xref: /optee_os/core/mm/core_mmu.c (revision 32b3180828fa15a49ccc86ecb4be9d274c140c89)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <mm/core_memprot.h>
22 #include <mm/core_mmu.h>
23 #include <mm/mobj.h>
24 #include <mm/pgt_cache.h>
25 #include <mm/tee_pager.h>
26 #include <mm/vm.h>
27 #include <platform_config.h>
28 #include <string.h>
29 #include <trace.h>
30 #include <util.h>
31 
32 #ifndef DEBUG_XLAT_TABLE
33 #define DEBUG_XLAT_TABLE 0
34 #endif
35 
36 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
37 
38 #ifdef CFG_CORE_PHYS_RELOCATABLE
39 unsigned long core_mmu_tee_load_pa __nex_bss;
40 #else
41 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
42 #endif
43 
44 /*
45  * These variables are initialized before .bss is cleared. To avoid
46  * resetting them when .bss is cleared we're storing them in .data instead,
47  * even if they initially are zero.
48  */
49 
50 #ifdef CFG_CORE_RESERVED_SHM
51 /* Default NSec shared memory allocated from NSec world */
52 unsigned long default_nsec_shm_size __nex_bss;
53 unsigned long default_nsec_shm_paddr __nex_bss;
54 #endif
55 
56 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS
57 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE)
58 						+ 1
59 #endif
60 						+ 1] __nex_bss;
61 
62 /* Define the platform's memory layout. */
63 struct memaccess_area {
64 	paddr_t paddr;
65 	size_t size;
66 };
67 
68 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
69 
70 static struct memaccess_area secure_only[] __nex_data = {
71 #ifdef CFG_CORE_PHYS_RELOCATABLE
72 	MEMACCESS_AREA(0, 0),
73 #else
74 #ifdef TRUSTED_SRAM_BASE
75 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
76 #endif
77 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
78 #endif
79 };
80 
81 static struct memaccess_area nsec_shared[] __nex_data = {
82 #ifdef CFG_CORE_RESERVED_SHM
83 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
84 #endif
85 };
86 
87 #if defined(CFG_SECURE_DATA_PATH)
88 static const char *tz_sdp_match = "linaro,secure-heap";
89 static struct memaccess_area sec_sdp;
90 #ifdef CFG_TEE_SDP_MEM_BASE
91 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
92 #endif
93 #ifdef TEE_SDP_TEST_MEM_BASE
94 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
95 #endif
96 #endif
97 
98 #ifdef CFG_CORE_RESERVED_SHM
99 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
100 #endif
101 static unsigned int mmu_spinlock;
102 
103 static uint32_t mmu_lock(void)
104 {
105 	return cpu_spin_lock_xsave(&mmu_spinlock);
106 }
107 
108 static void mmu_unlock(uint32_t exceptions)
109 {
110 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
111 }
112 
113 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
114 {
115 	/*
116 	 * The first range is always used to cover OP-TEE core memory, but
117 	 * depending on configuration it may cover more than that.
118 	 */
119 	*base = secure_only[0].paddr;
120 	*size = secure_only[0].size;
121 }
122 
123 void core_mmu_set_secure_memory(paddr_t base, size_t size)
124 {
125 #ifdef CFG_CORE_PHYS_RELOCATABLE
126 	static_assert(ARRAY_SIZE(secure_only) == 1);
127 #endif
128 	runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE));
129 	assert(!secure_only[0].size);
130 	assert(base && size);
131 
132 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
133 	secure_only[0].paddr = base;
134 	secure_only[0].size = size;
135 }
136 
137 void core_mmu_get_ta_range(paddr_t *base, size_t *size)
138 {
139 	paddr_t b = 0;
140 	size_t s = 0;
141 
142 	static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE));
143 #ifdef TA_RAM_START
144 	b = TA_RAM_START;
145 	s = TA_RAM_SIZE;
146 #else
147 	static_assert(ARRAY_SIZE(secure_only) <= 2);
148 	if (ARRAY_SIZE(secure_only) == 1) {
149 		vaddr_t load_offs = 0;
150 
151 		assert(core_mmu_tee_load_pa >= secure_only[0].paddr);
152 		load_offs = core_mmu_tee_load_pa - secure_only[0].paddr;
153 
154 		assert(secure_only[0].size >
155 		       load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE);
156 		b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE;
157 		s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE -
158 		    TEE_SDP_TEST_MEM_SIZE;
159 	} else {
160 		assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE);
161 		b = secure_only[1].paddr;
162 		s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE;
163 	}
164 #endif
165 	if (base)
166 		*base = b;
167 	if (size)
168 		*size = s;
169 }
170 
171 static struct tee_mmap_region *get_memory_map(void)
172 {
173 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
174 		struct tee_mmap_region *map = virt_get_memory_map();
175 
176 		if (map)
177 			return map;
178 	}
179 
180 	return static_memory_map;
181 }
182 
183 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
184 			     paddr_t pa, size_t size)
185 {
186 	size_t n;
187 
188 	for (n = 0; n < alen; n++)
189 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
190 			return true;
191 	return false;
192 }
193 
194 #define pbuf_intersects(a, pa, size) \
195 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
196 
197 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
198 			    paddr_t pa, size_t size)
199 {
200 	size_t n;
201 
202 	for (n = 0; n < alen; n++)
203 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
204 			return true;
205 	return false;
206 }
207 
208 #define pbuf_is_inside(a, pa, size) \
209 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
210 
211 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
212 {
213 	paddr_t end_pa = 0;
214 
215 	if (!map)
216 		return false;
217 
218 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
219 		return false;
220 
221 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
222 }
223 
224 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
225 {
226 	if (!map)
227 		return false;
228 	return (va >= map->va && va <= (map->va + map->size - 1));
229 }
230 
231 /* check if target buffer fits in a core default map area */
232 static bool pbuf_inside_map_area(unsigned long p, size_t l,
233 				 struct tee_mmap_region *map)
234 {
235 	return core_is_buffer_inside(p, l, map->pa, map->size);
236 }
237 
238 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
239 {
240 	struct tee_mmap_region *map;
241 
242 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++)
243 		if (map->type == type)
244 			return map;
245 	return NULL;
246 }
247 
248 static struct tee_mmap_region *
249 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
250 {
251 	struct tee_mmap_region *map;
252 
253 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
254 		if (map->type != type)
255 			continue;
256 		if (pa_is_in_map(map, pa, len))
257 			return map;
258 	}
259 	return NULL;
260 }
261 
262 static struct tee_mmap_region *find_map_by_va(void *va)
263 {
264 	struct tee_mmap_region *map = get_memory_map();
265 	unsigned long a = (unsigned long)va;
266 
267 	while (!core_mmap_is_end_of_table(map)) {
268 		if (a >= map->va && a <= (map->va - 1 + map->size))
269 			return map;
270 		map++;
271 	}
272 	return NULL;
273 }
274 
275 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
276 {
277 	struct tee_mmap_region *map = get_memory_map();
278 
279 	while (!core_mmap_is_end_of_table(map)) {
280 		if (pa >= map->pa && pa <= (map->pa + map->size - 1))
281 			return map;
282 		map++;
283 	}
284 	return NULL;
285 }
286 
287 #if defined(CFG_SECURE_DATA_PATH)
288 static bool dtb_get_sdp_region(void)
289 {
290 	void *fdt = NULL;
291 	int node = 0;
292 	int tmp_node = 0;
293 	paddr_t tmp_addr = 0;
294 	size_t tmp_size = 0;
295 
296 	if (!IS_ENABLED(CFG_EMBED_DTB))
297 		return false;
298 
299 	fdt = get_embedded_dt();
300 	if (!fdt)
301 		panic("No DTB found");
302 
303 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
304 	if (node < 0) {
305 		DMSG("No %s compatible node found", tz_sdp_match);
306 		return false;
307 	}
308 	tmp_node = node;
309 	while (tmp_node >= 0) {
310 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
311 							 tz_sdp_match);
312 		if (tmp_node >= 0)
313 			DMSG("Ignore SDP pool node %s, supports only 1 node",
314 			     fdt_get_name(fdt, tmp_node, NULL));
315 	}
316 
317 	tmp_addr = fdt_reg_base_address(fdt, node);
318 	if (tmp_addr == DT_INFO_INVALID_REG) {
319 		EMSG("%s: Unable to get base addr from DT", tz_sdp_match);
320 		return false;
321 	}
322 
323 	tmp_size = fdt_reg_size(fdt, node);
324 	if (tmp_size == DT_INFO_INVALID_REG_SIZE) {
325 		EMSG("%s: Unable to get size of base addr from DT",
326 		     tz_sdp_match);
327 		return false;
328 	}
329 
330 	sec_sdp.paddr = tmp_addr;
331 	sec_sdp.size = tmp_size;
332 
333 	return true;
334 }
335 #endif
336 
337 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
338 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
339 				const struct core_mmu_phys_mem *start,
340 				const struct core_mmu_phys_mem *end)
341 {
342 	const struct core_mmu_phys_mem *mem;
343 
344 	for (mem = start; mem < end; mem++) {
345 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
346 			return true;
347 	}
348 
349 	return false;
350 }
351 #endif
352 
353 #ifdef CFG_CORE_DYN_SHM
354 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
355 			       paddr_t pa, size_t size)
356 {
357 	struct core_mmu_phys_mem *m = *mem;
358 	size_t n = 0;
359 
360 	while (true) {
361 		if (n >= *nelems) {
362 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
363 			     pa, size);
364 			return;
365 		}
366 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
367 			break;
368 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
369 			panic();
370 		n++;
371 	}
372 
373 	if (pa == m[n].addr && size == m[n].size) {
374 		/* Remove this entry */
375 		(*nelems)--;
376 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
377 		m = nex_realloc(m, sizeof(*m) * *nelems);
378 		if (!m)
379 			panic();
380 		*mem = m;
381 	} else if (pa == m[n].addr) {
382 		m[n].addr += size;
383 		m[n].size -= size;
384 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
385 		m[n].size -= size;
386 	} else {
387 		/* Need to split the memory entry */
388 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
389 		if (!m)
390 			panic();
391 		*mem = m;
392 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
393 		(*nelems)++;
394 		m[n].size = pa - m[n].addr;
395 		m[n + 1].size -= size + m[n].size;
396 		m[n + 1].addr = pa + size;
397 	}
398 }
399 
400 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
401 				      size_t nelems,
402 				      struct tee_mmap_region *map)
403 {
404 	size_t n;
405 
406 	for (n = 0; n < nelems; n++) {
407 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
408 					    map->pa, map->size)) {
409 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
410 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
411 			     start[n].addr, start[n].size,
412 			     map->type, map->pa, map->size);
413 			panic();
414 		}
415 	}
416 }
417 
418 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
419 static size_t discovered_nsec_ddr_nelems __nex_bss;
420 
421 static int cmp_pmem_by_addr(const void *a, const void *b)
422 {
423 	const struct core_mmu_phys_mem *pmem_a = a;
424 	const struct core_mmu_phys_mem *pmem_b = b;
425 
426 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
427 }
428 
429 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
430 				      size_t nelems)
431 {
432 	struct core_mmu_phys_mem *m = start;
433 	size_t num_elems = nelems;
434 	struct tee_mmap_region *map = static_memory_map;
435 	const struct core_mmu_phys_mem __maybe_unused *pmem;
436 	size_t n = 0;
437 
438 	assert(!discovered_nsec_ddr_start);
439 	assert(m && num_elems);
440 
441 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
442 
443 	/*
444 	 * Non-secure shared memory and also secure data
445 	 * path memory are supposed to reside inside
446 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
447 	 * are used for a specific purpose make holes for
448 	 * those memory in the normal non-secure memory.
