xref: /optee_os/core/mm/core_mmu.c (revision 46417fc365fd28e998449058f584bb9348d15fef)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <mm/core_memprot.h>
22 #include <mm/core_mmu.h>
23 #include <mm/mobj.h>
24 #include <mm/pgt_cache.h>
25 #include <mm/tee_pager.h>
26 #include <mm/vm.h>
27 #include <platform_config.h>
28 #include <string.h>
29 #include <trace.h>
30 #include <util.h>
31 
32 #ifndef DEBUG_XLAT_TABLE
33 #define DEBUG_XLAT_TABLE 0
34 #endif
35 
36 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
37 
38 #ifdef CFG_CORE_PHYS_RELOCATABLE
39 unsigned long core_mmu_tee_load_pa __nex_bss;
40 #else
41 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
42 #endif
43 
44 /*
45  * These variables are initialized before .bss is cleared. To avoid
46  * resetting them when .bss is cleared we're storing them in .data instead,
47  * even if they initially are zero.
48  */
49 
50 #ifdef CFG_CORE_RESERVED_SHM
51 /* Default NSec shared memory allocated from NSec world */
52 unsigned long default_nsec_shm_size __nex_bss;
53 unsigned long default_nsec_shm_paddr __nex_bss;
54 #endif
55 
56 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS
57 #ifdef CFG_CORE_ASLR
58 						+ 1
59 #endif
60 						+ 1] __nex_bss;
61 
62 /* Define the platform's memory layout. */
63 struct memaccess_area {
64 	paddr_t paddr;
65 	size_t size;
66 };
67 
68 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
69 
70 static struct memaccess_area secure_only[] __nex_data = {
71 #ifdef TRUSTED_SRAM_BASE
72 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
73 #endif
74 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
75 };
76 
77 static struct memaccess_area nsec_shared[] __nex_data = {
78 #ifdef CFG_CORE_RESERVED_SHM
79 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
80 #endif
81 };
82 
83 #if defined(CFG_SECURE_DATA_PATH)
84 static const char *tz_sdp_match = "linaro,secure-heap";
85 static struct memaccess_area sec_sdp;
86 #ifdef CFG_TEE_SDP_MEM_BASE
87 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
88 #endif
89 #ifdef TEE_SDP_TEST_MEM_BASE
90 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
91 #endif
92 #endif
93 
94 #ifdef CFG_CORE_RESERVED_SHM
95 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
96 #endif
97 static unsigned int mmu_spinlock;
98 
99 static uint32_t mmu_lock(void)
100 {
101 	return cpu_spin_lock_xsave(&mmu_spinlock);
102 }
103 
104 static void mmu_unlock(uint32_t exceptions)
105 {
106 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
107 }
108 
109 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
110 {
111 	/*
112 	 * The first range is always used to cover OP-TEE core memory, but
113 	 * depending on configuration it may cover more than that.
114 	 */
115 	*base = secure_only[0].paddr;
116 	*size = secure_only[0].size;
117 }
118 
119 void core_mmu_get_ta_range(paddr_t *base, size_t *size)
120 {
121 	paddr_t b = 0;
122 	size_t s = 0;
123 
124 	static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE));
125 #ifdef TA_RAM_START
126 	b = TA_RAM_START;
127 	s = TA_RAM_SIZE;
128 #else
129 	static_assert(ARRAY_SIZE(secure_only) <= 2);
130 	if (ARRAY_SIZE(secure_only) == 1) {
131 		vaddr_t load_offs = 0;
132 
133 		assert(core_mmu_tee_load_pa >= secure_only[0].paddr);
134 		load_offs = core_mmu_tee_load_pa - secure_only[0].paddr;
135 
136 		assert(secure_only[0].size >
137 		       load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE);
138 		b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE;
139 		s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE -
140 		    TEE_SDP_TEST_MEM_SIZE;
141 	} else {
142 		assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE);
143 		b = secure_only[1].paddr;
144 		s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE;
145 	}
146 #endif
147 	if (base)
148 		*base = b;
149 	if (size)
150 		*size = s;
151 }
152 
153 static struct tee_mmap_region *get_memory_map(void)
154 {
155 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
156 		struct tee_mmap_region *map = virt_get_memory_map();
157 
158 		if (map)
159 			return map;
160 	}
161 
162 	return static_memory_map;
163 }
164 
165 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
166 			     paddr_t pa, size_t size)
167 {
168 	size_t n;
169 
170 	for (n = 0; n < alen; n++)
171 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
172 			return true;
173 	return false;
174 }
175 
176 #define pbuf_intersects(a, pa, size) \
177 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
178 
179 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
180 			    paddr_t pa, size_t size)
181 {
182 	size_t n;
183 
184 	for (n = 0; n < alen; n++)
185 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
186 			return true;
187 	return false;
188 }
189 
190 #define pbuf_is_inside(a, pa, size) \
191 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
192 
193 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
194 {
195 	paddr_t end_pa = 0;
196 
197 	if (!map)
198 		return false;
199 
200 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
201 		return false;
202 
203 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
204 }
205 
206 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
207 {
208 	if (!map)
209 		return false;
210 	return (va >= map->va && va <= (map->va + map->size - 1));
211 }
212 
213 /* check if target buffer fits in a core default map area */
214 static bool pbuf_inside_map_area(unsigned long p, size_t l,
215 				 struct tee_mmap_region *map)
216 {
217 	return core_is_buffer_inside(p, l, map->pa, map->size);
218 }
219 
220 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
221 {
222 	struct tee_mmap_region *map;
223 
224 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++)
225 		if (map->type == type)
226 			return map;
227 	return NULL;
228 }
229 
230 static struct tee_mmap_region *
231 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
232 {
233 	struct tee_mmap_region *map;
234 
235 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
236 		if (map->type != type)
237 			continue;
238 		if (pa_is_in_map(map, pa, len))
239 			return map;
240 	}
241 	return NULL;
242 }
243 
244 static struct tee_mmap_region *find_map_by_va(void *va)
245 {
246 	struct tee_mmap_region *map = get_memory_map();
247 	unsigned long a = (unsigned long)va;
248 
249 	while (!core_mmap_is_end_of_table(map)) {
250 		if (a >= map->va && a <= (map->va - 1 + map->size))
251 			return map;
252 		map++;
253 	}
254 	return NULL;
255 }
256 
257 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
258 {
259 	struct tee_mmap_region *map = get_memory_map();
260 
261 	while (!core_mmap_is_end_of_table(map)) {
262 		if (pa >= map->pa && pa <= (map->pa + map->size - 1))
263 			return map;
264 		map++;
265 	}
266 	return NULL;
267 }
268 
269 #if defined(CFG_SECURE_DATA_PATH)
270 static bool dtb_get_sdp_region(void)
271 {
272 	void *fdt = NULL;
273 	int node = 0;
274 	int tmp_node = 0;
275 	paddr_t tmp_addr = 0;
276 	size_t tmp_size = 0;
277 
278 	if (!IS_ENABLED(CFG_EMBED_DTB))
279 		return false;
280 
281 	fdt = get_embedded_dt();
282 	if (!fdt)
283 		panic("No DTB found");
284 
285 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
286 	if (node < 0) {
287 		DMSG("No %s compatible node found", tz_sdp_match);
288 		return false;
289 	}
290 	tmp_node = node;
291 	while (tmp_node >= 0) {
292 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
293 							 tz_sdp_match);
294 		if (tmp_node >= 0)
295 			DMSG("Ignore SDP pool node %s, supports only 1 node",
296 			     fdt_get_name(fdt, tmp_node, NULL));
297 	}
298 
299 	tmp_addr = fdt_reg_base_address(fdt, node);
300 	if (tmp_addr == DT_INFO_INVALID_REG) {
301 		EMSG("%s: Unable to get base addr from DT", tz_sdp_match);
302 		return false;
303 	}
304 
305 	tmp_size = fdt_reg_size(fdt, node);
306 	if (tmp_size == DT_INFO_INVALID_REG_SIZE) {
307 		EMSG("%s: Unable to get size of base addr from DT",
308 		     tz_sdp_match);
309 		return false;
310 	}
311 
312 	sec_sdp.paddr = tmp_addr;
313 	sec_sdp.size = tmp_size;
314 
315 	return true;
316 }
317 #endif
318 
319 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
320 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
321 				const struct core_mmu_phys_mem *start,
322 				const struct core_mmu_phys_mem *end)
323 {
324 	const struct core_mmu_phys_mem *mem;
325 
326 	for (mem = start; mem < end; mem++) {
327 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
328 			return true;
329 	}
330 
331 	return false;
332 }
333 #endif
334 
335 #ifdef CFG_CORE_DYN_SHM
336 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
337 			       paddr_t pa, size_t size)
338 {
339 	struct core_mmu_phys_mem *m = *mem;
340 	size_t n = 0;
341 
342 	while (true) {
343 		if (n >= *nelems) {
344 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
345 			     pa, size);
346 			return;
347 		}
348 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
349 			break;
350 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
351 			panic();
352 		n++;
353 	}
354 
355 	if (pa == m[n].addr && size == m[n].size) {
356 		/* Remove this entry */
357 		(*nelems)--;
358 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
359 		m = nex_realloc(m, sizeof(*m) * *nelems);
360 		if (!m)
361 			panic();
362 		*mem = m;
363 	} else if (pa == m[n].addr) {
364 		m[n].addr += size;
365 		m[n].size -= size;
366 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
367 		m[n].size -= size;
368 	} else {
369 		/* Need to split the memory entry */
370 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
371 		if (!m)
372 			panic();
373 		*mem = m;
374 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
375 		(*nelems)++;
376 		m[n].size = pa - m[n].addr;
377 		m[n + 1].size -= size + m[n].size;
378 		m[n + 1].addr = pa + size;
379 	}
380 }
381 
382 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
383 				      size_t nelems,
384 				      struct tee_mmap_region *map)
385 {
386 	size_t n;
387 
388 	for (n = 0; n < nelems; n++) {
389 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
390 					    map->pa, map->size)) {
391 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
392 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
393 			     start[n].addr, start[n].size,
394 			     map->type, map->pa, map->size);
395 			panic();
396 		}
397 	}
398 }
399 
400 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
401 static size_t discovered_nsec_ddr_nelems __nex_bss;
402 
403 static int cmp_pmem_by_addr(const void *a, const void *b)
404 {
405 	const struct core_mmu_phys_mem *pmem_a = a;
406 	const struct core_mmu_phys_mem *pmem_b = b;
407 
408 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
409 }
410 
411 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
412 				      size_t nelems)
413 {
414 	struct core_mmu_phys_mem *m = start;
415 	size_t num_elems = nelems;
416 	struct tee_mmap_region *map = static_memory_map;
417 	const struct core_mmu_phys_mem __maybe_unused *pmem;
418 
419 	assert(!discovered_nsec_ddr_start);
420 	assert(m && num_elems);
421 
422 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
423 
424 	/*
425 	 * Non-secure shared memory and also secure data
426 	 * path memory are supposed to reside inside
427 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
428 	 * are used for a specific purpose make holes for
429 	 * those memory in the normal non-secure memory.
