1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016, 2022 Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved. 6 */ 7 8 #include <assert.h> 9 #include <config.h> 10 #include <kernel/boot.h> 11 #include <kernel/dt.h> 12 #include <kernel/linker.h> 13 #include <kernel/panic.h> 14 #include <kernel/spinlock.h> 15 #include <kernel/tee_l2cc_mutex.h> 16 #include <kernel/tee_misc.h> 17 #include <kernel/tlb_helpers.h> 18 #include <kernel/user_mode_ctx.h> 19 #include <kernel/virtualization.h> 20 #include <libfdt.h> 21 #include <mm/core_memprot.h> 22 #include <mm/core_mmu.h> 23 #include <mm/mobj.h> 24 #include <mm/pgt_cache.h> 25 #include <mm/tee_pager.h> 26 #include <mm/vm.h> 27 #include <platform_config.h> 28 #include <string.h> 29 #include <trace.h> 30 #include <util.h> 31 32 #ifndef DEBUG_XLAT_TABLE 33 #define DEBUG_XLAT_TABLE 0 34 #endif 35 36 #define SHM_VASPACE_SIZE (1024 * 1024 * 32) 37 38 #ifdef CFG_CORE_PHYS_RELOCATABLE 39 unsigned long core_mmu_tee_load_pa __nex_bss; 40 #else 41 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR; 42 #endif 43 44 /* 45 * These variables are initialized before .bss is cleared. To avoid 46 * resetting them when .bss is cleared we're storing them in .data instead, 47 * even if they initially are zero. 48 */ 49 50 #ifdef CFG_CORE_RESERVED_SHM 51 /* Default NSec shared memory allocated from NSec world */ 52 unsigned long default_nsec_shm_size __nex_bss; 53 unsigned long default_nsec_shm_paddr __nex_bss; 54 #endif 55 56 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS 57 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE) 58 + 1 59 #endif 60 + 1] __nex_bss; 61 62 /* Define the platform's memory layout. */ 63 struct memaccess_area { 64 paddr_t paddr; 65 size_t size; 66 }; 67 68 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } 69 70 static struct memaccess_area secure_only[] __nex_data = { 71 #ifdef CFG_CORE_PHYS_RELOCATABLE 72 MEMACCESS_AREA(0, 0), 73 #else 74 #ifdef TRUSTED_SRAM_BASE 75 MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), 76 #endif 77 MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), 78 #endif 79 }; 80 81 static struct memaccess_area nsec_shared[] __nex_data = { 82 #ifdef CFG_CORE_RESERVED_SHM 83 MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), 84 #endif 85 }; 86 87 #if defined(CFG_SECURE_DATA_PATH) 88 static const char *tz_sdp_match = "linaro,secure-heap"; 89 static struct memaccess_area sec_sdp; 90 #ifdef CFG_TEE_SDP_MEM_BASE 91 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); 92 #endif 93 #ifdef TEE_SDP_TEST_MEM_BASE 94 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); 95 #endif 96 #endif 97 98 #ifdef CFG_CORE_RESERVED_SHM 99 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); 100 #endif 101 static unsigned int mmu_spinlock; 102 103 static uint32_t mmu_lock(void) 104 { 105 return cpu_spin_lock_xsave(&mmu_spinlock); 106 } 107 108 static void mmu_unlock(uint32_t exceptions) 109 { 110 cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); 111 } 112 113 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size) 114 { 115 /* 116 * The first range is always used to cover OP-TEE core memory, but 117 * depending on configuration it may cover more than that. 118 */ 119 *base = secure_only[0].paddr; 120 *size = secure_only[0].size; 121 } 122 123 void core_mmu_set_secure_memory(paddr_t base, size_t size) 124 { 125 #ifdef CFG_CORE_PHYS_RELOCATABLE 126 static_assert(ARRAY_SIZE(secure_only) == 1); 127 #endif 128 runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)); 129 assert(!secure_only[0].size); 130 assert(base && size); 131 132 DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size); 133 secure_only[0].paddr = base; 134 secure_only[0].size = size; 135 } 136 137 void core_mmu_get_ta_range(paddr_t *base, size_t *size) 138 { 139 paddr_t b = 0; 140 size_t s = 0; 141 142 static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE)); 143 #ifdef TA_RAM_START 144 b = TA_RAM_START; 145 s = TA_RAM_SIZE; 146 #else 147 static_assert(ARRAY_SIZE(secure_only) <= 2); 148 if (ARRAY_SIZE(secure_only) == 1) { 149 vaddr_t load_offs = 0; 150 151 assert(core_mmu_tee_load_pa >= secure_only[0].paddr); 152 load_offs = core_mmu_tee_load_pa - secure_only[0].paddr; 153 154 assert(secure_only[0].size > 155 load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE); 156 b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE; 157 s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE - 158 TEE_SDP_TEST_MEM_SIZE; 159 } else { 160 assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE); 161 b = secure_only[1].paddr; 162 s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE; 163 } 164 #endif 165 if (base) 166 *base = b; 167 if (size) 168 *size = s; 169 } 170 171 static struct tee_mmap_region *get_memory_map(void) 172 { 173 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 174 struct tee_mmap_region *map = virt_get_memory_map(); 175 176 if (map) 177 return map; 178 } 179 180 return static_memory_map; 181 } 182 183 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, 184 paddr_t pa, size_t size) 185 { 186 size_t n; 187 188 for (n = 0; n < alen; n++) 189 if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) 190 return true; 191 return false; 192 } 193 194 #define pbuf_intersects(a, pa, size) \ 195 _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) 196 197 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, 198 paddr_t pa, size_t size) 199 { 200 size_t n; 201 202 for (n = 0; n < alen; n++) 203 if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) 204 return true; 205 return false; 206 } 207 208 #define pbuf_is_inside(a, pa, size) \ 209 _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) 210 211 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) 212 { 213 paddr_t end_pa = 0; 214 215 if (!map) 216 return false; 217 218 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 219 return false; 220 221 return (pa >= map->pa && end_pa <= map->pa + map->size - 1); 222 } 223 224 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) 225 { 226 if (!map) 227 return false; 228 return (va >= map->va && va <= (map->va + map->size - 1)); 229 } 230 231 /* check if target buffer fits in a core default map area */ 232 static bool pbuf_inside_map_area(unsigned long p, size_t l, 233 struct tee_mmap_region *map) 234 { 235 return core_is_buffer_inside(p, l, map->pa, map->size); 236 } 237 238 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) 239 { 240 struct tee_mmap_region *map; 241 242 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) 243 if (map->type == type) 244 return map; 245 return NULL; 246 } 247 248 static struct tee_mmap_region * 249 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) 250 { 251 struct tee_mmap_region *map; 252 253 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 254 if (map->type != type) 255 continue; 256 if (pa_is_in_map(map, pa, len)) 257 return map; 258 } 259 return NULL; 260 } 261 262 static struct tee_mmap_region *find_map_by_va(void *va) 263 { 264 struct tee_mmap_region *map = get_memory_map(); 265 unsigned long a = (unsigned long)va; 266 267 while (!core_mmap_is_end_of_table(map)) { 268 if (a >= map->va && a <= (map->va - 1 + map->size)) 269 return map; 270 map++; 271 } 272 return NULL; 273 } 274 275 static struct tee_mmap_region *find_map_by_pa(unsigned long pa) 276 { 277 struct tee_mmap_region *map = get_memory_map(); 278 279 while (!core_mmap_is_end_of_table(map)) { 280 if (pa >= map->pa && pa <= (map->pa + map->size - 1)) 281 return map; 282 map++; 283 } 284 return NULL; 285 } 286 287 #if defined(CFG_SECURE_DATA_PATH) 288 static bool dtb_get_sdp_region(void) 289 { 290 void *fdt = NULL; 291 int node = 0; 292 int tmp_node = 0; 293 paddr_t tmp_addr = 0; 294 size_t tmp_size = 0; 295 296 if (!IS_ENABLED(CFG_EMBED_DTB)) 297 return false; 298 299 fdt = get_embedded_dt(); 300 if (!fdt) 301 panic("No DTB found"); 302 303 node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match); 304 if (node < 0) { 305 DMSG("No %s compatible node found", tz_sdp_match); 306 return false; 307 } 308 tmp_node = node; 309 while (tmp_node >= 0) { 310 tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node, 311 tz_sdp_match); 312 if (tmp_node >= 0) 313 DMSG("Ignore SDP pool node %s, supports only 1 node", 314 fdt_get_name(fdt, tmp_node, NULL)); 315 } 316 317 tmp_addr = fdt_reg_base_address(fdt, node); 318 if (tmp_addr == DT_INFO_INVALID_REG) { 319 EMSG("%s: Unable to get base addr from DT", tz_sdp_match); 320 return false; 321 } 322 323 tmp_size = fdt_reg_size(fdt, node); 324 if (tmp_size == DT_INFO_INVALID_REG_SIZE) { 325 EMSG("%s: Unable to get size of base addr from DT", 326 tz_sdp_match); 327 return false; 328 } 329 330 sec_sdp.paddr = tmp_addr; 331 sec_sdp.size = tmp_size; 332 333 return true; 334 } 335 #endif 336 337 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) 338 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, 339 const struct core_mmu_phys_mem *start, 340 const struct core_mmu_phys_mem *end) 341 { 342 const struct core_mmu_phys_mem *mem; 343 344 for (mem = start; mem < end; mem++) { 345 if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) 346 return true; 347 } 348 349 return false; 350 } 351 #endif 352 353 #ifdef CFG_CORE_DYN_SHM 354 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, 355 paddr_t pa, size_t size) 356 { 357 struct core_mmu_phys_mem *m = *mem; 358 size_t n = 0; 359 360 while (true) { 361 if (n >= *nelems) { 362 DMSG("No need to carve out %#" PRIxPA " size %#zx", 363 pa, size); 364 return; 365 } 366 if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size)) 367 break; 368 if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size)) 369 panic(); 370 n++; 371 } 372 373 if (pa == m[n].addr && size == m[n].size) { 374 /* Remove this entry */ 375 (*nelems)--; 376 memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n)); 377 m = nex_realloc(m, sizeof(*m) * *nelems); 378 if (!m) 379 panic(); 380 *mem = m; 381 } else if (pa == m[n].addr) { 382 m[n].addr += size; 383 m[n].size -= size; 384 } else if ((pa + size) == (m[n].addr + m[n].size)) { 385 m[n].size -= size; 386 } else { 387 /* Need to split the memory entry */ 388 m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); 389 if (!m) 390 panic(); 391 *mem = m; 392 memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n)); 393 (*nelems)++; 394 m[n].size = pa - m[n].addr; 395 m[n + 1].size -= size + m[n].size; 396 m[n + 1].addr = pa + size; 397 } 398 } 399 400 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, 401 size_t nelems, 402 struct tee_mmap_region *map) 403 { 404 size_t n; 405 406 for (n = 0; n < nelems; n++) { 407 if (!core_is_buffer_outside(start[n].addr, start[n].size, 408 map->pa, map->size)) { 409 EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ 410 ") overlaps map (type %d %#" PRIxPA ":%#zx)", 411 start[n].addr, start[n].size, 412 map->type, map->pa, map->size); 413 panic(); 414 } 415 } 416 } 417 418 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; 419 static size_t discovered_nsec_ddr_nelems __nex_bss; 420 421 static int cmp_pmem_by_addr(const void *a, const void *b) 422 { 423 const struct core_mmu_phys_mem *pmem_a = a; 424 const struct core_mmu_phys_mem *pmem_b = b; 425 426 return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); 427 } 428 429 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 430 size_t nelems) 431 { 432 struct core_mmu_phys_mem *m = start; 433 size_t num_elems = nelems; 434 struct tee_mmap_region *map = static_memory_map; 435 const struct core_mmu_phys_mem __maybe_unused *pmem; 436 size_t n = 0; 437 438 assert(!discovered_nsec_ddr_start); 439 assert(m && num_elems); 440 441 qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); 442 443 /* 444 * Non-secure shared memory and also secure data 445 * path memory are supposed to reside inside 446 * non-secure memory. Since NSEC_SHM and SDP_MEM 447 * are used for a specific purpose make holes for 448 * those memory in the normal non-secure memory. 449 * 450 * This has to be done since for instance QEMU 451 * isn't aware of which memory range in the 452 * non-secure memory is used for NSEC_SHM. 453 */ 454 455 #ifdef CFG_SECURE_DATA_PATH 456 if (dtb_get_sdp_region()) 457 carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size); 458 459 for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) 460 carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); 461 #endif 462 463 for (n = 0; n < ARRAY_SIZE(secure_only); n++) 464 carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr, 465 secure_only[n].size); 466 467 for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) { 468 switch (map->type) { 469 case MEM_AREA_NSEC_SHM: 470 carve_out_phys_mem(&m, &num_elems, map->pa, map->size); 471 break; 472 case MEM_AREA_EXT_DT: 473 case MEM_AREA_MANIFEST_DT: 474 case MEM_AREA_RES_VASPACE: 475 case MEM_AREA_SHM_VASPACE: 476 case MEM_AREA_TS_VASPACE: 477 case MEM_AREA_PAGER_VASPACE: 478 break; 479 default: 480 check_phys_mem_is_outside(m, num_elems, map); 481 } 482 } 483 484 discovered_nsec_ddr_start = m; 485 discovered_nsec_ddr_nelems = num_elems; 486 487 if (!core_mmu_check_end_pa(m[num_elems - 1].addr, 488 m[num_elems - 1].size)) 489 panic(); 490 } 491 492 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, 493 const struct core_mmu_phys_mem **end) 494 { 495 if (!discovered_nsec_ddr_start) 496 return false; 497 498 *start = discovered_nsec_ddr_start; 499 *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; 500 501 return true; 502 } 503 504 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) 505 { 506 const struct core_mmu_phys_mem *start; 507 const struct core_mmu_phys_mem *end; 508 509 if (!get_discovered_nsec_ddr(&start, &end)) 510 return false; 511 512 return pbuf_is_special_mem(pbuf, len, start, end); 513 } 514 515 bool core_mmu_nsec_ddr_is_defined(void) 516 { 517 const struct core_mmu_phys_mem *start; 518 const struct core_mmu_phys_mem *end; 519 520 if (!get_discovered_nsec_ddr(&start, &end)) 521 return false; 522 523 return start != end; 524 } 525 #else 526 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) 527 { 528 return false; 529 } 530 #endif /*CFG_CORE_DYN_SHM*/ 531 532 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ 533 EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ 534 pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) 535 536 #ifdef CFG_SECURE_DATA_PATH 537 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) 538 { 539 bool is_sdp_mem = false; 540 541 if (sec_sdp.size) 542 is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr, 543 sec_sdp.size); 544 545 if (!is_sdp_mem) 546 is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, 547 phys_sdp_mem_end); 548 549 return is_sdp_mem; 550 } 551 552 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size) 553 { 554 struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED, 555 CORE_MEM_SDP_MEM); 556 557 if (!mobj) 558 panic("can't create SDP physical memory object"); 559 560 return mobj; 561 } 562 563 struct mobj **core_sdp_mem_create_mobjs(void) 564 { 565 const struct core_mmu_phys_mem *mem = NULL; 566 struct mobj **mobj_base = NULL; 567 struct mobj **mobj = NULL; 568 int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; 569 570 if (sec_sdp.size) 571 cnt++; 572 573 /* SDP mobjs table must end with a NULL entry */ 574 mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); 575 if (!mobj_base) 576 panic("Out of memory"); 577 578 mobj = mobj_base; 579 580 for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++) 581 *mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size); 582 583 if (sec_sdp.size) 584 *mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size); 585 586 return mobj_base; 587 } 588 589 #else /* CFG_SECURE_DATA_PATH */ 590 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) 591 { 592 return false; 593 } 594 595 #endif /* CFG_SECURE_DATA_PATH */ 596 597 /* Check special memories comply with registered memories */ 598 static void verify_special_mem_areas(struct tee_mmap_region *mem_map, 599 size_t len, 600 const struct core_mmu_phys_mem *start, 601 const struct core_mmu_phys_mem *end, 602 const char *area_name __maybe_unused) 603 { 604 const struct core_mmu_phys_mem *mem; 605 const struct core_mmu_phys_mem *mem2; 606 struct tee_mmap_region *mmap; 607 size_t n; 608 609 if (start == end) { 610 DMSG("No %s memory area defined", area_name); 611 return; 612 } 613 614 for (mem = start; mem < end; mem++) 615 DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", 616 area_name, mem->addr, (uint64_t)mem->addr + mem->size); 617 618 /* Check memories do not intersect each other */ 619 for (mem = start; mem + 1 < end; mem++) { 620 for (mem2 = mem + 1; mem2 < end; mem2++) { 621 if (core_is_buffer_intersect(mem2->addr, mem2->size, 622 mem->addr, mem->size)) { 623 MSG_MEM_INSTERSECT(mem2->addr, mem2->size, 624 mem->addr, mem->size); 625 panic("Special memory intersection"); 626 } 627 } 628 } 629 630 /* 631 * Check memories do not intersect any mapped memory. 632 * This is called before reserved VA space is loaded in mem_map. 633 */ 634 for (mem = start; mem < end; mem++) { 635 for (mmap = mem_map, n = 0; n < len; mmap++, n++) { 636 if (core_is_buffer_intersect(mem->addr, mem->size, 637 mmap->pa, mmap->size)) { 638 MSG_MEM_INSTERSECT(mem->addr, mem->size, 639 mmap->pa, mmap->size); 640 panic("Special memory intersection"); 641 } 642 } 643 } 644 } 645 646 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems, 647 const char *mem_name __maybe_unused, 648 enum teecore_memtypes mem_type, 649 paddr_t mem_addr, paddr_size_t mem_size, size_t *last) 650 { 651 size_t n = 0; 652 paddr_t pa; 653 paddr_size_t size; 654 655 if (!mem_size) /* Discard null size entries */ 656 return; 657 /* 658 * If some ranges of memory of the same type do overlap 659 * each others they are coalesced into one entry. To help this 660 * added entries are sorted by increasing physical. 661 * 662 * Note that it's valid to have the same physical memory as several 663 * different memory types, for instance the same device memory 664 * mapped as both secure and non-secure. This will probably not 665 * happen often in practice. 