xref: /optee_os/core/mm/core_mmu.c (revision 3fc5c287a8e601842a65bf745382521b345b258f)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <mm/core_memprot.h>
22 #include <mm/core_mmu.h>
23 #include <mm/mobj.h>
24 #include <mm/pgt_cache.h>
25 #include <mm/tee_pager.h>
26 #include <mm/vm.h>
27 #include <platform_config.h>
28 #include <string.h>
29 #include <trace.h>
30 #include <util.h>
31 
32 #ifndef DEBUG_XLAT_TABLE
33 #define DEBUG_XLAT_TABLE 0
34 #endif
35 
36 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
37 
38 /*
39  * These variables are initialized before .bss is cleared. To avoid
40  * resetting them when .bss is cleared we're storing them in .data instead,
41  * even if they initially are zero.
42  */
43 
44 #ifdef CFG_CORE_RESERVED_SHM
45 /* Default NSec shared memory allocated from NSec world */
46 unsigned long default_nsec_shm_size __nex_bss;
47 unsigned long default_nsec_shm_paddr __nex_bss;
48 #endif
49 
50 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS
51 #ifdef CFG_CORE_ASLR
52 						+ 1
53 #endif
54 						+ 1] __nex_bss;
55 
56 /* Define the platform's memory layout. */
57 struct memaccess_area {
58 	paddr_t paddr;
59 	size_t size;
60 };
61 
62 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
63 
64 static struct memaccess_area secure_only[] __nex_data = {
65 #ifdef TRUSTED_SRAM_BASE
66 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
67 #endif
68 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
69 };
70 
71 static struct memaccess_area nsec_shared[] __nex_data = {
72 #ifdef CFG_CORE_RESERVED_SHM
73 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
74 #endif
75 };
76 
77 #if defined(CFG_SECURE_DATA_PATH)
78 static const char *tz_sdp_match = "linaro,secure-heap";
79 static struct memaccess_area sec_sdp;
80 #ifdef CFG_TEE_SDP_MEM_BASE
81 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
82 #endif
83 #ifdef TEE_SDP_TEST_MEM_BASE
84 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
85 #endif
86 #endif
87 
88 #ifdef CFG_CORE_RWDATA_NOEXEC
89 register_phys_mem_ul(MEM_AREA_TEE_RAM_RO, TEE_RAM_START,
90 		     VCORE_UNPG_RX_PA - TEE_RAM_START);
91 register_phys_mem_ul(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
92 		     VCORE_UNPG_RX_SZ_UNSAFE);
93 register_phys_mem_ul(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
94 		     VCORE_UNPG_RO_SZ_UNSAFE);
95 
96 #ifdef CFG_VIRTUALIZATION
97 register_phys_mem_ul(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
98 		     VCORE_UNPG_RW_SZ_UNSAFE);
99 register_phys_mem_ul(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
100 		     VCORE_NEX_RW_SZ_UNSAFE);
101 #else
102 register_phys_mem_ul(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
103 		     VCORE_UNPG_RW_SZ_UNSAFE);
104 #endif
105 
106 #ifdef CFG_WITH_PAGER
107 register_phys_mem_ul(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
108 		     VCORE_INIT_RX_SZ_UNSAFE);
109 register_phys_mem_ul(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
110 		     VCORE_INIT_RO_SZ_UNSAFE);
111 #endif /*CFG_WITH_PAGER*/
112 #else /*!CFG_CORE_RWDATA_NOEXEC*/
113 register_phys_mem(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
114 #endif /*!CFG_CORE_RWDATA_NOEXEC*/
115 
116 #ifdef CFG_VIRTUALIZATION
117 register_phys_mem(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
118 		  TRUSTED_DRAM_SIZE);
119 #endif
120 
121 #if defined(CFG_CORE_SANITIZE_KADDRESS) && defined(CFG_WITH_PAGER)
122 /* Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is disabled */
123 register_phys_mem_ul(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
124 #endif
125 
126 #ifndef CFG_VIRTUALIZATION
127 /* Every guest will have own TA RAM if virtualization support is enabled */
128 register_phys_mem(MEM_AREA_TA_RAM, TA_RAM_START, TA_RAM_SIZE);
129 #endif
130 #ifdef CFG_CORE_RESERVED_SHM
131 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
132 #endif
133 
134 static unsigned int mmu_spinlock;
135 
136 static uint32_t mmu_lock(void)
137 {
138 	return cpu_spin_lock_xsave(&mmu_spinlock);
139 }
140 
141 static void mmu_unlock(uint32_t exceptions)
142 {
143 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
144 }
145 
146 static struct tee_mmap_region *get_memory_map(void)
147 {
148 	if (IS_ENABLED(CFG_VIRTUALIZATION)) {
149 		struct tee_mmap_region *map = virt_get_memory_map();
150 
151 		if (map)
152 			return map;
153 	}
154 
155 	return static_memory_map;
156 }
157 
158 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
159 			     paddr_t pa, size_t size)
160 {
161 	size_t n;
162 
163 	for (n = 0; n < alen; n++)
164 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
165 			return true;
166 	return false;
167 }
168 
169 #define pbuf_intersects(a, pa, size) \
170 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
171 
172 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
173 			    paddr_t pa, size_t size)
174 {
175 	size_t n;
176 
177 	for (n = 0; n < alen; n++)
178 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
179 			return true;
180 	return false;
181 }
182 
183 #define pbuf_is_inside(a, pa, size) \
184 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
185 
186 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
187 {
188 	paddr_t end_pa = 0;
189 
190 	if (!map)
191 		return false;
192 
193 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
194 		return false;
195 
196 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
197 }
198 
199 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
200 {
201 	if (!map)
202 		return false;
203 	return (va >= map->va && va <= (map->va + map->size - 1));
204 }
205 
206 /* check if target buffer fits in a core default map area */
207 static bool pbuf_inside_map_area(unsigned long p, size_t l,
208 				 struct tee_mmap_region *map)
209 {
210 	return core_is_buffer_inside(p, l, map->pa, map->size);
211 }
212 
213 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
214 {
215 	struct tee_mmap_region *map;
216 
217 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++)
218 		if (map->type == type)
219 			return map;
220 	return NULL;
221 }
222 
223 static struct tee_mmap_region *
224 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
225 {
226 	struct tee_mmap_region *map;
227 
228 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
229 		if (map->type != type)
230 			continue;
231 		if (pa_is_in_map(map, pa, len))
232 			return map;
233 	}
234 	return NULL;
235 }
236 
237 static struct tee_mmap_region *find_map_by_va(void *va)
238 {
239 	struct tee_mmap_region *map = get_memory_map();
240 	unsigned long a = (unsigned long)va;
241 
242 	while (!core_mmap_is_end_of_table(map)) {
243 		if (a >= map->va && a <= (map->va - 1 + map->size))
244 			return map;
245 		map++;
246 	}
247 	return NULL;
248 }
249 
250 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
251 {
252 	struct tee_mmap_region *map = get_memory_map();
253 
254 	while (!core_mmap_is_end_of_table(map)) {
255 		if (pa >= map->pa && pa <= (map->pa + map->size - 1))
256 			return map;
257 		map++;
258 	}
259 	return NULL;
260 }
261 
262 #if defined(CFG_SECURE_DATA_PATH)
263 static bool dtb_get_sdp_region(void)
264 {
265 	void *fdt = NULL;
266 	int node = 0;
267 	int tmp_node = 0;
268 	paddr_t tmp_addr = 0;
269 	size_t tmp_size = 0;
270 
271 	if (!IS_ENABLED(CFG_EMBED_DTB))
272 		return false;
273 
274 	fdt = get_embedded_dt();
275 	if (!fdt)
276 		panic("No DTB found");
277 
278 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
279 	if (node < 0) {
280 		DMSG("No %s compatible node found", tz_sdp_match);
281 		return false;
282 	}
283 	tmp_node = node;
284 	while (tmp_node >= 0) {
285 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
286 							 tz_sdp_match);
287 		if (tmp_node >= 0)
288 			DMSG("Ignore SDP pool node %s, supports only 1 node",
289 			     fdt_get_name(fdt, tmp_node, NULL));
290 	}
291 
292 	tmp_addr = _fdt_reg_base_address(fdt, node);
293 	if (tmp_addr == DT_INFO_INVALID_REG) {
294 		EMSG("%s: Unable to get base addr from DT", tz_sdp_match);
295 		return false;
296 	}
297 
298 	tmp_size = _fdt_reg_size(fdt, node);
299 	if (tmp_size == DT_INFO_INVALID_REG_SIZE) {
300 		EMSG("%s: Unable to get size of base addr from DT",
301 		     tz_sdp_match);
302 		return false;
303 	}
304 
305 	sec_sdp.paddr = tmp_addr;
306 	sec_sdp.size = tmp_size;
307 
308 	return true;
309 }
310 #endif
311 
312 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
313 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
314 				const struct core_mmu_phys_mem *start,
315 				const struct core_mmu_phys_mem *end)
316 {
317 	const struct core_mmu_phys_mem *mem;
318 
319 	for (mem = start; mem < end; mem++) {
320 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
321 			return true;
322 	}
323 
324 	return false;
325 }
326 #endif
327 
328 #ifdef CFG_CORE_DYN_SHM
329 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
330 			       paddr_t pa, size_t size)
331 {
332 	struct core_mmu_phys_mem *m = *mem;
