1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016, 2022 Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved. 6 */ 7 8 #include <assert.h> 9 #include <config.h> 10 #include <kernel/boot.h> 11 #include <kernel/dt.h> 12 #include <kernel/linker.h> 13 #include <kernel/panic.h> 14 #include <kernel/spinlock.h> 15 #include <kernel/tee_l2cc_mutex.h> 16 #include <kernel/tee_misc.h> 17 #include <kernel/tlb_helpers.h> 18 #include <kernel/user_mode_ctx.h> 19 #include <kernel/virtualization.h> 20 #include <libfdt.h> 21 #include <memtag.h> 22 #include <mm/core_memprot.h> 23 #include <mm/core_mmu.h> 24 #include <mm/mobj.h> 25 #include <mm/pgt_cache.h> 26 #include <mm/phys_mem.h> 27 #include <mm/tee_pager.h> 28 #include <mm/vm.h> 29 #include <platform_config.h> 30 #include <stdalign.h> 31 #include <string.h> 32 #include <trace.h> 33 #include <util.h> 34 35 #ifndef DEBUG_XLAT_TABLE 36 #define DEBUG_XLAT_TABLE 0 37 #endif 38 39 #define SHM_VASPACE_SIZE (1024 * 1024 * 32) 40 41 /* Virtual memory pool for core mappings */ 42 tee_mm_pool_t core_virt_mem_pool; 43 44 /* Virtual memory pool for shared memory mappings */ 45 tee_mm_pool_t core_virt_shm_pool; 46 47 #ifdef CFG_CORE_PHYS_RELOCATABLE 48 unsigned long core_mmu_tee_load_pa __nex_bss; 49 #else 50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR; 51 #endif 52 53 /* 54 * These variables are initialized before .bss is cleared. To avoid 55 * resetting them when .bss is cleared we're storing them in .data instead, 56 * even if they initially are zero. 57 */ 58 59 #ifdef CFG_CORE_RESERVED_SHM 60 /* Default NSec shared memory allocated from NSec world */ 61 unsigned long default_nsec_shm_size __nex_bss; 62 unsigned long default_nsec_shm_paddr __nex_bss; 63 #endif 64 65 static struct tee_mmap_region static_mmap_regions[CFG_MMAP_REGIONS 66 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE) 67 + 1 68 #endif 69 + 4] __nex_bss; 70 static struct memory_map static_memory_map __nex_data = { 71 .map = static_mmap_regions, 72 .alloc_count = ARRAY_SIZE(static_mmap_regions), 73 }; 74 75 /* Offset of the first TEE RAM mapping from start of secure RAM */ 76 static size_t tee_ram_initial_offs __nex_bss; 77 78 /* Define the platform's memory layout. */ 79 struct memaccess_area { 80 paddr_t paddr; 81 size_t size; 82 }; 83 84 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } 85 86 static struct memaccess_area secure_only[] __nex_data = { 87 #ifdef CFG_CORE_PHYS_RELOCATABLE 88 MEMACCESS_AREA(0, 0), 89 #else 90 #ifdef TRUSTED_SRAM_BASE 91 MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), 92 #endif 93 MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), 94 #endif 95 }; 96 97 static struct memaccess_area nsec_shared[] __nex_data = { 98 #ifdef CFG_CORE_RESERVED_SHM 99 MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), 100 #endif 101 }; 102 103 #if defined(CFG_SECURE_DATA_PATH) 104 static const char *tz_sdp_match = "linaro,secure-heap"; 105 static struct memaccess_area sec_sdp; 106 #ifdef CFG_TEE_SDP_MEM_BASE 107 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); 108 #endif 109 #ifdef TEE_SDP_TEST_MEM_BASE 110 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); 111 #endif 112 #endif 113 114 #ifdef CFG_CORE_RESERVED_SHM 115 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); 116 #endif 117 static unsigned int mmu_spinlock; 118 119 static uint32_t mmu_lock(void) 120 { 121 return cpu_spin_lock_xsave(&mmu_spinlock); 122 } 123 124 static void mmu_unlock(uint32_t exceptions) 125 { 126 cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); 127 } 128 129 static void grow_mem_map(struct memory_map *mem_map) 130 { 131 if (mem_map->count == mem_map->alloc_count) { 132 EMSG("Out of entries (%zu) in mem_map", mem_map->alloc_count); 133 panic(); 134 } 135 mem_map->count++; 136 } 137 138 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size) 139 { 140 /* 141 * The first range is always used to cover OP-TEE core memory, but 142 * depending on configuration it may cover more than that. 143 */ 144 *base = secure_only[0].paddr; 145 *size = secure_only[0].size; 146 } 147 148 void core_mmu_set_secure_memory(paddr_t base, size_t size) 149 { 150 #ifdef CFG_CORE_PHYS_RELOCATABLE 151 static_assert(ARRAY_SIZE(secure_only) == 1); 152 #endif 153 runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)); 154 assert(!secure_only[0].size); 155 assert(base && size); 156 157 DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size); 158 secure_only[0].paddr = base; 159 secure_only[0].size = size; 160 } 161 162 void core_mmu_get_ta_range(paddr_t *base, size_t *size) 163 { 164 paddr_t b = 0; 165 size_t s = 0; 166 167 static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE)); 168 #ifdef TA_RAM_START 169 b = TA_RAM_START; 170 s = TA_RAM_SIZE; 171 #else 172 static_assert(ARRAY_SIZE(secure_only) <= 2); 173 if (ARRAY_SIZE(secure_only) == 1) { 174 vaddr_t load_offs = 0; 175 176 assert(core_mmu_tee_load_pa >= secure_only[0].paddr); 177 load_offs = core_mmu_tee_load_pa - secure_only[0].paddr; 178 179 assert(secure_only[0].size > 180 load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE); 181 b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE; 182 s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE - 183 TEE_SDP_TEST_MEM_SIZE; 184 } else { 185 assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE); 186 b = secure_only[1].paddr; 187 s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE; 188 } 189 #endif 190 if (base) 191 *base = b; 192 if (size) 193 *size = s; 194 } 195 196 static struct memory_map *get_memory_map(void) 197 { 198 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 199 struct memory_map *map = virt_get_memory_map(); 200 201 if (map) 202 return map; 203 } 204 205 return &static_memory_map; 206 } 207 208 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, 209 paddr_t pa, size_t size) 210 { 211 size_t n; 212 213 for (n = 0; n < alen; n++) 214 if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) 215 return true; 216 return false; 217 } 218 219 #define pbuf_intersects(a, pa, size) \ 220 _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) 221 222 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, 223 paddr_t pa, size_t size) 224 { 225 size_t n; 226 227 for (n = 0; n < alen; n++) 228 if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) 229 return true; 230 return false; 231 } 232 233 #define pbuf_is_inside(a, pa, size) \ 234 _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) 235 236 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) 237 { 238 paddr_t end_pa = 0; 239 240 if (!map) 241 return false; 242 243 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 244 return false; 245 246 return (pa >= map->pa && end_pa <= map->pa + map->size - 1); 247 } 248 249 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) 250 { 251 if (!map) 252 return false; 253 return (va >= map->va && va <= (map->va + map->size - 1)); 254 } 255 256 /* check if target buffer fits in a core default map area */ 257 static bool pbuf_inside_map_area(unsigned long p, size_t l, 258 struct tee_mmap_region *map) 259 { 260 return core_is_buffer_inside(p, l, map->pa, map->size); 261 } 262 263 TEE_Result core_mmu_for_each_map(void *ptr, 264 TEE_Result (*fn)(struct tee_mmap_region *map, 265 void *ptr)) 266 { 267 struct memory_map *mem_map = get_memory_map(); 268 TEE_Result res = TEE_SUCCESS; 269 size_t n = 0; 270 271 for (n = 0; n < mem_map->count; n++) { 272 res = fn(mem_map->map + n, ptr); 273 if (res) 274 return res; 275 } 276 277 return TEE_SUCCESS; 278 } 279 280 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) 281 { 282 struct memory_map *mem_map = get_memory_map(); 283 size_t n = 0; 284 285 for (n = 0; n < mem_map->count; n++) { 286 if (mem_map->map[n].type == type) 287 return mem_map->map + n; 288 } 289 return NULL; 290 } 291 292 static struct tee_mmap_region * 293 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) 294 { 295 struct memory_map *mem_map = get_memory_map(); 296 size_t n = 0; 297 298 for (n = 0; n < mem_map->count; n++) { 299 if (mem_map->map[n].type != type) 300 continue; 301 if (pa_is_in_map(mem_map->map + n, pa, len)) 302 return mem_map->map + n; 303 } 304 return NULL; 305 } 306 307 static struct tee_mmap_region *find_map_by_va(void *va) 308 { 309 struct memory_map *mem_map = get_memory_map(); 310 vaddr_t a = (vaddr_t)va; 311 size_t n = 0; 312 313 for (n = 0; n < mem_map->count; n++) { 314 if (a >= mem_map->map[n].va && 315 a <= (mem_map->map[n].va - 1 + mem_map->map[n].size)) 316 return mem_map->map + n; 317 } 318 319 return NULL; 320 } 321 322 static struct tee_mmap_region *find_map_by_pa(unsigned long pa) 323 { 324 struct memory_map *mem_map = get_memory_map(); 325 size_t n = 0; 326 327 for (n = 0; n < mem_map->count; n++) { 328 /* Skip unmapped regions */ 329 if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) && 330 pa >= mem_map->map[n].pa && 331 pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size)) 332 return mem_map->map + n; 333 } 334 335 return NULL; 336 } 337 338 #if defined(CFG_SECURE_DATA_PATH) 339 static bool dtb_get_sdp_region(void) 340 { 341 void *fdt = NULL; 342 int node = 0; 343 int tmp_node = 0; 344 paddr_t tmp_addr = 0; 345 size_t tmp_size = 0; 346 347 if (!IS_ENABLED(CFG_EMBED_DTB)) 348 return false; 349 350 fdt = get_embedded_dt(); 351 if (!fdt) 352 panic("No DTB found"); 353 354 node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match); 355 if (node < 0) { 356 DMSG("No %s compatible node found", tz_sdp_match); 357 return false; 358 } 359 tmp_node = node; 360 while (tmp_node >= 0) { 361 tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node, 362 tz_sdp_match); 363 if (tmp_node >= 0) 364 DMSG("Ignore SDP pool node %s, supports only 1 node", 365 fdt_get_name(fdt, tmp_node, NULL)); 366 } 367 368 if (fdt_reg_info(fdt, node, &tmp_addr, &tmp_size)) { 369 EMSG("%s: Unable to get base addr or size from DT", 370 tz_sdp_match); 371 return false; 372 } 373 374 sec_sdp.paddr = tmp_addr; 375 sec_sdp.size = tmp_size; 376 377 return true; 378 } 379 #endif 380 381 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) 382 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, 383 const struct core_mmu_phys_mem *start, 384 const struct core_mmu_phys_mem *end) 385 { 386 const struct core_mmu_phys_mem *mem; 387 388 for (mem = start; mem < end; mem++) { 389 if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) 390 return true; 391 } 392 393 return false; 394 } 395 #endif 396 397 #ifdef CFG_CORE_DYN_SHM 398 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, 399 paddr_t pa, size_t size) 400 { 401 struct core_mmu_phys_mem *m = *mem; 402 size_t n = 0; 403 404 while (true) { 405 if (n >= *nelems) { 406 DMSG("No need to carve out %#" PRIxPA " size %#zx", 407 pa, size); 408 return; 409 } 410 if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size)) 411 break; 412 if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size)) 413 panic(); 414 n++; 415 } 416 417 if (pa == m[n].addr && size == m[n].size) { 418 /* Remove this entry */ 419 (*nelems)--; 420 memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n)); 421 m = nex_realloc(m, sizeof(*m) * *nelems); 422 if (!m) 423 panic(); 424 *mem = m; 425 } else if (pa == m[n].addr) { 426 m[n].addr += size; 427 m[n].size -= size; 428 } else if ((pa + size) == (m[n].addr + m[n].size)) { 429 m[n].size -= size; 430 } else { 431 /* Need to split the memory entry */ 432 m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); 433 if (!m) 434 panic(); 435 *mem = m; 436 memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n)); 437 (*nelems)++; 438 m[n].size = pa - m[n].addr; 439 m[n + 1].size -= size + m[n].size; 440 m[n + 1].addr = pa + size; 441 } 442 } 443 444 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, 445 size_t nelems, 446 struct tee_mmap_region *map) 447 { 448 size_t n; 449 450 for (n = 0; n < nelems; n++) { 451 if (!core_is_buffer_outside(start[n].addr, start[n].size, 452 map->pa, map->size)) { 453 EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ 454 ") overlaps map (type %d %#" PRIxPA ":%#zx)", 455 start[n].addr, start[n].size, 456 map->type, map->pa, map->size); 457 panic(); 458 } 459 } 460 } 461 462 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; 463 static size_t discovered_nsec_ddr_nelems __nex_bss; 464 465 static int cmp_pmem_by_addr(const void *a, const void *b) 466 { 467 const struct core_mmu_phys_mem *pmem_a = a; 468 const struct core_mmu_phys_mem *pmem_b = b; 469 470 return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); 471 } 472 473 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 474 size_t nelems) 475 { 476 struct core_mmu_phys_mem *m = start; 477 size_t num_elems = nelems; 478 struct memory_map *mem_map = &static_memory_map; 479 const struct core_mmu_phys_mem __maybe_unused *pmem; 480 size_t n = 0; 481 482 assert(!discovered_nsec_ddr_start); 483 assert(m && num_elems); 484 485 qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); 486 487 /* 488 * Non-secure shared memory and also secure data 489 * path memory are supposed to reside inside 490 * non-secure memory. Since NSEC_SHM and SDP_MEM 491 * are used for a specific purpose make holes for 492 * those memory in the normal non-secure memory. 493 * 494 * This has to be done since for instance QEMU 495 * isn't aware of which memory range in the 496 * non-secure memory is used for NSEC_SHM. 497 */ 498 499 #ifdef CFG_SECURE_DATA_PATH 500 if (dtb_get_sdp_region()) 501 carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size); 502 503 for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) 504 carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); 505 #endif 506 507 for (n = 0; n < ARRAY_SIZE(secure_only); n++) 508 carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr, 509 secure_only[n].size); 510 511 for (n = 0; n < mem_map->count; n++) { 512 switch (mem_map->map[n].type) { 513 case MEM_AREA_NSEC_SHM: 514 carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa, 515 mem_map->map[n].size); 516 break; 517 case MEM_AREA_EXT_DT: 518 case MEM_AREA_MANIFEST_DT: 519 case MEM_AREA_RAM_NSEC: 520 case MEM_AREA_RES_VASPACE: 521 case MEM_AREA_SHM_VASPACE: 522 case MEM_AREA_TS_VASPACE: 523 case MEM_AREA_PAGER_VASPACE: 524 break; 525 default: 526 check_phys_mem_is_outside(m, num_elems, 527 mem_map->map + n); 528 } 529 } 530 531 discovered_nsec_ddr_start = m; 532 discovered_nsec_ddr_nelems = num_elems; 533 534 if (!core_mmu_check_end_pa(m[num_elems - 1].addr, 535 m[num_elems - 1].size)) 536 panic(); 537 } 538 539 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, 540 const struct core_mmu_phys_mem **end) 541 { 542 if (!discovered_nsec_ddr_start) 543 return false; 544 545 *start = discovered_nsec_ddr_start; 546 *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; 547 548 return true; 549 } 550 551 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) 552 { 553 const struct core_mmu_phys_mem *start; 554 const struct core_mmu_phys_mem *end; 555 556 if (!get_discovered_nsec_ddr(&start, &end)) 557 return false; 558 559 return pbuf_is_special_mem(pbuf, len, start, end); 560 } 561 562 bool core_mmu_nsec_ddr_is_defined(void) 563 { 564 const struct core_mmu_phys_mem *start; 565 const struct core_mmu_phys_mem *end; 566 567 if (!get_discovered_nsec_ddr(&start, &end)) 568 return false; 569 570 return start != end; 571 } 572 #else 573 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) 574 { 575 return false; 576 } 577 #endif /*CFG_CORE_DYN_SHM*/ 578 579 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ 580 EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ 581 pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) 582 583 #ifdef CFG_SECURE_DATA_PATH 584 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) 585 { 586 bool is_sdp_mem = false; 587 588 if (sec_sdp.size) 589 is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr, 590 sec_sdp.size); 591 592 if (!is_sdp_mem) 593 is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, 594 phys_sdp_mem_end); 595 596 return is_sdp_mem; 597 } 598 599 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size) 600 { 601 struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED, 602 CORE_MEM_SDP_MEM); 603 604 if (!mobj) 605 panic("can't create SDP physical memory object"); 606 607 return mobj; 608 } 609 610 struct mobj **core_sdp_mem_create_mobjs(void) 611 { 612 const struct core_mmu_phys_mem *mem = NULL; 613 struct mobj **mobj_base = NULL; 614 struct mobj **mobj = NULL; 615 int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; 616 617 if (sec_sdp.size) 618 cnt++; 619 620 /* SDP mobjs table must end with a NULL entry */ 621 mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); 622 if (!mobj_base) 623 panic("Out of memory"); 624 625 mobj = mobj_base; 626 627 for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++) 628 *mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size); 629 630 if (sec_sdp.size) 631 *mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size); 632 633 return mobj_base; 634 } 635 636 #else /* CFG_SECURE_DATA_PATH */ 637 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) 638 { 639 return false; 640 } 641 642 #endif /* CFG_SECURE_DATA_PATH */ 643 644 /* Check special memories comply with registered memories */ 645 static void verify_special_mem_areas(struct memory_map *mem_map, 646 const struct core_mmu_phys_mem *start, 647 const struct core_mmu_phys_mem *end, 648 const char *area_name __maybe_unused) 649 { 650 const struct core_mmu_phys_mem *mem = NULL; 651 const struct core_mmu_phys_mem *mem2 = NULL; 652 size_t n = 0; 653 654 if (start == end) { 655 DMSG("No %s memory area defined", area_name); 656 return; 657 } 658 659 for (mem = start; mem < end; mem++) 660 DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", 661 area_name, mem->addr, (uint64_t)mem->addr + mem->size); 662 663 /* Check memories do not intersect each other */ 664 for (mem = start; mem + 1 < end; mem++) { 665 for (mem2 = mem + 1; mem2 < end; mem2++) { 666 if (core_is_buffer_intersect(mem2->addr, mem2->size, 667 mem->addr, mem->size)) { 668 MSG_MEM_INSTERSECT(mem2->addr, mem2->size, 669 mem->addr, mem->size); 670 panic("Special memory intersection"); 671 } 672 } 673 } 674 675 /* 676 * Check memories do not intersect any mapped memory. 