666 */ 667 DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, 668 mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size); 669 while (true) { 670 if (n >= (num_elems - 1)) { 671 EMSG("Out of entries (%zu) in memory_map", num_elems); 672 panic(); 673 } 674 if (n == *last) 675 break; 676 pa = memory_map[n].pa; 677 size = memory_map[n].size; 678 if (mem_type == memory_map[n].type && 679 ((pa <= (mem_addr + (mem_size - 1))) && 680 (mem_addr <= (pa + (size - 1))))) { 681 DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr); 682 memory_map[n].pa = MIN(pa, mem_addr); 683 memory_map[n].size = MAX(size, mem_size) + 684 (pa - memory_map[n].pa); 685 return; 686 } 687 if (mem_type < memory_map[n].type || 688 (mem_type == memory_map[n].type && mem_addr < pa)) 689 break; /* found the spot where to insert this memory */ 690 n++; 691 } 692 693 memmove(memory_map + n + 1, memory_map + n, 694 sizeof(struct tee_mmap_region) * (*last - n)); 695 (*last)++; 696 memset(memory_map + n, 0, sizeof(memory_map[0])); 697 memory_map[n].type = mem_type; 698 memory_map[n].pa = mem_addr; 699 memory_map[n].size = mem_size; 700 } 701 702 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems, 703 enum teecore_memtypes type, size_t size, size_t *last) 704 { 705 size_t n = 0; 706 707 DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); 708 while (true) { 709 if (n >= (num_elems - 1)) { 710 EMSG("Out of entries (%zu) in memory_map", num_elems); 711 panic(); 712 } 713 if (n == *last) 714 break; 715 if (type < memory_map[n].type) 716 break; 717 n++; 718 } 719 720 memmove(memory_map + n + 1, memory_map + n, 721 sizeof(struct tee_mmap_region) * (*last - n)); 722 (*last)++; 723 memset(memory_map + n, 0, sizeof(memory_map[0])); 724 memory_map[n].type = type; 725 memory_map[n].size = size; 726 } 727 728 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) 729 { 730 const uint32_t attr = TEE_MATTR_VALID_BLOCK; 731 const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED << 732 TEE_MATTR_MEM_TYPE_SHIFT; 733 const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << 734 TEE_MATTR_MEM_TYPE_SHIFT; 735 const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << 736 TEE_MATTR_MEM_TYPE_SHIFT; 737 738 switch (t) { 739 case MEM_AREA_TEE_RAM: 740 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged; 741 case MEM_AREA_TEE_RAM_RX: 742 case MEM_AREA_INIT_RAM_RX: 743 case MEM_AREA_IDENTITY_MAP_RX: 744 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged; 745 case MEM_AREA_TEE_RAM_RO: 746 case MEM_AREA_INIT_RAM_RO: 747 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged; 748 case MEM_AREA_TEE_RAM_RW: 749 case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ 750 case MEM_AREA_NEX_RAM_RW: 751 case MEM_AREA_TEE_ASAN: 752 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 753 case MEM_AREA_TEE_COHERENT: 754 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; 755 case MEM_AREA_TA_RAM: 756 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 757 case MEM_AREA_NSEC_SHM: 758 case MEM_AREA_NEX_NSEC_SHM: 759 return attr | TEE_MATTR_PRW | cached; 760 case MEM_AREA_MANIFEST_DT: 761 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 762 case MEM_AREA_EXT_DT: 763 /* 764 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device 765 * tree as secure non-cached memory, otherwise, fall back to 766 * non-secure mapping. 767 */ 768 if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE)) 769 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | 770 noncache; 771 fallthrough; 772 case MEM_AREA_IO_NSEC: 773 return attr | TEE_MATTR_PRW | noncache; 774 case MEM_AREA_IO_SEC: 775 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; 776 case MEM_AREA_RAM_NSEC: 777 return attr | TEE_MATTR_PRW | cached; 778 case MEM_AREA_RAM_SEC: 779 case MEM_AREA_SEC_RAM_OVERALL: 780 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 781 case MEM_AREA_RES_VASPACE: 782 case MEM_AREA_SHM_VASPACE: 783 return 0; 784 case MEM_AREA_PAGER_VASPACE: 785 return TEE_MATTR_SECURE; 786 default: 787 panic("invalid type"); 788 } 789 } 790 791 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) 792 { 793 switch (mm->type) { 794 case MEM_AREA_TEE_RAM: 795 case MEM_AREA_TEE_RAM_RX: 796 case MEM_AREA_TEE_RAM_RO: 797 case MEM_AREA_TEE_RAM_RW: 798 case MEM_AREA_INIT_RAM_RX: 799 case MEM_AREA_INIT_RAM_RO: 800 case MEM_AREA_NEX_RAM_RW: 801 case MEM_AREA_NEX_RAM_RO: 802 case MEM_AREA_TEE_ASAN: 803 return true; 804 default: 805 return false; 806 } 807 } 808 809 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) 810 { 811 return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); 812 } 813 814 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) 815 { 816 return mm->region_size == CORE_MMU_PGDIR_SIZE; 817 } 818 819 static int cmp_mmap_by_lower_va(const void *a, const void *b) 820 { 821 const struct tee_mmap_region *mm_a = a; 822 const struct tee_mmap_region *mm_b = b; 823 824 return CMP_TRILEAN(mm_a->va, mm_b->va); 825 } 826 827 static void dump_mmap_table(struct tee_mmap_region *memory_map) 828 { 829 struct tee_mmap_region *map; 830 831 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 832 vaddr_t __maybe_unused vstart; 833 834 vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1)); 835 DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA 836 " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", 837 teecore_memtype_name(map->type), vstart, 838 vstart + map->size - 1, map->pa, 839 (paddr_t)(map->pa + map->size - 1), map->size, 840 map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); 841 } 842 } 843 844 #if DEBUG_XLAT_TABLE 845 846 static void dump_xlat_table(vaddr_t va, unsigned int level) 847 { 848 struct core_mmu_table_info tbl_info; 849 unsigned int idx = 0; 850 paddr_t pa; 851 uint32_t attr; 852 853 core_mmu_find_table(NULL, va, level, &tbl_info); 854 va = tbl_info.va_base; 855 for (idx = 0; idx < tbl_info.num_entries; idx++) { 856 core_mmu_get_entry(&tbl_info, idx, &pa, &attr); 857 if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { 858 const char *security_bit = ""; 859 860 if (core_mmu_entry_have_security_bit(attr)) { 861 if (attr & TEE_MATTR_SECURE) 862 security_bit = "S"; 863 else 864 security_bit = "NS"; 865 } 866 867 if (attr & TEE_MATTR_TABLE) { 868 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 869 " TBL:0x%010" PRIxPA " %s", 870 level * 2, "", level, va, pa, 871 security_bit); 872 dump_xlat_table(va, level + 1); 873 } else if (attr) { 874 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 875 " PA:0x%010" PRIxPA " %s-%s-%s-%s", 876 level * 2, "", level, va, pa, 877 mattr_is_cached(attr) ? "MEM" : 878 "DEV", 879 attr & TEE_MATTR_PW ? "RW" : "RO", 880 attr & TEE_MATTR_PX ? "X " : "XN", 881 security_bit); 882 } else { 883 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 884 " INVALID\n", 885 level * 2, "", level, va); 886 } 887 } 888 va += BIT64(tbl_info.shift); 889 } 890 } 891 892 #else 893 894 static void dump_xlat_table(vaddr_t va __unused, int level __unused) 895 { 896 } 897 898 #endif 899 900 /* 901 * Reserves virtual memory space for pager usage. 902 * 903 * From the start of the first memory used by the link script + 904 * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty 905 * mapping for pager usage. This adds translation tables as needed for the 906 * pager to operate. 907 */ 908 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems, 909 size_t *last) 910 { 911 paddr_t begin = 0; 912 paddr_t end = 0; 913 size_t size = 0; 914 size_t pos = 0; 915 size_t n = 0; 916 917 if (*last >= (num_elems - 1)) { 918 EMSG("Out of entries (%zu) in memory map", num_elems); 919 panic(); 920 } 921 922 for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) { 923 if (map_is_tee_ram(mmap + n)) { 924 if (!begin) 925 begin = mmap[n].pa; 926 pos = n + 1; 927 } 928 } 929 930 end = mmap[pos - 1].pa + mmap[pos - 1].size; 931 assert(end - begin < TEE_RAM_VA_SIZE); 932 size = TEE_RAM_VA_SIZE - (end - begin); 933 934 assert(pos <= *last); 935 memmove(mmap + pos + 1, mmap + pos, 936 sizeof(struct tee_mmap_region) * (*last - pos)); 937 (*last)++; 938 memset(mmap + pos, 0, sizeof(mmap[0])); 939 mmap[pos].type = MEM_AREA_PAGER_VASPACE; 940 mmap[pos].va = 0; 941 mmap[pos].size = size; 942 mmap[pos].region_size = SMALL_PAGE_SIZE; 943 mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE); 944 } 945 946 static void check_sec_nsec_mem_config(void) 947 { 948 size_t n = 0; 949 950 for (n = 0; n < ARRAY_SIZE(secure_only); n++) { 951 if (pbuf_intersects(nsec_shared, secure_only[n].paddr, 952 secure_only[n].size)) 953 panic("Invalid memory access config: sec/nsec"); 954 } 955 } 956 957 static void collect_device_mem_ranges(struct tee_mmap_region *memory_map, 958 size_t num_elems, size_t *last) 959 { 960 const char *compatible = "arm,ffa-manifest-device-regions"; 961 void *fdt = get_manifest_dt(); 962 const char *name = NULL; 963 uint64_t page_count = 0; 964 uint64_t base = 0; 965 int subnode = 0; 966 int node = 0; 967 968 node = fdt_node_offset_by_compatible(fdt, 0, compatible); 969 if (node < 0) 970 return; 971 972 