xref: /optee_os/core/mm/core_mmu.c (revision 4e45454a85d31d3cdf87b938ddc5ff467bfd6b27)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <mm/core_memprot.h>
22 #include <mm/core_mmu.h>
23 #include <mm/mobj.h>
24 #include <mm/pgt_cache.h>
25 #include <mm/tee_pager.h>
26 #include <mm/vm.h>
27 #include <platform_config.h>
28 #include <string.h>
29 #include <trace.h>
30 #include <util.h>
31 
32 #ifndef DEBUG_XLAT_TABLE
33 #define DEBUG_XLAT_TABLE 0
34 #endif
35 
36 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
37 
38 #ifdef CFG_CORE_PHYS_RELOCATABLE
39 unsigned long core_mmu_tee_load_pa __nex_bss;
40 #else
41 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
42 #endif
43 
44 /*
45  * These variables are initialized before .bss is cleared. To avoid
46  * resetting them when .bss is cleared we're storing them in .data instead,
47  * even if they initially are zero.
48  */
49 
50 #ifdef CFG_CORE_RESERVED_SHM
51 /* Default NSec shared memory allocated from NSec world */
52 unsigned long default_nsec_shm_size __nex_bss;
53 unsigned long default_nsec_shm_paddr __nex_bss;
54 #endif
55 
56 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS
57 #ifdef CFG_CORE_ASLR
58 						+ 1
59 #endif
60 						+ 1] __nex_bss;
61 
62 /* Define the platform's memory layout. */
63 struct memaccess_area {
64 	paddr_t paddr;
65 	size_t size;
66 };
67 
68 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
69 
70 static struct memaccess_area secure_only[] __nex_data = {
71 #ifdef TRUSTED_SRAM_BASE
72 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
73 #endif
74 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
75 };
76 
77 static struct memaccess_area nsec_shared[] __nex_data = {
78 #ifdef CFG_CORE_RESERVED_SHM
79 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
80 #endif
81 };
82 
83 #if defined(CFG_SECURE_DATA_PATH)
84 static const char *tz_sdp_match = "linaro,secure-heap";
85 static struct memaccess_area sec_sdp;
86 #ifdef CFG_TEE_SDP_MEM_BASE
87 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
88 #endif
89 #ifdef TEE_SDP_TEST_MEM_BASE
90 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
91 #endif
92 #endif
93 
94 #ifdef CFG_CORE_RESERVED_SHM
95 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
96 #endif
97 static unsigned int mmu_spinlock;
98 
99 static uint32_t mmu_lock(void)
100 {
101 	return cpu_spin_lock_xsave(&mmu_spinlock);
102 }
103 
104 static void mmu_unlock(uint32_t exceptions)
105 {
106 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
107 }
108 
109 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
110 {
111 	/*
112 	 * The first range is always used to cover OP-TEE core memory, but
113 	 * depending on configuration it may cover more than that.
114 	 */
115 	*base = secure_only[0].paddr;
116 	*size = secure_only[0].size;
117 }
118 
119 void core_mmu_get_ta_range(paddr_t *base, size_t *size)
120 {
121 	paddr_t b = 0;
122 	size_t s = 0;
123 
124 	static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE));
125 #ifdef TA_RAM_START
126 	b = TA_RAM_START;
127 	s = TA_RAM_SIZE;
128 #else
129 	static_assert(ARRAY_SIZE(secure_only) <= 2);
130 	if (ARRAY_SIZE(secure_only) == 1) {
131 		vaddr_t load_offs = 0;
132 
133 		assert(core_mmu_tee_load_pa >= secure_only[0].paddr);
134 		load_offs = core_mmu_tee_load_pa - secure_only[0].paddr;
135 
136 		assert(secure_only[0].size >
137 		       load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE);
138 		b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE;
139 		s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE -
140 		    TEE_SDP_TEST_MEM_SIZE;
141 	} else {
142 		assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE);
143 		b = secure_only[1].paddr;
144 		s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE;
145 	}
146 #endif
147 	if (base)
148 		*base = b;
149 	if (size)
150 		*size = s;
151 }
152 
153 static struct tee_mmap_region *get_memory_map(void)
154 {
155 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
156 		struct tee_mmap_region *map = virt_get_memory_map();
157 
158 		if (map)
159 			return map;
160 	}
161 
162 	return static_memory_map;
163 }
164 
165 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
166 			     paddr_t pa, size_t size)
167 {
168 	size_t n;
169 
170 	for (n = 0; n < alen; n++)
171 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
172 			return true;
173 	return false;
174 }
175 
176 #define pbuf_intersects(a, pa, size) \
177 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
178 
179 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
180 			    paddr_t pa, size_t size)
181 {
182 	size_t n;
183 
184 	for (n = 0; n < alen; n++)
185 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
186 			return true;
187 	return false;
188 }
189 
190 #define pbuf_is_inside(a, pa, size) \
191 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
192 
193 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
194 {
195 	paddr_t end_pa = 0;
196 
197 	if (!map)
198 		return false;
199 
200 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
201 		return false;
202 
203 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
204 }
205 
206 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
207 {
208 	if (!map)
209 		return false;
210 	return (va >= map->va && va <= (map->va + map->size - 1));
211 }
212 
213 /* check if target buffer fits in a core default map area */
214 static bool pbuf_inside_map_area(unsigned long p, size_t l,
215 				 struct tee_mmap_region *map)
216 {
217 	return core_is_buffer_inside(p, l, map->pa, map->size);
218 }
219 
220 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
221 {
222 	struct tee_mmap_region *map;
223 
224 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++)
225 		if (map->type == type)
226 			return map;
227 	return NULL;
228 }
229 
230 static struct tee_mmap_region *
231 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
232 {
233 	struct tee_mmap_region *map;
234 
235 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
236 		if (map->type != type)
237 			continue;
238 		if (pa_is_in_map(map, pa, len))
239 			return map;
240 	}
241 	return NULL;
242 }
243 
244 static struct tee_mmap_region *find_map_by_va(void *va)
245 {
246 	struct tee_mmap_region *map = get_memory_map();
247 	unsigned long a = (unsigned long)va;
248 
249 	while (!core_mmap_is_end_of_table(map)) {
250 		if (a >= map->va && a <= (map->va - 1 + map->size))
251 			return map;
252 		map++;
253 	}
254 	return NULL;
255 }
256 
257 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
258 {
259 	struct tee_mmap_region *map = get_memory_map();
260 
261 	while (!core_mmap_is_end_of_table(map)) {
262 		if (pa >= map->pa && pa <= (map->pa + map->size - 1))
263 			return map;
264 		map++;
265 	}
266 	return NULL;
267 }
268 
269 #if defined(CFG_SECURE_DATA_PATH)
270 static bool dtb_get_sdp_region(void)
271 {
272 	void *fdt = NULL;
273 	int node = 0;
274 	int tmp_node = 0;
275 	paddr_t tmp_addr = 0;
276 	size_t tmp_size = 0;
277 
278 	if (!IS_ENABLED(CFG_EMBED_DTB))
279 		return false;
280 
281 	fdt = get_embedded_dt();
282 	if (!fdt)
283 		panic("No DTB found");
284 
285 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
286 	if (node < 0) {
287 		DMSG("No %s compatible node found", tz_sdp_match);
288 		return false;
289 	}
290 	tmp_node = node;
291 	while (tmp_node >= 0) {
292 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
293 							 tz_sdp_match);
294 		if (tmp_node >= 0)
295 			DMSG("Ignore SDP pool node %s, supports only 1 node",
296 			     fdt_get_name(fdt, tmp_node, NULL));
297 	}
298 
299 	tmp_addr = fdt_reg_base_address(fdt, node);
300 	if (tmp_addr == DT_INFO_INVALID_REG) {
301 		EMSG("%s: Unable to get base addr from DT", tz_sdp_match);
302 		return false;
303 	}
304 
305 	tmp_size = fdt_reg_size(fdt, node);
306 	if (tmp_size == DT_INFO_INVALID_REG_SIZE) {
307 		EMSG("%s: Unable to get size of base addr from DT",
308 		     tz_sdp_match);
309 		return false;
310 	}
311 
312 	sec_sdp.paddr = tmp_addr;
313 	sec_sdp.size = tmp_size;
314 
315 	return true;
316 }
317 #endif
318 
319 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
320 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
321 				const struct core_mmu_phys_mem *start,
322 				const struct core_mmu_phys_mem *end)
323 {
324 	const struct core_mmu_phys_mem *mem;
325 
326 	for (mem = start; mem < end; mem++) {
327 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
328 			return true;
329 	}
330 
331 	return false;
332 }
333 #endif
334 
335 #ifdef CFG_CORE_DYN_SHM
336 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
337 			       paddr_t pa, size_t size)
338 {
339 	struct core_mmu_phys_mem *m = *mem;
340 	size_t n = 0;
341 
342 	while (true) {
343 		if (n >= *nelems) {
344 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
345 			     pa, size);
346 			return;
347 		}
348 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
349 			break;
350 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
351 			panic();
352 		n++;
353 	}
354 
355 	if (pa == m[n].addr && size == m[n].size) {
356 		/* Remove this entry */
357 		(*nelems)--;
358 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
359 		m = nex_realloc(m, sizeof(*m) * *nelems);
360 		if (!m)
361 			panic();
362 		*mem = m;
363 	} else if (pa == m[n].addr) {
364 		m[n].addr += size;
365 		m[n].size -= size;
366 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
367 		m[n].size -= size;
368 	} else {
369 		/* Need to split the memory entry */
370 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
371 		if (!m)
372 			panic();
373 		*mem = m;
374 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
375 		(*nelems)++;
376 		m[n].size = pa - m[n].addr;
377 		m[n + 1].size -= size + m[n].size;
378 		m[n + 1].addr = pa + size;
379 	}
380 }
381 
382 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
383 				      size_t nelems,
384 				      struct tee_mmap_region *map)
385 {
386 	size_t n;
387 
388 	for (n = 0; n < nelems; n++) {
389 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
390 					    map->pa, map->size)) {
391 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
392 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
393 			     start[n].addr, start[n].size,
394 			     map->type, map->pa, map->size);
395 			panic();
396 		}
397 	}
398 }
399 
400 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
401 static size_t discovered_nsec_ddr_nelems __nex_bss;
402 
403 static int cmp_pmem_by_addr(const void *a, const void *b)
404 {
405 	const struct core_mmu_phys_mem *pmem_a = a;
406 	const struct core_mmu_phys_mem *pmem_b = b;
407 
408 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
409 }
410 
411 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
412 				      size_t nelems)
413 {
414 	struct core_mmu_phys_mem *m = start;
415 	size_t num_elems = nelems;
416 	struct tee_mmap_region *map = static_memory_map;
417 	const struct core_mmu_phys_mem __maybe_unused *pmem;
418 	size_t n = 0;
419 
420 	assert(!discovered_nsec_ddr_start);
421 	assert(m && num_elems);
422 
423 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
424 
425 	/*
426 	 * Non-secure shared memory and also secure data
427 	 * path memory are supposed to reside inside
428 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
429 	 * are used for a specific purpose make holes for
430 	 * those memory in the normal non-secure memory.