677 * This is called before reserved VA space is loaded in mem_map. 678 */ 679 for (mem = start; mem < end; mem++) { 680 for (n = 0; n < mem_map->count; n++) { 681 if (core_is_buffer_intersect(mem->addr, mem->size, 682 mem_map->map[n].pa, 683 mem_map->map[n].size)) { 684 MSG_MEM_INSTERSECT(mem->addr, mem->size, 685 mem_map->map[n].pa, 686 mem_map->map[n].size); 687 panic("Special memory intersection"); 688 } 689 } 690 } 691 } 692 693 static void merge_mmaps(struct tee_mmap_region *dst, 694 const struct tee_mmap_region *src) 695 { 696 paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1); 697 paddr_t pa = MIN(dst->pa, src->pa); 698 699 DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA, 700 dst->pa, dst->pa + dst->size - 1, src->pa, 701 src->pa + src->size - 1); 702 dst->pa = pa; 703 dst->size = end_pa - pa + 1; 704 } 705 706 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1, 707 const struct tee_mmap_region *r2) 708 { 709 if (r1->type != r2->type) 710 return false; 711 712 if (r1->pa == r2->pa) 713 return true; 714 715 if (r1->pa < r2->pa) 716 return r1->pa + r1->size >= r2->pa; 717 else 718 return r2->pa + r2->size >= r1->pa; 719 } 720 721 static void add_phys_mem(struct memory_map *mem_map, 722 const char *mem_name __maybe_unused, 723 enum teecore_memtypes mem_type, 724 paddr_t mem_addr, paddr_size_t mem_size) 725 { 726 size_t n = 0; 727 const struct tee_mmap_region m0 = { 728 .type = mem_type, 729 .pa = mem_addr, 730 .size = mem_size, 731 }; 732 733 if (!mem_size) /* Discard null size entries */ 734 return; 735 736 /* 737 * If some ranges of memory of the same type do overlap 738 * each others they are coalesced into one entry. To help this 739 * added entries are sorted by increasing physical. 740 * 741 * Note that it's valid to have the same physical memory as several 742 * different memory types, for instance the same device memory 743 * mapped as both secure and non-secure. This will probably not 744 * happen often in practice. 745 */ 746 DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, 747 mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size); 748 for (n = 0; n < mem_map->count; n++) { 749 if (mmaps_are_mergeable(mem_map->map + n, &m0)) { 750 merge_mmaps(mem_map->map + n, &m0); 751 /* 752 * The merged result might be mergeable with the 753 * next or previous entry. 754 */ 755 if (n + 1 < mem_map->count && 756 mmaps_are_mergeable(mem_map->map + n, 757 mem_map->map + n + 1)) { 758 merge_mmaps(mem_map->map + n, 759 mem_map->map + n + 1); 760 rem_array_elem(mem_map->map, mem_map->count, 761 sizeof(*mem_map->map), n + 1); 762 mem_map->count--; 763 } 764 if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1, 765 mem_map->map + n)) { 766 merge_mmaps(mem_map->map + n - 1, 767 mem_map->map + n); 768 rem_array_elem(mem_map->map, mem_map->count, 769 sizeof(*mem_map->map), n); 770 mem_map->count--; 771 } 772 return; 773 } 774 if (mem_type < mem_map->map[n].type || 775 (mem_type == mem_map->map[n].type && 776 mem_addr < mem_map->map[n].pa)) 777 break; /* found the spot where to insert this memory */ 778 } 779 780 grow_mem_map(mem_map); 781 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 782 n, &m0); 783 } 784 785 static void add_va_space(struct memory_map *mem_map, 786 enum teecore_memtypes type, size_t size) 787 { 788 size_t n = 0; 789 790 DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); 791 for (n = 0; n < mem_map->count; n++) { 792 if (type < mem_map->map[n].type) 793 break; 794 } 795 796 grow_mem_map(mem_map); 797 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 798 n, NULL); 799 mem_map->map[n] = (struct tee_mmap_region){ 800 .type = type, 801 .size = size, 802 }; 803 } 804 805 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) 806 { 807 const uint32_t attr = TEE_MATTR_VALID_BLOCK; 808 const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED << 809 TEE_MATTR_MEM_TYPE_SHIFT; 810 const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << 811 TEE_MATTR_MEM_TYPE_SHIFT; 812 const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << 813 TEE_MATTR_MEM_TYPE_SHIFT; 814 815 switch (t) { 816 case MEM_AREA_TEE_RAM: 817 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged; 818 case MEM_AREA_TEE_RAM_RX: 819 case MEM_AREA_INIT_RAM_RX: 820 case MEM_AREA_IDENTITY_MAP_RX: 821 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged; 822 case MEM_AREA_TEE_RAM_RO: 823 case MEM_AREA_INIT_RAM_RO: 824 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged; 825 case MEM_AREA_TEE_RAM_RW: 826 case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ 827 case MEM_AREA_NEX_RAM_RW: 828 case MEM_AREA_TEE_ASAN: 829 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 830 case MEM_AREA_TEE_COHERENT: 831 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; 832 case MEM_AREA_NSEC_SHM: 833 case MEM_AREA_NEX_NSEC_SHM: 834 return attr | TEE_MATTR_PRW | cached; 835 case MEM_AREA_MANIFEST_DT: 836 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 837 case MEM_AREA_TRANSFER_LIST: 838 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 839 case MEM_AREA_EXT_DT: 840 /* 841 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device 842 * tree as secure non-cached memory, otherwise, fall back to 843 * non-secure mapping. 844 */ 845 if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE)) 846 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | 847 noncache; 848 fallthrough; 849 case MEM_AREA_IO_NSEC: 850 return attr | TEE_MATTR_PRW | noncache; 851 case MEM_AREA_IO_SEC: 852 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; 853 case MEM_AREA_RAM_NSEC: 854 return attr | TEE_MATTR_PRW | cached; 855 case MEM_AREA_RAM_SEC: 856 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 857 case MEM_AREA_SEC_RAM_OVERALL: 858 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 859 case MEM_AREA_ROM_SEC: 860 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 861 case MEM_AREA_RES_VASPACE: 862 case MEM_AREA_SHM_VASPACE: 863 return 0; 864 case MEM_AREA_PAGER_VASPACE: 865 return TEE_MATTR_SECURE; 866 default: 867 panic("invalid type"); 868 } 869 } 870 871 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) 872 { 873 switch (mm->type) { 874 case MEM_AREA_TEE_RAM: 875 case MEM_AREA_TEE_RAM_RX: 876 case MEM_AREA_TEE_RAM_RO: 877 case MEM_AREA_TEE_RAM_RW: 878 case MEM_AREA_INIT_RAM_RX: 879 case MEM_AREA_INIT_RAM_RO: 880 case MEM_AREA_NEX_RAM_RW: 881 case MEM_AREA_NEX_RAM_RO: 882 case MEM_AREA_TEE_ASAN: 883 return true; 884 default: 885 return false; 886 } 887 } 888 889 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) 890 { 891 return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); 892 } 893 894 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) 895 { 896 return mm->region_size == CORE_MMU_PGDIR_SIZE; 897 } 898 899 static int cmp_mmap_by_lower_va(const void *a, const void *b) 900 { 901 const struct tee_mmap_region *mm_a = a; 902 const struct tee_mmap_region *mm_b = b; 903 904 return CMP_TRILEAN(mm_a->va, mm_b->va); 905 } 906 907 static void dump_mmap_table(struct memory_map *mem_map) 908 { 909 size_t n = 0; 910 911 for (n = 0; n < mem_map->count; n++) { 912 struct tee_mmap_region *map = mem_map->map + n; 913 vaddr_t __maybe_unused vstart; 914 915 vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1)); 916 DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA 917 " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", 918 teecore_memtype_name(map->type), vstart, 919 vstart + map->size - 1, map->pa, 920 (paddr_t)(map->pa + map->size - 1), map->size, 921 map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); 922 } 923 } 924 925 #if DEBUG_XLAT_TABLE 926 927 static void dump_xlat_table(vaddr_t va, unsigned int level) 928 { 929 struct core_mmu_table_info tbl_info; 930 unsigned int idx = 0; 931 paddr_t pa; 932 uint32_t attr; 933 934 core_mmu_find_table(NULL, va, level, &tbl_info); 935 va = tbl_info.va_base; 936 for (idx = 0; idx < tbl_info.num_entries; idx++) { 937 core_mmu_get_entry(&tbl_info, idx, &pa, &attr); 938 if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { 939 const char *security_bit = ""; 940 941 if (core_mmu_entry_have_security_bit(attr)) { 942 if (attr & TEE_MATTR_SECURE) 943 security_bit = "S"; 944 else 945 security_bit = "NS"; 946 } 947 948 if (attr & TEE_MATTR_TABLE) { 949 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 950 " TBL:0x%010" PRIxPA " %s", 951 level * 2, "", level, va, pa, 952 security_bit); 953 dump_xlat_table(va, level + 1); 954 } else if (attr) { 955 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 956 " PA:0x%010" PRIxPA " %s-%s-%s-%s", 957 level * 2, "", level, va, pa, 958 mattr_is_cached(attr) ? "MEM" : 959 "DEV", 960 attr & TEE_MATTR_PW ? "RW" : "RO", 961 attr & TEE_MATTR_PX ? "X " : "XN", 962 security_bit); 963 } else { 964 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 965 " INVALID\n", 966 level * 2, "", level, va); 967 } 968 } 969 va += BIT64(tbl_info.shift); 970 } 971 } 972 973 #else 974 975 static void dump_xlat_table(vaddr_t va __unused, int level __unused) 976 { 977 } 978 979 #endif 980 981 /* 982 * Reserves virtual memory space for pager usage. 983 * 984 * From the start of the first memory used by the link script + 985 * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty 986 * mapping for pager usage. This adds translation tables as needed for the 987 * pager to operate. 