xref: /optee_os/core/mm/core_mmu.c (revision 1c1f8b65b5c67ed04adb6fd5c4eb7595930e1f5b)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <memtag.h>
22 #include <mm/core_memprot.h>
23 #include <mm/core_mmu.h>
24 #include <mm/mobj.h>
25 #include <mm/pgt_cache.h>
26 #include <mm/phys_mem.h>
27 #include <mm/tee_pager.h>
28 #include <mm/vm.h>
29 #include <platform_config.h>
30 #include <stdalign.h>
31 #include <string.h>
32 #include <trace.h>
33 #include <util.h>
34 
35 #ifndef DEBUG_XLAT_TABLE
36 #define DEBUG_XLAT_TABLE 0
37 #endif
38 
39 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
40 
41 /* Virtual memory pool for core mappings */
42 tee_mm_pool_t core_virt_mem_pool;
43 
44 /* Virtual memory pool for shared memory mappings */
45 tee_mm_pool_t core_virt_shm_pool;
46 
47 #ifdef CFG_CORE_PHYS_RELOCATABLE
48 unsigned long core_mmu_tee_load_pa __nex_bss;
49 #else
50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
51 #endif
52 
53 /*
54  * These variables are initialized before .bss is cleared. To avoid
55  * resetting them when .bss is cleared we're storing them in .data instead,
56  * even if they initially are zero.
57  */
58 
59 #ifdef CFG_CORE_RESERVED_SHM
60 /* Default NSec shared memory allocated from NSec world */
61 unsigned long default_nsec_shm_size __nex_bss;
62 unsigned long default_nsec_shm_paddr __nex_bss;
63 #endif
64 
65 static struct tee_mmap_region static_mmap_regions[CFG_MMAP_REGIONS
66 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE)
67 						+ 1
68 #endif
69 						+ 4] __nex_bss;
70 static struct memory_map static_memory_map __nex_data = {
71 	.map = static_mmap_regions,
72 	.alloc_count = ARRAY_SIZE(static_mmap_regions),
73 };
74 
75 /* Offset of the first TEE RAM mapping from start of secure RAM */
76 static size_t tee_ram_initial_offs __nex_bss;
77 
78 /* Define the platform's memory layout. */
79 struct memaccess_area {
80 	paddr_t paddr;
81 	size_t size;
82 };
83 
84 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
85 
86 static struct memaccess_area secure_only[] __nex_data = {
87 #ifdef CFG_CORE_PHYS_RELOCATABLE
88 	MEMACCESS_AREA(0, 0),
89 #else
90 #ifdef TRUSTED_SRAM_BASE
91 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
92 #endif
93 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
94 #endif
95 };
96 
97 static struct memaccess_area nsec_shared[] __nex_data = {
98 #ifdef CFG_CORE_RESERVED_SHM
99 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
100 #endif
101 };
102 
103 #if defined(CFG_SECURE_DATA_PATH)
104 static const char *tz_sdp_match = "linaro,secure-heap";
105 static struct memaccess_area sec_sdp;
106 #ifdef CFG_TEE_SDP_MEM_BASE
107 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
108 #endif
109 #ifdef TEE_SDP_TEST_MEM_BASE
110 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
111 #endif
112 #endif
113 
114 #ifdef CFG_CORE_RESERVED_SHM
115 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
116 #endif
117 static unsigned int mmu_spinlock;
118 
119 static uint32_t mmu_lock(void)
120 {
121 	return cpu_spin_lock_xsave(&mmu_spinlock);
122 }
123 
124 static void mmu_unlock(uint32_t exceptions)
125 {
126 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
127 }
128 
129 static void grow_mem_map(struct memory_map *mem_map)
130 {
131 	if (mem_map->count == mem_map->alloc_count) {
132 		EMSG("Out of entries (%zu) in mem_map", mem_map->alloc_count);
133 		panic();
134 	}
135 	mem_map->count++;
136 }
137 
138 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
139 {
140 	/*
141 	 * The first range is always used to cover OP-TEE core memory, but
142 	 * depending on configuration it may cover more than that.
143 	 */
144 	*base = secure_only[0].paddr;
145 	*size = secure_only[0].size;
146 }
147 
148 void core_mmu_set_secure_memory(paddr_t base, size_t size)
149 {
150 #ifdef CFG_CORE_PHYS_RELOCATABLE
151 	static_assert(ARRAY_SIZE(secure_only) == 1);
152 #endif
153 	runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE));
154 	assert(!secure_only[0].size);
155 	assert(base && size);
156 
157 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
158 	secure_only[0].paddr = base;
159 	secure_only[0].size = size;
160 }
161 
162 void core_mmu_get_ta_range(paddr_t *base, size_t *size)
163 {
164 	paddr_t b = 0;
165 	size_t s = 0;
166 
167 	static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE));
168 #ifdef TA_RAM_START
169 	b = TA_RAM_START;
170 	s = TA_RAM_SIZE;
171 #else
172 	static_assert(ARRAY_SIZE(secure_only) <= 2);
173 	if (ARRAY_SIZE(secure_only) == 1) {
174 		vaddr_t load_offs = 0;
175 
176 		assert(core_mmu_tee_load_pa >= secure_only[0].paddr);
177 		load_offs = core_mmu_tee_load_pa - secure_only[0].paddr;
178 
179 		assert(secure_only[0].size >
180 		       load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE);
181 		b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE;
182 		s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE -
183 		    TEE_SDP_TEST_MEM_SIZE;
184 	} else {
185 		assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE);
186 		b = secure_only[1].paddr;
187 		s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE;
188 	}
189 #endif
190 	if (base)
191 		*base = b;
192 	if (size)
193 		*size = s;
194 }
195 
196 static struct memory_map *get_memory_map(void)
197 {
198 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
199 		struct memory_map *map = virt_get_memory_map();
200 
201 		if (map)
202 			return map;
203 	}
204 
205 	return &static_memory_map;
206 }
207 
208 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
209 			     paddr_t pa, size_t size)
210 {
211 	size_t n;
212 
213 	for (n = 0; n < alen; n++)
214 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
215 			return true;
216 	return false;
217 }
218 
219 #define pbuf_intersects(a, pa, size) \
220 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
221 
222 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
223 			    paddr_t pa, size_t size)
224 {
225 	size_t n;
226 
227 	for (n = 0; n < alen; n++)
228 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
229 			return true;
230 	return false;
231 }
232 
233 #define pbuf_is_inside(a, pa, size) \
234 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
235 
236 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
237 {
238 	paddr_t end_pa = 0;
239 
240 	if (!map)
241 		return false;
242 
243 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
244 		return false;
245 
246 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
247 }
248 
249 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
250 {
251 	if (!map)
252 		return false;
253 	return (va >= map->va && va <= (map->va + map->size - 1));
254 }
255 
256 /* check if target buffer fits in a core default map area */
257 static bool pbuf_inside_map_area(unsigned long p, size_t l,
258 				 struct tee_mmap_region *map)
259 {
260 	return core_is_buffer_inside(p, l, map->pa, map->size);
261 }
262 
263 TEE_Result core_mmu_for_each_map(void *ptr,
264 				 TEE_Result (*fn)(struct tee_mmap_region *map,
265 						  void *ptr))
266 {
267 	struct memory_map *mem_map = get_memory_map();
268 	TEE_Result res = TEE_SUCCESS;
269 	size_t n = 0;
270 
271 	for (n = 0; n < mem_map->count; n++) {
272 		res = fn(mem_map->map + n, ptr);
273 		if (res)
274 			return res;
275 	}
276 
277 	return TEE_SUCCESS;
278 }
279 
280 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
281 {
282 	struct memory_map *mem_map = get_memory_map();
283 	size_t n = 0;
284 
285 	for (n = 0; n < mem_map->count; n++) {
286 		if (mem_map->map[n].type == type)
287 			return mem_map->map + n;
288 	}
289 	return NULL;
290 }
291 
292 static struct tee_mmap_region *
293 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
294 {
295 	struct memory_map *mem_map = get_memory_map();
296 	size_t n = 0;
297 
298 	for (n = 0; n < mem_map->count; n++) {
299 		if (mem_map->map[n].type != type)
300 			continue;
301 		if (pa_is_in_map(mem_map->map + n, pa, len))
302 			return mem_map->map + n;
303 	}
304 	return NULL;
305 }
306 
307 static struct tee_mmap_region *find_map_by_va(void *va)
308 {
309 	struct memory_map *mem_map = get_memory_map();
310 	vaddr_t a = (vaddr_t)va;
311 	size_t n = 0;
312 
313 	for (n = 0; n < mem_map->count; n++) {
314 		if (a >= mem_map->map[n].va &&
315 		    a <= (mem_map->map[n].va - 1 + mem_map->map[n].size))
316 			return mem_map->map + n;
317 	}
318 
319 	return NULL;
320 }
321 
322 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
323 {
324 	struct memory_map *mem_map = get_memory_map();
325 	size_t n = 0;
326 
327 	for (n = 0; n < mem_map->count; n++) {
328 		/* Skip unmapped regions */
329 		if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) &&
330 		    pa >= mem_map->map[n].pa &&
331 		    pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size))
332 			return mem_map->map + n;
333 	}
334 
335 	return NULL;
336 }
337 
338 #if defined(CFG_SECURE_DATA_PATH)
339 static bool dtb_get_sdp_region(void)
340 {
341 	void *fdt = NULL;
342 	int node = 0;
343 	int tmp_node = 0;
344 	paddr_t tmp_addr = 0;
345 	size_t tmp_size = 0;
346 
347 	if (!IS_ENABLED(CFG_EMBED_DTB))
348 		return false;
349 
350 	fdt = get_embedded_dt();
351 	if (!fdt)
352 		panic("No DTB found");
353 
354 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
355 	if (node < 0) {
356 		DMSG("No %s compatible node found", tz_sdp_match);
357 		return false;
358 	}
359 	tmp_node = node;
360 	while (tmp_node >= 0) {
361 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
362 							 tz_sdp_match);
363 		if (tmp_node >= 0)
364 			DMSG("Ignore SDP pool node %s, supports only 1 node",
365 			     fdt_get_name(fdt, tmp_node, NULL));
366 	}
367 
368 	if (fdt_reg_info(fdt, node, &tmp_addr, &tmp_size)) {
369 		EMSG("%s: Unable to get base addr or size from DT",
370 		     tz_sdp_match);
371 		return false;
372 	}
373 
374 	sec_sdp.paddr = tmp_addr;
375 	sec_sdp.size = tmp_size;
376 
377 	return true;
378 }
379 #endif
380 
381 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
382 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
383 				const struct core_mmu_phys_mem *start,
384 				const struct core_mmu_phys_mem *end)
385 {
386 	const struct core_mmu_phys_mem *mem;
387 
388 	for (mem = start; mem < end; mem++) {
389 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
390 			return true;
391 	}