431 	 *
432 	 * This has to be done since for instance QEMU
433 	 * isn't aware of which memory range in the
434 	 * non-secure memory is used for NSEC_SHM.
435 	 */
436 
437 #ifdef CFG_SECURE_DATA_PATH
438 	if (dtb_get_sdp_region())
439 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
440 
441 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
442 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
443 #endif
444 
445 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
446 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
447 				   secure_only[n].size);
448 
449 	for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) {
450 		switch (map->type) {
451 		case MEM_AREA_NSEC_SHM:
452 			carve_out_phys_mem(&m, &num_elems, map->pa, map->size);
453 			break;
454 		case MEM_AREA_EXT_DT:
455 		case MEM_AREA_RES_VASPACE:
456 		case MEM_AREA_SHM_VASPACE:
457 		case MEM_AREA_TS_VASPACE:
458 		case MEM_AREA_PAGER_VASPACE:
459 			break;
460 		default:
461 			check_phys_mem_is_outside(m, num_elems, map);
462 		}
463 	}
464 
465 	discovered_nsec_ddr_start = m;
466 	discovered_nsec_ddr_nelems = num_elems;
467 
468 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
469 				   m[num_elems - 1].size))
470 		panic();
471 }
472 
473 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
474 				    const struct core_mmu_phys_mem **end)
475 {
476 	if (!discovered_nsec_ddr_start)
477 		return false;
478 
479 	*start = discovered_nsec_ddr_start;
480 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
481 
482 	return true;
483 }
484 
485 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
486 {
487 	const struct core_mmu_phys_mem *start;
488 	const struct core_mmu_phys_mem *end;
489 
490 	if (!get_discovered_nsec_ddr(&start, &end))
491 		return false;
492 
493 	return pbuf_is_special_mem(pbuf, len, start, end);
494 }
495 
496 bool core_mmu_nsec_ddr_is_defined(void)
497 {
498 	const struct core_mmu_phys_mem *start;
499 	const struct core_mmu_phys_mem *end;
500 
501 	if (!get_discovered_nsec_ddr(&start, &end))
502 		return false;
503 
504 	return start != end;
505 }
506 #else
507 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
508 {
509 	return false;
510 }
511 #endif /*CFG_CORE_DYN_SHM*/
512 
513 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
514 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
515 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
516 
517 #ifdef CFG_SECURE_DATA_PATH
518 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
519 {
520 	bool is_sdp_mem = false;
521 
522 	if (sec_sdp.size)
523 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
524 						   sec_sdp.size);
525 
526 	if (!is_sdp_mem)
527 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
528 						 phys_sdp_mem_end);
529 
530 	return is_sdp_mem;
531 }
532 
533 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
534 {
535 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
536 					    CORE_MEM_SDP_MEM);
537 
538 	if (!mobj)
539 		panic("can't create SDP physical memory object");
540 
541 	return mobj;
542 }
543 
544 struct mobj **core_sdp_mem_create_mobjs(void)
545 {
546 	const struct core_mmu_phys_mem *mem = NULL;
547 	struct mobj **mobj_base = NULL;
548 	struct mobj **mobj = NULL;
549 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
550 
551 	if (sec_sdp.size)
552 		cnt++;
553 
554 	/* SDP mobjs table must end with a NULL entry */
555 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
556 	if (!mobj_base)
557 		panic("Out of memory");
558 
559 	mobj = mobj_base;
560 
561 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
562 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
563 
564 	if (sec_sdp.size)
565 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
566 
567 	return mobj_base;
568 }
569 
570 #else /* CFG_SECURE_DATA_PATH */
571 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
572 {
573 	return false;
574 }
575 
576 #endif /* CFG_SECURE_DATA_PATH */
577 
578 /* Check special memories comply with registered memories */
579 static void verify_special_mem_areas(struct tee_mmap_region *mem_map,
580 				     size_t len,
581 				     const struct core_mmu_phys_mem *start,
582 				     const struct core_mmu_phys_mem *end,
583 				     const char *area_name __maybe_unused)
584 {
585 	const struct core_mmu_phys_mem *mem;
586 	const struct core_mmu_phys_mem *mem2;
587 	struct tee_mmap_region *mmap;
588 	size_t n;
589 
590 	if (start == end) {
591 		DMSG("No %s memory area defined", area_name);
592 		return;
593 	}
594 
595 	for (mem = start; mem < end; mem++)
596 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
597 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
598 
599 	/* Check memories do not intersect each other */
600 	for (mem = start; mem + 1 < end; mem++) {
601 		for (mem2 = mem + 1; mem2 < end; mem2++) {
602 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
603 						     mem->addr, mem->size)) {
604 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
605 						   mem->addr, mem->size);
606 				panic("Special memory intersection");
607 			}
608 		}
609 	}
610 
611 	/*
612 	 * Check memories do not intersect any mapped memory.
613 	 * This is called before reserved VA space is loaded in mem_map.
614 	 */
615 	for (mem = start; mem < end; mem++) {
616 		for (mmap = mem_map, n = 0; n < len; mmap++, n++) {
617 			if (core_is_buffer_intersect(mem->addr, mem->size,
618 						     mmap->pa, mmap->size)) {
619 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
620 						   mmap->pa, mmap->size);
621 				panic("Special memory intersection");
622 			}
623 		}
624 	}
625 }
626 
627 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems,
628 			 const char *mem_name __maybe_unused,
629 			 enum teecore_memtypes mem_type,
630 			 paddr_t mem_addr, paddr_size_t mem_size, size_t *last)
631 {
632 	size_t n = 0;
633 	paddr_t pa;
634 	paddr_size_t size;
635 
636 	if (!mem_size)	/* Discard null size entries */
637 		return;
638 	/*
639 	 * If some ranges of memory of the same type do overlap
640 	 * each others they are coalesced into one entry. To help this
641 	 * added entries are sorted by increasing physical.
642 	 *
643 	 * Note that it's valid to have the same physical memory as several
644 	 * different memory types, for instance the same device memory
645 	 * mapped as both secure and non-secure. This will probably not
646 	 * happen often in practice.
