1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016, 2022 Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved. 6 */ 7 8 #include <assert.h> 9 #include <config.h> 10 #include <kernel/boot.h> 11 #include <kernel/dt.h> 12 #include <kernel/linker.h> 13 #include <kernel/panic.h> 14 #include <kernel/spinlock.h> 15 #include <kernel/tee_l2cc_mutex.h> 16 #include <kernel/tee_misc.h> 17 #include <kernel/tlb_helpers.h> 18 #include <kernel/user_mode_ctx.h> 19 #include <kernel/virtualization.h> 20 #include <libfdt.h> 21 #include <memtag.h> 22 #include <mm/core_memprot.h> 23 #include <mm/core_mmu.h> 24 #include <mm/mobj.h> 25 #include <mm/pgt_cache.h> 26 #include <mm/phys_mem.h> 27 #include <mm/tee_pager.h> 28 #include <mm/vm.h> 29 #include <platform_config.h> 30 #include <stdalign.h> 31 #include <string.h> 32 #include <trace.h> 33 #include <util.h> 34 35 #ifndef DEBUG_XLAT_TABLE 36 #define DEBUG_XLAT_TABLE 0 37 #endif 38 39 #define SHM_VASPACE_SIZE (1024 * 1024 * 32) 40 41 /* Virtual memory pool for core mappings */ 42 tee_mm_pool_t core_virt_mem_pool; 43 44 /* Virtual memory pool for shared memory mappings */ 45 tee_mm_pool_t core_virt_shm_pool; 46 47 #ifdef CFG_CORE_PHYS_RELOCATABLE 48 unsigned long core_mmu_tee_load_pa __nex_bss; 49 #else 50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR; 51 #endif 52 53 /* 54 * These variables are initialized before .bss is cleared. To avoid 55 * resetting them when .bss is cleared we're storing them in .data instead, 56 * even if they initially are zero. 57 */ 58 59 #ifdef CFG_CORE_RESERVED_SHM 60 /* Default NSec shared memory allocated from NSec world */ 61 unsigned long default_nsec_shm_size __nex_bss; 62 unsigned long default_nsec_shm_paddr __nex_bss; 63 #endif 64 65 static struct tee_mmap_region static_mmap_regions[CFG_MMAP_REGIONS 66 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE) 67 + 1 68 #endif 69 + 1] __nex_bss; 70 static struct memory_map static_memory_map __nex_data = { 71 .map = static_mmap_regions, 72 .alloc_count = ARRAY_SIZE(static_mmap_regions), 73 }; 74 75 /* Define the platform's memory layout. */ 76 struct memaccess_area { 77 paddr_t paddr; 78 size_t size; 79 }; 80 81 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } 82 83 static struct memaccess_area secure_only[] __nex_data = { 84 #ifdef CFG_CORE_PHYS_RELOCATABLE 85 MEMACCESS_AREA(0, 0), 86 #else 87 #ifdef TRUSTED_SRAM_BASE 88 MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), 89 #endif 90 MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), 91 #endif 92 }; 93 94 static struct memaccess_area nsec_shared[] __nex_data = { 95 #ifdef CFG_CORE_RESERVED_SHM 96 MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), 97 #endif 98 }; 99 100 #if defined(CFG_SECURE_DATA_PATH) 101 static const char *tz_sdp_match = "linaro,secure-heap"; 102 static struct memaccess_area sec_sdp; 103 #ifdef CFG_TEE_SDP_MEM_BASE 104 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); 105 #endif 106 #ifdef TEE_SDP_TEST_MEM_BASE 107 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); 108 #endif 109 #endif 110 111 #ifdef CFG_CORE_RESERVED_SHM 112 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); 113 #endif 114 static unsigned int mmu_spinlock; 115 116 static uint32_t mmu_lock(void) 117 { 118 return cpu_spin_lock_xsave(&mmu_spinlock); 119 } 120 121 static void mmu_unlock(uint32_t exceptions) 122 { 123 cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); 124 } 125 126 static void grow_mem_map(struct memory_map *mem_map) 127 { 128 if (mem_map->count == mem_map->alloc_count) { 129 EMSG("Out of entries (%zu) in mem_map", mem_map->alloc_count); 130 panic(); 131 } 132 mem_map->count++; 133 } 134 135 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size) 136 { 137 /* 138 * The first range is always used to cover OP-TEE core memory, but 139 * depending on configuration it may cover more than that. 140 */ 141 *base = secure_only[0].paddr; 142 *size = secure_only[0].size; 143 } 144 145 void core_mmu_set_secure_memory(paddr_t base, size_t size) 146 { 147 #ifdef CFG_CORE_PHYS_RELOCATABLE 148 static_assert(ARRAY_SIZE(secure_only) == 1); 149 #endif 150 runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)); 151 assert(!secure_only[0].size); 152 assert(base && size); 153 154 DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size); 155 secure_only[0].paddr = base; 156 secure_only[0].size = size; 157 } 158 159 void core_mmu_get_ta_range(paddr_t *base, size_t *size) 160 { 161 paddr_t b = 0; 162 size_t s = 0; 163 164 static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE)); 165 #ifdef TA_RAM_START 166 b = TA_RAM_START; 167 s = TA_RAM_SIZE; 168 #else 169 static_assert(ARRAY_SIZE(secure_only) <= 2); 170 if (ARRAY_SIZE(secure_only) == 1) { 171 vaddr_t load_offs = 0; 172 173 assert(core_mmu_tee_load_pa >= secure_only[0].paddr); 174 load_offs = core_mmu_tee_load_pa - secure_only[0].paddr; 175 176 assert(secure_only[0].size > 177 load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE); 178 b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE; 179 s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE - 180 TEE_SDP_TEST_MEM_SIZE; 181 } else { 182 assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE); 183 b = secure_only[1].paddr; 184 s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE; 185 } 186 #endif 187 if (base) 188 *base = b; 189 if (size) 190 *size = s; 191 } 192 193 static struct memory_map *get_memory_map(void) 194 { 195 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 196 struct memory_map *map = virt_get_memory_map(); 197 198 if (map) 199 return map; 200 } 201 202 return &static_memory_map; 203 } 204 205 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, 206 paddr_t pa, size_t size) 207 { 208 size_t n; 209 210 for (n = 0; n < alen; n++) 211 if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) 212 return true; 213 return false; 214 } 215 216 #define pbuf_intersects(a, pa, size) \ 217 _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) 218 219 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, 220 paddr_t pa, size_t size) 221 { 222 size_t n; 223 224 for (n = 0; n < alen; n++) 225 if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) 226 return true; 227 return false; 228 } 229 230 #define pbuf_is_inside(a, pa, size) \ 231 _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) 232 233 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) 234 { 235 paddr_t end_pa = 0; 236 237 if (!map) 238 return false; 239 240 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 241 return false; 242 243 return (pa >= map->pa && end_pa <= map->pa + map->size - 1); 244 } 245 246 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) 247 { 248 if (!map) 249 return false; 250 return (va >= map->va && va <= (map->va + map->size - 1)); 251 } 252 253 /* check if target buffer fits in a core default map area */ 254 static bool pbuf_inside_map_area(unsigned long p, size_t l, 255 struct tee_mmap_region *map) 256 { 257 return core_is_buffer_inside(p, l, map->pa, map->size); 258 } 259 260 TEE_Result core_mmu_for_each_map(void *ptr, 261 TEE_Result (*fn)(struct tee_mmap_region *map, 262 void *ptr)) 263 { 264 struct memory_map *mem_map = get_memory_map(); 265 TEE_Result res = TEE_SUCCESS; 266 size_t n = 0; 267 268 for (n = 0; n < mem_map->count; n++) { 269 res = fn(mem_map->map + n, ptr); 270 if (res) 271 return res; 272 } 273 274 return TEE_SUCCESS; 275 } 276 277 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) 278 { 279 struct memory_map *mem_map = get_memory_map(); 280 size_t n = 0; 281 282 for (n = 0; n < mem_map->count; n++) { 283 if (mem_map->map[n].type == type) 284 return mem_map->map + n; 285 } 286 return NULL; 287 } 288 289 static struct tee_mmap_region * 290 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) 291 { 292 struct memory_map *mem_map = get_memory_map(); 293 size_t n = 0; 294 295 for (n = 0; n < mem_map->count; n++) { 296 if (mem_map->map[n].type != type) 297 continue; 298 if (pa_is_in_map(mem_map->map + n, pa, len)) 299 return mem_map->map + n; 300 } 301 return NULL; 302 } 303 304 static struct tee_mmap_region *find_map_by_va(void *va) 305 { 306 struct memory_map *mem_map = get_memory_map(); 307 vaddr_t a = (vaddr_t)va; 308 size_t n = 0; 309 310 for (n = 0; n < mem_map->count; n++) { 311 if (a >= mem_map->map[n].va && 312 a <= (mem_map->map[n].va - 1 + mem_map->map[n].size)) 313 return mem_map->map + n; 314 } 315 316 return NULL; 317 } 318 319 static struct tee_mmap_region *find_map_by_pa(unsigned long pa) 320 { 321 struct memory_map *mem_map = get_memory_map(); 322 size_t n = 0; 323 324 for (n = 0; n < mem_map->count; n++) { 325 /* Skip unmapped regions */ 326 if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) && 327 pa >= mem_map->map[n].pa && 328 pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size)) 329 return mem_map->map + n; 330 } 331 332 return NULL; 333 } 334 335 #if defined(CFG_SECURE_DATA_PATH) 336 static bool dtb_get_sdp_region(void) 337 { 338 void *fdt = NULL; 339 int node = 0; 340 int tmp_node = 0; 341 paddr_t tmp_addr = 0; 342 size_t tmp_size = 0; 343 344 if (!IS_ENABLED(CFG_EMBED_DTB)) 345 return false; 346 347 fdt = get_embedded_dt(); 348 if (!fdt) 349 panic("No DTB found"); 350 351 node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match); 352 if (node < 0) { 353 DMSG("No %s compatible node found", tz_sdp_match); 354 return false; 355 } 356 tmp_node = node; 357 while (tmp_node >= 0) { 358 tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node, 359 tz_sdp_match); 360 if (tmp_node >= 0) 361 DMSG("Ignore SDP pool node %s, supports only 1 node", 362 fdt_get_name(fdt, tmp_node, NULL)); 363 } 364 365 if (fdt_reg_info(fdt, node, &tmp_addr, &tmp_size)) { 366 EMSG("%s: Unable to get base addr or size from DT", 367 tz_sdp_match); 368 return false; 369 } 370 371 sec_sdp.paddr = tmp_addr; 372 sec_sdp.size = tmp_size; 373 374 return true; 375 } 376 #endif 377 378 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) 379 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, 380 const struct core_mmu_phys_mem *start, 381 const struct core_mmu_phys_mem *end) 382 { 383 const struct core_mmu_phys_mem *mem; 384 385 for (mem = start; mem < end; mem++) { 386 if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) 387 return true; 388 } 389 390 return false; 391 } 392 #endif 393 394 #ifdef CFG_CORE_DYN_SHM 395 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, 396 paddr_t pa, size_t size) 397 { 398 struct core_mmu_phys_mem *m = *mem; 399 size_t n = 0; 400 401 while (true) { 402 if (n >= *nelems) { 403 DMSG("No need to carve out %#" PRIxPA " size %#zx", 404 pa, size); 405 return; 406 } 407 if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size)) 408 break; 409 if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size)) 410 panic(); 411 n++; 412 } 413 414 if (pa == m[n].addr && size == m[n].size) { 415 /* Remove this entry */ 416 (*nelems)--; 417 memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n)); 418 m = nex_realloc(m, sizeof(*m) * *nelems); 419 if (!m) 420 panic(); 421 *mem = m; 422 } else if (pa == m[n].addr) { 423 m[n].addr += size; 424 m[n].size -= size; 425 } else if ((pa + size) == (m[n].addr + m[n].size)) { 426 m[n].size -= size; 427 } else { 428 /* Need to split the memory entry */ 429 m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); 430 if (!m) 431 panic(); 432 *mem = m; 433 memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n)); 434 (*nelems)++; 435 m[n].size = pa - m[n].addr; 436 m[n + 1].size -= size + m[n].size; 437 m[n + 1].addr = pa + size; 438 } 439 } 440 441 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, 442 size_t nelems, 443 struct tee_mmap_region *map) 444 { 445 size_t n; 446 447 for (n = 0; n < nelems; n++) { 448 if (!core_is_buffer_outside(start[n].addr, start[n].size, 449 map->pa, map->size)) { 450 EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ 451 ") overlaps map (type %d %#" PRIxPA ":%#zx)", 452 start[n].addr, start[n].size, 453 map->type, map->pa, map->size); 454 panic(); 455 } 456 } 457 } 458 459 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; 460 static size_t discovered_nsec_ddr_nelems __nex_bss; 461 462 static int cmp_pmem_by_addr(const void *a, const void *b) 463 { 464 const struct core_mmu_phys_mem *pmem_a = a; 465 const struct core_mmu_phys_mem *pmem_b = b; 466 467 return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); 468 } 469 470 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 471 size_t nelems) 472 { 473 struct core_mmu_phys_mem *m = start; 474 size_t num_elems = nelems; 475 struct memory_map *mem_map = &static_memory_map; 476 const struct core_mmu_phys_mem __maybe_unused *pmem; 477 size_t n = 0; 478 479 assert(!discovered_nsec_ddr_start); 480 assert(m && num_elems); 481 482 qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); 483 484 /* 485 * Non-secure shared memory and also secure data 486 * path memory are supposed to reside inside 487 * non-secure memory. Since NSEC_SHM and SDP_MEM 488 * are used for a specific purpose make holes for 489 * those memory in the normal non-secure memory. 490 * 491 * This has to be done since for instance QEMU 492 * isn't aware of which memory range in the 493 * non-secure memory is used for NSEC_SHM. 494 */ 495 496 #ifdef CFG_SECURE_DATA_PATH 497 if (dtb_get_sdp_region()) 498 carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size); 499 500 for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) 501 carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); 502 #endif 503 504 for (n = 0; n < ARRAY_SIZE(secure_only); n++) 505 carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr, 506 secure_only[n].size); 507 508 for (n = 0; n < mem_map->count; n++) { 509 switch (mem_map->map[n].type) { 510 case MEM_AREA_NSEC_SHM: 511 carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa, 512 mem_map->map[n].size); 513 break; 514 case MEM_AREA_EXT_DT: 515 case MEM_AREA_MANIFEST_DT: 516 case MEM_AREA_RAM_NSEC: 517 case MEM_AREA_RES_VASPACE: 518 case MEM_AREA_SHM_VASPACE: 519 case MEM_AREA_TS_VASPACE: 520 case MEM_AREA_PAGER_VASPACE: 521 break; 522 default: 523 check_phys_mem_is_outside(m, num_elems, 524 mem_map->map + n); 525 } 526 } 527 528 discovered_nsec_ddr_start = m; 529 discovered_nsec_ddr_nelems = num_elems; 530 531 if (!core_mmu_check_end_pa(m[num_elems - 1].addr, 532 m[num_elems - 1].size)) 533 panic(); 534 } 535 536 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, 537 const struct core_mmu_phys_mem **end) 538 { 539 if (!discovered_nsec_ddr_start) 540 return false; 541 542 *start = discovered_nsec_ddr_start; 543 *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; 544 545 return true; 546 } 547 548 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) 549 { 550 const struct core_mmu_phys_mem *start; 551 const struct core_mmu_phys_mem *end; 552 553 if (!get_discovered_nsec_ddr(&start, &end)) 554 return false; 555 556 return pbuf_is_special_mem(pbuf, len, start, end); 557 } 558 559 bool core_mmu_nsec_ddr_is_defined(void) 560 { 561 const struct core_mmu_phys_mem *start; 562 const struct core_mmu_phys_mem *end; 563 564 if (!get_discovered_nsec_ddr(&start, &end)) 565 return false; 566 567 return start != end; 568 } 569 #else 570 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) 571 { 572 return false; 573 } 574 #endif /*CFG_CORE_DYN_SHM*/ 575 576 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ 577 EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ 578 pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) 579 580 #ifdef CFG_SECURE_DATA_PATH 581 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) 582 { 583 bool is_sdp_mem = false; 584 585 if (sec_sdp.size) 586 is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr, 587 sec_sdp.size); 588 589 if (!is_sdp_mem) 590 is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, 591 phys_sdp_mem_end); 592 593 return is_sdp_mem; 594 } 595 596 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size) 597 { 598 struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED, 599 CORE_MEM_SDP_MEM); 600 601 if (!mobj) 602 panic("can't create SDP physical memory object"); 603 604 return mobj; 605 } 606 607 struct mobj **core_sdp_mem_create_mobjs(void) 608 { 609 const struct core_mmu_phys_mem *mem = NULL; 610 struct mobj **mobj_base = NULL; 611 struct mobj **mobj = NULL; 612 int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; 613 614 if (sec_sdp.size) 615 cnt++; 616 617 /* SDP mobjs table must end with a NULL entry */ 618 mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); 619 if (!mobj_base) 620 panic("Out of memory"); 621 622 mobj = mobj_base; 623 624 for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++) 625 *mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size); 626 627 if (sec_sdp.size) 628 *mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size); 629 630 return mobj_base; 631 } 632 633 #else /* CFG_SECURE_DATA_PATH */ 634 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) 635 { 636 return false; 637 } 638 639 #endif /* CFG_SECURE_DATA_PATH */ 640 641 /* Check special memories comply with registered memories */ 642 static void verify_special_mem_areas(struct memory_map *mem_map, 643 const struct core_mmu_phys_mem *start, 644 const struct core_mmu_phys_mem *end, 645 const char *area_name __maybe_unused) 646 { 647 const struct core_mmu_phys_mem *mem = NULL; 648 const struct core_mmu_phys_mem *mem2 = NULL; 649 size_t n = 0; 650 651 if (start == end) { 652 DMSG("No %s memory area defined", area_name); 653 return; 654 } 655 656 for (mem = start; mem < end; mem++) 657 DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", 658 area_name, mem->addr, (uint64_t)mem->addr + mem->size); 659 660 /* Check memories do not intersect each other */ 661 for (mem = start; mem + 1 < end; mem++) { 662 for (mem2 = mem + 1; mem2 < end; mem2++) { 663 if (core_is_buffer_intersect(mem2->addr, mem2->size, 664 mem->addr, mem->size)) { 665 MSG_MEM_INSTERSECT(mem2->addr, mem2->size, 666 mem->addr, mem->size); 667 panic("Special memory intersection"); 668 } 669 } 670 } 671 672 /* 673 * Check memories do not intersect any mapped memory. 