392 
393 	return false;
394 }
395 #endif
396 
397 #ifdef CFG_CORE_DYN_SHM
398 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
399 			       paddr_t pa, size_t size)
400 {
401 	struct core_mmu_phys_mem *m = *mem;
402 	size_t n = 0;
403 
404 	while (true) {
405 		if (n >= *nelems) {
406 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
407 			     pa, size);
408 			return;
409 		}
410 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
411 			break;
412 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
413 			panic();
414 		n++;
415 	}
416 
417 	if (pa == m[n].addr && size == m[n].size) {
418 		/* Remove this entry */
419 		(*nelems)--;
420 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
421 		m = nex_realloc(m, sizeof(*m) * *nelems);
422 		if (!m)
423 			panic();
424 		*mem = m;
425 	} else if (pa == m[n].addr) {
426 		m[n].addr += size;
427 		m[n].size -= size;
428 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
429 		m[n].size -= size;
430 	} else {
431 		/* Need to split the memory entry */
432 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
433 		if (!m)
434 			panic();
435 		*mem = m;
436 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
437 		(*nelems)++;
438 		m[n].size = pa - m[n].addr;
439 		m[n + 1].size -= size + m[n].size;
440 		m[n + 1].addr = pa + size;
441 	}
442 }
443 
444 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
445 				      size_t nelems,
446 				      struct tee_mmap_region *map)
447 {
448 	size_t n;
449 
450 	for (n = 0; n < nelems; n++) {
451 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
452 					    map->pa, map->size)) {
453 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
454 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
455 			     start[n].addr, start[n].size,
456 			     map->type, map->pa, map->size);
457 			panic();
458 		}
459 	}
460 }
461 
462 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
463 static size_t discovered_nsec_ddr_nelems __nex_bss;
464 
465 static int cmp_pmem_by_addr(const void *a, const void *b)
466 {
467 	const struct core_mmu_phys_mem *pmem_a = a;
468 	const struct core_mmu_phys_mem *pmem_b = b;
469 
470 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
471 }
472 
473 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
474 				      size_t nelems)
475 {
476 	struct core_mmu_phys_mem *m = start;
477 	size_t num_elems = nelems;
478 	struct memory_map *mem_map = &static_memory_map;
479 	const struct core_mmu_phys_mem __maybe_unused *pmem;
480 	size_t n = 0;
481 
482 	assert(!discovered_nsec_ddr_start);
483 	assert(m && num_elems);
484 
485 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
486 
487 	/*
488 	 * Non-secure shared memory and also secure data
489 	 * path memory are supposed to reside inside
490 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
491 	 * are used for a specific purpose make holes for
492 	 * those memory in the normal non-secure memory.
493 	 *
494 	 * This has to be done since for instance QEMU
495 	 * isn't aware of which memory range in the
496 	 * non-secure memory is used for NSEC_SHM.
497 	 */
498 
499 #ifdef CFG_SECURE_DATA_PATH
500 	if (dtb_get_sdp_region())
501 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
502 
503 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
504 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
505 #endif
506 
507 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
508 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
509 				   secure_only[n].size);
510 
511 	for  (n = 0; n < mem_map->count; n++) {
512 		switch (mem_map->map[n].type) {
513 		case MEM_AREA_NSEC_SHM:
514 			carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa,
515 					   mem_map->map[n].size);
516 			break;
517 		case MEM_AREA_EXT_DT:
518 		case MEM_AREA_MANIFEST_DT:
519 		case MEM_AREA_RAM_NSEC:
520 		case MEM_AREA_RES_VASPACE:
521 		case MEM_AREA_SHM_VASPACE:
522 		case MEM_AREA_TS_VASPACE:
523 		case MEM_AREA_PAGER_VASPACE:
524 			break;
525 		default:
526 			check_phys_mem_is_outside(m, num_elems,
527 						  mem_map->map + n);
528 		}
529 	}
530 
531 	discovered_nsec_ddr_start = m;
532 	discovered_nsec_ddr_nelems = num_elems;
533 
534 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
535 				   m[num_elems - 1].size))
536 		panic();
537 }
538 
539 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
540 				    const struct core_mmu_phys_mem **end)
541 {
542 	if (!discovered_nsec_ddr_start)
543 		return false;
544 
545 	*start = discovered_nsec_ddr_start;
546 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
547 
548 	return true;
549 }
550 
551 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
552 {
553 	const struct core_mmu_phys_mem *start;
554 	const struct core_mmu_phys_mem *end;
555 
556 	if (!get_discovered_nsec_ddr(&start, &end))
557 		return false;
558 
559 	return pbuf_is_special_mem(pbuf, len, start, end);
560 }
561 
562 bool core_mmu_nsec_ddr_is_defined(void)
563 {
564 	const struct core_mmu_phys_mem *start;
565 	const struct core_mmu_phys_mem *end;
566 
567 	if (!get_discovered_nsec_ddr(&start, &end))
568 		return false;
569 
570 	return start != end;
571 }
572 #else
573 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
574 {
575 	return false;
576 }
577 #endif /*CFG_CORE_DYN_SHM*/
578 
579 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
580 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
581 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
582 
583 #ifdef CFG_SECURE_DATA_PATH
584 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
585 {
586 	bool is_sdp_mem = false;
587 
588 	if (sec_sdp.size)
589 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
590 						   sec_sdp.size);
591 
592 	if (!is_sdp_mem)
593 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
594 						 phys_sdp_mem_end);
595 
596 	return is_sdp_mem;
597 }
598 
599 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
600 {
601 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
602 					    CORE_MEM_SDP_MEM);
603 
604 	if (!mobj)
605 		panic("can't create SDP physical memory object");
606 
607 	return mobj;
608 }
609 
610 struct mobj **core_sdp_mem_create_mobjs(void)
611 {
612 	const struct core_mmu_phys_mem *mem = NULL;
613 	struct mobj **mobj_base = NULL;
614 	struct mobj **mobj = NULL;
615 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
616 
617 	if (sec_sdp.size)
618 		cnt++;
619 
620 	/* SDP mobjs table must end with a NULL entry */
621 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
622 	if (!mobj_base)
623 		panic("Out of memory");
624 
625 	mobj = mobj_base;
626 
627 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
628 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
629 
630 	if (sec_sdp.size)
631 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
632 
633 	return mobj_base;
634 }
635 
636 #else /* CFG_SECURE_DATA_PATH */
637 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
638 {
639 	return false;
640 }
641 
642 #endif /* CFG_SECURE_DATA_PATH */
643 
644 /* Check special memories comply with registered memories */
645 static void verify_special_mem_areas(struct memory_map *mem_map,
646 				     const struct core_mmu_phys_mem *start,
647 				     const struct core_mmu_phys_mem *end,
648 				     const char *area_name __maybe_unused)
649 {
650 	const struct core_mmu_phys_mem *mem = NULL;
651 	const struct core_mmu_phys_mem *mem2 = NULL;
652 	size_t n = 0;
653 
654 	if (start == end) {
655 		DMSG("No %s memory area defined", area_name);
656 		return;
657 	}
658 
659 	for (mem = start; mem < end; mem++)
660 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
661 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
662 
663 	/* Check memories do not intersect each other */
664 	for (mem = start; mem + 1 < end; mem++) {
665 		for (mem2 = mem + 1; mem2 < end; mem2++) {
666 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
667 						     mem->addr, mem->size)) {
668 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
669 						   mem->addr, mem->size);
670 				panic("Special memory intersection");
671 			}
672 		}
673 	}
674 
675 	/*
676 	 * Check memories do not intersect any mapped memory.
677 	 * This is called before reserved VA space is loaded in mem_map.
678 	 */
679 	for (mem = start; mem < end; mem++) {
680 		for (n = 0; n < mem_map->count; n++) {
681 			if (core_is_buffer_intersect(mem->addr, mem->size,
682 						     mem_map->map[n].pa,
683 						     mem_map->map[n].size)) {
684 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
685 						   mem_map->map[n].pa,
686 						   mem_map->map[n].size);
687 				panic("Special memory intersection");
688 			}
689 		}
690 	}
691 }
692 
693 static void merge_mmaps(struct tee_mmap_region *dst,
694 			const struct tee_mmap_region *src)
695 {
696 	paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1);
697 	paddr_t pa = MIN(dst->pa, src->pa);
698 
699 	DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA,
700 	     dst->pa, dst->pa + dst->size - 1, src->pa,
701 	     src->pa + src->size - 1);
702 	dst->pa = pa;
703 	dst->size = end_pa - pa + 1;
704 }
705 
706 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1,
707 				const struct tee_mmap_region *r2)
708 {
709 	if (r1->type != r2->type)
710 		return false;
711 
712 	if (r1->pa == r2->pa)
713 		return true;
714 
715 	if (r1->pa < r2->pa)
716 		return r1->pa + r1->size >= r2->pa;
717 	else
718 		return r2->pa + r2->size >= r1->pa;
719 }
720 
721 static void add_phys_mem(struct memory_map *mem_map,
722 			 const char *mem_name __maybe_unused,
723 			 enum teecore_memtypes mem_type,
724 			 paddr_t mem_addr, paddr_size_t mem_size)
725 {
726 	size_t n = 0;
727 	const struct tee_mmap_region m0 = {
728 		.type = mem_type,
729 		.pa = mem_addr,
730 		.size = mem_size,
731 	};
732 
733 	if (!mem_size)	/* Discard null size entries */
734 		return;
735 
736 	/*
737 	 * If some ranges of memory of the same type do overlap
738 	 * each others they are coalesced into one entry. To help this
739 	 * added entries are sorted by increasing physical.
740 	 *
741 	 * Note that it's valid to have the same physical memory as several
742 	 * different memory types, for instance the same device memory
743 	 * mapped as both secure and non-secure. This will probably not
744 	 * happen often in practice.
