MEM_AREA_NSEC_SHM:
839 	case MEM_AREA_NEX_NSEC_SHM:
840 		return attr | TEE_MATTR_PRW | cached;
841 	case MEM_AREA_MANIFEST_DT:
842 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
843 	case MEM_AREA_TRANSFER_LIST:
844 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
845 	case MEM_AREA_EXT_DT:
846 		/*
847 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
848 		 * tree as secure non-cached memory, otherwise, fall back to
849 		 * non-secure mapping.
850 		 */
851 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
852 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
853 			       noncache;
854 		fallthrough;
855 	case MEM_AREA_IO_NSEC:
856 		return attr | TEE_MATTR_PRW | noncache;
857 	case MEM_AREA_IO_SEC:
858 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
859 	case MEM_AREA_RAM_NSEC:
860 		return attr | TEE_MATTR_PRW | cached;
861 	case MEM_AREA_RAM_SEC:
862 	case MEM_AREA_SEC_RAM_OVERALL:
863 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
864 	case MEM_AREA_ROM_SEC:
865 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
866 	case MEM_AREA_RES_VASPACE:
867 	case MEM_AREA_SHM_VASPACE:
868 		return 0;
869 	case MEM_AREA_PAGER_VASPACE:
870 		return TEE_MATTR_SECURE;
871 	default:
872 		panic("invalid type");
873 	}
874 }
875 
876 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
877 {
878 	switch (mm->type) {
879 	case MEM_AREA_TEE_RAM:
880 	case MEM_AREA_TEE_RAM_RX:
881 	case MEM_AREA_TEE_RAM_RO:
882 	case MEM_AREA_TEE_RAM_RW:
883 	case MEM_AREA_INIT_RAM_RX:
884 	case MEM_AREA_INIT_RAM_RO:
885 	case MEM_AREA_NEX_RAM_RW:
886 	case MEM_AREA_NEX_RAM_RO:
887 	case MEM_AREA_TEE_ASAN:
888 		return true;
889 	default:
890 		return false;
891 	}
892 }
893 
894 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
895 {
896 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
897 }
898 
899 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
900 {
901 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
902 }
903 
904 static int cmp_mmap_by_lower_va(const void *a, const void *b)
905 {
906 	const struct tee_mmap_region *mm_a = a;
907 	const struct tee_mmap_region *mm_b = b;
908 
909 	return CMP_TRILEAN(mm_a->va, mm_b->va);
910 }
911 
912 static void dump_mmap_table(struct memory_map *mem_map)
913 {
914 	size_t n = 0;
915 
916 	for (n = 0; n < mem_map->count; n++) {
917 		struct tee_mmap_region *map = mem_map->map + n;
918 		vaddr_t __maybe_unused vstart;
919 
920 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
921 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
922 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
923 		     teecore_memtype_name(map->type), vstart,
924 		     vstart + map->size - 1, map->pa,
925 		     (paddr_t)(map->pa + map->size - 1), map->size,
926 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
927 	}
928 }
929 
930 #if DEBUG_XLAT_TABLE
931 
932 static void dump_xlat_table(vaddr_t va, unsigned int level)
933 {
934 	struct core_mmu_table_info tbl_info;
935 	unsigned int idx = 0;
936 	paddr_t pa;
937 	uint32_t attr;
938 
939 	core_mmu_find_table(NULL, va, level, &tbl_info);
940 	va = tbl_info.va_base;
941 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
942 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
943 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
944 			const char *security_bit = "";
945 
946 			if (core_mmu_entry_have_security_bit(attr)) {
947 				if (attr & TEE_MATTR_SECURE)
948 					security_bit = "S";
949 				else
950 					security_bit = "NS";
951 			}
952 
953 			if (attr & TEE_MATTR_TABLE) {
954 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
955 					" TBL:0x%010" PRIxPA " %s",
956 					level * 2, "", level, va, pa,
957 					security_bit);
958 				dump_xlat_table(va, level + 1);
959 			} else if (attr) {
960 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
961 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
962 					level * 2, "", level, va, pa,
963 					mattr_is_cached(attr) ? "MEM" :
964 					"DEV",
965 					attr & TEE_MATTR_PW ? "RW" : "RO",
966 					attr & TEE_MATTR_PX ? "X " : "XN",
967 					security_bit);
968 			} else {
969 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
970 					    " INVALID\n",
971 					    level * 2, "", level, va);
972 			}
973 		}
974 		va += BIT64(tbl_info.shift);
975 	}
976 }
977 
978 #else
979 
980 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
981 {
982 }
983 
984 #endif
985 
986 /*
987  * Reserves virtual memory space for pager usage.
988  *
989  * From the start of the first memory used by the link script +
990  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
991  * mapping for pager usage. This adds translation tables as needed for the
992  * pager to operate.
993  */
994 static void add_pager_vaspace(struct memory_map *mem_map)
995 {
996 	paddr_t begin = 0;
997 	paddr_t end = 0;
998 	size_t size = 0;
999 	size_t pos = 0;
1000 	size_t n = 0;
1001 
1002 
1003 	for (n = 0; n < mem_map->count; n++) {
1004 		if (map_is_tee_ram(mem_map->map + n)) {
1005 			if (!begin)
1006 				begin = mem_map->map[n].pa;
1007 			pos = n + 1;
1008 		}
1009 	}
1010 
1011 	end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size;
1012 	assert(end - begin < TEE_RAM_VA_SIZE);
1013 	size = TEE_RAM_VA_SIZE - (end - begin);
1014 
1015 	grow_mem_map(mem_map);
1016 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
1017 		       n, NULL);
1018 	mem_map->map[n] = (struct tee_mmap_region){
1019 		.type = MEM_AREA_PAGER_VASPACE,
1020 		.size = size,
1021 		.region_size = SMALL_PAGE_SIZE,
1022 		.attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE),
1023 	};
1024 }
1025 
1026 static void check_sec_nsec_mem_config(void)
1027 {
1028 	size_t n = 0;
1029 
1030 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
1031 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
1032 				    secure_only[n].size))
1033 			panic("Invalid memory access config: sec/nsec");
1034 	}
1035 }
1036 
1037 static void collect_device_mem_ranges(struct memory_map *mem_map)
1038 {
1039 	const char *compatible = "arm,ffa-manifest-device-regions";
1040 	void *fdt = get_manifest_dt();
1041 	const char *name = NULL;
1042 	uint64_t page_count = 0;
1043 	uint64_t base = 0;
1044 	int subnode = 0;
1045 	int node = 0;
1046 
1047 	assert(fdt);
1048 
1049 	node = fdt_node_offset_by_compatible(fdt, 0, compatible);
1050 	if (node < 0)
1051 		return;
1052 
1053 	fdt_for_each_subnode(subnode, fdt, node) {
1054 		name = fdt_get_name(fdt, subnode, NULL);
1055 		if (!name)
1056 			continue;
1057 
1058 		if (dt_getprop_as_number(fdt, subnode, "base-address",
1059 					 &base)) {
1060 			EMSG("Mandatory field is missing: base-address");
1061 			continue;
1062 		}
1063 
1064 		if (base & SMALL_PAGE_MASK) {
1065 			EMSG("base-address is not page aligned");
1066 			continue;
1067 		}
1068 
1069 		if (dt_getprop_as_number(fdt, subnode, "pages-count",
1070 					 &page_count)) {
1071 			EMSG("Mandatory field is missing: pages-count");
1072 			continue;
1073 		}
1074 
1075 		add_phys_mem(mem_map, name, MEM_AREA_IO_SEC,
1076 			     base, base + page_count * SMALL_PAGE_SIZE);
1077 	}
1078 }
1079 
1080 static void collect_mem_ranges(struct memory_map *mem_map)
1081 {
1082 	const struct core_mmu_phys_mem *mem = NULL;
1083 	vaddr_t ram_start = secure_only[0].paddr;
1084 
1085 #define ADD_PHYS_MEM(_type, _addr, _size) \
1086 		add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size))
1087 
1088 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
1089 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start,
1090 			     VCORE_UNPG_RX_PA - ram_start);
1091 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
1092 			     VCORE_UNPG_RX_SZ);
1093 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
1094 			     VCORE_UNPG_RO_SZ);
1095 
1096 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1097 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
1098 				     VCORE_UNPG_RW_SZ);
1099 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
1100 				     VCORE_NEX_RW_SZ);
1101 		} else {
1102 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
1103 				     VCORE_UNPG_RW_SZ);
1104 		}
1105 
1106 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1107 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
1108 				     VCORE_INIT_RX_SZ);
1109 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
1110 				     VCORE_INIT_RO_SZ);
1111 		}
1112 	} else {
1113 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
1114 	}
1115 
1116 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1117 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
1118 			     TRUSTED_DRAM_SIZE);
1119 	} else {
1120 		/*
1121 		 * Every guest will have own TA RAM if virtualization
1122 		 * support is enabled.