333 	size_t n = 0;
334 
335 	while (true) {
336 		if (n >= *nelems) {
337 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
338 			     pa, size);
339 			return;
340 		}
341 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
342 			break;
343 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
344 			panic();
345 		n++;
346 	}
347 
348 	if (pa == m[n].addr && size == m[n].size) {
349 		/* Remove this entry */
350 		(*nelems)--;
351 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
352 		m = nex_realloc(m, sizeof(*m) * *nelems);
353 		if (!m)
354 			panic();
355 		*mem = m;
356 	} else if (pa == m[n].addr) {
357 		m[n].addr += size;
358 		m[n].size -= size;
359 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
360 		m[n].size -= size;
361 	} else {
362 		/* Need to split the memory entry */
363 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
364 		if (!m)
365 			panic();
366 		*mem = m;
367 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
368 		(*nelems)++;
369 		m[n].size = pa - m[n].addr;
370 		m[n + 1].size -= size + m[n].size;
371 		m[n + 1].addr = pa + size;
372 	}
373 }
374 
375 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
376 				      size_t nelems,
377 				      struct tee_mmap_region *map)
378 {
379 	size_t n;
380 
381 	for (n = 0; n < nelems; n++) {
382 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
383 					    map->pa, map->size)) {
384 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
385 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
386 			     start[n].addr, start[n].size,
387 			     map->type, map->pa, map->size);
388 			panic();
389 		}
390 	}
391 }
392 
393 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
394 static size_t discovered_nsec_ddr_nelems __nex_bss;
395 
396 static int cmp_pmem_by_addr(const void *a, const void *b)
397 {
398 	const struct core_mmu_phys_mem *pmem_a = a;
399 	const struct core_mmu_phys_mem *pmem_b = b;
400 
401 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
402 }
403 
404 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
405 				      size_t nelems)
406 {
407 	struct core_mmu_phys_mem *m = start;
408 	size_t num_elems = nelems;
409 	struct tee_mmap_region *map = static_memory_map;
410 	const struct core_mmu_phys_mem __maybe_unused *pmem;
411 
412 	assert(!discovered_nsec_ddr_start);
413 	assert(m && num_elems);
414 
415 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
416 
417 	/*
418 	 * Non-secure shared memory and also secure data
419 	 * path memory are supposed to reside inside
420 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
421 	 * are used for a specific purpose make holes for
422 	 * those memory in the normal non-secure memory.
423 	 *
424 	 * This has to be done since for instance QEMU
425 	 * isn't aware of which memory range in the
426 	 * non-secure memory is used for NSEC_SHM.
427 	 */
428 
429 #ifdef CFG_SECURE_DATA_PATH
430 	if (dtb_get_sdp_region())
431 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
432 
433 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
434 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
435 #endif
436 
437 	carve_out_phys_mem(&m, &num_elems, TEE_RAM_START, TEE_RAM_PH_SIZE);
438 	carve_out_phys_mem(&m, &num_elems, TA_RAM_START, TA_RAM_SIZE);
439 
440 	for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) {
441 		switch (map->type) {
442 		case MEM_AREA_NSEC_SHM:
443 			carve_out_phys_mem(&m, &num_elems, map->pa, map->size);
444 			break;
445 		case MEM_AREA_EXT_DT:
446 		case MEM_AREA_RES_VASPACE:
447 		case MEM_AREA_SHM_VASPACE:
448 		case MEM_AREA_TS_VASPACE:
449 		case MEM_AREA_PAGER_VASPACE:
450 			break;
451 		default:
452 			check_phys_mem_is_outside(m, num_elems, map);
453 		}
454 	}
455 
456 	discovered_nsec_ddr_start = m;
457 	discovered_nsec_ddr_nelems = num_elems;
458 
459 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
460 				   m[num_elems - 1].size))
461 		panic();
462 }
463 
464 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
465 				    const struct core_mmu_phys_mem **end)
466 {
467 	if (!discovered_nsec_ddr_start)
468 		return false;
469 
470 	*start = discovered_nsec_ddr_start;
471 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
472 
473 	return true;
474 }
475 
476 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
477 {
478 	const struct core_mmu_phys_mem *start;
479 	const struct core_mmu_phys_mem *end;
480 
481 	if (!get_discovered_nsec_ddr(&start, &end))
482 		return false;
483 
484 	return pbuf_is_special_mem(pbuf, len, start, end);
485 }
486 
487 bool core_mmu_nsec_ddr_is_defined(void)
488 {
489 	const struct core_mmu_phys_mem *start;
490 	const struct core_mmu_phys_mem *end;
491 
492 	if (!get_discovered_nsec_ddr(&start, &end))
493 		return false;
494 
495 	return start != end;
496 }
497 #else
498 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
499 {
500 	return false;
501 }
502 #endif /*CFG_CORE_DYN_SHM*/
503 
504 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
505 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
506 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
507 
508 #ifdef CFG_SECURE_DATA_PATH
509 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
510 {
511 	bool is_sdp_mem = false;
512 
513 	if (sec_sdp.size)
514 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
515 						   sec_sdp.size);
516 
517 	if (!is_sdp_mem)
518 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
519 						 phys_sdp_mem_end);
520 
521 	return is_sdp_mem;
522 }
523 
524 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
525 {
526 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
527 					    CORE_MEM_SDP_MEM);
528 
529 	if (!mobj)
530 		panic("can't create SDP physical memory object");
531 
532 	return mobj;
533 }
534 
535 struct mobj **core_sdp_mem_create_mobjs(void)
536 {
537 	const struct core_mmu_phys_mem *mem = NULL;
538 	struct mobj **mobj_base = NULL;
539 	struct mobj **mobj = NULL;
540 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
541 
542 	if (sec_sdp.size)
543 		cnt++;
544 
545 	/* SDP mobjs table must end with a NULL entry */
546 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
547 	if (!mobj_base)
548 		panic("Out of memory");
549 
550 	mobj = mobj_base;
551 
552 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
553 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
554 
555 	if (sec_sdp.size)
556 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
557 
558 	return mobj_base;
559 }
560 
561 #else /* CFG_SECURE_DATA_PATH */
562 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
563 {
564 	return false;
565 }
566 
567 #endif /* CFG_SECURE_DATA_PATH */
568 
569 /* Check special memories comply with registered memories */
570 static void verify_special_mem_areas(struct tee_mmap_region *mem_map,
571 				     size_t len,
572 				     const struct core_mmu_phys_mem *start,
573 				     const struct core_mmu_phys_mem *end,
574 				     const char *area_name __maybe_unused)
575 {
576 	const struct core_mmu_phys_mem *mem;
577 	const struct core_mmu_phys_mem *mem2;
578 	struct tee_mmap_region *mmap;
579 	size_t n;
580 
581 	if (start == end) {
582 		DMSG("No %s memory area defined", area_name);
583 		return;
584 	}
585 
586 	for (mem = start; mem < end; mem++)
587 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
588 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
589 
590 	/* Check memories do not intersect each other */
591 	for (mem = start; mem + 1 < end; mem++) {
592 		for (mem2 = mem + 1; mem2 < end; mem2++) {
593 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
594 						     mem->addr, mem->size)) {
595 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
596 						   mem->addr, mem->size);
597 				panic("Special memory intersection");
598 			}
599 		}
600 	}
601 
602 	/*
603 	 * Check memories do not intersect any mapped memory.
604 	 * This is called before reserved VA space is loaded in mem_map.
605 	 */
606 	for (mem = start; mem < end; mem++) {
607 		for (mmap = mem_map, n = 0; n < len; mmap++, n++) {
608 			if (core_is_buffer_intersect(mem->addr, mem->size,
609 						     mmap->pa, mmap->size)) {
610 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
611 						   mmap->pa, mmap->size);
612 				panic("Special memory intersection");
613 			}
614 		}
615 	}
616 }
617 
618 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems,
619 			 const struct core_mmu_phys_mem *mem, size_t *last)
620 {
621 	size_t n = 0;
622 	paddr_t pa;
623 	paddr_size_t size;
624 
625 	/*
626 	 * If some ranges of memory of the same type do overlap
627 	 * each others they are coalesced into one entry. To help this
628 	 * added entries are sorted by increasing physical.
629 	 *
630 	 * Note that it's valid to have the same physical memory as several
631 	 * different memory types, for instance the same device memory
632 	 * mapped as both secure and non-secure. This will probably not
633 	 * happen often in practice.