fdt_for_each_subnode(subnode, fdt, node) { 973 name = fdt_get_name(fdt, subnode, NULL); 974 if (!name) 975 continue; 976 977 if (dt_getprop_as_number(fdt, subnode, "base-address", 978 &base)) { 979 EMSG("Mandatory field is missing: base-address"); 980 continue; 981 } 982 983 if (base & SMALL_PAGE_MASK) { 984 EMSG("base-address is not page aligned"); 985 continue; 986 } 987 988 if (dt_getprop_as_number(fdt, subnode, "pages-count", 989 &page_count)) { 990 EMSG("Mandatory field is missing: pages-count"); 991 continue; 992 } 993 994 add_phys_mem(memory_map, num_elems, name, MEM_AREA_IO_SEC, 995 base, base + page_count * SMALL_PAGE_SIZE, last); 996 } 997 } 998 999 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map, 1000 size_t num_elems) 1001 { 1002 const struct core_mmu_phys_mem *mem = NULL; 1003 vaddr_t ram_start = secure_only[0].paddr; 1004 size_t last = 0; 1005 1006 1007 #define ADD_PHYS_MEM(_type, _addr, _size) \ 1008 add_phys_mem(memory_map, num_elems, #_addr, (_type), \ 1009 (_addr), (_size), &last) 1010 1011 if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) { 1012 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start, 1013 VCORE_UNPG_RX_PA - ram_start); 1014 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, 1015 VCORE_UNPG_RX_SZ); 1016 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, 1017 VCORE_UNPG_RO_SZ); 1018 1019 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1020 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, 1021 VCORE_UNPG_RW_SZ); 1022 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, 1023 VCORE_NEX_RW_SZ); 1024 } else { 1025 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, 1026 VCORE_UNPG_RW_SZ); 1027 } 1028 1029 if (IS_ENABLED(CFG_WITH_PAGER)) { 1030 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, 1031 VCORE_INIT_RX_SZ); 1032 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, 1033 VCORE_INIT_RO_SZ); 1034 } 1035 } else { 1036 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); 1037 } 1038 1039 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1040 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE, 1041 TRUSTED_DRAM_SIZE); 1042 } else { 1043 /* 1044 * Every guest will have own TA RAM if virtualization 1045 * support is enabled. 1046 */ 1047 paddr_t ta_base = 0; 1048 size_t ta_size = 0; 1049 1050 core_mmu_get_ta_range(&ta_base, &ta_size); 1051 ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size); 1052 } 1053 1054 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) && 1055 IS_ENABLED(CFG_WITH_PAGER)) { 1056 /* 1057 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is 1058 * disabled. 1059 */ 1060 ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); 1061 } 1062 1063 #undef ADD_PHYS_MEM 1064 1065 /* Collect device memory info from SP manifest */ 1066 if (IS_ENABLED(CFG_CORE_SEL2_SPMC)) 1067 collect_device_mem_ranges(memory_map, num_elems, &last); 1068 1069 for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { 1070 /* Only unmapped virtual range may have a null phys addr */ 1071 assert(mem->addr || !core_mmu_type_to_attr(mem->type)); 1072 1073 add_phys_mem(memory_map, num_elems, mem->name, mem->type, 1074 mem->addr, mem->size, &last); 1075 } 1076 1077 if (IS_ENABLED(CFG_SECURE_DATA_PATH)) 1078 verify_special_mem_areas(memory_map, num_elems, 1079 phys_sdp_mem_begin, 1080 phys_sdp_mem_end, "SDP"); 1081 1082 add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE, 1083 CFG_RESERVED_VASPACE_SIZE, &last); 1084 1085 add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE, 1086 SHM_VASPACE_SIZE, &last); 1087 1088 memory_map[last].type = MEM_AREA_END; 1089 1090 return last; 1091 } 1092 1093 static void assign_mem_granularity(struct tee_mmap_region *memory_map) 1094 { 1095 struct tee_mmap_region *map = NULL; 1096 1097 /* 1098 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses 1099 * SMALL_PAGE_SIZE. 1100 */ 1101 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1102 paddr_t mask = map->pa | map->size; 1103 1104 if (!(mask & CORE_MMU_PGDIR_MASK)) 1105 map->region_size = CORE_MMU_PGDIR_SIZE; 1106 else if (!(mask & SMALL_PAGE_MASK)) 1107 map->region_size = SMALL_PAGE_SIZE; 1108 else 1109 panic("Impossible memory alignment"); 1110 1111 if (map_is_tee_ram(map)) 1112 map->region_size = SMALL_PAGE_SIZE; 1113 } 1114 } 1115 1116 static bool place_tee_ram_at_top(paddr_t paddr) 1117 { 1118 return paddr > BIT64(core_mmu_get_va_width()) / 2; 1119 } 1120 1121 /* 1122 * MMU arch driver shall override this function if it helps 1123 * optimizing the memory footprint of the address translation tables. 1124 */ 1125 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr) 1126 { 1127 return place_tee_ram_at_top(paddr); 1128 } 1129 1130 static bool assign_mem_va_dir(vaddr_t tee_ram_va, 1131 struct tee_mmap_region *memory_map, 1132 bool tee_ram_at_top) 1133 { 1134 struct tee_mmap_region *map = NULL; 1135 vaddr_t va = 0; 1136 bool va_is_secure = true; 1137 1138 /* 1139 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y. 1140 * 0 is by design an invalid va, so return false directly. 1141 */ 1142 if (!tee_ram_va) 1143 return false; 1144 1145 /* Clear eventual previous assignments */ 1146 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 1147 map->va = 0; 1148 1149 /* 1150 * TEE RAM regions are always aligned with region_size. 1151 * 1152 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here 1153 * since it handles virtual memory which covers the part of the ELF 1154 * that cannot fit directly into memory. 1155 */ 1156 va = tee_ram_va; 1157 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1158 if (map_is_tee_ram(map) || 1159 map->type == MEM_AREA_PAGER_VASPACE) { 1160 assert(!(va & (map->region_size - 1))); 1161 assert(!(map->size & (map->region_size - 1))); 1162 map->va = va; 1163 if (ADD_OVERFLOW(va, map->size, &va)) 1164 return false; 1165 if (va >= BIT64(core_mmu_get_va_width())) 1166 return false; 1167 } 1168 } 1169 1170 if (tee_ram_at_top) { 1171 /* 1172 * Map non-tee ram regions at addresses lower than the tee 1173 * ram region. 1174 */ 1175 va = tee_ram_va; 1176 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1177 map->attr = core_mmu_type_to_attr(map->type); 1178 if (map->va) 1179 continue; 1180 1181 if (!IS_ENABLED(CFG_WITH_LPAE) && 1182 va_is_secure != map_is_secure(map)) { 1183 va_is_secure = !va_is_secure; 1184 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1185 } 1186 1187 if (SUB_OVERFLOW(va, map->size, &va)) 1188 return false; 1189 va = ROUNDDOWN(va, map->region_size); 1190 /* 1191 * Make sure that va is aligned with pa for 1192 * efficient pgdir mapping. Basically pa & 1193 * pgdir_mask should be == va & pgdir_mask 1194 */ 1195 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1196 if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) 1197 return false; 1198 va += (map->pa - va) & CORE_MMU_PGDIR_MASK; 1199 } 1200 map->va = va; 1201 } 1202 } else { 1203 /* 1204 * Map non-tee ram regions at addresses higher than the tee 1205 * ram region. 1206 */ 1207 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1208 map->attr = core_mmu_type_to_attr(map->type); 1209 if (map->va) 1210 continue; 1211 1212 if (!IS_ENABLED(CFG_WITH_LPAE) && 1213 va_is_secure != map_is_secure(map)) { 1214 va_is_secure = !va_is_secure; 1215 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1216 &va)) 1217 return false; 1218 } 1219 1220 if (ROUNDUP_OVERFLOW(va, map->region_size, &va)) 1221 return false; 1222 /* 1223 * Make sure that va is aligned with pa for 1224 * efficient pgdir mapping. Basically pa & 1225 * pgdir_mask should be == va & pgdir_mask 1226 */ 1227 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1228 vaddr_t offs = (map->pa - va) & 1229 CORE_MMU_PGDIR_MASK; 1230 1231 if (ADD_OVERFLOW(va, offs, &va)) 1232 return false; 1233 } 1234 1235 map->va = va; 1236 if (ADD_OVERFLOW(va, map->size, &va)) 1237 return false; 1238 if (va >= BIT64(core_mmu_get_va_width())) 1239 return false; 1240 } 1241 } 1242 1243 return true; 1244 } 1245 1246 static bool assign_mem_va(vaddr_t tee_ram_va, 1247 struct tee_mmap_region *memory_map) 1248 { 1249 bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va); 1250 1251 /* 1252 * Check that we're not overlapping with the user VA range. 1253 */ 1254 if (IS_ENABLED(CFG_WITH_LPAE)) { 1255 /* 1256 * User VA range is supposed to be defined after these 1257 * mappings have been established. 1258 */ 1259 assert(!core_mmu_user_va_range_is_defined()); 1260 } else { 1261 vaddr_t user_va_base = 0; 1262 size_t user_va_size = 0; 1263 1264 assert(core_mmu_user_va_range_is_defined()); 1265 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 1266 if (tee_ram_va < (user_va_base + user_va_size)) 1267 return false; 1268 } 1269 1270 if (IS_ENABLED(CFG_WITH_PAGER)) { 1271 bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va); 1272 1273 /* Try whole mapping covered by a single base xlat entry */ 1274 if (prefered_dir != tee_ram_at_top && 1275 assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir)) 1276 return true; 1277 } 1278 1279 return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top); 1280 } 1281 1282 static int cmp_init_mem_map(const void *a, const void *b) 1283 { 1284 const struct tee_mmap_region *mm_a = a; 1285 const struct tee_mmap_region *mm_b = b; 1286 int rc = 0; 1287 1288 rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); 1289 if (!rc) 1290 rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); 1291 /* 1292 * 32bit MMU descriptors cannot mix secure and non-secure mapping in 1293 * the same level2 table. Hence sort secure mapping from non-secure 1294 * mapping. 