647 	 */
648 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
649 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
650 	while (true) {
651 		if (n >= (num_elems - 1)) {
652 			EMSG("Out of entries (%zu) in memory_map", num_elems);
653 			panic();
654 		}
655 		if (n == *last)
656 			break;
657 		pa = memory_map[n].pa;
658 		size = memory_map[n].size;
659 		if (mem_type == memory_map[n].type &&
660 		    ((pa <= (mem_addr + (mem_size - 1))) &&
661 		    (mem_addr <= (pa + (size - 1))))) {
662 			DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr);
663 			memory_map[n].pa = MIN(pa, mem_addr);
664 			memory_map[n].size = MAX(size, mem_size) +
665 					     (pa - memory_map[n].pa);
666 			return;
667 		}
668 		if (mem_type < memory_map[n].type ||
669 		    (mem_type == memory_map[n].type && mem_addr < pa))
670 			break; /* found the spot where to insert this memory */
671 		n++;
672 	}
673 
674 	memmove(memory_map + n + 1, memory_map + n,
675 		sizeof(struct tee_mmap_region) * (*last - n));
676 	(*last)++;
677 	memset(memory_map + n, 0, sizeof(memory_map[0]));
678 	memory_map[n].type = mem_type;
679 	memory_map[n].pa = mem_addr;
680 	memory_map[n].size = mem_size;
681 }
682 
683 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems,
684 			 enum teecore_memtypes type, size_t size, size_t *last)
685 {
686 	size_t n = 0;
687 
688 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
689 	while (true) {
690 		if (n >= (num_elems - 1)) {
691 			EMSG("Out of entries (%zu) in memory_map", num_elems);
692 			panic();
693 		}
694 		if (n == *last)
695 			break;
696 		if (type < memory_map[n].type)
697 			break;
698 		n++;
699 	}
700 
701 	memmove(memory_map + n + 1, memory_map + n,
702 		sizeof(struct tee_mmap_region) * (*last - n));
703 	(*last)++;
704 	memset(memory_map + n, 0, sizeof(memory_map[0]));
705 	memory_map[n].type = type;
706 	memory_map[n].size = size;
707 }
708 
709 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
710 {
711 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
712 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
713 				TEE_MATTR_MEM_TYPE_SHIFT;
714 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
715 				TEE_MATTR_MEM_TYPE_SHIFT;
716 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
717 				  TEE_MATTR_MEM_TYPE_SHIFT;
718 
719 	switch (t) {
720 	case MEM_AREA_TEE_RAM:
721 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
722 	case MEM_AREA_TEE_RAM_RX:
723 	case MEM_AREA_INIT_RAM_RX:
724 	case MEM_AREA_IDENTITY_MAP_RX:
725 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
726 	case MEM_AREA_TEE_RAM_RO:
727 	case MEM_AREA_INIT_RAM_RO:
728 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
729 	case MEM_AREA_TEE_RAM_RW:
730 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
731 	case MEM_AREA_NEX_RAM_RW:
732 	case MEM_AREA_TEE_ASAN:
733 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
734 	case MEM_AREA_TEE_COHERENT:
735 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
736 	case MEM_AREA_TA_RAM:
737 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
738 	case MEM_AREA_NSEC_SHM:
739 		return attr | TEE_MATTR_PRW | cached;
740 	case MEM_AREA_EXT_DT:
741 		/*
742 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
743 		 * tree as secure non-cached memory, otherwise, fall back to
744 		 * non-secure mapping.
745 		 */
746 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
747 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
748 			       noncache;
749 		fallthrough;
750 	case MEM_AREA_IO_NSEC:
751 		return attr | TEE_MATTR_PRW | noncache;
752 	case MEM_AREA_IO_SEC:
753 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
754 	case MEM_AREA_RAM_NSEC:
755 		return attr | TEE_MATTR_PRW | cached;
756 	case MEM_AREA_RAM_SEC:
757 	case MEM_AREA_SEC_RAM_OVERALL:
758 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
759 	case MEM_AREA_RES_VASPACE:
760 	case MEM_AREA_SHM_VASPACE:
761 		return 0;
762 	case MEM_AREA_PAGER_VASPACE:
763 		return TEE_MATTR_SECURE;
764 	default:
765 		panic("invalid type");
766 	}
767 }
768 
769 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
770 {
771 	switch (mm->type) {
772 	case MEM_AREA_TEE_RAM:
773 	case MEM_AREA_TEE_RAM_RX:
774 	case MEM_AREA_TEE_RAM_RO:
775 	case MEM_AREA_TEE_RAM_RW:
776 	case MEM_AREA_INIT_RAM_RX:
777 	case MEM_AREA_INIT_RAM_RO:
778 	case MEM_AREA_NEX_RAM_RW:
779 	case MEM_AREA_NEX_RAM_RO:
780 	case MEM_AREA_TEE_ASAN:
781 		return true;
782 	default:
783 		return false;
784 	}
785 }
786 
787 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
788 {
789 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
790 }
791 
792 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
793 {
794 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
795 }
796 
797 static int cmp_mmap_by_lower_va(const void *a, const void *b)
798 {
799 	const struct tee_mmap_region *mm_a = a;
800 	const struct tee_mmap_region *mm_b = b;
801 
802 	return CMP_TRILEAN(mm_a->va, mm_b->va);
803 }
804 
805 static void dump_mmap_table(struct tee_mmap_region *memory_map)
806 {
807 	struct tee_mmap_region *map;
808 
809 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
810 		vaddr_t __maybe_unused vstart;
811 
812 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
813 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
814 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
815 		     teecore_memtype_name(map->type), vstart,
816 		     vstart + map->size - 1, map->pa,
817 		     (paddr_t)(map->pa + map->size - 1), map->size,
818 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
819 	}
820 }
821 
822 #if DEBUG_XLAT_TABLE
823 
824 static void dump_xlat_table(vaddr_t va, unsigned int level)
825 {
826 	struct core_mmu_table_info tbl_info;
827 	unsigned int idx = 0;
828 	paddr_t pa;
829 	uint32_t attr;
830 
831 	core_mmu_find_table(NULL, va, level, &tbl_info);
832 	va = tbl_info.va_base;
833 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
834 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
835 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
836 			const char *security_bit = "";
837 
838 			if (core_mmu_entry_have_security_bit(attr)) {
839 				if (attr & TEE_MATTR_SECURE)
840 					security_bit = "S";
841 				else
842 					security_bit = "NS";
843 			}
844 
845 			if (attr & TEE_MATTR_TABLE) {
846 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
847 					" TBL:0x%010" PRIxPA " %s",
848 					level * 2, "", level, va, pa,
849 					security_bit);
850 				dump_xlat_table(va, level + 1);
851 			} else if (attr) {
852 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
853 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
854 					level * 2, "", level, va, pa,
855 					mattr_is_cached(attr) ? "MEM" :
856 					"DEV",
857 					attr & TEE_MATTR_PW ? "RW" : "RO",
858 					attr & TEE_MATTR_PX ? "X " : "XN",
859 					security_bit);
860 			} else {
861 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
862 					    " INVALID\n",
863 					    level * 2, "", level, va);
864 			}
865 		}
866 		va += BIT64(tbl_info.shift);
867 	}
868 }
869 
870 #else
871 
872 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
873 {
874 }
875 
876 #endif
877 
878 /*
879  * Reserves virtual memory space for pager usage.
880  *
881  * From the start of the first memory used by the link script +
882  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
883  * mapping for pager usage. This adds translation tables as needed for the
884  * pager to operate.
885  */
886 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems,
887 			      size_t *last)
888 {
889 	paddr_t begin = 0;
890 	paddr_t end = 0;
891 	size_t size = 0;
892 	size_t pos = 0;
893 	size_t n = 0;
894 
895 	if (*last >= (num_elems - 1)) {
896 		EMSG("Out of entries (%zu) in memory map", num_elems);
897 		panic();
898 	}
899 
900 	for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) {
901 		if (map_is_tee_ram(mmap + n)) {
902 			if (!begin)
903 				begin = mmap[n].pa;
904 			pos = n + 1;
905 		}
906 	}
907 
908 	end = mmap[pos - 1].pa + mmap[pos - 1].size;
909 	assert(end - begin < TEE_RAM_VA_SIZE);
910 	size = TEE_RAM_VA_SIZE - (end - begin);
911 
912 	assert(pos <= *last);
913 	memmove(mmap + pos + 1, mmap + pos,
914 		sizeof(struct tee_mmap_region) * (*last - pos));
915 	(*last)++;
916 	memset(mmap + pos, 0, sizeof(mmap[0]));
917 	mmap[pos].type = MEM_AREA_PAGER_VASPACE;
918 	mmap[pos].va = 0;
919 	mmap[pos].size = size;
920 	mmap[pos].region_size = SMALL_PAGE_SIZE;
921 	mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE);
922 }
923 
924 static void check_sec_nsec_mem_config(void)
925 {
926 	size_t n = 0;
927 
928 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
929 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
930 				    secure_only[n].size))
931 			panic("Invalid memory access config: sec/nsec");
932 	}
933 }
934 
935 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map,
936 				 size_t num_elems)
937 {
938 	const struct core_mmu_phys_mem *mem = NULL;
939 	vaddr_t ram_start = secure_only[0].paddr;
940 	size_t last = 0;
941 
942 
943 #define ADD_PHYS_MEM(_type, _addr, _size) \
944 		add_phys_mem(memory_map, num_elems, #_addr, (_type), \
945 			     (_addr), (_size),  &last)
946 
947 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
948 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start,
949 			     VCORE_UNPG_RX_PA - ram_start);
950 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
951 			     VCORE_UNPG_RX_SZ);
952 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
953 			     VCORE_UNPG_RO_SZ);
954 
955 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
956 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
957 				     VCORE_UNPG_RW_SZ);
958 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
959 				     VCORE_NEX_RW_SZ);
960 		} else {
961 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
962 				     VCORE_UNPG_RW_SZ);
963 		}
964 
965 		if (IS_ENABLED(CFG_WITH_PAGER)) {
966 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
967 				     VCORE_INIT_RX_SZ);
968 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
969 				     VCORE_INIT_RO_SZ);
970 		}
971 	} else {
972 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
973 	}
974 
975 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
976 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
977 			     TRUSTED_DRAM_SIZE);
978 	} else {
979 		/*
980 		 * Every guest will have own TA RAM if virtualization
981 		 * support is enabled.