988 */ 989 static void add_pager_vaspace(struct memory_map *mem_map) 990 { 991 paddr_t begin = 0; 992 paddr_t end = 0; 993 size_t size = 0; 994 size_t pos = 0; 995 size_t n = 0; 996 997 998 for (n = 0; n < mem_map->count; n++) { 999 if (map_is_tee_ram(mem_map->map + n)) { 1000 if (!begin) 1001 begin = mem_map->map[n].pa; 1002 pos = n + 1; 1003 } 1004 } 1005 1006 end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size; 1007 assert(end - begin < TEE_RAM_VA_SIZE); 1008 size = TEE_RAM_VA_SIZE - (end - begin); 1009 1010 grow_mem_map(mem_map); 1011 ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), 1012 n, NULL); 1013 mem_map->map[n] = (struct tee_mmap_region){ 1014 .type = MEM_AREA_PAGER_VASPACE, 1015 .size = size, 1016 .region_size = SMALL_PAGE_SIZE, 1017 .attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE), 1018 }; 1019 } 1020 1021 static void check_sec_nsec_mem_config(void) 1022 { 1023 size_t n = 0; 1024 1025 for (n = 0; n < ARRAY_SIZE(secure_only); n++) { 1026 if (pbuf_intersects(nsec_shared, secure_only[n].paddr, 1027 secure_only[n].size)) 1028 panic("Invalid memory access config: sec/nsec"); 1029 } 1030 } 1031 1032 static void collect_device_mem_ranges(struct memory_map *mem_map) 1033 { 1034 const char *compatible = "arm,ffa-manifest-device-regions"; 1035 void *fdt = get_manifest_dt(); 1036 const char *name = NULL; 1037 uint64_t page_count = 0; 1038 uint64_t base = 0; 1039 int subnode = 0; 1040 int node = 0; 1041 1042 assert(fdt); 1043 1044 node = fdt_node_offset_by_compatible(fdt, 0, compatible); 1045 if (node < 0) 1046 return; 1047 1048 fdt_for_each_subnode(subnode, fdt, node) { 1049 name = fdt_get_name(fdt, subnode, NULL); 1050 if (!name) 1051 continue; 1052 1053 if (dt_getprop_as_number(fdt, subnode, "base-address", 1054 &base)) { 1055 EMSG("Mandatory field is missing: base-address"); 1056 continue; 1057 } 1058 1059 if (base & SMALL_PAGE_MASK) { 1060 EMSG("base-address is not page aligned"); 1061 continue; 1062 } 1063 1064 if (dt_getprop_as_number(fdt, subnode, "pages-count", 1065 &page_count)) { 1066 EMSG("Mandatory field is missing: pages-count"); 1067 continue; 1068 } 1069 1070 add_phys_mem(mem_map, name, MEM_AREA_IO_SEC, 1071 base, base + page_count * SMALL_PAGE_SIZE); 1072 } 1073 } 1074 1075 static void collect_mem_ranges(struct memory_map *mem_map) 1076 { 1077 const struct core_mmu_phys_mem *mem = NULL; 1078 vaddr_t ram_start = secure_only[0].paddr; 1079 size_t n = 0; 1080 1081 #define ADD_PHYS_MEM(_type, _addr, _size) \ 1082 add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size)) 1083 1084 if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) { 1085 paddr_t next_pa = 0; 1086 1087 /* 1088 * Read-only and read-execute physical memory areas must 1089 * not be mapped by MEM_AREA_SEC_RAM_OVERALL, but all the 1090 * read/write should. 1091 */ 1092 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, ram_start, 1093 VCORE_UNPG_RX_PA - ram_start); 1094 assert(VCORE_UNPG_RX_PA >= ram_start); 1095 tee_ram_initial_offs = VCORE_UNPG_RX_PA - ram_start; 1096 DMSG("tee_ram_initial_offs %#zx", tee_ram_initial_offs); 1097 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, 1098 VCORE_UNPG_RX_SZ); 1099 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, 1100 VCORE_UNPG_RO_SZ); 1101 1102 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1103 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, 1104 VCORE_UNPG_RW_SZ); 1105 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA, 1106 VCORE_UNPG_RW_SZ); 1107 1108 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, 1109 VCORE_NEX_RW_SZ); 1110 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_NEX_RW_PA, 1111 VCORE_NEX_RW_SZ); 1112 1113 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_FREE_PA, 1114 VCORE_FREE_SZ); 1115 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA, 1116 VCORE_FREE_SZ); 1117 next_pa = VCORE_FREE_PA + VCORE_FREE_SZ; 1118 } else { 1119 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, 1120 VCORE_UNPG_RW_SZ); 1121 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA, 1122 VCORE_UNPG_RW_SZ); 1123 1124 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_FREE_PA, 1125 VCORE_FREE_SZ); 1126 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA, 1127 VCORE_FREE_SZ); 1128 next_pa = VCORE_FREE_PA + VCORE_FREE_SZ; 1129 } 1130 1131 if (IS_ENABLED(CFG_WITH_PAGER)) { 1132 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, 1133 VCORE_INIT_RX_SZ); 1134 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, 1135 VCORE_INIT_RO_SZ); 1136 } else { 1137 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, next_pa, 1138 secure_only[0].paddr + 1139 secure_only[0].size - next_pa); 1140 } 1141 } else { 1142 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); 1143 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr, 1144 secure_only[0].size); 1145 } 1146 1147 for (n = 1; n < ARRAY_SIZE(secure_only); n++) 1148 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr, 1149 secure_only[n].size); 1150 1151 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) && 1152 IS_ENABLED(CFG_WITH_PAGER)) { 1153 /* 1154 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is 1155 * disabled. 1156 */ 1157 ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); 1158 } 1159 1160 #undef ADD_PHYS_MEM 1161 1162 /* Collect device memory info from SP manifest */ 1163 if (IS_ENABLED(CFG_CORE_SEL2_SPMC)) 1164 collect_device_mem_ranges(mem_map); 1165 1166 for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { 1167 /* Only unmapped virtual range may have a null phys addr */ 1168 assert(mem->addr || !core_mmu_type_to_attr(mem->type)); 1169 1170 add_phys_mem(mem_map, mem->name, mem->type, 1171 mem->addr, mem->size); 1172 } 1173 1174 if (IS_ENABLED(CFG_SECURE_DATA_PATH)) 1175 verify_special_mem_areas(mem_map, phys_sdp_mem_begin, 1176 phys_sdp_mem_end, "SDP"); 1177 1178 add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE); 1179 add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE); 1180 } 1181 1182 static void assign_mem_granularity(struct memory_map *mem_map) 1183 { 1184 size_t n = 0; 1185 1186 /* 1187 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses 1188 * SMALL_PAGE_SIZE. 1189 */ 1190 for (n = 0; n < mem_map->count; n++) { 1191 paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size; 1192 1193 if (!(mask & CORE_MMU_PGDIR_MASK)) 1194 mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE; 1195 else if (!(mask & SMALL_PAGE_MASK)) 1196 mem_map->map[n].region_size = SMALL_PAGE_SIZE; 1197 else 1198 panic("Impossible memory alignment"); 1199 1200 if (map_is_tee_ram(mem_map->map + n)) 1201 mem_map->map[n].region_size = SMALL_PAGE_SIZE; 1202 } 1203 } 1204 1205 static bool place_tee_ram_at_top(paddr_t paddr) 1206 { 1207 return paddr > BIT64(core_mmu_get_va_width()) / 2; 1208 } 1209 1210 /* 1211 * MMU arch driver shall override this function if it helps 1212 * optimizing the memory footprint of the address translation tables. 1213 */ 1214 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr) 1215 { 1216 return place_tee_ram_at_top(paddr); 1217 } 1218 1219 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map, 1220 bool tee_ram_at_top) 1221 { 1222 struct tee_mmap_region *map = NULL; 1223 vaddr_t va = 0; 1224 bool va_is_secure = true; 1225 size_t n = 0; 1226 1227 /* 1228 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y. 1229 * 0 is by design an invalid va, so return false directly. 1230 */ 1231 if (!tee_ram_va) 1232 return false; 1233 1234 /* Clear eventual previous assignments */ 1235 for (n = 0; n < mem_map->count; n++) 1236 mem_map->map[n].va = 0; 1237 1238 /* 1239 * TEE RAM regions are always aligned with region_size. 1240 * 1241 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here 1242 * since it handles virtual memory which covers the part of the ELF 1243 * that cannot fit directly into memory. 1244 */ 1245 va = tee_ram_va + tee_ram_initial_offs; 1246 for (n = 0; n < mem_map->count; n++) { 1247 map = mem_map->map + n; 1248 if (map_is_tee_ram(map) || 1249 map->type == MEM_AREA_PAGER_VASPACE) { 1250 assert(!(va & (map->region_size - 1))); 1251 assert(!(map->size & (map->region_size - 1))); 1252 map->va = va; 1253 if (ADD_OVERFLOW(va, map->size, &va)) 1254 return false; 1255 if (va >= BIT64(core_mmu_get_va_width())) 1256 return false; 1257 } 1258 } 1259 1260 if (tee_ram_at_top) { 1261 /* 1262 * Map non-tee ram regions at addresses lower than the tee 1263 * ram region. 1264 */ 1265 va = tee_ram_va; 1266 for (n = 0; n < mem_map->count; n++) { 1267 map = mem_map->map + n; 1268 map->attr = core_mmu_type_to_attr(map->type); 1269 if (map->va) 1270 continue; 1271 1272 if (!IS_ENABLED(CFG_WITH_LPAE) && 1273 va_is_secure != map_is_secure(map)) { 1274 va_is_secure = !va_is_secure; 1275 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1276 } 1277 1278 if (SUB_OVERFLOW(va, map->size, &va)) 1279 return false; 1280 va = ROUNDDOWN(va, map->region_size); 1281 /* 1282 * Make sure that va is aligned with pa for 1283 * efficient pgdir mapping. Basically pa & 1284 * pgdir_mask should be == va & pgdir_mask 1285 */ 1286 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1287 if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) 1288 return false; 1289 va += (map->pa - va) & CORE_MMU_PGDIR_MASK; 1290 } 1291 map->va = va; 1292 } 1293 } else { 1294 /* 1295 * Map non-tee ram regions at addresses higher than the tee 1296 * ram region. 1297 */ 1298 for (n = 0; n < mem_map->count; n++) { 1299 map = mem_map->map + n; 1300 map->attr = core_mmu_type_to_attr(map->type); 1301 if (map->va) 1302 continue; 1303 1304 if (!IS_ENABLED(CFG_WITH_LPAE) && 1305 va_is_secure != map_is_secure(map)) { 1306 va_is_secure = !va_is_secure; 1307 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1308 &va)) 1309 return false; 1310 } 1311 1312 if (ROUNDUP_OVERFLOW(va, map->region_size, &va)) 1313 return false; 1314 /* 1315 * Make sure that va is aligned with pa for 1316 * efficient pgdir mapping. Basically pa & 1317 * pgdir_mask should be == va & pgdir_mask 1318 */ 1319 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1320 vaddr_t offs = (map->pa - va) & 1321 CORE_MMU_PGDIR_MASK; 1322 1323 if (ADD_OVERFLOW(va, offs, &va)) 1324 return false; 1325 } 1326 1327 map->va = va; 1328 if (ADD_OVERFLOW(va, map->size, &va)) 1329 return false; 1330 if (va >= BIT64(core_mmu_get_va_width())) 1331 return false; 1332 } 1333 } 1334 1335 return true; 1336 } 1337 1338 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map) 1339 { 1340 bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va); 1341 1342 /* 1343 * Check that we're not overlapping with the user VA range. 