1123 		 */
1124 		paddr_t ta_base = 0;
1125 		size_t ta_size = 0;
1126 
1127 		core_mmu_get_ta_range(&ta_base, &ta_size);
1128 		ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size);
1129 	}
1130 
1131 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
1132 	    IS_ENABLED(CFG_WITH_PAGER)) {
1133 		/*
1134 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
1135 		 * disabled.
1136 		 */
1137 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1138 	}
1139 
1140 #undef ADD_PHYS_MEM
1141 
1142 	/* Collect device memory info from SP manifest */
1143 	if (IS_ENABLED(CFG_CORE_SEL2_SPMC))
1144 		collect_device_mem_ranges(mem_map);
1145 
1146 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1147 		/* Only unmapped virtual range may have a null phys addr */
1148 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1149 
1150 		add_phys_mem(mem_map, mem->name, mem->type,
1151 			     mem->addr, mem->size);
1152 	}
1153 
1154 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1155 		verify_special_mem_areas(mem_map, phys_sdp_mem_begin,
1156 					 phys_sdp_mem_end, "SDP");
1157 
1158 	add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE);
1159 	add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE);
1160 }
1161 
1162 static void assign_mem_granularity(struct memory_map *mem_map)
1163 {
1164 	size_t n = 0;
1165 
1166 	/*
1167 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1168 	 * SMALL_PAGE_SIZE.
1169 	 */
1170 	for  (n = 0; n < mem_map->count; n++) {
1171 		paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size;
1172 
1173 		if (!(mask & CORE_MMU_PGDIR_MASK))
1174 			mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE;
1175 		else if (!(mask & SMALL_PAGE_MASK))
1176 			mem_map->map[n].region_size = SMALL_PAGE_SIZE;
1177 		else
1178 			panic("Impossible memory alignment");
1179 
1180 		if (map_is_tee_ram(mem_map->map + n))
1181 			mem_map->map[n].region_size = SMALL_PAGE_SIZE;
1182 	}
1183 }
1184 
1185 static bool place_tee_ram_at_top(paddr_t paddr)
1186 {
1187 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1188 }
1189 
1190 /*
1191  * MMU arch driver shall override this function if it helps
1192  * optimizing the memory footprint of the address translation tables.
1193  */
1194 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1195 {
1196 	return place_tee_ram_at_top(paddr);
1197 }
1198 
1199 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map,
1200 			      bool tee_ram_at_top)
1201 {
1202 	struct tee_mmap_region *map = NULL;
1203 	vaddr_t va = 0;
1204 	bool va_is_secure = true;
1205 	size_t n = 0;
1206 
1207 	/*
1208 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1209 	 * 0 is by design an invalid va, so return false directly.
1210 	 */
1211 	if (!tee_ram_va)
1212 		return false;
1213 
1214 	/* Clear eventual previous assignments */
1215 	for (n = 0; n < mem_map->count; n++)
1216 		mem_map->map[n].va = 0;
1217 
1218 	/*
1219 	 * TEE RAM regions are always aligned with region_size.
1220 	 *
1221 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1222 	 * since it handles virtual memory which covers the part of the ELF
1223 	 * that cannot fit directly into memory.
1224 	 */
1225 	va = tee_ram_va;
1226 	for (n = 0; n < mem_map->count; n++) {
1227 		map = mem_map->map + n;
1228 		if (map_is_tee_ram(map) ||
1229 		    map->type == MEM_AREA_PAGER_VASPACE) {
1230 			assert(!(va & (map->region_size - 1)));
1231 			assert(!(map->size & (map->region_size - 1)));
1232 			map->va = va;
1233 			if (ADD_OVERFLOW(va, map->size, &va))
1234 				return false;
1235 			if (va >= BIT64(core_mmu_get_va_width()))
1236 				return false;
1237 		}
1238 	}
1239 
1240 	if (tee_ram_at_top) {
1241 		/*
1242 		 * Map non-tee ram regions at addresses lower than the tee
1243 		 * ram region.
1244 		 */
1245 		va = tee_ram_va;
1246 		for (n = 0; n < mem_map->count; n++) {
1247 			map = mem_map->map + n;
1248 			map->attr = core_mmu_type_to_attr(map->type);
1249 			if (map->va)
1250 				continue;
1251 
1252 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1253 			    va_is_secure != map_is_secure(map)) {
1254 				va_is_secure = !va_is_secure;
1255 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1256 			}
1257 
1258 			if (SUB_OVERFLOW(va, map->size, &va))
1259 				return false;
1260 			va = ROUNDDOWN(va, map->region_size);
1261 			/*
1262 			 * Make sure that va is aligned with pa for
1263 			 * efficient pgdir mapping. Basically pa &
1264 			 * pgdir_mask should be == va & pgdir_mask
1265 			 */
1266 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1267 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1268 					return false;
1269 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1270 			}
1271 			map->va = va;
1272 		}
1273 	} else {
1274 		/*
1275 		 * Map non-tee ram regions at addresses higher than the tee
1276 		 * ram region.