449 	 *
450 	 * This has to be done since for instance QEMU
451 	 * isn't aware of which memory range in the
452 	 * non-secure memory is used for NSEC_SHM.
453 	 */
454 
455 #ifdef CFG_SECURE_DATA_PATH
456 	if (dtb_get_sdp_region())
457 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
458 
459 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
460 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
461 #endif
462 
463 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
464 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
465 				   secure_only[n].size);
466 
467 	for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) {
468 		switch (map->type) {
469 		case MEM_AREA_NSEC_SHM:
470 			carve_out_phys_mem(&m, &num_elems, map->pa, map->size);
471 			break;
472 		case MEM_AREA_EXT_DT:
473 		case MEM_AREA_MANIFEST_DT:
474 		case MEM_AREA_RES_VASPACE:
475 		case MEM_AREA_SHM_VASPACE:
476 		case MEM_AREA_TS_VASPACE:
477 		case MEM_AREA_PAGER_VASPACE:
478 			break;
479 		default:
480 			check_phys_mem_is_outside(m, num_elems, map);
481 		}
482 	}
483 
484 	discovered_nsec_ddr_start = m;
485 	discovered_nsec_ddr_nelems = num_elems;
486 
487 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
488 				   m[num_elems - 1].size))
489 		panic();
490 }
491 
492 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
493 				    const struct core_mmu_phys_mem **end)
494 {
495 	if (!discovered_nsec_ddr_start)
496 		return false;
497 
498 	*start = discovered_nsec_ddr_start;
499 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
500 
501 	return true;
502 }
503 
504 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
505 {
506 	const struct core_mmu_phys_mem *start;
507 	const struct core_mmu_phys_mem *end;
508 
509 	if (!get_discovered_nsec_ddr(&start, &end))
510 		return false;
511 
512 	return pbuf_is_special_mem(pbuf, len, start, end);
513 }
514 
515 bool core_mmu_nsec_ddr_is_defined(void)
516 {
517 	const struct core_mmu_phys_mem *start;
518 	const struct core_mmu_phys_mem *end;
519 
520 	if (!get_discovered_nsec_ddr(&start, &end))
521 		return false;
522 
523 	return start != end;
524 }
525 #else
526 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
527 {
528 	return false;
529 }
530 #endif /*CFG_CORE_DYN_SHM*/
531 
532 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
533 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
534 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
535 
536 #ifdef CFG_SECURE_DATA_PATH
537 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
538 {
539 	bool is_sdp_mem = false;
540 
541 	if (sec_sdp.size)
542 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
543 						   sec_sdp.size);
544 
545 	if (!is_sdp_mem)
546 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
547 						 phys_sdp_mem_end);
548 
549 	return is_sdp_mem;
550 }
551 
552 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
553 {
554 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
555 					    CORE_MEM_SDP_MEM);
556 
557 	if (!mobj)
558 		panic("can't create SDP physical memory object");
559 
560 	return mobj;
561 }
562 
563 struct mobj **core_sdp_mem_create_mobjs(void)
564 {
565 	const struct core_mmu_phys_mem *mem = NULL;
566 	struct mobj **mobj_base = NULL;
567 	struct mobj **mobj = NULL;
568 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
569 
570 	if (sec_sdp.size)
571 		cnt++;
572 
573 	/* SDP mobjs table must end with a NULL entry */
574 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
575 	if (!mobj_base)
576 		panic("Out of memory");
577 
578 	mobj = mobj_base;
579 
580 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
581 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
582 
583 	if (sec_sdp.size)
584 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
585 
586 	return mobj_base;
587 }
588 
589 #else /* CFG_SECURE_DATA_PATH */
590 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
591 {
592 	return false;
593 }
594 
595 #endif /* CFG_SECURE_DATA_PATH */
596 
597 /* Check special memories comply with registered memories */
598 static void verify_special_mem_areas(struct tee_mmap_region *mem_map,
599 				     size_t len,
600 				     const struct core_mmu_phys_mem *start,
601 				     const struct core_mmu_phys_mem *end,
602 				     const char *area_name __maybe_unused)
603 {
604 	const struct core_mmu_phys_mem *mem;
605 	const struct core_mmu_phys_mem *mem2;
606 	struct tee_mmap_region *mmap;
607 	size_t n;
608 
609 	if (start == end) {
610 		DMSG("No %s memory area defined", area_name);
611 		return;
612 	}
613 
614 	for (mem = start; mem < end; mem++)
615 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
616 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
617 
618 	/* Check memories do not intersect each other */
619 	for (mem = start; mem + 1 < end; mem++) {
620 		for (mem2 = mem + 1; mem2 < end; mem2++) {
621 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
622 						     mem->addr, mem->size)) {
623 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
624 						   mem->addr, mem->size);
625 				panic("Special memory intersection");
626 			}
627 		}
628 	}
629 
630 	/*
631 	 * Check memories do not intersect any mapped memory.
632 	 * This is called before reserved VA space is loaded in mem_map.
633 	 */
634 	for (mem = start; mem < end; mem++) {
635 		for (mmap = mem_map, n = 0; n < len; mmap++, n++) {
636 			if (core_is_buffer_intersect(mem->addr, mem->size,
637 						     mmap->pa, mmap->size)) {
638 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
639 						   mmap->pa, mmap->size);
640 				panic("Special memory intersection");
641 			}
642 		}
643 	}
644 }
645 
646 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems,
647 			 const char *mem_name __maybe_unused,
648 			 enum teecore_memtypes mem_type,
649 			 paddr_t mem_addr, paddr_size_t mem_size, size_t *last)
650 {
651 	size_t n = 0;
652 	paddr_t pa;
653 	paddr_size_t size;
654 
655 	if (!mem_size)	/* Discard null size entries */
656 		return;
657 	/*
658 	 * If some ranges of memory of the same type do overlap
659 	 * each others they are coalesced into one entry. To help this
660 	 * added entries are sorted by increasing physical.
661 	 *
662 	 * Note that it's valid to have the same physical memory as several
663 	 * different memory types, for instance the same device memory
664 	 * mapped as both secure and non-secure. This will probably not
665 	 * happen often in practice.
