xref: /optee_os/core/mm/core_mmu.c (revision 45fecab081173ef58b1cb14b6ddf6892b0b9d3f6)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016-2025 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <memtag.h>
22 #include <mm/core_memprot.h>
23 #include <mm/core_mmu.h>
24 #include <mm/mobj.h>
25 #include <mm/pgt_cache.h>
26 #include <mm/phys_mem.h>
27 #include <mm/tee_pager.h>
28 #include <mm/vm.h>
29 #include <platform_config.h>
30 #include <stdalign.h>
31 #include <string.h>
32 #include <trace.h>
33 #include <util.h>
34 
35 #ifndef DEBUG_XLAT_TABLE
36 #define DEBUG_XLAT_TABLE 0
37 #endif
38 
39 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
40 
41 /* Virtual memory pool for core mappings */
42 tee_mm_pool_t core_virt_mem_pool;
43 
44 /* Virtual memory pool for shared memory mappings */
45 tee_mm_pool_t core_virt_shm_pool;
46 
47 #ifdef CFG_CORE_PHYS_RELOCATABLE
48 unsigned long core_mmu_tee_load_pa __nex_bss;
49 #else
50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
51 #endif
52 
53 /*
54  * These variables are initialized before .bss is cleared. To avoid
55  * resetting them when .bss is cleared we're storing them in .data instead,
56  * even if they initially are zero.
57  */
58 
59 #ifdef CFG_CORE_RESERVED_SHM
60 /* Default NSec shared memory allocated from NSec world */
61 unsigned long default_nsec_shm_size __nex_bss;
62 unsigned long default_nsec_shm_paddr __nex_bss;
63 #endif
64 
65 static struct memory_map static_memory_map __nex_bss;
66 void (*memory_map_realloc_func)(struct memory_map *mem_map) __nex_bss;
67 
68 /* Offset of the first TEE RAM mapping from start of secure RAM */
69 static size_t tee_ram_initial_offs __nex_bss;
70 
71 /* Define the platform's memory layout. */
72 struct memaccess_area {
73 	paddr_t paddr;
74 	size_t size;
75 };
76 
77 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
78 
79 static struct memaccess_area secure_only[] __nex_data = {
80 #ifdef CFG_CORE_PHYS_RELOCATABLE
81 	MEMACCESS_AREA(0, 0),
82 #else
83 #ifdef TRUSTED_SRAM_BASE
84 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
85 #endif
86 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
87 #endif
88 };
89 
90 static struct memaccess_area nsec_shared[] __nex_data = {
91 #ifdef CFG_CORE_RESERVED_SHM
92 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
93 #endif
94 };
95 
96 #if defined(CFG_SECURE_DATA_PATH)
97 static const char *tz_sdp_match = "linaro,secure-heap";
98 static struct memaccess_area sec_sdp;
99 #ifdef CFG_TEE_SDP_MEM_BASE
100 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
101 #endif
102 #ifdef TEE_SDP_TEST_MEM_BASE
103 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
104 #endif
105 #endif
106 
107 #ifdef CFG_CORE_RESERVED_SHM
108 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
109 #endif
110 static unsigned int mmu_spinlock;
111 
112 static uint32_t mmu_lock(void)
113 {
114 	return cpu_spin_lock_xsave(&mmu_spinlock);
115 }
116 
117 static void mmu_unlock(uint32_t exceptions)
118 {
119 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
120 }
121 
122 static void heap_realloc_memory_map(struct memory_map *mem_map)
123 {
124 	struct tee_mmap_region *m = NULL;
125 	struct tee_mmap_region *old = mem_map->map;
126 	size_t old_sz = sizeof(*old) * mem_map->alloc_count;
127 	size_t sz = old_sz + sizeof(*m);
128 
129 	assert(nex_malloc_buffer_is_within_alloced(old, old_sz));
130 	m = nex_realloc(old, sz);
131 	if (!m)
132 		panic();
133 	mem_map->map = m;
134 	mem_map->alloc_count++;
135 }
136 
137 static void boot_mem_realloc_memory_map(struct memory_map *mem_map)
138 {
139 	struct tee_mmap_region *m = NULL;
140 	struct tee_mmap_region *old = mem_map->map;
141 	size_t old_sz = sizeof(*old) * mem_map->alloc_count;
142 	size_t sz = old_sz * 2;
143 
144 	m = boot_mem_alloc_tmp(sz, alignof(*m));
145 	memcpy(m, old, old_sz);
146 	mem_map->map = m;
147 	mem_map->alloc_count *= 2;
148 }
149 
150 static void grow_mem_map(struct memory_map *mem_map)
151 {
152 	if (mem_map->count == mem_map->alloc_count) {
153 		if (!memory_map_realloc_func) {
154 			EMSG("Out of entries (%zu) in mem_map",
155 			     mem_map->alloc_count);
156 			panic();
157 		}
158 		memory_map_realloc_func(mem_map);
159 	}
160 	mem_map->count++;
161 }
162 
163 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
164 {
165 	/*
166 	 * The first range is always used to cover OP-TEE core memory, but
167 	 * depending on configuration it may cover more than that.
168 	 */
169 	*base = secure_only[0].paddr;
170 	*size = secure_only[0].size;
171 }
172 
173 void core_mmu_set_secure_memory(paddr_t base, size_t size)
174 {
175 #ifdef CFG_CORE_PHYS_RELOCATABLE
176 	static_assert(ARRAY_SIZE(secure_only) == 1);
177 #endif
178 	runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE));
179 	assert(!secure_only[0].size);
180 	assert(base && size);
181 
182 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
183 	secure_only[0].paddr = base;
184 	secure_only[0].size = size;
185 }
186 
187 static struct memory_map *get_memory_map(void)
188 {
189 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
190 		struct memory_map *map = virt_get_memory_map();
191 
192 		if (map)
193 			return map;
194 	}
195 
196 	return &static_memory_map;
197 }
198 
199 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
200 			     paddr_t pa, size_t size)
201 {
202 	size_t n;
203 
204 	for (n = 0; n < alen; n++)
205 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
206 			return true;
207 	return false;
208 }
209 
210 #define pbuf_intersects(a, pa, size) \
211 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
212 
213 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
214 			    paddr_t pa, size_t size)
215 {
216 	size_t n;
217 
218 	for (n = 0; n < alen; n++)
219 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
220 			return true;
221 	return false;
222 }
223 
224 #define pbuf_is_inside(a, pa, size) \
225 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
226 
227 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
228 {
229 	paddr_t end_pa = 0;
230 
231 	if (!map)
232 		return false;
233 
234 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
235 		return false;
236 
237 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
238 }
239 
240 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
241 {
242 	if (!map)
243 		return false;
244 	return (va >= map->va && va <= (map->va + map->size - 1));
245 }
246 
247 /* check if target buffer fits in a core default map area */
248 static bool pbuf_inside_map_area(unsigned long p, size_t l,
249 				 struct tee_mmap_region *map)
250 {
251 	return core_is_buffer_inside(p, l, map->pa, map->size);
252 }
253 
254 TEE_Result core_mmu_for_each_map(void *ptr,
255 				 TEE_Result (*fn)(struct tee_mmap_region *map,
256 						  void *ptr))
257 {
258 	struct memory_map *mem_map = get_memory_map();
259 	TEE_Result res = TEE_SUCCESS;
260 	size_t n = 0;
261 
262 	for (n = 0; n < mem_map->count; n++) {
263 		res = fn(mem_map->map + n, ptr);
264 		if (res)
265 			return res;
266 	}
267 
268 	return TEE_SUCCESS;
269 }
270 
271 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
272 {
273 	struct memory_map *mem_map = get_memory_map();
274 	size_t n = 0;
275 
276 	for (n = 0; n < mem_map->count; n++) {
277 		if (mem_map->map[n].type == type)
278 			return mem_map->map + n;
279 	}
280 	return NULL;
281 }
282 
283 static struct tee_mmap_region *
284 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
285 {
286 	struct memory_map *mem_map = get_memory_map();
287 	size_t n = 0;
288 
289 	for (n = 0; n < mem_map->count; n++) {
290 		if (mem_map->map[n].type != type)
291 			continue;
292 		if (pa_is_in_map(mem_map->map + n, pa, len))
293 			return mem_map->map + n;
294 	}
295 	return NULL;
296 }
297 
298 static struct tee_mmap_region *find_map_by_va(void *va)
299 {
300 	struct memory_map *mem_map = get_memory_map();
301 	vaddr_t a = (vaddr_t)va;
302 	size_t n = 0;
303 
304 	for (n = 0; n < mem_map->count; n++) {
305 		if (a >= mem_map->map[n].va &&
306 		    a <= (mem_map->map[n].va - 1 + mem_map->map[n].size))
307 			return mem_map->map + n;
308 	}
309 
310 	return NULL;
311 }
312 
313 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
314 {
315 	struct memory_map *mem_map = get_memory_map();
316 	size_t n = 0;
317 
318 	for (n = 0; n < mem_map->count; n++) {
319 		/* Skip unmapped regions */
320 		if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) &&
321 		    pa >= mem_map->map[n].pa &&
322 		    pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size))
323 			return mem_map->map + n;
324 	}
325 
326 	return NULL;
327 }
328 
329 #if defined(CFG_SECURE_DATA_PATH)
330 static bool dtb_get_sdp_region(void)
331 {
332 	void *fdt = NULL;
333 	int node = 0;
334 	int tmp_node = 0;
335 	paddr_t tmp_addr = 0;
336 	size_t tmp_size = 0;
337 
338 	if (!IS_ENABLED(CFG_EMBED_DTB))
339 		return false;
340 
341 	fdt = get_embedded_dt();
342 	if (!fdt)
343 		panic("No DTB found");
344 
345 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
346 	if (node < 0) {
347 		DMSG("No %s compatible node found", tz_sdp_match);
348 		return false;
349 	}
350 	tmp_node = node;
351 	while (tmp_node >= 0) {
352 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
353 							 tz_sdp_match);
354 		if (tmp_node >= 0)
355 			DMSG("Ignore SDP pool node %s, supports only 1 node",
356 			     fdt_get_name(fdt, tmp_node, NULL));
357 	}
358 
359 	if (fdt_reg_info(fdt, node, &tmp_addr, &tmp_size)) {
360 		EMSG("%s: Unable to get base addr or size from DT",
361 		     tz_sdp_match);
362 		return false;
363 	}
364 
365 	sec_sdp.paddr = tmp_addr;
366 	sec_sdp.size = tmp_size;
367 
368 	return true;
369 }
370 #endif
371 
372 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
373 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
374 				const struct core_mmu_phys_mem *start,
375 				const struct core_mmu_phys_mem *end)
376 {
377 	const struct core_mmu_phys_mem *mem;
378 
379 	for (mem = start; mem < end; mem++) {
380 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
381 			return true;
382 	}
383 
384 	return false;
385 }
386 #endif
387 
388 #ifdef CFG_CORE_DYN_SHM
389 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
390 			       paddr_t pa, size_t size)
391 {
392 	struct core_mmu_phys_mem *m = *mem;
393 	size_t n = 0;
394 
395 	while (n < *nelems) {
396 		if (!core_is_buffer_intersect(pa, size, m[n].addr, m[n].size)) {
397 			n++;
398 			continue;
399 		}
400 
401 		if (core_is_buffer_inside(m[n].addr, m[n].size, pa, size)) {
402 			/* m[n] is completely covered by pa:size */
403 			rem_array_elem(m, *nelems, sizeof(*m), n);
404 			(*nelems)--;
405 			m = nex_realloc(m, sizeof(*m) * *nelems);
406 			if (!m)
407 				panic();
408 			*mem = m;
409 			continue;
410 		}
411 
412 		if (pa > m[n].addr &&
413 		    pa + size - 1 < m[n].addr + m[n].size - 1) {
414 			/*
415 			 * pa:size is strictly inside m[n] range so split
416 			 * m[n] entry.