982 		 */
983 		paddr_t ta_base = 0;
984 		size_t ta_size = 0;
985 
986 		core_mmu_get_ta_range(&ta_base, &ta_size);
987 		ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size);
988 	}
989 
990 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
991 	    IS_ENABLED(CFG_WITH_PAGER)) {
992 		/*
993 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
994 		 * disabled.
995 		 */
996 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
997 	}
998 
999 #undef ADD_PHYS_MEM
1000 
1001 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1002 		/* Only unmapped virtual range may have a null phys addr */
1003 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1004 
1005 		add_phys_mem(memory_map, num_elems, mem->name, mem->type,
1006 			     mem->addr, mem->size, &last);
1007 	}
1008 
1009 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1010 		verify_special_mem_areas(memory_map, num_elems,
1011 					 phys_sdp_mem_begin,
1012 					 phys_sdp_mem_end, "SDP");
1013 
1014 	add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE,
1015 		     CFG_RESERVED_VASPACE_SIZE, &last);
1016 
1017 	add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE,
1018 		     SHM_VASPACE_SIZE, &last);
1019 
1020 	memory_map[last].type = MEM_AREA_END;
1021 
1022 	return last;
1023 }
1024 
1025 static void assign_mem_granularity(struct tee_mmap_region *memory_map)
1026 {
1027 	struct tee_mmap_region *map = NULL;
1028 
1029 	/*
1030 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1031 	 * SMALL_PAGE_SIZE.
1032 	 */
1033 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1034 		paddr_t mask = map->pa | map->size;
1035 
1036 		if (!(mask & CORE_MMU_PGDIR_MASK))
1037 			map->region_size = CORE_MMU_PGDIR_SIZE;
1038 		else if (!(mask & SMALL_PAGE_MASK))
1039 			map->region_size = SMALL_PAGE_SIZE;
1040 		else
1041 			panic("Impossible memory alignment");
1042 
1043 		if (map_is_tee_ram(map))
1044 			map->region_size = SMALL_PAGE_SIZE;
1045 	}
1046 }
1047 
1048 static bool place_tee_ram_at_top(paddr_t paddr)
1049 {
1050 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1051 }
1052 
1053 /*
1054  * MMU arch driver shall override this function if it helps
1055  * optimizing the memory footprint of the address translation tables.
1056  */
1057 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1058 {
1059 	return place_tee_ram_at_top(paddr);
1060 }
1061 
1062 static bool assign_mem_va_dir(vaddr_t tee_ram_va,
1063 			      struct tee_mmap_region *memory_map,
1064 			      bool tee_ram_at_top)
1065 {
1066 	struct tee_mmap_region *map = NULL;
1067 	vaddr_t va = 0;
1068 	bool va_is_secure = true;
1069 
1070 	/*
1071 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1072 	 * 0 is by design an invalid va, so return false directly.
1073 	 */
1074 	if (!tee_ram_va)
1075 		return false;
1076 
1077 	/* Clear eventual previous assignments */
1078 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1079 		map->va = 0;
1080 
1081 	/*
1082 	 * TEE RAM regions are always aligned with region_size.
1083 	 *
1084 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1085 	 * since it handles virtual memory which covers the part of the ELF
1086 	 * that cannot fit directly into memory.
1087 	 */
1088 	va = tee_ram_va;
1089 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1090 		if (map_is_tee_ram(map) ||
1091 		    map->type == MEM_AREA_PAGER_VASPACE) {
1092 			assert(!(va & (map->region_size - 1)));
1093 			assert(!(map->size & (map->region_size - 1)));
1094 			map->va = va;
1095 			if (ADD_OVERFLOW(va, map->size, &va))
1096 				return false;
1097 			if (va >= BIT64(core_mmu_get_va_width()))
1098 				return false;
1099 		}
1100 	}
1101 
1102 	if (tee_ram_at_top) {
1103 		/*
1104 		 * Map non-tee ram regions at addresses lower than the tee
1105 		 * ram region.
1106 		 */
1107 		va = tee_ram_va;
1108 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1109 			map->attr = core_mmu_type_to_attr(map->type);
1110 			if (map->va)
1111 				continue;
1112 
1113 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1114 			    va_is_secure != map_is_secure(map)) {
1115 				va_is_secure = !va_is_secure;
1116 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1117 			}
1118 
1119 			if (SUB_OVERFLOW(va, map->size, &va))
1120 				return false;
1121 			va = ROUNDDOWN(va, map->region_size);
1122 			/*
1123 			 * Make sure that va is aligned with pa for
1124 			 * efficient pgdir mapping. Basically pa &
1125 			 * pgdir_mask should be == va & pgdir_mask
1126 			 */
1127 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1128 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1129 					return false;
1130 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1131 			}
1132 			map->va = va;
1133 		}
1134 	} else {
1135 		/*
1136 		 * Map non-tee ram regions at addresses higher than the tee
1137 		 * ram region.
1138 		 */
1139 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1140 			map->attr = core_mmu_type_to_attr(map->type);
1141 			if (map->va)
1142 				continue;
1143 
1144 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1145 			    va_is_secure != map_is_secure(map)) {
1146 				va_is_secure = !va_is_secure;
1147 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1148 						     &va))
1149 					return false;
1150 			}
1151 
1152 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1153 				return false;
1154 			/*
1155 			 * Make sure that va is aligned with pa for
1156 			 * efficient pgdir mapping. Basically pa &
1157 			 * pgdir_mask should be == va & pgdir_mask
1158 			 */
1159 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1160 				vaddr_t offs = (map->pa - va) &
1161 					       CORE_MMU_PGDIR_MASK;
1162 
1163 				if (ADD_OVERFLOW(va, offs, &va))
1164 					return false;
1165 			}
1166 
1167 			map->va = va;
1168 			if (ADD_OVERFLOW(va, map->size, &va))
1169 				return false;
1170 			if (va >= BIT64(core_mmu_get_va_width()))
1171 				return false;
1172 		}
1173 	}
1174 
1175 	return true;
1176 }
1177 
1178 static bool assign_mem_va(vaddr_t tee_ram_va,
1179 			  struct tee_mmap_region *memory_map)
1180 {
1181 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1182 
1183 	/*
1184 	 * Check that we're not overlapping with the user VA range.
1185 	 */
1186 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1187 		/*
1188 		 * User VA range is supposed to be defined after these
1189 		 * mappings have been established.
1190 		 */
1191 		assert(!core_mmu_user_va_range_is_defined());
1192 	} else {
1193 		vaddr_t user_va_base = 0;
1194 		size_t user_va_size = 0;
1195 
1196 		assert(core_mmu_user_va_range_is_defined());
1197 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1198 		if (tee_ram_va < (user_va_base + user_va_size))
1199 			return false;
1200 	}
1201 
1202 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1203 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1204 
1205 		/* Try whole mapping covered by a single base xlat entry */
1206 		if (prefered_dir != tee_ram_at_top &&
1207 		    assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir))
1208 			return true;
1209 	}
1210 
1211 	return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top);
1212 }
1213 
1214 static int cmp_init_mem_map(const void *a, const void *b)
1215 {
1216 	const struct tee_mmap_region *mm_a = a;
1217 	const struct tee_mmap_region *mm_b = b;
1218 	int rc = 0;
1219 
1220 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1221 	if (!rc)
1222 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1223 	/*
1224 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1225 	 * the same level2 table. Hence sort secure mapping from non-secure
1226 	 * mapping.
1227 	 */
1228 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1229 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1230 
1231 	return rc;
1232 }
1233 
1234 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map,
1235 			       size_t num_elems, size_t *last,
1236 			       vaddr_t id_map_start, vaddr_t id_map_end)
1237 {
1238 	struct tee_mmap_region *map = NULL;
1239 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1240 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1241 	size_t len = end - start;
1242 
1243 	if (*last >= num_elems - 1) {
1244 		EMSG("Out of entries (%zu) in memory map", num_elems);
1245 		panic();
1246 	}
1247 
1248 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1249 		if (core_is_buffer_intersect(map->va, map->size, start, len))
1250 			return false;
1251 
1252 	*map = (struct tee_mmap_region){
1253 		.type = MEM_AREA_IDENTITY_MAP_RX,
1254 		/*
1255 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1256 		 * translation table, at the increased risk of clashes with
1257 		 * the rest of the memory map.
1258 		 */
1259 		.region_size = SMALL_PAGE_SIZE,
1260 		.pa = start,
1261 		.va = start,
1262 		.size = len,
1263 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1264 	};
1265 
1266 	(*last)++;
1267 
1268 	return true;
1269 }
1270 
1271 static unsigned long init_mem_map(struct tee_mmap_region *memory_map,
1272 				  size_t num_elems, unsigned long seed)
1273 {
1274 	/*
1275 	 * @id_map_start and @id_map_end describes a physical memory range
1276 	 * that must be mapped Read-Only eXecutable at identical virtual
1277 	 * addresses.
1278 	 */
1279 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1280 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1281 	vaddr_t start_addr = secure_only[0].paddr;
1282 	unsigned long offs = 0;
1283 	size_t last = 0;
1284 
1285 	last = collect_mem_ranges(memory_map, num_elems);
1286 	assign_mem_granularity(memory_map);
1287 
1288 	/*
1289 	 * To ease mapping and lower use of xlat tables, sort mapping
1290 	 * description moving small-page regions after the pgdir regions.