1344 */ 1345 if (IS_ENABLED(CFG_WITH_LPAE)) { 1346 /* 1347 * User VA range is supposed to be defined after these 1348 * mappings have been established. 1349 */ 1350 assert(!core_mmu_user_va_range_is_defined()); 1351 } else { 1352 vaddr_t user_va_base = 0; 1353 size_t user_va_size = 0; 1354 1355 assert(core_mmu_user_va_range_is_defined()); 1356 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 1357 if (tee_ram_va < (user_va_base + user_va_size)) 1358 return false; 1359 } 1360 1361 if (IS_ENABLED(CFG_WITH_PAGER)) { 1362 bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va); 1363 1364 /* Try whole mapping covered by a single base xlat entry */ 1365 if (prefered_dir != tee_ram_at_top && 1366 assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir)) 1367 return true; 1368 } 1369 1370 return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top); 1371 } 1372 1373 static int cmp_init_mem_map(const void *a, const void *b) 1374 { 1375 const struct tee_mmap_region *mm_a = a; 1376 const struct tee_mmap_region *mm_b = b; 1377 int rc = 0; 1378 1379 rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); 1380 if (!rc) 1381 rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); 1382 /* 1383 * 32bit MMU descriptors cannot mix secure and non-secure mapping in 1384 * the same level2 table. Hence sort secure mapping from non-secure 1385 * mapping. 1386 */ 1387 if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) 1388 rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); 1389 1390 return rc; 1391 } 1392 1393 static bool mem_map_add_id_map(struct memory_map *mem_map, 1394 vaddr_t id_map_start, vaddr_t id_map_end) 1395 { 1396 vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); 1397 vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); 1398 size_t len = end - start; 1399 size_t n = 0; 1400 1401 1402 for (n = 0; n < mem_map->count; n++) 1403 if (core_is_buffer_intersect(mem_map->map[n].va, 1404 mem_map->map[n].size, start, len)) 1405 return false; 1406 1407 grow_mem_map(mem_map); 1408 mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){ 1409 .type = MEM_AREA_IDENTITY_MAP_RX, 1410 /* 1411 * Could use CORE_MMU_PGDIR_SIZE to potentially save a 1412 * translation table, at the increased risk of clashes with 1413 * the rest of the memory map. 1414 */ 1415 .region_size = SMALL_PAGE_SIZE, 1416 .pa = start, 1417 .va = start, 1418 .size = len, 1419 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1420 }; 1421 1422 return true; 1423 } 1424 1425 static struct memory_map *init_mem_map(struct memory_map *mem_map, 1426 unsigned long seed, 1427 unsigned long *ret_offs) 1428 { 1429 /* 1430 * @id_map_start and @id_map_end describes a physical memory range 1431 * that must be mapped Read-Only eXecutable at identical virtual 1432 * addresses. 1433 */ 1434 vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; 1435 vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; 1436 vaddr_t start_addr = secure_only[0].paddr; 1437 unsigned long offs = 0; 1438 1439 collect_mem_ranges(mem_map); 1440 assign_mem_granularity(mem_map); 1441 1442 /* 1443 * To ease mapping and lower use of xlat tables, sort mapping 1444 * description moving small-page regions after the pgdir regions. 1445 */ 1446 qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), 1447 cmp_init_mem_map); 1448 1449 if (IS_ENABLED(CFG_WITH_PAGER)) 1450 add_pager_vaspace(mem_map); 1451 1452 if (IS_ENABLED(CFG_CORE_ASLR) && seed) { 1453 vaddr_t base_addr = start_addr + seed; 1454 const unsigned int va_width = core_mmu_get_va_width(); 1455 const vaddr_t va_mask = GENMASK_64(va_width - 1, 1456 SMALL_PAGE_SHIFT); 1457 vaddr_t ba = base_addr; 1458 size_t n = 0; 1459 1460 for (n = 0; n < 3; n++) { 1461 if (n) 1462 ba = base_addr ^ BIT64(va_width - n); 1463 ba &= va_mask; 1464 if (assign_mem_va(ba, mem_map) && 1465 mem_map_add_id_map(mem_map, id_map_start, 1466 id_map_end)) { 1467 offs = ba - start_addr; 1468 DMSG("Mapping core at %#"PRIxVA" offs %#lx", 1469 ba, offs); 1470 goto out; 1471 } else { 1472 DMSG("Failed to map core at %#"PRIxVA, ba); 1473 } 1474 } 1475 EMSG("Failed to map core with seed %#lx", seed); 1476 } 1477 1478 if (!assign_mem_va(start_addr, mem_map)) 1479 panic(); 1480 1481 out: 1482 qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), 1483 cmp_mmap_by_lower_va); 1484 1485 dump_mmap_table(mem_map); 1486 1487 *ret_offs = offs; 1488 return mem_map; 1489 } 1490 1491 static void check_mem_map(struct memory_map *mem_map) 1492 { 1493 struct tee_mmap_region *m = NULL; 1494 size_t n = 0; 1495 1496 for (n = 0; n < mem_map->count; n++) { 1497 m = mem_map->map + n; 1498 switch (m->type) { 1499 case MEM_AREA_TEE_RAM: 1500 case MEM_AREA_TEE_RAM_RX: 1501 case MEM_AREA_TEE_RAM_RO: 1502 case MEM_AREA_TEE_RAM_RW: 1503 case MEM_AREA_INIT_RAM_RX: 1504 case MEM_AREA_INIT_RAM_RO: 1505 case MEM_AREA_NEX_RAM_RW: 1506 case MEM_AREA_NEX_RAM_RO: 1507 case MEM_AREA_IDENTITY_MAP_RX: 1508 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1509 panic("TEE_RAM can't fit in secure_only"); 1510 break; 1511 case MEM_AREA_SEC_RAM_OVERALL: 1512 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1513 panic("SEC_RAM_OVERALL can't fit in secure_only"); 1514 break; 1515 case MEM_AREA_NSEC_SHM: 1516 if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) 1517 panic("NS_SHM can't fit in nsec_shared"); 1518 break; 1519 case MEM_AREA_TEE_COHERENT: 1520 case MEM_AREA_TEE_ASAN: 1521 case MEM_AREA_IO_SEC: 1522 case MEM_AREA_IO_NSEC: 1523 case MEM_AREA_EXT_DT: 1524 case MEM_AREA_MANIFEST_DT: 1525 case MEM_AREA_TRANSFER_LIST: 1526 case MEM_AREA_RAM_SEC: 1527 case MEM_AREA_RAM_NSEC: 1528 case MEM_AREA_ROM_SEC: 1529 case MEM_AREA_RES_VASPACE: 1530 case MEM_AREA_SHM_VASPACE: 1531 case MEM_AREA_PAGER_VASPACE: 1532 break; 1533 default: 1534 EMSG("Uhandled memtype %d", m->type); 1535 panic(); 1536 } 1537 } 1538 } 1539 1540 /* 1541 * core_init_mmu_map() - init tee core default memory mapping 1542 * 1543 * This routine sets the static default TEE core mapping. If @seed is > 0 1544 * and configured with CFG_CORE_ASLR it will map tee core at a location 1545 * based on the seed and return the offset from the link address. 1546 * 1547 * If an error happened: core_init_mmu_map is expected to panic. 1548 * 1549 * Note: this function is weak just to make it possible to exclude it from 1550 * the unpaged area. 1551 */ 1552 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) 1553 { 1554 #ifndef CFG_NS_VIRTUALIZATION 1555 vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); 1556 #else 1557 vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, 1558 SMALL_PAGE_SIZE); 1559 #endif 1560 vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; 1561 struct tee_mmap_region tmp_mmap_region = { }; 1562 struct memory_map mem_map = { }; 1563 unsigned long offs = 0; 1564 1565 if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) && 1566 (core_mmu_tee_load_pa & SMALL_PAGE_MASK)) 1567 panic("OP-TEE load address is not page aligned"); 1568 1569 check_sec_nsec_mem_config(); 1570 1571 mem_map = static_memory_map; 1572 static_memory_map = (struct memory_map){ 1573 .map = &tmp_mmap_region, 1574 .alloc_count = 1, 1575 .count = 1, 1576 }; 1577 /* 1578 * Add a entry covering the translation tables which will be 1579 * involved in some virt_to_phys() and phys_to_virt() conversions. 1580 */ 1581 static_memory_map.map[0] = (struct tee_mmap_region){ 1582 .type = MEM_AREA_TEE_RAM, 1583 .region_size = SMALL_PAGE_SIZE, 1584 .pa = start, 1585 .va = start, 1586 .size = len, 1587 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1588 }; 1589 1590 init_mem_map(&mem_map, seed, &offs); 1591 1592 check_mem_map(&mem_map); 1593 core_init_mmu(&mem_map); 1594 dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); 1595 core_init_mmu_regs(cfg); 1596 cfg->map_offset = offs; 1597 static_memory_map = mem_map; 1598 } 1599 1600 bool core_mmu_mattr_is_ok(uint32_t mattr) 1601 { 1602 /* 1603 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and 1604 * core_mmu_v7.c:mattr_to_texcb 1605 */ 1606 1607 switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { 1608 case TEE_MATTR_MEM_TYPE_DEV: 1609 case TEE_MATTR_MEM_TYPE_STRONGLY_O: 1610 case TEE_MATTR_MEM_TYPE_CACHED: 1611 case TEE_MATTR_MEM_TYPE_TAGGED: 1612 return true; 1613 default: 1614 return false; 1615 } 1616 } 1617 1618 /* 1619 * test attributes of target physical buffer 1620 * 1621 * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). 1622 * 1623 */ 1624 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) 1625 { 1626 struct tee_mmap_region *map; 1627 1628 /* Empty buffers complies with anything */ 1629 if (len == 0) 1630 return true; 1631 1632 switch (attr) { 1633 case CORE_MEM_SEC: 1634 return pbuf_is_inside(secure_only, pbuf, len); 1635 case CORE_MEM_NON_SEC: 1636 return pbuf_is_inside(nsec_shared, pbuf, len) || 1637 pbuf_is_nsec_ddr(pbuf, len); 1638 case CORE_MEM_TEE_RAM: 1639 return core_is_buffer_inside(pbuf, len, TEE_RAM_START, 1640 TEE_RAM_PH_SIZE); 1641 #ifdef CFG_CORE_RESERVED_SHM 1642 case CORE_MEM_NSEC_SHM: 1643 return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, 1644 TEE_SHMEM_SIZE); 1645 #endif 1646 case CORE_MEM_SDP_MEM: 1647 return pbuf_is_sdp_mem(pbuf, len); 1648 case CORE_MEM_CACHED: 1649 map = find_map_by_pa(pbuf); 1650 if (!map || !pbuf_inside_map_area(pbuf, len, map)) 1651 return false; 1652 return mattr_is_cached(map->attr); 1653 default: 1654 return false; 1655 } 1656 } 1657 1658 /* test attributes of target virtual buffer (in core mapping) */ 1659 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) 1660 { 1661 paddr_t p; 1662 1663 /* Empty buffers complies with anything */ 1664 if (len == 0) 1665 return true; 1666 1667 p = virt_to_phys((void *)vbuf); 1668 if (!p) 1669 return false; 1670 1671 return core_pbuf_is(attr, p, len); 1672 } 1673 1674 /* core_va2pa - teecore exported service */ 1675 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) 1676 { 1677 struct tee_mmap_region *map; 1678 1679 map = find_map_by_va(va); 1680 if (!va_is_in_map(map, (vaddr_t)va)) 1681 return -1; 1682 1683 /* 1684 * We can calculate PA for static map. Virtual address ranges 1685 * reserved to core dynamic mapping return a 'match' (return 0;) 1686 * together with an invalid null physical address. 