666 	 */
667 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
668 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
669 	while (true) {
670 		if (n >= (num_elems - 1)) {
671 			EMSG("Out of entries (%zu) in memory_map", num_elems);
672 			panic();
673 		}
674 		if (n == *last)
675 			break;
676 		pa = memory_map[n].pa;
677 		size = memory_map[n].size;
678 		if (mem_type == memory_map[n].type &&
679 		    ((pa <= (mem_addr + (mem_size - 1))) &&
680 		    (mem_addr <= (pa + (size - 1))))) {
681 			DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr);
682 			memory_map[n].pa = MIN(pa, mem_addr);
683 			memory_map[n].size = MAX(size, mem_size) +
684 					     (pa - memory_map[n].pa);
685 			return;
686 		}
687 		if (mem_type < memory_map[n].type ||
688 		    (mem_type == memory_map[n].type && mem_addr < pa))
689 			break; /* found the spot where to insert this memory */
690 		n++;
691 	}
692 
693 	memmove(memory_map + n + 1, memory_map + n,
694 		sizeof(struct tee_mmap_region) * (*last - n));
695 	(*last)++;
696 	memset(memory_map + n, 0, sizeof(memory_map[0]));
697 	memory_map[n].type = mem_type;
698 	memory_map[n].pa = mem_addr;
699 	memory_map[n].size = mem_size;
700 }
701 
702 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems,
703 			 enum teecore_memtypes type, size_t size, size_t *last)
704 {
705 	size_t n = 0;
706 
707 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
708 	while (true) {
709 		if (n >= (num_elems - 1)) {
710 			EMSG("Out of entries (%zu) in memory_map", num_elems);
711 			panic();
712 		}
713 		if (n == *last)
714 			break;
715 		if (type < memory_map[n].type)
716 			break;
717 		n++;
718 	}
719 
720 	memmove(memory_map + n + 1, memory_map + n,
721 		sizeof(struct tee_mmap_region) * (*last - n));
722 	(*last)++;
723 	memset(memory_map + n, 0, sizeof(memory_map[0]));
724 	memory_map[n].type = type;
725 	memory_map[n].size = size;
726 }
727 
728 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
729 {
730 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
731 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
732 				TEE_MATTR_MEM_TYPE_SHIFT;
733 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
734 				TEE_MATTR_MEM_TYPE_SHIFT;
735 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
736 				  TEE_MATTR_MEM_TYPE_SHIFT;
737 
738 	switch (t) {
739 	case MEM_AREA_TEE_RAM:
740 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
741 	case MEM_AREA_TEE_RAM_RX:
742 	case MEM_AREA_INIT_RAM_RX:
743 	case MEM_AREA_IDENTITY_MAP_RX:
744 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
745 	case MEM_AREA_TEE_RAM_RO:
746 	case MEM_AREA_INIT_RAM_RO:
747 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
748 	case MEM_AREA_TEE_RAM_RW:
749 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
750 	case MEM_AREA_NEX_RAM_RW:
751 	case MEM_AREA_TEE_ASAN:
752 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
753 	case MEM_AREA_TEE_COHERENT:
754 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
755 	case MEM_AREA_TA_RAM:
756 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
757 	case MEM_AREA_NSEC_SHM:
758 	case MEM_AREA_NEX_NSEC_SHM:
759 		return attr | TEE_MATTR_PRW | cached;
760 	case MEM_AREA_MANIFEST_DT:
761 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
762 	case MEM_AREA_EXT_DT:
763 		/*
764 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
765 		 * tree as secure non-cached memory, otherwise, fall back to
766 		 * non-secure mapping.
767 		 */
768 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
769 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
770 			       noncache;
771 		fallthrough;
772 	case MEM_AREA_IO_NSEC:
773 		return attr | TEE_MATTR_PRW | noncache;
774 	case MEM_AREA_IO_SEC:
775 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
776 	case MEM_AREA_RAM_NSEC:
777 		return attr | TEE_MATTR_PRW | cached;
778 	case MEM_AREA_RAM_SEC:
779 	case MEM_AREA_SEC_RAM_OVERALL:
780 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
781 	case MEM_AREA_RES_VASPACE:
782 	case MEM_AREA_SHM_VASPACE:
783 		return 0;
784 	case MEM_AREA_PAGER_VASPACE:
785 		return TEE_MATTR_SECURE;
786 	default:
787 		panic("invalid type");
788 	}
789 }
790 
791 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
792 {
793 	switch (mm->type) {
794 	case MEM_AREA_TEE_RAM:
795 	case MEM_AREA_TEE_RAM_RX:
796 	case MEM_AREA_TEE_RAM_RO:
797 	case MEM_AREA_TEE_RAM_RW:
798 	case MEM_AREA_INIT_RAM_RX:
799 	case MEM_AREA_INIT_RAM_RO:
800 	case MEM_AREA_NEX_RAM_RW:
801 	case MEM_AREA_NEX_RAM_RO:
802 	case MEM_AREA_TEE_ASAN:
803 		return true;
804 	default:
805 		return false;
806 	}
807 }
808 
809 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
810 {
811 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
812 }
813 
814 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
815 {
816 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
817 }
818 
819 static int cmp_mmap_by_lower_va(const void *a, const void *b)
820 {
821 	const struct tee_mmap_region *mm_a = a;
822 	const struct tee_mmap_region *mm_b = b;
823 
824 	return CMP_TRILEAN(mm_a->va, mm_b->va);
825 }
826 
827 static void dump_mmap_table(struct tee_mmap_region *memory_map)
828 {
829 	struct tee_mmap_region *map;
830 
831 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
832 		vaddr_t __maybe_unused vstart;
833 
834 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
835 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
836 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
837 		     teecore_memtype_name(map->type), vstart,
838 		     vstart + map->size - 1, map->pa,
839 		     (paddr_t)(map->pa + map->size - 1), map->size,
840 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
841 	}
842 }
843 
844 #if DEBUG_XLAT_TABLE
845 
846 static void dump_xlat_table(vaddr_t va, unsigned int level)
847 {
848 	struct core_mmu_table_info tbl_info;
849 	unsigned int idx = 0;
850 	paddr_t pa;
851 	uint32_t attr;
852 
853 	core_mmu_find_table(NULL, va, level, &tbl_info);
854 	va = tbl_info.va_base;
855 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
856 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
857 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
858 			const char *security_bit = "";
859 
860 			if (core_mmu_entry_have_security_bit(attr)) {
861 				if (attr & TEE_MATTR_SECURE)
862 					security_bit = "S";
863 				else
864 					security_bit = "NS";
865 			}
866 
867 			if (attr & TEE_MATTR_TABLE) {
868 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
869 					" TBL:0x%010" PRIxPA " %s",
870 					level * 2, "", level, va, pa,
871 					security_bit);
872 				dump_xlat_table(va, level + 1);
873 			} else if (attr) {
874 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
875 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
876 					level * 2, "", level, va, pa,
877 					mattr_is_cached(attr) ? "MEM" :
878 					"DEV",
879 					attr & TEE_MATTR_PW ? "RW" : "RO",
880 					attr & TEE_MATTR_PX ? "X " : "XN",
881 					security_bit);
882 			} else {
883 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
884 					    " INVALID\n",
885 					    level * 2, "", level, va);
886 			}
887 		}
888 		va += BIT64(tbl_info.shift);
889 	}
890 }
891 
892 #else
893 
894 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
895 {
896 }
897 
898 #endif
899 
900 /*
901  * Reserves virtual memory space for pager usage.
902  *
903  * From the start of the first memory used by the link script +
904  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
905  * mapping for pager usage. This adds translation tables as needed for the
906  * pager to operate.
907  */
908 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems,
909 			      size_t *last)
910 {
911 	paddr_t begin = 0;
912 	paddr_t end = 0;
913 	size_t size = 0;
914 	size_t pos = 0;
915 	size_t n = 0;
916 
917 	if (*last >= (num_elems - 1)) {
918 		EMSG("Out of entries (%zu) in memory map", num_elems);
919 		panic();
920 	}
921 
922 	for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) {
923 		if (map_is_tee_ram(mmap + n)) {
924 			if (!begin)
925 				begin = mmap[n].pa;
926 			pos = n + 1;
927 		}
928 	}
929 
930 	end = mmap[pos - 1].pa + mmap[pos - 1].size;
931 	assert(end - begin < TEE_RAM_VA_SIZE);
932 	size = TEE_RAM_VA_SIZE - (end - begin);
933 
934 	assert(pos <= *last);
935 	memmove(mmap + pos + 1, mmap + pos,
936 		sizeof(struct tee_mmap_region) * (*last - pos));
937 	(*last)++;
938 	memset(mmap + pos, 0, sizeof(mmap[0]));
939 	mmap[pos].type = MEM_AREA_PAGER_VASPACE;
940 	mmap[pos].va = 0;
941 	mmap[pos].size = size;
942 	mmap[pos].region_size = SMALL_PAGE_SIZE;
943 	mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE);
944 }
945 
946 static void check_sec_nsec_mem_config(void)
947 {
948 	size_t n = 0;
949 
950 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
951 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
952 				    secure_only[n].size))
953 			panic("Invalid memory access config: sec/nsec");
954 	}
955 }
956 
957 static void collect_device_mem_ranges(struct tee_mmap_region *memory_map,
958 				      size_t num_elems, size_t *last)
959 {
960 	const char *compatible = "arm,ffa-manifest-device-regions";
961 	void *fdt = get_manifest_dt();
962 	const char *name = NULL;
963 	uint64_t page_count = 0;
964 	uint64_t base = 0;
965 	int subnode = 0;
966 	int node = 0;
967 
968 	node = fdt_node_offset_by_compatible(fdt, 0, compatible);
969 	if (node < 0)
970 		return;
971 
972 	fdt_for_each_subnode(subnode, fdt, node) {
973 		name = fdt_get_name(fdt, subnode, NULL);
974 		if (!name)
975 			continue;
976 
977 		if (dt_getprop_as_number(fdt, subnode, "base-address",
978 					 &base)) {
979 			EMSG("Mandatory field is missing: base-address");
980 			continue;
981 		}
982 
983 		if (base & SMALL_PAGE_MASK) {
984 			EMSG("base-address is not page aligned");
985 			continue;
986 		}
987 
988 		if (dt_getprop_as_number(fdt, subnode, "pages-count",
989 					 &page_count)) {
990 			EMSG("Mandatory field is missing: pages-count");
991 			continue;
992 		}
993 
994 		add_phys_mem(memory_map, num_elems, name, MEM_AREA_IO_SEC,
995 			     base, base + page_count * SMALL_PAGE_SIZE, last);
996 	}
997 }
998 
999 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map,
1000 				 size_t num_elems)
1001 {
1002 	const struct core_mmu_phys_mem *mem = NULL;
1003 	vaddr_t ram_start = secure_only[0].paddr;
1004 	size_t last = 0;
1005 
1006 
1007 #define ADD_PHYS_MEM(_type, _addr, _size) \
1008 		add_phys_mem(memory_map, num_elems, #_addr, (_type), \
1009 			     (_addr), (_size),  &last)
1010 
1011 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
1012 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start,
1013 			     VCORE_UNPG_RX_PA - ram_start);
1014 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
1015 			     VCORE_UNPG_RX_SZ);
1016 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
1017 			     VCORE_UNPG_RO_SZ);
1018 
1019 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1020 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
1021 				     VCORE_UNPG_RW_SZ);
1022 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
1023 				     VCORE_NEX_RW_SZ);
1024 		} else {
1025 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
1026 				     VCORE_UNPG_RW_SZ);
1027 		}
1028 
1029 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1030 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
1031 				     VCORE_INIT_RX_SZ);
1032 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
1033 				     VCORE_INIT_RO_SZ);
1034 		}
1035 	} else {
1036 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
1037 	}
1038 
1039 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1040 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
1041 			     TRUSTED_DRAM_SIZE);
1042 	} else {
1043 		/*
1044 		 * Every guest will have own TA RAM if virtualization
1045 		 * support is enabled.