417 			 */
418 			m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
419 			if (!m)
420 				panic();
421 			*mem = m;
422 			(*nelems)++;
423 			ins_array_elem(m, *nelems, sizeof(*m), n + 1, NULL);
424 			m[n + 1].addr = pa + size;
425 			m[n + 1].size = m[n].addr + m[n].size - pa - size;
426 			m[n].size = pa - m[n].addr;
427 			n++;
428 		} else if (pa <= m[n].addr) {
429 			/*
430 			 * pa:size is overlapping (possibly partially) at the
431 			 * beginning of m[n].
432 			 */
433 			m[n].size = m[n].addr + m[n].size - pa - size;
434 			m[n].addr = pa + size;
435 		} else {
436 			/*
437 			 * pa:size is overlapping (possibly partially) at
438 			 * the end of m[n].
439 			 */
440 			m[n].size = pa - m[n].addr;
441 		}
442 		n++;
443 	}
444 }
445 
446 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
447 				      size_t nelems,
448 				      struct tee_mmap_region *map)
449 {
450 	size_t n;
451 
452 	for (n = 0; n < nelems; n++) {
453 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
454 					    map->pa, map->size)) {
455 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
456 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
457 			     start[n].addr, start[n].size,
458 			     map->type, map->pa, map->size);
459 			panic();
460 		}
461 	}
462 }
463 
464 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
465 static size_t discovered_nsec_ddr_nelems __nex_bss;
466 
467 static int cmp_pmem_by_addr(const void *a, const void *b)
468 {
469 	const struct core_mmu_phys_mem *pmem_a = a;
470 	const struct core_mmu_phys_mem *pmem_b = b;
471 
472 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
473 }
474 
475 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
476 				      size_t nelems)
477 {
478 	struct core_mmu_phys_mem *m = start;
479 	size_t num_elems = nelems;
480 	struct memory_map *mem_map = &static_memory_map;
481 	const struct core_mmu_phys_mem __maybe_unused *pmem;
482 	size_t n = 0;
483 
484 	assert(!discovered_nsec_ddr_start);
485 	assert(m && num_elems);
486 
487 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
488 
489 	/*
490 	 * Non-secure shared memory and also secure data
491 	 * path memory are supposed to reside inside
492 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
493 	 * are used for a specific purpose make holes for
494 	 * those memory in the normal non-secure memory.
495 	 *
496 	 * This has to be done since for instance QEMU
497 	 * isn't aware of which memory range in the
498 	 * non-secure memory is used for NSEC_SHM.
499 	 */
500 
501 #ifdef CFG_SECURE_DATA_PATH
502 	if (dtb_get_sdp_region())
503 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
504 
505 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
506 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
507 #endif
508 
509 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
510 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
511 				   secure_only[n].size);
512 
513 	for  (n = 0; n < mem_map->count; n++) {
514 		switch (mem_map->map[n].type) {
515 		case MEM_AREA_NSEC_SHM:
516 			carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa,
517 					   mem_map->map[n].size);
518 			break;
519 		case MEM_AREA_EXT_DT:
520 		case MEM_AREA_MANIFEST_DT:
521 		case MEM_AREA_RAM_NSEC:
522 		case MEM_AREA_RES_VASPACE:
523 		case MEM_AREA_SHM_VASPACE:
524 		case MEM_AREA_TS_VASPACE:
525 		case MEM_AREA_PAGER_VASPACE:
526 			break;
527 		default:
528 			check_phys_mem_is_outside(m, num_elems,
529 						  mem_map->map + n);
530 		}
531 	}
532 
533 	discovered_nsec_ddr_start = m;
534 	discovered_nsec_ddr_nelems = num_elems;
535 
536 	DMSG("Non-secure RAM:");
537 	for (n = 0; n < num_elems; n++)
538 		DMSG("%zu: pa %#"PRIxPA"..%#"PRIxPA" sz %#"PRIxPASZ,
539 		     n, m[n].addr, m[n].addr + m[n].size - 1, m[n].size);
540 
541 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
542 				   m[num_elems - 1].size))
543 		panic();
544 }
545 
546 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
547 				    const struct core_mmu_phys_mem **end)
548 {
549 	if (!discovered_nsec_ddr_start)
550 		return false;
551 
552 	*start = discovered_nsec_ddr_start;
553 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
554 
555 	return true;
556 }
557 
558 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
559 {
560 	const struct core_mmu_phys_mem *start;
561 	const struct core_mmu_phys_mem *end;
562 
563 	if (!get_discovered_nsec_ddr(&start, &end))
564 		return false;
565 
566 	return pbuf_is_special_mem(pbuf, len, start, end);
567 }
568 
569 bool core_mmu_nsec_ddr_is_defined(void)
570 {
571 	const struct core_mmu_phys_mem *start;
572 	const struct core_mmu_phys_mem *end;
573 
574 	if (!get_discovered_nsec_ddr(&start, &end))
575 		return false;
576 
577 	return start != end;
578 }
579 #else
580 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
581 {
582 	return false;
583 }
584 #endif /*CFG_CORE_DYN_SHM*/
585 
586 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
587 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
588 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
589 
590 #ifdef CFG_SECURE_DATA_PATH
591 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
592 {
593 	bool is_sdp_mem = false;
594 
595 	if (sec_sdp.size)
596 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
597 						   sec_sdp.size);
598 
599 	if (!is_sdp_mem)
600 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
601 						 phys_sdp_mem_end);
602 
603 	return is_sdp_mem;
604 }
605 
606 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
607 {
608 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
609 					    CORE_MEM_SDP_MEM);
610 
611 	if (!mobj)
612 		panic("can't create SDP physical memory object");
613 
614 	return mobj;
615 }
616 
617 struct mobj **core_sdp_mem_create_mobjs(void)
618 {
619 	const struct core_mmu_phys_mem *mem = NULL;
620 	struct mobj **mobj_base = NULL;
621 	struct mobj **mobj = NULL;
622 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
623 
624 	if (sec_sdp.size)
625 		cnt++;
626 
627 	/* SDP mobjs table must end with a NULL entry */
628 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
629 	if (!mobj_base)
630 		panic("Out of memory");
631 
632 	mobj = mobj_base;
633 
634 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
635 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
636 
637 	if (sec_sdp.size)
638 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
639 
640 	return mobj_base;
641 }
642 
643 #else /* CFG_SECURE_DATA_PATH */
644 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
645 {
646 	return false;
647 }
648 
649 #endif /* CFG_SECURE_DATA_PATH */
650 
651 /* Check special memories comply with registered memories */
652 static void verify_special_mem_areas(struct memory_map *mem_map,
653 				     const struct core_mmu_phys_mem *start,
654 				     const struct core_mmu_phys_mem *end,
655 				     const char *area_name __maybe_unused)
656 {
657 	const struct core_mmu_phys_mem *mem = NULL;
658 	const struct core_mmu_phys_mem *mem2 = NULL;
659 	size_t n = 0;
660 
661 	if (start == end) {
662 		DMSG("No %s memory area defined", area_name);
663 		return;
664 	}
665 
666 	for (mem = start; mem < end; mem++)
667 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
668 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
669 
670 	/* Check memories do not intersect each other */
671 	for (mem = start; mem + 1 < end; mem++) {
672 		for (mem2 = mem + 1; mem2 < end; mem2++) {
673 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
674 						     mem->addr, mem->size)) {
675 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
676 						   mem->addr, mem->size);
677 				panic("Special memory intersection");
678 			}
679 		}
680 	}
681 
682 	/*
683 	 * Check memories do not intersect any mapped memory.
684 	 * This is called before reserved VA space is loaded in mem_map.
685 	 */
686 	for (mem = start; mem < end; mem++) {
687 		for (n = 0; n < mem_map->count; n++) {
688 #ifdef TEE_SDP_TEST_MEM_BASE
689 			/*
690 			 * Ignore MEM_AREA_SEC_RAM_OVERALL since it covers
691 			 * TEE_SDP_TEST_MEM too.
692 			 */
693 			if (mem->addr == TEE_SDP_TEST_MEM_BASE &&
694 			    mem->size == TEE_SDP_TEST_MEM_SIZE &&
695 			    mem_map->map[n].type == MEM_AREA_SEC_RAM_OVERALL)
696 				continue;
697 #endif
698 			if (core_is_buffer_intersect(mem->addr, mem->size,
699 						     mem_map->map[n].pa,
700 						     mem_map->map[n].size)) {
701 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
702 						   mem_map->map[n].pa,
703 						   mem_map->map[n].size);
704 				panic("Special memory intersection");
705 			}
706 		}
707 	}
708 }
709 
710 static void merge_mmaps(struct tee_mmap_region *dst,
711 			const struct tee_mmap_region *src)
712 {
713 	paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1);
714 	paddr_t pa = MIN(dst->pa, src->pa);
715 
716 	DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA,
717 	     dst->pa, dst->pa + dst->size - 1, src->pa,
718 	     src->pa + src->size - 1);
719 	dst->pa = pa;
720 	dst->size = end_pa - pa + 1;
721 }
722 
723 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1,
724 				const struct tee_mmap_region *r2)
725 {
726 	if (r1->type != r2->type)
727 		return false;
728 
729 	if (r1->pa == r2->pa)
730 		return true;
731 
732 	if (r1->pa < r2->pa)
733 		return r1->pa + r1->size >= r2->pa;
734 	else
735 		return r2->pa + r2->size >= r1->pa;
736 }
737 
738 static void add_phys_mem(struct memory_map *mem_map,
739 			 const char *mem_name __maybe_unused,
740 			 enum teecore_memtypes mem_type,
741 			 paddr_t mem_addr, paddr_size_t mem_size)
742 {
743 	size_t n = 0;
744 	const struct tee_mmap_region m0 = {
745 		.type = mem_type,
746 		.pa = mem_addr,
747 		.size = mem_size,
748 	};
749 
750 	if (!mem_size)	/* Discard null size entries */
751 		return;
752 
753 	/*
754 	 * If some ranges of memory of the same type do overlap
755 	 * each others they are coalesced into one entry. To help this
756 	 * added entries are sorted by increasing physical.