634 	 */
635 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
636 	     mem->name, teecore_memtype_name(mem->type), mem->addr, mem->size);
637 	while (true) {
638 		if (n >= (num_elems - 1)) {
639 			EMSG("Out of entries (%zu) in memory_map", num_elems);
640 			panic();
641 		}
642 		if (n == *last)
643 			break;
644 		pa = memory_map[n].pa;
645 		size = memory_map[n].size;
646 		if (mem->type == memory_map[n].type &&
647 		    ((pa <= (mem->addr + (mem->size - 1))) &&
648 		    (mem->addr <= (pa + (size - 1))))) {
649 			DMSG("Physical mem map overlaps 0x%" PRIxPA, mem->addr);
650 			memory_map[n].pa = MIN(pa, mem->addr);
651 			memory_map[n].size = MAX(size, mem->size) +
652 					     (pa - memory_map[n].pa);
653 			return;
654 		}
655 		if (mem->type < memory_map[n].type ||
656 		    (mem->type == memory_map[n].type && mem->addr < pa))
657 			break; /* found the spot where to insert this memory */
658 		n++;
659 	}
660 
661 	memmove(memory_map + n + 1, memory_map + n,
662 		sizeof(struct tee_mmap_region) * (*last - n));
663 	(*last)++;
664 	memset(memory_map + n, 0, sizeof(memory_map[0]));
665 	memory_map[n].type = mem->type;
666 	memory_map[n].pa = mem->addr;
667 	memory_map[n].size = mem->size;
668 }
669 
670 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems,
671 			 enum teecore_memtypes type, size_t size, size_t *last)
672 {
673 	size_t n = 0;
674 
675 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
676 	while (true) {
677 		if (n >= (num_elems - 1)) {
678 			EMSG("Out of entries (%zu) in memory_map", num_elems);
679 			panic();
680 		}
681 		if (n == *last)
682 			break;
683 		if (type < memory_map[n].type)
684 			break;
685 		n++;
686 	}
687 
688 	memmove(memory_map + n + 1, memory_map + n,
689 		sizeof(struct tee_mmap_region) * (*last - n));
690 	(*last)++;
691 	memset(memory_map + n, 0, sizeof(memory_map[0]));
692 	memory_map[n].type = type;
693 	memory_map[n].size = size;
694 }
695 
696 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
697 {
698 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
699 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
700 				TEE_MATTR_MEM_TYPE_SHIFT;
701 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
702 				TEE_MATTR_MEM_TYPE_SHIFT;
703 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
704 				  TEE_MATTR_MEM_TYPE_SHIFT;
705 
706 	switch (t) {
707 	case MEM_AREA_TEE_RAM:
708 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
709 	case MEM_AREA_TEE_RAM_RX:
710 	case MEM_AREA_INIT_RAM_RX:
711 	case MEM_AREA_IDENTITY_MAP_RX:
712 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
713 	case MEM_AREA_TEE_RAM_RO:
714 	case MEM_AREA_INIT_RAM_RO:
715 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
716 	case MEM_AREA_TEE_RAM_RW:
717 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
718 	case MEM_AREA_NEX_RAM_RW:
719 	case MEM_AREA_TEE_ASAN:
720 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
721 	case MEM_AREA_TEE_COHERENT:
722 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
723 	case MEM_AREA_TA_RAM:
724 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
725 	case MEM_AREA_NSEC_SHM:
726 		return attr | TEE_MATTR_PRW | cached;
727 	case MEM_AREA_EXT_DT:
728 		/*
729 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
730 		 * tree as secure non-cached memory, otherwise, fall back to
731 		 * non-secure mapping.
732 		 */
733 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
734 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
735 			       noncache;
736 		fallthrough;
737 	case MEM_AREA_IO_NSEC:
738 		return attr | TEE_MATTR_PRW | noncache;
739 	case MEM_AREA_IO_SEC:
740 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
741 	case MEM_AREA_RAM_NSEC:
742 		return attr | TEE_MATTR_PRW | cached;
743 	case MEM_AREA_RAM_SEC:
744 	case MEM_AREA_SEC_RAM_OVERALL:
745 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
746 	case MEM_AREA_RES_VASPACE:
747 	case MEM_AREA_SHM_VASPACE:
748 		return 0;
749 	case MEM_AREA_PAGER_VASPACE:
750 		return TEE_MATTR_SECURE;
751 	default:
752 		panic("invalid type");
753 	}
754 }
755 
756 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
757 {
758 	switch (mm->type) {
759 	case MEM_AREA_TEE_RAM:
760 	case MEM_AREA_TEE_RAM_RX:
761 	case MEM_AREA_TEE_RAM_RO:
762 	case MEM_AREA_TEE_RAM_RW:
763 	case MEM_AREA_INIT_RAM_RX:
764 	case MEM_AREA_INIT_RAM_RO:
765 	case MEM_AREA_NEX_RAM_RW:
766 	case MEM_AREA_NEX_RAM_RO:
767 	case MEM_AREA_TEE_ASAN:
768 		return true;
769 	default:
770 		return false;
771 	}
772 }
773 
774 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
775 {
776 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
777 }
778 
779 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
780 {
781 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
782 }
783 
784 static int cmp_mmap_by_lower_va(const void *a, const void *b)
785 {
786 	const struct tee_mmap_region *mm_a = a;
787 	const struct tee_mmap_region *mm_b = b;
788 
789 	return CMP_TRILEAN(mm_a->va, mm_b->va);
790 }
791 
792 static void dump_mmap_table(struct tee_mmap_region *memory_map)
793 {
794 	struct tee_mmap_region *map;
795 
796 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
797 		vaddr_t __maybe_unused vstart;
798 
799 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
800 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
801 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
802 		     teecore_memtype_name(map->type), vstart,
803 		     vstart + map->size - 1, map->pa,
804 		     (paddr_t)(map->pa + map->size - 1), map->size,
805 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
806 	}
807 }
808 
809 #if DEBUG_XLAT_TABLE
810 
811 static void dump_xlat_table(vaddr_t va, unsigned int level)
812 {
813 	struct core_mmu_table_info tbl_info;
814 	unsigned int idx = 0;
815 	paddr_t pa;
816 	uint32_t attr;
817 
818 	core_mmu_find_table(NULL, va, level, &tbl_info);
819 	va = tbl_info.va_base;
820 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
821 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
822 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
823 			const char *security_bit = "";
824 
825 			if (core_mmu_entry_have_security_bit(attr)) {
826 				if (attr & TEE_MATTR_SECURE)
827 					security_bit = "S";
828 				else
829 					security_bit = "NS";
830 			}
831 
832 			if (attr & TEE_MATTR_TABLE) {
833 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
834 					" TBL:0x%010" PRIxPA " %s",
835 					level * 2, "", level, va, pa,
836 					security_bit);
837 				dump_xlat_table(va, level + 1);
838 			} else if (attr) {
839 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
840 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
841 					level * 2, "", level, va, pa,
842 					mattr_is_cached(attr) ? "MEM" :
843 					"DEV",
844 					attr & TEE_MATTR_PW ? "RW" : "RO",
845 					attr & TEE_MATTR_PX ? "X " : "XN",
846 					security_bit);
847 			} else {
848 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
849 					    " INVALID\n",
850 					    level * 2, "", level, va);
851 			}
852 		}
853 		va += BIT64(tbl_info.shift);
854 	}
855 }
856 
857 #else
858 
859 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
860 {
861 }
862 
863 #endif
864 
865 /*
866  * Reserves virtual memory space for pager usage.
867  *
868  * From the start of the first memory used by the link script +
869  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
870  * mapping for pager usage. This adds translation tables as needed for the
871  * pager to operate.
872  */
873 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems,
874 			      size_t *last)
875 {
876 	paddr_t begin = 0;
877 	paddr_t end = 0;
878 	size_t size = 0;
879 	size_t pos = 0;
880 	size_t n = 0;
881 
882 	if (*last >= (num_elems - 1)) {
883 		EMSG("Out of entries (%zu) in memory map", num_elems);
884 		panic();
885 	}
886 
887 	for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) {
888 		if (map_is_tee_ram(mmap + n)) {
889 			if (!begin)
890 				begin = mmap[n].pa;
891 			pos = n + 1;
892 		}
893 	}
894 
895 	end = mmap[pos - 1].pa + mmap[pos - 1].size;
896 	size = TEE_RAM_VA_SIZE - (end - begin);
897 	if (!size)
898 		return;
899 
900 	assert(pos <= *last);
901 	memmove(mmap + pos + 1, mmap + pos,
902 		sizeof(struct tee_mmap_region) * (*last - pos));
903 	(*last)++;
904 	memset(mmap + pos, 0, sizeof(mmap[0]));
905 	mmap[pos].type = MEM_AREA_PAGER_VASPACE;
906 	mmap[pos].va = 0;
907 	mmap[pos].size = size;
908 	mmap[pos].region_size = SMALL_PAGE_SIZE;
909 	mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE);
910 }
911 
912 static void check_sec_nsec_mem_config(void)
913 {
914 	size_t n = 0;
915 
916 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
917 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
918 				    secure_only[n].size))
919 			panic("Invalid memory access config: sec/nsec");
920 	}
921 }
922 
923 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map,
924 				 size_t num_elems)
925 {
926 	const struct core_mmu_phys_mem *mem = NULL;
927 	size_t last = 0;
928 
929 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
930 		struct core_mmu_phys_mem m = *mem;
931 
932 		/* Discard null size entries */
933 		if (!m.size)
934 			continue;
935 
936 		/* Only unmapped virtual range may have a null phys addr */
937 		assert(m.addr || !core_mmu_type_to_attr(m.type));
938 
939 		add_phys_mem(memory_map, num_elems, &m, &last);
940 	}
941 
942 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
943 		verify_special_mem_areas(memory_map, num_elems,
944 					 phys_sdp_mem_begin,
945 					 phys_sdp_mem_end, "SDP");
946 
947 	add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE,
948 		     CFG_RESERVED_VASPACE_SIZE, &last);
949 
950 	add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE,
951 		     SHM_VASPACE_SIZE, &last);
952 
953 	memory_map[last].type = MEM_AREA_END;
954 
955 	return last;
956 }
957 
958 static void assign_mem_granularity(struct tee_mmap_region *memory_map)
959 {
960 	struct tee_mmap_region *map = NULL;
961 
962 	/*
963 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
964 	 * SMALL_PAGE_SIZE.