1046 		 */
1047 		paddr_t ta_base = 0;
1048 		size_t ta_size = 0;
1049 
1050 		core_mmu_get_ta_range(&ta_base, &ta_size);
1051 		ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size);
1052 	}
1053 
1054 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
1055 	    IS_ENABLED(CFG_WITH_PAGER)) {
1056 		/*
1057 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
1058 		 * disabled.
1059 		 */
1060 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1061 	}
1062 
1063 #undef ADD_PHYS_MEM
1064 
1065 	/* Collect device memory info from SP manifest */
1066 	if (IS_ENABLED(CFG_CORE_SEL2_SPMC))
1067 		collect_device_mem_ranges(memory_map, num_elems, &last);
1068 
1069 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1070 		/* Only unmapped virtual range may have a null phys addr */
1071 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1072 
1073 		add_phys_mem(memory_map, num_elems, mem->name, mem->type,
1074 			     mem->addr, mem->size, &last);
1075 	}
1076 
1077 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1078 		verify_special_mem_areas(memory_map, num_elems,
1079 					 phys_sdp_mem_begin,
1080 					 phys_sdp_mem_end, "SDP");
1081 
1082 	add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE,
1083 		     CFG_RESERVED_VASPACE_SIZE, &last);
1084 
1085 	add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE,
1086 		     SHM_VASPACE_SIZE, &last);
1087 
1088 	memory_map[last].type = MEM_AREA_END;
1089 
1090 	return last;
1091 }
1092 
1093 static void assign_mem_granularity(struct tee_mmap_region *memory_map)
1094 {
1095 	struct tee_mmap_region *map = NULL;
1096 
1097 	/*
1098 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1099 	 * SMALL_PAGE_SIZE.
1100 	 */
1101 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1102 		paddr_t mask = map->pa | map->size;
1103 
1104 		if (!(mask & CORE_MMU_PGDIR_MASK))
1105 			map->region_size = CORE_MMU_PGDIR_SIZE;
1106 		else if (!(mask & SMALL_PAGE_MASK))
1107 			map->region_size = SMALL_PAGE_SIZE;
1108 		else
1109 			panic("Impossible memory alignment");
1110 
1111 		if (map_is_tee_ram(map))
1112 			map->region_size = SMALL_PAGE_SIZE;
1113 	}
1114 }
1115 
1116 static bool place_tee_ram_at_top(paddr_t paddr)
1117 {
1118 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1119 }
1120 
1121 /*
1122  * MMU arch driver shall override this function if it helps
1123  * optimizing the memory footprint of the address translation tables.
1124  */
1125 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1126 {
1127 	return place_tee_ram_at_top(paddr);
1128 }
1129 
1130 static bool assign_mem_va_dir(vaddr_t tee_ram_va,
1131 			      struct tee_mmap_region *memory_map,
1132 			      bool tee_ram_at_top)
1133 {
1134 	struct tee_mmap_region *map = NULL;
1135 	vaddr_t va = 0;
1136 	bool va_is_secure = true;
1137 
1138 	/*
1139 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1140 	 * 0 is by design an invalid va, so return false directly.
1141 	 */
1142 	if (!tee_ram_va)
1143 		return false;
1144 
1145 	/* Clear eventual previous assignments */
1146 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1147 		map->va = 0;
1148 
1149 	/*
1150 	 * TEE RAM regions are always aligned with region_size.
1151 	 *
1152 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1153 	 * since it handles virtual memory which covers the part of the ELF
1154 	 * that cannot fit directly into memory.
1155 	 */
1156 	va = tee_ram_va;
1157 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1158 		if (map_is_tee_ram(map) ||
1159 		    map->type == MEM_AREA_PAGER_VASPACE) {
1160 			assert(!(va & (map->region_size - 1)));
1161 			assert(!(map->size & (map->region_size - 1)));
1162 			map->va = va;
1163 			if (ADD_OVERFLOW(va, map->size, &va))
1164 				return false;
1165 			if (va >= BIT64(core_mmu_get_va_width()))
1166 				return false;
1167 		}
1168 	}
1169 
1170 	if (tee_ram_at_top) {
1171 		/*
1172 		 * Map non-tee ram regions at addresses lower than the tee
1173 		 * ram region.
1174 		 */
1175 		va = tee_ram_va;
1176 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1177 			map->attr = core_mmu_type_to_attr(map->type);
1178 			if (map->va)
1179 				continue;
1180 
1181 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1182 			    va_is_secure != map_is_secure(map)) {
1183 				va_is_secure = !va_is_secure;
1184 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1185 			}
1186 
1187 			if (SUB_OVERFLOW(va, map->size, &va))
1188 				return false;
1189 			va = ROUNDDOWN(va, map->region_size);
1190 			/*
1191 			 * Make sure that va is aligned with pa for
1192 			 * efficient pgdir mapping. Basically pa &
1193 			 * pgdir_mask should be == va & pgdir_mask
1194 			 */
1195 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1196 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1197 					return false;
1198 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1199 			}
1200 			map->va = va;
1201 		}
1202 	} else {
1203 		/*
1204 		 * Map non-tee ram regions at addresses higher than the tee
1205 		 * ram region.
1206 		 */
1207 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1208 			map->attr = core_mmu_type_to_attr(map->type);
1209 			if (map->va)
1210 				continue;
1211 
1212 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1213 			    va_is_secure != map_is_secure(map)) {
1214 				va_is_secure = !va_is_secure;
1215 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1216 						     &va))
1217 					return false;
1218 			}
1219 
1220 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1221 				return false;
1222 			/*
1223 			 * Make sure that va is aligned with pa for
1224 			 * efficient pgdir mapping. Basically pa &
1225 			 * pgdir_mask should be == va & pgdir_mask
1226 			 */
1227 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1228 				vaddr_t offs = (map->pa - va) &
1229 					       CORE_MMU_PGDIR_MASK;
1230 
1231 				if (ADD_OVERFLOW(va, offs, &va))
1232 					return false;
1233 			}
1234 
1235 			map->va = va;
1236 			if (ADD_OVERFLOW(va, map->size, &va))
1237 				return false;
1238 			if (va >= BIT64(core_mmu_get_va_width()))
1239 				return false;
1240 		}
1241 	}
1242 
1243 	return true;
1244 }
1245 
1246 static bool assign_mem_va(vaddr_t tee_ram_va,
1247 			  struct tee_mmap_region *memory_map)
1248 {
1249 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1250 
1251 	/*
1252 	 * Check that we're not overlapping with the user VA range.
1253 	 */
1254 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1255 		/*
1256 		 * User VA range is supposed to be defined after these
1257 		 * mappings have been established.
1258 		 */
1259 		assert(!core_mmu_user_va_range_is_defined());
1260 	} else {
1261 		vaddr_t user_va_base = 0;
1262 		size_t user_va_size = 0;
1263 
1264 		assert(core_mmu_user_va_range_is_defined());
1265 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1266 		if (tee_ram_va < (user_va_base + user_va_size))
1267 			return false;
1268 	}
1269 
1270 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1271 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1272 
1273 		/* Try whole mapping covered by a single base xlat entry */
1274 		if (prefered_dir != tee_ram_at_top &&
1275 		    assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir))
1276 			return true;
1277 	}
1278 
1279 	return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top);
1280 }
1281 
1282 static int cmp_init_mem_map(const void *a, const void *b)
1283 {
1284 	const struct tee_mmap_region *mm_a = a;
1285 	const struct tee_mmap_region *mm_b = b;
1286 	int rc = 0;
1287 
1288 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1289 	if (!rc)
1290 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1291 	/*
1292 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1293 	 * the same level2 table. Hence sort secure mapping from non-secure
1294 	 * mapping.
1295 	 */
1296 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1297 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1298 
1299 	return rc;
1300 }
1301 
1302 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map,
1303 			       size_t num_elems, size_t *last,
1304 			       vaddr_t id_map_start, vaddr_t id_map_end)
1305 {
1306 	struct tee_mmap_region *map = NULL;
1307 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1308 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1309 	size_t len = end - start;
1310 
1311 	if (*last >= num_elems - 1) {
1312 		EMSG("Out of entries (%zu) in memory map", num_elems);
1313 		panic();
1314 	}
1315 
1316 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1317 		if (core_is_buffer_intersect(map->va, map->size, start, len))
1318 			return false;
1319 
1320 	*map = (struct tee_mmap_region){
1321 		.type = MEM_AREA_IDENTITY_MAP_RX,
1322 		/*
1323 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1324 		 * translation table, at the increased risk of clashes with
1325 		 * the rest of the memory map.