757 	 *
758 	 * Note that it's valid to have the same physical memory as several
759 	 * different memory types, for instance the same device memory
760 	 * mapped as both secure and non-secure. This will probably not
761 	 * happen often in practice.
762 	 */
763 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
764 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
765 	for  (n = 0; n < mem_map->count; n++) {
766 		if (mmaps_are_mergeable(mem_map->map + n, &m0)) {
767 			merge_mmaps(mem_map->map + n, &m0);
768 			/*
769 			 * The merged result might be mergeable with the
770 			 * next or previous entry.
771 			 */
772 			if (n + 1 < mem_map->count &&
773 			    mmaps_are_mergeable(mem_map->map + n,
774 						mem_map->map + n + 1)) {
775 				merge_mmaps(mem_map->map + n,
776 					    mem_map->map + n + 1);
777 				rem_array_elem(mem_map->map, mem_map->count,
778 					       sizeof(*mem_map->map), n + 1);
779 				mem_map->count--;
780 			}
781 			if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1,
782 							 mem_map->map + n)) {
783 				merge_mmaps(mem_map->map + n - 1,
784 					    mem_map->map + n);
785 				rem_array_elem(mem_map->map, mem_map->count,
786 					       sizeof(*mem_map->map), n);
787 				mem_map->count--;
788 			}
789 			return;
790 		}
791 		if (mem_type < mem_map->map[n].type ||
792 		    (mem_type == mem_map->map[n].type &&
793 		     mem_addr < mem_map->map[n].pa))
794 			break; /* found the spot where to insert this memory */
795 	}
796 
797 	grow_mem_map(mem_map);
798 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
799 		       n, &m0);
800 }
801 
802 static void add_va_space(struct memory_map *mem_map,
803 			 enum teecore_memtypes type, size_t size)
804 {
805 	size_t n = 0;
806 
807 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
808 	for  (n = 0; n < mem_map->count; n++) {
809 		if (type < mem_map->map[n].type)
810 			break;
811 	}
812 
813 	grow_mem_map(mem_map);
814 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
815 		       n, NULL);
816 	mem_map->map[n] = (struct tee_mmap_region){
817 		.type = type,
818 		.size = size,
819 	};
820 }
821 
822 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
823 {
824 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
825 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
826 				TEE_MATTR_MEM_TYPE_SHIFT;
827 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
828 				TEE_MATTR_MEM_TYPE_SHIFT;
829 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
830 				  TEE_MATTR_MEM_TYPE_SHIFT;
831 
832 	switch (t) {
833 	case MEM_AREA_TEE_RAM:
834 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
835 	case MEM_AREA_TEE_RAM_RX:
836 	case MEM_AREA_INIT_RAM_RX:
837 	case MEM_AREA_IDENTITY_MAP_RX:
838 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
839 	case MEM_AREA_TEE_RAM_RO:
840 	case MEM_AREA_INIT_RAM_RO:
841 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
842 	case MEM_AREA_TEE_RAM_RW:
843 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
844 	case MEM_AREA_NEX_RAM_RW:
845 	case MEM_AREA_TEE_ASAN:
846 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
847 	case MEM_AREA_TEE_COHERENT:
848 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
849 	case MEM_AREA_NSEC_SHM:
850 	case MEM_AREA_NEX_NSEC_SHM:
851 		return attr | TEE_MATTR_PRW | cached;
852 	case MEM_AREA_MANIFEST_DT:
853 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
854 	case MEM_AREA_TRANSFER_LIST:
855 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
856 	case MEM_AREA_EXT_DT:
857 		/*
858 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
859 		 * tree as secure non-cached memory, otherwise, fall back to
860 		 * non-secure mapping.
861 		 */
862 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
863 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
864 			       noncache;
865 		fallthrough;
866 	case MEM_AREA_IO_NSEC:
867 		return attr | TEE_MATTR_PRW | noncache;
868 	case MEM_AREA_IO_SEC:
869 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
870 	case MEM_AREA_RAM_NSEC:
871 		return attr | TEE_MATTR_PRW | cached;
872 	case MEM_AREA_RAM_SEC:
873 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
874 	case MEM_AREA_SEC_RAM_OVERALL:
875 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
876 	case MEM_AREA_ROM_SEC:
877 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
878 	case MEM_AREA_RES_VASPACE:
879 	case MEM_AREA_SHM_VASPACE:
880 		return 0;
881 	case MEM_AREA_PAGER_VASPACE:
882 		return TEE_MATTR_SECURE;
883 	default:
884 		panic("invalid type");
885 	}
886 }
887 
888 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
889 {
890 	switch (mm->type) {
891 	case MEM_AREA_TEE_RAM:
892 	case MEM_AREA_TEE_RAM_RX:
893 	case MEM_AREA_TEE_RAM_RO:
894 	case MEM_AREA_TEE_RAM_RW:
895 	case MEM_AREA_INIT_RAM_RX:
896 	case MEM_AREA_INIT_RAM_RO:
897 	case MEM_AREA_NEX_RAM_RW:
898 	case MEM_AREA_NEX_RAM_RO:
899 	case MEM_AREA_TEE_ASAN:
900 		return true;
901 	default:
902 		return false;
903 	}
904 }
905 
906 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
907 {
908 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
909 }
910 
911 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
912 {
913 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
914 }
915 
916 static int cmp_mmap_by_lower_va(const void *a, const void *b)
917 {
918 	const struct tee_mmap_region *mm_a = a;
919 	const struct tee_mmap_region *mm_b = b;
920 
921 	return CMP_TRILEAN(mm_a->va, mm_b->va);
922 }
923 
924 static void dump_mmap_table(struct memory_map *mem_map)
925 {
926 	size_t n = 0;
927 
928 	for (n = 0; n < mem_map->count; n++) {
929 		struct tee_mmap_region *map __maybe_unused = mem_map->map + n;
930 
931 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
932 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
933 		     teecore_memtype_name(map->type), map->va,
934 		     map->va + map->size - 1, map->pa,
935 		     (paddr_t)(map->pa + map->size - 1), map->size,
936 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
937 	}
938 }
939 
940 #if DEBUG_XLAT_TABLE
941 
942 static void dump_xlat_table(vaddr_t va, unsigned int level)
943 {
944 	struct core_mmu_table_info tbl_info;
945 	unsigned int idx = 0;
946 	paddr_t pa;
947 	uint32_t attr;
948 
949 	core_mmu_find_table(NULL, va, level, &tbl_info);
950 	va = tbl_info.va_base;
951 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
952 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
953 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
954 			const char *security_bit = "";
955 
956 			if (core_mmu_entry_have_security_bit(attr)) {
957 				if (attr & TEE_MATTR_SECURE)
958 					security_bit = "S";
959 				else
960 					security_bit = "NS";
961 			}
962 
963 			if (attr & TEE_MATTR_TABLE) {
964 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
965 					" TBL:0x%010" PRIxPA " %s",
966 					level * 2, "", level, va, pa,
967 					security_bit);
968 				dump_xlat_table(va, level + 1);
969 			} else if (attr) {
970 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
971 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
972 					level * 2, "", level, va, pa,
973 					mattr_is_cached(attr) ? "MEM" :
974 					"DEV",
975 					attr & TEE_MATTR_PW ? "RW" : "RO",
976 					attr & TEE_MATTR_PX ? "X " : "XN",
977 					security_bit);
978 			} else {
979 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
980 					    " INVALID\n",
981 					    level * 2, "", level, va);
982 			}
983 		}
984 		va += BIT64(tbl_info.shift);
985 	}
986 }
987 
988 #else
989 
990 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
991 {
992 }
993 
994 #endif
995 
996 /*
997  * Reserves virtual memory space for pager usage.
998  *
999  * From the start of the first memory used by the link script +
1000  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
1001  * mapping for pager usage. This adds translation tables as needed for the
1002  * pager to operate.
1003  */
1004 static void add_pager_vaspace(struct memory_map *mem_map)
1005 {
1006 	paddr_t begin = 0;
1007 	paddr_t end = 0;
1008 	size_t size = 0;
1009 	size_t pos = 0;
1010 	size_t n = 0;
1011 
1012 
1013 	for (n = 0; n < mem_map->count; n++) {
1014 		if (map_is_tee_ram(mem_map->map + n)) {
1015 			if (!begin)
1016 				begin = mem_map->map[n].pa;
1017 			pos = n + 1;
1018 		}
1019 	}
1020 
1021 	end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size;
1022 	assert(end - begin < TEE_RAM_VA_SIZE);
1023 	size = TEE_RAM_VA_SIZE - (end - begin);
1024 
1025 	grow_mem_map(mem_map);
1026 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
1027 		       n, NULL);
1028 	mem_map->map[n] = (struct tee_mmap_region){
1029 		.type = MEM_AREA_PAGER_VASPACE,
1030 		.size = size,
1031 		.region_size = SMALL_PAGE_SIZE,
1032 		.attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE),
1033 	};
1034 }
1035 
1036 static void check_sec_nsec_mem_config(void)
1037 {
1038 	size_t n = 0;
1039 
1040 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
1041 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
1042 				    secure_only[n].size))
1043 			panic("Invalid memory access config: sec/nsec");
1044 	}
1045 }
1046 
1047 static void collect_device_mem_ranges(struct memory_map *mem_map)
1048 {
1049 	const char *compatible = "arm,ffa-manifest-device-regions";
1050 	void *fdt = get_manifest_dt();
1051 	const char *name = NULL;
1052 	uint64_t page_count = 0;
1053 	uint64_t base = 0;
1054 	int subnode = 0;
1055 	int node = 0;
1056 
1057 	assert(fdt);
1058 
1059 	node = fdt_node_offset_by_compatible(fdt, 0, compatible);
1060 	if (node < 0)
1061 		return;
1062 
1063 	fdt_for_each_subnode(subnode, fdt, node) {
1064 		name = fdt_get_name(fdt, subnode, NULL);
1065 		if (!name)
1066 			continue;
1067 
1068 		if (dt_getprop_as_number(fdt, subnode, "base-address",
1069 					 &base)) {
1070 			EMSG("Mandatory field is missing: base-address");
1071 			continue;
1072 		}
1073 
1074 		if (base & SMALL_PAGE_MASK) {
1075 			EMSG("base-address is not page aligned");
1076 			continue;
1077 		}
1078 
1079 		if (dt_getprop_as_number(fdt, subnode, "pages-count",
1080 					 &page_count)) {
1081 			EMSG("Mandatory field is missing: pages-count");
1082 			continue;
1083 		}
1084 
1085 		add_phys_mem(mem_map, name, MEM_AREA_IO_SEC,
1086 			     base, page_count * SMALL_PAGE_SIZE);
1087 	}
1088 }
1089 
1090 static void collect_mem_ranges(struct memory_map *mem_map)
1091 {
1092 	const struct core_mmu_phys_mem *mem = NULL;
1093 	vaddr_t ram_start = secure_only[0].paddr;
1094 	size_t n = 0;
1095 
1096 #define ADD_PHYS_MEM(_type, _addr, _size) \
1097 		add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size))
1098 
1099 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
1100 		paddr_t next_pa = 0;
1101 
1102 		/*
1103 		 * Read-only and read-execute physical memory areas must
1104 		 * not be mapped by MEM_AREA_SEC_RAM_OVERALL, but all the
1105 		 * read/write should.