745 	 */
746 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
747 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
748 	for  (n = 0; n < mem_map->count; n++) {
749 		if (mmaps_are_mergeable(mem_map->map + n, &m0)) {
750 			merge_mmaps(mem_map->map + n, &m0);
751 			/*
752 			 * The merged result might be mergeable with the
753 			 * next or previous entry.
754 			 */
755 			if (n + 1 < mem_map->count &&
756 			    mmaps_are_mergeable(mem_map->map + n,
757 						mem_map->map + n + 1)) {
758 				merge_mmaps(mem_map->map + n,
759 					    mem_map->map + n + 1);
760 				rem_array_elem(mem_map->map, mem_map->count,
761 					       sizeof(*mem_map->map), n + 1);
762 				mem_map->count--;
763 			}
764 			if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1,
765 							 mem_map->map + n)) {
766 				merge_mmaps(mem_map->map + n - 1,
767 					    mem_map->map + n);
768 				rem_array_elem(mem_map->map, mem_map->count,
769 					       sizeof(*mem_map->map), n);
770 				mem_map->count--;
771 			}
772 			return;
773 		}
774 		if (mem_type < mem_map->map[n].type ||
775 		    (mem_type == mem_map->map[n].type &&
776 		     mem_addr < mem_map->map[n].pa))
777 			break; /* found the spot where to insert this memory */
778 	}
779 
780 	grow_mem_map(mem_map);
781 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
782 		       n, &m0);
783 }
784 
785 static void add_va_space(struct memory_map *mem_map,
786 			 enum teecore_memtypes type, size_t size)
787 {
788 	size_t n = 0;
789 
790 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
791 	for  (n = 0; n < mem_map->count; n++) {
792 		if (type < mem_map->map[n].type)
793 			break;
794 	}
795 
796 	grow_mem_map(mem_map);
797 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
798 		       n, NULL);
799 	mem_map->map[n] = (struct tee_mmap_region){
800 		.type = type,
801 		.size = size,
802 	};
803 }
804 
805 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
806 {
807 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
808 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
809 				TEE_MATTR_MEM_TYPE_SHIFT;
810 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
811 				TEE_MATTR_MEM_TYPE_SHIFT;
812 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
813 				  TEE_MATTR_MEM_TYPE_SHIFT;
814 
815 	switch (t) {
816 	case MEM_AREA_TEE_RAM:
817 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
818 	case MEM_AREA_TEE_RAM_RX:
819 	case MEM_AREA_INIT_RAM_RX:
820 	case MEM_AREA_IDENTITY_MAP_RX:
821 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
822 	case MEM_AREA_TEE_RAM_RO:
823 	case MEM_AREA_INIT_RAM_RO:
824 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
825 	case MEM_AREA_TEE_RAM_RW:
826 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
827 	case MEM_AREA_NEX_RAM_RW:
828 	case MEM_AREA_TEE_ASAN:
829 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
830 	case MEM_AREA_TEE_COHERENT:
831 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
832 	case MEM_AREA_NSEC_SHM:
833 	case MEM_AREA_NEX_NSEC_SHM:
834 		return attr | TEE_MATTR_PRW | cached;
835 	case MEM_AREA_MANIFEST_DT:
836 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
837 	case MEM_AREA_TRANSFER_LIST:
838 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
839 	case MEM_AREA_EXT_DT:
840 		/*
841 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
842 		 * tree as secure non-cached memory, otherwise, fall back to
843 		 * non-secure mapping.
844 		 */
845 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
846 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
847 			       noncache;
848 		fallthrough;
849 	case MEM_AREA_IO_NSEC:
850 		return attr | TEE_MATTR_PRW | noncache;
851 	case MEM_AREA_IO_SEC:
852 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
853 	case MEM_AREA_RAM_NSEC:
854 		return attr | TEE_MATTR_PRW | cached;
855 	case MEM_AREA_RAM_SEC:
856 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
857 	case MEM_AREA_SEC_RAM_OVERALL:
858 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
859 	case MEM_AREA_ROM_SEC:
860 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
861 	case MEM_AREA_RES_VASPACE:
862 	case MEM_AREA_SHM_VASPACE:
863 		return 0;
864 	case MEM_AREA_PAGER_VASPACE:
865 		return TEE_MATTR_SECURE;
866 	default:
867 		panic("invalid type");
868 	}
869 }
870 
871 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
872 {
873 	switch (mm->type) {
874 	case MEM_AREA_TEE_RAM:
875 	case MEM_AREA_TEE_RAM_RX:
876 	case MEM_AREA_TEE_RAM_RO:
877 	case MEM_AREA_TEE_RAM_RW:
878 	case MEM_AREA_INIT_RAM_RX:
879 	case MEM_AREA_INIT_RAM_RO:
880 	case MEM_AREA_NEX_RAM_RW:
881 	case MEM_AREA_NEX_RAM_RO:
882 	case MEM_AREA_TEE_ASAN:
883 		return true;
884 	default:
885 		return false;
886 	}
887 }
888 
889 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
890 {
891 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
892 }
893 
894 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
895 {
896 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
897 }
898 
899 static int cmp_mmap_by_lower_va(const void *a, const void *b)
900 {
901 	const struct tee_mmap_region *mm_a = a;
902 	const struct tee_mmap_region *mm_b = b;
903 
904 	return CMP_TRILEAN(mm_a->va, mm_b->va);
905 }
906 
907 static void dump_mmap_table(struct memory_map *mem_map)
908 {
909 	size_t n = 0;
910 
911 	for (n = 0; n < mem_map->count; n++) {
912 		struct tee_mmap_region *map = mem_map->map + n;
913 		vaddr_t __maybe_unused vstart;
914 
915 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
916 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
917 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
918 		     teecore_memtype_name(map->type), vstart,
919 		     vstart + map->size - 1, map->pa,
920 		     (paddr_t)(map->pa + map->size - 1), map->size,
921 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
922 	}
923 }
924 
925 #if DEBUG_XLAT_TABLE
926 
927 static void dump_xlat_table(vaddr_t va, unsigned int level)
928 {
929 	struct core_mmu_table_info tbl_info;
930 	unsigned int idx = 0;
931 	paddr_t pa;
932 	uint32_t attr;
933 
934 	core_mmu_find_table(NULL, va, level, &tbl_info);
935 	va = tbl_info.va_base;
936 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
937 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
938 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
939 			const char *security_bit = "";
940 
941 			if (core_mmu_entry_have_security_bit(attr)) {
942 				if (attr & TEE_MATTR_SECURE)
943 					security_bit = "S";
944 				else
945 					security_bit = "NS";
946 			}
947 
948 			if (attr & TEE_MATTR_TABLE) {
949 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
950 					" TBL:0x%010" PRIxPA " %s",
951 					level * 2, "", level, va, pa,
952 					security_bit);
953 				dump_xlat_table(va, level + 1);
954 			} else if (attr) {
955 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
956 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
957 					level * 2, "", level, va, pa,
958 					mattr_is_cached(attr) ? "MEM" :
959 					"DEV",
960 					attr & TEE_MATTR_PW ? "RW" : "RO",
961 					attr & TEE_MATTR_PX ? "X " : "XN",
962 					security_bit);
963 			} else {
964 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
965 					    " INVALID\n",
966 					    level * 2, "", level, va);
967 			}
968 		}
969 		va += BIT64(tbl_info.shift);
970 	}
971 }
972 
973 #else
974 
975 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
976 {
977 }
978 
979 #endif
980 
981 /*
982  * Reserves virtual memory space for pager usage.
983  *
984  * From the start of the first memory used by the link script +
985  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
986  * mapping for pager usage. This adds translation tables as needed for the
987  * pager to operate.
988  */
989 static void add_pager_vaspace(struct memory_map *mem_map)
990 {
991 	paddr_t begin = 0;
992 	paddr_t end = 0;
993 	size_t size = 0;
994 	size_t pos = 0;
995 	size_t n = 0;
996 
997 
998 	for (n = 0; n < mem_map->count; n++) {
999 		if (map_is_tee_ram(mem_map->map + n)) {
1000 			if (!begin)
1001 				begin = mem_map->map[n].pa;
1002 			pos = n + 1;
1003 		}
1004 	}
1005 
1006 	end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size;
1007 	assert(end - begin < TEE_RAM_VA_SIZE);
1008 	size = TEE_RAM_VA_SIZE - (end - begin);
1009 
1010 	grow_mem_map(mem_map);
1011 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
1012 		       n, NULL);
1013 	mem_map->map[n] = (struct tee_mmap_region){
1014 		.type = MEM_AREA_PAGER_VASPACE,
1015 		.size = size,
1016 		.region_size = SMALL_PAGE_SIZE,
1017 		.attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE),
1018 	};
1019 }
1020 
1021 static void check_sec_nsec_mem_config(void)
1022 {
1023 	size_t n = 0;
1024 
1025 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
1026 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
1027 				    secure_only[n].size))
1028 			panic("Invalid memory access config: sec/nsec");
1029 	}
1030 }
1031 
1032 static void collect_device_mem_ranges(struct memory_map *mem_map)
1033 {
1034 	const char *compatible = "arm,ffa-manifest-device-regions";
1035 	void *fdt = get_manifest_dt();
1036 	const char *name = NULL;
1037 	uint64_t page_count = 0;
1038 	uint64_t base = 0;
1039 	int subnode = 0;
1040 	int node = 0;
1041 
1042 	assert(fdt);
1043 
1044 	node = fdt_node_offset_by_compatible(fdt, 0, compatible);
1045 	if (node < 0)
1046 		return;
1047 
1048 	fdt_for_each_subnode(subnode, fdt, node) {
1049 		name = fdt_get_name(fdt, subnode, NULL);
1050 		if (!name)
1051 			continue;
1052 
1053 		if (dt_getprop_as_number(fdt, subnode, "base-address",
1054 					 &base)) {
1055 			EMSG("Mandatory field is missing: base-address");
1056 			continue;
1057 		}
1058 
1059 		if (base & SMALL_PAGE_MASK) {
1060 			EMSG("base-address is not page aligned");
1061 			continue;
1062 		}
1063 
1064 		if (dt_getprop_as_number(fdt, subnode, "pages-count",
1065 					 &page_count)) {
1066 			EMSG("Mandatory field is missing: pages-count");
1067 			continue;
1068 		}
1069 
1070 		add_phys_mem(mem_map, name, MEM_AREA_IO_SEC,
1071 			     base, base + page_count * SMALL_PAGE_SIZE);
1072 	}
1073 }
1074 
1075 static void collect_mem_ranges(struct memory_map *mem_map)
1076 {
1077 	const struct core_mmu_phys_mem *mem = NULL;
1078 	vaddr_t ram_start = secure_only[0].paddr;
1079 	size_t n = 0;
1080 
1081 #define ADD_PHYS_MEM(_type, _addr, _size) \
1082 		add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size))
1083 
1084 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
1085 		paddr_t next_pa = 0;
1086 
1087 		/*
1088 		 * Read-only and read-execute physical memory areas must
1089 		 * not be mapped by MEM_AREA_SEC_RAM_OVERALL, but all the
1090 		 * read/write should.