1277 		 */
1278 		for (n = 0; n < mem_map->count; n++) {
1279 			map = mem_map->map + n;
1280 			map->attr = core_mmu_type_to_attr(map->type);
1281 			if (map->va)
1282 				continue;
1283 
1284 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1285 			    va_is_secure != map_is_secure(map)) {
1286 				va_is_secure = !va_is_secure;
1287 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1288 						     &va))
1289 					return false;
1290 			}
1291 
1292 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1293 				return false;
1294 			/*
1295 			 * Make sure that va is aligned with pa for
1296 			 * efficient pgdir mapping. Basically pa &
1297 			 * pgdir_mask should be == va & pgdir_mask
1298 			 */
1299 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1300 				vaddr_t offs = (map->pa - va) &
1301 					       CORE_MMU_PGDIR_MASK;
1302 
1303 				if (ADD_OVERFLOW(va, offs, &va))
1304 					return false;
1305 			}
1306 
1307 			map->va = va;
1308 			if (ADD_OVERFLOW(va, map->size, &va))
1309 				return false;
1310 			if (va >= BIT64(core_mmu_get_va_width()))
1311 				return false;
1312 		}
1313 	}
1314 
1315 	return true;
1316 }
1317 
1318 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map)
1319 {
1320 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1321 
1322 	/*
1323 	 * Check that we're not overlapping with the user VA range.
1324 	 */
1325 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1326 		/*
1327 		 * User VA range is supposed to be defined after these
1328 		 * mappings have been established.
1329 		 */
1330 		assert(!core_mmu_user_va_range_is_defined());
1331 	} else {
1332 		vaddr_t user_va_base = 0;
1333 		size_t user_va_size = 0;
1334 
1335 		assert(core_mmu_user_va_range_is_defined());
1336 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1337 		if (tee_ram_va < (user_va_base + user_va_size))
1338 			return false;
1339 	}
1340 
1341 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1342 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1343 
1344 		/* Try whole mapping covered by a single base xlat entry */
1345 		if (prefered_dir != tee_ram_at_top &&
1346 		    assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir))
1347 			return true;
1348 	}
1349 
1350 	return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top);
1351 }
1352 
1353 static int cmp_init_mem_map(const void *a, const void *b)
1354 {
1355 	const struct tee_mmap_region *mm_a = a;
1356 	const struct tee_mmap_region *mm_b = b;
1357 	int rc = 0;
1358 
1359 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1360 	if (!rc)
1361 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1362 	/*
1363 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1364 	 * the same level2 table. Hence sort secure mapping from non-secure
1365 	 * mapping.
1366 	 */
1367 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1368 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1369 
1370 	return rc;
1371 }
1372 
1373 static bool mem_map_add_id_map(struct memory_map *mem_map,
1374 			       vaddr_t id_map_start, vaddr_t id_map_end)
1375 {
1376 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1377 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1378 	size_t len = end - start;
1379 	size_t n = 0;
1380 
1381 
1382 	for (n = 0; n < mem_map->count; n++)
1383 		if (core_is_buffer_intersect(mem_map->map[n].va,
1384 					     mem_map->map[n].size, start, len))
1385 			return false;
1386 
1387 	grow_mem_map(mem_map);
1388 	mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){
1389 		.type = MEM_AREA_IDENTITY_MAP_RX,
1390 		/*
1391 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1392 		 * translation table, at the increased risk of clashes with
1393 		 * the rest of the memory map.
1394 		 */
1395 		.region_size = SMALL_PAGE_SIZE,
1396 		.pa = start,
1397 		.va = start,
1398 		.size = len,
1399 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1400 	};
1401 
1402 	return true;
1403 }
1404 
1405 static struct memory_map *init_mem_map(struct memory_map *mem_map,
1406 				       unsigned long seed,
1407 				       unsigned long *ret_offs)
1408 {
1409 	/*
1410 	 * @id_map_start and @id_map_end describes a physical memory range
1411 	 * that must be mapped Read-Only eXecutable at identical virtual
1412 	 * addresses.
1413 	 */
1414 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1415 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1416 	vaddr_t start_addr = secure_only[0].paddr;
1417 	unsigned long offs = 0;
1418 
1419 	collect_mem_ranges(mem_map);
1420 	assign_mem_granularity(mem_map);
1421 
1422 	/*
1423 	 * To ease mapping and lower use of xlat tables, sort mapping
1424 	 * description moving small-page regions after the pgdir regions.
1425 	 */
1426 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1427 	      cmp_init_mem_map);
1428 
1429 	if (IS_ENABLED(CFG_WITH_PAGER))
1430 		add_pager_vaspace(mem_map);
1431 
1432 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1433 		vaddr_t base_addr = start_addr + seed;
1434 		const unsigned int va_width = core_mmu_get_va_width();
1435 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1436 						   SMALL_PAGE_SHIFT);
1437 		vaddr_t ba = base_addr;
1438 		size_t n = 0;
1439 
1440 		for (n = 0; n < 3; n++) {
1441 			if (n)
1442 				ba = base_addr ^ BIT64(va_width - n);
1443 			ba &= va_mask;
1444 			if (assign_mem_va(ba, mem_map) &&
1445 			    mem_map_add_id_map(mem_map, id_map_start,
1446 					       id_map_end)) {
1447 				offs = ba - start_addr;
1448 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1449 				     ba, offs);
1450 				goto out;
1451 			} else {
1452 				DMSG("Failed to map core at %#"PRIxVA, ba);
1453 			}
1454 		}
1455 		EMSG("Failed to map core with seed %#lx", seed);
1456 	}
1457 
1458 	if (!assign_mem_va(start_addr, mem_map))
1459 		panic();
1460 
1461 out:
1462 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1463 	      cmp_mmap_by_lower_va);
1464 
1465 	dump_mmap_table(mem_map);
1466 
1467 	*ret_offs = offs;
1468 	return mem_map;
1469 }
1470 
1471 static void check_mem_map(struct memory_map *mem_map)
1472 {
1473 	struct tee_mmap_region *m = NULL;
1474 	size_t n = 0;
1475 
1476 	for (n = 0; n < mem_map->count; n++) {
1477 		m = mem_map->map + n;
1478 		switch (m->type) {
1479 		case MEM_AREA_TEE_RAM:
1480 		case MEM_AREA_TEE_RAM_RX:
1481 		case MEM_AREA_TEE_RAM_RO:
1482 		case MEM_AREA_TEE_RAM_RW:
1483 		case MEM_AREA_INIT_RAM_RX:
1484 		case MEM_AREA_INIT_RAM_RO:
1485 		case MEM_AREA_NEX_RAM_RW:
1486 		case MEM_AREA_NEX_RAM_RO:
1487 		case MEM_AREA_IDENTITY_MAP_RX:
1488 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1489 				panic("TEE_RAM can't fit in secure_only");
1490 			break;
1491 		case MEM_AREA_TA_RAM:
1492 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1493 				panic("TA_RAM can't fit in secure_only");
1494 			break;
1495 		case MEM_AREA_NSEC_SHM:
1496 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1497 				panic("NS_SHM can't fit in nsec_shared");
1498 			break;
1499 		case MEM_AREA_SEC_RAM_OVERALL:
1500 		case MEM_AREA_TEE_COHERENT:
1501 		case MEM_AREA_TEE_ASAN:
1502 		case MEM_AREA_IO_SEC:
1503 		case MEM_AREA_IO_NSEC:
1504 		case MEM_AREA_EXT_DT:
1505 		case MEM_AREA_MANIFEST_DT:
1506 		case MEM_AREA_TRANSFER_LIST:
1507 		case MEM_AREA_RAM_SEC:
1508 		case MEM_AREA_RAM_NSEC:
1509 		case MEM_AREA_ROM_SEC:
1510 		case MEM_AREA_RES_VASPACE:
1511 		case MEM_AREA_SHM_VASPACE:
1512 		case MEM_AREA_PAGER_VASPACE:
1513 			break;
1514 		default:
1515 			EMSG("Uhandled memtype %d", m->type);
1516 			panic();
1517 		}
1518 	}
1519 }
1520 
1521 /*
1522  * core_init_mmu_map() - init tee core default memory mapping
1523  *
1524  * This routine sets the static default TEE core mapping. If @seed is > 0
1525  * and configured with CFG_CORE_ASLR it will map tee core at a location
1526  * based on the seed and return the offset from the link address.