1687 */ 1688 if (map->pa) 1689 *pa = map->pa + (vaddr_t)va - map->va; 1690 else 1691 *pa = 0; 1692 1693 return 0; 1694 } 1695 1696 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) 1697 { 1698 if (!pa_is_in_map(map, pa, len)) 1699 return NULL; 1700 1701 return (void *)(vaddr_t)(map->va + pa - map->pa); 1702 } 1703 1704 /* 1705 * teecore gets some memory area definitions 1706 */ 1707 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s, 1708 vaddr_t *e) 1709 { 1710 struct tee_mmap_region *map = find_map_by_type(type); 1711 1712 if (map) { 1713 *s = map->va; 1714 *e = map->va + map->size; 1715 } else { 1716 *s = 0; 1717 *e = 0; 1718 } 1719 } 1720 1721 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) 1722 { 1723 struct tee_mmap_region *map = find_map_by_pa(pa); 1724 1725 if (!map) 1726 return MEM_AREA_MAXTYPE; 1727 return map->type; 1728 } 1729 1730 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1731 paddr_t pa, uint32_t attr) 1732 { 1733 assert(idx < tbl_info->num_entries); 1734 core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, 1735 idx, pa, attr); 1736 } 1737 1738 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1739 paddr_t *pa, uint32_t *attr) 1740 { 1741 assert(idx < tbl_info->num_entries); 1742 core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, 1743 idx, pa, attr); 1744 } 1745 1746 static void clear_region(struct core_mmu_table_info *tbl_info, 1747 struct tee_mmap_region *region) 1748 { 1749 unsigned int end = 0; 1750 unsigned int idx = 0; 1751 1752 /* va, len and pa should be block aligned */ 1753 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1754 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1755 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1756 1757 idx = core_mmu_va2idx(tbl_info, region->va); 1758 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1759 1760 while (idx < end) { 1761 core_mmu_set_entry(tbl_info, idx, 0, 0); 1762 idx++; 1763 } 1764 } 1765 1766 static void set_region(struct core_mmu_table_info *tbl_info, 1767 struct tee_mmap_region *region) 1768 { 1769 unsigned int end; 1770 unsigned int idx; 1771 paddr_t pa; 1772 1773 /* va, len and pa should be block aligned */ 1774 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1775 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1776 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1777 1778 idx = core_mmu_va2idx(tbl_info, region->va); 1779 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1780 pa = region->pa; 1781 1782 while (idx < end) { 1783 core_mmu_set_entry(tbl_info, idx, pa, region->attr); 1784 idx++; 1785 pa += BIT64(tbl_info->shift); 1786 } 1787 } 1788 1789 static void set_pg_region(struct core_mmu_table_info *dir_info, 1790 struct vm_region *region, struct pgt **pgt, 1791 struct core_mmu_table_info *pg_info) 1792 { 1793 struct tee_mmap_region r = { 1794 .va = region->va, 1795 .size = region->size, 1796 .attr = region->attr, 1797 }; 1798 vaddr_t end = r.va + r.size; 1799 uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; 1800 1801 while (r.va < end) { 1802 if (!pg_info->table || 1803 r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { 1804 /* 1805 * We're assigning a new translation table. 1806 */ 1807 unsigned int idx; 1808 1809 /* Virtual addresses must grow */ 1810 assert(r.va > pg_info->va_base); 1811 1812 idx = core_mmu_va2idx(dir_info, r.va); 1813 pg_info->va_base = core_mmu_idx2va(dir_info, idx); 1814 1815 /* 1816 * Advance pgt to va_base, note that we may need to 1817 * skip multiple page tables if there are large 1818 * holes in the vm map. 1819 */ 1820 while ((*pgt)->vabase < pg_info->va_base) { 1821 *pgt = SLIST_NEXT(*pgt, link); 1822 /* We should have allocated enough */ 1823 assert(*pgt); 1824 } 1825 assert((*pgt)->vabase == pg_info->va_base); 1826 pg_info->table = (*pgt)->tbl; 1827 1828 core_mmu_set_entry(dir_info, idx, 1829 virt_to_phys(pg_info->table), 1830 pgt_attr); 1831 } 1832 1833 r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), 1834 end - r.va); 1835 1836 if (!(*pgt)->populated && !mobj_is_paged(region->mobj)) { 1837 size_t granule = BIT(pg_info->shift); 1838 size_t offset = r.va - region->va + region->offset; 1839 1840 r.size = MIN(r.size, 1841 mobj_get_phys_granule(region->mobj)); 1842 r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); 1843 1844 if (mobj_get_pa(region->mobj, offset, granule, 1845 &r.pa) != TEE_SUCCESS) 1846 panic("Failed to get PA of unpaged mobj"); 1847 set_region(pg_info, &r); 1848 } 1849 r.va += r.size; 1850 } 1851 } 1852 1853 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, 1854 size_t size_left, paddr_t block_size, 1855 struct tee_mmap_region *mm __maybe_unused) 1856 { 1857 /* VA and PA are aligned to block size at current level */ 1858 if ((vaddr | paddr) & (block_size - 1)) 1859 return false; 1860 1861 /* Remainder fits into block at current level */ 1862 if (size_left < block_size) 1863 return false; 1864 1865 #ifdef CFG_WITH_PAGER 1866 /* 1867 * If pager is enabled, we need to map TEE RAM and the whole pager 1868 * regions with small pages only 1869 */ 1870 if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) && 1871 block_size != SMALL_PAGE_SIZE) 1872 return false; 1873 #endif 1874 1875 return true; 1876 } 1877 1878 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) 1879 { 1880 struct core_mmu_table_info tbl_info; 1881 unsigned int idx; 1882 vaddr_t vaddr = mm->va; 1883 paddr_t paddr = mm->pa; 1884 ssize_t size_left = mm->size; 1885 unsigned int level; 1886 bool table_found; 1887 uint32_t old_attr; 1888 1889 assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); 1890 1891 while (size_left > 0) { 1892 level = CORE_MMU_BASE_TABLE_LEVEL; 1893 1894 while (true) { 1895 paddr_t block_size = 0; 1896 1897 assert(core_mmu_level_in_range(level)); 1898 1899 table_found = core_mmu_find_table(prtn, vaddr, level, 1900 &tbl_info); 1901 if (!table_found) 1902 panic("can't find table for mapping"); 1903 1904 block_size = BIT64(tbl_info.shift); 1905 1906 idx = core_mmu_va2idx(&tbl_info, vaddr); 1907 if (!can_map_at_level(paddr, vaddr, size_left, 1908 block_size, mm)) { 1909 bool secure = mm->attr & TEE_MATTR_SECURE; 1910 1911 /* 1912 * This part of the region can't be mapped at 1913 * this level. Need to go deeper. 1914 */ 1915 if (!core_mmu_entry_to_finer_grained(&tbl_info, 1916 idx, 1917 secure)) 1918 panic("Can't divide MMU entry"); 1919 level = tbl_info.next_level; 1920 continue; 1921 } 1922 1923 /* We can map part of the region at current level */ 1924 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1925 if (old_attr) 1926 panic("Page is already mapped"); 1927 1928 core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr); 1929 paddr += block_size; 1930 vaddr += block_size; 1931 size_left -= block_size; 1932 1933 break; 1934 } 1935 } 1936 } 1937 1938 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 1939 enum teecore_memtypes memtype) 1940 { 1941 TEE_Result ret; 1942 struct core_mmu_table_info tbl_info; 1943 struct tee_mmap_region *mm; 1944 unsigned int idx; 1945 uint32_t old_attr; 1946 uint32_t exceptions; 1947 vaddr_t vaddr = vstart; 1948 size_t i; 1949 bool secure; 1950 1951 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1952 1953 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1954 1955 if (vaddr & SMALL_PAGE_MASK) 1956 return TEE_ERROR_BAD_PARAMETERS; 1957 1958 exceptions = mmu_lock(); 1959 1960 mm = find_map_by_va((void *)vaddr); 1961 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1962 panic("VA does not belong to any known mm region"); 1963 1964 if (!core_mmu_is_dynamic_vaspace(mm)) 1965 panic("Trying to map into static region"); 1966 1967 for (i = 0; i < num_pages; i++) { 1968 if (pages[i] & SMALL_PAGE_MASK) { 1969 ret = TEE_ERROR_BAD_PARAMETERS; 1970 goto err; 1971 } 1972 1973 while (true) { 1974 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1975 &tbl_info)) 1976 panic("Can't find pagetable for vaddr "); 1977 1978 idx = core_mmu_va2idx(&tbl_info, vaddr); 1979 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1980 break; 1981 1982 /* This is supertable. Need to divide it. */ 1983 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1984 secure)) 1985 panic("Failed to spread pgdir on small tables"); 1986 } 1987 1988 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1989 if (old_attr) 1990 panic("Page is already mapped"); 1991 1992 core_mmu_set_entry(&tbl_info, idx, pages[i], 1993 core_mmu_type_to_attr(memtype)); 1994 vaddr += SMALL_PAGE_SIZE; 1995 } 1996 1997 /* 1998 * Make sure all the changes to translation tables are visible 1999 * before returning. TLB doesn't need to be invalidated as we are 2000 * guaranteed that there's no valid mapping in this range. 