1106 		 */
1107 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, ram_start,
1108 			     VCORE_UNPG_RX_PA - ram_start);
1109 		assert(VCORE_UNPG_RX_PA >= ram_start);
1110 		tee_ram_initial_offs = VCORE_UNPG_RX_PA - ram_start;
1111 		DMSG("tee_ram_initial_offs %#zx", tee_ram_initial_offs);
1112 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
1113 			     VCORE_UNPG_RX_SZ);
1114 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
1115 			     VCORE_UNPG_RO_SZ);
1116 
1117 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1118 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
1119 				     VCORE_UNPG_RW_SZ);
1120 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA,
1121 				     VCORE_UNPG_RW_SZ);
1122 
1123 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
1124 				     VCORE_NEX_RW_SZ);
1125 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_NEX_RW_PA,
1126 				     VCORE_NEX_RW_SZ);
1127 
1128 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_FREE_PA,
1129 				     VCORE_FREE_SZ);
1130 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA,
1131 				     VCORE_FREE_SZ);
1132 			next_pa = VCORE_FREE_PA + VCORE_FREE_SZ;
1133 		} else {
1134 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
1135 				     VCORE_UNPG_RW_SZ);
1136 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA,
1137 				     VCORE_UNPG_RW_SZ);
1138 
1139 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_FREE_PA,
1140 				     VCORE_FREE_SZ);
1141 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA,
1142 				     VCORE_FREE_SZ);
1143 			next_pa = VCORE_FREE_PA + VCORE_FREE_SZ;
1144 		}
1145 
1146 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1147 			paddr_t pa = 0;
1148 			size_t sz = 0;
1149 
1150 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
1151 				     VCORE_INIT_RX_SZ);
1152 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
1153 				     VCORE_INIT_RO_SZ);
1154 			/*
1155 			 * Core init mapping shall cover up to end of the
1156 			 * physical RAM.  This is required since the hash
1157 			 * table is appended to the binary data after the
1158 			 * firmware build sequence.
1159 			 */
1160 			pa = VCORE_INIT_RO_PA + VCORE_INIT_RO_SZ;
1161 			sz = TEE_RAM_START + TEE_RAM_PH_SIZE - pa;
1162 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM, pa, sz);
1163 		} else {
1164 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, next_pa,
1165 				     secure_only[0].paddr +
1166 				     secure_only[0].size - next_pa);
1167 		}
1168 	} else {
1169 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
1170 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr,
1171 			     secure_only[0].size);
1172 	}
1173 
1174 	for (n = 1; n < ARRAY_SIZE(secure_only); n++)
1175 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr,
1176 			     secure_only[n].size);
1177 
1178 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
1179 	    IS_ENABLED(CFG_WITH_PAGER)) {
1180 		/*
1181 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
1182 		 * disabled.
1183 		 */
1184 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1185 	}
1186 
1187 #undef ADD_PHYS_MEM
1188 
1189 	/* Collect device memory info from SP manifest */
1190 	if (IS_ENABLED(CFG_CORE_SEL2_SPMC))
1191 		collect_device_mem_ranges(mem_map);
1192 
1193 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1194 		/* Only unmapped virtual range may have a null phys addr */
1195 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1196 
1197 		add_phys_mem(mem_map, mem->name, mem->type,
1198 			     mem->addr, mem->size);
1199 	}
1200 
1201 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1202 		verify_special_mem_areas(mem_map, phys_sdp_mem_begin,
1203 					 phys_sdp_mem_end, "SDP");
1204 
1205 	add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE);
1206 	add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE);
1207 }
1208 
1209 static void assign_mem_granularity(struct memory_map *mem_map)
1210 {
1211 	size_t n = 0;
1212 
1213 	/*
1214 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1215 	 * SMALL_PAGE_SIZE.
1216 	 */
1217 	for  (n = 0; n < mem_map->count; n++) {
1218 		paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size;
1219 
1220 		if (mask & SMALL_PAGE_MASK)
1221 			panic("Impossible memory alignment");
1222 
1223 		if (map_is_tee_ram(mem_map->map + n))
1224 			mem_map->map[n].region_size = SMALL_PAGE_SIZE;
1225 		else
1226 			mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE;
1227 	}
1228 }
1229 
1230 static bool place_tee_ram_at_top(paddr_t paddr)
1231 {
1232 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1233 }
1234 
1235 /*
1236  * MMU arch driver shall override this function if it helps
1237  * optimizing the memory footprint of the address translation tables.
1238  */
1239 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1240 {
1241 	return place_tee_ram_at_top(paddr);
1242 }
1243 
1244 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map,
1245 			      bool tee_ram_at_top)
1246 {
1247 	struct tee_mmap_region *map = NULL;
1248 	vaddr_t va = 0;
1249 	bool va_is_secure = true;
1250 	size_t n = 0;
1251 
1252 	/*
1253 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1254 	 * 0 is by design an invalid va, so return false directly.
1255 	 */
1256 	if (!tee_ram_va)
1257 		return false;
1258 
1259 	/* Clear eventual previous assignments */
1260 	for (n = 0; n < mem_map->count; n++)
1261 		mem_map->map[n].va = 0;
1262 
1263 	/*
1264 	 * TEE RAM regions are always aligned with region_size.
1265 	 *
1266 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1267 	 * since it handles virtual memory which covers the part of the ELF
1268 	 * that cannot fit directly into memory.
1269 	 */
1270 	va = tee_ram_va + tee_ram_initial_offs;
1271 	for (n = 0; n < mem_map->count; n++) {
1272 		map = mem_map->map + n;
1273 		if (map_is_tee_ram(map) ||
1274 		    map->type == MEM_AREA_PAGER_VASPACE) {
1275 			assert(!(va & (map->region_size - 1)));
1276 			assert(!(map->size & (map->region_size - 1)));
1277 			map->va = va;
1278 			if (ADD_OVERFLOW(va, map->size, &va))
1279 				return false;
1280 			if (va >= BIT64(core_mmu_get_va_width()))
1281 				return false;
1282 		}
1283 	}
1284 
1285 	if (tee_ram_at_top) {
1286 		/*
1287 		 * Map non-tee ram regions at addresses lower than the tee
1288 		 * ram region.
1289 		 */
1290 		va = tee_ram_va;
1291 		for (n = 0; n < mem_map->count; n++) {
1292 			map = mem_map->map + n;
1293 			map->attr = core_mmu_type_to_attr(map->type);
1294 			if (map->va)
1295 				continue;
1296 
1297 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1298 			    va_is_secure != map_is_secure(map)) {
1299 				va_is_secure = !va_is_secure;
1300 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1301 			}
1302 
1303 			if (SUB_OVERFLOW(va, map->size, &va))
1304 				return false;
1305 			va = ROUNDDOWN2(va, map->region_size);
1306 			/*
1307 			 * Make sure that va is aligned with pa for
1308 			 * efficient pgdir mapping. Basically pa &
1309 			 * pgdir_mask should be == va & pgdir_mask
1310 			 */
1311 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1312 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1313 					return false;
1314 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1315 			}
1316 			map->va = va;
1317 		}
1318 	} else {
1319 		/*
1320 		 * Map non-tee ram regions at addresses higher than the tee
1321 		 * ram region.
1322 		 */
1323 		for (n = 0; n < mem_map->count; n++) {
1324 			map = mem_map->map + n;
1325 			map->attr = core_mmu_type_to_attr(map->type);
1326 			if (map->va)
1327 				continue;
1328 
1329 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1330 			    va_is_secure != map_is_secure(map)) {
1331 				va_is_secure = !va_is_secure;
1332 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1333 						     &va))
1334 					return false;
1335 			}
1336 
1337 			if (ROUNDUP2_OVERFLOW(va, map->region_size, &va))
1338 				return false;
1339 			/*
1340 			 * Make sure that va is aligned with pa for
1341 			 * efficient pgdir mapping. Basically pa &
1342 			 * pgdir_mask should be == va & pgdir_mask
1343 			 */
1344 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1345 				vaddr_t offs = (map->pa - va) &
1346 					       CORE_MMU_PGDIR_MASK;
1347 
1348 				if (ADD_OVERFLOW(va, offs, &va))
1349 					return false;
1350 			}
1351 
1352 			map->va = va;
1353 			if (ADD_OVERFLOW(va, map->size, &va))
1354 				return false;
1355 			if (va >= BIT64(core_mmu_get_va_width()))
1356 				return false;
1357 		}
1358 	}
1359 
1360 	return true;
1361 }
1362 
1363 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map)
1364 {
1365 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1366 
1367 	/*
1368 	 * Check that we're not overlapping with the user VA range.
1369 	 */
1370 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1371 		/*
1372 		 * User VA range is supposed to be defined after these
1373 		 * mappings have been established.
1374 		 */
1375 		assert(!core_mmu_user_va_range_is_defined());
1376 	} else {
1377 		vaddr_t user_va_base = 0;
1378 		size_t user_va_size = 0;
1379 
1380 		assert(core_mmu_user_va_range_is_defined());
1381 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1382 		if (tee_ram_va < (user_va_base + user_va_size))
1383 			return false;
1384 	}
1385 
1386 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1387 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1388 
1389 		/* Try whole mapping covered by a single base xlat entry */
1390 		if (prefered_dir != tee_ram_at_top &&
1391 		    assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir))
1392 			return true;
1393 	}
1394 
1395 	return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top);
1396 }
1397 
1398 static int cmp_init_mem_map(const void *a, const void *b)
1399 {
1400 	const struct tee_mmap_region *mm_a = a;
1401 	const struct tee_mmap_region *mm_b = b;
1402 	int rc = 0;
1403 
1404 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1405 	if (!rc)
1406 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1407 	/*
1408 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1409 	 * the same level2 table. Hence sort secure mapping from non-secure
1410 	 * mapping.
1411 	 */
1412 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1413 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1414 
1415 	return rc;
1416 }
1417 
1418 static bool mem_map_add_id_map(struct memory_map *mem_map,
1419 			       vaddr_t id_map_start, vaddr_t id_map_end)
1420 {
1421 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1422 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1423 	size_t len = end - start;
1424 	size_t n = 0;
1425 
1426 
1427 	for (n = 0; n < mem_map->count; n++)
1428 		if (core_is_buffer_intersect(mem_map->map[n].va,
1429 					     mem_map->map[n].size, start, len))
1430 			return false;
1431 
1432 	grow_mem_map(mem_map);
1433 	mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){
1434 		.type = MEM_AREA_IDENTITY_MAP_RX,
1435 		/*
1436 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1437 		 * translation table, at the increased risk of clashes with
1438 		 * the rest of the memory map.