430 	 *
431 	 * This has to be done since for instance QEMU
432 	 * isn't aware of which memory range in the
433 	 * non-secure memory is used for NSEC_SHM.
434 	 */
435 
436 #ifdef CFG_SECURE_DATA_PATH
437 	if (dtb_get_sdp_region())
438 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
439 
440 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
441 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
442 #endif
443 
444 	carve_out_phys_mem(&m, &num_elems, TEE_RAM_START, TEE_RAM_PH_SIZE);
445 	carve_out_phys_mem(&m, &num_elems, TA_RAM_START, TA_RAM_SIZE);
446 
447 	for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) {
448 		switch (map->type) {
449 		case MEM_AREA_NSEC_SHM:
450 			carve_out_phys_mem(&m, &num_elems, map->pa, map->size);
451 			break;
452 		case MEM_AREA_EXT_DT:
453 		case MEM_AREA_RES_VASPACE:
454 		case MEM_AREA_SHM_VASPACE:
455 		case MEM_AREA_TS_VASPACE:
456 		case MEM_AREA_PAGER_VASPACE:
457 			break;
458 		default:
459 			check_phys_mem_is_outside(m, num_elems, map);
460 		}
461 	}
462 
463 	discovered_nsec_ddr_start = m;
464 	discovered_nsec_ddr_nelems = num_elems;
465 
466 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
467 				   m[num_elems - 1].size))
468 		panic();
469 }
470 
471 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
472 				    const struct core_mmu_phys_mem **end)
473 {
474 	if (!discovered_nsec_ddr_start)
475 		return false;
476 
477 	*start = discovered_nsec_ddr_start;
478 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
479 
480 	return true;
481 }
482 
483 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
484 {
485 	const struct core_mmu_phys_mem *start;
486 	const struct core_mmu_phys_mem *end;
487 
488 	if (!get_discovered_nsec_ddr(&start, &end))
489 		return false;
490 
491 	return pbuf_is_special_mem(pbuf, len, start, end);
492 }
493 
494 bool core_mmu_nsec_ddr_is_defined(void)
495 {
496 	const struct core_mmu_phys_mem *start;
497 	const struct core_mmu_phys_mem *end;
498 
499 	if (!get_discovered_nsec_ddr(&start, &end))
500 		return false;
501 
502 	return start != end;
503 }
504 #else
505 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
506 {
507 	return false;
508 }
509 #endif /*CFG_CORE_DYN_SHM*/
510 
511 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
512 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
513 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
514 
515 #ifdef CFG_SECURE_DATA_PATH
516 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
517 {
518 	bool is_sdp_mem = false;
519 
520 	if (sec_sdp.size)
521 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
522 						   sec_sdp.size);
523 
524 	if (!is_sdp_mem)
525 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
526 						 phys_sdp_mem_end);
527 
528 	return is_sdp_mem;
529 }
530 
531 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
532 {
533 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
534 					    CORE_MEM_SDP_MEM);
535 
536 	if (!mobj)
537 		panic("can't create SDP physical memory object");
538 
539 	return mobj;
540 }
541 
542 struct mobj **core_sdp_mem_create_mobjs(void)
543 {
544 	const struct core_mmu_phys_mem *mem = NULL;
545 	struct mobj **mobj_base = NULL;
546 	struct mobj **mobj = NULL;
547 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
548 
549 	if (sec_sdp.size)
550 		cnt++;
551 
552 	/* SDP mobjs table must end with a NULL entry */
553 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
554 	if (!mobj_base)
555 		panic("Out of memory");
556 
557 	mobj = mobj_base;
558 
559 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
560 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
561 
562 	if (sec_sdp.size)
563 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
564 
565 	return mobj_base;
566 }
567 
568 #else /* CFG_SECURE_DATA_PATH */
569 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
570 {
571 	return false;
572 }
573 
574 #endif /* CFG_SECURE_DATA_PATH */
575 
576 /* Check special memories comply with registered memories */
577 static void verify_special_mem_areas(struct tee_mmap_region *mem_map,
578 				     size_t len,
579 				     const struct core_mmu_phys_mem *start,
580 				     const struct core_mmu_phys_mem *end,
581 				     const char *area_name __maybe_unused)
582 {
583 	const struct core_mmu_phys_mem *mem;
584 	const struct core_mmu_phys_mem *mem2;
585 	struct tee_mmap_region *mmap;
586 	size_t n;
587 
588 	if (start == end) {
589 		DMSG("No %s memory area defined", area_name);
590 		return;
591 	}
592 
593 	for (mem = start; mem < end; mem++)
594 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
595 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
596 
597 	/* Check memories do not intersect each other */
598 	for (mem = start; mem + 1 < end; mem++) {
599 		for (mem2 = mem + 1; mem2 < end; mem2++) {
600 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
601 						     mem->addr, mem->size)) {
602 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
603 						   mem->addr, mem->size);
604 				panic("Special memory intersection");
605 			}
606 		}
607 	}
608 
609 	/*
610 	 * Check memories do not intersect any mapped memory.
611 	 * This is called before reserved VA space is loaded in mem_map.
612 	 */
613 	for (mem = start; mem < end; mem++) {
614 		for (mmap = mem_map, n = 0; n < len; mmap++, n++) {
615 			if (core_is_buffer_intersect(mem->addr, mem->size,
616 						     mmap->pa, mmap->size)) {
617 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
618 						   mmap->pa, mmap->size);
619 				panic("Special memory intersection");
620 			}
621 		}
622 	}
623 }
624 
625 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems,
626 			 const char *mem_name __maybe_unused,
627 			 enum teecore_memtypes mem_type,
628 			 paddr_t mem_addr, paddr_size_t mem_size, size_t *last)
629 {
630 	size_t n = 0;
631 	paddr_t pa;
632 	paddr_size_t size;
633 
634 	if (!mem_size)	/* Discard null size entries */
635 		return;
636 	/*
637 	 * If some ranges of memory of the same type do overlap
638 	 * each others they are coalesced into one entry. To help this
639 	 * added entries are sorted by increasing physical.
640 	 *
641 	 * Note that it's valid to have the same physical memory as several
642 	 * different memory types, for instance the same device memory
643 	 * mapped as both secure and non-secure. This will probably not
644 	 * happen often in practice.