674 * This is called before reserved VA space is loaded in mem_map. 675 */ 676 for (mem = start; mem < end; mem++) { 677 for (n = 0; n < mem_map->count; n++) { 678 if (core_is_buffer_intersect(mem->addr, mem->size, 679 mem_map->map[n].pa, 680 mem_map->map[n].size)) { 681 MSG_MEM_INSTERSECT(mem->addr, mem->size, 682 mem_map->map[n].pa, 683 mem_map->map[n].size); 684 panic("Special memory intersection"); 685 } 686 } 687 } 688 } 689 690 static void merge_mmaps(struct tee_mmap_region *dst, 691 const struct tee_mmap_region *src) 692 { 693 paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1); 694 paddr_t pa = MIN(dst->pa, src->pa); 695 696 DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA, 697 dst->pa, dst->pa + dst->size - 1, src->pa, 698 src->pa + src->size - 1); 699 dst->pa = pa; 700 dst->size = end_pa - pa + 1; 701 } 702 703 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1, 704 const struct tee_mmap_region *r2) 705 { 706 if (r1->type != r2->type) 707 return false; 708 709 if (r1->pa == r2->pa) 710 return true; 711 712 if (r1->pa < r2->pa) 713 return r1->pa + r1->size >= r2->pa; 714 else 715 return r2->pa + r2->size >= r1->pa; 716 } 717 718 static void add_phys_mem(struct memory_map *mem_map, 719 const char *mem_name __maybe_unused, 720 enum teecore_memtypes mem_type, 721 paddr_t mem_addr, paddr_size_t mem_size) 722 { 723 size_t n = 0; 724 const struct tee_mmap_region m0 = { 725 .type = mem_type, 726 .pa = mem_addr, 727 .size = mem_size, 728 }; 729 730 if (!mem_size) /* Discard null size entries */ 731 return; 732 733 /* 734 * If some ranges of memory of the same type do overlap 735 * each others they are coalesced into one entry. To help this 736 * added entries are sorted by increasing physical. 737 * 738 * Note that it's valid to have the same physical memory as several 739 * different memory types, for instance the same device memory 740 * mapped as both secure and non-secure. This will probably not 741 * happen often in practice. 742 */ 743 DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, 744 mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size); 745 for (n = 0; n < mem_map->count; n++) { 746 if (mmaps_are_mergeable(mem_map->map + n, &m0)) { 747 merge_mmaps(mem_map->map + n, &m0); 748 /* 749 * The merged result might be mergeable with the 750 * next or previous entry. 751 */ 752 if (n + 1 < mem_map->count && 753 mmaps_are_mergeable(mem_map->map + n, 754 mem_map->map + n + 1)) { 755 merge_mmaps(mem_map->map + n, 756 mem_map->map + n + 1); 757 rem_array_elem(mem_map->map, mem_map->count, 758 sizeof(*mem_map->map), n + 1); 759 mem_map->count--; 760 } 761 if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1, 762 mem_map->map + n)) { 763 merge_mmaps(mem_map->map + n - 1, 764 mem_map->map + n); 765 rem_array_elem(mem_map->map, mem_map->count, 766 sizeof(*mem_map->map), n); 767 mem_map->count--; 768 } 769 return; 770 } 771 if (mem_type < mem_map->map[n].type || 772 (mem_type == mem_map->map[n].type && 773 mem_addr < mem_map->map[n].pa)) 774 break; /* found the spot where to insert this memory */ 775 } 776 777 grow_mem_map(mem_map); 778 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 779 n, &m0); 780 } 781 782 static void add_va_space(struct memory_map *mem_map, 783 enum teecore_memtypes type, size_t size) 784 { 785 size_t n = 0; 786 787 DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); 788 for (n = 0; n < mem_map->count; n++) { 789 if (type < mem_map->map[n].type) 790 break; 791 } 792 793 grow_mem_map(mem_map); 794 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 795 n, NULL); 796 mem_map->map[n] = (struct tee_mmap_region){ 797 .type = type, 798 .size = size, 799 }; 800 } 801 802 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) 803 { 804 const uint32_t attr = TEE_MATTR_VALID_BLOCK; 805 const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED << 806 TEE_MATTR_MEM_TYPE_SHIFT; 807 const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << 808 TEE_MATTR_MEM_TYPE_SHIFT; 809 const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << 810 TEE_MATTR_MEM_TYPE_SHIFT; 811 812 switch (t) { 813 case MEM_AREA_TEE_RAM: 814 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged; 815 case MEM_AREA_TEE_RAM_RX: 816 case MEM_AREA_INIT_RAM_RX: 817 case MEM_AREA_IDENTITY_MAP_RX: 818 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged; 819 case MEM_AREA_TEE_RAM_RO: 820 case MEM_AREA_INIT_RAM_RO: 821 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged; 822 case MEM_AREA_TEE_RAM_RW: 823 case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ 824 case MEM_AREA_NEX_RAM_RW: 825 case MEM_AREA_TEE_ASAN: 826 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 827 case MEM_AREA_TEE_COHERENT: 828 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; 829 case MEM_AREA_TA_RAM: 830 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 831 case MEM_AREA_NSEC_SHM: 832 case MEM_AREA_NEX_NSEC_SHM: 833 return attr | TEE_MATTR_PRW | cached; 834 case MEM_AREA_MANIFEST_DT: 835 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 836 case MEM_AREA_TRANSFER_LIST: 837 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 838 case MEM_AREA_EXT_DT: 839 /* 840 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device 841 * tree as secure non-cached memory, otherwise, fall back to 842 * non-secure mapping. 843 */ 844 if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE)) 845 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | 846 noncache; 847 fallthrough; 848 case MEM_AREA_IO_NSEC: 849 return attr | TEE_MATTR_PRW | noncache; 850 case MEM_AREA_IO_SEC: 851 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; 852 case MEM_AREA_RAM_NSEC: 853 return attr | TEE_MATTR_PRW | cached; 854 case MEM_AREA_RAM_SEC: 855 case MEM_AREA_SEC_RAM_OVERALL: 856 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 857 case MEM_AREA_ROM_SEC: 858 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 859 case MEM_AREA_RES_VASPACE: 860 case MEM_AREA_SHM_VASPACE: 861 return 0; 862 case MEM_AREA_PAGER_VASPACE: 863 return TEE_MATTR_SECURE; 864 default: 865 panic("invalid type"); 866 } 867 } 868 869 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) 870 { 871 switch (mm->type) { 872 case MEM_AREA_TEE_RAM: 873 case MEM_AREA_TEE_RAM_RX: 874 case MEM_AREA_TEE_RAM_RO: 875 case MEM_AREA_TEE_RAM_RW: 876 case MEM_AREA_INIT_RAM_RX: 877 case MEM_AREA_INIT_RAM_RO: 878 case MEM_AREA_NEX_RAM_RW: 879 case MEM_AREA_NEX_RAM_RO: 880 case MEM_AREA_TEE_ASAN: 881 return true; 882 default: 883 return false; 884 } 885 } 886 887 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) 888 { 889 return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); 890 } 891 892 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) 893 { 894 return mm->region_size == CORE_MMU_PGDIR_SIZE; 895 } 896 897 static int cmp_mmap_by_lower_va(const void *a, const void *b) 898 { 899 const struct tee_mmap_region *mm_a = a; 900 const struct tee_mmap_region *mm_b = b; 901 902 return CMP_TRILEAN(mm_a->va, mm_b->va); 903 } 904 905 static void dump_mmap_table(struct memory_map *mem_map) 906 { 907 size_t n = 0; 908 909 for (n = 0; n < mem_map->count; n++) { 910 struct tee_mmap_region *map = mem_map->map + n; 911 vaddr_t __maybe_unused vstart; 912 913 vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1)); 914 DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA 915 " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", 916 teecore_memtype_name(map->type), vstart, 917 vstart + map->size - 1, map->pa, 918 (paddr_t)(map->pa + map->size - 1), map->size, 919 map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); 920 } 921 } 922 923 #if DEBUG_XLAT_TABLE 924 925 static void dump_xlat_table(vaddr_t va, unsigned int level) 926 { 927 struct core_mmu_table_info tbl_info; 928 unsigned int idx = 0; 929 paddr_t pa; 930 uint32_t attr; 931 932 core_mmu_find_table(NULL, va, level, &tbl_info); 933 va = tbl_info.va_base; 934 for (idx = 0; idx < tbl_info.num_entries; idx++) { 935 core_mmu_get_entry(&tbl_info, idx, &pa, &attr); 936 if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { 937 const char *security_bit = ""; 938 939 if (core_mmu_entry_have_security_bit(attr)) { 940 if (attr & TEE_MATTR_SECURE) 941 security_bit = "S"; 942 else 943 security_bit = "NS"; 944 } 945 946 if (attr & TEE_MATTR_TABLE) { 947 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 948 " TBL:0x%010" PRIxPA " %s", 949 level * 2, "", level, va, pa, 950 security_bit); 951 dump_xlat_table(va, level + 1); 952 } else if (attr) { 953 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 954 " PA:0x%010" PRIxPA " %s-%s-%s-%s", 955 level * 2, "", level, va, pa, 956 mattr_is_cached(attr) ? "MEM" : 957 "DEV", 958 attr & TEE_MATTR_PW ? "RW" : "RO", 959 attr & TEE_MATTR_PX ? "X " : "XN", 960 security_bit); 961 } else { 962 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 963 " INVALID\n", 964 level * 2, "", level, va); 965 } 966 } 967 va += BIT64(tbl_info.shift); 968 } 969 } 970 971 #else 972 973 static void dump_xlat_table(vaddr_t va __unused, int level __unused) 974 { 975 } 976 977 #endif 978 979 /* 980 * Reserves virtual memory space for pager usage. 981 * 982 * From the start of the first memory used by the link script + 983 * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty 984 * mapping for pager usage. This adds translation tables as needed for the 985 * pager to operate. 