1295 */ 1296 if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) 1297 rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); 1298 1299 return rc; 1300 } 1301 1302 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map, 1303 size_t num_elems, size_t *last, 1304 vaddr_t id_map_start, vaddr_t id_map_end) 1305 { 1306 struct tee_mmap_region *map = NULL; 1307 vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); 1308 vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); 1309 size_t len = end - start; 1310 1311 if (*last >= num_elems - 1) { 1312 EMSG("Out of entries (%zu) in memory map", num_elems); 1313 panic(); 1314 } 1315 1316 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 1317 if (core_is_buffer_intersect(map->va, map->size, start, len)) 1318 return false; 1319 1320 *map = (struct tee_mmap_region){ 1321 .type = MEM_AREA_IDENTITY_MAP_RX, 1322 /* 1323 * Could use CORE_MMU_PGDIR_SIZE to potentially save a 1324 * translation table, at the increased risk of clashes with 1325 * the rest of the memory map. 1326 */ 1327 .region_size = SMALL_PAGE_SIZE, 1328 .pa = start, 1329 .va = start, 1330 .size = len, 1331 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1332 }; 1333 1334 (*last)++; 1335 1336 return true; 1337 } 1338 1339 static unsigned long init_mem_map(struct tee_mmap_region *memory_map, 1340 size_t num_elems, unsigned long seed) 1341 { 1342 /* 1343 * @id_map_start and @id_map_end describes a physical memory range 1344 * that must be mapped Read-Only eXecutable at identical virtual 1345 * addresses. 1346 */ 1347 vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; 1348 vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; 1349 vaddr_t start_addr = secure_only[0].paddr; 1350 unsigned long offs = 0; 1351 size_t last = 0; 1352 1353 last = collect_mem_ranges(memory_map, num_elems); 1354 assign_mem_granularity(memory_map); 1355 1356 /* 1357 * To ease mapping and lower use of xlat tables, sort mapping 1358 * description moving small-page regions after the pgdir regions. 1359 */ 1360 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1361 cmp_init_mem_map); 1362 1363 if (IS_ENABLED(CFG_WITH_PAGER)) 1364 add_pager_vaspace(memory_map, num_elems, &last); 1365 1366 if (IS_ENABLED(CFG_CORE_ASLR) && seed) { 1367 vaddr_t base_addr = start_addr + seed; 1368 const unsigned int va_width = core_mmu_get_va_width(); 1369 const vaddr_t va_mask = GENMASK_64(va_width - 1, 1370 SMALL_PAGE_SHIFT); 1371 vaddr_t ba = base_addr; 1372 size_t n = 0; 1373 1374 for (n = 0; n < 3; n++) { 1375 if (n) 1376 ba = base_addr ^ BIT64(va_width - n); 1377 ba &= va_mask; 1378 if (assign_mem_va(ba, memory_map) && 1379 mem_map_add_id_map(memory_map, num_elems, &last, 1380 id_map_start, id_map_end)) { 1381 offs = ba - start_addr; 1382 DMSG("Mapping core at %#"PRIxVA" offs %#lx", 1383 ba, offs); 1384 goto out; 1385 } else { 1386 DMSG("Failed to map core at %#"PRIxVA, ba); 1387 } 1388 } 1389 EMSG("Failed to map core with seed %#lx", seed); 1390 } 1391 1392 if (!assign_mem_va(start_addr, memory_map)) 1393 panic(); 1394 1395 out: 1396 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1397 cmp_mmap_by_lower_va); 1398 1399 dump_mmap_table(memory_map); 1400 1401 return offs; 1402 } 1403 1404 static void check_mem_map(struct tee_mmap_region *map) 1405 { 1406 struct tee_mmap_region *m = NULL; 1407 1408 for (m = map; !core_mmap_is_end_of_table(m); m++) { 1409 switch (m->type) { 1410 case MEM_AREA_TEE_RAM: 1411 case MEM_AREA_TEE_RAM_RX: 1412 case MEM_AREA_TEE_RAM_RO: 1413 case MEM_AREA_TEE_RAM_RW: 1414 case MEM_AREA_INIT_RAM_RX: 1415 case MEM_AREA_INIT_RAM_RO: 1416 case MEM_AREA_NEX_RAM_RW: 1417 case MEM_AREA_NEX_RAM_RO: 1418 case MEM_AREA_IDENTITY_MAP_RX: 1419 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1420 panic("TEE_RAM can't fit in secure_only"); 1421 break; 1422 case MEM_AREA_TA_RAM: 1423 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1424 panic("TA_RAM can't fit in secure_only"); 1425 break; 1426 case MEM_AREA_NSEC_SHM: 1427 if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) 1428 panic("NS_SHM can't fit in nsec_shared"); 1429 break; 1430 case MEM_AREA_SEC_RAM_OVERALL: 1431 case MEM_AREA_TEE_COHERENT: 1432 case MEM_AREA_TEE_ASAN: 1433 case MEM_AREA_IO_SEC: 1434 case MEM_AREA_IO_NSEC: 1435 case MEM_AREA_EXT_DT: 1436 case MEM_AREA_MANIFEST_DT: 1437 case MEM_AREA_RAM_SEC: 1438 case MEM_AREA_RAM_NSEC: 1439 case MEM_AREA_RES_VASPACE: 1440 case MEM_AREA_SHM_VASPACE: 1441 case MEM_AREA_PAGER_VASPACE: 1442 break; 1443 default: 1444 EMSG("Uhandled memtype %d", m->type); 1445 panic(); 1446 } 1447 } 1448 } 1449 1450 static struct tee_mmap_region *get_tmp_mmap(void) 1451 { 1452 struct tee_mmap_region *tmp_mmap = (void *)__heap1_start; 1453 1454 #ifdef CFG_WITH_PAGER 1455 if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map)) 1456 tmp_mmap = (void *)__heap2_start; 1457 #endif 1458 1459 memset(tmp_mmap, 0, sizeof(static_memory_map)); 1460 1461 return tmp_mmap; 1462 } 1463 1464 /* 1465 * core_init_mmu_map() - init tee core default memory mapping 1466 * 1467 * This routine sets the static default TEE core mapping. If @seed is > 0 1468 * and configured with CFG_CORE_ASLR it will map tee core at a location 1469 * based on the seed and return the offset from the link address. 1470 * 1471 * If an error happened: core_init_mmu_map is expected to panic. 1472 * 1473 * Note: this function is weak just to make it possible to exclude it from 1474 * the unpaged area. 1475 */ 1476 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) 1477 { 1478 #ifndef CFG_NS_VIRTUALIZATION 1479 vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); 1480 #else 1481 vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, 1482 SMALL_PAGE_SIZE); 1483 #endif 1484 vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; 1485 struct tee_mmap_region *tmp_mmap = get_tmp_mmap(); 1486 unsigned long offs = 0; 1487 1488 if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) && 1489 (core_mmu_tee_load_pa & SMALL_PAGE_MASK)) 1490 panic("OP-TEE load address is not page aligned"); 1491 1492 check_sec_nsec_mem_config(); 1493 1494 /* 1495 * Add a entry covering the translation tables which will be 1496 * involved in some virt_to_phys() and phys_to_virt() conversions. 1497 */ 1498 static_memory_map[0] = (struct tee_mmap_region){ 1499 .type = MEM_AREA_TEE_RAM, 1500 .region_size = SMALL_PAGE_SIZE, 1501 .pa = start, 1502 .va = start, 1503 .size = len, 1504 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1505 }; 1506 1507 COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13); 1508 offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed); 1509 1510 check_mem_map(tmp_mmap); 1511 core_init_mmu(tmp_mmap); 1512 dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); 1513 core_init_mmu_regs(cfg); 1514 cfg->map_offset = offs; 1515 memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map)); 1516 } 1517 1518 bool core_mmu_mattr_is_ok(uint32_t mattr) 1519 { 1520 /* 1521 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and 1522 * core_mmu_v7.c:mattr_to_texcb 1523 */ 1524 1525 switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { 1526 case TEE_MATTR_MEM_TYPE_DEV: 1527 case TEE_MATTR_MEM_TYPE_STRONGLY_O: 1528 case TEE_MATTR_MEM_TYPE_CACHED: 1529 case TEE_MATTR_MEM_TYPE_TAGGED: 1530 return true; 1531 default: 1532 return false; 1533 } 1534 } 1535 1536 /* 1537 * test attributes of target physical buffer 1538 * 1539 * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). 1540 * 1541 */ 1542 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) 1543 { 1544 paddr_t ta_base = 0; 1545 size_t ta_size = 0; 1546 struct tee_mmap_region *map; 1547 1548 /* Empty buffers complies with anything */ 1549 if (len == 0) 1550 return true; 1551 1552 switch (attr) { 1553 case CORE_MEM_SEC: 1554 return pbuf_is_inside(secure_only, pbuf, len); 1555 case CORE_MEM_NON_SEC: 1556 return pbuf_is_inside(nsec_shared, pbuf, len) || 1557 pbuf_is_nsec_ddr(pbuf, len); 1558 case CORE_MEM_TEE_RAM: 1559 return core_is_buffer_inside(pbuf, len, TEE_RAM_START, 1560 TEE_RAM_PH_SIZE); 1561 case CORE_MEM_TA_RAM: 1562 core_mmu_get_ta_range(&ta_base, &ta_size); 1563 return core_is_buffer_inside(pbuf, len, ta_base, ta_size); 1564 #ifdef CFG_CORE_RESERVED_SHM 1565 case CORE_MEM_NSEC_SHM: 1566 return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, 1567 TEE_SHMEM_SIZE); 1568 #endif 1569 case CORE_MEM_SDP_MEM: 1570 return pbuf_is_sdp_mem(pbuf, len); 1571 case CORE_MEM_CACHED: 1572 map = find_map_by_pa(pbuf); 1573 if (!map || !pbuf_inside_map_area(pbuf, len, map)) 1574 return false; 1575 return mattr_is_cached(map->attr); 1576 default: 1577 return false; 1578 } 1579 } 1580 1581 /* test attributes of target virtual buffer (in core mapping) */ 1582 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) 1583 { 1584 paddr_t p; 1585 1586 /* Empty buffers complies with anything */ 1587 if (len == 0) 1588 return true; 1589 1590 p = virt_to_phys((void *)vbuf); 1591 if (!p) 1592 return false; 1593 1594 return core_pbuf_is(attr, p, len); 1595 } 1596 1597 /* core_va2pa - teecore exported service */ 1598 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) 1599 { 1600 struct tee_mmap_region *map; 1601 1602 map = find_map_by_va(va); 1603 if (!va_is_in_map(map, (vaddr_t)va)) 1604 return -1; 1605 1606 /* 1607 * We can calculate PA for static map. Virtual address ranges 1608 * reserved to core dynamic mapping return a 'match' (return 0;) 1609 * together with an invalid null physical address. 