1326 		 */
1327 		.region_size = SMALL_PAGE_SIZE,
1328 		.pa = start,
1329 		.va = start,
1330 		.size = len,
1331 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1332 	};
1333 
1334 	(*last)++;
1335 
1336 	return true;
1337 }
1338 
1339 static unsigned long init_mem_map(struct tee_mmap_region *memory_map,
1340 				  size_t num_elems, unsigned long seed)
1341 {
1342 	/*
1343 	 * @id_map_start and @id_map_end describes a physical memory range
1344 	 * that must be mapped Read-Only eXecutable at identical virtual
1345 	 * addresses.
1346 	 */
1347 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1348 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1349 	vaddr_t start_addr = secure_only[0].paddr;
1350 	unsigned long offs = 0;
1351 	size_t last = 0;
1352 
1353 	last = collect_mem_ranges(memory_map, num_elems);
1354 	assign_mem_granularity(memory_map);
1355 
1356 	/*
1357 	 * To ease mapping and lower use of xlat tables, sort mapping
1358 	 * description moving small-page regions after the pgdir regions.
1359 	 */
1360 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1361 	      cmp_init_mem_map);
1362 
1363 	if (IS_ENABLED(CFG_WITH_PAGER))
1364 		add_pager_vaspace(memory_map, num_elems, &last);
1365 
1366 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1367 		vaddr_t base_addr = start_addr + seed;
1368 		const unsigned int va_width = core_mmu_get_va_width();
1369 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1370 						   SMALL_PAGE_SHIFT);
1371 		vaddr_t ba = base_addr;
1372 		size_t n = 0;
1373 
1374 		for (n = 0; n < 3; n++) {
1375 			if (n)
1376 				ba = base_addr ^ BIT64(va_width - n);
1377 			ba &= va_mask;
1378 			if (assign_mem_va(ba, memory_map) &&
1379 			    mem_map_add_id_map(memory_map, num_elems, &last,
1380 					       id_map_start, id_map_end)) {
1381 				offs = ba - start_addr;
1382 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1383 				     ba, offs);
1384 				goto out;
1385 			} else {
1386 				DMSG("Failed to map core at %#"PRIxVA, ba);
1387 			}
1388 		}
1389 		EMSG("Failed to map core with seed %#lx", seed);
1390 	}
1391 
1392 	if (!assign_mem_va(start_addr, memory_map))
1393 		panic();
1394 
1395 out:
1396 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1397 	      cmp_mmap_by_lower_va);
1398 
1399 	dump_mmap_table(memory_map);
1400 
1401 	return offs;
1402 }
1403 
1404 static void check_mem_map(struct tee_mmap_region *map)
1405 {
1406 	struct tee_mmap_region *m = NULL;
1407 
1408 	for (m = map; !core_mmap_is_end_of_table(m); m++) {
1409 		switch (m->type) {
1410 		case MEM_AREA_TEE_RAM:
1411 		case MEM_AREA_TEE_RAM_RX:
1412 		case MEM_AREA_TEE_RAM_RO:
1413 		case MEM_AREA_TEE_RAM_RW:
1414 		case MEM_AREA_INIT_RAM_RX:
1415 		case MEM_AREA_INIT_RAM_RO:
1416 		case MEM_AREA_NEX_RAM_RW:
1417 		case MEM_AREA_NEX_RAM_RO:
1418 		case MEM_AREA_IDENTITY_MAP_RX:
1419 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1420 				panic("TEE_RAM can't fit in secure_only");
1421 			break;
1422 		case MEM_AREA_TA_RAM:
1423 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1424 				panic("TA_RAM can't fit in secure_only");
1425 			break;
1426 		case MEM_AREA_NSEC_SHM:
1427 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1428 				panic("NS_SHM can't fit in nsec_shared");
1429 			break;
1430 		case MEM_AREA_SEC_RAM_OVERALL:
1431 		case MEM_AREA_TEE_COHERENT:
1432 		case MEM_AREA_TEE_ASAN:
1433 		case MEM_AREA_IO_SEC:
1434 		case MEM_AREA_IO_NSEC:
1435 		case MEM_AREA_EXT_DT:
1436 		case MEM_AREA_MANIFEST_DT:
1437 		case MEM_AREA_RAM_SEC:
1438 		case MEM_AREA_RAM_NSEC:
1439 		case MEM_AREA_RES_VASPACE:
1440 		case MEM_AREA_SHM_VASPACE:
1441 		case MEM_AREA_PAGER_VASPACE:
1442 			break;
1443 		default:
1444 			EMSG("Uhandled memtype %d", m->type);
1445 			panic();
1446 		}
1447 	}
1448 }
1449 
1450 static struct tee_mmap_region *get_tmp_mmap(void)
1451 {
1452 	struct tee_mmap_region *tmp_mmap = (void *)__heap1_start;
1453 
1454 #ifdef CFG_WITH_PAGER
1455 	if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map))
1456 		tmp_mmap = (void *)__heap2_start;
1457 #endif
1458 
1459 	memset(tmp_mmap, 0, sizeof(static_memory_map));
1460 
1461 	return tmp_mmap;
1462 }
1463 
1464 /*
1465  * core_init_mmu_map() - init tee core default memory mapping
1466  *
1467  * This routine sets the static default TEE core mapping. If @seed is > 0
1468  * and configured with CFG_CORE_ASLR it will map tee core at a location
1469  * based on the seed and return the offset from the link address.
1470  *
1471  * If an error happened: core_init_mmu_map is expected to panic.
1472  *
1473  * Note: this function is weak just to make it possible to exclude it from
1474  * the unpaged area.
1475  */
1476 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1477 {
1478 #ifndef CFG_NS_VIRTUALIZATION
1479 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1480 #else
1481 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1482 				  SMALL_PAGE_SIZE);
1483 #endif
1484 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1485 	struct tee_mmap_region *tmp_mmap = get_tmp_mmap();
1486 	unsigned long offs = 0;
1487 
1488 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1489 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1490 		panic("OP-TEE load address is not page aligned");
1491 
1492 	check_sec_nsec_mem_config();
1493 
1494 	/*
1495 	 * Add a entry covering the translation tables which will be
1496 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1497 	 */
1498 	static_memory_map[0] = (struct tee_mmap_region){
1499 		.type = MEM_AREA_TEE_RAM,
1500 		.region_size = SMALL_PAGE_SIZE,
1501 		.pa = start,
1502 		.va = start,
1503 		.size = len,
1504 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1505 	};
1506 
1507 	COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13);
1508 	offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed);
1509 
1510 	check_mem_map(tmp_mmap);
1511 	core_init_mmu(tmp_mmap);
1512 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1513 	core_init_mmu_regs(cfg);
1514 	cfg->map_offset = offs;
1515 	memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map));
1516 }
1517 
1518 bool core_mmu_mattr_is_ok(uint32_t mattr)
1519 {
1520 	/*
1521 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1522 	 * core_mmu_v7.c:mattr_to_texcb
1523 	 */
1524 
1525 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1526 	case TEE_MATTR_MEM_TYPE_DEV:
1527 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1528 	case TEE_MATTR_MEM_TYPE_CACHED:
1529 	case TEE_MATTR_MEM_TYPE_TAGGED:
1530 		return true;
1531 	default:
1532 		return false;
1533 	}
1534 }
1535 
1536 /*
1537  * test attributes of target physical buffer
1538  *
1539  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1540  *
1541  */
1542 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1543 {
1544 	paddr_t ta_base = 0;
1545 	size_t ta_size = 0;
1546 	struct tee_mmap_region *map;
1547 
1548 	/* Empty buffers complies with anything */
1549 	if (len == 0)
1550 		return true;
1551 
1552 	switch (attr) {
1553 	case CORE_MEM_SEC:
1554 		return pbuf_is_inside(secure_only, pbuf, len);
1555 	case CORE_MEM_NON_SEC:
1556 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1557 			pbuf_is_nsec_ddr(pbuf, len);
1558 	case CORE_MEM_TEE_RAM:
1559 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1560 							TEE_RAM_PH_SIZE);
1561 	case CORE_MEM_TA_RAM:
1562 		core_mmu_get_ta_range(&ta_base, &ta_size);
1563 		return core_is_buffer_inside(pbuf, len, ta_base, ta_size);
1564 #ifdef CFG_CORE_RESERVED_SHM
1565 	case CORE_MEM_NSEC_SHM:
1566 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1567 							TEE_SHMEM_SIZE);
1568 #endif
1569 	case CORE_MEM_SDP_MEM:
1570 		return pbuf_is_sdp_mem(pbuf, len);
1571 	case CORE_MEM_CACHED:
1572 		map = find_map_by_pa(pbuf);
1573 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1574 			return false;
1575 		return mattr_is_cached(map->attr);
1576 	default:
1577 		return false;
1578 	}
1579 }
1580 
1581 /* test attributes of target virtual buffer (in core mapping) */
1582 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1583 {
1584 	paddr_t p;
1585 
1586 	/* Empty buffers complies with anything */
1587 	if (len == 0)
1588 		return true;
1589 
1590 	p = virt_to_phys((void *)vbuf);
1591 	if (!p)
1592 		return false;
1593 
1594 	return core_pbuf_is(attr, p, len);
1595 }
1596 
1597 /* core_va2pa - teecore exported service */
1598 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1599 {
1600 	struct tee_mmap_region *map;
1601 
1602 	map = find_map_by_va(va);
1603 	if (!va_is_in_map(map, (vaddr_t)va))
1604 		return -1;
1605 
1606 	/*
1607 	 * We can calculate PA for static map. Virtual address ranges
1608 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1609 	 * together with an invalid null physical address.