1091 		 */
1092 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, ram_start,
1093 			     VCORE_UNPG_RX_PA - ram_start);
1094 		assert(VCORE_UNPG_RX_PA >= ram_start);
1095 		tee_ram_initial_offs = VCORE_UNPG_RX_PA - ram_start;
1096 		DMSG("tee_ram_initial_offs %#zx", tee_ram_initial_offs);
1097 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
1098 			     VCORE_UNPG_RX_SZ);
1099 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
1100 			     VCORE_UNPG_RO_SZ);
1101 
1102 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1103 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
1104 				     VCORE_UNPG_RW_SZ);
1105 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA,
1106 				     VCORE_UNPG_RW_SZ);
1107 
1108 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
1109 				     VCORE_NEX_RW_SZ);
1110 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_NEX_RW_PA,
1111 				     VCORE_NEX_RW_SZ);
1112 
1113 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_FREE_PA,
1114 				     VCORE_FREE_SZ);
1115 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA,
1116 				     VCORE_FREE_SZ);
1117 			next_pa = VCORE_FREE_PA + VCORE_FREE_SZ;
1118 		} else {
1119 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
1120 				     VCORE_UNPG_RW_SZ);
1121 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA,
1122 				     VCORE_UNPG_RW_SZ);
1123 
1124 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_FREE_PA,
1125 				     VCORE_FREE_SZ);
1126 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA,
1127 				     VCORE_FREE_SZ);
1128 			next_pa = VCORE_FREE_PA + VCORE_FREE_SZ;
1129 		}
1130 
1131 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1132 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
1133 				     VCORE_INIT_RX_SZ);
1134 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
1135 				     VCORE_INIT_RO_SZ);
1136 		} else {
1137 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, next_pa,
1138 				     secure_only[0].paddr +
1139 				     secure_only[0].size - next_pa);
1140 		}
1141 	} else {
1142 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
1143 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr,
1144 			     secure_only[0].size);
1145 	}
1146 
1147 	for (n = 1; n < ARRAY_SIZE(secure_only); n++)
1148 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr,
1149 			     secure_only[n].size);
1150 
1151 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
1152 	    IS_ENABLED(CFG_WITH_PAGER)) {
1153 		/*
1154 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
1155 		 * disabled.
1156 		 */
1157 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1158 	}
1159 
1160 #undef ADD_PHYS_MEM
1161 
1162 	/* Collect device memory info from SP manifest */
1163 	if (IS_ENABLED(CFG_CORE_SEL2_SPMC))
1164 		collect_device_mem_ranges(mem_map);
1165 
1166 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1167 		/* Only unmapped virtual range may have a null phys addr */
1168 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1169 
1170 		add_phys_mem(mem_map, mem->name, mem->type,
1171 			     mem->addr, mem->size);
1172 	}
1173 
1174 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1175 		verify_special_mem_areas(mem_map, phys_sdp_mem_begin,
1176 					 phys_sdp_mem_end, "SDP");
1177 
1178 	add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE);
1179 	add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE);
1180 }
1181 
1182 static void assign_mem_granularity(struct memory_map *mem_map)
1183 {
1184 	size_t n = 0;
1185 
1186 	/*
1187 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1188 	 * SMALL_PAGE_SIZE.
1189 	 */
1190 	for  (n = 0; n < mem_map->count; n++) {
1191 		paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size;
1192 
1193 		if (!(mask & CORE_MMU_PGDIR_MASK))
1194 			mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE;
1195 		else if (!(mask & SMALL_PAGE_MASK))
1196 			mem_map->map[n].region_size = SMALL_PAGE_SIZE;
1197 		else
1198 			panic("Impossible memory alignment");
1199 
1200 		if (map_is_tee_ram(mem_map->map + n))
1201 			mem_map->map[n].region_size = SMALL_PAGE_SIZE;
1202 	}
1203 }
1204 
1205 static bool place_tee_ram_at_top(paddr_t paddr)
1206 {
1207 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1208 }
1209 
1210 /*
1211  * MMU arch driver shall override this function if it helps
1212  * optimizing the memory footprint of the address translation tables.
1213  */
1214 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1215 {
1216 	return place_tee_ram_at_top(paddr);
1217 }
1218 
1219 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map,
1220 			      bool tee_ram_at_top)
1221 {
1222 	struct tee_mmap_region *map = NULL;
1223 	vaddr_t va = 0;
1224 	bool va_is_secure = true;
1225 	size_t n = 0;
1226 
1227 	/*
1228 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1229 	 * 0 is by design an invalid va, so return false directly.
1230 	 */
1231 	if (!tee_ram_va)
1232 		return false;
1233 
1234 	/* Clear eventual previous assignments */
1235 	for (n = 0; n < mem_map->count; n++)
1236 		mem_map->map[n].va = 0;
1237 
1238 	/*
1239 	 * TEE RAM regions are always aligned with region_size.
1240 	 *
1241 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1242 	 * since it handles virtual memory which covers the part of the ELF
1243 	 * that cannot fit directly into memory.
1244 	 */
1245 	va = tee_ram_va + tee_ram_initial_offs;
1246 	for (n = 0; n < mem_map->count; n++) {
1247 		map = mem_map->map + n;
1248 		if (map_is_tee_ram(map) ||
1249 		    map->type == MEM_AREA_PAGER_VASPACE) {
1250 			assert(!(va & (map->region_size - 1)));
1251 			assert(!(map->size & (map->region_size - 1)));
1252 			map->va = va;
1253 			if (ADD_OVERFLOW(va, map->size, &va))
1254 				return false;
1255 			if (va >= BIT64(core_mmu_get_va_width()))
1256 				return false;
1257 		}
1258 	}
1259 
1260 	if (tee_ram_at_top) {
1261 		/*
1262 		 * Map non-tee ram regions at addresses lower than the tee
1263 		 * ram region.
1264 		 */
1265 		va = tee_ram_va;
1266 		for (n = 0; n < mem_map->count; n++) {
1267 			map = mem_map->map + n;
1268 			map->attr = core_mmu_type_to_attr(map->type);
1269 			if (map->va)
1270 				continue;
1271 
1272 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1273 			    va_is_secure != map_is_secure(map)) {
1274 				va_is_secure = !va_is_secure;
1275 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1276 			}
1277 
1278 			if (SUB_OVERFLOW(va, map->size, &va))
1279 				return false;
1280 			va = ROUNDDOWN(va, map->region_size);
1281 			/*
1282 			 * Make sure that va is aligned with pa for
1283 			 * efficient pgdir mapping. Basically pa &
1284 			 * pgdir_mask should be == va & pgdir_mask
1285 			 */
1286 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1287 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1288 					return false;
1289 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1290 			}
1291 			map->va = va;
1292 		}
1293 	} else {
1294 		/*
1295 		 * Map non-tee ram regions at addresses higher than the tee
1296 		 * ram region.
1297 		 */
1298 		for (n = 0; n < mem_map->count; n++) {
1299 			map = mem_map->map + n;
1300 			map->attr = core_mmu_type_to_attr(map->type);
1301 			if (map->va)
1302 				continue;
1303 
1304 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1305 			    va_is_secure != map_is_secure(map)) {
1306 				va_is_secure = !va_is_secure;
1307 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1308 						     &va))
1309 					return false;
1310 			}
1311 
1312 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1313 				return false;
1314 			/*
1315 			 * Make sure that va is aligned with pa for
1316 			 * efficient pgdir mapping. Basically pa &
1317 			 * pgdir_mask should be == va & pgdir_mask
1318 			 */
1319 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1320 				vaddr_t offs = (map->pa - va) &
1321 					       CORE_MMU_PGDIR_MASK;
1322 
1323 				if (ADD_OVERFLOW(va, offs, &va))
1324 					return false;
1325 			}
1326 
1327 			map->va = va;
1328 			if (ADD_OVERFLOW(va, map->size, &va))
1329 				return false;
1330 			if (va >= BIT64(core_mmu_get_va_width()))
1331 				return false;
1332 		}
1333 	}
1334 
1335 	return true;
1336 }
1337 
1338 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map)
1339 {
1340 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1341 
1342 	/*
1343 	 * Check that we're not overlapping with the user VA range.
1344 	 */
1345 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1346 		/*
1347 		 * User VA range is supposed to be defined after these
1348 		 * mappings have been established.
1349 		 */
1350 		assert(!core_mmu_user_va_range_is_defined());
1351 	} else {
1352 		vaddr_t user_va_base = 0;
1353 		size_t user_va_size = 0;
1354 
1355 		assert(core_mmu_user_va_range_is_defined());
1356 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1357 		if (tee_ram_va < (user_va_base + user_va_size))
1358 			return false;
1359 	}
1360 
1361 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1362 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1363 
1364 		/* Try whole mapping covered by a single base xlat entry */
1365 		if (prefered_dir != tee_ram_at_top &&
1366 		    assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir))
1367 			return true;
1368 	}
1369 
1370 	return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top);
1371 }
1372 
1373 static int cmp_init_mem_map(const void *a, const void *b)
1374 {
1375 	const struct tee_mmap_region *mm_a = a;
1376 	const struct tee_mmap_region *mm_b = b;
1377 	int rc = 0;
1378 
1379 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1380 	if (!rc)
1381 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1382 	/*
1383 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1384 	 * the same level2 table. Hence sort secure mapping from non-secure
1385 	 * mapping.