1610 */ 1611 if (map->pa) 1612 *pa = map->pa + (vaddr_t)va - map->va; 1613 else 1614 *pa = 0; 1615 1616 return 0; 1617 } 1618 1619 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) 1620 { 1621 if (!pa_is_in_map(map, pa, len)) 1622 return NULL; 1623 1624 return (void *)(vaddr_t)(map->va + pa - map->pa); 1625 } 1626 1627 /* 1628 * teecore gets some memory area definitions 1629 */ 1630 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s, 1631 vaddr_t *e) 1632 { 1633 struct tee_mmap_region *map = find_map_by_type(type); 1634 1635 if (map) { 1636 *s = map->va; 1637 *e = map->va + map->size; 1638 } else { 1639 *s = 0; 1640 *e = 0; 1641 } 1642 } 1643 1644 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) 1645 { 1646 struct tee_mmap_region *map = find_map_by_pa(pa); 1647 1648 if (!map) 1649 return MEM_AREA_MAXTYPE; 1650 return map->type; 1651 } 1652 1653 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1654 paddr_t pa, uint32_t attr) 1655 { 1656 assert(idx < tbl_info->num_entries); 1657 core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, 1658 idx, pa, attr); 1659 } 1660 1661 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1662 paddr_t *pa, uint32_t *attr) 1663 { 1664 assert(idx < tbl_info->num_entries); 1665 core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, 1666 idx, pa, attr); 1667 } 1668 1669 static void clear_region(struct core_mmu_table_info *tbl_info, 1670 struct tee_mmap_region *region) 1671 { 1672 unsigned int end = 0; 1673 unsigned int idx = 0; 1674 1675 /* va, len and pa should be block aligned */ 1676 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1677 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1678 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1679 1680 idx = core_mmu_va2idx(tbl_info, region->va); 1681 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1682 1683 while (idx < end) { 1684 core_mmu_set_entry(tbl_info, idx, 0, 0); 1685 idx++; 1686 } 1687 } 1688 1689 static void set_region(struct core_mmu_table_info *tbl_info, 1690 struct tee_mmap_region *region) 1691 { 1692 unsigned int end; 1693 unsigned int idx; 1694 paddr_t pa; 1695 1696 /* va, len and pa should be block aligned */ 1697 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1698 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1699 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1700 1701 idx = core_mmu_va2idx(tbl_info, region->va); 1702 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1703 pa = region->pa; 1704 1705 while (idx < end) { 1706 core_mmu_set_entry(tbl_info, idx, pa, region->attr); 1707 idx++; 1708 pa += BIT64(tbl_info->shift); 1709 } 1710 } 1711 1712 static void set_pg_region(struct core_mmu_table_info *dir_info, 1713 struct vm_region *region, struct pgt **pgt, 1714 struct core_mmu_table_info *pg_info) 1715 { 1716 struct tee_mmap_region r = { 1717 .va = region->va, 1718 .size = region->size, 1719 .attr = region->attr, 1720 }; 1721 vaddr_t end = r.va + r.size; 1722 uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; 1723 1724 while (r.va < end) { 1725 if (!pg_info->table || 1726 r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { 1727 /* 1728 * We're assigning a new translation table. 1729 */ 1730 unsigned int idx; 1731 1732 /* Virtual addresses must grow */ 1733 assert(r.va > pg_info->va_base); 1734 1735 idx = core_mmu_va2idx(dir_info, r.va); 1736 pg_info->va_base = core_mmu_idx2va(dir_info, idx); 1737 1738 /* 1739 * Advance pgt to va_base, note that we may need to 1740 * skip multiple page tables if there are large 1741 * holes in the vm map. 1742 */ 1743 while ((*pgt)->vabase < pg_info->va_base) { 1744 *pgt = SLIST_NEXT(*pgt, link); 1745 /* We should have allocated enough */ 1746 assert(*pgt); 1747 } 1748 assert((*pgt)->vabase == pg_info->va_base); 1749 pg_info->table = (*pgt)->tbl; 1750 1751 core_mmu_set_entry(dir_info, idx, 1752 virt_to_phys(pg_info->table), 1753 pgt_attr); 1754 } 1755 1756 r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), 1757 end - r.va); 1758 1759 if (!(*pgt)->populated && !mobj_is_paged(region->mobj)) { 1760 size_t granule = BIT(pg_info->shift); 1761 size_t offset = r.va - region->va + region->offset; 1762 1763 r.size = MIN(r.size, 1764 mobj_get_phys_granule(region->mobj)); 1765 r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); 1766 1767 if (mobj_get_pa(region->mobj, offset, granule, 1768 &r.pa) != TEE_SUCCESS) 1769 panic("Failed to get PA of unpaged mobj"); 1770 set_region(pg_info, &r); 1771 } 1772 r.va += r.size; 1773 } 1774 } 1775 1776 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, 1777 size_t size_left, paddr_t block_size, 1778 struct tee_mmap_region *mm __maybe_unused) 1779 { 1780 /* VA and PA are aligned to block size at current level */ 1781 if ((vaddr | paddr) & (block_size - 1)) 1782 return false; 1783 1784 /* Remainder fits into block at current level */ 1785 if (size_left < block_size) 1786 return false; 1787 1788 #ifdef CFG_WITH_PAGER 1789 /* 1790 * If pager is enabled, we need to map tee ram 1791 * regions with small pages only 1792 */ 1793 if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE) 1794 return false; 1795 #endif 1796 1797 return true; 1798 } 1799 1800 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) 1801 { 1802 struct core_mmu_table_info tbl_info; 1803 unsigned int idx; 1804 vaddr_t vaddr = mm->va; 1805 paddr_t paddr = mm->pa; 1806 ssize_t size_left = mm->size; 1807 unsigned int level; 1808 bool table_found; 1809 uint32_t old_attr; 1810 1811 assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); 1812 1813 while (size_left > 0) { 1814 level = CORE_MMU_BASE_TABLE_LEVEL; 1815 1816 while (true) { 1817 paddr_t block_size = 0; 1818 1819 assert(core_mmu_level_in_range(level)); 1820 1821 table_found = core_mmu_find_table(prtn, vaddr, level, 1822 &tbl_info); 1823 if (!table_found) 1824 panic("can't find table for mapping"); 1825 1826 block_size = BIT64(tbl_info.shift); 1827 1828 idx = core_mmu_va2idx(&tbl_info, vaddr); 1829 if (!can_map_at_level(paddr, vaddr, size_left, 1830 block_size, mm)) { 1831 bool secure = mm->attr & TEE_MATTR_SECURE; 1832 1833 /* 1834 * This part of the region can't be mapped at 1835 * this level. Need to go deeper. 1836 */ 1837 if (!core_mmu_entry_to_finer_grained(&tbl_info, 1838 idx, 1839 secure)) 1840 panic("Can't divide MMU entry"); 1841 level = tbl_info.next_level; 1842 continue; 1843 } 1844 1845 /* We can map part of the region at current level */ 1846 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1847 if (old_attr) 1848 panic("Page is already mapped"); 1849 1850 core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr); 1851 paddr += block_size; 1852 vaddr += block_size; 1853 size_left -= block_size; 1854 1855 break; 1856 } 1857 } 1858 } 1859 1860 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 1861 enum teecore_memtypes memtype) 1862 { 1863 TEE_Result ret; 1864 struct core_mmu_table_info tbl_info; 1865 struct tee_mmap_region *mm; 1866 unsigned int idx; 1867 uint32_t old_attr; 1868 uint32_t exceptions; 1869 vaddr_t vaddr = vstart; 1870 size_t i; 1871 bool secure; 1872 1873 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1874 1875 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1876 1877 if (vaddr & SMALL_PAGE_MASK) 1878 return TEE_ERROR_BAD_PARAMETERS; 1879 1880 exceptions = mmu_lock(); 1881 1882 mm = find_map_by_va((void *)vaddr); 1883 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1884 panic("VA does not belong to any known mm region"); 1885 1886 if (!core_mmu_is_dynamic_vaspace(mm)) 1887 panic("Trying to map into static region"); 1888 1889 for (i = 0; i < num_pages; i++) { 1890 if (pages[i] & SMALL_PAGE_MASK) { 1891 ret = TEE_ERROR_BAD_PARAMETERS; 1892 goto err; 1893 } 1894 1895 while (true) { 1896 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1897 &tbl_info)) 1898 panic("Can't find pagetable for vaddr "); 1899 1900 idx = core_mmu_va2idx(&tbl_info, vaddr); 1901 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1902 break; 1903 1904 /* This is supertable. Need to divide it. */ 1905 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1906 secure)) 1907 panic("Failed to spread pgdir on small tables"); 1908 } 1909 1910 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1911 if (old_attr) 1912 panic("Page is already mapped"); 1913 1914 core_mmu_set_entry(&tbl_info, idx, pages[i], 1915 core_mmu_type_to_attr(memtype)); 1916 vaddr += SMALL_PAGE_SIZE; 1917 } 1918 1919 /* 1920 * Make sure all the changes to translation tables are visible 1921 * before returning. TLB doesn't need to be invalidated as we are 1922 * guaranteed that there's no valid mapping in this range. 