986 */ 987 static void add_pager_vaspace(struct memory_map *mem_map) 988 { 989 paddr_t begin = 0; 990 paddr_t end = 0; 991 size_t size = 0; 992 size_t pos = 0; 993 size_t n = 0; 994 995 996 for (n = 0; n < mem_map->count; n++) { 997 if (map_is_tee_ram(mem_map->map + n)) { 998 if (!begin) 999 begin = mem_map->map[n].pa; 1000 pos = n + 1; 1001 } 1002 } 1003 1004 end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size; 1005 assert(end - begin < TEE_RAM_VA_SIZE); 1006 size = TEE_RAM_VA_SIZE - (end - begin); 1007 1008 grow_mem_map(mem_map); 1009 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 1010 n, NULL); 1011 mem_map->map[n] = (struct tee_mmap_region){ 1012 .type = MEM_AREA_PAGER_VASPACE, 1013 .size = size, 1014 .region_size = SMALL_PAGE_SIZE, 1015 .attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE), 1016 }; 1017 } 1018 1019 static void check_sec_nsec_mem_config(void) 1020 { 1021 size_t n = 0; 1022 1023 for (n = 0; n < ARRAY_SIZE(secure_only); n++) { 1024 if (pbuf_intersects(nsec_shared, secure_only[n].paddr, 1025 secure_only[n].size)) 1026 panic("Invalid memory access config: sec/nsec"); 1027 } 1028 } 1029 1030 static void collect_device_mem_ranges(struct memory_map *mem_map) 1031 { 1032 const char *compatible = "arm,ffa-manifest-device-regions"; 1033 void *fdt = get_manifest_dt(); 1034 const char *name = NULL; 1035 uint64_t page_count = 0; 1036 uint64_t base = 0; 1037 int subnode = 0; 1038 int node = 0; 1039 1040 assert(fdt); 1041 1042 node = fdt_node_offset_by_compatible(fdt, 0, compatible); 1043 if (node < 0) 1044 return; 1045 1046 fdt_for_each_subnode(subnode, fdt, node) { 1047 name = fdt_get_name(fdt, subnode, NULL); 1048 if (!name) 1049 continue; 1050 1051 if (dt_getprop_as_number(fdt, subnode, "base-address", 1052 &base)) { 1053 EMSG("Mandatory field is missing: base-address"); 1054 continue; 1055 } 1056 1057 if (base & SMALL_PAGE_MASK) { 1058 EMSG("base-address is not page aligned"); 1059 continue; 1060 } 1061 1062 if (dt_getprop_as_number(fdt, subnode, "pages-count", 1063 &page_count)) { 1064 EMSG("Mandatory field is missing: pages-count"); 1065 continue; 1066 } 1067 1068 add_phys_mem(mem_map, name, MEM_AREA_IO_SEC, 1069 base, base + page_count * SMALL_PAGE_SIZE); 1070 } 1071 } 1072 1073 static void collect_mem_ranges(struct memory_map *mem_map) 1074 { 1075 const struct core_mmu_phys_mem *mem = NULL; 1076 vaddr_t ram_start = secure_only[0].paddr; 1077 1078 #define ADD_PHYS_MEM(_type, _addr, _size) \ 1079 add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size)) 1080 1081 if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) { 1082 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start, 1083 VCORE_UNPG_RX_PA - ram_start); 1084 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, 1085 VCORE_UNPG_RX_SZ); 1086 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, 1087 VCORE_UNPG_RO_SZ); 1088 1089 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1090 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, 1091 VCORE_UNPG_RW_SZ); 1092 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, 1093 VCORE_NEX_RW_SZ); 1094 } else { 1095 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, 1096 VCORE_UNPG_RW_SZ); 1097 } 1098 1099 if (IS_ENABLED(CFG_WITH_PAGER)) { 1100 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, 1101 VCORE_INIT_RX_SZ); 1102 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, 1103 VCORE_INIT_RO_SZ); 1104 } 1105 } else { 1106 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); 1107 } 1108 1109 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1110 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE, 1111 TRUSTED_DRAM_SIZE); 1112 } else { 1113 /* 1114 * Every guest will have own TA RAM if virtualization 1115 * support is enabled. 1116 */ 1117 paddr_t ta_base = 0; 1118 size_t ta_size = 0; 1119 1120 core_mmu_get_ta_range(&ta_base, &ta_size); 1121 ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size); 1122 } 1123 1124 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) && 1125 IS_ENABLED(CFG_WITH_PAGER)) { 1126 /* 1127 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is 1128 * disabled. 1129 */ 1130 ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); 1131 } 1132 1133 #undef ADD_PHYS_MEM 1134 1135 /* Collect device memory info from SP manifest */ 1136 if (IS_ENABLED(CFG_CORE_SEL2_SPMC)) 1137 collect_device_mem_ranges(mem_map); 1138 1139 for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { 1140 /* Only unmapped virtual range may have a null phys addr */ 1141 assert(mem->addr || !core_mmu_type_to_attr(mem->type)); 1142 1143 add_phys_mem(mem_map, mem->name, mem->type, 1144 mem->addr, mem->size); 1145 } 1146 1147 if (IS_ENABLED(CFG_SECURE_DATA_PATH)) 1148 verify_special_mem_areas(mem_map, phys_sdp_mem_begin, 1149 phys_sdp_mem_end, "SDP"); 1150 1151 add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE); 1152 add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE); 1153 } 1154 1155 static void assign_mem_granularity(struct memory_map *mem_map) 1156 { 1157 size_t n = 0; 1158 1159 /* 1160 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses 1161 * SMALL_PAGE_SIZE. 1162 */ 1163 for (n = 0; n < mem_map->count; n++) { 1164 paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size; 1165 1166 if (!(mask & CORE_MMU_PGDIR_MASK)) 1167 mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE; 1168 else if (!(mask & SMALL_PAGE_MASK)) 1169 mem_map->map[n].region_size = SMALL_PAGE_SIZE; 1170 else 1171 panic("Impossible memory alignment"); 1172 1173 if (map_is_tee_ram(mem_map->map + n)) 1174 mem_map->map[n].region_size = SMALL_PAGE_SIZE; 1175 } 1176 } 1177 1178 static bool place_tee_ram_at_top(paddr_t paddr) 1179 { 1180 return paddr > BIT64(core_mmu_get_va_width()) / 2; 1181 } 1182 1183 /* 1184 * MMU arch driver shall override this function if it helps 1185 * optimizing the memory footprint of the address translation tables. 1186 */ 1187 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr) 1188 { 1189 return place_tee_ram_at_top(paddr); 1190 } 1191 1192 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map, 1193 bool tee_ram_at_top) 1194 { 1195 struct tee_mmap_region *map = NULL; 1196 vaddr_t va = 0; 1197 bool va_is_secure = true; 1198 size_t n = 0; 1199 1200 /* 1201 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y. 1202 * 0 is by design an invalid va, so return false directly. 1203 */ 1204 if (!tee_ram_va) 1205 return false; 1206 1207 /* Clear eventual previous assignments */ 1208 for (n = 0; n < mem_map->count; n++) 1209 mem_map->map[n].va = 0; 1210 1211 /* 1212 * TEE RAM regions are always aligned with region_size. 1213 * 1214 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here 1215 * since it handles virtual memory which covers the part of the ELF 1216 * that cannot fit directly into memory. 1217 */ 1218 va = tee_ram_va; 1219 for (n = 0; n < mem_map->count; n++) { 1220 map = mem_map->map + n; 1221 if (map_is_tee_ram(map) || 1222 map->type == MEM_AREA_PAGER_VASPACE) { 1223 assert(!(va & (map->region_size - 1))); 1224 assert(!(map->size & (map->region_size - 1))); 1225 map->va = va; 1226 if (ADD_OVERFLOW(va, map->size, &va)) 1227 return false; 1228 if (va >= BIT64(core_mmu_get_va_width())) 1229 return false; 1230 } 1231 } 1232 1233 if (tee_ram_at_top) { 1234 /* 1235 * Map non-tee ram regions at addresses lower than the tee 1236 * ram region. 1237 */ 1238 va = tee_ram_va; 1239 for (n = 0; n < mem_map->count; n++) { 1240 map = mem_map->map + n; 1241 map->attr = core_mmu_type_to_attr(map->type); 1242 if (map->va) 1243 continue; 1244 1245 if (!IS_ENABLED(CFG_WITH_LPAE) && 1246 va_is_secure != map_is_secure(map)) { 1247 va_is_secure = !va_is_secure; 1248 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1249 } 1250 1251 if (SUB_OVERFLOW(va, map->size, &va)) 1252 return false; 1253 va = ROUNDDOWN(va, map->region_size); 1254 /* 1255 * Make sure that va is aligned with pa for 1256 * efficient pgdir mapping. Basically pa & 1257 * pgdir_mask should be == va & pgdir_mask 1258 */ 1259 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1260 if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) 1261 return false; 1262 va += (map->pa - va) & CORE_MMU_PGDIR_MASK; 1263 } 1264 map->va = va; 1265 } 1266 } else { 1267 /* 1268 * Map non-tee ram regions at addresses higher than the tee 1269 * ram region. 1270 */ 1271 for (n = 0; n < mem_map->count; n++) { 1272 map = mem_map->map + n; 1273 map->attr = core_mmu_type_to_attr(map->type); 1274 if (map->va) 1275 continue; 1276 1277 if (!IS_ENABLED(CFG_WITH_LPAE) && 1278 va_is_secure != map_is_secure(map)) { 1279 va_is_secure = !va_is_secure; 1280 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1281 &va)) 1282 return false; 1283 } 1284 1285 if (ROUNDUP_OVERFLOW(va, map->region_size, &va)) 1286 return false; 1287 /* 1288 * Make sure that va is aligned with pa for 1289 * efficient pgdir mapping. Basically pa & 1290 * pgdir_mask should be == va & pgdir_mask 1291 */ 1292 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1293 vaddr_t offs = (map->pa - va) & 1294 CORE_MMU_PGDIR_MASK; 1295 1296 if (ADD_OVERFLOW(va, offs, &va)) 1297 return false; 1298 } 1299 1300 map->va = va; 1301 if (ADD_OVERFLOW(va, map->size, &va)) 1302 return false; 1303 if (va >= BIT64(core_mmu_get_va_width())) 1304 return false; 1305 } 1306 } 1307 1308 return true; 1309 } 1310 1311 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map) 1312 { 1313 bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va); 1314 1315 /* 1316 * Check that we're not overlapping with the user VA range. 