1439 		 */
1440 		.region_size = SMALL_PAGE_SIZE,
1441 		.pa = start,
1442 		.va = start,
1443 		.size = len,
1444 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1445 	};
1446 
1447 	return true;
1448 }
1449 
1450 static struct memory_map *init_mem_map(struct memory_map *mem_map,
1451 				       unsigned long seed,
1452 				       unsigned long *ret_offs)
1453 {
1454 	/*
1455 	 * @id_map_start and @id_map_end describes a physical memory range
1456 	 * that must be mapped Read-Only eXecutable at identical virtual
1457 	 * addresses.
1458 	 */
1459 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1460 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1461 	vaddr_t start_addr = secure_only[0].paddr;
1462 	unsigned long offs = 0;
1463 
1464 	collect_mem_ranges(mem_map);
1465 	assign_mem_granularity(mem_map);
1466 
1467 	/*
1468 	 * To ease mapping and lower use of xlat tables, sort mapping
1469 	 * description moving small-page regions after the pgdir regions.
1470 	 */
1471 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1472 	      cmp_init_mem_map);
1473 
1474 	if (IS_ENABLED(CFG_WITH_PAGER))
1475 		add_pager_vaspace(mem_map);
1476 
1477 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1478 		vaddr_t base_addr = start_addr + seed;
1479 		const unsigned int va_width = core_mmu_get_va_width();
1480 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1481 						   SMALL_PAGE_SHIFT);
1482 		vaddr_t ba = base_addr;
1483 		size_t n = 0;
1484 
1485 		for (n = 0; n < 3; n++) {
1486 			if (n)
1487 				ba = base_addr ^ BIT64(va_width - n);
1488 			ba &= va_mask;
1489 			if (assign_mem_va(ba, mem_map) &&
1490 			    mem_map_add_id_map(mem_map, id_map_start,
1491 					       id_map_end)) {
1492 				offs = ba - start_addr;
1493 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1494 				     ba, offs);
1495 				goto out;
1496 			} else {
1497 				DMSG("Failed to map core at %#"PRIxVA, ba);
1498 			}
1499 		}
1500 		EMSG("Failed to map core with seed %#lx", seed);
1501 	}
1502 
1503 	if (!assign_mem_va(start_addr, mem_map))
1504 		panic();
1505 
1506 out:
1507 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1508 	      cmp_mmap_by_lower_va);
1509 
1510 	dump_mmap_table(mem_map);
1511 
1512 	*ret_offs = offs;
1513 	return mem_map;
1514 }
1515 
1516 static void check_mem_map(struct memory_map *mem_map)
1517 {
1518 	struct tee_mmap_region *m = NULL;
1519 	size_t n = 0;
1520 
1521 	for (n = 0; n < mem_map->count; n++) {
1522 		m = mem_map->map + n;
1523 		switch (m->type) {
1524 		case MEM_AREA_TEE_RAM:
1525 		case MEM_AREA_TEE_RAM_RX:
1526 		case MEM_AREA_TEE_RAM_RO:
1527 		case MEM_AREA_TEE_RAM_RW:
1528 		case MEM_AREA_INIT_RAM_RX:
1529 		case MEM_AREA_INIT_RAM_RO:
1530 		case MEM_AREA_NEX_RAM_RW:
1531 		case MEM_AREA_NEX_RAM_RO:
1532 		case MEM_AREA_IDENTITY_MAP_RX:
1533 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1534 				panic("TEE_RAM can't fit in secure_only");
1535 			break;
1536 		case MEM_AREA_SEC_RAM_OVERALL:
1537 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1538 				panic("SEC_RAM_OVERALL can't fit in secure_only");
1539 			break;
1540 		case MEM_AREA_NSEC_SHM:
1541 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1542 				panic("NS_SHM can't fit in nsec_shared");
1543 			break;
1544 		case MEM_AREA_TEE_COHERENT:
1545 		case MEM_AREA_TEE_ASAN:
1546 		case MEM_AREA_IO_SEC:
1547 		case MEM_AREA_IO_NSEC:
1548 		case MEM_AREA_EXT_DT:
1549 		case MEM_AREA_MANIFEST_DT:
1550 		case MEM_AREA_TRANSFER_LIST:
1551 		case MEM_AREA_RAM_SEC:
1552 		case MEM_AREA_RAM_NSEC:
1553 		case MEM_AREA_ROM_SEC:
1554 		case MEM_AREA_RES_VASPACE:
1555 		case MEM_AREA_SHM_VASPACE:
1556 		case MEM_AREA_PAGER_VASPACE:
1557 			break;
1558 		default:
1559 			EMSG("Uhandled memtype %d", m->type);
1560 			panic();
1561 		}
1562 	}
1563 }
1564 
1565 /*
1566  * core_init_mmu_map() - init tee core default memory mapping
1567  *
1568  * This routine sets the static default TEE core mapping. If @seed is > 0
1569  * and configured with CFG_CORE_ASLR it will map tee core at a location
1570  * based on the seed and return the offset from the link address.
1571  *
1572  * If an error happened: core_init_mmu_map is expected to panic.
1573  *
1574  * Note: this function is weak just to make it possible to exclude it from
1575  * the unpaged area.
1576  */
1577 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1578 {
1579 #ifndef CFG_NS_VIRTUALIZATION
1580 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1581 #else
1582 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1583 				  SMALL_PAGE_SIZE);
1584 #endif
1585 #ifdef CFG_DYN_CONFIG
1586 	vaddr_t len = ROUNDUP(VCORE_FREE_END_PA, SMALL_PAGE_SIZE) - start;
1587 #else
1588 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1589 #endif
1590 	struct tee_mmap_region tmp_mmap_region = { };
1591 	struct memory_map mem_map = { };
1592 	unsigned long offs = 0;
1593 
1594 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1595 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1596 		panic("OP-TEE load address is not page aligned");
1597 
1598 	check_sec_nsec_mem_config();
1599 
1600 	mem_map.alloc_count = CFG_MMAP_REGIONS;
1601 	mem_map.map = boot_mem_alloc_tmp(mem_map.alloc_count *
1602 						sizeof(*mem_map.map),
1603 					 alignof(*mem_map.map));
1604 	memory_map_realloc_func = boot_mem_realloc_memory_map;
1605 
1606 	static_memory_map = (struct memory_map){
1607 		.map = &tmp_mmap_region,
1608 		.alloc_count = 1,
1609 		.count = 1,
1610 	};
1611 	/*
1612 	 * Add a entry covering the translation tables which will be
1613 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1614 	 */
1615 	static_memory_map.map[0] = (struct tee_mmap_region){
1616 		.type = MEM_AREA_TEE_RAM,
1617 		.region_size = SMALL_PAGE_SIZE,
1618 		.pa = start,
1619 		.va = start,
1620 		.size = len,
1621 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1622 	};
1623 
1624 	init_mem_map(&mem_map, seed, &offs);
1625 
1626 	check_mem_map(&mem_map);
1627 	core_init_mmu(&mem_map);
1628 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1629 	core_init_mmu_regs(cfg);
1630 	cfg->map_offset = offs;
1631 	static_memory_map = mem_map;
1632 	boot_mem_add_reloc(&static_memory_map.map);
1633 }
1634 
1635 void core_mmu_save_mem_map(void)
1636 {
1637 	size_t alloc_count = static_memory_map.count + 5;
1638 	size_t elem_sz = sizeof(*static_memory_map.map);
1639 	void *p = NULL;
1640 
1641 	p = nex_calloc(alloc_count, elem_sz);
1642 	if (!p)
1643 		panic();
1644 	memcpy(p, static_memory_map.map, static_memory_map.count * elem_sz);
1645 	static_memory_map.map = p;
1646 	static_memory_map.alloc_count = alloc_count;
1647 	memory_map_realloc_func = heap_realloc_memory_map;
1648 }
1649 
1650 bool core_mmu_mattr_is_ok(uint32_t mattr)
1651 {
1652 	/*
1653 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1654 	 * core_mmu_v7.c:mattr_to_texcb
1655 	 */
1656 
1657 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1658 	case TEE_MATTR_MEM_TYPE_DEV:
1659 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1660 	case TEE_MATTR_MEM_TYPE_CACHED:
1661 	case TEE_MATTR_MEM_TYPE_TAGGED:
1662 		return true;
1663 	default:
1664 		return false;
1665 	}
1666 }
1667 
1668 /*
1669  * test attributes of target physical buffer
1670  *
1671  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1672  *
1673  */
1674 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1675 {
1676 	struct tee_mmap_region *map;
1677 
1678 	/* Empty buffers complies with anything */
1679 	if (len == 0)
1680 		return true;
1681 
1682 	switch (attr) {
1683 	case CORE_MEM_SEC:
1684 		return pbuf_is_inside(secure_only, pbuf, len);
1685 	case CORE_MEM_NON_SEC:
1686 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1687 			pbuf_is_nsec_ddr(pbuf, len);
1688 	case CORE_MEM_TEE_RAM:
1689 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1690 							TEE_RAM_PH_SIZE);
1691 #ifdef CFG_CORE_RESERVED_SHM
1692 	case CORE_MEM_NSEC_SHM:
1693 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1694 							TEE_SHMEM_SIZE);
1695 #endif
1696 	case CORE_MEM_SDP_MEM:
1697 		return pbuf_is_sdp_mem(pbuf, len);
1698 	case CORE_MEM_CACHED:
1699 		map = find_map_by_pa(pbuf);
1700 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1701 			return false;
1702 		return mattr_is_cached(map->attr);
1703 	default:
1704 		return false;
1705 	}
1706 }
1707 
1708 /* test attributes of target virtual buffer (in core mapping) */
1709 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1710 {
1711 	paddr_t p;
1712 
1713 	/* Empty buffers complies with anything */
1714 	if (len == 0)
1715 		return true;
1716 
1717 	p = virt_to_phys((void *)vbuf);
1718 	if (!p)
1719 		return false;
1720 
1721 	return core_pbuf_is(attr, p, len);
1722 }
1723 
1724 /* core_va2pa - teecore exported service */
1725 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1726 {
1727 	struct tee_mmap_region *map;
1728 
1729 	map = find_map_by_va(va);
1730 	if (!va_is_in_map(map, (vaddr_t)va))
1731 		return -1;
1732 
1733 	/*
1734 	 * We can calculate PA for static map. Virtual address ranges
1735 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1736 	 * together with an invalid null physical address.