1291 	 */
1292 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1293 	      cmp_init_mem_map);
1294 
1295 	if (IS_ENABLED(CFG_WITH_PAGER))
1296 		add_pager_vaspace(memory_map, num_elems, &last);
1297 
1298 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1299 		vaddr_t base_addr = start_addr + seed;
1300 		const unsigned int va_width = core_mmu_get_va_width();
1301 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1302 						   SMALL_PAGE_SHIFT);
1303 		vaddr_t ba = base_addr;
1304 		size_t n = 0;
1305 
1306 		for (n = 0; n < 3; n++) {
1307 			if (n)
1308 				ba = base_addr ^ BIT64(va_width - n);
1309 			ba &= va_mask;
1310 			if (assign_mem_va(ba, memory_map) &&
1311 			    mem_map_add_id_map(memory_map, num_elems, &last,
1312 					       id_map_start, id_map_end)) {
1313 				offs = ba - start_addr;
1314 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1315 				     ba, offs);
1316 				goto out;
1317 			} else {
1318 				DMSG("Failed to map core at %#"PRIxVA, ba);
1319 			}
1320 		}
1321 		EMSG("Failed to map core with seed %#lx", seed);
1322 	}
1323 
1324 	if (!assign_mem_va(start_addr, memory_map))
1325 		panic();
1326 
1327 out:
1328 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1329 	      cmp_mmap_by_lower_va);
1330 
1331 	dump_mmap_table(memory_map);
1332 
1333 	return offs;
1334 }
1335 
1336 static void check_mem_map(struct tee_mmap_region *map)
1337 {
1338 	struct tee_mmap_region *m = NULL;
1339 
1340 	for (m = map; !core_mmap_is_end_of_table(m); m++) {
1341 		switch (m->type) {
1342 		case MEM_AREA_TEE_RAM:
1343 		case MEM_AREA_TEE_RAM_RX:
1344 		case MEM_AREA_TEE_RAM_RO:
1345 		case MEM_AREA_TEE_RAM_RW:
1346 		case MEM_AREA_INIT_RAM_RX:
1347 		case MEM_AREA_INIT_RAM_RO:
1348 		case MEM_AREA_NEX_RAM_RW:
1349 		case MEM_AREA_NEX_RAM_RO:
1350 		case MEM_AREA_IDENTITY_MAP_RX:
1351 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1352 				panic("TEE_RAM can't fit in secure_only");
1353 			break;
1354 		case MEM_AREA_TA_RAM:
1355 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1356 				panic("TA_RAM can't fit in secure_only");
1357 			break;
1358 		case MEM_AREA_NSEC_SHM:
1359 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1360 				panic("NS_SHM can't fit in nsec_shared");
1361 			break;
1362 		case MEM_AREA_SEC_RAM_OVERALL:
1363 		case MEM_AREA_TEE_COHERENT:
1364 		case MEM_AREA_TEE_ASAN:
1365 		case MEM_AREA_IO_SEC:
1366 		case MEM_AREA_IO_NSEC:
1367 		case MEM_AREA_EXT_DT:
1368 		case MEM_AREA_RAM_SEC:
1369 		case MEM_AREA_RAM_NSEC:
1370 		case MEM_AREA_RES_VASPACE:
1371 		case MEM_AREA_SHM_VASPACE:
1372 		case MEM_AREA_PAGER_VASPACE:
1373 			break;
1374 		default:
1375 			EMSG("Uhandled memtype %d", m->type);
1376 			panic();
1377 		}
1378 	}
1379 }
1380 
1381 static struct tee_mmap_region *get_tmp_mmap(void)
1382 {
1383 	struct tee_mmap_region *tmp_mmap = (void *)__heap1_start;
1384 
1385 #ifdef CFG_WITH_PAGER
1386 	if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map))
1387 		tmp_mmap = (void *)__heap2_start;
1388 #endif
1389 
1390 	memset(tmp_mmap, 0, sizeof(static_memory_map));
1391 
1392 	return tmp_mmap;
1393 }
1394 
1395 /*
1396  * core_init_mmu_map() - init tee core default memory mapping
1397  *
1398  * This routine sets the static default TEE core mapping. If @seed is > 0
1399  * and configured with CFG_CORE_ASLR it will map tee core at a location
1400  * based on the seed and return the offset from the link address.
1401  *
1402  * If an error happened: core_init_mmu_map is expected to panic.
1403  *
1404  * Note: this function is weak just to make it possible to exclude it from
1405  * the unpaged area.
1406  */
1407 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1408 {
1409 #ifndef CFG_NS_VIRTUALIZATION
1410 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1411 #else
1412 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1413 				  SMALL_PAGE_SIZE);
1414 #endif
1415 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1416 	struct tee_mmap_region *tmp_mmap = get_tmp_mmap();
1417 	unsigned long offs = 0;
1418 
1419 	check_sec_nsec_mem_config();
1420 
1421 	/*
1422 	 * Add a entry covering the translation tables which will be
1423 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1424 	 */
1425 	static_memory_map[0] = (struct tee_mmap_region){
1426 		.type = MEM_AREA_TEE_RAM,
1427 		.region_size = SMALL_PAGE_SIZE,
1428 		.pa = start,
1429 		.va = start,
1430 		.size = len,
1431 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1432 	};
1433 
1434 	COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13);
1435 	offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed);
1436 
1437 	check_mem_map(tmp_mmap);
1438 	core_init_mmu(tmp_mmap);
1439 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1440 	core_init_mmu_regs(cfg);
1441 	cfg->map_offset = offs;
1442 	memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map));
1443 }
1444 
1445 bool core_mmu_mattr_is_ok(uint32_t mattr)
1446 {
1447 	/*
1448 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1449 	 * core_mmu_v7.c:mattr_to_texcb
1450 	 */
1451 
1452 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1453 	case TEE_MATTR_MEM_TYPE_DEV:
1454 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1455 	case TEE_MATTR_MEM_TYPE_CACHED:
1456 	case TEE_MATTR_MEM_TYPE_TAGGED:
1457 		return true;
1458 	default:
1459 		return false;
1460 	}
1461 }
1462 
1463 /*
1464  * test attributes of target physical buffer
1465  *
1466  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1467  *
1468  */
1469 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1470 {
1471 	paddr_t ta_base = 0;
1472 	size_t ta_size = 0;
1473 	struct tee_mmap_region *map;
1474 
1475 	/* Empty buffers complies with anything */
1476 	if (len == 0)
1477 		return true;
1478 
1479 	switch (attr) {
1480 	case CORE_MEM_SEC:
1481 		return pbuf_is_inside(secure_only, pbuf, len);
1482 	case CORE_MEM_NON_SEC:
1483 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1484 			pbuf_is_nsec_ddr(pbuf, len);
1485 	case CORE_MEM_TEE_RAM:
1486 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1487 							TEE_RAM_PH_SIZE);
1488 	case CORE_MEM_TA_RAM:
1489 		core_mmu_get_ta_range(&ta_base, &ta_size);
1490 		return core_is_buffer_inside(pbuf, len, ta_base, ta_size);
1491 #ifdef CFG_CORE_RESERVED_SHM
1492 	case CORE_MEM_NSEC_SHM:
1493 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1494 							TEE_SHMEM_SIZE);
1495 #endif
1496 	case CORE_MEM_SDP_MEM:
1497 		return pbuf_is_sdp_mem(pbuf, len);
1498 	case CORE_MEM_CACHED:
1499 		map = find_map_by_pa(pbuf);
1500 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1501 			return false;
1502 		return mattr_is_cached(map->attr);
1503 	default:
1504 		return false;
1505 	}
1506 }
1507 
1508 /* test attributes of target virtual buffer (in core mapping) */
1509 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1510 {
1511 	paddr_t p;
1512 
1513 	/* Empty buffers complies with anything */
1514 	if (len == 0)
1515 		return true;
1516 
1517 	p = virt_to_phys((void *)vbuf);
1518 	if (!p)
1519 		return false;
1520 
1521 	return core_pbuf_is(attr, p, len);
1522 }
1523 
1524 /* core_va2pa - teecore exported service */
1525 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1526 {
1527 	struct tee_mmap_region *map;
1528 
1529 	map = find_map_by_va(va);
1530 	if (!va_is_in_map(map, (vaddr_t)va))
1531 		return -1;
1532 
1533 	/*
1534 	 * We can calculate PA for static map. Virtual address ranges
1535 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1536 	 * together with an invalid null physical address.