1317 */ 1318 if (IS_ENABLED(CFG_WITH_LPAE)) { 1319 /* 1320 * User VA range is supposed to be defined after these 1321 * mappings have been established. 1322 */ 1323 assert(!core_mmu_user_va_range_is_defined()); 1324 } else { 1325 vaddr_t user_va_base = 0; 1326 size_t user_va_size = 0; 1327 1328 assert(core_mmu_user_va_range_is_defined()); 1329 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 1330 if (tee_ram_va < (user_va_base + user_va_size)) 1331 return false; 1332 } 1333 1334 if (IS_ENABLED(CFG_WITH_PAGER)) { 1335 bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va); 1336 1337 /* Try whole mapping covered by a single base xlat entry */ 1338 if (prefered_dir != tee_ram_at_top && 1339 assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir)) 1340 return true; 1341 } 1342 1343 return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top); 1344 } 1345 1346 static int cmp_init_mem_map(const void *a, const void *b) 1347 { 1348 const struct tee_mmap_region *mm_a = a; 1349 const struct tee_mmap_region *mm_b = b; 1350 int rc = 0; 1351 1352 rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); 1353 if (!rc) 1354 rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); 1355 /* 1356 * 32bit MMU descriptors cannot mix secure and non-secure mapping in 1357 * the same level2 table. Hence sort secure mapping from non-secure 1358 * mapping. 1359 */ 1360 if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) 1361 rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); 1362 1363 return rc; 1364 } 1365 1366 static bool mem_map_add_id_map(struct memory_map *mem_map, 1367 vaddr_t id_map_start, vaddr_t id_map_end) 1368 { 1369 vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); 1370 vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); 1371 size_t len = end - start; 1372 size_t n = 0; 1373 1374 1375 for (n = 0; n < mem_map->count; n++) 1376 if (core_is_buffer_intersect(mem_map->map[n].va, 1377 mem_map->map[n].size, start, len)) 1378 return false; 1379 1380 grow_mem_map(mem_map); 1381 mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){ 1382 .type = MEM_AREA_IDENTITY_MAP_RX, 1383 /* 1384 * Could use CORE_MMU_PGDIR_SIZE to potentially save a 1385 * translation table, at the increased risk of clashes with 1386 * the rest of the memory map. 1387 */ 1388 .region_size = SMALL_PAGE_SIZE, 1389 .pa = start, 1390 .va = start, 1391 .size = len, 1392 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1393 }; 1394 1395 return true; 1396 } 1397 1398 static struct memory_map *init_mem_map(struct memory_map *mem_map, 1399 unsigned long seed, 1400 unsigned long *ret_offs) 1401 { 1402 /* 1403 * @id_map_start and @id_map_end describes a physical memory range 1404 * that must be mapped Read-Only eXecutable at identical virtual 1405 * addresses. 1406 */ 1407 vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; 1408 vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; 1409 vaddr_t start_addr = secure_only[0].paddr; 1410 unsigned long offs = 0; 1411 1412 collect_mem_ranges(mem_map); 1413 assign_mem_granularity(mem_map); 1414 1415 /* 1416 * To ease mapping and lower use of xlat tables, sort mapping 1417 * description moving small-page regions after the pgdir regions. 1418 */ 1419 qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), 1420 cmp_init_mem_map); 1421 1422 if (IS_ENABLED(CFG_WITH_PAGER)) 1423 add_pager_vaspace(mem_map); 1424 1425 if (IS_ENABLED(CFG_CORE_ASLR) && seed) { 1426 vaddr_t base_addr = start_addr + seed; 1427 const unsigned int va_width = core_mmu_get_va_width(); 1428 const vaddr_t va_mask = GENMASK_64(va_width - 1, 1429 SMALL_PAGE_SHIFT); 1430 vaddr_t ba = base_addr; 1431 size_t n = 0; 1432 1433 for (n = 0; n < 3; n++) { 1434 if (n) 1435 ba = base_addr ^ BIT64(va_width - n); 1436 ba &= va_mask; 1437 if (assign_mem_va(ba, mem_map) && 1438 mem_map_add_id_map(mem_map, id_map_start, 1439 id_map_end)) { 1440 offs = ba - start_addr; 1441 DMSG("Mapping core at %#"PRIxVA" offs %#lx", 1442 ba, offs); 1443 goto out; 1444 } else { 1445 DMSG("Failed to map core at %#"PRIxVA, ba); 1446 } 1447 } 1448 EMSG("Failed to map core with seed %#lx", seed); 1449 } 1450 1451 if (!assign_mem_va(start_addr, mem_map)) 1452 panic(); 1453 1454 out: 1455 qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), 1456 cmp_mmap_by_lower_va); 1457 1458 dump_mmap_table(mem_map); 1459 1460 *ret_offs = offs; 1461 return mem_map; 1462 } 1463 1464 static void check_mem_map(struct memory_map *mem_map) 1465 { 1466 struct tee_mmap_region *m = NULL; 1467 size_t n = 0; 1468 1469 for (n = 0; n < mem_map->count; n++) { 1470 m = mem_map->map + n; 1471 switch (m->type) { 1472 case MEM_AREA_TEE_RAM: 1473 case MEM_AREA_TEE_RAM_RX: 1474 case MEM_AREA_TEE_RAM_RO: 1475 case MEM_AREA_TEE_RAM_RW: 1476 case MEM_AREA_INIT_RAM_RX: 1477 case MEM_AREA_INIT_RAM_RO: 1478 case MEM_AREA_NEX_RAM_RW: 1479 case MEM_AREA_NEX_RAM_RO: 1480 case MEM_AREA_IDENTITY_MAP_RX: 1481 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1482 panic("TEE_RAM can't fit in secure_only"); 1483 break; 1484 case MEM_AREA_TA_RAM: 1485 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1486 panic("TA_RAM can't fit in secure_only"); 1487 break; 1488 case MEM_AREA_NSEC_SHM: 1489 if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) 1490 panic("NS_SHM can't fit in nsec_shared"); 1491 break; 1492 case MEM_AREA_SEC_RAM_OVERALL: 1493 case MEM_AREA_TEE_COHERENT: 1494 case MEM_AREA_TEE_ASAN: 1495 case MEM_AREA_IO_SEC: 1496 case MEM_AREA_IO_NSEC: 1497 case MEM_AREA_EXT_DT: 1498 case MEM_AREA_MANIFEST_DT: 1499 case MEM_AREA_TRANSFER_LIST: 1500 case MEM_AREA_RAM_SEC: 1501 case MEM_AREA_RAM_NSEC: 1502 case MEM_AREA_ROM_SEC: 1503 case MEM_AREA_RES_VASPACE: 1504 case MEM_AREA_SHM_VASPACE: 1505 case MEM_AREA_PAGER_VASPACE: 1506 break; 1507 default: 1508 EMSG("Uhandled memtype %d", m->type); 1509 panic(); 1510 } 1511 } 1512 } 1513 1514 /* 1515 * core_init_mmu_map() - init tee core default memory mapping 1516 * 1517 * This routine sets the static default TEE core mapping. If @seed is > 0 1518 * and configured with CFG_CORE_ASLR it will map tee core at a location 1519 * based on the seed and return the offset from the link address. 1520 * 1521 * If an error happened: core_init_mmu_map is expected to panic. 1522 * 1523 * Note: this function is weak just to make it possible to exclude it from 1524 * the unpaged area. 1525 */ 1526 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) 1527 { 1528 #ifndef CFG_NS_VIRTUALIZATION 1529 vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); 1530 #else 1531 vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, 1532 SMALL_PAGE_SIZE); 1533 #endif 1534 vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; 1535 struct tee_mmap_region tmp_mmap_region = { }; 1536 struct memory_map mem_map = { }; 1537 unsigned long offs = 0; 1538 1539 if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) && 1540 (core_mmu_tee_load_pa & SMALL_PAGE_MASK)) 1541 panic("OP-TEE load address is not page aligned"); 1542 1543 check_sec_nsec_mem_config(); 1544 1545 mem_map = static_memory_map; 1546 static_memory_map = (struct memory_map){ 1547 .map = &tmp_mmap_region, 1548 .alloc_count = 1, 1549 .count = 1, 1550 }; 1551 /* 1552 * Add a entry covering the translation tables which will be 1553 * involved in some virt_to_phys() and phys_to_virt() conversions. 1554 */ 1555 static_memory_map.map[0] = (struct tee_mmap_region){ 1556 .type = MEM_AREA_TEE_RAM, 1557 .region_size = SMALL_PAGE_SIZE, 1558 .pa = start, 1559 .va = start, 1560 .size = len, 1561 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1562 }; 1563 1564 init_mem_map(&mem_map, seed, &offs); 1565 1566 check_mem_map(&mem_map); 1567 core_init_mmu(&mem_map); 1568 dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); 1569 core_init_mmu_regs(cfg); 1570 cfg->map_offset = offs; 1571 static_memory_map = mem_map; 1572 } 1573 1574 bool core_mmu_mattr_is_ok(uint32_t mattr) 1575 { 1576 /* 1577 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and 1578 * core_mmu_v7.c:mattr_to_texcb 1579 */ 1580 1581 switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { 1582 case TEE_MATTR_MEM_TYPE_DEV: 1583 case TEE_MATTR_MEM_TYPE_STRONGLY_O: 1584 case TEE_MATTR_MEM_TYPE_CACHED: 1585 case TEE_MATTR_MEM_TYPE_TAGGED: 1586 return true; 1587 default: 1588 return false; 1589 } 1590 } 1591 1592 /* 1593 * test attributes of target physical buffer 1594 * 1595 * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). 