645 	 */
646 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
647 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
648 	while (true) {
649 		if (n >= (num_elems - 1)) {
650 			EMSG("Out of entries (%zu) in memory_map", num_elems);
651 			panic();
652 		}
653 		if (n == *last)
654 			break;
655 		pa = memory_map[n].pa;
656 		size = memory_map[n].size;
657 		if (mem_type == memory_map[n].type &&
658 		    ((pa <= (mem_addr + (mem_size - 1))) &&
659 		    (mem_addr <= (pa + (size - 1))))) {
660 			DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr);
661 			memory_map[n].pa = MIN(pa, mem_addr);
662 			memory_map[n].size = MAX(size, mem_size) +
663 					     (pa - memory_map[n].pa);
664 			return;
665 		}
666 		if (mem_type < memory_map[n].type ||
667 		    (mem_type == memory_map[n].type && mem_addr < pa))
668 			break; /* found the spot where to insert this memory */
669 		n++;
670 	}
671 
672 	memmove(memory_map + n + 1, memory_map + n,
673 		sizeof(struct tee_mmap_region) * (*last - n));
674 	(*last)++;
675 	memset(memory_map + n, 0, sizeof(memory_map[0]));
676 	memory_map[n].type = mem_type;
677 	memory_map[n].pa = mem_addr;
678 	memory_map[n].size = mem_size;
679 }
680 
681 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems,
682 			 enum teecore_memtypes type, size_t size, size_t *last)
683 {
684 	size_t n = 0;
685 
686 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
687 	while (true) {
688 		if (n >= (num_elems - 1)) {
689 			EMSG("Out of entries (%zu) in memory_map", num_elems);
690 			panic();
691 		}
692 		if (n == *last)
693 			break;
694 		if (type < memory_map[n].type)
695 			break;
696 		n++;
697 	}
698 
699 	memmove(memory_map + n + 1, memory_map + n,
700 		sizeof(struct tee_mmap_region) * (*last - n));
701 	(*last)++;
702 	memset(memory_map + n, 0, sizeof(memory_map[0]));
703 	memory_map[n].type = type;
704 	memory_map[n].size = size;
705 }
706 
707 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
708 {
709 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
710 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
711 				TEE_MATTR_MEM_TYPE_SHIFT;
712 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
713 				TEE_MATTR_MEM_TYPE_SHIFT;
714 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
715 				  TEE_MATTR_MEM_TYPE_SHIFT;
716 
717 	switch (t) {
718 	case MEM_AREA_TEE_RAM:
719 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
720 	case MEM_AREA_TEE_RAM_RX:
721 	case MEM_AREA_INIT_RAM_RX:
722 	case MEM_AREA_IDENTITY_MAP_RX:
723 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
724 	case MEM_AREA_TEE_RAM_RO:
725 	case MEM_AREA_INIT_RAM_RO:
726 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
727 	case MEM_AREA_TEE_RAM_RW:
728 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
729 	case MEM_AREA_NEX_RAM_RW:
730 	case MEM_AREA_TEE_ASAN:
731 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
732 	case MEM_AREA_TEE_COHERENT:
733 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
734 	case MEM_AREA_TA_RAM:
735 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
736 	case MEM_AREA_NSEC_SHM:
737 		return attr | TEE_MATTR_PRW | cached;
738 	case MEM_AREA_EXT_DT:
739 		/*
740 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
741 		 * tree as secure non-cached memory, otherwise, fall back to
742 		 * non-secure mapping.
743 		 */
744 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
745 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
746 			       noncache;
747 		fallthrough;
748 	case MEM_AREA_IO_NSEC:
749 		return attr | TEE_MATTR_PRW | noncache;
750 	case MEM_AREA_IO_SEC:
751 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
752 	case MEM_AREA_RAM_NSEC:
753 		return attr | TEE_MATTR_PRW | cached;
754 	case MEM_AREA_RAM_SEC:
755 	case MEM_AREA_SEC_RAM_OVERALL:
756 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
757 	case MEM_AREA_RES_VASPACE:
758 	case MEM_AREA_SHM_VASPACE:
759 		return 0;
760 	case MEM_AREA_PAGER_VASPACE:
761 		return TEE_MATTR_SECURE;
762 	default:
763 		panic("invalid type");
764 	}
765 }
766 
767 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
768 {
769 	switch (mm->type) {
770 	case MEM_AREA_TEE_RAM:
771 	case MEM_AREA_TEE_RAM_RX:
772 	case MEM_AREA_TEE_RAM_RO:
773 	case MEM_AREA_TEE_RAM_RW:
774 	case MEM_AREA_INIT_RAM_RX:
775 	case MEM_AREA_INIT_RAM_RO:
776 	case MEM_AREA_NEX_RAM_RW:
777 	case MEM_AREA_NEX_RAM_RO:
778 	case MEM_AREA_TEE_ASAN:
779 		return true;
780 	default:
781 		return false;
782 	}
783 }
784 
785 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
786 {
787 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
788 }
789 
790 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
791 {
792 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
793 }
794 
795 static int cmp_mmap_by_lower_va(const void *a, const void *b)
796 {
797 	const struct tee_mmap_region *mm_a = a;
798 	const struct tee_mmap_region *mm_b = b;
799 
800 	return CMP_TRILEAN(mm_a->va, mm_b->va);
801 }
802 
803 static void dump_mmap_table(struct tee_mmap_region *memory_map)
804 {
805 	struct tee_mmap_region *map;
806 
807 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
808 		vaddr_t __maybe_unused vstart;
809 
810 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
811 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
812 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
813 		     teecore_memtype_name(map->type), vstart,
814 		     vstart + map->size - 1, map->pa,
815 		     (paddr_t)(map->pa + map->size - 1), map->size,
816 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
817 	}
818 }
819 
820 #if DEBUG_XLAT_TABLE
821 
822 static void dump_xlat_table(vaddr_t va, unsigned int level)
823 {
824 	struct core_mmu_table_info tbl_info;
825 	unsigned int idx = 0;
826 	paddr_t pa;
827 	uint32_t attr;
828 
829 	core_mmu_find_table(NULL, va, level, &tbl_info);
830 	va = tbl_info.va_base;
831 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
832 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
833 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
834 			const char *security_bit = "";
835 
836 			if (core_mmu_entry_have_security_bit(attr)) {
837 				if (attr & TEE_MATTR_SECURE)
838 					security_bit = "S";
839 				else
840 					security_bit = "NS";
841 			}
842 
843 			if (attr & TEE_MATTR_TABLE) {
844 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
845 					" TBL:0x%010" PRIxPA " %s",
846 					level * 2, "", level, va, pa,
847 					security_bit);
848 				dump_xlat_table(va, level + 1);
849 			} else if (attr) {
850 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
851 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
852 					level * 2, "", level, va, pa,
853 					mattr_is_cached(attr) ? "MEM" :
854 					"DEV",
855 					attr & TEE_MATTR_PW ? "RW" : "RO",
856 					attr & TEE_MATTR_PX ? "X " : "XN",
857 					security_bit);
858 			} else {
859 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
860 					    " INVALID\n",
861 					    level * 2, "", level, va);
862 			}
863 		}
864 		va += BIT64(tbl_info.shift);
865 	}
866 }
867 
868 #else
869 
870 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
871 {
872 }
873 
874 #endif
875 
876 /*
877  * Reserves virtual memory space for pager usage.
878  *
879  * From the start of the first memory used by the link script +
880  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
881  * mapping for pager usage. This adds translation tables as needed for the
882  * pager to operate.
883  */
884 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems,
885 			      size_t *last)
886 {
887 	paddr_t begin = 0;
888 	paddr_t end = 0;
889 	size_t size = 0;
890 	size_t pos = 0;
891 	size_t n = 0;
892 
893 	if (*last >= (num_elems - 1)) {
894 		EMSG("Out of entries (%zu) in memory map", num_elems);
895 		panic();
896 	}
897 
898 	for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) {
899 		if (map_is_tee_ram(mmap + n)) {
900 			if (!begin)
901 				begin = mmap[n].pa;
902 			pos = n + 1;
903 		}
904 	}
905 
906 	end = mmap[pos - 1].pa + mmap[pos - 1].size;
907 	size = TEE_RAM_VA_SIZE - (end - begin);
908 	if (!size)
909 		return;
910 
911 	assert(pos <= *last);
912 	memmove(mmap + pos + 1, mmap + pos,
913 		sizeof(struct tee_mmap_region) * (*last - pos));
914 	(*last)++;
915 	memset(mmap + pos, 0, sizeof(mmap[0]));
916 	mmap[pos].type = MEM_AREA_PAGER_VASPACE;
917 	mmap[pos].va = 0;
918 	mmap[pos].size = size;
919 	mmap[pos].region_size = SMALL_PAGE_SIZE;
920 	mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE);
921 }
922 
923 static void check_sec_nsec_mem_config(void)
924 {
925 	size_t n = 0;
926 
927 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
928 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
929 				    secure_only[n].size))
930 			panic("Invalid memory access config: sec/nsec");
931 	}
932 }
933 
934 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map,
935 				 size_t num_elems)
936 {
937 	const struct core_mmu_phys_mem *mem = NULL;
938 	size_t last = 0;
939 
940 
941 #define ADD_PHYS_MEM(_type, _addr, _size) \
942 		add_phys_mem(memory_map, num_elems, #_addr, (_type), \
943 			     (_addr), (_size),  &last)
944 
945 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
946 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, TEE_RAM_START,
947 			     VCORE_UNPG_RX_PA - TEE_RAM_START);
948 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
949 			     VCORE_UNPG_RX_SZ);
950 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
951 			     VCORE_UNPG_RO_SZ);
952 
953 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
954 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
955 				     VCORE_UNPG_RW_SZ);
956 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
957 				     VCORE_NEX_RW_SZ);
958 		} else {
959 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
960 				     VCORE_UNPG_RW_SZ);
961 		}
962 
963 		if (IS_ENABLED(CFG_WITH_PAGER)) {
964 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
965 				     VCORE_INIT_RX_SZ);
966 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
967 				     VCORE_INIT_RO_SZ);
968 		}
969 	} else {
970 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
971 	}
972 
973 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
974 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
975 			     TRUSTED_DRAM_SIZE);
976 	} else {
977 		/*
978 		 * Every guest will have own TA RAM if virtualization
979 		 * support is enabled.