1527  *
1528  * If an error happened: core_init_mmu_map is expected to panic.
1529  *
1530  * Note: this function is weak just to make it possible to exclude it from
1531  * the unpaged area.
1532  */
1533 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1534 {
1535 #ifndef CFG_NS_VIRTUALIZATION
1536 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1537 #else
1538 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1539 				  SMALL_PAGE_SIZE);
1540 #endif
1541 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1542 	struct tee_mmap_region tmp_mmap_region = { };
1543 	struct memory_map mem_map = { };
1544 	unsigned long offs = 0;
1545 
1546 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1547 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1548 		panic("OP-TEE load address is not page aligned");
1549 
1550 	check_sec_nsec_mem_config();
1551 
1552 	mem_map = static_memory_map;
1553 	static_memory_map = (struct memory_map){
1554 		.map = &tmp_mmap_region,
1555 		.alloc_count = 1,
1556 		.count = 1,
1557 	};
1558 	/*
1559 	 * Add a entry covering the translation tables which will be
1560 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1561 	 */
1562 	static_memory_map.map[0] = (struct tee_mmap_region){
1563 		.type = MEM_AREA_TEE_RAM,
1564 		.region_size = SMALL_PAGE_SIZE,
1565 		.pa = start,
1566 		.va = start,
1567 		.size = len,
1568 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1569 	};
1570 
1571 	init_mem_map(&mem_map, seed, &offs);
1572 
1573 	check_mem_map(&mem_map);
1574 	core_init_mmu(&mem_map);
1575 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1576 	core_init_mmu_regs(cfg);
1577 	cfg->map_offset = offs;
1578 	static_memory_map = mem_map;
1579 }
1580 
1581 bool core_mmu_mattr_is_ok(uint32_t mattr)
1582 {
1583 	/*
1584 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1585 	 * core_mmu_v7.c:mattr_to_texcb
1586 	 */
1587 
1588 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1589 	case TEE_MATTR_MEM_TYPE_DEV:
1590 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1591 	case TEE_MATTR_MEM_TYPE_CACHED:
1592 	case TEE_MATTR_MEM_TYPE_TAGGED:
1593 		return true;
1594 	default:
1595 		return false;
1596 	}
1597 }
1598 
1599 /*
1600  * test attributes of target physical buffer
1601  *
1602  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1603  *
1604  */
1605 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1606 {
1607 	paddr_t ta_base = 0;
1608 	size_t ta_size = 0;
1609 	struct tee_mmap_region *map;
1610 
1611 	/* Empty buffers complies with anything */
1612 	if (len == 0)
1613 		return true;
1614 
1615 	switch (attr) {
1616 	case CORE_MEM_SEC:
1617 		return pbuf_is_inside(secure_only, pbuf, len);
1618 	case CORE_MEM_NON_SEC:
1619 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1620 			pbuf_is_nsec_ddr(pbuf, len);
1621 	case CORE_MEM_TEE_RAM:
1622 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1623 							TEE_RAM_PH_SIZE);
1624 	case CORE_MEM_TA_RAM:
1625 		core_mmu_get_ta_range(&ta_base, &ta_size);
1626 		return core_is_buffer_inside(pbuf, len, ta_base, ta_size);
1627 #ifdef CFG_CORE_RESERVED_SHM
1628 	case CORE_MEM_NSEC_SHM:
1629 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1630 							TEE_SHMEM_SIZE);
1631 #endif
1632 	case CORE_MEM_SDP_MEM:
1633 		return pbuf_is_sdp_mem(pbuf, len);
1634 	case CORE_MEM_CACHED:
1635 		map = find_map_by_pa(pbuf);
1636 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1637 			return false;
1638 		return mattr_is_cached(map->attr);
1639 	default:
1640 		return false;
1641 	}
1642 }
1643 
1644 /* test attributes of target virtual buffer (in core mapping) */
1645 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1646 {
1647 	paddr_t p;
1648 
1649 	/* Empty buffers complies with anything */
1650 	if (len == 0)
1651 		return true;
1652 
1653 	p = virt_to_phys((void *)vbuf);
1654 	if (!p)
1655 		return false;
1656 
1657 	return core_pbuf_is(attr, p, len);
1658 }
1659 
1660 /* core_va2pa - teecore exported service */
1661 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1662 {
1663 	struct tee_mmap_region *map;
1664 
1665 	map = find_map_by_va(va);
1666 	if (!va_is_in_map(map, (vaddr_t)va))
1667 		return -1;
1668 
1669 	/*
1670 	 * We can calculate PA for static map. Virtual address ranges
1671 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1672 	 * together with an invalid null physical address.