1596 * 1597 */ 1598 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) 1599 { 1600 struct tee_mmap_region *map; 1601 1602 /* Empty buffers complies with anything */ 1603 if (len == 0) 1604 return true; 1605 1606 switch (attr) { 1607 case CORE_MEM_SEC: 1608 return pbuf_is_inside(secure_only, pbuf, len); 1609 case CORE_MEM_NON_SEC: 1610 return pbuf_is_inside(nsec_shared, pbuf, len) || 1611 pbuf_is_nsec_ddr(pbuf, len); 1612 case CORE_MEM_TEE_RAM: 1613 return core_is_buffer_inside(pbuf, len, TEE_RAM_START, 1614 TEE_RAM_PH_SIZE); 1615 #ifdef CFG_CORE_RESERVED_SHM 1616 case CORE_MEM_NSEC_SHM: 1617 return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, 1618 TEE_SHMEM_SIZE); 1619 #endif 1620 case CORE_MEM_SDP_MEM: 1621 return pbuf_is_sdp_mem(pbuf, len); 1622 case CORE_MEM_CACHED: 1623 map = find_map_by_pa(pbuf); 1624 if (!map || !pbuf_inside_map_area(pbuf, len, map)) 1625 return false; 1626 return mattr_is_cached(map->attr); 1627 default: 1628 return false; 1629 } 1630 } 1631 1632 /* test attributes of target virtual buffer (in core mapping) */ 1633 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) 1634 { 1635 paddr_t p; 1636 1637 /* Empty buffers complies with anything */ 1638 if (len == 0) 1639 return true; 1640 1641 p = virt_to_phys((void *)vbuf); 1642 if (!p) 1643 return false; 1644 1645 return core_pbuf_is(attr, p, len); 1646 } 1647 1648 /* core_va2pa - teecore exported service */ 1649 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) 1650 { 1651 struct tee_mmap_region *map; 1652 1653 map = find_map_by_va(va); 1654 if (!va_is_in_map(map, (vaddr_t)va)) 1655 return -1; 1656 1657 /* 1658 * We can calculate PA for static map. Virtual address ranges 1659 * reserved to core dynamic mapping return a 'match' (return 0;) 1660 * together with an invalid null physical address. 1661 */ 1662 if (map->pa) 1663 *pa = map->pa + (vaddr_t)va - map->va; 1664 else 1665 *pa = 0; 1666 1667 return 0; 1668 } 1669 1670 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) 1671 { 1672 if (!pa_is_in_map(map, pa, len)) 1673 return NULL; 1674 1675 return (void *)(vaddr_t)(map->va + pa - map->pa); 1676 } 1677 1678 /* 1679 * teecore gets some memory area definitions 1680 */ 1681 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s, 1682 vaddr_t *e) 1683 { 1684 struct tee_mmap_region *map = find_map_by_type(type); 1685 1686 if (map) { 1687 *s = map->va; 1688 *e = map->va + map->size; 1689 } else { 1690 *s = 0; 1691 *e = 0; 1692 } 1693 } 1694 1695 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) 1696 { 1697 struct tee_mmap_region *map = find_map_by_pa(pa); 1698 1699 if (!map) 1700 return MEM_AREA_MAXTYPE; 1701 return map->type; 1702 } 1703 1704 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1705 paddr_t pa, uint32_t attr) 1706 { 1707 assert(idx < tbl_info->num_entries); 1708 core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, 1709 idx, pa, attr); 1710 } 1711 1712 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1713 paddr_t *pa, uint32_t *attr) 1714 { 1715 assert(idx < tbl_info->num_entries); 1716 core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, 1717 idx, pa, attr); 1718 } 1719 1720 static void clear_region(struct core_mmu_table_info *tbl_info, 1721 struct tee_mmap_region *region) 1722 { 1723 unsigned int end = 0; 1724 unsigned int idx = 0; 1725 1726 /* va, len and pa should be block aligned */ 1727 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1728 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1729 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1730 1731 idx = core_mmu_va2idx(tbl_info, region->va); 1732 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1733 1734 while (idx < end) { 1735 core_mmu_set_entry(tbl_info, idx, 0, 0); 1736 idx++; 1737 } 1738 } 1739 1740 static void set_region(struct core_mmu_table_info *tbl_info, 1741 struct tee_mmap_region *region) 1742 { 1743 unsigned int end; 1744 unsigned int idx; 1745 paddr_t pa; 1746 1747 /* va, len and pa should be block aligned */ 1748 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1749 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1750 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1751 1752 idx = core_mmu_va2idx(tbl_info, region->va); 1753 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1754 pa = region->pa; 1755 1756 while (idx < end) { 1757 core_mmu_set_entry(tbl_info, idx, pa, region->attr); 1758 idx++; 1759 pa += BIT64(tbl_info->shift); 1760 } 1761 } 1762 1763 static void set_pg_region(struct core_mmu_table_info *dir_info, 1764 struct vm_region *region, struct pgt **pgt, 1765 struct core_mmu_table_info *pg_info) 1766 { 1767 struct tee_mmap_region r = { 1768 .va = region->va, 1769 .size = region->size, 1770 .attr = region->attr, 1771 }; 1772 vaddr_t end = r.va + r.size; 1773 uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; 1774 1775 while (r.va < end) { 1776 if (!pg_info->table || 1777 r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { 1778 /* 1779 * We're assigning a new translation table. 1780 */ 1781 unsigned int idx; 1782 1783 /* Virtual addresses must grow */ 1784 assert(r.va > pg_info->va_base); 1785 1786 idx = core_mmu_va2idx(dir_info, r.va); 1787 pg_info->va_base = core_mmu_idx2va(dir_info, idx); 1788 1789 /* 1790 * Advance pgt to va_base, note that we may need to 1791 * skip multiple page tables if there are large 1792 * holes in the vm map. 1793 */ 1794 while ((*pgt)->vabase < pg_info->va_base) { 1795 *pgt = SLIST_NEXT(*pgt, link); 1796 /* We should have allocated enough */ 1797 assert(*pgt); 1798 } 1799 assert((*pgt)->vabase == pg_info->va_base); 1800 pg_info->table = (*pgt)->tbl; 1801 1802 core_mmu_set_entry(dir_info, idx, 1803 virt_to_phys(pg_info->table), 1804 pgt_attr); 1805 } 1806 1807 r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), 1808 end - r.va); 1809 1810 if (!(*pgt)->populated && !mobj_is_paged(region->mobj)) { 1811 size_t granule = BIT(pg_info->shift); 1812 size_t offset = r.va - region->va + region->offset; 1813 1814 r.size = MIN(r.size, 1815 mobj_get_phys_granule(region->mobj)); 1816 r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); 1817 1818 if (mobj_get_pa(region->mobj, offset, granule, 1819 &r.pa) != TEE_SUCCESS) 1820 panic("Failed to get PA of unpaged mobj"); 1821 set_region(pg_info, &r); 1822 } 1823 r.va += r.size; 1824 } 1825 } 1826 1827 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, 1828 size_t size_left, paddr_t block_size, 1829 struct tee_mmap_region *mm __maybe_unused) 1830 { 1831 /* VA and PA are aligned to block size at current level */ 1832 if ((vaddr | paddr) & (block_size - 1)) 1833 return false; 1834 1835 /* Remainder fits into block at current level */ 1836 if (size_left < block_size) 1837 return false; 1838 1839 #ifdef CFG_WITH_PAGER 1840 /* 1841 * If pager is enabled, we need to map TEE RAM and the whole pager 1842 * regions with small pages only 1843 */ 1844 if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) && 1845 block_size != SMALL_PAGE_SIZE) 1846 return false; 1847 #endif 1848 1849 return true; 1850 } 1851 1852 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) 1853 { 1854 struct core_mmu_table_info tbl_info; 1855 unsigned int idx; 1856 vaddr_t vaddr = mm->va; 1857 paddr_t paddr = mm->pa; 1858 ssize_t size_left = mm->size; 1859 unsigned int level; 1860 bool table_found; 1861 uint32_t old_attr; 1862 1863 assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); 1864 1865 while (size_left > 0) { 1866 level = CORE_MMU_BASE_TABLE_LEVEL; 1867 1868 while (true) { 1869 paddr_t block_size = 0; 1870 1871 assert(core_mmu_level_in_range(level)); 1872 1873 table_found = core_mmu_find_table(prtn, vaddr, level, 1874 &tbl_info); 1875 if (!table_found) 1876 panic("can't find table for mapping"); 1877 1878 block_size = BIT64(tbl_info.shift); 1879 1880 idx = core_mmu_va2idx(&tbl_info, vaddr); 1881 if (!can_map_at_level(paddr, vaddr, size_left, 1882 block_size, mm)) { 1883 bool secure = mm->attr & TEE_MATTR_SECURE; 1884 1885 /* 1886 * This part of the region can't be mapped at 1887 * this level. Need to go deeper. 1888 */ 1889 if (!core_mmu_entry_to_finer_grained(&tbl_info, 1890 idx, 1891 secure)) 1892 panic("Can't divide MMU entry"); 1893 level = tbl_info.next_level; 1894 continue; 1895 } 1896 1897 /* We can map part of the region at current level */ 1898 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1899 if (old_attr) 1900 panic("Page is already mapped"); 1901 1902 core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr); 1903 paddr += block_size; 1904 vaddr += block_size; 1905 size_left -= block_size; 1906 1907 break; 1908 } 1909 } 1910 } 1911 1912 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 1913 enum teecore_memtypes memtype) 1914 { 1915 TEE_Result ret; 1916 struct core_mmu_table_info tbl_info; 1917 struct tee_mmap_region *mm; 1918 unsigned int idx; 1919 uint32_t old_attr; 1920 uint32_t exceptions; 1921 vaddr_t vaddr = vstart; 1922 size_t i; 1923 bool secure; 1924 1925 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1926 1927 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1928 1929 if (vaddr & SMALL_PAGE_MASK) 1930 return TEE_ERROR_BAD_PARAMETERS; 1931 1932 exceptions = mmu_lock(); 1933 1934 mm = find_map_by_va((void *)vaddr); 1935 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1936 panic("VA does not belong to any known mm region"); 1937 1938 if (!core_mmu_is_dynamic_vaspace(mm)) 1939 panic("Trying to map into static region"); 1940 1941 for (i = 0; i < num_pages; i++) { 1942 if (pages[i] & SMALL_PAGE_MASK) { 1943 ret = TEE_ERROR_BAD_PARAMETERS; 1944 goto err; 1945 } 1946 1947 while (true) { 1948 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1949 &tbl_info)) 1950 panic("Can't find pagetable for vaddr "); 1951 1952 idx = core_mmu_va2idx(&tbl_info, vaddr); 1953 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1954 break; 1955 1956 /* This is supertable. Need to divide it. */ 1957 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1958 secure)) 1959 panic("Failed to spread pgdir on small tables"); 1960 } 1961 1962 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1963 if (old_attr) 1964 panic("Page is already mapped"); 1965 1966 core_mmu_set_entry(&tbl_info, idx, pages[i], 1967 core_mmu_type_to_attr(memtype)); 1968 vaddr += SMALL_PAGE_SIZE; 1969 } 1970 1971 /* 1972 * Make sure all the changes to translation tables are visible 1973 * before returning. TLB doesn't need to be invalidated as we are 1974 * guaranteed that there's no valid mapping in this range. 