980 		 */
981 		ADD_PHYS_MEM(MEM_AREA_TA_RAM, TA_RAM_START, TA_RAM_SIZE);
982 	}
983 
984 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
985 	    IS_ENABLED(CFG_WITH_PAGER)) {
986 		/*
987 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
988 		 * disabled.
989 		 */
990 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
991 	}
992 
993 #undef ADD_PHYS_MEM
994 
995 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
996 		/* Only unmapped virtual range may have a null phys addr */
997 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
998 
999 		add_phys_mem(memory_map, num_elems, mem->name, mem->type,
1000 			     mem->addr, mem->size, &last);
1001 	}
1002 
1003 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1004 		verify_special_mem_areas(memory_map, num_elems,
1005 					 phys_sdp_mem_begin,
1006 					 phys_sdp_mem_end, "SDP");
1007 
1008 	add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE,
1009 		     CFG_RESERVED_VASPACE_SIZE, &last);
1010 
1011 	add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE,
1012 		     SHM_VASPACE_SIZE, &last);
1013 
1014 	memory_map[last].type = MEM_AREA_END;
1015 
1016 	return last;
1017 }
1018 
1019 static void assign_mem_granularity(struct tee_mmap_region *memory_map)
1020 {
1021 	struct tee_mmap_region *map = NULL;
1022 
1023 	/*
1024 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1025 	 * SMALL_PAGE_SIZE.
1026 	 */
1027 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1028 		paddr_t mask = map->pa | map->size;
1029 
1030 		if (!(mask & CORE_MMU_PGDIR_MASK))
1031 			map->region_size = CORE_MMU_PGDIR_SIZE;
1032 		else if (!(mask & SMALL_PAGE_MASK))
1033 			map->region_size = SMALL_PAGE_SIZE;
1034 		else
1035 			panic("Impossible memory alignment");
1036 
1037 		if (map_is_tee_ram(map))
1038 			map->region_size = SMALL_PAGE_SIZE;
1039 	}
1040 }
1041 
1042 static bool place_tee_ram_at_top(paddr_t paddr)
1043 {
1044 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1045 }
1046 
1047 /*
1048  * MMU arch driver shall override this function if it helps
1049  * optimizing the memory footprint of the address translation tables.
1050  */
1051 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1052 {
1053 	return place_tee_ram_at_top(paddr);
1054 }
1055 
1056 static bool assign_mem_va_dir(vaddr_t tee_ram_va,
1057 			      struct tee_mmap_region *memory_map,
1058 			      bool tee_ram_at_top)
1059 {
1060 	struct tee_mmap_region *map = NULL;
1061 	vaddr_t va = 0;
1062 	bool va_is_secure = true;
1063 
1064 	/*
1065 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1066 	 * 0 is by design an invalid va, so return false directly.
1067 	 */
1068 	if (!tee_ram_va)
1069 		return false;
1070 
1071 	/* Clear eventual previous assignments */
1072 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1073 		map->va = 0;
1074 
1075 	/*
1076 	 * TEE RAM regions are always aligned with region_size.
1077 	 *
1078 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1079 	 * since it handles virtual memory which covers the part of the ELF
1080 	 * that cannot fit directly into memory.
1081 	 */
1082 	va = tee_ram_va;
1083 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1084 		if (map_is_tee_ram(map) ||
1085 		    map->type == MEM_AREA_PAGER_VASPACE) {
1086 			assert(!(va & (map->region_size - 1)));
1087 			assert(!(map->size & (map->region_size - 1)));
1088 			map->va = va;
1089 			if (ADD_OVERFLOW(va, map->size, &va))
1090 				return false;
1091 			if (va >= BIT64(core_mmu_get_va_width()))
1092 				return false;
1093 		}
1094 	}
1095 
1096 	if (tee_ram_at_top) {
1097 		/*
1098 		 * Map non-tee ram regions at addresses lower than the tee
1099 		 * ram region.
1100 		 */
1101 		va = tee_ram_va;
1102 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1103 			map->attr = core_mmu_type_to_attr(map->type);
1104 			if (map->va)
1105 				continue;
1106 
1107 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1108 			    va_is_secure != map_is_secure(map)) {
1109 				va_is_secure = !va_is_secure;
1110 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1111 			}
1112 
1113 			if (SUB_OVERFLOW(va, map->size, &va))
1114 				return false;
1115 			va = ROUNDDOWN(va, map->region_size);
1116 			/*
1117 			 * Make sure that va is aligned with pa for
1118 			 * efficient pgdir mapping. Basically pa &
1119 			 * pgdir_mask should be == va & pgdir_mask
1120 			 */
1121 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1122 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1123 					return false;
1124 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1125 			}
1126 			map->va = va;
1127 		}
1128 	} else {
1129 		/*
1130 		 * Map non-tee ram regions at addresses higher than the tee
1131 		 * ram region.
1132 		 */
1133 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1134 			map->attr = core_mmu_type_to_attr(map->type);
1135 			if (map->va)
1136 				continue;
1137 
1138 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1139 			    va_is_secure != map_is_secure(map)) {
1140 				va_is_secure = !va_is_secure;
1141 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1142 						     &va))
1143 					return false;
1144 			}
1145 
1146 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1147 				return false;
1148 			/*
1149 			 * Make sure that va is aligned with pa for
1150 			 * efficient pgdir mapping. Basically pa &
1151 			 * pgdir_mask should be == va & pgdir_mask
1152 			 */
1153 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1154 				vaddr_t offs = (map->pa - va) &
1155 					       CORE_MMU_PGDIR_MASK;
1156 
1157 				if (ADD_OVERFLOW(va, offs, &va))
1158 					return false;
1159 			}
1160 
1161 			map->va = va;
1162 			if (ADD_OVERFLOW(va, map->size, &va))
1163 				return false;
1164 			if (va >= BIT64(core_mmu_get_va_width()))
1165 				return false;
1166 		}
1167 	}
1168 
1169 	return true;
1170 }
1171 
1172 static bool assign_mem_va(vaddr_t tee_ram_va,
1173 			  struct tee_mmap_region *memory_map)
1174 {
1175 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1176 
1177 	/*
1178 	 * Check that we're not overlapping with the user VA range.
1179 	 */
1180 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1181 		/*
1182 		 * User VA range is supposed to be defined after these
1183 		 * mappings have been established.
1184 		 */
1185 		assert(!core_mmu_user_va_range_is_defined());
1186 	} else {
1187 		vaddr_t user_va_base = 0;
1188 		size_t user_va_size = 0;
1189 
1190 		assert(core_mmu_user_va_range_is_defined());
1191 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1192 		if (tee_ram_va < (user_va_base + user_va_size))
1193 			return false;
1194 	}
1195 
1196 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1197 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1198 
1199 		/* Try whole mapping covered by a single base xlat entry */
1200 		if (prefered_dir != tee_ram_at_top &&
1201 		    assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir))
1202 			return true;
1203 	}
1204 
1205 	return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top);
1206 }
1207 
1208 static int cmp_init_mem_map(const void *a, const void *b)
1209 {
1210 	const struct tee_mmap_region *mm_a = a;
1211 	const struct tee_mmap_region *mm_b = b;
1212 	int rc = 0;
1213 
1214 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1215 	if (!rc)
1216 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1217 	/*
1218 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1219 	 * the same level2 table. Hence sort secure mapping from non-secure
1220 	 * mapping.
1221 	 */
1222 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1223 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1224 
1225 	return rc;
1226 }
1227 
1228 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map,
1229 			       size_t num_elems, size_t *last,
1230 			       vaddr_t id_map_start, vaddr_t id_map_end)
1231 {
1232 	struct tee_mmap_region *map = NULL;
1233 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1234 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1235 	size_t len = end - start;
1236 
1237 	if (*last >= num_elems - 1) {
1238 		EMSG("Out of entries (%zu) in memory map", num_elems);
1239 		panic();
1240 	}
1241 
1242 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1243 		if (core_is_buffer_intersect(map->va, map->size, start, len))
1244 			return false;
1245 
1246 	*map = (struct tee_mmap_region){
1247 		.type = MEM_AREA_IDENTITY_MAP_RX,
1248 		/*
1249 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1250 		 * translation table, at the increased risk of clashes with
1251 		 * the rest of the memory map.
1252 		 */
1253 		.region_size = SMALL_PAGE_SIZE,
1254 		.pa = start,
1255 		.va = start,
1256 		.size = len,
1257 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1258 	};
1259 
1260 	(*last)++;
1261 
1262 	return true;
1263 }
1264 
1265 static unsigned long init_mem_map(struct tee_mmap_region *memory_map,
1266 				  size_t num_elems, unsigned long seed)
1267 {
1268 	/*
1269 	 * @id_map_start and @id_map_end describes a physical memory range
1270 	 * that must be mapped Read-Only eXecutable at identical virtual
1271 	 * addresses.
1272 	 */
1273 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1274 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1275 	unsigned long offs = 0;
1276 	size_t last = 0;
1277 
1278 	last = collect_mem_ranges(memory_map, num_elems);
1279 	assign_mem_granularity(memory_map);
1280 
1281 	/*
1282 	 * To ease mapping and lower use of xlat tables, sort mapping
1283 	 * description moving small-page regions after the pgdir regions.