1673 	 */
1674 	if (map->pa)
1675 		*pa = map->pa + (vaddr_t)va  - map->va;
1676 	else
1677 		*pa = 0;
1678 
1679 	return 0;
1680 }
1681 
1682 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1683 {
1684 	if (!pa_is_in_map(map, pa, len))
1685 		return NULL;
1686 
1687 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1688 }
1689 
1690 /*
1691  * teecore gets some memory area definitions
1692  */
1693 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1694 			      vaddr_t *e)
1695 {
1696 	struct tee_mmap_region *map = find_map_by_type(type);
1697 
1698 	if (map) {
1699 		*s = map->va;
1700 		*e = map->va + map->size;
1701 	} else {
1702 		*s = 0;
1703 		*e = 0;
1704 	}
1705 }
1706 
1707 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1708 {
1709 	struct tee_mmap_region *map = find_map_by_pa(pa);
1710 
1711 	if (!map)
1712 		return MEM_AREA_MAXTYPE;
1713 	return map->type;
1714 }
1715 
1716 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1717 			paddr_t pa, uint32_t attr)
1718 {
1719 	assert(idx < tbl_info->num_entries);
1720 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1721 				     idx, pa, attr);
1722 }
1723 
1724 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1725 			paddr_t *pa, uint32_t *attr)
1726 {
1727 	assert(idx < tbl_info->num_entries);
1728 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1729 				     idx, pa, attr);
1730 }
1731 
1732 static void clear_region(struct core_mmu_table_info *tbl_info,
1733 			 struct tee_mmap_region *region)
1734 {
1735 	unsigned int end = 0;
1736 	unsigned int idx = 0;
1737 
1738 	/* va, len and pa should be block aligned */
1739 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1740 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1741 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1742 
1743 	idx = core_mmu_va2idx(tbl_info, region->va);
1744 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1745 
1746 	while (idx < end) {
1747 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1748 		idx++;
1749 	}
1750 }
1751 
1752 static void set_region(struct core_mmu_table_info *tbl_info,
1753 		       struct tee_mmap_region *region)
1754 {
1755 	unsigned int end;
1756 	unsigned int idx;
1757 	paddr_t pa;
1758 
1759 	/* va, len and pa should be block aligned */
1760 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1761 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1762 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1763 
1764 	idx = core_mmu_va2idx(tbl_info, region->va);
1765 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1766 	pa = region->pa;
1767 
1768 	while (idx < end) {
1769 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1770 		idx++;
1771 		pa += BIT64(tbl_info->shift);
1772 	}
1773 }
1774 
1775 static void set_pg_region(struct core_mmu_table_info *dir_info,
1776 			  struct vm_region *region, struct pgt **pgt,
1777 			  struct core_mmu_table_info *pg_info)
1778 {
1779 	struct tee_mmap_region r = {
1780 		.va = region->va,
1781 		.size = region->size,
1782 		.attr = region->attr,
1783 	};
1784 	vaddr_t end = r.va + r.size;
1785 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1786 
1787 	while (r.va < end) {
1788 		if (!pg_info->table ||
1789 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1790 			/*
1791 			 * We're assigning a new translation table.
1792 			 */
1793 			unsigned int idx;
1794 
1795 			/* Virtual addresses must grow */
1796 			assert(r.va > pg_info->va_base);
1797 
1798 			idx = core_mmu_va2idx(dir_info, r.va);
1799 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1800 
1801 			/*
1802 			 * Advance pgt to va_base, note that we may need to
1803 			 * skip multiple page tables if there are large
1804 			 * holes in the vm map.
1805 			 */
1806 			while ((*pgt)->vabase < pg_info->va_base) {
1807 				*pgt = SLIST_NEXT(*pgt, link);
1808 				/* We should have allocated enough */
1809 				assert(*pgt);
1810 			}
1811 			assert((*pgt)->vabase == pg_info->va_base);
1812 			pg_info->table = (*pgt)->tbl;
1813 
1814 			core_mmu_set_entry(dir_info, idx,
1815 					   virt_to_phys(pg_info->table),
1816 					   pgt_attr);
1817 		}
1818 
1819 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1820 			     end - r.va);
1821 
1822 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1823 			size_t granule = BIT(pg_info->shift);
1824 			size_t offset = r.va - region->va + region->offset;
1825 
1826 			r.size = MIN(r.size,
1827 				     mobj_get_phys_granule(region->mobj));
1828 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1829 
1830 			if (mobj_get_pa(region->mobj, offset, granule,
1831 					&r.pa) != TEE_SUCCESS)
1832 				panic("Failed to get PA of unpaged mobj");
1833 			set_region(pg_info, &r);
1834 		}
1835 		r.va += r.size;
1836 	}
1837 }
1838 
1839 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1840 			     size_t size_left, paddr_t block_size,
1841 			     struct tee_mmap_region *mm __maybe_unused)
1842 {
1843 	/* VA and PA are aligned to block size at current level */
1844 	if ((vaddr | paddr) & (block_size - 1))
1845 		return false;
1846 
1847 	/* Remainder fits into block at current level */
1848 	if (size_left < block_size)
1849 		return false;
1850 
1851 #ifdef CFG_WITH_PAGER
1852 	/*
1853 	 * If pager is enabled, we need to map TEE RAM and the whole pager
1854 	 * regions with small pages only
1855 	 */
1856 	if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) &&
1857 	    block_size != SMALL_PAGE_SIZE)
1858 		return false;
1859 #endif
1860 
1861 	return true;
1862 }
1863 
1864 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1865 {
1866 	struct core_mmu_table_info tbl_info;
1867 	unsigned int idx;
1868 	vaddr_t vaddr = mm->va;
1869 	paddr_t paddr = mm->pa;
1870 	ssize_t size_left = mm->size;
1871 	unsigned int level;
1872 	bool table_found;
1873 	uint32_t old_attr;
1874 
1875 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1876 
1877 	while (size_left > 0) {
1878 		level = CORE_MMU_BASE_TABLE_LEVEL;
1879 
1880 		while (true) {
1881 			paddr_t block_size = 0;
1882 
1883 			assert(core_mmu_level_in_range(level));
1884 
1885 			table_found = core_mmu_find_table(prtn, vaddr, level,
1886 							  &tbl_info);
1887 			if (!table_found)
1888 				panic("can't find table for mapping");
1889 
1890 			block_size = BIT64(tbl_info.shift);
1891 
1892 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1893 			if (!can_map_at_level(paddr, vaddr, size_left,
1894 					      block_size, mm)) {
1895 				bool secure = mm->attr & TEE_MATTR_SECURE;
1896 
1897 				/*
1898 				 * This part of the region can't be mapped at
1899 				 * this level. Need to go deeper.