1610 	 */
1611 	if (map->pa)
1612 		*pa = map->pa + (vaddr_t)va  - map->va;
1613 	else
1614 		*pa = 0;
1615 
1616 	return 0;
1617 }
1618 
1619 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1620 {
1621 	if (!pa_is_in_map(map, pa, len))
1622 		return NULL;
1623 
1624 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1625 }
1626 
1627 /*
1628  * teecore gets some memory area definitions
1629  */
1630 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1631 			      vaddr_t *e)
1632 {
1633 	struct tee_mmap_region *map = find_map_by_type(type);
1634 
1635 	if (map) {
1636 		*s = map->va;
1637 		*e = map->va + map->size;
1638 	} else {
1639 		*s = 0;
1640 		*e = 0;
1641 	}
1642 }
1643 
1644 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1645 {
1646 	struct tee_mmap_region *map = find_map_by_pa(pa);
1647 
1648 	if (!map)
1649 		return MEM_AREA_MAXTYPE;
1650 	return map->type;
1651 }
1652 
1653 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1654 			paddr_t pa, uint32_t attr)
1655 {
1656 	assert(idx < tbl_info->num_entries);
1657 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1658 				     idx, pa, attr);
1659 }
1660 
1661 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1662 			paddr_t *pa, uint32_t *attr)
1663 {
1664 	assert(idx < tbl_info->num_entries);
1665 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1666 				     idx, pa, attr);
1667 }
1668 
1669 static void clear_region(struct core_mmu_table_info *tbl_info,
1670 			 struct tee_mmap_region *region)
1671 {
1672 	unsigned int end = 0;
1673 	unsigned int idx = 0;
1674 
1675 	/* va, len and pa should be block aligned */
1676 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1677 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1678 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1679 
1680 	idx = core_mmu_va2idx(tbl_info, region->va);
1681 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1682 
1683 	while (idx < end) {
1684 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1685 		idx++;
1686 	}
1687 }
1688 
1689 static void set_region(struct core_mmu_table_info *tbl_info,
1690 		       struct tee_mmap_region *region)
1691 {
1692 	unsigned int end;
1693 	unsigned int idx;
1694 	paddr_t pa;
1695 
1696 	/* va, len and pa should be block aligned */
1697 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1698 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1699 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1700 
1701 	idx = core_mmu_va2idx(tbl_info, region->va);
1702 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1703 	pa = region->pa;
1704 
1705 	while (idx < end) {
1706 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1707 		idx++;
1708 		pa += BIT64(tbl_info->shift);
1709 	}
1710 }
1711 
1712 static void set_pg_region(struct core_mmu_table_info *dir_info,
1713 			  struct vm_region *region, struct pgt **pgt,
1714 			  struct core_mmu_table_info *pg_info)
1715 {
1716 	struct tee_mmap_region r = {
1717 		.va = region->va,
1718 		.size = region->size,
1719 		.attr = region->attr,
1720 	};
1721 	vaddr_t end = r.va + r.size;
1722 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1723 
1724 	while (r.va < end) {
1725 		if (!pg_info->table ||
1726 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1727 			/*
1728 			 * We're assigning a new translation table.
1729 			 */
1730 			unsigned int idx;
1731 
1732 			/* Virtual addresses must grow */
1733 			assert(r.va > pg_info->va_base);
1734 
1735 			idx = core_mmu_va2idx(dir_info, r.va);
1736 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1737 
1738 			/*
1739 			 * Advance pgt to va_base, note that we may need to
1740 			 * skip multiple page tables if there are large
1741 			 * holes in the vm map.
1742 			 */
1743 			while ((*pgt)->vabase < pg_info->va_base) {
1744 				*pgt = SLIST_NEXT(*pgt, link);
1745 				/* We should have allocated enough */
1746 				assert(*pgt);
1747 			}
1748 			assert((*pgt)->vabase == pg_info->va_base);
1749 			pg_info->table = (*pgt)->tbl;
1750 
1751 			core_mmu_set_entry(dir_info, idx,
1752 					   virt_to_phys(pg_info->table),
1753 					   pgt_attr);
1754 		}
1755 
1756 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1757 			     end - r.va);
1758 
1759 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1760 			size_t granule = BIT(pg_info->shift);
1761 			size_t offset = r.va - region->va + region->offset;
1762 
1763 			r.size = MIN(r.size,
1764 				     mobj_get_phys_granule(region->mobj));
1765 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1766 
1767 			if (mobj_get_pa(region->mobj, offset, granule,
1768 					&r.pa) != TEE_SUCCESS)
1769 				panic("Failed to get PA of unpaged mobj");
1770 			set_region(pg_info, &r);
1771 		}
1772 		r.va += r.size;
1773 	}
1774 }
1775 
1776 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1777 			     size_t size_left, paddr_t block_size,
1778 			     struct tee_mmap_region *mm __maybe_unused)
1779 {
1780 	/* VA and PA are aligned to block size at current level */
1781 	if ((vaddr | paddr) & (block_size - 1))
1782 		return false;
1783 
1784 	/* Remainder fits into block at current level */
1785 	if (size_left < block_size)
1786 		return false;
1787 
1788 #ifdef CFG_WITH_PAGER
1789 	/*
1790 	 * If pager is enabled, we need to map tee ram
1791 	 * regions with small pages only
1792 	 */
1793 	if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE)
1794 		return false;
1795 #endif
1796 
1797 	return true;
1798 }
1799 
1800 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1801 {
1802 	struct core_mmu_table_info tbl_info;
1803 	unsigned int idx;
1804 	vaddr_t vaddr = mm->va;
1805 	paddr_t paddr = mm->pa;
1806 	ssize_t size_left = mm->size;
1807 	unsigned int level;
1808 	bool table_found;
1809 	uint32_t old_attr;
1810 
1811 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1812 
1813 	while (size_left > 0) {
1814 		level = CORE_MMU_BASE_TABLE_LEVEL;
1815 
1816 		while (true) {
1817 			paddr_t block_size = 0;
1818 
1819 			assert(core_mmu_level_in_range(level));
1820 
1821 			table_found = core_mmu_find_table(prtn, vaddr, level,
1822 							  &tbl_info);
1823 			if (!table_found)
1824 				panic("can't find table for mapping");
1825 
1826 			block_size = BIT64(tbl_info.shift);
1827 
1828 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1829 			if (!can_map_at_level(paddr, vaddr, size_left,
1830 					      block_size, mm)) {
1831 				bool secure = mm->attr & TEE_MATTR_SECURE;
1832 
1833 				/*
1834 				 * This part of the region can't be mapped at
1835 				 * this level. Need to go deeper.
1836 				 */
1837 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1838 								     idx,
1839 								     secure))
1840 					panic("Can't divide MMU entry");
1841 				level = tbl_info.next_level;
1842 				continue;
1843 			}
1844 
1845 			/* We can map part of the region at current level */
1846 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1847 			if (old_attr)
1848 				panic("Page is already mapped");
1849 
1850 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1851 			paddr += block_size;
1852 			vaddr += block_size;
1853 			size_left -= block_size;
1854 
1855 			break;
1856 		}
1857 	}
1858 }
1859 
1860 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1861 			      enum teecore_memtypes memtype)
1862 {
1863 	TEE_Result ret;
1864 	struct core_mmu_table_info tbl_info;
1865 	struct tee_mmap_region *mm;
1866 	unsigned int idx;
1867 	uint32_t old_attr;
1868 	uint32_t exceptions;
1869 	vaddr_t vaddr = vstart;
1870 	size_t i;
1871 	bool secure;
1872 
1873 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1874 
1875 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1876 
1877 	if (vaddr & SMALL_PAGE_MASK)
1878 		return TEE_ERROR_BAD_PARAMETERS;
1879 
1880 	exceptions = mmu_lock();
1881 
1882 	mm = find_map_by_va((void *)vaddr);
1883 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1884 		panic("VA does not belong to any known mm region");
1885 
1886 	if (!core_mmu_is_dynamic_vaspace(mm))
1887 		panic("Trying to map into static region");
1888 
1889 	for (i = 0; i < num_pages; i++) {
1890 		if (pages[i] & SMALL_PAGE_MASK) {
1891 			ret = TEE_ERROR_BAD_PARAMETERS;
1892 			goto err;
1893 		}
1894 
1895 		while (true) {
1896 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1897 						 &tbl_info))
1898 				panic("Can't find pagetable for vaddr ");
1899 
1900 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1901 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1902 				break;
1903 
1904 			/* This is supertable. Need to divide it. */
1905 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1906 							     secure))
1907 				panic("Failed to spread pgdir on small tables");
1908 		}
1909 
1910 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1911 		if (old_attr)
1912 			panic("Page is already mapped");
1913 
1914 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1915 				   core_mmu_type_to_attr(memtype));
1916 		vaddr += SMALL_PAGE_SIZE;
1917 	}
1918 
1919 	/*
1920 	 * Make sure all the changes to translation tables are visible
1921 	 * before returning. TLB doesn't need to be invalidated as we are
1922 	 * guaranteed that there's no valid mapping in this range.