1284 	 */
1285 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1286 	      cmp_init_mem_map);
1287 
1288 	add_pager_vaspace(memory_map, num_elems, &last);
1289 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1290 		vaddr_t base_addr = TEE_RAM_START + seed;
1291 		const unsigned int va_width = core_mmu_get_va_width();
1292 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1293 						   SMALL_PAGE_SHIFT);
1294 		vaddr_t ba = base_addr;
1295 		size_t n = 0;
1296 
1297 		for (n = 0; n < 3; n++) {
1298 			if (n)
1299 				ba = base_addr ^ BIT64(va_width - n);
1300 			ba &= va_mask;
1301 			if (assign_mem_va(ba, memory_map) &&
1302 			    mem_map_add_id_map(memory_map, num_elems, &last,
1303 					       id_map_start, id_map_end)) {
1304 				offs = ba - TEE_RAM_START;
1305 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1306 				     ba, offs);
1307 				goto out;
1308 			} else {
1309 				DMSG("Failed to map core at %#"PRIxVA, ba);
1310 			}
1311 		}
1312 		EMSG("Failed to map core with seed %#lx", seed);
1313 	}
1314 
1315 	if (!assign_mem_va(TEE_RAM_START, memory_map))
1316 		panic();
1317 
1318 out:
1319 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1320 	      cmp_mmap_by_lower_va);
1321 
1322 	dump_mmap_table(memory_map);
1323 
1324 	return offs;
1325 }
1326 
1327 static void check_mem_map(struct tee_mmap_region *map)
1328 {
1329 	struct tee_mmap_region *m = NULL;
1330 
1331 	for (m = map; !core_mmap_is_end_of_table(m); m++) {
1332 		switch (m->type) {
1333 		case MEM_AREA_TEE_RAM:
1334 		case MEM_AREA_TEE_RAM_RX:
1335 		case MEM_AREA_TEE_RAM_RO:
1336 		case MEM_AREA_TEE_RAM_RW:
1337 		case MEM_AREA_INIT_RAM_RX:
1338 		case MEM_AREA_INIT_RAM_RO:
1339 		case MEM_AREA_NEX_RAM_RW:
1340 		case MEM_AREA_NEX_RAM_RO:
1341 		case MEM_AREA_IDENTITY_MAP_RX:
1342 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1343 				panic("TEE_RAM can't fit in secure_only");
1344 			break;
1345 		case MEM_AREA_TA_RAM:
1346 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1347 				panic("TA_RAM can't fit in secure_only");
1348 			break;
1349 		case MEM_AREA_NSEC_SHM:
1350 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1351 				panic("NS_SHM can't fit in nsec_shared");
1352 			break;
1353 		case MEM_AREA_SEC_RAM_OVERALL:
1354 		case MEM_AREA_TEE_COHERENT:
1355 		case MEM_AREA_TEE_ASAN:
1356 		case MEM_AREA_IO_SEC:
1357 		case MEM_AREA_IO_NSEC:
1358 		case MEM_AREA_EXT_DT:
1359 		case MEM_AREA_RAM_SEC:
1360 		case MEM_AREA_RAM_NSEC:
1361 		case MEM_AREA_RES_VASPACE:
1362 		case MEM_AREA_SHM_VASPACE:
1363 		case MEM_AREA_PAGER_VASPACE:
1364 			break;
1365 		default:
1366 			EMSG("Uhandled memtype %d", m->type);
1367 			panic();
1368 		}
1369 	}
1370 }
1371 
1372 static struct tee_mmap_region *get_tmp_mmap(void)
1373 {
1374 	struct tee_mmap_region *tmp_mmap = (void *)__heap1_start;
1375 
1376 #ifdef CFG_WITH_PAGER
1377 	if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map))
1378 		tmp_mmap = (void *)__heap2_start;
1379 #endif
1380 
1381 	memset(tmp_mmap, 0, sizeof(static_memory_map));
1382 
1383 	return tmp_mmap;
1384 }
1385 
1386 /*
1387  * core_init_mmu_map() - init tee core default memory mapping
1388  *
1389  * This routine sets the static default TEE core mapping. If @seed is > 0
1390  * and configured with CFG_CORE_ASLR it will map tee core at a location
1391  * based on the seed and return the offset from the link address.
1392  *
1393  * If an error happened: core_init_mmu_map is expected to panic.
1394  *
1395  * Note: this function is weak just to make it possible to exclude it from
1396  * the unpaged area.
1397  */
1398 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1399 {
1400 #ifndef CFG_NS_VIRTUALIZATION
1401 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1402 #else
1403 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1404 				  SMALL_PAGE_SIZE);
1405 #endif
1406 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1407 	struct tee_mmap_region *tmp_mmap = get_tmp_mmap();
1408 	unsigned long offs = 0;
1409 
1410 	check_sec_nsec_mem_config();
1411 
1412 	/*
1413 	 * Add a entry covering the translation tables which will be
1414 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1415 	 */
1416 	static_memory_map[0] = (struct tee_mmap_region){
1417 		.type = MEM_AREA_TEE_RAM,
1418 		.region_size = SMALL_PAGE_SIZE,
1419 		.pa = start,
1420 		.va = start,
1421 		.size = len,
1422 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1423 	};
1424 
1425 	COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13);
1426 	offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed);
1427 
1428 	check_mem_map(tmp_mmap);
1429 	core_init_mmu(tmp_mmap);
1430 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1431 	core_init_mmu_regs(cfg);
1432 	cfg->map_offset = offs;
1433 	memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map));
1434 }
1435 
1436 bool core_mmu_mattr_is_ok(uint32_t mattr)
1437 {
1438 	/*
1439 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1440 	 * core_mmu_v7.c:mattr_to_texcb
1441 	 */
1442 
1443 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1444 	case TEE_MATTR_MEM_TYPE_DEV:
1445 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1446 	case TEE_MATTR_MEM_TYPE_CACHED:
1447 	case TEE_MATTR_MEM_TYPE_TAGGED:
1448 		return true;
1449 	default:
1450 		return false;
1451 	}
1452 }
1453 
1454 /*
1455  * test attributes of target physical buffer
1456  *
1457  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1458  *
1459  */
1460 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1461 {
1462 	struct tee_mmap_region *map;
1463 
1464 	/* Empty buffers complies with anything */
1465 	if (len == 0)
1466 		return true;
1467 
1468 	switch (attr) {
1469 	case CORE_MEM_SEC:
1470 		return pbuf_is_inside(secure_only, pbuf, len);
1471 	case CORE_MEM_NON_SEC:
1472 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1473 			pbuf_is_nsec_ddr(pbuf, len);
1474 	case CORE_MEM_TEE_RAM:
1475 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1476 							TEE_RAM_PH_SIZE);
1477 	case CORE_MEM_TA_RAM:
1478 		return core_is_buffer_inside(pbuf, len, TA_RAM_START,
1479 							TA_RAM_SIZE);
1480 #ifdef CFG_CORE_RESERVED_SHM
1481 	case CORE_MEM_NSEC_SHM:
1482 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1483 							TEE_SHMEM_SIZE);
1484 #endif
1485 	case CORE_MEM_SDP_MEM:
1486 		return pbuf_is_sdp_mem(pbuf, len);
1487 	case CORE_MEM_CACHED:
1488 		map = find_map_by_pa(pbuf);
1489 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1490 			return false;
1491 		return mattr_is_cached(map->attr);
1492 	default:
1493 		return false;
1494 	}
1495 }
1496 
1497 /* test attributes of target virtual buffer (in core mapping) */
1498 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1499 {
1500 	paddr_t p;
1501 
1502 	/* Empty buffers complies with anything */
1503 	if (len == 0)
1504 		return true;
1505 
1506 	p = virt_to_phys((void *)vbuf);
1507 	if (!p)
1508 		return false;
1509 
1510 	return core_pbuf_is(attr, p, len);
1511 }
1512 
1513 /* core_va2pa - teecore exported service */
1514 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1515 {
1516 	struct tee_mmap_region *map;
1517 
1518 	map = find_map_by_va(va);
1519 	if (!va_is_in_map(map, (vaddr_t)va))
1520 		return -1;
1521 
1522 	/*
1523 	 * We can calculate PA for static map. Virtual address ranges
1524 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1525 	 * together with an invalid null physical address.