1737 	 */
1738 	if (map->pa)
1739 		*pa = map->pa + (vaddr_t)va  - map->va;
1740 	else
1741 		*pa = 0;
1742 
1743 	return 0;
1744 }
1745 
1746 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1747 {
1748 	if (!pa_is_in_map(map, pa, len))
1749 		return NULL;
1750 
1751 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1752 }
1753 
1754 /*
1755  * teecore gets some memory area definitions
1756  */
1757 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1758 			      vaddr_t *e)
1759 {
1760 	struct tee_mmap_region *map = find_map_by_type(type);
1761 
1762 	if (map) {
1763 		*s = map->va;
1764 		*e = map->va + map->size;
1765 	} else {
1766 		*s = 0;
1767 		*e = 0;
1768 	}
1769 }
1770 
1771 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1772 {
1773 	struct tee_mmap_region *map = find_map_by_pa(pa);
1774 
1775 	if (!map)
1776 		return MEM_AREA_MAXTYPE;
1777 	return map->type;
1778 }
1779 
1780 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1781 			paddr_t pa, uint32_t attr)
1782 {
1783 	assert(idx < tbl_info->num_entries);
1784 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1785 				     idx, pa, attr);
1786 }
1787 
1788 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1789 			paddr_t *pa, uint32_t *attr)
1790 {
1791 	assert(idx < tbl_info->num_entries);
1792 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1793 				     idx, pa, attr);
1794 }
1795 
1796 static void clear_region(struct core_mmu_table_info *tbl_info,
1797 			 struct tee_mmap_region *region)
1798 {
1799 	unsigned int end = 0;
1800 	unsigned int idx = 0;
1801 
1802 	/* va, len and pa should be block aligned */
1803 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1804 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1805 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1806 
1807 	idx = core_mmu_va2idx(tbl_info, region->va);
1808 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1809 
1810 	while (idx < end) {
1811 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1812 		idx++;
1813 	}
1814 }
1815 
1816 static void set_region(struct core_mmu_table_info *tbl_info,
1817 		       struct tee_mmap_region *region)
1818 {
1819 	unsigned int end;
1820 	unsigned int idx;
1821 	paddr_t pa;
1822 
1823 	/* va, len and pa should be block aligned */
1824 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1825 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1826 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1827 
1828 	idx = core_mmu_va2idx(tbl_info, region->va);
1829 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1830 	pa = region->pa;
1831 
1832 	while (idx < end) {
1833 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1834 		idx++;
1835 		pa += BIT64(tbl_info->shift);
1836 	}
1837 }
1838 
1839 static void set_pg_region(struct core_mmu_table_info *dir_info,
1840 			  struct vm_region *region, struct pgt **pgt,
1841 			  struct core_mmu_table_info *pg_info)
1842 {
1843 	struct tee_mmap_region r = {
1844 		.va = region->va,
1845 		.size = region->size,
1846 		.attr = region->attr,
1847 	};
1848 	vaddr_t end = r.va + r.size;
1849 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1850 
1851 	while (r.va < end) {
1852 		if (!pg_info->table ||
1853 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1854 			/*
1855 			 * We're assigning a new translation table.
1856 			 */
1857 			unsigned int idx;
1858 
1859 			/* Virtual addresses must grow */
1860 			assert(r.va > pg_info->va_base);
1861 
1862 			idx = core_mmu_va2idx(dir_info, r.va);
1863 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1864 
1865 			/*
1866 			 * Advance pgt to va_base, note that we may need to
1867 			 * skip multiple page tables if there are large
1868 			 * holes in the vm map.
1869 			 */
1870 			while ((*pgt)->vabase < pg_info->va_base) {
1871 				*pgt = SLIST_NEXT(*pgt, link);
1872 				/* We should have allocated enough */
1873 				assert(*pgt);
1874 			}
1875 			assert((*pgt)->vabase == pg_info->va_base);
1876 			pg_info->table = (*pgt)->tbl;
1877 
1878 			core_mmu_set_entry(dir_info, idx,
1879 					   virt_to_phys(pg_info->table),
1880 					   pgt_attr);
1881 		}
1882 
1883 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1884 			     end - r.va);
1885 
1886 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1887 			size_t granule = BIT(pg_info->shift);
1888 			size_t offset = r.va - region->va + region->offset;
1889 
1890 			r.size = MIN(r.size,
1891 				     mobj_get_phys_granule(region->mobj));
1892 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1893 
1894 			if (mobj_get_pa(region->mobj, offset, granule,
1895 					&r.pa) != TEE_SUCCESS)
1896 				panic("Failed to get PA of unpaged mobj");
1897 			set_region(pg_info, &r);
1898 		}
1899 		r.va += r.size;
1900 	}
1901 }
1902 
1903 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1904 			     size_t size_left, paddr_t block_size,
1905 			     struct tee_mmap_region *mm)
1906 {
1907 	/* VA and PA are aligned to block size at current level */
1908 	if ((vaddr | paddr) & (block_size - 1))
1909 		return false;
1910 
1911 	/* Remainder fits into block at current level */
1912 	if (size_left < block_size)
1913 		return false;
1914 
1915 	/*
1916 	 * The required block size of the region is compatible with the
1917 	 * block size of the current level.
1918 	 */
1919 	if (mm->region_size < block_size)
1920 		return false;
1921 
1922 #ifdef CFG_WITH_PAGER
1923 	/*
1924 	 * If pager is enabled, we need to map TEE RAM and the whole pager
1925 	 * regions with small pages only
1926 	 */
1927 	if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) &&
1928 	    block_size != SMALL_PAGE_SIZE)
1929 		return false;
1930 #endif
1931 
1932 	return true;
1933 }
1934 
1935 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1936 {
1937 	struct core_mmu_table_info tbl_info;
1938 	unsigned int idx;
1939 	vaddr_t vaddr = mm->va;
1940 	paddr_t paddr = mm->pa;
1941 	ssize_t size_left = mm->size;
1942 	unsigned int level;
1943 	bool table_found;
1944 	uint32_t old_attr;
1945 
1946 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1947 
1948 	while (size_left > 0) {
1949 		level = CORE_MMU_BASE_TABLE_LEVEL;
1950 
1951 		while (true) {
1952 			paddr_t block_size = 0;
1953 
1954 			assert(core_mmu_level_in_range(level));
1955 
1956 			table_found = core_mmu_find_table(prtn, vaddr, level,
1957 							  &tbl_info);
1958 			if (!table_found)
1959 				panic("can't find table for mapping");
1960 
1961 			block_size = BIT64(tbl_info.shift);
1962 
1963 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1964 			if (!can_map_at_level(paddr, vaddr, size_left,
1965 					      block_size, mm)) {
1966 				bool secure = mm->attr & TEE_MATTR_SECURE;
1967 
1968 				/*
1969 				 * This part of the region can't be mapped at
1970 				 * this level. Need to go deeper.
1971 				 */
1972 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1973 								     idx,
1974 								     secure))
1975 					panic("Can't divide MMU entry");
1976 				level = tbl_info.next_level;
1977 				continue;
1978 			}
1979 
1980 			/* We can map part of the region at current level */
1981 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1982 			if (old_attr)
1983 				panic("Page is already mapped");
1984 
1985 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1986 			/*
1987 			 * Dynamic vaspace regions don't have a physical
1988 			 * address initially but we need to allocate and
1989 			 * initialize the translation tables now for later
1990 			 * updates to work properly.
1991 			 */
1992 			if (paddr)
1993 				paddr += block_size;
1994 			vaddr += block_size;
1995 			size_left -= block_size;
1996 
1997 			break;
1998 		}
1999 	}
2000 }
2001 
2002 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
2003 			      enum teecore_memtypes memtype)
2004 {
2005 	TEE_Result ret;
2006 	struct core_mmu_table_info tbl_info;
2007 	struct tee_mmap_region *mm;
2008 	unsigned int idx;
2009 	uint32_t old_attr;
2010 	uint32_t exceptions;
2011 	vaddr_t vaddr = vstart;
2012 	size_t i;
2013 	bool secure;
2014 
2015 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
2016 
2017 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
2018 
2019 	if (vaddr & SMALL_PAGE_MASK)
2020 		return TEE_ERROR_BAD_PARAMETERS;
2021 
2022 	exceptions = mmu_lock();
2023 
2024 	mm = find_map_by_va((void *)vaddr);
2025 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
2026 		panic("VA does not belong to any known mm region");
2027 
2028 	if (!core_mmu_is_dynamic_vaspace(mm))
2029 		panic("Trying to map into static region");
2030 
2031 	for (i = 0; i < num_pages; i++) {
2032 		if (pages[i] & SMALL_PAGE_MASK) {
2033 			ret = TEE_ERROR_BAD_PARAMETERS;
2034 			goto err;
2035 		}
2036 
2037 		while (true) {
2038 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
2039 						 &tbl_info))
2040 				panic("Can't find pagetable for vaddr ");
2041 
2042 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2043 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
2044 				break;
2045 
2046 			/* This is supertable. Need to divide it. */
2047 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
2048 							     secure))
2049 				panic("Failed to spread pgdir on small tables");
2050 		}
2051 
2052 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2053 		if (old_attr)
2054 			panic("Page is already mapped");
2055 
2056 		core_mmu_set_entry(&tbl_info, idx, pages[i],
2057 				   core_mmu_type_to_attr(memtype));
2058 		vaddr += SMALL_PAGE_SIZE;
2059 	}
2060 
2061 	/*
2062 	 * Make sure all the changes to translation tables are visible
2063 	 * before returning. TLB doesn't need to be invalidated as we are
2064 	 * guaranteed that there's no valid mapping in this range.
2065 	 */
2066 	core_mmu_table_write_barrier();
2067 	mmu_unlock(exceptions);
2068 
2069 	return TEE_SUCCESS;
2070 err:
2071 	mmu_unlock(exceptions);
2072 
2073 	if (i)
2074 		core_mmu_unmap_pages(vstart, i);
2075 
2076 	return ret;
2077 }
2078 
2079 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
2080 					 size_t num_pages,
2081 					 enum teecore_memtypes memtype)
2082 {
2083 	struct core_mmu_table_info tbl_info = { };
2084 	struct tee_mmap_region *mm = NULL;
2085 	unsigned int idx = 0;
2086 	uint32_t old_attr = 0;
2087 	uint32_t exceptions = 0;
2088 	vaddr_t vaddr = vstart;
2089 	paddr_t paddr = pstart;
2090 	size_t i = 0;
2091 	bool secure = false;
2092 
2093 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
2094 
2095 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
2096 
2097 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
2098 		return TEE_ERROR_BAD_PARAMETERS;
2099 
2100 	exceptions = mmu_lock();
2101 
2102 	mm = find_map_by_va((void *)vaddr);
2103 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
2104 		panic("VA does not belong to any known mm region");
2105 
2106 	if (!core_mmu_is_dynamic_vaspace(mm))
2107 		panic("Trying to map into static region");
2108 
2109 	for (i = 0; i < num_pages; i++) {
2110 		while (true) {
2111 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
2112 						 &tbl_info))
2113 				panic("Can't find pagetable for vaddr ");
2114 
2115 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2116 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
2117 				break;
2118 
2119 			/* This is supertable. Need to divide it. */
2120 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
2121 							     secure))
2122 				panic("Failed to spread pgdir on small tables");
2123 		}
2124 
2125 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2126 		if (old_attr)
2127 			panic("Page is already mapped");
2128 
2129 		core_mmu_set_entry(&tbl_info, idx, paddr,
2130 				   core_mmu_type_to_attr(memtype));
2131 		paddr += SMALL_PAGE_SIZE;
2132 		vaddr += SMALL_PAGE_SIZE;
2133 	}
2134 
2135 	/*
2136 	 * Make sure all the changes to translation tables are visible
2137 	 * before returning. TLB doesn't need to be invalidated as we are
2138 	 * guaranteed that there's no valid mapping in this range.