1386 	 */
1387 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1388 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1389 
1390 	return rc;
1391 }
1392 
1393 static bool mem_map_add_id_map(struct memory_map *mem_map,
1394 			       vaddr_t id_map_start, vaddr_t id_map_end)
1395 {
1396 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1397 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1398 	size_t len = end - start;
1399 	size_t n = 0;
1400 
1401 
1402 	for (n = 0; n < mem_map->count; n++)
1403 		if (core_is_buffer_intersect(mem_map->map[n].va,
1404 					     mem_map->map[n].size, start, len))
1405 			return false;
1406 
1407 	grow_mem_map(mem_map);
1408 	mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){
1409 		.type = MEM_AREA_IDENTITY_MAP_RX,
1410 		/*
1411 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1412 		 * translation table, at the increased risk of clashes with
1413 		 * the rest of the memory map.
1414 		 */
1415 		.region_size = SMALL_PAGE_SIZE,
1416 		.pa = start,
1417 		.va = start,
1418 		.size = len,
1419 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1420 	};
1421 
1422 	return true;
1423 }
1424 
1425 static struct memory_map *init_mem_map(struct memory_map *mem_map,
1426 				       unsigned long seed,
1427 				       unsigned long *ret_offs)
1428 {
1429 	/*
1430 	 * @id_map_start and @id_map_end describes a physical memory range
1431 	 * that must be mapped Read-Only eXecutable at identical virtual
1432 	 * addresses.
1433 	 */
1434 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1435 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1436 	vaddr_t start_addr = secure_only[0].paddr;
1437 	unsigned long offs = 0;
1438 
1439 	collect_mem_ranges(mem_map);
1440 	assign_mem_granularity(mem_map);
1441 
1442 	/*
1443 	 * To ease mapping and lower use of xlat tables, sort mapping
1444 	 * description moving small-page regions after the pgdir regions.
1445 	 */
1446 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1447 	      cmp_init_mem_map);
1448 
1449 	if (IS_ENABLED(CFG_WITH_PAGER))
1450 		add_pager_vaspace(mem_map);
1451 
1452 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1453 		vaddr_t base_addr = start_addr + seed;
1454 		const unsigned int va_width = core_mmu_get_va_width();
1455 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1456 						   SMALL_PAGE_SHIFT);
1457 		vaddr_t ba = base_addr;
1458 		size_t n = 0;
1459 
1460 		for (n = 0; n < 3; n++) {
1461 			if (n)
1462 				ba = base_addr ^ BIT64(va_width - n);
1463 			ba &= va_mask;
1464 			if (assign_mem_va(ba, mem_map) &&
1465 			    mem_map_add_id_map(mem_map, id_map_start,
1466 					       id_map_end)) {
1467 				offs = ba - start_addr;
1468 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1469 				     ba, offs);
1470 				goto out;
1471 			} else {
1472 				DMSG("Failed to map core at %#"PRIxVA, ba);
1473 			}
1474 		}
1475 		EMSG("Failed to map core with seed %#lx", seed);
1476 	}
1477 
1478 	if (!assign_mem_va(start_addr, mem_map))
1479 		panic();
1480 
1481 out:
1482 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1483 	      cmp_mmap_by_lower_va);
1484 
1485 	dump_mmap_table(mem_map);
1486 
1487 	*ret_offs = offs;
1488 	return mem_map;
1489 }
1490 
1491 static void check_mem_map(struct memory_map *mem_map)
1492 {
1493 	struct tee_mmap_region *m = NULL;
1494 	size_t n = 0;
1495 
1496 	for (n = 0; n < mem_map->count; n++) {
1497 		m = mem_map->map + n;
1498 		switch (m->type) {
1499 		case MEM_AREA_TEE_RAM:
1500 		case MEM_AREA_TEE_RAM_RX:
1501 		case MEM_AREA_TEE_RAM_RO:
1502 		case MEM_AREA_TEE_RAM_RW:
1503 		case MEM_AREA_INIT_RAM_RX:
1504 		case MEM_AREA_INIT_RAM_RO:
1505 		case MEM_AREA_NEX_RAM_RW:
1506 		case MEM_AREA_NEX_RAM_RO:
1507 		case MEM_AREA_IDENTITY_MAP_RX:
1508 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1509 				panic("TEE_RAM can't fit in secure_only");
1510 			break;
1511 		case MEM_AREA_SEC_RAM_OVERALL:
1512 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1513 				panic("SEC_RAM_OVERALL can't fit in secure_only");
1514 			break;
1515 		case MEM_AREA_NSEC_SHM:
1516 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1517 				panic("NS_SHM can't fit in nsec_shared");
1518 			break;
1519 		case MEM_AREA_TEE_COHERENT:
1520 		case MEM_AREA_TEE_ASAN:
1521 		case MEM_AREA_IO_SEC:
1522 		case MEM_AREA_IO_NSEC:
1523 		case MEM_AREA_EXT_DT:
1524 		case MEM_AREA_MANIFEST_DT:
1525 		case MEM_AREA_TRANSFER_LIST:
1526 		case MEM_AREA_RAM_SEC:
1527 		case MEM_AREA_RAM_NSEC:
1528 		case MEM_AREA_ROM_SEC:
1529 		case MEM_AREA_RES_VASPACE:
1530 		case MEM_AREA_SHM_VASPACE:
1531 		case MEM_AREA_PAGER_VASPACE:
1532 			break;
1533 		default:
1534 			EMSG("Uhandled memtype %d", m->type);
1535 			panic();
1536 		}
1537 	}
1538 }
1539 
1540 /*
1541  * core_init_mmu_map() - init tee core default memory mapping
1542  *
1543  * This routine sets the static default TEE core mapping. If @seed is > 0
1544  * and configured with CFG_CORE_ASLR it will map tee core at a location
1545  * based on the seed and return the offset from the link address.
1546  *
1547  * If an error happened: core_init_mmu_map is expected to panic.
1548  *
1549  * Note: this function is weak just to make it possible to exclude it from
1550  * the unpaged area.
1551  */
1552 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1553 {
1554 #ifndef CFG_NS_VIRTUALIZATION
1555 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1556 #else
1557 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1558 				  SMALL_PAGE_SIZE);
1559 #endif
1560 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1561 	struct tee_mmap_region tmp_mmap_region = { };
1562 	struct memory_map mem_map = { };
1563 	unsigned long offs = 0;
1564 
1565 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1566 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1567 		panic("OP-TEE load address is not page aligned");
1568 
1569 	check_sec_nsec_mem_config();
1570 
1571 	mem_map = static_memory_map;
1572 	static_memory_map = (struct memory_map){
1573 		.map = &tmp_mmap_region,
1574 		.alloc_count = 1,
1575 		.count = 1,
1576 	};
1577 	/*
1578 	 * Add a entry covering the translation tables which will be
1579 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1580 	 */
1581 	static_memory_map.map[0] = (struct tee_mmap_region){
1582 		.type = MEM_AREA_TEE_RAM,
1583 		.region_size = SMALL_PAGE_SIZE,
1584 		.pa = start,
1585 		.va = start,
1586 		.size = len,
1587 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1588 	};
1589 
1590 	init_mem_map(&mem_map, seed, &offs);
1591 
1592 	check_mem_map(&mem_map);
1593 	core_init_mmu(&mem_map);
1594 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1595 	core_init_mmu_regs(cfg);
1596 	cfg->map_offset = offs;
1597 	static_memory_map = mem_map;
1598 }
1599 
1600 bool core_mmu_mattr_is_ok(uint32_t mattr)
1601 {
1602 	/*
1603 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1604 	 * core_mmu_v7.c:mattr_to_texcb
1605 	 */
1606 
1607 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1608 	case TEE_MATTR_MEM_TYPE_DEV:
1609 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1610 	case TEE_MATTR_MEM_TYPE_CACHED:
1611 	case TEE_MATTR_MEM_TYPE_TAGGED:
1612 		return true;
1613 	default:
1614 		return false;
1615 	}
1616 }
1617 
1618 /*
1619  * test attributes of target physical buffer
1620  *
1621  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1622  *
1623  */
1624 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1625 {
1626 	struct tee_mmap_region *map;
1627 
1628 	/* Empty buffers complies with anything */
1629 	if (len == 0)
1630 		return true;
1631 
1632 	switch (attr) {
1633 	case CORE_MEM_SEC:
1634 		return pbuf_is_inside(secure_only, pbuf, len);
1635 	case CORE_MEM_NON_SEC:
1636 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1637 			pbuf_is_nsec_ddr(pbuf, len);
1638 	case CORE_MEM_TEE_RAM:
1639 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1640 							TEE_RAM_PH_SIZE);
1641 #ifdef CFG_CORE_RESERVED_SHM
1642 	case CORE_MEM_NSEC_SHM:
1643 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1644 							TEE_SHMEM_SIZE);
1645 #endif
1646 	case CORE_MEM_SDP_MEM:
1647 		return pbuf_is_sdp_mem(pbuf, len);
1648 	case CORE_MEM_CACHED:
1649 		map = find_map_by_pa(pbuf);
1650 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1651 			return false;
1652 		return mattr_is_cached(map->attr);
1653 	default:
1654 		return false;
1655 	}
1656 }
1657 
1658 /* test attributes of target virtual buffer (in core mapping) */
1659 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1660 {
1661 	paddr_t p;
1662 
1663 	/* Empty buffers complies with anything */
1664 	if (len == 0)
1665 		return true;
1666 
1667 	p = virt_to_phys((void *)vbuf);
1668 	if (!p)
1669 		return false;
1670 
1671 	return core_pbuf_is(attr, p, len);
1672 }
1673 
1674 /* core_va2pa - teecore exported service */
1675 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1676 {
1677 	struct tee_mmap_region *map;
1678 
1679 	map = find_map_by_va(va);
1680 	if (!va_is_in_map(map, (vaddr_t)va))
1681 		return -1;
1682 
1683 	/*
1684 	 * We can calculate PA for static map. Virtual address ranges
1685 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1686 	 * together with an invalid null physical address.