1537 	 */
1538 	if (map->pa)
1539 		*pa = map->pa + (vaddr_t)va  - map->va;
1540 	else
1541 		*pa = 0;
1542 
1543 	return 0;
1544 }
1545 
1546 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1547 {
1548 	if (!pa_is_in_map(map, pa, len))
1549 		return NULL;
1550 
1551 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1552 }
1553 
1554 /*
1555  * teecore gets some memory area definitions
1556  */
1557 void core_mmu_get_mem_by_type(unsigned int type, vaddr_t *s, vaddr_t *e)
1558 {
1559 	struct tee_mmap_region *map = find_map_by_type(type);
1560 
1561 	if (map) {
1562 		*s = map->va;
1563 		*e = map->va + map->size;
1564 	} else {
1565 		*s = 0;
1566 		*e = 0;
1567 	}
1568 }
1569 
1570 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1571 {
1572 	struct tee_mmap_region *map = find_map_by_pa(pa);
1573 
1574 	if (!map)
1575 		return MEM_AREA_MAXTYPE;
1576 	return map->type;
1577 }
1578 
1579 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1580 			paddr_t pa, uint32_t attr)
1581 {
1582 	assert(idx < tbl_info->num_entries);
1583 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1584 				     idx, pa, attr);
1585 }
1586 
1587 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1588 			paddr_t *pa, uint32_t *attr)
1589 {
1590 	assert(idx < tbl_info->num_entries);
1591 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1592 				     idx, pa, attr);
1593 }
1594 
1595 static void clear_region(struct core_mmu_table_info *tbl_info,
1596 			 struct tee_mmap_region *region)
1597 {
1598 	unsigned int end = 0;
1599 	unsigned int idx = 0;
1600 
1601 	/* va, len and pa should be block aligned */
1602 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1603 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1604 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1605 
1606 	idx = core_mmu_va2idx(tbl_info, region->va);
1607 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1608 
1609 	while (idx < end) {
1610 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1611 		idx++;
1612 	}
1613 }
1614 
1615 static void set_region(struct core_mmu_table_info *tbl_info,
1616 		       struct tee_mmap_region *region)
1617 {
1618 	unsigned int end;
1619 	unsigned int idx;
1620 	paddr_t pa;
1621 
1622 	/* va, len and pa should be block aligned */
1623 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1624 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1625 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1626 
1627 	idx = core_mmu_va2idx(tbl_info, region->va);
1628 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1629 	pa = region->pa;
1630 
1631 	while (idx < end) {
1632 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1633 		idx++;
1634 		pa += BIT64(tbl_info->shift);
1635 	}
1636 }
1637 
1638 static void set_pg_region(struct core_mmu_table_info *dir_info,
1639 			  struct vm_region *region, struct pgt **pgt,
1640 			  struct core_mmu_table_info *pg_info)
1641 {
1642 	struct tee_mmap_region r = {
1643 		.va = region->va,
1644 		.size = region->size,
1645 		.attr = region->attr,
1646 	};
1647 	vaddr_t end = r.va + r.size;
1648 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1649 
1650 	while (r.va < end) {
1651 		if (!pg_info->table ||
1652 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1653 			/*
1654 			 * We're assigning a new translation table.
1655 			 */
1656 			unsigned int idx;
1657 
1658 			/* Virtual addresses must grow */
1659 			assert(r.va > pg_info->va_base);
1660 
1661 			idx = core_mmu_va2idx(dir_info, r.va);
1662 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1663 
1664 			/*
1665 			 * Advance pgt to va_base, note that we may need to
1666 			 * skip multiple page tables if there are large
1667 			 * holes in the vm map.
1668 			 */
1669 			while ((*pgt)->vabase < pg_info->va_base) {
1670 				*pgt = SLIST_NEXT(*pgt, link);
1671 				/* We should have allocated enough */
1672 				assert(*pgt);
1673 			}
1674 			assert((*pgt)->vabase == pg_info->va_base);
1675 			pg_info->table = (*pgt)->tbl;
1676 
1677 			core_mmu_set_entry(dir_info, idx,
1678 					   virt_to_phys(pg_info->table),
1679 					   pgt_attr);
1680 		}
1681 
1682 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1683 			     end - r.va);
1684 
1685 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1686 			size_t granule = BIT(pg_info->shift);
1687 			size_t offset = r.va - region->va + region->offset;
1688 
1689 			r.size = MIN(r.size,
1690 				     mobj_get_phys_granule(region->mobj));
1691 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1692 
1693 			if (mobj_get_pa(region->mobj, offset, granule,
1694 					&r.pa) != TEE_SUCCESS)
1695 				panic("Failed to get PA of unpaged mobj");
1696 			set_region(pg_info, &r);
1697 		}
1698 		r.va += r.size;
1699 	}
1700 }
1701 
1702 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1703 			     size_t size_left, paddr_t block_size,
1704 			     struct tee_mmap_region *mm __maybe_unused)
1705 {
1706 	/* VA and PA are aligned to block size at current level */
1707 	if ((vaddr | paddr) & (block_size - 1))
1708 		return false;
1709 
1710 	/* Remainder fits into block at current level */
1711 	if (size_left < block_size)
1712 		return false;
1713 
1714 #ifdef CFG_WITH_PAGER
1715 	/*
1716 	 * If pager is enabled, we need to map tee ram
1717 	 * regions with small pages only
1718 	 */
1719 	if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE)
1720 		return false;
1721 #endif
1722 
1723 	return true;
1724 }
1725 
1726 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1727 {
1728 	struct core_mmu_table_info tbl_info;
1729 	unsigned int idx;
1730 	vaddr_t vaddr = mm->va;
1731 	paddr_t paddr = mm->pa;
1732 	ssize_t size_left = mm->size;
1733 	unsigned int level;
1734 	bool table_found;
1735 	uint32_t old_attr;
1736 
1737 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1738 
1739 	while (size_left > 0) {
1740 		level = CORE_MMU_BASE_TABLE_LEVEL;
1741 
1742 		while (true) {
1743 			paddr_t block_size = 0;
1744 
1745 			assert(level <= CORE_MMU_PGDIR_LEVEL);
1746 
1747 			table_found = core_mmu_find_table(prtn, vaddr, level,
1748 							  &tbl_info);
1749 			if (!table_found)
1750 				panic("can't find table for mapping");
1751 
1752 			block_size = BIT64(tbl_info.shift);
1753 
1754 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1755 			if (!can_map_at_level(paddr, vaddr, size_left,
1756 					      block_size, mm)) {
1757 				bool secure = mm->attr & TEE_MATTR_SECURE;
1758 
1759 				/*
1760 				 * This part of the region can't be mapped at
1761 				 * this level. Need to go deeper.
1762 				 */
1763 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1764 								     idx,
1765 								     secure))
1766 					panic("Can't divide MMU entry");
1767 				level++;
1768 				continue;
1769 			}
1770 
1771 			/* We can map part of the region at current level */
1772 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1773 			if (old_attr)
1774 				panic("Page is already mapped");
1775 
1776 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1777 			paddr += block_size;
1778 			vaddr += block_size;
1779 			size_left -= block_size;
1780 
1781 			break;
1782 		}
1783 	}
1784 }
1785 
1786 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1787 			      enum teecore_memtypes memtype)
1788 {
1789 	TEE_Result ret;
1790 	struct core_mmu_table_info tbl_info;
1791 	struct tee_mmap_region *mm;
1792 	unsigned int idx;
1793 	uint32_t old_attr;
1794 	uint32_t exceptions;
1795 	vaddr_t vaddr = vstart;
1796 	size_t i;
1797 	bool secure;
1798 
1799 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1800 
1801 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1802 
1803 	if (vaddr & SMALL_PAGE_MASK)
1804 		return TEE_ERROR_BAD_PARAMETERS;
1805 
1806 	exceptions = mmu_lock();
1807 
1808 	mm = find_map_by_va((void *)vaddr);
1809 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1810 		panic("VA does not belong to any known mm region");
1811 
1812 	if (!core_mmu_is_dynamic_vaspace(mm))
1813 		panic("Trying to map into static region");
1814 
1815 	for (i = 0; i < num_pages; i++) {
1816 		if (pages[i] & SMALL_PAGE_MASK) {
1817 			ret = TEE_ERROR_BAD_PARAMETERS;
1818 			goto err;
1819 		}
1820 
1821 		while (true) {
1822 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1823 						 &tbl_info))
1824 				panic("Can't find pagetable for vaddr ");
1825 
1826 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1827 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1828 				break;
1829 
1830 			/* This is supertable. Need to divide it. */
1831 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1832 							     secure))
1833 				panic("Failed to spread pgdir on small tables");
1834 		}
1835 
1836 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1837 		if (old_attr)
1838 			panic("Page is already mapped");
1839 
1840 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1841 				   core_mmu_type_to_attr(memtype));
1842 		vaddr += SMALL_PAGE_SIZE;
1843 	}
1844 
1845 	/*
1846 	 * Make sure all the changes to translation tables are visible
1847 	 * before returning. TLB doesn't need to be invalidated as we are
1848 	 * guaranteed that there's no valid mapping in this range.