1900 				 */
1901 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1902 								     idx,
1903 								     secure))
1904 					panic("Can't divide MMU entry");
1905 				level = tbl_info.next_level;
1906 				continue;
1907 			}
1908 
1909 			/* We can map part of the region at current level */
1910 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1911 			if (old_attr)
1912 				panic("Page is already mapped");
1913 
1914 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1915 			paddr += block_size;
1916 			vaddr += block_size;
1917 			size_left -= block_size;
1918 
1919 			break;
1920 		}
1921 	}
1922 }
1923 
1924 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1925 			      enum teecore_memtypes memtype)
1926 {
1927 	TEE_Result ret;
1928 	struct core_mmu_table_info tbl_info;
1929 	struct tee_mmap_region *mm;
1930 	unsigned int idx;
1931 	uint32_t old_attr;
1932 	uint32_t exceptions;
1933 	vaddr_t vaddr = vstart;
1934 	size_t i;
1935 	bool secure;
1936 
1937 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1938 
1939 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1940 
1941 	if (vaddr & SMALL_PAGE_MASK)
1942 		return TEE_ERROR_BAD_PARAMETERS;
1943 
1944 	exceptions = mmu_lock();
1945 
1946 	mm = find_map_by_va((void *)vaddr);
1947 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1948 		panic("VA does not belong to any known mm region");
1949 
1950 	if (!core_mmu_is_dynamic_vaspace(mm))
1951 		panic("Trying to map into static region");
1952 
1953 	for (i = 0; i < num_pages; i++) {
1954 		if (pages[i] & SMALL_PAGE_MASK) {
1955 			ret = TEE_ERROR_BAD_PARAMETERS;
1956 			goto err;
1957 		}
1958 
1959 		while (true) {
1960 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1961 						 &tbl_info))
1962 				panic("Can't find pagetable for vaddr ");
1963 
1964 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1965 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1966 				break;
1967 
1968 			/* This is supertable. Need to divide it. */
1969 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1970 							     secure))
1971 				panic("Failed to spread pgdir on small tables");
1972 		}
1973 
1974 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1975 		if (old_attr)
1976 			panic("Page is already mapped");
1977 
1978 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1979 				   core_mmu_type_to_attr(memtype));
1980 		vaddr += SMALL_PAGE_SIZE;
1981 	}
1982 
1983 	/*
1984 	 * Make sure all the changes to translation tables are visible
1985 	 * before returning. TLB doesn't need to be invalidated as we are
1986 	 * guaranteed that there's no valid mapping in this range.
1987 	 */
1988 	core_mmu_table_write_barrier();
1989 	mmu_unlock(exceptions);
1990 
1991 	return TEE_SUCCESS;
1992 err:
1993 	mmu_unlock(exceptions);
1994 
1995 	if (i)
1996 		core_mmu_unmap_pages(vstart, i);
1997 
1998 	return ret;
1999 }
2000 
2001 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
2002 					 size_t num_pages,
2003 					 enum teecore_memtypes memtype)
2004 {
2005 	struct core_mmu_table_info tbl_info = { };
2006 	struct tee_mmap_region *mm = NULL;
2007 	unsigned int idx = 0;
2008 	uint32_t old_attr = 0;
2009 	uint32_t exceptions = 0;
2010 	vaddr_t vaddr = vstart;
2011 	paddr_t paddr = pstart;
2012 	size_t i = 0;
2013 	bool secure = false;
2014 
2015 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
2016 
2017 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
2018 
2019 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
2020 		return TEE_ERROR_BAD_PARAMETERS;
2021 
2022 	exceptions = mmu_lock();
2023 
2024 	mm = find_map_by_va((void *)vaddr);
2025 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
2026 		panic("VA does not belong to any known mm region");
2027 
2028 	if (!core_mmu_is_dynamic_vaspace(mm))
2029 		panic("Trying to map into static region");
2030 
2031 	for (i = 0; i < num_pages; i++) {
2032 		while (true) {
2033 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
2034 						 &tbl_info))
2035 				panic("Can't find pagetable for vaddr ");
2036 
2037 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2038 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
2039 				break;
2040 
2041 			/* This is supertable. Need to divide it. */
2042 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
2043 							     secure))
2044 				panic("Failed to spread pgdir on small tables");
2045 		}
2046 
2047 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2048 		if (old_attr)
2049 			panic("Page is already mapped");
2050 
2051 		core_mmu_set_entry(&tbl_info, idx, paddr,
2052 				   core_mmu_type_to_attr(memtype));
2053 		paddr += SMALL_PAGE_SIZE;
2054 		vaddr += SMALL_PAGE_SIZE;
2055 	}
2056 
2057 	/*
2058 	 * Make sure all the changes to translation tables are visible
2059 	 * before returning. TLB doesn't need to be invalidated as we are
2060 	 * guaranteed that there's no valid mapping in this range.
2061 	 */
2062 	core_mmu_table_write_barrier();
2063 	mmu_unlock(exceptions);
2064 
2065 	return TEE_SUCCESS;
2066 }
2067 
2068 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
2069 {
2070 	struct core_mmu_table_info tbl_info;
2071 	struct tee_mmap_region *mm;
2072 	size_t i;
2073 	unsigned int idx;
2074 	uint32_t exceptions;
2075 
2076 	exceptions = mmu_lock();
2077 
2078 	mm = find_map_by_va((void *)vstart);
2079 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
2080 		panic("VA does not belong to any known mm region");
2081 
2082 	if (!core_mmu_is_dynamic_vaspace(mm))
2083 		panic("Trying to unmap static region");
2084 
2085 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
2086 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
2087 			panic("Can't find pagetable");
2088 
2089 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
2090 			panic("Invalid pagetable level");
2091 
2092 		idx = core_mmu_va2idx(&tbl_info, vstart);
2093 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
2094 	}
2095 	tlbi_all();
2096 
2097 	mmu_unlock(exceptions);
2098 }
2099 
2100 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
2101 				struct user_mode_ctx *uctx)
2102 {
2103 	struct core_mmu_table_info pg_info = { };
2104 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
2105 	struct pgt *pgt = NULL;
2106 	struct pgt *p = NULL;
2107 	struct vm_region *r = NULL;
2108 
2109 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
2110 		return; /* Nothing to map */
2111 
2112 	/*
2113 	 * Allocate all page tables in advance.