2139 	 */
2140 	core_mmu_table_write_barrier();
2141 	mmu_unlock(exceptions);
2142 
2143 	return TEE_SUCCESS;
2144 }
2145 
2146 static bool mem_range_is_in_vcore_free(vaddr_t vstart, size_t num_pages)
2147 {
2148 	return core_is_buffer_inside(vstart, num_pages * SMALL_PAGE_SIZE,
2149 				     VCORE_FREE_PA, VCORE_FREE_SZ);
2150 }
2151 
2152 static void maybe_remove_from_mem_map(vaddr_t vstart, size_t num_pages)
2153 {
2154 	struct memory_map *mem_map = NULL;
2155 	struct tee_mmap_region *mm = NULL;
2156 	size_t idx = 0;
2157 	vaddr_t va = 0;
2158 
2159 	mm = find_map_by_va((void *)vstart);
2160 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
2161 		panic("VA does not belong to any known mm region");
2162 
2163 	if (core_mmu_is_dynamic_vaspace(mm))
2164 		return;
2165 
2166 	if (!mem_range_is_in_vcore_free(vstart, num_pages))
2167 		panic("Trying to unmap static region");
2168 
2169 	/*
2170 	 * We're going to remove a memory from the VCORE_FREE memory range.
2171 	 * Depending where the range is we may need to remove the matching
2172 	 * mm, peal of a bit from the start or end of the mm, or split it
2173 	 * into two with a whole in the middle.
2174 	 */
2175 
2176 	va = ROUNDDOWN(vstart, SMALL_PAGE_SIZE);
2177 	assert(mm->region_size == SMALL_PAGE_SIZE);
2178 
2179 	if (va == mm->va && mm->size == num_pages * SMALL_PAGE_SIZE) {
2180 		mem_map = get_memory_map();
2181 		idx = mm - mem_map->map;
2182 		assert(idx < mem_map->count);
2183 
2184 		rem_array_elem(mem_map->map, mem_map->count,
2185 			       sizeof(*mem_map->map), idx);
2186 		mem_map->count--;
2187 	} else if (va == mm->va) {
2188 		mm->va += num_pages * SMALL_PAGE_SIZE;
2189 		mm->pa += num_pages * SMALL_PAGE_SIZE;
2190 		mm->size -= num_pages * SMALL_PAGE_SIZE;
2191 	} else if (va + num_pages * SMALL_PAGE_SIZE == mm->va + mm->size) {
2192 		mm->size -= num_pages * SMALL_PAGE_SIZE;
2193 	} else {
2194 		struct tee_mmap_region m = *mm;
2195 
2196 		mem_map = get_memory_map();
2197 		idx = mm - mem_map->map;
2198 		assert(idx < mem_map->count);
2199 
2200 		mm->size = va - mm->va;
2201 		m.va += mm->size + num_pages * SMALL_PAGE_SIZE;
2202 		m.pa += mm->size + num_pages * SMALL_PAGE_SIZE;
2203 		m.size -= mm->size + num_pages * SMALL_PAGE_SIZE;
2204 		grow_mem_map(mem_map);
2205 		ins_array_elem(mem_map->map, mem_map->count,
2206 			       sizeof(*mem_map->map), idx + 1, &m);
2207 	}
2208 }
2209 
2210 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
2211 {
2212 	struct core_mmu_table_info tbl_info;
2213 	size_t i;
2214 	unsigned int idx;
2215 	uint32_t exceptions;
2216 
2217 	exceptions = mmu_lock();
2218 
2219 	maybe_remove_from_mem_map(vstart, num_pages);
2220 
2221 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
2222 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
2223 			panic("Can't find pagetable");
2224 
2225 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
2226 			panic("Invalid pagetable level");
2227 
2228 		idx = core_mmu_va2idx(&tbl_info, vstart);
2229 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
2230 	}
2231 	tlbi_all();
2232 
2233 	mmu_unlock(exceptions);
2234 }
2235 
2236 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
2237 				struct user_mode_ctx *uctx)
2238 {
2239 	struct core_mmu_table_info pg_info = { };
2240 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
2241 	struct pgt *pgt = NULL;
2242 	struct pgt *p = NULL;
2243 	struct vm_region *r = NULL;
2244 
2245 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
2246 		return; /* Nothing to map */
2247 
2248 	/*
2249 	 * Allocate all page tables in advance.
2250 	 */
2251 	pgt_get_all(uctx);
2252 	pgt = SLIST_FIRST(pgt_cache);
2253 
2254 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2255 
2256 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2257 		set_pg_region(dir_info, r, &pgt, &pg_info);
2258 	/* Record that the translation tables now are populated. */
2259 	SLIST_FOREACH(p, pgt_cache, link) {
2260 		p->populated = true;
2261 		if (p == pgt)
2262 			break;
2263 	}
2264 	assert(p == pgt);
2265 }
2266 
2267 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2268 				   size_t len)
2269 {
2270 	struct core_mmu_table_info tbl_info = { };
2271 	struct tee_mmap_region *res_map = NULL;
2272 	struct tee_mmap_region *map = NULL;
2273 	paddr_t pa = virt_to_phys(addr);
2274 	size_t granule = 0;
2275 	ptrdiff_t i = 0;
2276 	paddr_t p = 0;
2277 	size_t l = 0;
2278 
2279 	map = find_map_by_type_and_pa(type, pa, len);
2280 	if (!map)
2281 		return TEE_ERROR_GENERIC;
2282 
2283 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2284 	if (!res_map)
2285 		return TEE_ERROR_GENERIC;
2286 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2287 		return TEE_ERROR_GENERIC;
2288 	granule = BIT(tbl_info.shift);
2289 
2290 	if (map < static_memory_map.map ||
2291 	    map >= static_memory_map.map + static_memory_map.count)
2292 		return TEE_ERROR_GENERIC;
2293 	i = map - static_memory_map.map;
2294 
2295 	/* Check that we have a full match */
2296 	p = ROUNDDOWN2(pa, granule);
2297 	l = ROUNDUP2(len + pa - p, granule);
2298 	if (map->pa != p || map->size != l)
2299 		return TEE_ERROR_GENERIC;
2300 
2301 	clear_region(&tbl_info, map);
2302 	tlbi_all();
2303 
2304 	/* If possible remove the va range from res_map */
2305 	if (res_map->va - map->size == map->va) {
2306 		res_map->va -= map->size;
2307 		res_map->size += map->size;
2308 	}
2309 
2310 	/* Remove the entry. */
2311 	rem_array_elem(static_memory_map.map, static_memory_map.count,
2312 		       sizeof(*static_memory_map.map), i);
2313 	static_memory_map.count--;
2314 
2315 	return TEE_SUCCESS;
2316 }
2317 
2318 struct tee_mmap_region *
2319 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2320 {
2321 	struct memory_map *mem_map = get_memory_map();
2322 	struct tee_mmap_region *map_found = NULL;
2323 	size_t n = 0;
2324 
2325 	if (!len)
2326 		return NULL;
2327 
2328 	for (n = 0; n < mem_map->count; n++) {
2329 		if (mem_map->map[n].type != type)
2330 			continue;
2331 
2332 		if (map_found)
2333 			return NULL;
2334 
2335 		map_found = mem_map->map + n;
2336 	}
2337 
2338 	if (!map_found || map_found->size < len)
2339 		return NULL;
2340 
2341 	return map_found;
2342 }
2343 
2344 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2345 {
2346 	struct memory_map *mem_map = &static_memory_map;
2347 	struct core_mmu_table_info tbl_info = { };
2348 	struct tee_mmap_region *map = NULL;
2349 	size_t granule = 0;
2350 	paddr_t p = 0;
2351 	size_t l = 0;
2352 
2353 	if (!len)
2354 		return NULL;
2355 
2356 	if (!core_mmu_check_end_pa(addr, len))
2357 		return NULL;
2358 
2359 	/* Check if the memory is already mapped */
2360 	map = find_map_by_type_and_pa(type, addr, len);
2361 	if (map && pbuf_inside_map_area(addr, len, map))
2362 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2363 
2364 	/* Find the reserved va space used for late mappings */
2365 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2366 	if (!map)
2367 		return NULL;
2368 
2369 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2370 		return NULL;
2371 
2372 	granule = BIT64(tbl_info.shift);
2373 	p = ROUNDDOWN2(addr, granule);
2374 	l = ROUNDUP2(len + addr - p, granule);
2375 
2376 	/* Ban overflowing virtual addresses */
2377 	if (map->size < l)
2378 		return NULL;
2379 
2380 	/*
2381 	 * Something is wrong, we can't fit the va range into the selected
2382 	 * table. The reserved va range is possibly missaligned with
2383 	 * granule.
2384 	 */
2385 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2386 		return NULL;
2387 
2388 	if (static_memory_map.count >= static_memory_map.alloc_count)
2389 		return NULL;
2390 
2391 	mem_map->map[mem_map->count] = (struct tee_mmap_region){
2392 		.va = map->va,
2393 		.size = l,
2394 		.type = type,
2395 		.region_size = granule,
2396 		.attr = core_mmu_type_to_attr(type),
2397 		.pa = p,
2398 	};
2399 	map->va += l;
2400 	map->size -= l;
2401 	map = mem_map->map + mem_map->count;
2402 	mem_map->count++;
2403 
2404 	set_region(&tbl_info, map);
2405 
2406 	/* Make sure the new entry is visible before continuing. */
2407 	core_mmu_table_write_barrier();
2408 
2409 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2410 }
2411 
2412 #ifdef CFG_WITH_PAGER
2413 static vaddr_t get_linear_map_end_va(void)
2414 {
2415 	/* this is synced with the generic linker file kern.ld.S */
2416 	return (vaddr_t)__heap2_end;
2417 }
2418 
2419 static paddr_t get_linear_map_end_pa(void)
2420 {
2421 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2422 }
2423 #endif
2424 
2425 #if defined(CFG_TEE_CORE_DEBUG)
2426 static void check_pa_matches_va(void *va, paddr_t pa)
2427 {
2428 	TEE_Result res = TEE_ERROR_GENERIC;
2429 	vaddr_t v = (vaddr_t)va;
2430 	paddr_t p = 0;
2431 	struct core_mmu_table_info ti __maybe_unused = { };
2432 
2433 	if (core_mmu_user_va_range_is_defined()) {
2434 		vaddr_t user_va_base = 0;
2435 		size_t user_va_size = 0;
2436 
2437 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2438 		if (v >= user_va_base &&
2439 		    v <= (user_va_base - 1 + user_va_size)) {
2440 			if (!core_mmu_user_mapping_is_active()) {
2441 				if (pa)
2442 					panic("issue in linear address space");
2443 				return;
2444 			}
2445 
2446 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2447 				       va, &p);
2448 			if (res == TEE_ERROR_NOT_SUPPORTED)
2449 				return;
2450 			if (res == TEE_SUCCESS && pa != p)
2451 				panic("bad pa");
2452 			if (res != TEE_SUCCESS && pa)
2453 				panic("false pa");
2454 			return;
2455 		}
2456 	}
2457 #ifdef CFG_WITH_PAGER
2458 	if (is_unpaged(va)) {
2459 		if (v - boot_mmu_config.map_offset != pa)
2460 			panic("issue in linear address space");
2461 		return;
2462 	}
2463 
2464 	if (tee_pager_get_table_info(v, &ti)) {
2465 		uint32_t a;
2466 
2467 		/*
2468 		 * Lookups in the page table managed by the pager is
2469 		 * dangerous for addresses in the paged area as those pages
2470 		 * changes all the time. But some ranges are safe,
2471 		 * rw-locked areas when the page is populated for instance.