1975 */ 1976 core_mmu_table_write_barrier(); 1977 mmu_unlock(exceptions); 1978 1979 return TEE_SUCCESS; 1980 err: 1981 mmu_unlock(exceptions); 1982 1983 if (i) 1984 core_mmu_unmap_pages(vstart, i); 1985 1986 return ret; 1987 } 1988 1989 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 1990 size_t num_pages, 1991 enum teecore_memtypes memtype) 1992 { 1993 struct core_mmu_table_info tbl_info = { }; 1994 struct tee_mmap_region *mm = NULL; 1995 unsigned int idx = 0; 1996 uint32_t old_attr = 0; 1997 uint32_t exceptions = 0; 1998 vaddr_t vaddr = vstart; 1999 paddr_t paddr = pstart; 2000 size_t i = 0; 2001 bool secure = false; 2002 2003 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 2004 2005 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 2006 2007 if ((vaddr | paddr) & SMALL_PAGE_MASK) 2008 return TEE_ERROR_BAD_PARAMETERS; 2009 2010 exceptions = mmu_lock(); 2011 2012 mm = find_map_by_va((void *)vaddr); 2013 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 2014 panic("VA does not belong to any known mm region"); 2015 2016 if (!core_mmu_is_dynamic_vaspace(mm)) 2017 panic("Trying to map into static region"); 2018 2019 for (i = 0; i < num_pages; i++) { 2020 while (true) { 2021 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 2022 &tbl_info)) 2023 panic("Can't find pagetable for vaddr "); 2024 2025 idx = core_mmu_va2idx(&tbl_info, vaddr); 2026 if (tbl_info.shift == SMALL_PAGE_SHIFT) 2027 break; 2028 2029 /* This is supertable. Need to divide it. */ 2030 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 2031 secure)) 2032 panic("Failed to spread pgdir on small tables"); 2033 } 2034 2035 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2036 if (old_attr) 2037 panic("Page is already mapped"); 2038 2039 core_mmu_set_entry(&tbl_info, idx, paddr, 2040 core_mmu_type_to_attr(memtype)); 2041 paddr += SMALL_PAGE_SIZE; 2042 vaddr += SMALL_PAGE_SIZE; 2043 } 2044 2045 /* 2046 * Make sure all the changes to translation tables are visible 2047 * before returning. TLB doesn't need to be invalidated as we are 2048 * guaranteed that there's no valid mapping in this range. 2049 */ 2050 core_mmu_table_write_barrier(); 2051 mmu_unlock(exceptions); 2052 2053 return TEE_SUCCESS; 2054 } 2055 2056 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) 2057 { 2058 struct core_mmu_table_info tbl_info; 2059 struct tee_mmap_region *mm; 2060 size_t i; 2061 unsigned int idx; 2062 uint32_t exceptions; 2063 2064 exceptions = mmu_lock(); 2065 2066 mm = find_map_by_va((void *)vstart); 2067 if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) 2068 panic("VA does not belong to any known mm region"); 2069 2070 if (!core_mmu_is_dynamic_vaspace(mm)) 2071 panic("Trying to unmap static region"); 2072 2073 for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { 2074 if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) 2075 panic("Can't find pagetable"); 2076 2077 if (tbl_info.shift != SMALL_PAGE_SHIFT) 2078 panic("Invalid pagetable level"); 2079 2080 idx = core_mmu_va2idx(&tbl_info, vstart); 2081 core_mmu_set_entry(&tbl_info, idx, 0, 0); 2082 } 2083 tlbi_all(); 2084 2085 mmu_unlock(exceptions); 2086 } 2087 2088 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 2089 struct user_mode_ctx *uctx) 2090 { 2091 struct core_mmu_table_info pg_info = { }; 2092 struct pgt_cache *pgt_cache = &uctx->pgt_cache; 2093 struct pgt *pgt = NULL; 2094 struct pgt *p = NULL; 2095 struct vm_region *r = NULL; 2096 2097 if (TAILQ_EMPTY(&uctx->vm_info.regions)) 2098 return; /* Nothing to map */ 2099 2100 /* 2101 * Allocate all page tables in advance. 2102 */ 2103 pgt_get_all(uctx); 2104 pgt = SLIST_FIRST(pgt_cache); 2105 2106 core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL); 2107 2108 TAILQ_FOREACH(r, &uctx->vm_info.regions, link) 2109 set_pg_region(dir_info, r, &pgt, &pg_info); 2110 /* Record that the translation tables now are populated. */ 2111 SLIST_FOREACH(p, pgt_cache, link) { 2112 p->populated = true; 2113 if (p == pgt) 2114 break; 2115 } 2116 assert(p == pgt); 2117 } 2118 2119 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 2120 size_t len) 2121 { 2122 struct core_mmu_table_info tbl_info = { }; 2123 struct tee_mmap_region *res_map = NULL; 2124 struct tee_mmap_region *map = NULL; 2125 paddr_t pa = virt_to_phys(addr); 2126 size_t granule = 0; 2127 ptrdiff_t i = 0; 2128 paddr_t p = 0; 2129 size_t l = 0; 2130 2131 map = find_map_by_type_and_pa(type, pa, len); 2132 if (!map) 2133 return TEE_ERROR_GENERIC; 2134 2135 res_map = find_map_by_type(MEM_AREA_RES_VASPACE); 2136 if (!res_map) 2137 return TEE_ERROR_GENERIC; 2138 if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) 2139 return TEE_ERROR_GENERIC; 2140 granule = BIT(tbl_info.shift); 2141 2142 if (map < static_memory_map.map || 2143 map >= static_memory_map.map + static_memory_map.count) 2144 return TEE_ERROR_GENERIC; 2145 i = map - static_memory_map.map; 2146 2147 /* Check that we have a full match */ 2148 p = ROUNDDOWN(pa, granule); 2149 l = ROUNDUP(len + pa - p, granule); 2150 if (map->pa != p || map->size != l) 2151 return TEE_ERROR_GENERIC; 2152 2153 clear_region(&tbl_info, map); 2154 tlbi_all(); 2155 2156 /* If possible remove the va range from res_map */ 2157 if (res_map->va - map->size == map->va) { 2158 res_map->va -= map->size; 2159 res_map->size += map->size; 2160 } 2161 2162 /* Remove the entry. */ 2163 rem_array_elem(static_memory_map.map, static_memory_map.count, 2164 sizeof(*static_memory_map.map), i); 2165 static_memory_map.count--; 2166 2167 return TEE_SUCCESS; 2168 } 2169 2170 struct tee_mmap_region * 2171 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) 2172 { 2173 struct memory_map *mem_map = get_memory_map(); 2174 struct tee_mmap_region *map_found = NULL; 2175 size_t n = 0; 2176 2177 if (!len) 2178 return NULL; 2179 2180 for (n = 0; n < mem_map->count; n++) { 2181 if (mem_map->map[n].type != type) 2182 continue; 2183 2184 if (map_found) 2185 return NULL; 2186 2187 map_found = mem_map->map + n; 2188 } 2189 2190 if (!map_found || map_found->size < len) 2191 return NULL; 2192 2193 return map_found; 2194 } 2195 2196 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) 2197 { 2198 struct memory_map *mem_map = &static_memory_map; 2199 struct core_mmu_table_info tbl_info = { }; 2200 struct tee_mmap_region *map = NULL; 2201 size_t granule = 0; 2202 paddr_t p = 0; 2203 size_t l = 0; 2204 2205 if (!len) 2206 return NULL; 2207 2208 if (!core_mmu_check_end_pa(addr, len)) 2209 return NULL; 2210 2211 /* Check if the memory is already mapped */ 2212 map = find_map_by_type_and_pa(type, addr, len); 2213 if (map && pbuf_inside_map_area(addr, len, map)) 2214 return (void *)(vaddr_t)(map->va + addr - map->pa); 2215 2216 /* Find the reserved va space used for late mappings */ 2217 map = find_map_by_type(MEM_AREA_RES_VASPACE); 2218 if (!map) 2219 return NULL; 2220 2221 if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) 2222 return NULL; 2223 2224 granule = BIT64(tbl_info.shift); 2225 p = ROUNDDOWN(addr, granule); 2226 l = ROUNDUP(len + addr - p, granule); 2227 2228 /* Ban overflowing virtual addresses */ 2229 if (map->size < l) 2230 return NULL; 2231 2232 /* 2233 * Something is wrong, we can't fit the va range into the selected 2234 * table. The reserved va range is possibly missaligned with 2235 * granule. 