965 	 */
966 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
967 		paddr_t mask = map->pa | map->size;
968 
969 		if (!(mask & CORE_MMU_PGDIR_MASK))
970 			map->region_size = CORE_MMU_PGDIR_SIZE;
971 		else if (!(mask & SMALL_PAGE_MASK))
972 			map->region_size = SMALL_PAGE_SIZE;
973 		else
974 			panic("Impossible memory alignment");
975 
976 		if (map_is_tee_ram(map))
977 			map->region_size = SMALL_PAGE_SIZE;
978 	}
979 }
980 
981 static bool place_tee_ram_at_top(paddr_t paddr)
982 {
983 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
984 }
985 
986 /*
987  * MMU arch driver shall override this function if it helps
988  * optimizing the memory footprint of the address translation tables.
989  */
990 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
991 {
992 	return place_tee_ram_at_top(paddr);
993 }
994 
995 static bool assign_mem_va_dir(vaddr_t tee_ram_va,
996 			      struct tee_mmap_region *memory_map,
997 			      bool tee_ram_at_top)
998 {
999 	struct tee_mmap_region *map = NULL;
1000 	vaddr_t va = 0;
1001 	bool va_is_secure = true;
1002 
1003 	/* Clear eventual previous assignments */
1004 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1005 		map->va = 0;
1006 
1007 	/*
1008 	 * TEE RAM regions are always aligned with region_size.
1009 	 *
1010 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1011 	 * since it handles virtual memory which covers the part of the ELF
1012 	 * that cannot fit directly into memory.
1013 	 */
1014 	va = tee_ram_va;
1015 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1016 		if (map_is_tee_ram(map) ||
1017 		    map->type == MEM_AREA_PAGER_VASPACE) {
1018 			assert(!(va & (map->region_size - 1)));
1019 			assert(!(map->size & (map->region_size - 1)));
1020 			map->va = va;
1021 			if (ADD_OVERFLOW(va, map->size, &va))
1022 				return false;
1023 			if (va >= BIT64(core_mmu_get_va_width()))
1024 				return false;
1025 		}
1026 	}
1027 
1028 	if (tee_ram_at_top) {
1029 		/*
1030 		 * Map non-tee ram regions at addresses lower than the tee
1031 		 * ram region.
1032 		 */
1033 		va = tee_ram_va;
1034 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1035 			map->attr = core_mmu_type_to_attr(map->type);
1036 			if (map->va)
1037 				continue;
1038 
1039 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1040 			    va_is_secure != map_is_secure(map)) {
1041 				va_is_secure = !va_is_secure;
1042 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1043 			}
1044 
1045 			if (SUB_OVERFLOW(va, map->size, &va))
1046 				return false;
1047 			va = ROUNDDOWN(va, map->region_size);
1048 			/*
1049 			 * Make sure that va is aligned with pa for
1050 			 * efficient pgdir mapping. Basically pa &
1051 			 * pgdir_mask should be == va & pgdir_mask
1052 			 */
1053 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1054 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1055 					return false;
1056 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1057 			}
1058 			map->va = va;
1059 		}
1060 	} else {
1061 		/*
1062 		 * Map non-tee ram regions at addresses higher than the tee
1063 		 * ram region.
1064 		 */
1065 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1066 			map->attr = core_mmu_type_to_attr(map->type);
1067 			if (map->va)
1068 				continue;
1069 
1070 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1071 			    va_is_secure != map_is_secure(map)) {
1072 				va_is_secure = !va_is_secure;
1073 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1074 						     &va))
1075 					return false;
1076 			}
1077 
1078 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1079 				return false;
1080 			/*
1081 			 * Make sure that va is aligned with pa for
1082 			 * efficient pgdir mapping. Basically pa &
1083 			 * pgdir_mask should be == va & pgdir_mask
1084 			 */
1085 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1086 				vaddr_t offs = (map->pa - va) &
1087 					       CORE_MMU_PGDIR_MASK;
1088 
1089 				if (ADD_OVERFLOW(va, offs, &va))
1090 					return false;
1091 			}
1092 
1093 			map->va = va;
1094 			if (ADD_OVERFLOW(va, map->size, &va))
1095 				return false;
1096 			if (va >= BIT64(core_mmu_get_va_width()))
1097 				return false;
1098 		}
1099 	}
1100 
1101 	return true;
1102 }
1103 
1104 static bool assign_mem_va(vaddr_t tee_ram_va,
1105 			  struct tee_mmap_region *memory_map)
1106 {
1107 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1108 
1109 	/*
1110 	 * Check that we're not overlapping with the user VA range.
1111 	 */
1112 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1113 		/*
1114 		 * User VA range is supposed to be defined after these
1115 		 * mappings have been established.
1116 		 */
1117 		assert(!core_mmu_user_va_range_is_defined());
1118 	} else {
1119 		vaddr_t user_va_base = 0;
1120 		size_t user_va_size = 0;
1121 
1122 		assert(core_mmu_user_va_range_is_defined());
1123 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1124 		if (tee_ram_va < (user_va_base + user_va_size))
1125 			return false;
1126 	}
1127 
1128 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1129 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1130 
1131 		/* Try whole mapping covered by a single base xlat entry */
1132 		if (prefered_dir != tee_ram_at_top &&
1133 		    assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir))
1134 			return true;
1135 	}
1136 
1137 	return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top);
1138 }
1139 
1140 static int cmp_init_mem_map(const void *a, const void *b)
1141 {
1142 	const struct tee_mmap_region *mm_a = a;
1143 	const struct tee_mmap_region *mm_b = b;
1144 	int rc = 0;
1145 
1146 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1147 	if (!rc)
1148 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1149 	/*
1150 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1151 	 * the same level2 table. Hence sort secure mapping from non-secure
1152 	 * mapping.
1153 	 */
1154 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1155 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1156 
1157 	return rc;
1158 }
1159 
1160 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map,
1161 			       size_t num_elems, size_t *last,
1162 			       vaddr_t id_map_start, vaddr_t id_map_end)
1163 {
1164 	struct tee_mmap_region *map = NULL;
1165 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1166 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1167 	size_t len = end - start;
1168 
1169 	if (*last >= num_elems - 1) {
1170 		EMSG("Out of entries (%zu) in memory map", num_elems);
1171 		panic();
1172 	}
1173 
1174 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1175 		if (core_is_buffer_intersect(map->va, map->size, start, len))
1176 			return false;
1177 
1178 	*map = (struct tee_mmap_region){
1179 		.type = MEM_AREA_IDENTITY_MAP_RX,
1180 		/*
1181 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1182 		 * translation table, at the increased risk of clashes with
1183 		 * the rest of the memory map.
1184 		 */
1185 		.region_size = SMALL_PAGE_SIZE,
1186 		.pa = start,
1187 		.va = start,
1188 		.size = len,
1189 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1190 	};
1191 
1192 	(*last)++;
1193 
1194 	return true;
1195 }
1196 
1197 static unsigned long init_mem_map(struct tee_mmap_region *memory_map,
1198 				  size_t num_elems, unsigned long seed)
1199 {
1200 	/*
1201 	 * @id_map_start and @id_map_end describes a physical memory range
1202 	 * that must be mapped Read-Only eXecutable at identical virtual
1203 	 * addresses.
1204 	 */
1205 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1206 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1207 	unsigned long offs = 0;
1208 	size_t last = 0;
1209 
1210 	last = collect_mem_ranges(memory_map, num_elems);
1211 	assign_mem_granularity(memory_map);
1212 
1213 	/*
1214 	 * To ease mapping and lower use of xlat tables, sort mapping
1215 	 * description moving small-page regions after the pgdir regions.