2114 	 */
2115 	pgt_get_all(uctx);
2116 	pgt = SLIST_FIRST(pgt_cache);
2117 
2118 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2119 
2120 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2121 		set_pg_region(dir_info, r, &pgt, &pg_info);
2122 	/* Record that the translation tables now are populated. */
2123 	SLIST_FOREACH(p, pgt_cache, link) {
2124 		p->populated = true;
2125 		if (p == pgt)
2126 			break;
2127 	}
2128 	assert(p == pgt);
2129 }
2130 
2131 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2132 				   size_t len)
2133 {
2134 	struct core_mmu_table_info tbl_info = { };
2135 	struct tee_mmap_region *res_map = NULL;
2136 	struct tee_mmap_region *map = NULL;
2137 	paddr_t pa = virt_to_phys(addr);
2138 	size_t granule = 0;
2139 	ptrdiff_t i = 0;
2140 	paddr_t p = 0;
2141 	size_t l = 0;
2142 
2143 	map = find_map_by_type_and_pa(type, pa, len);
2144 	if (!map)
2145 		return TEE_ERROR_GENERIC;
2146 
2147 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2148 	if (!res_map)
2149 		return TEE_ERROR_GENERIC;
2150 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2151 		return TEE_ERROR_GENERIC;
2152 	granule = BIT(tbl_info.shift);
2153 
2154 	if (map < static_memory_map.map ||
2155 	    map >= static_memory_map.map + static_memory_map.count)
2156 		return TEE_ERROR_GENERIC;
2157 	i = map - static_memory_map.map;
2158 
2159 	/* Check that we have a full match */
2160 	p = ROUNDDOWN(pa, granule);
2161 	l = ROUNDUP(len + pa - p, granule);
2162 	if (map->pa != p || map->size != l)
2163 		return TEE_ERROR_GENERIC;
2164 
2165 	clear_region(&tbl_info, map);
2166 	tlbi_all();
2167 
2168 	/* If possible remove the va range from res_map */
2169 	if (res_map->va - map->size == map->va) {
2170 		res_map->va -= map->size;
2171 		res_map->size += map->size;
2172 	}
2173 
2174 	/* Remove the entry. */
2175 	rem_array_elem(static_memory_map.map, static_memory_map.count,
2176 		       sizeof(*static_memory_map.map), i);
2177 	static_memory_map.count--;
2178 
2179 	return TEE_SUCCESS;
2180 }
2181 
2182 struct tee_mmap_region *
2183 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2184 {
2185 	struct memory_map *mem_map = get_memory_map();
2186 	struct tee_mmap_region *map_found = NULL;
2187 	size_t n = 0;
2188 
2189 	if (!len)
2190 		return NULL;
2191 
2192 	for (n = 0; n < mem_map->count; n++) {
2193 		if (mem_map->map[n].type != type)
2194 			continue;
2195 
2196 		if (map_found)
2197 			return NULL;
2198 
2199 		map_found = mem_map->map + n;
2200 	}
2201 
2202 	if (!map_found || map_found->size < len)
2203 		return NULL;
2204 
2205 	return map_found;
2206 }
2207 
2208 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2209 {
2210 	struct memory_map *mem_map = &static_memory_map;
2211 	struct core_mmu_table_info tbl_info = { };
2212 	struct tee_mmap_region *map = NULL;
2213 	size_t granule = 0;
2214 	paddr_t p = 0;
2215 	size_t l = 0;
2216 
2217 	if (!len)
2218 		return NULL;
2219 
2220 	if (!core_mmu_check_end_pa(addr, len))
2221 		return NULL;
2222 
2223 	/* Check if the memory is already mapped */
2224 	map = find_map_by_type_and_pa(type, addr, len);
2225 	if (map && pbuf_inside_map_area(addr, len, map))
2226 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2227 
2228 	/* Find the reserved va space used for late mappings */
2229 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2230 	if (!map)
2231 		return NULL;
2232 
2233 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2234 		return NULL;
2235 
2236 	granule = BIT64(tbl_info.shift);
2237 	p = ROUNDDOWN(addr, granule);
2238 	l = ROUNDUP(len + addr - p, granule);
2239 
2240 	/* Ban overflowing virtual addresses */
2241 	if (map->size < l)
2242 		return NULL;
2243 
2244 	/*
2245 	 * Something is wrong, we can't fit the va range into the selected
2246 	 * table. The reserved va range is possibly missaligned with
2247 	 * granule.
2248 	 */
2249 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2250 		return NULL;
2251 
2252 	if (static_memory_map.count >= static_memory_map.alloc_count)
2253 		return NULL;
2254 
2255 	mem_map->map[mem_map->count] = (struct tee_mmap_region){
2256 		.va = map->va,
2257 		.size = l,
2258 		.type = type,
2259 		.region_size = granule,
2260 		.attr = core_mmu_type_to_attr(type),
2261 		.pa = p,
2262 	};
2263 	map->va += l;
2264 	map->size -= l;
2265 	map = mem_map->map + mem_map->count;
2266 	mem_map->count++;
2267 
2268 	set_region(&tbl_info, map);
2269 
2270 	/* Make sure the new entry is visible before continuing. */
2271 	core_mmu_table_write_barrier();
2272 
2273 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2274 }
2275 
2276 #ifdef CFG_WITH_PAGER
2277 static vaddr_t get_linear_map_end_va(void)
2278 {
2279 	/* this is synced with the generic linker file kern.ld.S */
2280 	return (vaddr_t)__heap2_end;
2281 }
2282 
2283 static paddr_t get_linear_map_end_pa(void)
2284 {
2285 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2286 }
2287 #endif
2288 
2289 #if defined(CFG_TEE_CORE_DEBUG)
2290 static void check_pa_matches_va(void *va, paddr_t pa)
2291 {
2292 	TEE_Result res = TEE_ERROR_GENERIC;
2293 	vaddr_t v = (vaddr_t)va;
2294 	paddr_t p = 0;
2295 	struct core_mmu_table_info ti __maybe_unused = { };
2296 
2297 	if (core_mmu_user_va_range_is_defined()) {
2298 		vaddr_t user_va_base = 0;
2299 		size_t user_va_size = 0;
2300 
2301 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2302 		if (v >= user_va_base &&
2303 		    v <= (user_va_base - 1 + user_va_size)) {
2304 			if (!core_mmu_user_mapping_is_active()) {
2305 				if (pa)
2306 					panic("issue in linear address space");
2307 				return;
2308 			}
2309 
2310 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2311 				       va, &p);
2312 			if (res == TEE_ERROR_NOT_SUPPORTED)
2313 				return;
2314 			if (res == TEE_SUCCESS && pa != p)
2315 				panic("bad pa");
2316 			if (res != TEE_SUCCESS && pa)
2317 				panic("false pa");
2318 			return;
2319 		}
2320 	}
2321 #ifdef CFG_WITH_PAGER
2322 	if (is_unpaged(va)) {
2323 		if (v - boot_mmu_config.map_offset != pa)
2324 			panic("issue in linear address space");
2325 		return;
2326 	}
2327 
2328 	if (tee_pager_get_table_info(v, &ti)) {
2329 		uint32_t a;
2330 
2331 		/*
2332 		 * Lookups in the page table managed by the pager is
2333 		 * dangerous for addresses in the paged area as those pages
2334 		 * changes all the time. But some ranges are safe,
2335 		 * rw-locked areas when the page is populated for instance.