1687 	 */
1688 	if (map->pa)
1689 		*pa = map->pa + (vaddr_t)va  - map->va;
1690 	else
1691 		*pa = 0;
1692 
1693 	return 0;
1694 }
1695 
1696 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1697 {
1698 	if (!pa_is_in_map(map, pa, len))
1699 		return NULL;
1700 
1701 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1702 }
1703 
1704 /*
1705  * teecore gets some memory area definitions
1706  */
1707 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1708 			      vaddr_t *e)
1709 {
1710 	struct tee_mmap_region *map = find_map_by_type(type);
1711 
1712 	if (map) {
1713 		*s = map->va;
1714 		*e = map->va + map->size;
1715 	} else {
1716 		*s = 0;
1717 		*e = 0;
1718 	}
1719 }
1720 
1721 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1722 {
1723 	struct tee_mmap_region *map = find_map_by_pa(pa);
1724 
1725 	if (!map)
1726 		return MEM_AREA_MAXTYPE;
1727 	return map->type;
1728 }
1729 
1730 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1731 			paddr_t pa, uint32_t attr)
1732 {
1733 	assert(idx < tbl_info->num_entries);
1734 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1735 				     idx, pa, attr);
1736 }
1737 
1738 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1739 			paddr_t *pa, uint32_t *attr)
1740 {
1741 	assert(idx < tbl_info->num_entries);
1742 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1743 				     idx, pa, attr);
1744 }
1745 
1746 static void clear_region(struct core_mmu_table_info *tbl_info,
1747 			 struct tee_mmap_region *region)
1748 {
1749 	unsigned int end = 0;
1750 	unsigned int idx = 0;
1751 
1752 	/* va, len and pa should be block aligned */
1753 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1754 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1755 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1756 
1757 	idx = core_mmu_va2idx(tbl_info, region->va);
1758 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1759 
1760 	while (idx < end) {
1761 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1762 		idx++;
1763 	}
1764 }
1765 
1766 static void set_region(struct core_mmu_table_info *tbl_info,
1767 		       struct tee_mmap_region *region)
1768 {
1769 	unsigned int end;
1770 	unsigned int idx;
1771 	paddr_t pa;
1772 
1773 	/* va, len and pa should be block aligned */
1774 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1775 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1776 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1777 
1778 	idx = core_mmu_va2idx(tbl_info, region->va);
1779 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1780 	pa = region->pa;
1781 
1782 	while (idx < end) {
1783 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1784 		idx++;
1785 		pa += BIT64(tbl_info->shift);
1786 	}
1787 }
1788 
1789 static void set_pg_region(struct core_mmu_table_info *dir_info,
1790 			  struct vm_region *region, struct pgt **pgt,
1791 			  struct core_mmu_table_info *pg_info)
1792 {
1793 	struct tee_mmap_region r = {
1794 		.va = region->va,
1795 		.size = region->size,
1796 		.attr = region->attr,
1797 	};
1798 	vaddr_t end = r.va + r.size;
1799 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1800 
1801 	while (r.va < end) {
1802 		if (!pg_info->table ||
1803 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1804 			/*
1805 			 * We're assigning a new translation table.
1806 			 */
1807 			unsigned int idx;
1808 
1809 			/* Virtual addresses must grow */
1810 			assert(r.va > pg_info->va_base);
1811 
1812 			idx = core_mmu_va2idx(dir_info, r.va);
1813 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1814 
1815 			/*
1816 			 * Advance pgt to va_base, note that we may need to
1817 			 * skip multiple page tables if there are large
1818 			 * holes in the vm map.
1819 			 */
1820 			while ((*pgt)->vabase < pg_info->va_base) {
1821 				*pgt = SLIST_NEXT(*pgt, link);
1822 				/* We should have allocated enough */
1823 				assert(*pgt);
1824 			}
1825 			assert((*pgt)->vabase == pg_info->va_base);
1826 			pg_info->table = (*pgt)->tbl;
1827 
1828 			core_mmu_set_entry(dir_info, idx,
1829 					   virt_to_phys(pg_info->table),
1830 					   pgt_attr);
1831 		}
1832 
1833 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1834 			     end - r.va);
1835 
1836 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1837 			size_t granule = BIT(pg_info->shift);
1838 			size_t offset = r.va - region->va + region->offset;
1839 
1840 			r.size = MIN(r.size,
1841 				     mobj_get_phys_granule(region->mobj));
1842 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1843 
1844 			if (mobj_get_pa(region->mobj, offset, granule,
1845 					&r.pa) != TEE_SUCCESS)
1846 				panic("Failed to get PA of unpaged mobj");
1847 			set_region(pg_info, &r);
1848 		}
1849 		r.va += r.size;
1850 	}
1851 }
1852 
1853 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1854 			     size_t size_left, paddr_t block_size,
1855 			     struct tee_mmap_region *mm __maybe_unused)
1856 {
1857 	/* VA and PA are aligned to block size at current level */
1858 	if ((vaddr | paddr) & (block_size - 1))
1859 		return false;
1860 
1861 	/* Remainder fits into block at current level */
1862 	if (size_left < block_size)
1863 		return false;
1864 
1865 #ifdef CFG_WITH_PAGER
1866 	/*
1867 	 * If pager is enabled, we need to map TEE RAM and the whole pager
1868 	 * regions with small pages only
1869 	 */
1870 	if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) &&
1871 	    block_size != SMALL_PAGE_SIZE)
1872 		return false;
1873 #endif
1874 
1875 	return true;
1876 }
1877 
1878 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1879 {
1880 	struct core_mmu_table_info tbl_info;
1881 	unsigned int idx;
1882 	vaddr_t vaddr = mm->va;
1883 	paddr_t paddr = mm->pa;
1884 	ssize_t size_left = mm->size;
1885 	unsigned int level;
1886 	bool table_found;
1887 	uint32_t old_attr;
1888 
1889 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1890 
1891 	while (size_left > 0) {
1892 		level = CORE_MMU_BASE_TABLE_LEVEL;
1893 
1894 		while (true) {
1895 			paddr_t block_size = 0;
1896 
1897 			assert(core_mmu_level_in_range(level));
1898 
1899 			table_found = core_mmu_find_table(prtn, vaddr, level,
1900 							  &tbl_info);
1901 			if (!table_found)
1902 				panic("can't find table for mapping");
1903 
1904 			block_size = BIT64(tbl_info.shift);
1905 
1906 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1907 			if (!can_map_at_level(paddr, vaddr, size_left,
1908 					      block_size, mm)) {
1909 				bool secure = mm->attr & TEE_MATTR_SECURE;
1910 
1911 				/*
1912 				 * This part of the region can't be mapped at
1913 				 * this level. Need to go deeper.
1914 				 */
1915 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1916 								     idx,
1917 								     secure))
1918 					panic("Can't divide MMU entry");
1919 				level = tbl_info.next_level;
1920 				continue;
1921 			}
1922 
1923 			/* We can map part of the region at current level */
1924 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1925 			if (old_attr)
1926 				panic("Page is already mapped");
1927 
1928 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1929 			paddr += block_size;
1930 			vaddr += block_size;
1931 			size_left -= block_size;
1932 
1933 			break;
1934 		}
1935 	}
1936 }
1937 
1938 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1939 			      enum teecore_memtypes memtype)
1940 {
1941 	TEE_Result ret;
1942 	struct core_mmu_table_info tbl_info;
1943 	struct tee_mmap_region *mm;
1944 	unsigned int idx;
1945 	uint32_t old_attr;
1946 	uint32_t exceptions;
1947 	vaddr_t vaddr = vstart;
1948 	size_t i;
1949 	bool secure;
1950 
1951 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1952 
1953 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1954 
1955 	if (vaddr & SMALL_PAGE_MASK)
1956 		return TEE_ERROR_BAD_PARAMETERS;
1957 
1958 	exceptions = mmu_lock();
1959 
1960 	mm = find_map_by_va((void *)vaddr);
1961 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1962 		panic("VA does not belong to any known mm region");
1963 
1964 	if (!core_mmu_is_dynamic_vaspace(mm))
1965 		panic("Trying to map into static region");
1966 
1967 	for (i = 0; i < num_pages; i++) {
1968 		if (pages[i] & SMALL_PAGE_MASK) {
1969 			ret = TEE_ERROR_BAD_PARAMETERS;
1970 			goto err;
1971 		}
1972 
1973 		while (true) {
1974 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1975 						 &tbl_info))
1976 				panic("Can't find pagetable for vaddr ");
1977 
1978 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1979 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1980 				break;
1981 
1982 			/* This is supertable. Need to divide it. */
1983 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1984 							     secure))
1985 				panic("Failed to spread pgdir on small tables");
1986 		}
1987 
1988 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1989 		if (old_attr)
1990 			panic("Page is already mapped");
1991 
1992 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1993 				   core_mmu_type_to_attr(memtype));
1994 		vaddr += SMALL_PAGE_SIZE;
1995 	}
1996 
1997 	/*
1998 	 * Make sure all the changes to translation tables are visible
1999 	 * before returning. TLB doesn't need to be invalidated as we are
2000 	 * guaranteed that there's no valid mapping in this range.
2001 	 */
2002 	core_mmu_table_write_barrier();
2003 	mmu_unlock(exceptions);
2004 
2005 	return TEE_SUCCESS;
2006 err:
2007 	mmu_unlock(exceptions);
2008 
2009 	if (i)
2010 		core_mmu_unmap_pages(vstart, i);
2011 
2012 	return ret;
2013 }
2014 
2015 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
2016 					 size_t num_pages,
2017 					 enum teecore_memtypes memtype)
2018 {
2019 	struct core_mmu_table_info tbl_info = { };
2020 	struct tee_mmap_region *mm = NULL;
2021 	unsigned int idx = 0;
2022 	uint32_t old_attr = 0;
2023 	uint32_t exceptions = 0;
2024 	vaddr_t vaddr = vstart;
2025 	paddr_t paddr = pstart;
2026 	size_t i = 0;
2027 	bool secure = false;
2028 
2029 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
2030 
2031 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
2032 
2033 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
2034 		return TEE_ERROR_BAD_PARAMETERS;
2035 
2036 	exceptions = mmu_lock();
2037 
2038 	mm = find_map_by_va((void *)vaddr);
2039 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
2040 		panic("VA does not belong to any known mm region");
2041 
2042 	if (!core_mmu_is_dynamic_vaspace(mm))
2043 		panic("Trying to map into static region");
2044 
2045 	for (i = 0; i < num_pages; i++) {
2046 		while (true) {
2047 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
2048 						 &tbl_info))
2049 				panic("Can't find pagetable for vaddr ");
2050 
2051 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2052 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
2053 				break;
2054 
2055 			/* This is supertable. Need to divide it. */
2056 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
2057 							     secure))
2058 				panic("Failed to spread pgdir on small tables");
2059 		}
2060 
2061 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2062 		if (old_attr)
2063 			panic("Page is already mapped");
2064 
2065 		core_mmu_set_entry(&tbl_info, idx, paddr,
2066 				   core_mmu_type_to_attr(memtype));
2067 		paddr += SMALL_PAGE_SIZE;
2068 		vaddr += SMALL_PAGE_SIZE;
2069 	}
2070 
2071 	/*
2072 	 * Make sure all the changes to translation tables are visible
2073 	 * before returning. TLB doesn't need to be invalidated as we are
2074 	 * guaranteed that there's no valid mapping in this range.