2001 */ 2002 core_mmu_table_write_barrier(); 2003 mmu_unlock(exceptions); 2004 2005 return TEE_SUCCESS; 2006 err: 2007 mmu_unlock(exceptions); 2008 2009 if (i) 2010 core_mmu_unmap_pages(vstart, i); 2011 2012 return ret; 2013 } 2014 2015 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 2016 size_t num_pages, 2017 enum teecore_memtypes memtype) 2018 { 2019 struct core_mmu_table_info tbl_info = { }; 2020 struct tee_mmap_region *mm = NULL; 2021 unsigned int idx = 0; 2022 uint32_t old_attr = 0; 2023 uint32_t exceptions = 0; 2024 vaddr_t vaddr = vstart; 2025 paddr_t paddr = pstart; 2026 size_t i = 0; 2027 bool secure = false; 2028 2029 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 2030 2031 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 2032 2033 if ((vaddr | paddr) & SMALL_PAGE_MASK) 2034 return TEE_ERROR_BAD_PARAMETERS; 2035 2036 exceptions = mmu_lock(); 2037 2038 mm = find_map_by_va((void *)vaddr); 2039 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 2040 panic("VA does not belong to any known mm region"); 2041 2042 if (!core_mmu_is_dynamic_vaspace(mm)) 2043 panic("Trying to map into static region"); 2044 2045 for (i = 0; i < num_pages; i++) { 2046 while (true) { 2047 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 2048 &tbl_info)) 2049 panic("Can't find pagetable for vaddr "); 2050 2051 idx = core_mmu_va2idx(&tbl_info, vaddr); 2052 if (tbl_info.shift == SMALL_PAGE_SHIFT) 2053 break; 2054 2055 /* This is supertable. Need to divide it. */ 2056 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 2057 secure)) 2058 panic("Failed to spread pgdir on small tables"); 2059 } 2060 2061 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 2062 if (old_attr) 2063 panic("Page is already mapped"); 2064 2065 core_mmu_set_entry(&tbl_info, idx, paddr, 2066 core_mmu_type_to_attr(memtype)); 2067 paddr += SMALL_PAGE_SIZE; 2068 vaddr += SMALL_PAGE_SIZE; 2069 } 2070 2071 /* 2072 * Make sure all the changes to translation tables are visible 2073 * before returning. TLB doesn't need to be invalidated as we are 2074 * guaranteed that there's no valid mapping in this range. 2075 */ 2076 core_mmu_table_write_barrier(); 2077 mmu_unlock(exceptions); 2078 2079 return TEE_SUCCESS; 2080 } 2081 2082 static bool mem_range_is_in_vcore_free(vaddr_t vstart, size_t num_pages) 2083 { 2084 return core_is_buffer_inside(vstart, num_pages * SMALL_PAGE_SIZE, 2085 VCORE_FREE_PA, VCORE_FREE_SZ); 2086 } 2087 2088 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) 2089 { 2090 struct core_mmu_table_info tbl_info; 2091 struct tee_mmap_region *mm; 2092 size_t i; 2093 unsigned int idx; 2094 uint32_t exceptions; 2095 2096 exceptions = mmu_lock(); 2097 2098 mm = find_map_by_va((void *)vstart); 2099 if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) 2100 panic("VA does not belong to any known mm region"); 2101 2102 if (!core_mmu_is_dynamic_vaspace(mm) && 2103 !mem_range_is_in_vcore_free(vstart, num_pages)) 2104 panic("Trying to unmap static region"); 2105 2106 for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { 2107 if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) 2108 panic("Can't find pagetable"); 2109 2110 if (tbl_info.shift != SMALL_PAGE_SHIFT) 2111 panic("Invalid pagetable level"); 2112 2113 idx = core_mmu_va2idx(&tbl_info, vstart); 2114 core_mmu_set_entry(&tbl_info, idx, 0, 0); 2115 } 2116 tlbi_all(); 2117 2118 mmu_unlock(exceptions); 2119 } 2120 2121 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 2122 struct user_mode_ctx *uctx) 2123 { 2124 struct core_mmu_table_info pg_info = { }; 2125 struct pgt_cache *pgt_cache = &uctx->pgt_cache; 2126 struct pgt *pgt = NULL; 2127 struct pgt *p = NULL; 2128 struct vm_region *r = NULL; 2129 2130 if (TAILQ_EMPTY(&uctx->vm_info.regions)) 2131 return; /* Nothing to map */ 2132 2133 /* 2134 * Allocate all page tables in advance. 2135 */ 2136 pgt_get_all(uctx); 2137 pgt = SLIST_FIRST(pgt_cache); 2138 2139 core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL); 2140 2141 TAILQ_FOREACH(r, &uctx->vm_info.regions, link) 2142 set_pg_region(dir_info, r, &pgt, &pg_info); 2143 /* Record that the translation tables now are populated. */ 2144 SLIST_FOREACH(p, pgt_cache, link) { 2145 p->populated = true; 2146 if (p == pgt) 2147 break; 2148 } 2149 assert(p == pgt); 2150 } 2151 2152 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 2153 size_t len) 2154 { 2155 struct core_mmu_table_info tbl_info = { }; 2156 struct tee_mmap_region *res_map = NULL; 2157 struct tee_mmap_region *map = NULL; 2158 paddr_t pa = virt_to_phys(addr); 2159 size_t granule = 0; 2160 ptrdiff_t i = 0; 2161 paddr_t p = 0; 2162 size_t l = 0; 2163 2164 map = find_map_by_type_and_pa(type, pa, len); 2165 if (!map) 2166 return TEE_ERROR_GENERIC; 2167 2168 res_map = find_map_by_type(MEM_AREA_RES_VASPACE); 2169 if (!res_map) 2170 return TEE_ERROR_GENERIC; 2171 if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) 2172 return TEE_ERROR_GENERIC; 2173 granule = BIT(tbl_info.shift); 2174 2175 if (map < static_memory_map.map || 2176 map >= static_memory_map.map + static_memory_map.count) 2177 return TEE_ERROR_GENERIC; 2178 i = map - static_memory_map.map; 2179 2180 /* Check that we have a full match */ 2181 p = ROUNDDOWN(pa, granule); 2182 l = ROUNDUP(len + pa - p, granule); 2183 if (map->pa != p || map->size != l) 2184 return TEE_ERROR_GENERIC; 2185 2186 clear_region(&tbl_info, map); 2187 tlbi_all(); 2188 2189 /* If possible remove the va range from res_map */ 2190 if (res_map->va - map->size == map->va) { 2191 res_map->va -= map->size; 2192 res_map->size += map->size; 2193 } 2194 2195 /* Remove the entry. */ 2196 rem_array_elem(static_memory_map.map, static_memory_map.count, 2197 sizeof(*static_memory_map.map), i); 2198 static_memory_map.count--; 2199 2200 return TEE_SUCCESS; 2201 } 2202 2203 struct tee_mmap_region * 2204 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) 2205 { 2206 struct memory_map *mem_map = get_memory_map(); 2207 struct tee_mmap_region *map_found = NULL; 2208 size_t n = 0; 2209 2210 if (!len) 2211 return NULL; 2212 2213 for (n = 0; n < mem_map->count; n++) { 2214 if (mem_map->map[n].type != type) 2215 continue; 2216 2217 if (map_found) 2218 return NULL; 2219 2220 map_found = mem_map->map + n; 2221 } 2222 2223 if (!map_found || map_found->size < len) 2224 return NULL; 2225 2226 return map_found; 2227 } 2228 2229 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) 2230 { 2231 struct memory_map *mem_map = &static_memory_map; 2232 struct core_mmu_table_info tbl_info = { }; 2233 struct tee_mmap_region *map = NULL; 2234 size_t granule = 0; 2235 paddr_t p = 0; 2236 size_t l = 0; 2237 2238 if (!len) 2239 return NULL; 2240 2241 if (!core_mmu_check_end_pa(addr, len)) 2242 return NULL; 2243 2244 /* Check if the memory is already mapped */ 2245 map = find_map_by_type_and_pa(type, addr, len); 2246 if (map && pbuf_inside_map_area(addr, len, map)) 2247 return (void *)(vaddr_t)(map->va + addr - map->pa); 2248 2249 /* Find the reserved va space used for late mappings */ 2250 map = find_map_by_type(MEM_AREA_RES_VASPACE); 2251 if (!map) 2252 return NULL; 2253 2254 if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) 2255 return NULL; 2256 2257 granule = BIT64(tbl_info.shift); 2258 p = ROUNDDOWN(addr, granule); 2259 l = ROUNDUP(len + addr - p, granule); 2260 2261 /* Ban overflowing virtual addresses */ 2262 if (map->size < l) 2263 return NULL; 2264 2265 /* 2266 * Something is wrong, we can't fit the va range into the selected 2267 * table. The reserved va range is possibly missaligned with 2268 * granule. 2269 */ 2270 if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) 2271 return NULL; 2272 2273 if (static_memory_map.count >= static_memory_map.alloc_count) 2274 return NULL; 2275 2276 mem_map->map[mem_map->count] = (struct tee_mmap_region){ 2277 .va = map->va, 2278 .size = l, 2279 .type = type, 2280 .region_size = granule, 2281 .attr = core_mmu_type_to_attr(type), 2282 .pa = p, 2283 }; 2284 map->va += l; 2285 map->size -= l; 2286 map = mem_map->map + mem_map->count; 2287 mem_map->count++; 2288 2289 set_region(&tbl_info, map); 2290 2291 /* Make sure the new entry is visible before continuing. */ 2292 core_mmu_table_write_barrier(); 2293 2294 return (void *)(vaddr_t)(map->va + addr - map->pa); 2295 } 2296 2297 #ifdef CFG_WITH_PAGER 2298 static vaddr_t get_linear_map_end_va(void) 2299 { 2300 /* this is synced with the generic linker file kern.ld.S */ 2301 return (vaddr_t)__heap2_end; 2302 } 2303 2304 static paddr_t get_linear_map_end_pa(void) 2305 { 2306 return get_linear_map_end_va() - boot_mmu_config.map_offset; 2307 } 2308 #endif 2309 2310 #if defined(CFG_TEE_CORE_DEBUG) 2311 static void check_pa_matches_va(void *va, paddr_t pa) 2312 { 2313 TEE_Result res = TEE_ERROR_GENERIC; 2314 vaddr_t v = (vaddr_t)va; 2315 paddr_t p = 0; 2316 struct core_mmu_table_info ti __maybe_unused = { }; 2317 2318 if (core_mmu_user_va_range_is_defined()) { 2319 vaddr_t user_va_base = 0; 2320 size_t user_va_size = 0; 2321 2322 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 2323 if (v >= user_va_base && 2324 v <= (user_va_base - 1 + user_va_size)) { 2325 if (!core_mmu_user_mapping_is_active()) { 2326 if (pa) 2327 panic("issue in linear address space"); 2328 return; 2329 } 2330 2331 res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), 2332 va, &p); 2333 if (res == TEE_ERROR_NOT_SUPPORTED) 2334 return; 2335 if (res == TEE_SUCCESS && pa != p) 2336 panic("bad pa"); 2337 if (res != TEE_SUCCESS && pa) 2338 panic("false pa"); 2339 return; 2340 } 2341 } 2342 #ifdef CFG_WITH_PAGER 2343 if (is_unpaged(va)) { 2344 if (v - boot_mmu_config.map_offset != pa) 2345 panic("issue in linear address space"); 2346 return; 2347 } 2348 2349 if (tee_pager_get_table_info(v, &ti)) { 2350 uint32_t a; 2351 2352 /* 2353 * Lookups in the page table managed by the pager is 2354 * dangerous for addresses in the paged area as those pages 2355 * changes all the time. But some ranges are safe, 2356 * rw-locked areas when the page is populated for instance. 