1923 */ 1924 core_mmu_table_write_barrier(); 1925 mmu_unlock(exceptions); 1926 1927 return TEE_SUCCESS; 1928 err: 1929 mmu_unlock(exceptions); 1930 1931 if (i) 1932 core_mmu_unmap_pages(vstart, i); 1933 1934 return ret; 1935 } 1936 1937 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 1938 size_t num_pages, 1939 enum teecore_memtypes memtype) 1940 { 1941 struct core_mmu_table_info tbl_info = { }; 1942 struct tee_mmap_region *mm = NULL; 1943 unsigned int idx = 0; 1944 uint32_t old_attr = 0; 1945 uint32_t exceptions = 0; 1946 vaddr_t vaddr = vstart; 1947 paddr_t paddr = pstart; 1948 size_t i = 0; 1949 bool secure = false; 1950 1951 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1952 1953 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1954 1955 if ((vaddr | paddr) & SMALL_PAGE_MASK) 1956 return TEE_ERROR_BAD_PARAMETERS; 1957 1958 exceptions = mmu_lock(); 1959 1960 mm = find_map_by_va((void *)vaddr); 1961 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1962 panic("VA does not belong to any known mm region"); 1963 1964 if (!core_mmu_is_dynamic_vaspace(mm)) 1965 panic("Trying to map into static region"); 1966 1967 for (i = 0; i < num_pages; i++) { 1968 while (true) { 1969 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1970 &tbl_info)) 1971 panic("Can't find pagetable for vaddr "); 1972 1973 idx = core_mmu_va2idx(&tbl_info, vaddr); 1974 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1975 break; 1976 1977 /* This is supertable. Need to divide it. */ 1978 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1979 secure)) 1980 panic("Failed to spread pgdir on small tables"); 1981 } 1982 1983 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1984 if (old_attr) 1985 panic("Page is already mapped"); 1986 1987 core_mmu_set_entry(&tbl_info, idx, paddr, 1988 core_mmu_type_to_attr(memtype)); 1989 paddr += SMALL_PAGE_SIZE; 1990 vaddr += SMALL_PAGE_SIZE; 1991 } 1992 1993 /* 1994 * Make sure all the changes to translation tables are visible 1995 * before returning. TLB doesn't need to be invalidated as we are 1996 * guaranteed that there's no valid mapping in this range. 1997 */ 1998 core_mmu_table_write_barrier(); 1999 mmu_unlock(exceptions); 2000 2001 return TEE_SUCCESS; 2002 } 2003 2004 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) 2005 { 2006 struct core_mmu_table_info tbl_info; 2007 struct tee_mmap_region *mm; 2008 size_t i; 2009 unsigned int idx; 2010 uint32_t exceptions; 2011 2012 exceptions = mmu_lock(); 2013 2014 mm = find_map_by_va((void *)vstart); 2015 if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) 2016 panic("VA does not belong to any known mm region"); 2017 2018 if (!core_mmu_is_dynamic_vaspace(mm)) 2019 panic("Trying to unmap static region"); 2020 2021 for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { 2022 if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) 2023 panic("Can't find pagetable"); 2024 2025 if (tbl_info.shift != SMALL_PAGE_SHIFT) 2026 panic("Invalid pagetable level"); 2027 2028 idx = core_mmu_va2idx(&tbl_info, vstart); 2029 core_mmu_set_entry(&tbl_info, idx, 0, 0); 2030 } 2031 tlbi_all(); 2032 2033 mmu_unlock(exceptions); 2034 } 2035 2036 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 2037 struct user_mode_ctx *uctx) 2038 { 2039 struct core_mmu_table_info pg_info = { }; 2040 struct pgt_cache *pgt_cache = &uctx->pgt_cache; 2041 struct pgt *pgt = NULL; 2042 struct pgt *p = NULL; 2043 struct vm_region *r = NULL; 2044 2045 if (TAILQ_EMPTY(&uctx->vm_info.regions)) 2046 return; /* Nothing to map */ 2047 2048 /* 2049 * Allocate all page tables in advance. 2050 */ 2051 pgt_get_all(uctx); 2052 pgt = SLIST_FIRST(pgt_cache); 2053 2054 core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL); 2055 2056 TAILQ_FOREACH(r, &uctx->vm_info.regions, link) 2057 set_pg_region(dir_info, r, &pgt, &pg_info); 2058 /* Record that the translation tables now are populated. */ 2059 SLIST_FOREACH(p, pgt_cache, link) { 2060 p->populated = true; 2061 if (p == pgt) 2062 break; 2063 } 2064 assert(p == pgt); 2065 } 2066 2067 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 2068 size_t len) 2069 { 2070 struct core_mmu_table_info tbl_info = { }; 2071 struct tee_mmap_region *res_map = NULL; 2072 struct tee_mmap_region *map = NULL; 2073 paddr_t pa = virt_to_phys(addr); 2074 size_t granule = 0; 2075 ptrdiff_t i = 0; 2076 paddr_t p = 0; 2077 size_t l = 0; 2078 2079 map = find_map_by_type_and_pa(type, pa, len); 2080 if (!map) 2081 return TEE_ERROR_GENERIC; 2082 2083 res_map = find_map_by_type(MEM_AREA_RES_VASPACE); 2084 if (!res_map) 2085 return TEE_ERROR_GENERIC; 2086 if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) 2087 return TEE_ERROR_GENERIC; 2088 granule = BIT(tbl_info.shift); 2089 2090 if (map < static_memory_map || 2091 map >= static_memory_map + ARRAY_SIZE(static_memory_map)) 2092 return TEE_ERROR_GENERIC; 2093 i = map - static_memory_map; 2094 2095 /* Check that we have a full match */ 2096 p = ROUNDDOWN(pa, granule); 2097 l = ROUNDUP(len + pa - p, granule); 2098 if (map->pa != p || map->size != l) 2099 return TEE_ERROR_GENERIC; 2100 2101 clear_region(&tbl_info, map); 2102 tlbi_all(); 2103 2104 /* If possible remove the va range from res_map */ 2105 if (res_map->va - map->size == map->va) { 2106 res_map->va -= map->size; 2107 res_map->size += map->size; 2108 } 2109 2110 /* Remove the entry. */ 2111 memmove(map, map + 1, 2112 (ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map)); 2113 2114 /* Clear the last new entry in case it was used */ 2115 memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1, 2116 0, sizeof(*map)); 2117 2118 return TEE_SUCCESS; 2119 } 2120 2121 struct tee_mmap_region * 2122 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) 2123 { 2124 struct tee_mmap_region *map = NULL; 2125 struct tee_mmap_region *map_found = NULL; 2126 2127 if (!len) 2128 return NULL; 2129 2130 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 2131 if (map->type != type) 2132 continue; 2133 2134 if (map_found) 2135 return NULL; 2136 2137 map_found = map; 2138 } 2139 2140 if (!map_found || map_found->size < len) 2141 return NULL; 2142 2143 return map_found; 2144 } 2145 2146 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) 2147 { 2148 struct core_mmu_table_info tbl_info; 2149 struct tee_mmap_region *map; 2150 size_t n; 2151 size_t granule; 2152 paddr_t p; 2153 size_t l; 2154 2155 if (!len) 2156 return NULL; 2157 2158 if (!core_mmu_check_end_pa(addr, len)) 2159 return NULL; 2160 2161 /* Check if the memory is already mapped */ 2162 map = find_map_by_type_and_pa(type, addr, len); 2163 if (map && pbuf_inside_map_area(addr, len, map)) 2164 return (void *)(vaddr_t)(map->va + addr - map->pa); 2165 2166 /* Find the reserved va space used for late mappings */ 2167 map = find_map_by_type(MEM_AREA_RES_VASPACE); 2168 if (!map) 2169 return NULL; 2170 2171 if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) 2172 return NULL; 2173 2174 granule = BIT64(tbl_info.shift); 2175 p = ROUNDDOWN(addr, granule); 2176 l = ROUNDUP(len + addr - p, granule); 2177 2178 /* Ban overflowing virtual addresses */ 2179 if (map->size < l) 2180 return NULL; 2181 2182 /* 2183 * Something is wrong, we can't fit the va range into the selected 2184 * table. The reserved va range is possibly missaligned with 2185 * granule. 2186 */ 2187 if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) 2188 return NULL; 2189 2190 /* Find end of the memory map */ 2191 n = 0; 2192 while (!core_mmap_is_end_of_table(static_memory_map + n)) 2193 n++; 2194 2195 if (n < (ARRAY_SIZE(static_memory_map) - 1)) { 2196 /* There's room for another entry */ 2197 static_memory_map[n].va = map->va; 2198 static_memory_map[n].size = l; 2199 static_memory_map[n + 1].type = MEM_AREA_END; 2200 map->va += l; 2201 map->size -= l; 2202 map = static_memory_map + n; 2203 } else { 2204 /* 2205 * There isn't room for another entry, steal the reserved 2206 * entry as it's not useful for anything else any longer. 