1216 	 */
1217 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1218 	      cmp_init_mem_map);
1219 
1220 	add_pager_vaspace(memory_map, num_elems, &last);
1221 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1222 		vaddr_t base_addr = TEE_RAM_START + seed;
1223 		const unsigned int va_width = core_mmu_get_va_width();
1224 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1225 						   SMALL_PAGE_SHIFT);
1226 		vaddr_t ba = base_addr;
1227 		size_t n = 0;
1228 
1229 		for (n = 0; n < 3; n++) {
1230 			if (n)
1231 				ba = base_addr ^ BIT64(va_width - n);
1232 			ba &= va_mask;
1233 			if (assign_mem_va(ba, memory_map) &&
1234 			    mem_map_add_id_map(memory_map, num_elems, &last,
1235 					       id_map_start, id_map_end)) {
1236 				offs = ba - TEE_RAM_START;
1237 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1238 				     ba, offs);
1239 				goto out;
1240 			} else {
1241 				DMSG("Failed to map core at %#"PRIxVA, ba);
1242 			}
1243 		}
1244 		EMSG("Failed to map core with seed %#lx", seed);
1245 	}
1246 
1247 	if (!assign_mem_va(TEE_RAM_START, memory_map))
1248 		panic();
1249 
1250 out:
1251 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1252 	      cmp_mmap_by_lower_va);
1253 
1254 	dump_mmap_table(memory_map);
1255 
1256 	return offs;
1257 }
1258 
1259 static void check_mem_map(struct tee_mmap_region *map)
1260 {
1261 	struct tee_mmap_region *m = NULL;
1262 
1263 	for (m = map; !core_mmap_is_end_of_table(m); m++) {
1264 		switch (m->type) {
1265 		case MEM_AREA_TEE_RAM:
1266 		case MEM_AREA_TEE_RAM_RX:
1267 		case MEM_AREA_TEE_RAM_RO:
1268 		case MEM_AREA_TEE_RAM_RW:
1269 		case MEM_AREA_INIT_RAM_RX:
1270 		case MEM_AREA_INIT_RAM_RO:
1271 		case MEM_AREA_NEX_RAM_RW:
1272 		case MEM_AREA_NEX_RAM_RO:
1273 		case MEM_AREA_IDENTITY_MAP_RX:
1274 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1275 				panic("TEE_RAM can't fit in secure_only");
1276 			break;
1277 		case MEM_AREA_TA_RAM:
1278 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1279 				panic("TA_RAM can't fit in secure_only");
1280 			break;
1281 		case MEM_AREA_NSEC_SHM:
1282 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1283 				panic("NS_SHM can't fit in nsec_shared");
1284 			break;
1285 		case MEM_AREA_SEC_RAM_OVERALL:
1286 		case MEM_AREA_TEE_COHERENT:
1287 		case MEM_AREA_TEE_ASAN:
1288 		case MEM_AREA_IO_SEC:
1289 		case MEM_AREA_IO_NSEC:
1290 		case MEM_AREA_EXT_DT:
1291 		case MEM_AREA_RAM_SEC:
1292 		case MEM_AREA_RAM_NSEC:
1293 		case MEM_AREA_RES_VASPACE:
1294 		case MEM_AREA_SHM_VASPACE:
1295 		case MEM_AREA_PAGER_VASPACE:
1296 			break;
1297 		default:
1298 			EMSG("Uhandled memtype %d", m->type);
1299 			panic();
1300 		}
1301 	}
1302 }
1303 
1304 static struct tee_mmap_region *get_tmp_mmap(void)
1305 {
1306 	struct tee_mmap_region *tmp_mmap = (void *)__heap1_start;
1307 
1308 #ifdef CFG_WITH_PAGER
1309 	if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map))
1310 		tmp_mmap = (void *)__heap2_start;
1311 #endif
1312 
1313 	memset(tmp_mmap, 0, sizeof(static_memory_map));
1314 
1315 	return tmp_mmap;
1316 }
1317 
1318 /*
1319  * core_init_mmu_map() - init tee core default memory mapping
1320  *
1321  * This routine sets the static default TEE core mapping. If @seed is > 0
1322  * and configured with CFG_CORE_ASLR it will map tee core at a location
1323  * based on the seed and return the offset from the link address.
1324  *
1325  * If an error happened: core_init_mmu_map is expected to panic.
1326  *
1327  * Note: this function is weak just to make it possible to exclude it from
1328  * the unpaged area.
1329  */
1330 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1331 {
1332 #ifndef CFG_VIRTUALIZATION
1333 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1334 #else
1335 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1336 				  SMALL_PAGE_SIZE);
1337 #endif
1338 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1339 	struct tee_mmap_region *tmp_mmap = get_tmp_mmap();
1340 	unsigned long offs = 0;
1341 
1342 	check_sec_nsec_mem_config();
1343 
1344 	/*
1345 	 * Add a entry covering the translation tables which will be
1346 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1347 	 */
1348 	static_memory_map[0] = (struct tee_mmap_region){
1349 		.type = MEM_AREA_TEE_RAM,
1350 		.region_size = SMALL_PAGE_SIZE,
1351 		.pa = start,
1352 		.va = start,
1353 		.size = len,
1354 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1355 	};
1356 
1357 	COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13);
1358 	offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed);
1359 
1360 	check_mem_map(tmp_mmap);
1361 	core_init_mmu(tmp_mmap);
1362 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1363 	core_init_mmu_regs(cfg);
1364 	cfg->load_offset = offs;
1365 	memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map));
1366 }
1367 
1368 bool core_mmu_mattr_is_ok(uint32_t mattr)
1369 {
1370 	/*
1371 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1372 	 * core_mmu_v7.c:mattr_to_texcb
1373 	 */
1374 
1375 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1376 	case TEE_MATTR_MEM_TYPE_DEV:
1377 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1378 	case TEE_MATTR_MEM_TYPE_CACHED:
1379 	case TEE_MATTR_MEM_TYPE_TAGGED:
1380 		return true;
1381 	default:
1382 		return false;
1383 	}
1384 }
1385 
1386 /*
1387  * test attributes of target physical buffer
1388  *
1389  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1390  *
1391  */
1392 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1393 {
1394 	struct tee_mmap_region *map;
1395 
1396 	/* Empty buffers complies with anything */
1397 	if (len == 0)
1398 		return true;
1399 
1400 	switch (attr) {
1401 	case CORE_MEM_SEC:
1402 		return pbuf_is_inside(secure_only, pbuf, len);
1403 	case CORE_MEM_NON_SEC:
1404 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1405 			pbuf_is_nsec_ddr(pbuf, len);
1406 	case CORE_MEM_TEE_RAM:
1407 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1408 							TEE_RAM_PH_SIZE);
1409 	case CORE_MEM_TA_RAM:
1410 		return core_is_buffer_inside(pbuf, len, TA_RAM_START,
1411 							TA_RAM_SIZE);
1412 #ifdef CFG_CORE_RESERVED_SHM
1413 	case CORE_MEM_NSEC_SHM:
1414 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1415 							TEE_SHMEM_SIZE);
1416 #endif
1417 	case CORE_MEM_SDP_MEM:
1418 		return pbuf_is_sdp_mem(pbuf, len);
1419 	case CORE_MEM_CACHED:
1420 		map = find_map_by_pa(pbuf);
1421 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1422 			return false;
1423 		return mattr_is_cached(map->attr);
1424 	default:
1425 		return false;
1426 	}
1427 }
1428 
1429 /* test attributes of target virtual buffer (in core mapping) */
1430 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1431 {
1432 	paddr_t p;
1433 
1434 	/* Empty buffers complies with anything */
1435 	if (len == 0)
1436 		return true;
1437 
1438 	p = virt_to_phys((void *)vbuf);
1439 	if (!p)
1440 		return false;
1441 
1442 	return core_pbuf_is(attr, p, len);
1443 }
1444 
1445 /* core_va2pa - teecore exported service */
1446 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1447 {
1448 	struct tee_mmap_region *map;
1449 
1450 	map = find_map_by_va(va);
1451 	if (!va_is_in_map(map, (vaddr_t)va))
1452 		return -1;
1453 
1454 	/*
1455 	 * We can calculate PA for static map. Virtual address ranges
1456 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1457 	 * together with an invalid null physical address.