2357 */ 2358 core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); 2359 if (a & TEE_MATTR_VALID_BLOCK) { 2360 paddr_t mask = BIT64(ti.shift) - 1; 2361 2362 p |= v & mask; 2363 if (pa != p) 2364 panic(); 2365 } else { 2366 if (pa) 2367 panic(); 2368 } 2369 return; 2370 } 2371 #endif 2372 2373 if (!core_va2pa_helper(va, &p)) { 2374 /* Verfiy only the static mapping (case non null phys addr) */ 2375 if (p && pa != p) { 2376 DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, 2377 va, p, pa); 2378 panic(); 2379 } 2380 } else { 2381 if (pa) { 2382 DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); 2383 panic(); 2384 } 2385 } 2386 } 2387 #else 2388 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) 2389 { 2390 } 2391 #endif 2392 2393 paddr_t virt_to_phys(void *va) 2394 { 2395 paddr_t pa = 0; 2396 2397 if (!arch_va2pa_helper(va, &pa)) 2398 pa = 0; 2399 check_pa_matches_va(memtag_strip_tag(va), pa); 2400 return pa; 2401 } 2402 2403 /* 2404 * Don't use check_va_matches_pa() for RISC-V, as its callee 2405 * arch_va2pa_helper() will call it eventually, this creates 2406 * indirect recursion and can lead to a stack overflow. 2407 * Moreover, if arch_va2pa_helper() returns true, it implies 2408 * the va2pa mapping is matched, no need to check it again. 2409 */ 2410 #if defined(CFG_TEE_CORE_DEBUG) && !defined(__riscv) 2411 static void check_va_matches_pa(paddr_t pa, void *va) 2412 { 2413 paddr_t p = 0; 2414 2415 if (!va) 2416 return; 2417 2418 p = virt_to_phys(va); 2419 if (p != pa) { 2420 DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); 2421 panic(); 2422 } 2423 } 2424 #else 2425 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) 2426 { 2427 } 2428 #endif 2429 2430 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) 2431 { 2432 if (!core_mmu_user_mapping_is_active()) 2433 return NULL; 2434 2435 return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); 2436 } 2437 2438 #ifdef CFG_WITH_PAGER 2439 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2440 { 2441 paddr_t end_pa = 0; 2442 2443 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 2444 return NULL; 2445 2446 if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) { 2447 if (end_pa > get_linear_map_end_pa()) 2448 return NULL; 2449 return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset); 2450 } 2451 2452 return tee_pager_phys_to_virt(pa, len); 2453 } 2454 #else 2455 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2456 { 2457 struct tee_mmap_region *mmap = NULL; 2458 2459 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); 2460 if (!mmap) 2461 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); 2462 if (!mmap) 2463 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); 2464 if (!mmap) 2465 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); 2466 if (!mmap) 2467 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); 2468 if (!mmap) 2469 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); 2470 /* 2471 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only 2472 * used with pager and not needed here. 2473 */ 2474 return map_pa2va(mmap, pa, len); 2475 } 2476 #endif 2477 2478 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) 2479 { 2480 void *va = NULL; 2481 2482 switch (m) { 2483 case MEM_AREA_TS_VASPACE: 2484 va = phys_to_virt_ts_vaspace(pa, len); 2485 break; 2486 case MEM_AREA_TEE_RAM: 2487 case MEM_AREA_TEE_RAM_RX: 2488 case MEM_AREA_TEE_RAM_RO: 2489 case MEM_AREA_TEE_RAM_RW: 2490 case MEM_AREA_NEX_RAM_RO: 2491 case MEM_AREA_NEX_RAM_RW: 2492 va = phys_to_virt_tee_ram(pa, len); 2493 break; 2494 case MEM_AREA_SHM_VASPACE: 2495 /* Find VA from PA in dynamic SHM is not yet supported */ 2496 va = NULL; 2497 break; 2498 default: 2499 va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); 2500 } 2501 if (m != MEM_AREA_SEC_RAM_OVERALL) 2502 check_va_matches_pa(pa, va); 2503 return va; 2504 } 2505 2506 void *phys_to_virt_io(paddr_t pa, size_t len) 2507 { 2508 struct tee_mmap_region *map = NULL; 2509 void *va = NULL; 2510 2511 map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); 2512 if (!map) 2513 map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); 2514 if (!map) 2515 return NULL; 2516 va = map_pa2va(map, pa, len); 2517 check_va_matches_pa(pa, va); 2518 return va; 2519 } 2520 2521 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) 2522 { 2523 if (cpu_mmu_enabled()) 2524 return (vaddr_t)phys_to_virt(pa, type, len); 2525 2526 return (vaddr_t)pa; 2527 } 2528 2529 #ifdef CFG_WITH_PAGER 2530 bool is_unpaged(const void *va) 2531 { 2532 vaddr_t v = (vaddr_t)va; 2533 2534 return v >= VCORE_START_VA && v < get_linear_map_end_va(); 2535 } 2536 #endif 2537 2538 #ifdef CFG_NS_VIRTUALIZATION 2539 bool is_nexus(const void *va) 2540 { 2541 vaddr_t v = (vaddr_t)va; 2542 2543 return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ; 2544 } 2545 #endif 2546 2547 void core_mmu_init_virtualization(void) 2548 { 2549 paddr_t b1 = 0; 2550 paddr_size_t s1 = 0; 2551 2552 static_assert(ARRAY_SIZE(secure_only) <= 2); 2553 if (ARRAY_SIZE(secure_only) == 2) { 2554 b1 = secure_only[1].paddr; 2555 s1 = secure_only[1].size; 2556 } 2557 virt_init_memory(&static_memory_map, secure_only[0].paddr, 2558 secure_only[0].size, b1, s1); 2559 } 2560 2561 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) 2562 { 2563 assert(p->pa); 2564 if (cpu_mmu_enabled()) { 2565 if (!p->va) 2566 p->va = (vaddr_t)phys_to_virt_io(p->pa, len); 2567 assert(p->va); 2568 return p->va; 2569 } 2570 return p->pa; 2571 } 2572 2573 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) 2574 { 2575 assert(p->pa); 2576 if (cpu_mmu_enabled()) { 2577 if (!p->va) 2578 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, 2579 len); 2580 assert(p->va); 2581 return p->va; 2582 } 2583 return p->pa; 2584 } 2585 2586 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) 2587 { 2588 assert(p->pa); 2589 if (cpu_mmu_enabled()) { 2590 if (!p->va) 2591 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, 2592 len); 2593 assert(p->va); 2594 return p->va; 2595 } 2596 return p->pa; 2597 } 2598 2599 #ifdef CFG_CORE_RESERVED_SHM 2600 static TEE_Result teecore_init_pub_ram(void) 2601 { 2602 vaddr_t s = 0; 2603 vaddr_t e = 0; 2604 2605 /* get virtual addr/size of NSec shared mem allocated from teecore */ 2606 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); 2607 2608 if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) 2609 panic("invalid PUB RAM"); 2610 2611 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2612 if (!tee_vbuf_is_non_sec(s, e - s)) 2613 panic("PUB RAM is not non-secure"); 2614 2615 #ifdef CFG_PL310 2616 /* Allocate statically the l2cc mutex */ 2617 tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); 2618 s += sizeof(uint32_t); /* size of a pl310 mutex */ 2619 s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ 2620 #endif 2621 2622 default_nsec_shm_paddr = virt_to_phys((void *)s); 2623 default_nsec_shm_size = e - s; 2624 2625 return TEE_SUCCESS; 2626 } 2627 early_init(teecore_init_pub_ram); 2628 #endif /*CFG_CORE_RESERVED_SHM*/ 2629 2630 static void __maybe_unused carve_out_core_mem(paddr_t pa, paddr_t end_pa) 2631 { 2632 tee_mm_entry_t *mm __maybe_unused = NULL; 2633 2634 DMSG("%#"PRIxPA" .. %#"PRIxPA, pa, end_pa); 2635 mm = phys_mem_alloc2(pa, end_pa - pa); 2636 assert(mm); 2637 } 2638 2639 void core_mmu_init_phys_mem(void) 2640 { 2641 paddr_t ps = 0; 2642 size_t size = 0; 2643 2644 /* 2645 * Get virtual addr/size of RAM where TA are loaded/executedNSec 2646 * shared mem allocated from teecore. 2647 */ 2648 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 2649 vaddr_t s = 0; 2650 vaddr_t e = 0; 2651 2652 virt_get_ta_ram(&s, &e); 2653 ps = virt_to_phys((void *)s); 2654 size = e - s; 2655 phys_mem_init(0, 0, ps, size); 2656 } else { 2657 #ifdef CFG_WITH_PAGER 2658 /* 2659 * The pager uses all core memory so there's no need to add 2660 * it to the pool. 2661 */ 2662 static_assert(ARRAY_SIZE(secure_only) == 2); 2663 phys_mem_init(0, 0, secure_only[1].paddr, secure_only[1].size); 2664 #else /*!CFG_WITH_PAGER*/ 2665 size_t align = BIT(CORE_MMU_USER_CODE_SHIFT); 2666 paddr_t end_pa = 0; 2667 paddr_t pa = 0; 2668 2669 static_assert(ARRAY_SIZE(secure_only) <= 2); 2670 if (ARRAY_SIZE(secure_only) == 2) { 2671 ps = secure_only[1].paddr; 2672 size = secure_only[1].size; 2673 } 2674 phys_mem_init(secure_only[0].paddr, secure_only[0].size, 2675 ps, size); 2676 2677 /* 2678 * The VCORE macros are relocatable so we need to translate 2679 * the addresses now that the MMU is enabled. 2680 */ 2681 end_pa = vaddr_to_phys(ROUNDUP(VCORE_FREE_END_PA, 2682 align) - 1) + 1; 2683 /* Carve out the part used by OP-TEE core */ 2684 carve_out_core_mem(vaddr_to_phys(VCORE_UNPG_RX_PA), end_pa); 2685 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) { 2686 pa = vaddr_to_phys(ROUNDUP(ASAN_MAP_PA, align)); 2687 carve_out_core_mem(pa, pa + ASAN_MAP_SZ); 2688 } 2689 2690 /* Carve out test SDP memory */ 2691 #ifdef TEE_SDP_TEST_MEM_BASE 2692 if (TEE_SDP_TEST_MEM_SIZE) { 2693 pa = vaddr_to_phys(TEE_SDP_TEST_MEM_BASE); 2694 carve_out_core_mem(pa, pa + TEE_SDP_TEST_MEM_SIZE); 2695 } 2696 #endif 2697 #endif /*!CFG_WITH_PAGER*/ 2698 } 2699 } 2700