1526 	 */
1527 	if (map->pa)
1528 		*pa = map->pa + (vaddr_t)va  - map->va;
1529 	else
1530 		*pa = 0;
1531 
1532 	return 0;
1533 }
1534 
1535 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1536 {
1537 	if (!pa_is_in_map(map, pa, len))
1538 		return NULL;
1539 
1540 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1541 }
1542 
1543 /*
1544  * teecore gets some memory area definitions
1545  */
1546 void core_mmu_get_mem_by_type(unsigned int type, vaddr_t *s, vaddr_t *e)
1547 {
1548 	struct tee_mmap_region *map = find_map_by_type(type);
1549 
1550 	if (map) {
1551 		*s = map->va;
1552 		*e = map->va + map->size;
1553 	} else {
1554 		*s = 0;
1555 		*e = 0;
1556 	}
1557 }
1558 
1559 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1560 {
1561 	struct tee_mmap_region *map = find_map_by_pa(pa);
1562 
1563 	if (!map)
1564 		return MEM_AREA_MAXTYPE;
1565 	return map->type;
1566 }
1567 
1568 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1569 			paddr_t pa, uint32_t attr)
1570 {
1571 	assert(idx < tbl_info->num_entries);
1572 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1573 				     idx, pa, attr);
1574 }
1575 
1576 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1577 			paddr_t *pa, uint32_t *attr)
1578 {
1579 	assert(idx < tbl_info->num_entries);
1580 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1581 				     idx, pa, attr);
1582 }
1583 
1584 static void clear_region(struct core_mmu_table_info *tbl_info,
1585 			 struct tee_mmap_region *region)
1586 {
1587 	unsigned int end = 0;
1588 	unsigned int idx = 0;
1589 
1590 	/* va, len and pa should be block aligned */
1591 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1592 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1593 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1594 
1595 	idx = core_mmu_va2idx(tbl_info, region->va);
1596 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1597 
1598 	while (idx < end) {
1599 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1600 		idx++;
1601 	}
1602 }
1603 
1604 static void set_region(struct core_mmu_table_info *tbl_info,
1605 		       struct tee_mmap_region *region)
1606 {
1607 	unsigned int end;
1608 	unsigned int idx;
1609 	paddr_t pa;
1610 
1611 	/* va, len and pa should be block aligned */
1612 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1613 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1614 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1615 
1616 	idx = core_mmu_va2idx(tbl_info, region->va);
1617 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1618 	pa = region->pa;
1619 
1620 	while (idx < end) {
1621 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1622 		idx++;
1623 		pa += BIT64(tbl_info->shift);
1624 	}
1625 }
1626 
1627 static void set_pg_region(struct core_mmu_table_info *dir_info,
1628 			  struct vm_region *region, struct pgt **pgt,
1629 			  struct core_mmu_table_info *pg_info)
1630 {
1631 	struct tee_mmap_region r = {
1632 		.va = region->va,
1633 		.size = region->size,
1634 		.attr = region->attr,
1635 	};
1636 	vaddr_t end = r.va + r.size;
1637 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1638 
1639 	while (r.va < end) {
1640 		if (!pg_info->table ||
1641 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1642 			/*
1643 			 * We're assigning a new translation table.
1644 			 */
1645 			unsigned int idx;
1646 
1647 			/* Virtual addresses must grow */
1648 			assert(r.va > pg_info->va_base);
1649 
1650 			idx = core_mmu_va2idx(dir_info, r.va);
1651 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1652 
1653 			/*
1654 			 * Advance pgt to va_base, note that we may need to
1655 			 * skip multiple page tables if there are large
1656 			 * holes in the vm map.
1657 			 */
1658 			while ((*pgt)->vabase < pg_info->va_base) {
1659 				*pgt = SLIST_NEXT(*pgt, link);
1660 				/* We should have allocated enough */
1661 				assert(*pgt);
1662 			}
1663 			assert((*pgt)->vabase == pg_info->va_base);
1664 			pg_info->table = (*pgt)->tbl;
1665 
1666 			core_mmu_set_entry(dir_info, idx,
1667 					   virt_to_phys(pg_info->table),
1668 					   pgt_attr);
1669 		}
1670 
1671 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1672 			     end - r.va);
1673 
1674 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1675 			size_t granule = BIT(pg_info->shift);
1676 			size_t offset = r.va - region->va + region->offset;
1677 
1678 			r.size = MIN(r.size,
1679 				     mobj_get_phys_granule(region->mobj));
1680 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1681 
1682 			if (mobj_get_pa(region->mobj, offset, granule,
1683 					&r.pa) != TEE_SUCCESS)
1684 				panic("Failed to get PA of unpaged mobj");
1685 			set_region(pg_info, &r);
1686 		}
1687 		r.va += r.size;
1688 	}
1689 }
1690 
1691 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1692 			     size_t size_left, paddr_t block_size,
1693 			     struct tee_mmap_region *mm __maybe_unused)
1694 {
1695 	/* VA and PA are aligned to block size at current level */
1696 	if ((vaddr | paddr) & (block_size - 1))
1697 		return false;
1698 
1699 	/* Remainder fits into block at current level */
1700 	if (size_left < block_size)
1701 		return false;
1702 
1703 #ifdef CFG_WITH_PAGER
1704 	/*
1705 	 * If pager is enabled, we need to map tee ram
1706 	 * regions with small pages only
1707 	 */
1708 	if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE)
1709 		return false;
1710 #endif
1711 
1712 	return true;
1713 }
1714 
1715 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1716 {
1717 	struct core_mmu_table_info tbl_info;
1718 	unsigned int idx;
1719 	vaddr_t vaddr = mm->va;
1720 	paddr_t paddr = mm->pa;
1721 	ssize_t size_left = mm->size;
1722 	unsigned int level;
1723 	bool table_found;
1724 	uint32_t old_attr;
1725 
1726 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1727 
1728 	while (size_left > 0) {
1729 		level = CORE_MMU_BASE_TABLE_LEVEL;
1730 
1731 		while (true) {
1732 			paddr_t block_size = 0;
1733 
1734 			assert(level <= CORE_MMU_PGDIR_LEVEL);
1735 
1736 			table_found = core_mmu_find_table(prtn, vaddr, level,
1737 							  &tbl_info);
1738 			if (!table_found)
1739 				panic("can't find table for mapping");
1740 
1741 			block_size = BIT64(tbl_info.shift);
1742 
1743 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1744 			if (!can_map_at_level(paddr, vaddr, size_left,
1745 					      block_size, mm)) {
1746 				bool secure = mm->attr & TEE_MATTR_SECURE;
1747 
1748 				/*
1749 				 * This part of the region can't be mapped at
1750 				 * this level. Need to go deeper.
1751 				 */
1752 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1753 								     idx,
1754 								     secure))
1755 					panic("Can't divide MMU entry");
1756 				level++;
1757 				continue;
1758 			}
1759 
1760 			/* We can map part of the region at current level */
1761 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1762 			if (old_attr)
1763 				panic("Page is already mapped");
1764 
1765 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1766 			paddr += block_size;
1767 			vaddr += block_size;
1768 			size_left -= block_size;
1769 
1770 			break;
1771 		}
1772 	}
1773 }
1774 
1775 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1776 			      enum teecore_memtypes memtype)
1777 {
1778 	TEE_Result ret;
1779 	struct core_mmu_table_info tbl_info;
1780 	struct tee_mmap_region *mm;
1781 	unsigned int idx;
1782 	uint32_t old_attr;
1783 	uint32_t exceptions;
1784 	vaddr_t vaddr = vstart;
1785 	size_t i;
1786 	bool secure;
1787 
1788 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1789 
1790 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1791 
1792 	if (vaddr & SMALL_PAGE_MASK)
1793 		return TEE_ERROR_BAD_PARAMETERS;
1794 
1795 	exceptions = mmu_lock();
1796 
1797 	mm = find_map_by_va((void *)vaddr);
1798 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1799 		panic("VA does not belong to any known mm region");
1800 
1801 	if (!core_mmu_is_dynamic_vaspace(mm))
1802 		panic("Trying to map into static region");
1803 
1804 	for (i = 0; i < num_pages; i++) {
1805 		if (pages[i] & SMALL_PAGE_MASK) {
1806 			ret = TEE_ERROR_BAD_PARAMETERS;
1807 			goto err;
1808 		}
1809 
1810 		while (true) {
1811 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1812 						 &tbl_info))
1813 				panic("Can't find pagetable for vaddr ");
1814 
1815 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1816 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1817 				break;
1818 
1819 			/* This is supertable. Need to divide it. */
1820 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1821 							     secure))
1822 				panic("Failed to spread pgdir on small tables");
1823 		}
1824 
1825 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1826 		if (old_attr)
1827 			panic("Page is already mapped");
1828 
1829 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1830 				   core_mmu_type_to_attr(memtype));
1831 		vaddr += SMALL_PAGE_SIZE;
1832 	}
1833 
1834 	/*
1835 	 * Make sure all the changes to translation tables are visible
1836 	 * before returning. TLB doesn't need to be invalidated as we are
1837 	 * guaranteed that there's no valid mapping in this range.