2075 	 */
2076 	core_mmu_table_write_barrier();
2077 	mmu_unlock(exceptions);
2078 
2079 	return TEE_SUCCESS;
2080 }
2081 
2082 static bool mem_range_is_in_vcore_free(vaddr_t vstart, size_t num_pages)
2083 {
2084 	return core_is_buffer_inside(vstart, num_pages * SMALL_PAGE_SIZE,
2085 				     VCORE_FREE_PA, VCORE_FREE_SZ);
2086 }
2087 
2088 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
2089 {
2090 	struct core_mmu_table_info tbl_info;
2091 	struct tee_mmap_region *mm;
2092 	size_t i;
2093 	unsigned int idx;
2094 	uint32_t exceptions;
2095 
2096 	exceptions = mmu_lock();
2097 
2098 	mm = find_map_by_va((void *)vstart);
2099 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
2100 		panic("VA does not belong to any known mm region");
2101 
2102 	if (!core_mmu_is_dynamic_vaspace(mm) &&
2103 	    !mem_range_is_in_vcore_free(vstart, num_pages))
2104 		panic("Trying to unmap static region");
2105 
2106 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
2107 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
2108 			panic("Can't find pagetable");
2109 
2110 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
2111 			panic("Invalid pagetable level");
2112 
2113 		idx = core_mmu_va2idx(&tbl_info, vstart);
2114 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
2115 	}
2116 	tlbi_all();
2117 
2118 	mmu_unlock(exceptions);
2119 }
2120 
2121 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
2122 				struct user_mode_ctx *uctx)
2123 {
2124 	struct core_mmu_table_info pg_info = { };
2125 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
2126 	struct pgt *pgt = NULL;
2127 	struct pgt *p = NULL;
2128 	struct vm_region *r = NULL;
2129 
2130 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
2131 		return; /* Nothing to map */
2132 
2133 	/*
2134 	 * Allocate all page tables in advance.
2135 	 */
2136 	pgt_get_all(uctx);
2137 	pgt = SLIST_FIRST(pgt_cache);
2138 
2139 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2140 
2141 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2142 		set_pg_region(dir_info, r, &pgt, &pg_info);
2143 	/* Record that the translation tables now are populated. */
2144 	SLIST_FOREACH(p, pgt_cache, link) {
2145 		p->populated = true;
2146 		if (p == pgt)
2147 			break;
2148 	}
2149 	assert(p == pgt);
2150 }
2151 
2152 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2153 				   size_t len)
2154 {
2155 	struct core_mmu_table_info tbl_info = { };
2156 	struct tee_mmap_region *res_map = NULL;
2157 	struct tee_mmap_region *map = NULL;
2158 	paddr_t pa = virt_to_phys(addr);
2159 	size_t granule = 0;
2160 	ptrdiff_t i = 0;
2161 	paddr_t p = 0;
2162 	size_t l = 0;
2163 
2164 	map = find_map_by_type_and_pa(type, pa, len);
2165 	if (!map)
2166 		return TEE_ERROR_GENERIC;
2167 
2168 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2169 	if (!res_map)
2170 		return TEE_ERROR_GENERIC;
2171 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2172 		return TEE_ERROR_GENERIC;
2173 	granule = BIT(tbl_info.shift);
2174 
2175 	if (map < static_memory_map.map ||
2176 	    map >= static_memory_map.map + static_memory_map.count)
2177 		return TEE_ERROR_GENERIC;
2178 	i = map - static_memory_map.map;
2179 
2180 	/* Check that we have a full match */
2181 	p = ROUNDDOWN(pa, granule);
2182 	l = ROUNDUP(len + pa - p, granule);
2183 	if (map->pa != p || map->size != l)
2184 		return TEE_ERROR_GENERIC;
2185 
2186 	clear_region(&tbl_info, map);
2187 	tlbi_all();
2188 
2189 	/* If possible remove the va range from res_map */
2190 	if (res_map->va - map->size == map->va) {
2191 		res_map->va -= map->size;
2192 		res_map->size += map->size;
2193 	}
2194 
2195 	/* Remove the entry. */
2196 	rem_array_elem(static_memory_map.map, static_memory_map.count,
2197 		       sizeof(*static_memory_map.map), i);
2198 	static_memory_map.count--;
2199 
2200 	return TEE_SUCCESS;
2201 }
2202 
2203 struct tee_mmap_region *
2204 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2205 {
2206 	struct memory_map *mem_map = get_memory_map();
2207 	struct tee_mmap_region *map_found = NULL;
2208 	size_t n = 0;
2209 
2210 	if (!len)
2211 		return NULL;
2212 
2213 	for (n = 0; n < mem_map->count; n++) {
2214 		if (mem_map->map[n].type != type)
2215 			continue;
2216 
2217 		if (map_found)
2218 			return NULL;
2219 
2220 		map_found = mem_map->map + n;
2221 	}
2222 
2223 	if (!map_found || map_found->size < len)
2224 		return NULL;
2225 
2226 	return map_found;
2227 }
2228 
2229 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2230 {
2231 	struct memory_map *mem_map = &static_memory_map;
2232 	struct core_mmu_table_info tbl_info = { };
2233 	struct tee_mmap_region *map = NULL;
2234 	size_t granule = 0;
2235 	paddr_t p = 0;
2236 	size_t l = 0;
2237 
2238 	if (!len)
2239 		return NULL;
2240 
2241 	if (!core_mmu_check_end_pa(addr, len))
2242 		return NULL;
2243 
2244 	/* Check if the memory is already mapped */
2245 	map = find_map_by_type_and_pa(type, addr, len);
2246 	if (map && pbuf_inside_map_area(addr, len, map))
2247 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2248 
2249 	/* Find the reserved va space used for late mappings */
2250 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2251 	if (!map)
2252 		return NULL;
2253 
2254 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2255 		return NULL;
2256 
2257 	granule = BIT64(tbl_info.shift);
2258 	p = ROUNDDOWN(addr, granule);
2259 	l = ROUNDUP(len + addr - p, granule);
2260 
2261 	/* Ban overflowing virtual addresses */
2262 	if (map->size < l)
2263 		return NULL;
2264 
2265 	/*
2266 	 * Something is wrong, we can't fit the va range into the selected
2267 	 * table. The reserved va range is possibly missaligned with
2268 	 * granule.
2269 	 */
2270 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2271 		return NULL;
2272 
2273 	if (static_memory_map.count >= static_memory_map.alloc_count)
2274 		return NULL;
2275 
2276 	mem_map->map[mem_map->count] = (struct tee_mmap_region){
2277 		.va = map->va,
2278 		.size = l,
2279 		.type = type,
2280 		.region_size = granule,
2281 		.attr = core_mmu_type_to_attr(type),
2282 		.pa = p,
2283 	};
2284 	map->va += l;
2285 	map->size -= l;
2286 	map = mem_map->map + mem_map->count;
2287 	mem_map->count++;
2288 
2289 	set_region(&tbl_info, map);
2290 
2291 	/* Make sure the new entry is visible before continuing. */
2292 	core_mmu_table_write_barrier();
2293 
2294 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2295 }
2296 
2297 #ifdef CFG_WITH_PAGER
2298 static vaddr_t get_linear_map_end_va(void)
2299 {
2300 	/* this is synced with the generic linker file kern.ld.S */
2301 	return (vaddr_t)__heap2_end;
2302 }
2303 
2304 static paddr_t get_linear_map_end_pa(void)
2305 {
2306 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2307 }
2308 #endif
2309 
2310 #if defined(CFG_TEE_CORE_DEBUG)
2311 static void check_pa_matches_va(void *va, paddr_t pa)
2312 {
2313 	TEE_Result res = TEE_ERROR_GENERIC;
2314 	vaddr_t v = (vaddr_t)va;
2315 	paddr_t p = 0;
2316 	struct core_mmu_table_info ti __maybe_unused = { };
2317 
2318 	if (core_mmu_user_va_range_is_defined()) {
2319 		vaddr_t user_va_base = 0;
2320 		size_t user_va_size = 0;
2321 
2322 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2323 		if (v >= user_va_base &&
2324 		    v <= (user_va_base - 1 + user_va_size)) {
2325 			if (!core_mmu_user_mapping_is_active()) {
2326 				if (pa)
2327 					panic("issue in linear address space");
2328 				return;
2329 			}
2330 
2331 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2332 				       va, &p);
2333 			if (res == TEE_ERROR_NOT_SUPPORTED)
2334 				return;
2335 			if (res == TEE_SUCCESS && pa != p)
2336 				panic("bad pa");
2337 			if (res != TEE_SUCCESS && pa)
2338 				panic("false pa");
2339 			return;
2340 		}
2341 	}
2342 #ifdef CFG_WITH_PAGER
2343 	if (is_unpaged(va)) {
2344 		if (v - boot_mmu_config.map_offset != pa)
2345 			panic("issue in linear address space");
2346 		return;
2347 	}
2348 
2349 	if (tee_pager_get_table_info(v, &ti)) {
2350 		uint32_t a;
2351 
2352 		/*
2353 		 * Lookups in the page table managed by the pager is
2354 		 * dangerous for addresses in the paged area as those pages
2355 		 * changes all the time. But some ranges are safe,
2356 		 * rw-locked areas when the page is populated for instance.