1458 	 */
1459 	if (map->pa)
1460 		*pa = map->pa + (vaddr_t)va  - map->va;
1461 	else
1462 		*pa = 0;
1463 
1464 	return 0;
1465 }
1466 
1467 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1468 {
1469 	if (!pa_is_in_map(map, pa, len))
1470 		return NULL;
1471 
1472 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1473 }
1474 
1475 /*
1476  * teecore gets some memory area definitions
1477  */
1478 void core_mmu_get_mem_by_type(unsigned int type, vaddr_t *s, vaddr_t *e)
1479 {
1480 	struct tee_mmap_region *map = find_map_by_type(type);
1481 
1482 	if (map) {
1483 		*s = map->va;
1484 		*e = map->va + map->size;
1485 	} else {
1486 		*s = 0;
1487 		*e = 0;
1488 	}
1489 }
1490 
1491 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1492 {
1493 	struct tee_mmap_region *map = find_map_by_pa(pa);
1494 
1495 	if (!map)
1496 		return MEM_AREA_MAXTYPE;
1497 	return map->type;
1498 }
1499 
1500 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1501 			paddr_t pa, uint32_t attr)
1502 {
1503 	assert(idx < tbl_info->num_entries);
1504 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1505 				     idx, pa, attr);
1506 }
1507 
1508 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1509 			paddr_t *pa, uint32_t *attr)
1510 {
1511 	assert(idx < tbl_info->num_entries);
1512 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1513 				     idx, pa, attr);
1514 }
1515 
1516 static void clear_region(struct core_mmu_table_info *tbl_info,
1517 			 struct tee_mmap_region *region)
1518 {
1519 	unsigned int end = 0;
1520 	unsigned int idx = 0;
1521 
1522 	/* va, len and pa should be block aligned */
1523 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1524 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1525 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1526 
1527 	idx = core_mmu_va2idx(tbl_info, region->va);
1528 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1529 
1530 	while (idx < end) {
1531 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1532 		idx++;
1533 	}
1534 }
1535 
1536 static void set_region(struct core_mmu_table_info *tbl_info,
1537 		       struct tee_mmap_region *region)
1538 {
1539 	unsigned int end;
1540 	unsigned int idx;
1541 	paddr_t pa;
1542 
1543 	/* va, len and pa should be block aligned */
1544 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1545 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1546 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1547 
1548 	idx = core_mmu_va2idx(tbl_info, region->va);
1549 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1550 	pa = region->pa;
1551 
1552 	while (idx < end) {
1553 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1554 		idx++;
1555 		pa += BIT64(tbl_info->shift);
1556 	}
1557 }
1558 
1559 static void set_pg_region(struct core_mmu_table_info *dir_info,
1560 			  struct vm_region *region, struct pgt **pgt,
1561 			  struct core_mmu_table_info *pg_info)
1562 {
1563 	struct tee_mmap_region r = {
1564 		.va = region->va,
1565 		.size = region->size,
1566 		.attr = region->attr,
1567 	};
1568 	vaddr_t end = r.va + r.size;
1569 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1570 
1571 	while (r.va < end) {
1572 		if (!pg_info->table ||
1573 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1574 			/*
1575 			 * We're assigning a new translation table.
1576 			 */
1577 			unsigned int idx;
1578 
1579 			/* Virtual addresses must grow */
1580 			assert(r.va > pg_info->va_base);
1581 
1582 			idx = core_mmu_va2idx(dir_info, r.va);
1583 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1584 
1585 			/*
1586 			 * Advance pgt to va_base, note that we may need to
1587 			 * skip multiple page tables if there are large
1588 			 * holes in the vm map.
1589 			 */
1590 			while ((*pgt)->vabase < pg_info->va_base) {
1591 				*pgt = SLIST_NEXT(*pgt, link);
1592 				/* We should have allocated enough */
1593 				assert(*pgt);
1594 			}
1595 			assert((*pgt)->vabase == pg_info->va_base);
1596 			pg_info->table = (*pgt)->tbl;
1597 
1598 			core_mmu_set_entry(dir_info, idx,
1599 					   virt_to_phys(pg_info->table),
1600 					   pgt_attr);
1601 		}
1602 
1603 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1604 			     end - r.va);
1605 
1606 		if (!mobj_is_paged(region->mobj)) {
1607 			size_t granule = BIT(pg_info->shift);
1608 			size_t offset = r.va - region->va + region->offset;
1609 
1610 			r.size = MIN(r.size,
1611 				     mobj_get_phys_granule(region->mobj));
1612 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1613 
1614 			if (mobj_get_pa(region->mobj, offset, granule,
1615 					&r.pa) != TEE_SUCCESS)
1616 				panic("Failed to get PA of unpaged mobj");
1617 			set_region(pg_info, &r);
1618 		}
1619 		r.va += r.size;
1620 	}
1621 }
1622 
1623 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1624 			     size_t size_left, paddr_t block_size,
1625 			     struct tee_mmap_region *mm __maybe_unused)
1626 {
1627 	/* VA and PA are aligned to block size at current level */
1628 	if ((vaddr | paddr) & (block_size - 1))
1629 		return false;
1630 
1631 	/* Remainder fits into block at current level */
1632 	if (size_left < block_size)
1633 		return false;
1634 
1635 #ifdef CFG_WITH_PAGER
1636 	/*
1637 	 * If pager is enabled, we need to map tee ram
1638 	 * regions with small pages only
1639 	 */
1640 	if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE)
1641 		return false;
1642 #endif
1643 
1644 	return true;
1645 }
1646 
1647 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1648 {
1649 	struct core_mmu_table_info tbl_info;
1650 	unsigned int idx;
1651 	vaddr_t vaddr = mm->va;
1652 	paddr_t paddr = mm->pa;
1653 	ssize_t size_left = mm->size;
1654 	unsigned int level;
1655 	bool table_found;
1656 	uint32_t old_attr;
1657 
1658 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1659 
1660 	while (size_left > 0) {
1661 		level = CORE_MMU_BASE_TABLE_LEVEL;
1662 
1663 		while (true) {
1664 			paddr_t block_size = 0;
1665 
1666 			assert(level <= CORE_MMU_PGDIR_LEVEL);
1667 
1668 			table_found = core_mmu_find_table(prtn, vaddr, level,
1669 							  &tbl_info);
1670 			if (!table_found)
1671 				panic("can't find table for mapping");
1672 
1673 			block_size = BIT64(tbl_info.shift);
1674 
1675 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1676 			if (!can_map_at_level(paddr, vaddr, size_left,
1677 					      block_size, mm)) {
1678 				bool secure = mm->attr & TEE_MATTR_SECURE;
1679 
1680 				/*
1681 				 * This part of the region can't be mapped at
1682 				 * this level. Need to go deeper.
1683 				 */
1684 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1685 								     idx,
1686 								     secure))
1687 					panic("Can't divide MMU entry");
1688 				level++;
1689 				continue;
1690 			}
1691 
1692 			/* We can map part of the region at current level */
1693 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1694 			if (old_attr)
1695 				panic("Page is already mapped");
1696 
1697 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1698 			paddr += block_size;
1699 			vaddr += block_size;
1700 			size_left -= block_size;
1701 
1702 			break;
1703 		}
1704 	}
1705 }
1706 
1707 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1708 			      enum teecore_memtypes memtype)
1709 {
1710 	TEE_Result ret;
1711 	struct core_mmu_table_info tbl_info;
1712 	struct tee_mmap_region *mm;
1713 	unsigned int idx;
1714 	uint32_t old_attr;
1715 	uint32_t exceptions;
1716 	vaddr_t vaddr = vstart;
1717 	size_t i;
1718 	bool secure;
1719 
1720 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1721 
1722 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1723 
1724 	if (vaddr & SMALL_PAGE_MASK)
1725 		return TEE_ERROR_BAD_PARAMETERS;
1726 
1727 	exceptions = mmu_lock();
1728 
1729 	mm = find_map_by_va((void *)vaddr);
1730 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1731 		panic("VA does not belong to any known mm region");
1732 
1733 	if (!core_mmu_is_dynamic_vaspace(mm))
1734 		panic("Trying to map into static region");
1735 
1736 	for (i = 0; i < num_pages; i++) {
1737 		if (pages[i] & SMALL_PAGE_MASK) {
1738 			ret = TEE_ERROR_BAD_PARAMETERS;
1739 			goto err;
1740 		}
1741 
1742 		while (true) {
1743 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1744 						 &tbl_info))
1745 				panic("Can't find pagetable for vaddr ");
1746 
1747 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1748 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1749 				break;
1750 
1751 			/* This is supertable. Need to divide it. */
1752 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1753 							     secure))
1754 				panic("Failed to spread pgdir on small tables");
1755 		}
1756 
1757 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1758 		if (old_attr)
1759 			panic("Page is already mapped");
1760 
1761 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1762 				   core_mmu_type_to_attr(memtype));
1763 		vaddr += SMALL_PAGE_SIZE;
1764 	}
1765 
1766 	/*
1767 	 * Make sure all the changes to translation tables are visible
1768 	 * before returning. TLB doesn't need to be invalidated as we are
1769 	 * guaranteed that there's no valid mapping in this range.