2207 */ 2208 map->size = l; 2209 } 2210 map->type = type; 2211 map->region_size = granule; 2212 map->attr = core_mmu_type_to_attr(type); 2213 map->pa = p; 2214 2215 set_region(&tbl_info, map); 2216 2217 /* Make sure the new entry is visible before continuing. */ 2218 core_mmu_table_write_barrier(); 2219 2220 return (void *)(vaddr_t)(map->va + addr - map->pa); 2221 } 2222 2223 #ifdef CFG_WITH_PAGER 2224 static vaddr_t get_linear_map_end_va(void) 2225 { 2226 /* this is synced with the generic linker file kern.ld.S */ 2227 return (vaddr_t)__heap2_end; 2228 } 2229 2230 static paddr_t get_linear_map_end_pa(void) 2231 { 2232 return get_linear_map_end_va() - boot_mmu_config.map_offset; 2233 } 2234 #endif 2235 2236 #if defined(CFG_TEE_CORE_DEBUG) 2237 static void check_pa_matches_va(void *va, paddr_t pa) 2238 { 2239 TEE_Result res = TEE_ERROR_GENERIC; 2240 vaddr_t v = (vaddr_t)va; 2241 paddr_t p = 0; 2242 struct core_mmu_table_info ti __maybe_unused = { }; 2243 2244 if (core_mmu_user_va_range_is_defined()) { 2245 vaddr_t user_va_base = 0; 2246 size_t user_va_size = 0; 2247 2248 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 2249 if (v >= user_va_base && 2250 v <= (user_va_base - 1 + user_va_size)) { 2251 if (!core_mmu_user_mapping_is_active()) { 2252 if (pa) 2253 panic("issue in linear address space"); 2254 return; 2255 } 2256 2257 res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), 2258 va, &p); 2259 if (res == TEE_ERROR_NOT_SUPPORTED) 2260 return; 2261 if (res == TEE_SUCCESS && pa != p) 2262 panic("bad pa"); 2263 if (res != TEE_SUCCESS && pa) 2264 panic("false pa"); 2265 return; 2266 } 2267 } 2268 #ifdef CFG_WITH_PAGER 2269 if (is_unpaged(va)) { 2270 if (v - boot_mmu_config.map_offset != pa) 2271 panic("issue in linear address space"); 2272 return; 2273 } 2274 2275 if (tee_pager_get_table_info(v, &ti)) { 2276 uint32_t a; 2277 2278 /* 2279 * Lookups in the page table managed by the pager is 2280 * dangerous for addresses in the paged area as those pages 2281 * changes all the time. But some ranges are safe, 2282 * rw-locked areas when the page is populated for instance. 2283 */ 2284 core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); 2285 if (a & TEE_MATTR_VALID_BLOCK) { 2286 paddr_t mask = BIT64(ti.shift) - 1; 2287 2288 p |= v & mask; 2289 if (pa != p) 2290 panic(); 2291 } else { 2292 if (pa) 2293 panic(); 2294 } 2295 return; 2296 } 2297 #endif 2298 2299 if (!core_va2pa_helper(va, &p)) { 2300 /* Verfiy only the static mapping (case non null phys addr) */ 2301 if (p && pa != p) { 2302 DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, 2303 va, p, pa); 2304 panic(); 2305 } 2306 } else { 2307 if (pa) { 2308 DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); 2309 panic(); 2310 } 2311 } 2312 } 2313 #else 2314 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) 2315 { 2316 } 2317 #endif 2318 2319 paddr_t virt_to_phys(void *va) 2320 { 2321 paddr_t pa = 0; 2322 2323 if (!arch_va2pa_helper(va, &pa)) 2324 pa = 0; 2325 check_pa_matches_va(va, pa); 2326 return pa; 2327 } 2328 2329 #if defined(CFG_TEE_CORE_DEBUG) 2330 static void check_va_matches_pa(paddr_t pa, void *va) 2331 { 2332 paddr_t p = 0; 2333 2334 if (!va) 2335 return; 2336 2337 p = virt_to_phys(va); 2338 if (p != pa) { 2339 DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); 2340 panic(); 2341 } 2342 } 2343 #else 2344 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) 2345 { 2346 } 2347 #endif 2348 2349 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) 2350 { 2351 if (!core_mmu_user_mapping_is_active()) 2352 return NULL; 2353 2354 return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); 2355 } 2356 2357 #ifdef CFG_WITH_PAGER 2358 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2359 { 2360 paddr_t end_pa = 0; 2361 2362 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 2363 return NULL; 2364 2365 if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) { 2366 if (end_pa > get_linear_map_end_pa()) 2367 return NULL; 2368 return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset); 2369 } 2370 2371 return tee_pager_phys_to_virt(pa, len); 2372 } 2373 #else 2374 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2375 { 2376 struct tee_mmap_region *mmap = NULL; 2377 2378 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); 2379 if (!mmap) 2380 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); 2381 if (!mmap) 2382 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); 2383 if (!mmap) 2384 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); 2385 if (!mmap) 2386 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); 2387 if (!mmap) 2388 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); 2389 /* 2390 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only 2391 * used with pager and not needed here. 2392 */ 2393 return map_pa2va(mmap, pa, len); 2394 } 2395 #endif 2396 2397 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) 2398 { 2399 void *va = NULL; 2400 2401 switch (m) { 2402 case MEM_AREA_TS_VASPACE: 2403 va = phys_to_virt_ts_vaspace(pa, len); 2404 break; 2405 case MEM_AREA_TEE_RAM: 2406 case MEM_AREA_TEE_RAM_RX: 2407 case MEM_AREA_TEE_RAM_RO: 2408 case MEM_AREA_TEE_RAM_RW: 2409 case MEM_AREA_NEX_RAM_RO: 2410 case MEM_AREA_NEX_RAM_RW: 2411 va = phys_to_virt_tee_ram(pa, len); 2412 break; 2413 case MEM_AREA_SHM_VASPACE: 2414 /* Find VA from PA in dynamic SHM is not yet supported */ 2415 va = NULL; 2416 break; 2417 default: 2418 va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); 2419 } 2420 if (m != MEM_AREA_SEC_RAM_OVERALL) 2421 check_va_matches_pa(pa, va); 2422 return va; 2423 } 2424 2425 void *phys_to_virt_io(paddr_t pa, size_t len) 2426 { 2427 struct tee_mmap_region *map = NULL; 2428 void *va = NULL; 2429 2430 map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); 2431 if (!map) 2432 map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); 2433 if (!map) 2434 return NULL; 2435 va = map_pa2va(map, pa, len); 2436 check_va_matches_pa(pa, va); 2437 return va; 2438 } 2439 2440 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) 2441 { 2442 if (cpu_mmu_enabled()) 2443 return (vaddr_t)phys_to_virt(pa, type, len); 2444 2445 return (vaddr_t)pa; 2446 } 2447 2448 #ifdef CFG_WITH_PAGER 2449 bool is_unpaged(void *va) 2450 { 2451 vaddr_t v = (vaddr_t)va; 2452 2453 return v >= VCORE_START_VA && v < get_linear_map_end_va(); 2454 } 2455 #else 2456 bool is_unpaged(void *va __unused) 2457 { 2458 return true; 2459 } 2460 #endif 2461 2462 void core_mmu_init_virtualization(void) 2463 { 2464 paddr_t b1 = 0; 2465 paddr_size_t s1 = 0; 2466 2467 static_assert(ARRAY_SIZE(secure_only) <= 2); 2468 if (ARRAY_SIZE(secure_only) == 2) { 2469 b1 = secure_only[1].paddr; 2470 s1 = secure_only[1].size; 2471 } 2472 virt_init_memory(static_memory_map, secure_only[0].paddr, 2473 secure_only[0].size, b1, s1); 2474 } 2475 2476 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) 2477 { 2478 assert(p->pa); 2479 if (cpu_mmu_enabled()) { 2480 if (!p->va) 2481 p->va = (vaddr_t)phys_to_virt_io(p->pa, len); 2482 assert(p->va); 2483 return p->va; 2484 } 2485 return p->pa; 2486 } 2487 2488 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) 2489 { 2490 assert(p->pa); 2491 if (cpu_mmu_enabled()) { 2492 if (!p->va) 2493 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, 2494 len); 2495 assert(p->va); 2496 return p->va; 2497 } 2498 return p->pa; 2499 } 2500 2501 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) 2502 { 2503 assert(p->pa); 2504 if (cpu_mmu_enabled()) { 2505 if (!p->va) 2506 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, 2507 len); 2508 assert(p->va); 2509 return p->va; 2510 } 2511 return p->pa; 2512 } 2513 2514 #ifdef CFG_CORE_RESERVED_SHM 2515 static TEE_Result teecore_init_pub_ram(void) 2516 { 2517 vaddr_t s = 0; 2518 vaddr_t e = 0; 2519 2520 /* get virtual addr/size of NSec shared mem allocated from teecore */ 2521 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); 2522 2523 if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) 2524 panic("invalid PUB RAM"); 2525 2526 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2527 if (!tee_vbuf_is_non_sec(s, e - s)) 2528 panic("PUB RAM is not non-secure"); 2529 2530 #ifdef CFG_PL310 2531 /* Allocate statically the l2cc mutex */ 2532 tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); 2533 s += sizeof(uint32_t); /* size of a pl310 mutex */ 2534 s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ 2535 #endif 2536 2537 default_nsec_shm_paddr = virt_to_phys((void *)s); 2538 default_nsec_shm_size = e - s; 2539 2540 return TEE_SUCCESS; 2541 } 2542 early_init(teecore_init_pub_ram); 2543 #endif /*CFG_CORE_RESERVED_SHM*/ 2544 2545 void core_mmu_init_ta_ram(void) 2546 { 2547 vaddr_t s = 0; 2548 vaddr_t e = 0; 2549 paddr_t ps = 0; 2550 size_t size = 0; 2551 2552 /* 2553 * Get virtual addr/size of RAM where TA are loaded/executedNSec 2554 * shared mem allocated from teecore. 2555 */ 2556 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) 2557 virt_get_ta_ram(&s, &e); 2558 else 2559 core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e); 2560 2561 ps = virt_to_phys((void *)s); 2562 size = e - s; 2563 2564 if (!ps || (ps & CORE_MMU_USER_CODE_MASK) || 2565 !size || (size & CORE_MMU_USER_CODE_MASK)) 2566 panic("invalid TA RAM"); 2567 2568 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2569 if (!tee_pbuf_is_sec(ps, size)) 2570 panic("TA RAM is not secure"); 2571 2572 if (!tee_mm_is_empty(&tee_mm_sec_ddr)) 2573 panic("TA RAM pool is not empty"); 2574 2575 /* remove previous config and init TA ddr memory pool */ 2576 tee_mm_final(&tee_mm_sec_ddr); 2577 tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT, 2578 TEE_MM_POOL_NO_FLAGS); 2579 } 2580