2472 		 */
2473 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2474 		if (a & TEE_MATTR_VALID_BLOCK) {
2475 			paddr_t mask = BIT64(ti.shift) - 1;
2476 
2477 			p |= v & mask;
2478 			if (pa != p)
2479 				panic();
2480 		} else {
2481 			if (pa)
2482 				panic();
2483 		}
2484 		return;
2485 	}
2486 #endif
2487 
2488 	if (!core_va2pa_helper(va, &p)) {
2489 		/* Verfiy only the static mapping (case non null phys addr) */
2490 		if (p && pa != p) {
2491 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2492 			     va, p, pa);
2493 			panic();
2494 		}
2495 	} else {
2496 		if (pa) {
2497 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2498 			panic();
2499 		}
2500 	}
2501 }
2502 #else
2503 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2504 {
2505 }
2506 #endif
2507 
2508 paddr_t virt_to_phys(void *va)
2509 {
2510 	paddr_t pa = 0;
2511 
2512 	if (!arch_va2pa_helper(va, &pa))
2513 		pa = 0;
2514 	check_pa_matches_va(memtag_strip_tag(va), pa);
2515 	return pa;
2516 }
2517 
2518 /*
2519  * Don't use check_va_matches_pa() for RISC-V, as its callee
2520  * arch_va2pa_helper() will call it eventually, this creates
2521  * indirect recursion and can lead to a stack overflow.
2522  * Moreover, if arch_va2pa_helper() returns true, it implies
2523  * the va2pa mapping is matched, no need to check it again.
2524  */
2525 #if defined(CFG_TEE_CORE_DEBUG) && !defined(__riscv)
2526 static void check_va_matches_pa(paddr_t pa, void *va)
2527 {
2528 	paddr_t p = 0;
2529 
2530 	if (!va)
2531 		return;
2532 
2533 	p = virt_to_phys(va);
2534 	if (p != pa) {
2535 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2536 		panic();
2537 	}
2538 }
2539 #else
2540 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2541 {
2542 }
2543 #endif
2544 
2545 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2546 {
2547 	if (!core_mmu_user_mapping_is_active())
2548 		return NULL;
2549 
2550 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2551 }
2552 
2553 #ifdef CFG_WITH_PAGER
2554 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2555 {
2556 	paddr_t end_pa = 0;
2557 
2558 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2559 		return NULL;
2560 
2561 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2562 		if (end_pa > get_linear_map_end_pa())
2563 			return NULL;
2564 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2565 	}
2566 
2567 	return tee_pager_phys_to_virt(pa, len);
2568 }
2569 #else
2570 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2571 {
2572 	struct tee_mmap_region *mmap = NULL;
2573 
2574 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2575 	if (!mmap)
2576 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2577 	if (!mmap)
2578 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2579 	if (!mmap)
2580 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2581 	if (!mmap)
2582 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2583 	if (!mmap)
2584 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2585 	/*
2586 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2587 	 * used with pager and not needed here.
2588 	 */
2589 	return map_pa2va(mmap, pa, len);
2590 }
2591 #endif
2592 
2593 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2594 {
2595 	void *va = NULL;
2596 
2597 	switch (m) {
2598 	case MEM_AREA_TS_VASPACE:
2599 		va = phys_to_virt_ts_vaspace(pa, len);
2600 		break;
2601 	case MEM_AREA_TEE_RAM:
2602 	case MEM_AREA_TEE_RAM_RX:
2603 	case MEM_AREA_TEE_RAM_RO:
2604 	case MEM_AREA_TEE_RAM_RW:
2605 	case MEM_AREA_NEX_RAM_RO:
2606 	case MEM_AREA_NEX_RAM_RW:
2607 		va = phys_to_virt_tee_ram(pa, len);
2608 		break;
2609 	case MEM_AREA_SHM_VASPACE:
2610 		/* Find VA from PA in dynamic SHM is not yet supported */
2611 		va = NULL;
2612 		break;
2613 	default:
2614 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2615 	}
2616 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2617 		check_va_matches_pa(pa, va);
2618 	return va;
2619 }
2620 
2621 void *phys_to_virt_io(paddr_t pa, size_t len)
2622 {
2623 	struct tee_mmap_region *map = NULL;
2624 	void *va = NULL;
2625 
2626 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2627 	if (!map)
2628 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2629 	if (!map)
2630 		return NULL;
2631 	va = map_pa2va(map, pa, len);
2632 	check_va_matches_pa(pa, va);
2633 	return va;
2634 }
2635 
2636 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2637 {
2638 	if (cpu_mmu_enabled())
2639 		return (vaddr_t)phys_to_virt(pa, type, len);
2640 
2641 	return (vaddr_t)pa;
2642 }
2643 
2644 #ifdef CFG_WITH_PAGER
2645 bool is_unpaged(const void *va)
2646 {
2647 	vaddr_t v = (vaddr_t)va;
2648 
2649 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2650 }
2651 #endif
2652 
2653 #ifdef CFG_NS_VIRTUALIZATION
2654 bool is_nexus(const void *va)
2655 {
2656 	vaddr_t v = (vaddr_t)va;
2657 
2658 	return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ;
2659 }
2660 #endif
2661 
2662 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2663 {
2664 	assert(p->pa);
2665 	if (cpu_mmu_enabled()) {
2666 		if (!p->va)
2667 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2668 		assert(p->va);
2669 		return p->va;
2670 	}
2671 	return p->pa;
2672 }
2673 
2674 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2675 {
2676 	assert(p->pa);
2677 	if (cpu_mmu_enabled()) {
2678 		if (!p->va)
2679 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2680 						      len);
2681 		assert(p->va);
2682 		return p->va;
2683 	}
2684 	return p->pa;
2685 }
2686 
2687 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2688 {
2689 	assert(p->pa);
2690 	if (cpu_mmu_enabled()) {
2691 		if (!p->va)
2692 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2693 						      len);
2694 		assert(p->va);
2695 		return p->va;
2696 	}
2697 	return p->pa;
2698 }
2699 
2700 #ifdef CFG_CORE_RESERVED_SHM
2701 static TEE_Result teecore_init_pub_ram(void)
2702 {
2703 	vaddr_t s = 0;
2704 	vaddr_t e = 0;
2705 
2706 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2707 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2708 
2709 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2710 		panic("invalid PUB RAM");
2711 
2712 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2713 	if (!tee_vbuf_is_non_sec(s, e - s))
2714 		panic("PUB RAM is not non-secure");
2715 
2716 #ifdef CFG_PL310
2717 	/* Allocate statically the l2cc mutex */
2718 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2719 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2720 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2721 #endif
2722 
2723 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2724 	default_nsec_shm_size = e - s;
2725 
2726 	return TEE_SUCCESS;
2727 }
2728 early_init(teecore_init_pub_ram);
2729 #endif /*CFG_CORE_RESERVED_SHM*/
2730 
2731 static void __maybe_unused carve_out_core_mem(paddr_t pa, paddr_t end_pa)
2732 {
2733 	tee_mm_entry_t *mm __maybe_unused = NULL;
2734 
2735 	DMSG("%#"PRIxPA" .. %#"PRIxPA, pa, end_pa);
2736 	mm = phys_mem_alloc2(pa, end_pa - pa);
2737 	assert(mm);
2738 }
2739 
2740 void core_mmu_init_phys_mem(void)
2741 {
2742 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
2743 		paddr_t b1 = 0;
2744 		paddr_size_t s1 = 0;
2745 
2746 		static_assert(ARRAY_SIZE(secure_only) <= 2);
2747 
2748 		if (ARRAY_SIZE(secure_only) == 2) {
2749 			b1 = secure_only[1].paddr;
2750 			s1 = secure_only[1].size;
2751 		}
2752 		virt_init_memory(&static_memory_map, secure_only[0].paddr,
2753 				 secure_only[0].size, b1, s1);
2754 	} else {
2755 #ifdef CFG_WITH_PAGER
2756 		/*
2757 		 * The pager uses all core memory so there's no need to add
2758 		 * it to the pool.
2759 		 */
2760 		static_assert(ARRAY_SIZE(secure_only) == 2);
2761 		phys_mem_init(0, 0, secure_only[1].paddr, secure_only[1].size);
2762 #else /*!CFG_WITH_PAGER*/
2763 		size_t align = BIT(CORE_MMU_USER_CODE_SHIFT);
2764 		paddr_t end_pa = 0;
2765 		size_t size = 0;
2766 		paddr_t ps = 0;
2767 		paddr_t pa = 0;
2768 
2769 		static_assert(ARRAY_SIZE(secure_only) <= 2);
2770 		if (ARRAY_SIZE(secure_only) == 2) {
2771 			ps = secure_only[1].paddr;
2772 			size = secure_only[1].size;
2773 		}
2774 		phys_mem_init(secure_only[0].paddr, secure_only[0].size,
2775 			      ps, size);
2776 
2777 		/*
2778 		 * The VCORE macros are relocatable so we need to translate
2779 		 * the addresses now that the MMU is enabled.
2780 		 */
2781 		end_pa = vaddr_to_phys(ROUNDUP2(VCORE_FREE_END_PA,
2782 						align) - 1) + 1;
2783 		/* Carve out the part used by OP-TEE core */
2784 		carve_out_core_mem(vaddr_to_phys(VCORE_UNPG_RX_PA), end_pa);
2785 		if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) {
2786 			pa = vaddr_to_phys(ROUNDUP2(ASAN_MAP_PA, align));
2787 			carve_out_core_mem(pa, pa + ASAN_MAP_SZ);
2788 		}
2789 
2790 		/* Carve out test SDP memory */
2791 #ifdef TEE_SDP_TEST_MEM_BASE
2792 		if (TEE_SDP_TEST_MEM_SIZE) {
2793 			pa = TEE_SDP_TEST_MEM_BASE;
2794 			carve_out_core_mem(pa, pa + TEE_SDP_TEST_MEM_SIZE);
2795 		}
2796 #endif
2797 #endif /*!CFG_WITH_PAGER*/
2798 	}
2799 }
2800