1849 	 */
1850 	core_mmu_table_write_barrier();
1851 	mmu_unlock(exceptions);
1852 
1853 	return TEE_SUCCESS;
1854 err:
1855 	mmu_unlock(exceptions);
1856 
1857 	if (i)
1858 		core_mmu_unmap_pages(vstart, i);
1859 
1860 	return ret;
1861 }
1862 
1863 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
1864 					 size_t num_pages,
1865 					 enum teecore_memtypes memtype)
1866 {
1867 	struct core_mmu_table_info tbl_info = { };
1868 	struct tee_mmap_region *mm = NULL;
1869 	unsigned int idx = 0;
1870 	uint32_t old_attr = 0;
1871 	uint32_t exceptions = 0;
1872 	vaddr_t vaddr = vstart;
1873 	paddr_t paddr = pstart;
1874 	size_t i = 0;
1875 	bool secure = false;
1876 
1877 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1878 
1879 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1880 
1881 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
1882 		return TEE_ERROR_BAD_PARAMETERS;
1883 
1884 	exceptions = mmu_lock();
1885 
1886 	mm = find_map_by_va((void *)vaddr);
1887 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1888 		panic("VA does not belong to any known mm region");
1889 
1890 	if (!core_mmu_is_dynamic_vaspace(mm))
1891 		panic("Trying to map into static region");
1892 
1893 	for (i = 0; i < num_pages; i++) {
1894 		while (true) {
1895 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1896 						 &tbl_info))
1897 				panic("Can't find pagetable for vaddr ");
1898 
1899 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1900 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1901 				break;
1902 
1903 			/* This is supertable. Need to divide it. */
1904 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1905 							     secure))
1906 				panic("Failed to spread pgdir on small tables");
1907 		}
1908 
1909 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1910 		if (old_attr)
1911 			panic("Page is already mapped");
1912 
1913 		core_mmu_set_entry(&tbl_info, idx, paddr,
1914 				   core_mmu_type_to_attr(memtype));
1915 		paddr += SMALL_PAGE_SIZE;
1916 		vaddr += SMALL_PAGE_SIZE;
1917 	}
1918 
1919 	/*
1920 	 * Make sure all the changes to translation tables are visible
1921 	 * before returning. TLB doesn't need to be invalidated as we are
1922 	 * guaranteed that there's no valid mapping in this range.
1923 	 */
1924 	core_mmu_table_write_barrier();
1925 	mmu_unlock(exceptions);
1926 
1927 	return TEE_SUCCESS;
1928 }
1929 
1930 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
1931 {
1932 	struct core_mmu_table_info tbl_info;
1933 	struct tee_mmap_region *mm;
1934 	size_t i;
1935 	unsigned int idx;
1936 	uint32_t exceptions;
1937 
1938 	exceptions = mmu_lock();
1939 
1940 	mm = find_map_by_va((void *)vstart);
1941 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
1942 		panic("VA does not belong to any known mm region");
1943 
1944 	if (!core_mmu_is_dynamic_vaspace(mm))
1945 		panic("Trying to unmap static region");
1946 
1947 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
1948 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
1949 			panic("Can't find pagetable");
1950 
1951 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
1952 			panic("Invalid pagetable level");
1953 
1954 		idx = core_mmu_va2idx(&tbl_info, vstart);
1955 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
1956 	}
1957 	tlbi_all();
1958 
1959 	mmu_unlock(exceptions);
1960 }
1961 
1962 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
1963 				struct user_mode_ctx *uctx)
1964 {
1965 	struct core_mmu_table_info pg_info = { };
1966 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
1967 	struct pgt *pgt = NULL;
1968 	struct pgt *p = NULL;
1969 	struct vm_region *r = NULL;
1970 
1971 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
1972 		return; /* Nothing to map */
1973 
1974 	/*
1975 	 * Allocate all page tables in advance.
1976 	 */
1977 	pgt_get_all(uctx);
1978 	pgt = SLIST_FIRST(pgt_cache);
1979 
1980 	core_mmu_set_info_table(&pg_info, dir_info->level + 1, 0, NULL);
1981 
1982 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
1983 		set_pg_region(dir_info, r, &pgt, &pg_info);
1984 	/* Record that the translation tables now are populated. */
1985 	SLIST_FOREACH(p, pgt_cache, link) {
1986 		p->populated = true;
1987 		if (p == pgt)
1988 			break;
1989 	}
1990 	assert(p == pgt);
1991 }
1992 
1993 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
1994 				   size_t len)
1995 {
1996 	struct core_mmu_table_info tbl_info = { };
1997 	struct tee_mmap_region *res_map = NULL;
1998 	struct tee_mmap_region *map = NULL;
1999 	paddr_t pa = virt_to_phys(addr);
2000 	size_t granule = 0;
2001 	ptrdiff_t i = 0;
2002 	paddr_t p = 0;
2003 	size_t l = 0;
2004 
2005 	map = find_map_by_type_and_pa(type, pa, len);
2006 	if (!map)
2007 		return TEE_ERROR_GENERIC;
2008 
2009 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2010 	if (!res_map)
2011 		return TEE_ERROR_GENERIC;
2012 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2013 		return TEE_ERROR_GENERIC;
2014 	granule = BIT(tbl_info.shift);
2015 
2016 	if (map < static_memory_map ||
2017 	    map >= static_memory_map + ARRAY_SIZE(static_memory_map))
2018 		return TEE_ERROR_GENERIC;
2019 	i = map - static_memory_map;
2020 
2021 	/* Check that we have a full match */
2022 	p = ROUNDDOWN(pa, granule);
2023 	l = ROUNDUP(len + pa - p, granule);
2024 	if (map->pa != p || map->size != l)
2025 		return TEE_ERROR_GENERIC;
2026 
2027 	clear_region(&tbl_info, map);
2028 	tlbi_all();
2029 
2030 	/* If possible remove the va range from res_map */
2031 	if (res_map->va - map->size == map->va) {
2032 		res_map->va -= map->size;
2033 		res_map->size += map->size;
2034 	}
2035 
2036 	/* Remove the entry. */
2037 	memmove(map, map + 1,
2038 		(ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map));
2039 
2040 	/* Clear the last new entry in case it was used */
2041 	memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1,
2042 	       0, sizeof(*map));
2043 
2044 	return TEE_SUCCESS;
2045 }
2046 
2047 struct tee_mmap_region *
2048 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2049 {
2050 	struct tee_mmap_region *map = NULL;
2051 	struct tee_mmap_region *map_found = NULL;
2052 
2053 	if (!len)
2054 		return NULL;
2055 
2056 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
2057 		if (map->type != type)
2058 			continue;
2059 
2060 		if (map_found)
2061 			return NULL;
2062 
2063 		map_found = map;
2064 	}
2065 
2066 	if (!map_found || map_found->size < len)
2067 		return NULL;
2068 
2069 	return map_found;
2070 }
2071 
2072 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2073 {
2074 	struct core_mmu_table_info tbl_info;
2075 	struct tee_mmap_region *map;
2076 	size_t n;
2077 	size_t granule;
2078 	paddr_t p;
2079 	size_t l;
2080 
2081 	if (!len)
2082 		return NULL;
2083 
2084 	if (!core_mmu_check_end_pa(addr, len))
2085 		return NULL;
2086 
2087 	/* Check if the memory is already mapped */
2088 	map = find_map_by_type_and_pa(type, addr, len);
2089 	if (map && pbuf_inside_map_area(addr, len, map))
2090 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2091 
2092 	/* Find the reserved va space used for late mappings */
2093 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2094 	if (!map)
2095 		return NULL;
2096 
2097 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2098 		return NULL;
2099 
2100 	granule = BIT64(tbl_info.shift);
2101 	p = ROUNDDOWN(addr, granule);
2102 	l = ROUNDUP(len + addr - p, granule);
2103 
2104 	/* Ban overflowing virtual addresses */
2105 	if (map->size < l)
2106 		return NULL;
2107 
2108 	/*
2109 	 * Something is wrong, we can't fit the va range into the selected
2110 	 * table. The reserved va range is possibly missaligned with
2111 	 * granule.
2112 	 */
2113 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2114 		return NULL;
2115 
2116 	/* Find end of the memory map */
2117 	n = 0;
2118 	while (!core_mmap_is_end_of_table(static_memory_map + n))
2119 		n++;
2120 
2121 	if (n < (ARRAY_SIZE(static_memory_map) - 1)) {
2122 		/* There's room for another entry */
2123 		static_memory_map[n].va = map->va;
2124 		static_memory_map[n].size = l;
2125 		static_memory_map[n + 1].type = MEM_AREA_END;
2126 		map->va += l;
2127 		map->size -= l;
2128 		map = static_memory_map + n;
2129 	} else {
2130 		/*
2131 		 * There isn't room for another entry, steal the reserved
2132 		 * entry as it's not useful for anything else any longer.