1923 	 */
1924 	core_mmu_table_write_barrier();
1925 	mmu_unlock(exceptions);
1926 
1927 	return TEE_SUCCESS;
1928 err:
1929 	mmu_unlock(exceptions);
1930 
1931 	if (i)
1932 		core_mmu_unmap_pages(vstart, i);
1933 
1934 	return ret;
1935 }
1936 
1937 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
1938 					 size_t num_pages,
1939 					 enum teecore_memtypes memtype)
1940 {
1941 	struct core_mmu_table_info tbl_info = { };
1942 	struct tee_mmap_region *mm = NULL;
1943 	unsigned int idx = 0;
1944 	uint32_t old_attr = 0;
1945 	uint32_t exceptions = 0;
1946 	vaddr_t vaddr = vstart;
1947 	paddr_t paddr = pstart;
1948 	size_t i = 0;
1949 	bool secure = false;
1950 
1951 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1952 
1953 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1954 
1955 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
1956 		return TEE_ERROR_BAD_PARAMETERS;
1957 
1958 	exceptions = mmu_lock();
1959 
1960 	mm = find_map_by_va((void *)vaddr);
1961 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1962 		panic("VA does not belong to any known mm region");
1963 
1964 	if (!core_mmu_is_dynamic_vaspace(mm))
1965 		panic("Trying to map into static region");
1966 
1967 	for (i = 0; i < num_pages; i++) {
1968 		while (true) {
1969 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1970 						 &tbl_info))
1971 				panic("Can't find pagetable for vaddr ");
1972 
1973 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1974 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1975 				break;
1976 
1977 			/* This is supertable. Need to divide it. */
1978 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1979 							     secure))
1980 				panic("Failed to spread pgdir on small tables");
1981 		}
1982 
1983 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1984 		if (old_attr)
1985 			panic("Page is already mapped");
1986 
1987 		core_mmu_set_entry(&tbl_info, idx, paddr,
1988 				   core_mmu_type_to_attr(memtype));
1989 		paddr += SMALL_PAGE_SIZE;
1990 		vaddr += SMALL_PAGE_SIZE;
1991 	}
1992 
1993 	/*
1994 	 * Make sure all the changes to translation tables are visible
1995 	 * before returning. TLB doesn't need to be invalidated as we are
1996 	 * guaranteed that there's no valid mapping in this range.
1997 	 */
1998 	core_mmu_table_write_barrier();
1999 	mmu_unlock(exceptions);
2000 
2001 	return TEE_SUCCESS;
2002 }
2003 
2004 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
2005 {
2006 	struct core_mmu_table_info tbl_info;
2007 	struct tee_mmap_region *mm;
2008 	size_t i;
2009 	unsigned int idx;
2010 	uint32_t exceptions;
2011 
2012 	exceptions = mmu_lock();
2013 
2014 	mm = find_map_by_va((void *)vstart);
2015 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
2016 		panic("VA does not belong to any known mm region");
2017 
2018 	if (!core_mmu_is_dynamic_vaspace(mm))
2019 		panic("Trying to unmap static region");
2020 
2021 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
2022 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
2023 			panic("Can't find pagetable");
2024 
2025 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
2026 			panic("Invalid pagetable level");
2027 
2028 		idx = core_mmu_va2idx(&tbl_info, vstart);
2029 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
2030 	}
2031 	tlbi_all();
2032 
2033 	mmu_unlock(exceptions);
2034 }
2035 
2036 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
2037 				struct user_mode_ctx *uctx)
2038 {
2039 	struct core_mmu_table_info pg_info = { };
2040 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
2041 	struct pgt *pgt = NULL;
2042 	struct pgt *p = NULL;
2043 	struct vm_region *r = NULL;
2044 
2045 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
2046 		return; /* Nothing to map */
2047 
2048 	/*
2049 	 * Allocate all page tables in advance.
2050 	 */
2051 	pgt_get_all(uctx);
2052 	pgt = SLIST_FIRST(pgt_cache);
2053 
2054 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2055 
2056 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2057 		set_pg_region(dir_info, r, &pgt, &pg_info);
2058 	/* Record that the translation tables now are populated. */
2059 	SLIST_FOREACH(p, pgt_cache, link) {
2060 		p->populated = true;
2061 		if (p == pgt)
2062 			break;
2063 	}
2064 	assert(p == pgt);
2065 }
2066 
2067 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2068 				   size_t len)
2069 {
2070 	struct core_mmu_table_info tbl_info = { };
2071 	struct tee_mmap_region *res_map = NULL;
2072 	struct tee_mmap_region *map = NULL;
2073 	paddr_t pa = virt_to_phys(addr);
2074 	size_t granule = 0;
2075 	ptrdiff_t i = 0;
2076 	paddr_t p = 0;
2077 	size_t l = 0;
2078 
2079 	map = find_map_by_type_and_pa(type, pa, len);
2080 	if (!map)
2081 		return TEE_ERROR_GENERIC;
2082 
2083 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2084 	if (!res_map)
2085 		return TEE_ERROR_GENERIC;
2086 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2087 		return TEE_ERROR_GENERIC;
2088 	granule = BIT(tbl_info.shift);
2089 
2090 	if (map < static_memory_map ||
2091 	    map >= static_memory_map + ARRAY_SIZE(static_memory_map))
2092 		return TEE_ERROR_GENERIC;
2093 	i = map - static_memory_map;
2094 
2095 	/* Check that we have a full match */
2096 	p = ROUNDDOWN(pa, granule);
2097 	l = ROUNDUP(len + pa - p, granule);
2098 	if (map->pa != p || map->size != l)
2099 		return TEE_ERROR_GENERIC;
2100 
2101 	clear_region(&tbl_info, map);
2102 	tlbi_all();
2103 
2104 	/* If possible remove the va range from res_map */
2105 	if (res_map->va - map->size == map->va) {
2106 		res_map->va -= map->size;
2107 		res_map->size += map->size;
2108 	}
2109 
2110 	/* Remove the entry. */
2111 	memmove(map, map + 1,
2112 		(ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map));
2113 
2114 	/* Clear the last new entry in case it was used */
2115 	memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1,
2116 	       0, sizeof(*map));
2117 
2118 	return TEE_SUCCESS;
2119 }
2120 
2121 struct tee_mmap_region *
2122 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2123 {
2124 	struct tee_mmap_region *map = NULL;
2125 	struct tee_mmap_region *map_found = NULL;
2126 
2127 	if (!len)
2128 		return NULL;
2129 
2130 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
2131 		if (map->type != type)
2132 			continue;
2133 
2134 		if (map_found)
2135 			return NULL;
2136 
2137 		map_found = map;
2138 	}
2139 
2140 	if (!map_found || map_found->size < len)
2141 		return NULL;
2142 
2143 	return map_found;
2144 }
2145 
2146 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2147 {
2148 	struct core_mmu_table_info tbl_info;
2149 	struct tee_mmap_region *map;
2150 	size_t n;
2151 	size_t granule;
2152 	paddr_t p;
2153 	size_t l;
2154 
2155 	if (!len)
2156 		return NULL;
2157 
2158 	if (!core_mmu_check_end_pa(addr, len))
2159 		return NULL;
2160 
2161 	/* Check if the memory is already mapped */
2162 	map = find_map_by_type_and_pa(type, addr, len);
2163 	if (map && pbuf_inside_map_area(addr, len, map))
2164 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2165 
2166 	/* Find the reserved va space used for late mappings */
2167 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2168 	if (!map)
2169 		return NULL;
2170 
2171 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2172 		return NULL;
2173 
2174 	granule = BIT64(tbl_info.shift);
2175 	p = ROUNDDOWN(addr, granule);
2176 	l = ROUNDUP(len + addr - p, granule);
2177 
2178 	/* Ban overflowing virtual addresses */
2179 	if (map->size < l)
2180 		return NULL;
2181 
2182 	/*
2183 	 * Something is wrong, we can't fit the va range into the selected
2184 	 * table. The reserved va range is possibly missaligned with
2185 	 * granule.
2186 	 */
2187 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2188 		return NULL;
2189 
2190 	/* Find end of the memory map */
2191 	n = 0;
2192 	while (!core_mmap_is_end_of_table(static_memory_map + n))
2193 		n++;
2194 
2195 	if (n < (ARRAY_SIZE(static_memory_map) - 1)) {
2196 		/* There's room for another entry */
2197 		static_memory_map[n].va = map->va;
2198 		static_memory_map[n].size = l;
2199 		static_memory_map[n + 1].type = MEM_AREA_END;
2200 		map->va += l;
2201 		map->size -= l;
2202 		map = static_memory_map + n;
2203 	} else {
2204 		/*
2205 		 * There isn't room for another entry, steal the reserved
2206 		 * entry as it's not useful for anything else any longer.