1770 	 */
1771 	core_mmu_table_write_barrier();
1772 	mmu_unlock(exceptions);
1773 
1774 	return TEE_SUCCESS;
1775 err:
1776 	mmu_unlock(exceptions);
1777 
1778 	if (i)
1779 		core_mmu_unmap_pages(vstart, i);
1780 
1781 	return ret;
1782 }
1783 
1784 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
1785 					 size_t num_pages,
1786 					 enum teecore_memtypes memtype)
1787 {
1788 	struct core_mmu_table_info tbl_info = { };
1789 	struct tee_mmap_region *mm = NULL;
1790 	unsigned int idx = 0;
1791 	uint32_t old_attr = 0;
1792 	uint32_t exceptions = 0;
1793 	vaddr_t vaddr = vstart;
1794 	paddr_t paddr = pstart;
1795 	size_t i = 0;
1796 	bool secure = false;
1797 
1798 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1799 
1800 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1801 
1802 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
1803 		return TEE_ERROR_BAD_PARAMETERS;
1804 
1805 	exceptions = mmu_lock();
1806 
1807 	mm = find_map_by_va((void *)vaddr);
1808 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1809 		panic("VA does not belong to any known mm region");
1810 
1811 	if (!core_mmu_is_dynamic_vaspace(mm))
1812 		panic("Trying to map into static region");
1813 
1814 	for (i = 0; i < num_pages; i++) {
1815 		while (true) {
1816 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1817 						 &tbl_info))
1818 				panic("Can't find pagetable for vaddr ");
1819 
1820 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1821 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1822 				break;
1823 
1824 			/* This is supertable. Need to divide it. */
1825 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1826 							     secure))
1827 				panic("Failed to spread pgdir on small tables");
1828 		}
1829 
1830 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1831 		if (old_attr)
1832 			panic("Page is already mapped");
1833 
1834 		core_mmu_set_entry(&tbl_info, idx, paddr,
1835 				   core_mmu_type_to_attr(memtype));
1836 		paddr += SMALL_PAGE_SIZE;
1837 		vaddr += SMALL_PAGE_SIZE;
1838 	}
1839 
1840 	/*
1841 	 * Make sure all the changes to translation tables are visible
1842 	 * before returning. TLB doesn't need to be invalidated as we are
1843 	 * guaranteed that there's no valid mapping in this range.
1844 	 */
1845 	core_mmu_table_write_barrier();
1846 	mmu_unlock(exceptions);
1847 
1848 	return TEE_SUCCESS;
1849 }
1850 
1851 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
1852 {
1853 	struct core_mmu_table_info tbl_info;
1854 	struct tee_mmap_region *mm;
1855 	size_t i;
1856 	unsigned int idx;
1857 	uint32_t exceptions;
1858 
1859 	exceptions = mmu_lock();
1860 
1861 	mm = find_map_by_va((void *)vstart);
1862 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
1863 		panic("VA does not belong to any known mm region");
1864 
1865 	if (!core_mmu_is_dynamic_vaspace(mm))
1866 		panic("Trying to unmap static region");
1867 
1868 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
1869 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
1870 			panic("Can't find pagetable");
1871 
1872 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
1873 			panic("Invalid pagetable level");
1874 
1875 		idx = core_mmu_va2idx(&tbl_info, vstart);
1876 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
1877 	}
1878 	tlbi_all();
1879 
1880 	mmu_unlock(exceptions);
1881 }
1882 
1883 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
1884 				struct user_mode_ctx *uctx)
1885 {
1886 	struct core_mmu_table_info pg_info = { };
1887 	struct pgt_cache *pgt_cache = &thread_get_tsd()->pgt_cache;
1888 	struct pgt *pgt = NULL;
1889 	struct vm_region *r = NULL;
1890 
1891 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
1892 		return; /* Nothing to map */
1893 
1894 	/*
1895 	 * Allocate all page tables in advance.
1896 	 */
1897 	pgt_alloc(pgt_cache, uctx->ts_ctx, &uctx->vm_info);
1898 	pgt = SLIST_FIRST(pgt_cache);
1899 
1900 	core_mmu_set_info_table(&pg_info, dir_info->level + 1, 0, NULL);
1901 
1902 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
1903 		set_pg_region(dir_info, r, &pgt, &pg_info);
1904 }
1905 
1906 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
1907 				   size_t len)
1908 {
1909 	struct core_mmu_table_info tbl_info = { };
1910 	struct tee_mmap_region *res_map = NULL;
1911 	struct tee_mmap_region *map = NULL;
1912 	paddr_t pa = virt_to_phys(addr);
1913 	size_t granule = 0;
1914 	ptrdiff_t i = 0;
1915 	paddr_t p = 0;
1916 	size_t l = 0;
1917 
1918 	map = find_map_by_type_and_pa(type, pa, len);
1919 	if (!map)
1920 		return TEE_ERROR_GENERIC;
1921 
1922 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
1923 	if (!res_map)
1924 		return TEE_ERROR_GENERIC;
1925 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
1926 		return TEE_ERROR_GENERIC;
1927 	granule = BIT(tbl_info.shift);
1928 
1929 	if (map < static_memory_map ||
1930 	    map >= static_memory_map + ARRAY_SIZE(static_memory_map))
1931 		return TEE_ERROR_GENERIC;
1932 	i = map - static_memory_map;
1933 
1934 	/* Check that we have a full match */
1935 	p = ROUNDDOWN(pa, granule);
1936 	l = ROUNDUP(len + pa - p, granule);
1937 	if (map->pa != p || map->size != l)
1938 		return TEE_ERROR_GENERIC;
1939 
1940 	clear_region(&tbl_info, map);
1941 	tlbi_all();
1942 
1943 	/* If possible remove the va range from res_map */
1944 	if (res_map->va - map->size == map->va) {
1945 		res_map->va -= map->size;
1946 		res_map->size += map->size;
1947 	}
1948 
1949 	/* Remove the entry. */
1950 	memmove(map, map + 1,
1951 		(ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map));
1952 
1953 	/* Clear the last new entry in case it was used */
1954 	memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1,
1955 	       0, sizeof(*map));
1956 
1957 	return TEE_SUCCESS;
1958 }
1959 
1960 struct tee_mmap_region *
1961 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
1962 {
1963 	struct tee_mmap_region *map = NULL;
1964 	struct tee_mmap_region *map_found = NULL;
1965 
1966 	if (!len)
1967 		return NULL;
1968 
1969 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
1970 		if (map->type != type)
1971 			continue;
1972 
1973 		if (map_found)
1974 			return NULL;
1975 
1976 		map_found = map;
1977 	}
1978 
1979 	if (!map_found || map_found->size < len)
1980 		return NULL;
1981 
1982 	return map_found;
1983 }
1984 
1985 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
1986 {
1987 	struct core_mmu_table_info tbl_info;
1988 	struct tee_mmap_region *map;
1989 	size_t n;
1990 	size_t granule;
1991 	paddr_t p;
1992 	size_t l;
1993 
1994 	if (!len)
1995 		return NULL;
1996 
1997 	if (!core_mmu_check_end_pa(addr, len))
1998 		return NULL;
1999 
2000 	/* Check if the memory is already mapped */
2001 	map = find_map_by_type_and_pa(type, addr, len);
2002 	if (map && pbuf_inside_map_area(addr, len, map))
2003 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2004 
2005 	/* Find the reserved va space used for late mappings */
2006 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2007 	if (!map)
2008 		return NULL;
2009 
2010 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2011 		return NULL;
2012 
2013 	granule = BIT64(tbl_info.shift);
2014 	p = ROUNDDOWN(addr, granule);
2015 	l = ROUNDUP(len + addr - p, granule);
2016 
2017 	/* Ban overflowing virtual addresses */
2018 	if (map->size < l)
2019 		return NULL;
2020 
2021 	/*
2022 	 * Something is wrong, we can't fit the va range into the selected
2023 	 * table. The reserved va range is possibly missaligned with
2024 	 * granule.
2025 	 */
2026 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2027 		return NULL;
2028 
2029 	/* Find end of the memory map */
2030 	n = 0;
2031 	while (!core_mmap_is_end_of_table(static_memory_map + n))
2032 		n++;
2033 
2034 	if (n < (ARRAY_SIZE(static_memory_map) - 1)) {
2035 		/* There's room for another entry */
2036 		static_memory_map[n].va = map->va;
2037 		static_memory_map[n].size = l;
2038 		static_memory_map[n + 1].type = MEM_AREA_END;
2039 		map->va += l;
2040 		map->size -= l;
2041 		map = static_memory_map + n;
2042 	} else {
2043 		/*
2044 		 * There isn't room for another entry, steal the reserved
2045 		 * entry as it's not useful for anything else any longer.