2133 		 */
2134 		map->size = l;
2135 	}
2136 	map->type = type;
2137 	map->region_size = granule;
2138 	map->attr = core_mmu_type_to_attr(type);
2139 	map->pa = p;
2140 
2141 	set_region(&tbl_info, map);
2142 
2143 	/* Make sure the new entry is visible before continuing. */
2144 	core_mmu_table_write_barrier();
2145 
2146 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2147 }
2148 
2149 #ifdef CFG_WITH_PAGER
2150 static vaddr_t get_linear_map_end_va(void)
2151 {
2152 	/* this is synced with the generic linker file kern.ld.S */
2153 	return (vaddr_t)__heap2_end;
2154 }
2155 
2156 static paddr_t get_linear_map_end_pa(void)
2157 {
2158 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2159 }
2160 #endif
2161 
2162 #if defined(CFG_TEE_CORE_DEBUG)
2163 static void check_pa_matches_va(void *va, paddr_t pa)
2164 {
2165 	TEE_Result res = TEE_ERROR_GENERIC;
2166 	vaddr_t v = (vaddr_t)va;
2167 	paddr_t p = 0;
2168 	struct core_mmu_table_info ti __maybe_unused = { };
2169 
2170 	if (core_mmu_user_va_range_is_defined()) {
2171 		vaddr_t user_va_base = 0;
2172 		size_t user_va_size = 0;
2173 
2174 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2175 		if (v >= user_va_base &&
2176 		    v <= (user_va_base - 1 + user_va_size)) {
2177 			if (!core_mmu_user_mapping_is_active()) {
2178 				if (pa)
2179 					panic("issue in linear address space");
2180 				return;
2181 			}
2182 
2183 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2184 				       va, &p);
2185 			if (res == TEE_ERROR_NOT_SUPPORTED)
2186 				return;
2187 			if (res == TEE_SUCCESS && pa != p)
2188 				panic("bad pa");
2189 			if (res != TEE_SUCCESS && pa)
2190 				panic("false pa");
2191 			return;
2192 		}
2193 	}
2194 #ifdef CFG_WITH_PAGER
2195 	if (is_unpaged(va)) {
2196 		if (v - boot_mmu_config.map_offset != pa)
2197 			panic("issue in linear address space");
2198 		return;
2199 	}
2200 
2201 	if (tee_pager_get_table_info(v, &ti)) {
2202 		uint32_t a;
2203 
2204 		/*
2205 		 * Lookups in the page table managed by the pager is
2206 		 * dangerous for addresses in the paged area as those pages
2207 		 * changes all the time. But some ranges are safe,
2208 		 * rw-locked areas when the page is populated for instance.
2209 		 */
2210 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2211 		if (a & TEE_MATTR_VALID_BLOCK) {
2212 			paddr_t mask = BIT64(ti.shift) - 1;
2213 
2214 			p |= v & mask;
2215 			if (pa != p)
2216 				panic();
2217 		} else {
2218 			if (pa)
2219 				panic();
2220 		}
2221 		return;
2222 	}
2223 #endif
2224 
2225 	if (!core_va2pa_helper(va, &p)) {
2226 		/* Verfiy only the static mapping (case non null phys addr) */
2227 		if (p && pa != p) {
2228 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2229 			     va, p, pa);
2230 			panic();
2231 		}
2232 	} else {
2233 		if (pa) {
2234 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2235 			panic();
2236 		}
2237 	}
2238 }
2239 #else
2240 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2241 {
2242 }
2243 #endif
2244 
2245 paddr_t virt_to_phys(void *va)
2246 {
2247 	paddr_t pa = 0;
2248 
2249 	if (!arch_va2pa_helper(va, &pa))
2250 		pa = 0;
2251 	check_pa_matches_va(va, pa);
2252 	return pa;
2253 }
2254 
2255 #if defined(CFG_TEE_CORE_DEBUG)
2256 static void check_va_matches_pa(paddr_t pa, void *va)
2257 {
2258 	paddr_t p = 0;
2259 
2260 	if (!va)
2261 		return;
2262 
2263 	p = virt_to_phys(va);
2264 	if (p != pa) {
2265 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2266 		panic();
2267 	}
2268 }
2269 #else
2270 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2271 {
2272 }
2273 #endif
2274 
2275 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2276 {
2277 	if (!core_mmu_user_mapping_is_active())
2278 		return NULL;
2279 
2280 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2281 }
2282 
2283 #ifdef CFG_WITH_PAGER
2284 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2285 {
2286 	paddr_t end_pa = 0;
2287 
2288 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2289 		return NULL;
2290 
2291 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2292 		if (end_pa > get_linear_map_end_pa())
2293 			return NULL;
2294 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2295 	}
2296 
2297 	return tee_pager_phys_to_virt(pa, len);
2298 }
2299 #else
2300 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2301 {
2302 	struct tee_mmap_region *mmap = NULL;
2303 
2304 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2305 	if (!mmap)
2306 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2307 	if (!mmap)
2308 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2309 	if (!mmap)
2310 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2311 	if (!mmap)
2312 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2313 	if (!mmap)
2314 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2315 	/*
2316 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2317 	 * used with pager and not needed here.
2318 	 */
2319 	return map_pa2va(mmap, pa, len);
2320 }
2321 #endif
2322 
2323 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2324 {
2325 	void *va = NULL;
2326 
2327 	switch (m) {
2328 	case MEM_AREA_TS_VASPACE:
2329 		va = phys_to_virt_ts_vaspace(pa, len);
2330 		break;
2331 	case MEM_AREA_TEE_RAM:
2332 	case MEM_AREA_TEE_RAM_RX:
2333 	case MEM_AREA_TEE_RAM_RO:
2334 	case MEM_AREA_TEE_RAM_RW:
2335 	case MEM_AREA_NEX_RAM_RO:
2336 	case MEM_AREA_NEX_RAM_RW:
2337 		va = phys_to_virt_tee_ram(pa, len);
2338 		break;
2339 	case MEM_AREA_SHM_VASPACE:
2340 		/* Find VA from PA in dynamic SHM is not yet supported */
2341 		va = NULL;
2342 		break;
2343 	default:
2344 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2345 	}
2346 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2347 		check_va_matches_pa(pa, va);
2348 	return va;
2349 }
2350 
2351 void *phys_to_virt_io(paddr_t pa, size_t len)
2352 {
2353 	struct tee_mmap_region *map = NULL;
2354 	void *va = NULL;
2355 
2356 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2357 	if (!map)
2358 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2359 	if (!map)
2360 		return NULL;
2361 	va = map_pa2va(map, pa, len);
2362 	check_va_matches_pa(pa, va);
2363 	return va;
2364 }
2365 
2366 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2367 {
2368 	if (cpu_mmu_enabled())
2369 		return (vaddr_t)phys_to_virt(pa, type, len);
2370 
2371 	return (vaddr_t)pa;
2372 }
2373 
2374 #ifdef CFG_WITH_PAGER
2375 bool is_unpaged(void *va)
2376 {
2377 	vaddr_t v = (vaddr_t)va;
2378 
2379 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2380 }
2381 #else
2382 bool is_unpaged(void *va __unused)
2383 {
2384 	return true;
2385 }
2386 #endif
2387 
2388 void core_mmu_init_virtualization(void)
2389 {
2390 	paddr_t b1 = 0;
2391 	paddr_size_t s1 = 0;
2392 
2393 	static_assert(ARRAY_SIZE(secure_only) <= 2);
2394 	if (ARRAY_SIZE(secure_only) == 2) {
2395 		b1 = secure_only[1].paddr;
2396 		s1 = secure_only[1].size;
2397 	}
2398 	virt_init_memory(static_memory_map, secure_only[0].paddr,
2399 			 secure_only[0].size, b1, s1);
2400 }
2401 
2402 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2403 {
2404 	assert(p->pa);
2405 	if (cpu_mmu_enabled()) {
2406 		if (!p->va)
2407 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2408 		assert(p->va);
2409 		return p->va;
2410 	}
2411 	return p->pa;
2412 }
2413 
2414 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2415 {
2416 	assert(p->pa);
2417 	if (cpu_mmu_enabled()) {
2418 		if (!p->va)
2419 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2420 						      len);
2421 		assert(p->va);
2422 		return p->va;
2423 	}
2424 	return p->pa;
2425 }
2426 
2427 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2428 {
2429 	assert(p->pa);
2430 	if (cpu_mmu_enabled()) {
2431 		if (!p->va)
2432 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2433 						      len);
2434 		assert(p->va);
2435 		return p->va;
2436 	}
2437 	return p->pa;
2438 }
2439 
2440 #ifdef CFG_CORE_RESERVED_SHM
2441 static TEE_Result teecore_init_pub_ram(void)
2442 {
2443 	vaddr_t s = 0;
2444 	vaddr_t e = 0;
2445 
2446 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2447 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2448 
2449 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2450 		panic("invalid PUB RAM");
2451 
2452 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2453 	if (!tee_vbuf_is_non_sec(s, e - s))
2454 		panic("PUB RAM is not non-secure");
2455 
2456 #ifdef CFG_PL310
2457 	/* Allocate statically the l2cc mutex */
2458 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2459 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2460 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2461 #endif
2462 
2463 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2464 	default_nsec_shm_size = e - s;
2465 
2466 	return TEE_SUCCESS;
2467 }
2468 early_init(teecore_init_pub_ram);
2469 #endif /*CFG_CORE_RESERVED_SHM*/
2470 
2471 void core_mmu_init_ta_ram(void)
2472 {
2473 	vaddr_t s = 0;
2474 	vaddr_t e = 0;
2475 	paddr_t ps = 0;
2476 	size_t size = 0;
2477 
2478 	/*
2479 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2480 	 * shared mem allocated from teecore.
2481 	 */
2482 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
2483 		virt_get_ta_ram(&s, &e);
2484 	else
2485 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2486 
2487 	ps = virt_to_phys((void *)s);
2488 	size = e - s;
2489 
2490 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2491 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2492 		panic("invalid TA RAM");
2493 
2494 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2495 	if (!tee_pbuf_is_sec(ps, size))
2496 		panic("TA RAM is not secure");
2497 
2498 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2499 		panic("TA RAM pool is not empty");
2500 
2501 	/* remove previous config and init TA ddr memory pool */
2502 	tee_mm_final(&tee_mm_sec_ddr);
2503 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2504 		    TEE_MM_POOL_NO_FLAGS);
2505 }
2506