2236 */ 2237 if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) 2238 return NULL; 2239 2240 if (static_memory_map.count >= static_memory_map.alloc_count) 2241 return NULL; 2242 2243 mem_map->map[mem_map->count] = (struct tee_mmap_region){ 2244 .va = map->va, 2245 .size = l, 2246 .type = type, 2247 .region_size = granule, 2248 .attr = core_mmu_type_to_attr(type), 2249 .pa = p, 2250 }; 2251 map->va += l; 2252 map->size -= l; 2253 map = mem_map->map + mem_map->count; 2254 mem_map->count++; 2255 2256 set_region(&tbl_info, map); 2257 2258 /* Make sure the new entry is visible before continuing. */ 2259 core_mmu_table_write_barrier(); 2260 2261 return (void *)(vaddr_t)(map->va + addr - map->pa); 2262 } 2263 2264 #ifdef CFG_WITH_PAGER 2265 static vaddr_t get_linear_map_end_va(void) 2266 { 2267 /* this is synced with the generic linker file kern.ld.S */ 2268 return (vaddr_t)__heap2_end; 2269 } 2270 2271 static paddr_t get_linear_map_end_pa(void) 2272 { 2273 return get_linear_map_end_va() - boot_mmu_config.map_offset; 2274 } 2275 #endif 2276 2277 #if defined(CFG_TEE_CORE_DEBUG) 2278 static void check_pa_matches_va(void *va, paddr_t pa) 2279 { 2280 TEE_Result res = TEE_ERROR_GENERIC; 2281 vaddr_t v = (vaddr_t)va; 2282 paddr_t p = 0; 2283 struct core_mmu_table_info ti __maybe_unused = { }; 2284 2285 if (core_mmu_user_va_range_is_defined()) { 2286 vaddr_t user_va_base = 0; 2287 size_t user_va_size = 0; 2288 2289 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 2290 if (v >= user_va_base && 2291 v <= (user_va_base - 1 + user_va_size)) { 2292 if (!core_mmu_user_mapping_is_active()) { 2293 if (pa) 2294 panic("issue in linear address space"); 2295 return; 2296 } 2297 2298 res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), 2299 va, &p); 2300 if (res == TEE_ERROR_NOT_SUPPORTED) 2301 return; 2302 if (res == TEE_SUCCESS && pa != p) 2303 panic("bad pa"); 2304 if (res != TEE_SUCCESS && pa) 2305 panic("false pa"); 2306 return; 2307 } 2308 } 2309 #ifdef CFG_WITH_PAGER 2310 if (is_unpaged(va)) { 2311 if (v - boot_mmu_config.map_offset != pa) 2312 panic("issue in linear address space"); 2313 return; 2314 } 2315 2316 if (tee_pager_get_table_info(v, &ti)) { 2317 uint32_t a; 2318 2319 /* 2320 * Lookups in the page table managed by the pager is 2321 * dangerous for addresses in the paged area as those pages 2322 * changes all the time. But some ranges are safe, 2323 * rw-locked areas when the page is populated for instance. 2324 */ 2325 core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); 2326 if (a & TEE_MATTR_VALID_BLOCK) { 2327 paddr_t mask = BIT64(ti.shift) - 1; 2328 2329 p |= v & mask; 2330 if (pa != p) 2331 panic(); 2332 } else { 2333 if (pa) 2334 panic(); 2335 } 2336 return; 2337 } 2338 #endif 2339 2340 if (!core_va2pa_helper(va, &p)) { 2341 /* Verfiy only the static mapping (case non null phys addr) */ 2342 if (p && pa != p) { 2343 DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, 2344 va, p, pa); 2345 panic(); 2346 } 2347 } else { 2348 if (pa) { 2349 DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); 2350 panic(); 2351 } 2352 } 2353 } 2354 #else 2355 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) 2356 { 2357 } 2358 #endif 2359 2360 paddr_t virt_to_phys(void *va) 2361 { 2362 paddr_t pa = 0; 2363 2364 if (!arch_va2pa_helper(va, &pa)) 2365 pa = 0; 2366 check_pa_matches_va(memtag_strip_tag(va), pa); 2367 return pa; 2368 } 2369 2370 /* 2371 * Don't use check_va_matches_pa() for RISC-V, as its callee 2372 * arch_va2pa_helper() will call it eventually, this creates 2373 * indirect recursion and can lead to a stack overflow. 2374 * Moreover, if arch_va2pa_helper() returns true, it implies 2375 * the va2pa mapping is matched, no need to check it again. 2376 */ 2377 #if defined(CFG_TEE_CORE_DEBUG) && !defined(__riscv) 2378 static void check_va_matches_pa(paddr_t pa, void *va) 2379 { 2380 paddr_t p = 0; 2381 2382 if (!va) 2383 return; 2384 2385 p = virt_to_phys(va); 2386 if (p != pa) { 2387 DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); 2388 panic(); 2389 } 2390 } 2391 #else 2392 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) 2393 { 2394 } 2395 #endif 2396 2397 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) 2398 { 2399 if (!core_mmu_user_mapping_is_active()) 2400 return NULL; 2401 2402 return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); 2403 } 2404 2405 #ifdef CFG_WITH_PAGER 2406 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2407 { 2408 paddr_t end_pa = 0; 2409 2410 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 2411 return NULL; 2412 2413 if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) { 2414 if (end_pa > get_linear_map_end_pa()) 2415 return NULL; 2416 return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset); 2417 } 2418 2419 return tee_pager_phys_to_virt(pa, len); 2420 } 2421 #else 2422 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2423 { 2424 struct tee_mmap_region *mmap = NULL; 2425 2426 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); 2427 if (!mmap) 2428 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); 2429 if (!mmap) 2430 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); 2431 if (!mmap) 2432 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); 2433 if (!mmap) 2434 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); 2435 if (!mmap) 2436 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); 2437 /* 2438 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only 2439 * used with pager and not needed here. 2440 */ 2441 return map_pa2va(mmap, pa, len); 2442 } 2443 #endif 2444 2445 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) 2446 { 2447 void *va = NULL; 2448 2449 switch (m) { 2450 case MEM_AREA_TS_VASPACE: 2451 va = phys_to_virt_ts_vaspace(pa, len); 2452 break; 2453 case MEM_AREA_TEE_RAM: 2454 case MEM_AREA_TEE_RAM_RX: 2455 case MEM_AREA_TEE_RAM_RO: 2456 case MEM_AREA_TEE_RAM_RW: 2457 case MEM_AREA_NEX_RAM_RO: 2458 case MEM_AREA_NEX_RAM_RW: 2459 va = phys_to_virt_tee_ram(pa, len); 2460 break; 2461 case MEM_AREA_SHM_VASPACE: 2462 /* Find VA from PA in dynamic SHM is not yet supported */ 2463 va = NULL; 2464 break; 2465 default: 2466 va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); 2467 } 2468 if (m != MEM_AREA_SEC_RAM_OVERALL) 2469 check_va_matches_pa(pa, va); 2470 return va; 2471 } 2472 2473 void *phys_to_virt_io(paddr_t pa, size_t len) 2474 { 2475 struct tee_mmap_region *map = NULL; 2476 void *va = NULL; 2477 2478 map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); 2479 if (!map) 2480 map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); 2481 if (!map) 2482 return NULL; 2483 va = map_pa2va(map, pa, len); 2484 check_va_matches_pa(pa, va); 2485 return va; 2486 } 2487 2488 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) 2489 { 2490 if (cpu_mmu_enabled()) 2491 return (vaddr_t)phys_to_virt(pa, type, len); 2492 2493 return (vaddr_t)pa; 2494 } 2495 2496 #ifdef CFG_WITH_PAGER 2497 bool is_unpaged(const void *va) 2498 { 2499 vaddr_t v = (vaddr_t)va; 2500 2501 return v >= VCORE_START_VA && v < get_linear_map_end_va(); 2502 } 2503 #endif 2504 2505 #ifdef CFG_NS_VIRTUALIZATION 2506 bool is_nexus(const void *va) 2507 { 2508 vaddr_t v = (vaddr_t)va; 2509 2510 return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ; 2511 } 2512 #endif 2513 2514 void core_mmu_init_virtualization(void) 2515 { 2516 paddr_t b1 = 0; 2517 paddr_size_t s1 = 0; 2518 2519 static_assert(ARRAY_SIZE(secure_only) <= 2); 2520 if (ARRAY_SIZE(secure_only) == 2) { 2521 b1 = secure_only[1].paddr; 2522 s1 = secure_only[1].size; 2523 } 2524 virt_init_memory(&static_memory_map, secure_only[0].paddr, 2525 secure_only[0].size, b1, s1); 2526 } 2527 2528 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) 2529 { 2530 assert(p->pa); 2531 if (cpu_mmu_enabled()) { 2532 if (!p->va) 2533 p->va = (vaddr_t)phys_to_virt_io(p->pa, len); 2534 assert(p->va); 2535 return p->va; 2536 } 2537 return p->pa; 2538 } 2539 2540 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) 2541 { 2542 assert(p->pa); 2543 if (cpu_mmu_enabled()) { 2544 if (!p->va) 2545 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, 2546 len); 2547 assert(p->va); 2548 return p->va; 2549 } 2550 return p->pa; 2551 } 2552 2553 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) 2554 { 2555 assert(p->pa); 2556 if (cpu_mmu_enabled()) { 2557 if (!p->va) 2558 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, 2559 len); 2560 assert(p->va); 2561 return p->va; 2562 } 2563 return p->pa; 2564 } 2565 2566 #ifdef CFG_CORE_RESERVED_SHM 2567 static TEE_Result teecore_init_pub_ram(void) 2568 { 2569 vaddr_t s = 0; 2570 vaddr_t e = 0; 2571 2572 /* get virtual addr/size of NSec shared mem allocated from teecore */ 2573 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); 2574 2575 if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) 2576 panic("invalid PUB RAM"); 2577 2578 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2579 if (!tee_vbuf_is_non_sec(s, e - s)) 2580 panic("PUB RAM is not non-secure"); 2581 2582 #ifdef CFG_PL310 2583 /* Allocate statically the l2cc mutex */ 2584 tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); 2585 s += sizeof(uint32_t); /* size of a pl310 mutex */ 2586 s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ 2587 #endif 2588 2589 default_nsec_shm_paddr = virt_to_phys((void *)s); 2590 default_nsec_shm_size = e - s; 2591 2592 return TEE_SUCCESS; 2593 } 2594 early_init(teecore_init_pub_ram); 2595 #endif /*CFG_CORE_RESERVED_SHM*/ 2596 2597 void core_mmu_init_phys_mem(void) 2598 { 2599 vaddr_t s = 0; 2600 vaddr_t e = 0; 2601 paddr_t ps = 0; 2602 size_t size = 0; 2603 2604 /* 2605 * Get virtual addr/size of RAM where TA are loaded/executedNSec 2606 * shared mem allocated from teecore. 2607 */ 2608 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) 2609 virt_get_ta_ram(&s, &e); 2610 else 2611 core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e); 2612 2613 ps = virt_to_phys((void *)s); 2614 size = e - s; 2615 2616 phys_mem_init(0, 0, ps, size); 2617 } 2618