2046 		 */
2047 		map->size = l;
2048 	}
2049 	map->type = type;
2050 	map->region_size = granule;
2051 	map->attr = core_mmu_type_to_attr(type);
2052 	map->pa = p;
2053 
2054 	set_region(&tbl_info, map);
2055 
2056 	/* Make sure the new entry is visible before continuing. */
2057 	core_mmu_table_write_barrier();
2058 
2059 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2060 }
2061 
2062 #ifdef CFG_WITH_PAGER
2063 static vaddr_t get_linear_map_end(void)
2064 {
2065 	/* this is synced with the generic linker file kern.ld.S */
2066 	return (vaddr_t)__heap2_end;
2067 }
2068 #endif
2069 
2070 #if defined(CFG_TEE_CORE_DEBUG)
2071 static void check_pa_matches_va(void *va, paddr_t pa)
2072 {
2073 	TEE_Result res = TEE_ERROR_GENERIC;
2074 	vaddr_t v = (vaddr_t)va;
2075 	paddr_t p = 0;
2076 	struct core_mmu_table_info ti __maybe_unused = { };
2077 
2078 	if (core_mmu_user_va_range_is_defined()) {
2079 		vaddr_t user_va_base = 0;
2080 		size_t user_va_size = 0;
2081 
2082 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2083 		if (v >= user_va_base &&
2084 		    v <= (user_va_base - 1 + user_va_size)) {
2085 			if (!core_mmu_user_mapping_is_active()) {
2086 				if (pa)
2087 					panic("issue in linear address space");
2088 				return;
2089 			}
2090 
2091 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2092 				       va, &p);
2093 			if (res == TEE_ERROR_NOT_SUPPORTED)
2094 				return;
2095 			if (res == TEE_SUCCESS && pa != p)
2096 				panic("bad pa");
2097 			if (res != TEE_SUCCESS && pa)
2098 				panic("false pa");
2099 			return;
2100 		}
2101 	}
2102 #ifdef CFG_WITH_PAGER
2103 	if (is_unpaged(va)) {
2104 		if (v - boot_mmu_config.load_offset != pa)
2105 			panic("issue in linear address space");
2106 		return;
2107 	}
2108 
2109 	if (tee_pager_get_table_info(v, &ti)) {
2110 		uint32_t a;
2111 
2112 		/*
2113 		 * Lookups in the page table managed by the pager is
2114 		 * dangerous for addresses in the paged area as those pages
2115 		 * changes all the time. But some ranges are safe,
2116 		 * rw-locked areas when the page is populated for instance.
2117 		 */
2118 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2119 		if (a & TEE_MATTR_VALID_BLOCK) {
2120 			paddr_t mask = BIT64(ti.shift) - 1;
2121 
2122 			p |= v & mask;
2123 			if (pa != p)
2124 				panic();
2125 		} else {
2126 			if (pa)
2127 				panic();
2128 		}
2129 		return;
2130 	}
2131 #endif
2132 
2133 	if (!core_va2pa_helper(va, &p)) {
2134 		/* Verfiy only the static mapping (case non null phys addr) */
2135 		if (p && pa != p) {
2136 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2137 			     va, p, pa);
2138 			panic();
2139 		}
2140 	} else {
2141 		if (pa) {
2142 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2143 			panic();
2144 		}
2145 	}
2146 }
2147 #else
2148 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2149 {
2150 }
2151 #endif
2152 
2153 paddr_t virt_to_phys(void *va)
2154 {
2155 	paddr_t pa = 0;
2156 
2157 	if (!arch_va2pa_helper(va, &pa))
2158 		pa = 0;
2159 	check_pa_matches_va(va, pa);
2160 	return pa;
2161 }
2162 
2163 #if defined(CFG_TEE_CORE_DEBUG)
2164 static void check_va_matches_pa(paddr_t pa, void *va)
2165 {
2166 	paddr_t p = 0;
2167 
2168 	if (!va)
2169 		return;
2170 
2171 	p = virt_to_phys(va);
2172 	if (p != pa) {
2173 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2174 		panic();
2175 	}
2176 }
2177 #else
2178 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2179 {
2180 }
2181 #endif
2182 
2183 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2184 {
2185 	if (!core_mmu_user_mapping_is_active())
2186 		return NULL;
2187 
2188 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2189 }
2190 
2191 #ifdef CFG_WITH_PAGER
2192 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2193 {
2194 	paddr_t end_pa = 0;
2195 
2196 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2197 		return NULL;
2198 
2199 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end()) {
2200 		if (end_pa > get_linear_map_end())
2201 			return NULL;
2202 		return (void *)(vaddr_t)(pa + boot_mmu_config.load_offset);
2203 	}
2204 
2205 	return tee_pager_phys_to_virt(pa, len);
2206 }
2207 #else
2208 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2209 {
2210 	struct tee_mmap_region *mmap = NULL;
2211 
2212 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2213 	if (!mmap)
2214 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2215 	if (!mmap)
2216 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2217 	if (!mmap)
2218 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2219 	if (!mmap)
2220 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2221 	if (!mmap)
2222 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2223 	/*
2224 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2225 	 * used with pager and not needed here.
2226 	 */
2227 	return map_pa2va(mmap, pa, len);
2228 }
2229 #endif
2230 
2231 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2232 {
2233 	void *va = NULL;
2234 
2235 	switch (m) {
2236 	case MEM_AREA_TS_VASPACE:
2237 		va = phys_to_virt_ts_vaspace(pa, len);
2238 		break;
2239 	case MEM_AREA_TEE_RAM:
2240 	case MEM_AREA_TEE_RAM_RX:
2241 	case MEM_AREA_TEE_RAM_RO:
2242 	case MEM_AREA_TEE_RAM_RW:
2243 	case MEM_AREA_NEX_RAM_RO:
2244 	case MEM_AREA_NEX_RAM_RW:
2245 		va = phys_to_virt_tee_ram(pa, len);
2246 		break;
2247 	case MEM_AREA_SHM_VASPACE:
2248 		/* Find VA from PA in dynamic SHM is not yet supported */
2249 		va = NULL;
2250 		break;
2251 	default:
2252 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2253 	}
2254 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2255 		check_va_matches_pa(pa, va);
2256 	return va;
2257 }
2258 
2259 void *phys_to_virt_io(paddr_t pa, size_t len)
2260 {
2261 	struct tee_mmap_region *map = NULL;
2262 	void *va = NULL;
2263 
2264 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2265 	if (!map)
2266 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2267 	if (!map)
2268 		return NULL;
2269 	va = map_pa2va(map, pa, len);
2270 	check_va_matches_pa(pa, va);
2271 	return va;
2272 }
2273 
2274 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2275 {
2276 	if (cpu_mmu_enabled())
2277 		return (vaddr_t)phys_to_virt(pa, type, len);
2278 
2279 	return (vaddr_t)pa;
2280 }
2281 
2282 #ifdef CFG_WITH_PAGER
2283 bool is_unpaged(void *va)
2284 {
2285 	vaddr_t v = (vaddr_t)va;
2286 
2287 	return v >= VCORE_START_VA && v < get_linear_map_end();
2288 }
2289 #else
2290 bool is_unpaged(void *va __unused)
2291 {
2292 	return true;
2293 }
2294 #endif
2295 
2296 void core_mmu_init_virtualization(void)
2297 {
2298 	virt_init_memory(static_memory_map);
2299 }
2300 
2301 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2302 {
2303 	assert(p->pa);
2304 	if (cpu_mmu_enabled()) {
2305 		if (!p->va)
2306 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2307 		assert(p->va);
2308 		return p->va;
2309 	}
2310 	return p->pa;
2311 }
2312 
2313 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2314 {
2315 	assert(p->pa);
2316 	if (cpu_mmu_enabled()) {
2317 		if (!p->va)
2318 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2319 						      len);
2320 		assert(p->va);
2321 		return p->va;
2322 	}
2323 	return p->pa;
2324 }
2325 
2326 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2327 {
2328 	assert(p->pa);
2329 	if (cpu_mmu_enabled()) {
2330 		if (!p->va)
2331 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2332 						      len);
2333 		assert(p->va);
2334 		return p->va;
2335 	}
2336 	return p->pa;
2337 }
2338 
2339 #ifdef CFG_CORE_RESERVED_SHM
2340 static TEE_Result teecore_init_pub_ram(void)
2341 {
2342 	vaddr_t s = 0;
2343 	vaddr_t e = 0;
2344 
2345 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2346 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2347 
2348 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2349 		panic("invalid PUB RAM");
2350 
2351 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2352 	if (!tee_vbuf_is_non_sec(s, e - s))
2353 		panic("PUB RAM is not non-secure");
2354 
2355 #ifdef CFG_PL310
2356 	/* Allocate statically the l2cc mutex */
2357 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2358 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2359 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2360 #endif
2361 
2362 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2363 	default_nsec_shm_size = e - s;
2364 
2365 	return TEE_SUCCESS;
2366 }
2367 early_init(teecore_init_pub_ram);
2368 #endif /*CFG_CORE_RESERVED_SHM*/
2369 
2370 void core_mmu_init_ta_ram(void)
2371 {
2372 	vaddr_t s = 0;
2373 	vaddr_t e = 0;
2374 	paddr_t ps = 0;
2375 	size_t size = 0;
2376 
2377 	/*
2378 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2379 	 * shared mem allocated from teecore.
2380 	 */
2381 	if (IS_ENABLED(CFG_VIRTUALIZATION))
2382 		virt_get_ta_ram(&s, &e);
2383 	else
2384 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2385 
2386 	ps = virt_to_phys((void *)s);
2387 	size = e - s;
2388 
2389 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2390 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2391 		panic("invalid TA RAM");
2392 
2393 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2394 	if (!tee_pbuf_is_sec(ps, size))
2395 		panic("TA RAM is not secure");
2396 
2397 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2398 		panic("TA RAM pool is not empty");
2399 
2400 	/* remove previous config and init TA ddr memory pool */
2401 	tee_mm_final(&tee_mm_sec_ddr);
2402 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2403 		    TEE_MM_POOL_NO_FLAGS);
2404 }
2405