1838 	 */
1839 	core_mmu_table_write_barrier();
1840 	mmu_unlock(exceptions);
1841 
1842 	return TEE_SUCCESS;
1843 err:
1844 	mmu_unlock(exceptions);
1845 
1846 	if (i)
1847 		core_mmu_unmap_pages(vstart, i);
1848 
1849 	return ret;
1850 }
1851 
1852 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
1853 					 size_t num_pages,
1854 					 enum teecore_memtypes memtype)
1855 {
1856 	struct core_mmu_table_info tbl_info = { };
1857 	struct tee_mmap_region *mm = NULL;
1858 	unsigned int idx = 0;
1859 	uint32_t old_attr = 0;
1860 	uint32_t exceptions = 0;
1861 	vaddr_t vaddr = vstart;
1862 	paddr_t paddr = pstart;
1863 	size_t i = 0;
1864 	bool secure = false;
1865 
1866 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1867 
1868 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1869 
1870 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
1871 		return TEE_ERROR_BAD_PARAMETERS;
1872 
1873 	exceptions = mmu_lock();
1874 
1875 	mm = find_map_by_va((void *)vaddr);
1876 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1877 		panic("VA does not belong to any known mm region");
1878 
1879 	if (!core_mmu_is_dynamic_vaspace(mm))
1880 		panic("Trying to map into static region");
1881 
1882 	for (i = 0; i < num_pages; i++) {
1883 		while (true) {
1884 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1885 						 &tbl_info))
1886 				panic("Can't find pagetable for vaddr ");
1887 
1888 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1889 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1890 				break;
1891 
1892 			/* This is supertable. Need to divide it. */
1893 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1894 							     secure))
1895 				panic("Failed to spread pgdir on small tables");
1896 		}
1897 
1898 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1899 		if (old_attr)
1900 			panic("Page is already mapped");
1901 
1902 		core_mmu_set_entry(&tbl_info, idx, paddr,
1903 				   core_mmu_type_to_attr(memtype));
1904 		paddr += SMALL_PAGE_SIZE;
1905 		vaddr += SMALL_PAGE_SIZE;
1906 	}
1907 
1908 	/*
1909 	 * Make sure all the changes to translation tables are visible
1910 	 * before returning. TLB doesn't need to be invalidated as we are
1911 	 * guaranteed that there's no valid mapping in this range.
1912 	 */
1913 	core_mmu_table_write_barrier();
1914 	mmu_unlock(exceptions);
1915 
1916 	return TEE_SUCCESS;
1917 }
1918 
1919 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
1920 {
1921 	struct core_mmu_table_info tbl_info;
1922 	struct tee_mmap_region *mm;
1923 	size_t i;
1924 	unsigned int idx;
1925 	uint32_t exceptions;
1926 
1927 	exceptions = mmu_lock();
1928 
1929 	mm = find_map_by_va((void *)vstart);
1930 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
1931 		panic("VA does not belong to any known mm region");
1932 
1933 	if (!core_mmu_is_dynamic_vaspace(mm))
1934 		panic("Trying to unmap static region");
1935 
1936 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
1937 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
1938 			panic("Can't find pagetable");
1939 
1940 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
1941 			panic("Invalid pagetable level");
1942 
1943 		idx = core_mmu_va2idx(&tbl_info, vstart);
1944 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
1945 	}
1946 	tlbi_all();
1947 
1948 	mmu_unlock(exceptions);
1949 }
1950 
1951 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
1952 				struct user_mode_ctx *uctx)
1953 {
1954 	struct core_mmu_table_info pg_info = { };
1955 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
1956 	struct pgt *pgt = NULL;
1957 	struct pgt *p = NULL;
1958 	struct vm_region *r = NULL;
1959 
1960 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
1961 		return; /* Nothing to map */
1962 
1963 	/*
1964 	 * Allocate all page tables in advance.
1965 	 */
1966 	pgt_get_all(uctx);
1967 	pgt = SLIST_FIRST(pgt_cache);
1968 
1969 	core_mmu_set_info_table(&pg_info, dir_info->level + 1, 0, NULL);
1970 
1971 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
1972 		set_pg_region(dir_info, r, &pgt, &pg_info);
1973 	/* Record that the translation tables now are populated. */
1974 	SLIST_FOREACH(p, pgt_cache, link) {
1975 		p->populated = true;
1976 		if (p == pgt)
1977 			break;
1978 	}
1979 	assert(p == pgt);
1980 }
1981 
1982 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
1983 				   size_t len)
1984 {
1985 	struct core_mmu_table_info tbl_info = { };
1986 	struct tee_mmap_region *res_map = NULL;
1987 	struct tee_mmap_region *map = NULL;
1988 	paddr_t pa = virt_to_phys(addr);
1989 	size_t granule = 0;
1990 	ptrdiff_t i = 0;
1991 	paddr_t p = 0;
1992 	size_t l = 0;
1993 
1994 	map = find_map_by_type_and_pa(type, pa, len);
1995 	if (!map)
1996 		return TEE_ERROR_GENERIC;
1997 
1998 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
1999 	if (!res_map)
2000 		return TEE_ERROR_GENERIC;
2001 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2002 		return TEE_ERROR_GENERIC;
2003 	granule = BIT(tbl_info.shift);
2004 
2005 	if (map < static_memory_map ||
2006 	    map >= static_memory_map + ARRAY_SIZE(static_memory_map))
2007 		return TEE_ERROR_GENERIC;
2008 	i = map - static_memory_map;
2009 
2010 	/* Check that we have a full match */
2011 	p = ROUNDDOWN(pa, granule);
2012 	l = ROUNDUP(len + pa - p, granule);
2013 	if (map->pa != p || map->size != l)
2014 		return TEE_ERROR_GENERIC;
2015 
2016 	clear_region(&tbl_info, map);
2017 	tlbi_all();
2018 
2019 	/* If possible remove the va range from res_map */
2020 	if (res_map->va - map->size == map->va) {
2021 		res_map->va -= map->size;
2022 		res_map->size += map->size;
2023 	}
2024 
2025 	/* Remove the entry. */
2026 	memmove(map, map + 1,
2027 		(ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map));
2028 
2029 	/* Clear the last new entry in case it was used */
2030 	memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1,
2031 	       0, sizeof(*map));
2032 
2033 	return TEE_SUCCESS;
2034 }
2035 
2036 struct tee_mmap_region *
2037 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2038 {
2039 	struct tee_mmap_region *map = NULL;
2040 	struct tee_mmap_region *map_found = NULL;
2041 
2042 	if (!len)
2043 		return NULL;
2044 
2045 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
2046 		if (map->type != type)
2047 			continue;
2048 
2049 		if (map_found)
2050 			return NULL;
2051 
2052 		map_found = map;
2053 	}
2054 
2055 	if (!map_found || map_found->size < len)
2056 		return NULL;
2057 
2058 	return map_found;
2059 }
2060 
2061 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2062 {
2063 	struct core_mmu_table_info tbl_info;
2064 	struct tee_mmap_region *map;
2065 	size_t n;
2066 	size_t granule;
2067 	paddr_t p;
2068 	size_t l;
2069 
2070 	if (!len)
2071 		return NULL;
2072 
2073 	if (!core_mmu_check_end_pa(addr, len))
2074 		return NULL;
2075 
2076 	/* Check if the memory is already mapped */
2077 	map = find_map_by_type_and_pa(type, addr, len);
2078 	if (map && pbuf_inside_map_area(addr, len, map))
2079 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2080 
2081 	/* Find the reserved va space used for late mappings */
2082 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2083 	if (!map)
2084 		return NULL;
2085 
2086 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2087 		return NULL;
2088 
2089 	granule = BIT64(tbl_info.shift);
2090 	p = ROUNDDOWN(addr, granule);
2091 	l = ROUNDUP(len + addr - p, granule);
2092 
2093 	/* Ban overflowing virtual addresses */
2094 	if (map->size < l)
2095 		return NULL;
2096 
2097 	/*
2098 	 * Something is wrong, we can't fit the va range into the selected
2099 	 * table. The reserved va range is possibly missaligned with
2100 	 * granule.
2101 	 */
2102 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2103 		return NULL;
2104 
2105 	/* Find end of the memory map */
2106 	n = 0;
2107 	while (!core_mmap_is_end_of_table(static_memory_map + n))
2108 		n++;
2109 
2110 	if (n < (ARRAY_SIZE(static_memory_map) - 1)) {
2111 		/* There's room for another entry */
2112 		static_memory_map[n].va = map->va;
2113 		static_memory_map[n].size = l;
2114 		static_memory_map[n + 1].type = MEM_AREA_END;
2115 		map->va += l;
2116 		map->size -= l;
2117 		map = static_memory_map + n;
2118 	} else {
2119 		/*
2120 		 * There isn't room for another entry, steal the reserved
2121 		 * entry as it's not useful for anything else any longer.