2207 		 */
2208 		map->size = l;
2209 	}
2210 	map->type = type;
2211 	map->region_size = granule;
2212 	map->attr = core_mmu_type_to_attr(type);
2213 	map->pa = p;
2214 
2215 	set_region(&tbl_info, map);
2216 
2217 	/* Make sure the new entry is visible before continuing. */
2218 	core_mmu_table_write_barrier();
2219 
2220 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2221 }
2222 
2223 #ifdef CFG_WITH_PAGER
2224 static vaddr_t get_linear_map_end_va(void)
2225 {
2226 	/* this is synced with the generic linker file kern.ld.S */
2227 	return (vaddr_t)__heap2_end;
2228 }
2229 
2230 static paddr_t get_linear_map_end_pa(void)
2231 {
2232 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2233 }
2234 #endif
2235 
2236 #if defined(CFG_TEE_CORE_DEBUG)
2237 static void check_pa_matches_va(void *va, paddr_t pa)
2238 {
2239 	TEE_Result res = TEE_ERROR_GENERIC;
2240 	vaddr_t v = (vaddr_t)va;
2241 	paddr_t p = 0;
2242 	struct core_mmu_table_info ti __maybe_unused = { };
2243 
2244 	if (core_mmu_user_va_range_is_defined()) {
2245 		vaddr_t user_va_base = 0;
2246 		size_t user_va_size = 0;
2247 
2248 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2249 		if (v >= user_va_base &&
2250 		    v <= (user_va_base - 1 + user_va_size)) {
2251 			if (!core_mmu_user_mapping_is_active()) {
2252 				if (pa)
2253 					panic("issue in linear address space");
2254 				return;
2255 			}
2256 
2257 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2258 				       va, &p);
2259 			if (res == TEE_ERROR_NOT_SUPPORTED)
2260 				return;
2261 			if (res == TEE_SUCCESS && pa != p)
2262 				panic("bad pa");
2263 			if (res != TEE_SUCCESS && pa)
2264 				panic("false pa");
2265 			return;
2266 		}
2267 	}
2268 #ifdef CFG_WITH_PAGER
2269 	if (is_unpaged(va)) {
2270 		if (v - boot_mmu_config.map_offset != pa)
2271 			panic("issue in linear address space");
2272 		return;
2273 	}
2274 
2275 	if (tee_pager_get_table_info(v, &ti)) {
2276 		uint32_t a;
2277 
2278 		/*
2279 		 * Lookups in the page table managed by the pager is
2280 		 * dangerous for addresses in the paged area as those pages
2281 		 * changes all the time. But some ranges are safe,
2282 		 * rw-locked areas when the page is populated for instance.
2283 		 */
2284 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2285 		if (a & TEE_MATTR_VALID_BLOCK) {
2286 			paddr_t mask = BIT64(ti.shift) - 1;
2287 
2288 			p |= v & mask;
2289 			if (pa != p)
2290 				panic();
2291 		} else {
2292 			if (pa)
2293 				panic();
2294 		}
2295 		return;
2296 	}
2297 #endif
2298 
2299 	if (!core_va2pa_helper(va, &p)) {
2300 		/* Verfiy only the static mapping (case non null phys addr) */
2301 		if (p && pa != p) {
2302 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2303 			     va, p, pa);
2304 			panic();
2305 		}
2306 	} else {
2307 		if (pa) {
2308 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2309 			panic();
2310 		}
2311 	}
2312 }
2313 #else
2314 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2315 {
2316 }
2317 #endif
2318 
2319 paddr_t virt_to_phys(void *va)
2320 {
2321 	paddr_t pa = 0;
2322 
2323 	if (!arch_va2pa_helper(va, &pa))
2324 		pa = 0;
2325 	check_pa_matches_va(va, pa);
2326 	return pa;
2327 }
2328 
2329 #if defined(CFG_TEE_CORE_DEBUG)
2330 static void check_va_matches_pa(paddr_t pa, void *va)
2331 {
2332 	paddr_t p = 0;
2333 
2334 	if (!va)
2335 		return;
2336 
2337 	p = virt_to_phys(va);
2338 	if (p != pa) {
2339 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2340 		panic();
2341 	}
2342 }
2343 #else
2344 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2345 {
2346 }
2347 #endif
2348 
2349 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2350 {
2351 	if (!core_mmu_user_mapping_is_active())
2352 		return NULL;
2353 
2354 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2355 }
2356 
2357 #ifdef CFG_WITH_PAGER
2358 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2359 {
2360 	paddr_t end_pa = 0;
2361 
2362 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2363 		return NULL;
2364 
2365 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2366 		if (end_pa > get_linear_map_end_pa())
2367 			return NULL;
2368 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2369 	}
2370 
2371 	return tee_pager_phys_to_virt(pa, len);
2372 }
2373 #else
2374 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2375 {
2376 	struct tee_mmap_region *mmap = NULL;
2377 
2378 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2379 	if (!mmap)
2380 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2381 	if (!mmap)
2382 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2383 	if (!mmap)
2384 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2385 	if (!mmap)
2386 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2387 	if (!mmap)
2388 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2389 	/*
2390 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2391 	 * used with pager and not needed here.
2392 	 */
2393 	return map_pa2va(mmap, pa, len);
2394 }
2395 #endif
2396 
2397 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2398 {
2399 	void *va = NULL;
2400 
2401 	switch (m) {
2402 	case MEM_AREA_TS_VASPACE:
2403 		va = phys_to_virt_ts_vaspace(pa, len);
2404 		break;
2405 	case MEM_AREA_TEE_RAM:
2406 	case MEM_AREA_TEE_RAM_RX:
2407 	case MEM_AREA_TEE_RAM_RO:
2408 	case MEM_AREA_TEE_RAM_RW:
2409 	case MEM_AREA_NEX_RAM_RO:
2410 	case MEM_AREA_NEX_RAM_RW:
2411 		va = phys_to_virt_tee_ram(pa, len);
2412 		break;
2413 	case MEM_AREA_SHM_VASPACE:
2414 		/* Find VA from PA in dynamic SHM is not yet supported */
2415 		va = NULL;
2416 		break;
2417 	default:
2418 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2419 	}
2420 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2421 		check_va_matches_pa(pa, va);
2422 	return va;
2423 }
2424 
2425 void *phys_to_virt_io(paddr_t pa, size_t len)
2426 {
2427 	struct tee_mmap_region *map = NULL;
2428 	void *va = NULL;
2429 
2430 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2431 	if (!map)
2432 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2433 	if (!map)
2434 		return NULL;
2435 	va = map_pa2va(map, pa, len);
2436 	check_va_matches_pa(pa, va);
2437 	return va;
2438 }
2439 
2440 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2441 {
2442 	if (cpu_mmu_enabled())
2443 		return (vaddr_t)phys_to_virt(pa, type, len);
2444 
2445 	return (vaddr_t)pa;
2446 }
2447 
2448 #ifdef CFG_WITH_PAGER
2449 bool is_unpaged(void *va)
2450 {
2451 	vaddr_t v = (vaddr_t)va;
2452 
2453 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2454 }
2455 #else
2456 bool is_unpaged(void *va __unused)
2457 {
2458 	return true;
2459 }
2460 #endif
2461 
2462 void core_mmu_init_virtualization(void)
2463 {
2464 	paddr_t b1 = 0;
2465 	paddr_size_t s1 = 0;
2466 
2467 	static_assert(ARRAY_SIZE(secure_only) <= 2);
2468 	if (ARRAY_SIZE(secure_only) == 2) {
2469 		b1 = secure_only[1].paddr;
2470 		s1 = secure_only[1].size;
2471 	}
2472 	virt_init_memory(static_memory_map, secure_only[0].paddr,
2473 			 secure_only[0].size, b1, s1);
2474 }
2475 
2476 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2477 {
2478 	assert(p->pa);
2479 	if (cpu_mmu_enabled()) {
2480 		if (!p->va)
2481 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2482 		assert(p->va);
2483 		return p->va;
2484 	}
2485 	return p->pa;
2486 }
2487 
2488 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2489 {
2490 	assert(p->pa);
2491 	if (cpu_mmu_enabled()) {
2492 		if (!p->va)
2493 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2494 						      len);
2495 		assert(p->va);
2496 		return p->va;
2497 	}
2498 	return p->pa;
2499 }
2500 
2501 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2502 {
2503 	assert(p->pa);
2504 	if (cpu_mmu_enabled()) {
2505 		if (!p->va)
2506 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2507 						      len);
2508 		assert(p->va);
2509 		return p->va;
2510 	}
2511 	return p->pa;
2512 }
2513 
2514 #ifdef CFG_CORE_RESERVED_SHM
2515 static TEE_Result teecore_init_pub_ram(void)
2516 {
2517 	vaddr_t s = 0;
2518 	vaddr_t e = 0;
2519 
2520 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2521 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2522 
2523 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2524 		panic("invalid PUB RAM");
2525 
2526 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2527 	if (!tee_vbuf_is_non_sec(s, e - s))
2528 		panic("PUB RAM is not non-secure");
2529 
2530 #ifdef CFG_PL310
2531 	/* Allocate statically the l2cc mutex */
2532 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2533 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2534 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2535 #endif
2536 
2537 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2538 	default_nsec_shm_size = e - s;
2539 
2540 	return TEE_SUCCESS;
2541 }
2542 early_init(teecore_init_pub_ram);
2543 #endif /*CFG_CORE_RESERVED_SHM*/
2544 
2545 void core_mmu_init_ta_ram(void)
2546 {
2547 	vaddr_t s = 0;
2548 	vaddr_t e = 0;
2549 	paddr_t ps = 0;
2550 	size_t size = 0;
2551 
2552 	/*
2553 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2554 	 * shared mem allocated from teecore.
2555 	 */
2556 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
2557 		virt_get_ta_ram(&s, &e);
2558 	else
2559 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2560 
2561 	ps = virt_to_phys((void *)s);
2562 	size = e - s;
2563 
2564 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2565 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2566 		panic("invalid TA RAM");
2567 
2568 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2569 	if (!tee_pbuf_is_sec(ps, size))
2570 		panic("TA RAM is not secure");
2571 
2572 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2573 		panic("TA RAM pool is not empty");
2574 
2575 	/* remove previous config and init TA ddr memory pool */
2576 	tee_mm_final(&tee_mm_sec_ddr);
2577 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2578 		    TEE_MM_POOL_NO_FLAGS);
2579 }
2580