2357 		 */
2358 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2359 		if (a & TEE_MATTR_VALID_BLOCK) {
2360 			paddr_t mask = BIT64(ti.shift) - 1;
2361 
2362 			p |= v & mask;
2363 			if (pa != p)
2364 				panic();
2365 		} else {
2366 			if (pa)
2367 				panic();
2368 		}
2369 		return;
2370 	}
2371 #endif
2372 
2373 	if (!core_va2pa_helper(va, &p)) {
2374 		/* Verfiy only the static mapping (case non null phys addr) */
2375 		if (p && pa != p) {
2376 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2377 			     va, p, pa);
2378 			panic();
2379 		}
2380 	} else {
2381 		if (pa) {
2382 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2383 			panic();
2384 		}
2385 	}
2386 }
2387 #else
2388 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2389 {
2390 }
2391 #endif
2392 
2393 paddr_t virt_to_phys(void *va)
2394 {
2395 	paddr_t pa = 0;
2396 
2397 	if (!arch_va2pa_helper(va, &pa))
2398 		pa = 0;
2399 	check_pa_matches_va(memtag_strip_tag(va), pa);
2400 	return pa;
2401 }
2402 
2403 /*
2404  * Don't use check_va_matches_pa() for RISC-V, as its callee
2405  * arch_va2pa_helper() will call it eventually, this creates
2406  * indirect recursion and can lead to a stack overflow.
2407  * Moreover, if arch_va2pa_helper() returns true, it implies
2408  * the va2pa mapping is matched, no need to check it again.
2409  */
2410 #if defined(CFG_TEE_CORE_DEBUG) && !defined(__riscv)
2411 static void check_va_matches_pa(paddr_t pa, void *va)
2412 {
2413 	paddr_t p = 0;
2414 
2415 	if (!va)
2416 		return;
2417 
2418 	p = virt_to_phys(va);
2419 	if (p != pa) {
2420 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2421 		panic();
2422 	}
2423 }
2424 #else
2425 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2426 {
2427 }
2428 #endif
2429 
2430 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2431 {
2432 	if (!core_mmu_user_mapping_is_active())
2433 		return NULL;
2434 
2435 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2436 }
2437 
2438 #ifdef CFG_WITH_PAGER
2439 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2440 {
2441 	paddr_t end_pa = 0;
2442 
2443 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2444 		return NULL;
2445 
2446 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2447 		if (end_pa > get_linear_map_end_pa())
2448 			return NULL;
2449 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2450 	}
2451 
2452 	return tee_pager_phys_to_virt(pa, len);
2453 }
2454 #else
2455 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2456 {
2457 	struct tee_mmap_region *mmap = NULL;
2458 
2459 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2460 	if (!mmap)
2461 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2462 	if (!mmap)
2463 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2464 	if (!mmap)
2465 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2466 	if (!mmap)
2467 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2468 	if (!mmap)
2469 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2470 	/*
2471 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2472 	 * used with pager and not needed here.
2473 	 */
2474 	return map_pa2va(mmap, pa, len);
2475 }
2476 #endif
2477 
2478 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2479 {
2480 	void *va = NULL;
2481 
2482 	switch (m) {
2483 	case MEM_AREA_TS_VASPACE:
2484 		va = phys_to_virt_ts_vaspace(pa, len);
2485 		break;
2486 	case MEM_AREA_TEE_RAM:
2487 	case MEM_AREA_TEE_RAM_RX:
2488 	case MEM_AREA_TEE_RAM_RO:
2489 	case MEM_AREA_TEE_RAM_RW:
2490 	case MEM_AREA_NEX_RAM_RO:
2491 	case MEM_AREA_NEX_RAM_RW:
2492 		va = phys_to_virt_tee_ram(pa, len);
2493 		break;
2494 	case MEM_AREA_SHM_VASPACE:
2495 		/* Find VA from PA in dynamic SHM is not yet supported */
2496 		va = NULL;
2497 		break;
2498 	default:
2499 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2500 	}
2501 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2502 		check_va_matches_pa(pa, va);
2503 	return va;
2504 }
2505 
2506 void *phys_to_virt_io(paddr_t pa, size_t len)
2507 {
2508 	struct tee_mmap_region *map = NULL;
2509 	void *va = NULL;
2510 
2511 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2512 	if (!map)
2513 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2514 	if (!map)
2515 		return NULL;
2516 	va = map_pa2va(map, pa, len);
2517 	check_va_matches_pa(pa, va);
2518 	return va;
2519 }
2520 
2521 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2522 {
2523 	if (cpu_mmu_enabled())
2524 		return (vaddr_t)phys_to_virt(pa, type, len);
2525 
2526 	return (vaddr_t)pa;
2527 }
2528 
2529 #ifdef CFG_WITH_PAGER
2530 bool is_unpaged(const void *va)
2531 {
2532 	vaddr_t v = (vaddr_t)va;
2533 
2534 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2535 }
2536 #endif
2537 
2538 #ifdef CFG_NS_VIRTUALIZATION
2539 bool is_nexus(const void *va)
2540 {
2541 	vaddr_t v = (vaddr_t)va;
2542 
2543 	return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ;
2544 }
2545 #endif
2546 
2547 void core_mmu_init_virtualization(void)
2548 {
2549 	paddr_t b1 = 0;
2550 	paddr_size_t s1 = 0;
2551 
2552 	static_assert(ARRAY_SIZE(secure_only) <= 2);
2553 	if (ARRAY_SIZE(secure_only) == 2) {
2554 		b1 = secure_only[1].paddr;
2555 		s1 = secure_only[1].size;
2556 	}
2557 	virt_init_memory(&static_memory_map, secure_only[0].paddr,
2558 			 secure_only[0].size, b1, s1);
2559 }
2560 
2561 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2562 {
2563 	assert(p->pa);
2564 	if (cpu_mmu_enabled()) {
2565 		if (!p->va)
2566 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2567 		assert(p->va);
2568 		return p->va;
2569 	}
2570 	return p->pa;
2571 }
2572 
2573 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2574 {
2575 	assert(p->pa);
2576 	if (cpu_mmu_enabled()) {
2577 		if (!p->va)
2578 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2579 						      len);
2580 		assert(p->va);
2581 		return p->va;
2582 	}
2583 	return p->pa;
2584 }
2585 
2586 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2587 {
2588 	assert(p->pa);
2589 	if (cpu_mmu_enabled()) {
2590 		if (!p->va)
2591 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2592 						      len);
2593 		assert(p->va);
2594 		return p->va;
2595 	}
2596 	return p->pa;
2597 }
2598 
2599 #ifdef CFG_CORE_RESERVED_SHM
2600 static TEE_Result teecore_init_pub_ram(void)
2601 {
2602 	vaddr_t s = 0;
2603 	vaddr_t e = 0;
2604 
2605 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2606 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2607 
2608 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2609 		panic("invalid PUB RAM");
2610 
2611 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2612 	if (!tee_vbuf_is_non_sec(s, e - s))
2613 		panic("PUB RAM is not non-secure");
2614 
2615 #ifdef CFG_PL310
2616 	/* Allocate statically the l2cc mutex */
2617 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2618 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2619 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2620 #endif
2621 
2622 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2623 	default_nsec_shm_size = e - s;
2624 
2625 	return TEE_SUCCESS;
2626 }
2627 early_init(teecore_init_pub_ram);
2628 #endif /*CFG_CORE_RESERVED_SHM*/
2629 
2630 static void __maybe_unused carve_out_core_mem(paddr_t pa, paddr_t end_pa)
2631 {
2632 	tee_mm_entry_t *mm __maybe_unused = NULL;
2633 
2634 	DMSG("%#"PRIxPA" .. %#"PRIxPA, pa, end_pa);
2635 	mm = phys_mem_alloc2(pa, end_pa - pa);
2636 	assert(mm);
2637 }
2638 
2639 void core_mmu_init_phys_mem(void)
2640 {
2641 	paddr_t ps = 0;
2642 	size_t size = 0;
2643 
2644 	/*
2645 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2646 	 * shared mem allocated from teecore.
2647 	 */
2648 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
2649 		vaddr_t s = 0;
2650 		vaddr_t e = 0;
2651 
2652 		virt_get_ta_ram(&s, &e);
2653 		ps = virt_to_phys((void *)s);
2654 		size = e - s;
2655 		phys_mem_init(0, 0, ps, size);
2656 	} else {
2657 #ifdef CFG_WITH_PAGER
2658 		/*
2659 		 * The pager uses all core memory so there's no need to add
2660 		 * it to the pool.
2661 		 */
2662 		static_assert(ARRAY_SIZE(secure_only) == 2);
2663 		phys_mem_init(0, 0, secure_only[1].paddr, secure_only[1].size);
2664 #else /*!CFG_WITH_PAGER*/
2665 		size_t align = BIT(CORE_MMU_USER_CODE_SHIFT);
2666 		paddr_t end_pa = 0;
2667 		paddr_t pa = 0;
2668 
2669 		static_assert(ARRAY_SIZE(secure_only) <= 2);
2670 		if (ARRAY_SIZE(secure_only) == 2) {
2671 			ps = secure_only[1].paddr;
2672 			size = secure_only[1].size;
2673 		}
2674 		phys_mem_init(secure_only[0].paddr, secure_only[0].size,
2675 			      ps, size);
2676 
2677 		/*
2678 		 * The VCORE macros are relocatable so we need to translate
2679 		 * the addresses now that the MMU is enabled.
2680 		 */
2681 		end_pa = vaddr_to_phys(ROUNDUP(VCORE_FREE_END_PA,
2682 					       align) - 1) + 1;
2683 		/* Carve out the part used by OP-TEE core */
2684 		carve_out_core_mem(vaddr_to_phys(VCORE_UNPG_RX_PA), end_pa);
2685 		if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) {
2686 			pa = vaddr_to_phys(ROUNDUP(ASAN_MAP_PA, align));
2687 			carve_out_core_mem(pa, pa + ASAN_MAP_SZ);
2688 		}
2689 
2690 		/* Carve out test SDP memory */
2691 #ifdef TEE_SDP_TEST_MEM_BASE
2692 		if (TEE_SDP_TEST_MEM_SIZE) {
2693 			pa = vaddr_to_phys(TEE_SDP_TEST_MEM_BASE);
2694 			carve_out_core_mem(pa, pa + TEE_SDP_TEST_MEM_SIZE);
2695 		}
2696 #endif
2697 #endif /*!CFG_WITH_PAGER*/
2698 	}
2699 }
2700