2336 		 */
2337 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2338 		if (a & TEE_MATTR_VALID_BLOCK) {
2339 			paddr_t mask = BIT64(ti.shift) - 1;
2340 
2341 			p |= v & mask;
2342 			if (pa != p)
2343 				panic();
2344 		} else {
2345 			if (pa)
2346 				panic();
2347 		}
2348 		return;
2349 	}
2350 #endif
2351 
2352 	if (!core_va2pa_helper(va, &p)) {
2353 		/* Verfiy only the static mapping (case non null phys addr) */
2354 		if (p && pa != p) {
2355 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2356 			     va, p, pa);
2357 			panic();
2358 		}
2359 	} else {
2360 		if (pa) {
2361 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2362 			panic();
2363 		}
2364 	}
2365 }
2366 #else
2367 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2368 {
2369 }
2370 #endif
2371 
2372 paddr_t virt_to_phys(void *va)
2373 {
2374 	paddr_t pa = 0;
2375 
2376 	if (!arch_va2pa_helper(va, &pa))
2377 		pa = 0;
2378 	check_pa_matches_va(memtag_strip_tag(va), pa);
2379 	return pa;
2380 }
2381 
2382 #if defined(CFG_TEE_CORE_DEBUG)
2383 static void check_va_matches_pa(paddr_t pa, void *va)
2384 {
2385 	paddr_t p = 0;
2386 
2387 	if (!va)
2388 		return;
2389 
2390 	p = virt_to_phys(va);
2391 	if (p != pa) {
2392 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2393 		panic();
2394 	}
2395 }
2396 #else
2397 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2398 {
2399 }
2400 #endif
2401 
2402 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2403 {
2404 	if (!core_mmu_user_mapping_is_active())
2405 		return NULL;
2406 
2407 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2408 }
2409 
2410 #ifdef CFG_WITH_PAGER
2411 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2412 {
2413 	paddr_t end_pa = 0;
2414 
2415 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2416 		return NULL;
2417 
2418 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2419 		if (end_pa > get_linear_map_end_pa())
2420 			return NULL;
2421 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2422 	}
2423 
2424 	return tee_pager_phys_to_virt(pa, len);
2425 }
2426 #else
2427 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2428 {
2429 	struct tee_mmap_region *mmap = NULL;
2430 
2431 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2432 	if (!mmap)
2433 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2434 	if (!mmap)
2435 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2436 	if (!mmap)
2437 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2438 	if (!mmap)
2439 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2440 	if (!mmap)
2441 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2442 	/*
2443 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2444 	 * used with pager and not needed here.
2445 	 */
2446 	return map_pa2va(mmap, pa, len);
2447 }
2448 #endif
2449 
2450 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2451 {
2452 	void *va = NULL;
2453 
2454 	switch (m) {
2455 	case MEM_AREA_TS_VASPACE:
2456 		va = phys_to_virt_ts_vaspace(pa, len);
2457 		break;
2458 	case MEM_AREA_TEE_RAM:
2459 	case MEM_AREA_TEE_RAM_RX:
2460 	case MEM_AREA_TEE_RAM_RO:
2461 	case MEM_AREA_TEE_RAM_RW:
2462 	case MEM_AREA_NEX_RAM_RO:
2463 	case MEM_AREA_NEX_RAM_RW:
2464 		va = phys_to_virt_tee_ram(pa, len);
2465 		break;
2466 	case MEM_AREA_SHM_VASPACE:
2467 		/* Find VA from PA in dynamic SHM is not yet supported */
2468 		va = NULL;
2469 		break;
2470 	default:
2471 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2472 	}
2473 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2474 		check_va_matches_pa(pa, va);
2475 	return va;
2476 }
2477 
2478 void *phys_to_virt_io(paddr_t pa, size_t len)
2479 {
2480 	struct tee_mmap_region *map = NULL;
2481 	void *va = NULL;
2482 
2483 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2484 	if (!map)
2485 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2486 	if (!map)
2487 		return NULL;
2488 	va = map_pa2va(map, pa, len);
2489 	check_va_matches_pa(pa, va);
2490 	return va;
2491 }
2492 
2493 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2494 {
2495 	if (cpu_mmu_enabled())
2496 		return (vaddr_t)phys_to_virt(pa, type, len);
2497 
2498 	return (vaddr_t)pa;
2499 }
2500 
2501 #ifdef CFG_WITH_PAGER
2502 bool is_unpaged(const void *va)
2503 {
2504 	vaddr_t v = (vaddr_t)va;
2505 
2506 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2507 }
2508 #endif
2509 
2510 #ifdef CFG_NS_VIRTUALIZATION
2511 bool is_nexus(const void *va)
2512 {
2513 	vaddr_t v = (vaddr_t)va;
2514 
2515 	return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ;
2516 }
2517 #endif
2518 
2519 void core_mmu_init_virtualization(void)
2520 {
2521 	paddr_t b1 = 0;
2522 	paddr_size_t s1 = 0;
2523 
2524 	static_assert(ARRAY_SIZE(secure_only) <= 2);
2525 	if (ARRAY_SIZE(secure_only) == 2) {
2526 		b1 = secure_only[1].paddr;
2527 		s1 = secure_only[1].size;
2528 	}
2529 	virt_init_memory(&static_memory_map, secure_only[0].paddr,
2530 			 secure_only[0].size, b1, s1);
2531 }
2532 
2533 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2534 {
2535 	assert(p->pa);
2536 	if (cpu_mmu_enabled()) {
2537 		if (!p->va)
2538 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2539 		assert(p->va);
2540 		return p->va;
2541 	}
2542 	return p->pa;
2543 }
2544 
2545 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2546 {
2547 	assert(p->pa);
2548 	if (cpu_mmu_enabled()) {
2549 		if (!p->va)
2550 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2551 						      len);
2552 		assert(p->va);
2553 		return p->va;
2554 	}
2555 	return p->pa;
2556 }
2557 
2558 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2559 {
2560 	assert(p->pa);
2561 	if (cpu_mmu_enabled()) {
2562 		if (!p->va)
2563 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2564 						      len);
2565 		assert(p->va);
2566 		return p->va;
2567 	}
2568 	return p->pa;
2569 }
2570 
2571 #ifdef CFG_CORE_RESERVED_SHM
2572 static TEE_Result teecore_init_pub_ram(void)
2573 {
2574 	vaddr_t s = 0;
2575 	vaddr_t e = 0;
2576 
2577 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2578 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2579 
2580 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2581 		panic("invalid PUB RAM");
2582 
2583 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2584 	if (!tee_vbuf_is_non_sec(s, e - s))
2585 		panic("PUB RAM is not non-secure");
2586 
2587 #ifdef CFG_PL310
2588 	/* Allocate statically the l2cc mutex */
2589 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2590 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2591 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2592 #endif
2593 
2594 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2595 	default_nsec_shm_size = e - s;
2596 
2597 	return TEE_SUCCESS;
2598 }
2599 early_init(teecore_init_pub_ram);
2600 #endif /*CFG_CORE_RESERVED_SHM*/
2601 
2602 void core_mmu_init_phys_mem(void)
2603 {
2604 	vaddr_t s = 0;
2605 	vaddr_t e = 0;
2606 	paddr_t ps = 0;
2607 	size_t size = 0;
2608 
2609 	/*
2610 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2611 	 * shared mem allocated from teecore.
2612 	 */
2613 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
2614 		virt_get_ta_ram(&s, &e);
2615 	else
2616 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2617 
2618 	ps = virt_to_phys((void *)s);
2619 	size = e - s;
2620 
2621 	phys_mem_init(0, 0, ps, size);
2622 }
2623