2122 		 */
2123 		map->size = l;
2124 	}
2125 	map->type = type;
2126 	map->region_size = granule;
2127 	map->attr = core_mmu_type_to_attr(type);
2128 	map->pa = p;
2129 
2130 	set_region(&tbl_info, map);
2131 
2132 	/* Make sure the new entry is visible before continuing. */
2133 	core_mmu_table_write_barrier();
2134 
2135 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2136 }
2137 
2138 #ifdef CFG_WITH_PAGER
2139 static vaddr_t get_linear_map_end_va(void)
2140 {
2141 	/* this is synced with the generic linker file kern.ld.S */
2142 	return (vaddr_t)__heap2_end;
2143 }
2144 
2145 static paddr_t get_linear_map_end_pa(void)
2146 {
2147 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2148 }
2149 #endif
2150 
2151 #if defined(CFG_TEE_CORE_DEBUG)
2152 static void check_pa_matches_va(void *va, paddr_t pa)
2153 {
2154 	TEE_Result res = TEE_ERROR_GENERIC;
2155 	vaddr_t v = (vaddr_t)va;
2156 	paddr_t p = 0;
2157 	struct core_mmu_table_info ti __maybe_unused = { };
2158 
2159 	if (core_mmu_user_va_range_is_defined()) {
2160 		vaddr_t user_va_base = 0;
2161 		size_t user_va_size = 0;
2162 
2163 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2164 		if (v >= user_va_base &&
2165 		    v <= (user_va_base - 1 + user_va_size)) {
2166 			if (!core_mmu_user_mapping_is_active()) {
2167 				if (pa)
2168 					panic("issue in linear address space");
2169 				return;
2170 			}
2171 
2172 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2173 				       va, &p);
2174 			if (res == TEE_ERROR_NOT_SUPPORTED)
2175 				return;
2176 			if (res == TEE_SUCCESS && pa != p)
2177 				panic("bad pa");
2178 			if (res != TEE_SUCCESS && pa)
2179 				panic("false pa");
2180 			return;
2181 		}
2182 	}
2183 #ifdef CFG_WITH_PAGER
2184 	if (is_unpaged(va)) {
2185 		if (v - boot_mmu_config.map_offset != pa)
2186 			panic("issue in linear address space");
2187 		return;
2188 	}
2189 
2190 	if (tee_pager_get_table_info(v, &ti)) {
2191 		uint32_t a;
2192 
2193 		/*
2194 		 * Lookups in the page table managed by the pager is
2195 		 * dangerous for addresses in the paged area as those pages
2196 		 * changes all the time. But some ranges are safe,
2197 		 * rw-locked areas when the page is populated for instance.
2198 		 */
2199 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2200 		if (a & TEE_MATTR_VALID_BLOCK) {
2201 			paddr_t mask = BIT64(ti.shift) - 1;
2202 
2203 			p |= v & mask;
2204 			if (pa != p)
2205 				panic();
2206 		} else {
2207 			if (pa)
2208 				panic();
2209 		}
2210 		return;
2211 	}
2212 #endif
2213 
2214 	if (!core_va2pa_helper(va, &p)) {
2215 		/* Verfiy only the static mapping (case non null phys addr) */
2216 		if (p && pa != p) {
2217 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2218 			     va, p, pa);
2219 			panic();
2220 		}
2221 	} else {
2222 		if (pa) {
2223 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2224 			panic();
2225 		}
2226 	}
2227 }
2228 #else
2229 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2230 {
2231 }
2232 #endif
2233 
2234 paddr_t virt_to_phys(void *va)
2235 {
2236 	paddr_t pa = 0;
2237 
2238 	if (!arch_va2pa_helper(va, &pa))
2239 		pa = 0;
2240 	check_pa_matches_va(va, pa);
2241 	return pa;
2242 }
2243 
2244 #if defined(CFG_TEE_CORE_DEBUG)
2245 static void check_va_matches_pa(paddr_t pa, void *va)
2246 {
2247 	paddr_t p = 0;
2248 
2249 	if (!va)
2250 		return;
2251 
2252 	p = virt_to_phys(va);
2253 	if (p != pa) {
2254 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2255 		panic();
2256 	}
2257 }
2258 #else
2259 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2260 {
2261 }
2262 #endif
2263 
2264 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2265 {
2266 	if (!core_mmu_user_mapping_is_active())
2267 		return NULL;
2268 
2269 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2270 }
2271 
2272 #ifdef CFG_WITH_PAGER
2273 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2274 {
2275 	paddr_t end_pa = 0;
2276 
2277 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2278 		return NULL;
2279 
2280 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2281 		if (end_pa > get_linear_map_end_pa())
2282 			return NULL;
2283 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2284 	}
2285 
2286 	return tee_pager_phys_to_virt(pa, len);
2287 }
2288 #else
2289 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2290 {
2291 	struct tee_mmap_region *mmap = NULL;
2292 
2293 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2294 	if (!mmap)
2295 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2296 	if (!mmap)
2297 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2298 	if (!mmap)
2299 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2300 	if (!mmap)
2301 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2302 	if (!mmap)
2303 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2304 	/*
2305 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2306 	 * used with pager and not needed here.
2307 	 */
2308 	return map_pa2va(mmap, pa, len);
2309 }
2310 #endif
2311 
2312 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2313 {
2314 	void *va = NULL;
2315 
2316 	switch (m) {
2317 	case MEM_AREA_TS_VASPACE:
2318 		va = phys_to_virt_ts_vaspace(pa, len);
2319 		break;
2320 	case MEM_AREA_TEE_RAM:
2321 	case MEM_AREA_TEE_RAM_RX:
2322 	case MEM_AREA_TEE_RAM_RO:
2323 	case MEM_AREA_TEE_RAM_RW:
2324 	case MEM_AREA_NEX_RAM_RO:
2325 	case MEM_AREA_NEX_RAM_RW:
2326 		va = phys_to_virt_tee_ram(pa, len);
2327 		break;
2328 	case MEM_AREA_SHM_VASPACE:
2329 		/* Find VA from PA in dynamic SHM is not yet supported */
2330 		va = NULL;
2331 		break;
2332 	default:
2333 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2334 	}
2335 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2336 		check_va_matches_pa(pa, va);
2337 	return va;
2338 }
2339 
2340 void *phys_to_virt_io(paddr_t pa, size_t len)
2341 {
2342 	struct tee_mmap_region *map = NULL;
2343 	void *va = NULL;
2344 
2345 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2346 	if (!map)
2347 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2348 	if (!map)
2349 		return NULL;
2350 	va = map_pa2va(map, pa, len);
2351 	check_va_matches_pa(pa, va);
2352 	return va;
2353 }
2354 
2355 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2356 {
2357 	if (cpu_mmu_enabled())
2358 		return (vaddr_t)phys_to_virt(pa, type, len);
2359 
2360 	return (vaddr_t)pa;
2361 }
2362 
2363 #ifdef CFG_WITH_PAGER
2364 bool is_unpaged(void *va)
2365 {
2366 	vaddr_t v = (vaddr_t)va;
2367 
2368 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2369 }
2370 #else
2371 bool is_unpaged(void *va __unused)
2372 {
2373 	return true;
2374 }
2375 #endif
2376 
2377 void core_mmu_init_virtualization(void)
2378 {
2379 	paddr_t b1 = 0;
2380 	paddr_size_t s1 = 0;
2381 
2382 	static_assert(ARRAY_SIZE(secure_only) <= 2);
2383 	if (ARRAY_SIZE(secure_only) == 2) {
2384 		b1 = secure_only[1].paddr;
2385 		s1 = secure_only[1].size;
2386 	}
2387 	virt_init_memory(static_memory_map, secure_only[0].paddr,
2388 			 secure_only[0].size, b1, s1);
2389 }
2390 
2391 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2392 {
2393 	assert(p->pa);
2394 	if (cpu_mmu_enabled()) {
2395 		if (!p->va)
2396 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2397 		assert(p->va);
2398 		return p->va;
2399 	}
2400 	return p->pa;
2401 }
2402 
2403 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2404 {
2405 	assert(p->pa);
2406 	if (cpu_mmu_enabled()) {
2407 		if (!p->va)
2408 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2409 						      len);
2410 		assert(p->va);
2411 		return p->va;
2412 	}
2413 	return p->pa;
2414 }
2415 
2416 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2417 {
2418 	assert(p->pa);
2419 	if (cpu_mmu_enabled()) {
2420 		if (!p->va)
2421 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2422 						      len);
2423 		assert(p->va);
2424 		return p->va;
2425 	}
2426 	return p->pa;
2427 }
2428 
2429 #ifdef CFG_CORE_RESERVED_SHM
2430 static TEE_Result teecore_init_pub_ram(void)
2431 {
2432 	vaddr_t s = 0;
2433 	vaddr_t e = 0;
2434 
2435 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2436 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2437 
2438 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2439 		panic("invalid PUB RAM");
2440 
2441 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2442 	if (!tee_vbuf_is_non_sec(s, e - s))
2443 		panic("PUB RAM is not non-secure");
2444 
2445 #ifdef CFG_PL310
2446 	/* Allocate statically the l2cc mutex */
2447 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2448 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2449 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2450 #endif
2451 
2452 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2453 	default_nsec_shm_size = e - s;
2454 
2455 	return TEE_SUCCESS;
2456 }
2457 early_init(teecore_init_pub_ram);
2458 #endif /*CFG_CORE_RESERVED_SHM*/
2459 
2460 void core_mmu_init_ta_ram(void)
2461 {
2462 	vaddr_t s = 0;
2463 	vaddr_t e = 0;
2464 	paddr_t ps = 0;
2465 	size_t size = 0;
2466 
2467 	/*
2468 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2469 	 * shared mem allocated from teecore.
2470 	 */
2471 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
2472 		virt_get_ta_ram(&s, &e);
2473 	else
2474 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2475 
2476 	ps = virt_to_phys((void *)s);
2477 	size = e - s;
2478 
2479 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2480 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2481 		panic("invalid TA RAM");
2482 
2483 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2484 	if (!tee_pbuf_is_sec(ps, size))
2485 		panic("TA RAM is not secure");
2486 
2487 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2488 		panic("TA RAM pool is not empty");
2489 
2490 	/* remove previous config and init TA ddr memory pool */
2491 	tee_mm_final(&tee_mm_sec_ddr);
2492 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2493 		    TEE_MM_POOL_NO_FLAGS);
2494 }
2495