1 // SPDX-License-Identifier: BSD-2-Clause 2 /* 3 * Copyright (c) 2016, 2022 Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved. 6 */ 7 8 #include <assert.h> 9 #include <config.h> 10 #include <kernel/boot.h> 11 #include <kernel/dt.h> 12 #include <kernel/linker.h> 13 #include <kernel/panic.h> 14 #include <kernel/spinlock.h> 15 #include <kernel/tee_l2cc_mutex.h> 16 #include <kernel/tee_misc.h> 17 #include <kernel/tlb_helpers.h> 18 #include <kernel/user_mode_ctx.h> 19 #include <kernel/virtualization.h> 20 #include <libfdt.h> 21 #include <mm/core_memprot.h> 22 #include <mm/core_mmu.h> 23 #include <mm/mobj.h> 24 #include <mm/pgt_cache.h> 25 #include <mm/tee_pager.h> 26 #include <mm/vm.h> 27 #include <platform_config.h> 28 #include <string.h> 29 #include <trace.h> 30 #include <util.h> 31 32 #ifndef DEBUG_XLAT_TABLE 33 #define DEBUG_XLAT_TABLE 0 34 #endif 35 36 #define SHM_VASPACE_SIZE (1024 * 1024 * 32) 37 38 #ifdef CFG_CORE_PHYS_RELOCATABLE 39 unsigned long core_mmu_tee_load_pa __nex_bss; 40 #else 41 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR; 42 #endif 43 44 /* 45 * These variables are initialized before .bss is cleared. To avoid 46 * resetting them when .bss is cleared we're storing them in .data instead, 47 * even if they initially are zero. 48 */ 49 50 #ifdef CFG_CORE_RESERVED_SHM 51 /* Default NSec shared memory allocated from NSec world */ 52 unsigned long default_nsec_shm_size __nex_bss; 53 unsigned long default_nsec_shm_paddr __nex_bss; 54 #endif 55 56 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS 57 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE) 58 + 1 59 #endif 60 + 1] __nex_bss; 61 62 /* Define the platform's memory layout. */ 63 struct memaccess_area { 64 paddr_t paddr; 65 size_t size; 66 }; 67 68 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } 69 70 static struct memaccess_area secure_only[] __nex_data = { 71 #ifdef CFG_CORE_PHYS_RELOCATABLE 72 MEMACCESS_AREA(0, 0), 73 #else 74 #ifdef TRUSTED_SRAM_BASE 75 MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), 76 #endif 77 MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), 78 #endif 79 }; 80 81 static struct memaccess_area nsec_shared[] __nex_data = { 82 #ifdef CFG_CORE_RESERVED_SHM 83 MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), 84 #endif 85 }; 86 87 #if defined(CFG_SECURE_DATA_PATH) 88 static const char *tz_sdp_match = "linaro,secure-heap"; 89 static struct memaccess_area sec_sdp; 90 #ifdef CFG_TEE_SDP_MEM_BASE 91 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); 92 #endif 93 #ifdef TEE_SDP_TEST_MEM_BASE 94 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); 95 #endif 96 #endif 97 98 #ifdef CFG_CORE_RESERVED_SHM 99 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); 100 #endif 101 static unsigned int mmu_spinlock; 102 103 static uint32_t mmu_lock(void) 104 { 105 return cpu_spin_lock_xsave(&mmu_spinlock); 106 } 107 108 static void mmu_unlock(uint32_t exceptions) 109 { 110 cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); 111 } 112 113 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size) 114 { 115 /* 116 * The first range is always used to cover OP-TEE core memory, but 117 * depending on configuration it may cover more than that. 118 */ 119 *base = secure_only[0].paddr; 120 *size = secure_only[0].size; 121 } 122 123 void core_mmu_set_secure_memory(paddr_t base, size_t size) 124 { 125 #ifdef CFG_CORE_PHYS_RELOCATABLE 126 static_assert(ARRAY_SIZE(secure_only) == 1); 127 #endif 128 runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)); 129 assert(!secure_only[0].size); 130 assert(base && size); 131 132 DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size); 133 secure_only[0].paddr = base; 134 secure_only[0].size = size; 135 } 136 137 void core_mmu_get_ta_range(paddr_t *base, size_t *size) 138 { 139 paddr_t b = 0; 140 size_t s = 0; 141 142 static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE)); 143 #ifdef TA_RAM_START 144 b = TA_RAM_START; 145 s = TA_RAM_SIZE; 146 #else 147 static_assert(ARRAY_SIZE(secure_only) <= 2); 148 if (ARRAY_SIZE(secure_only) == 1) { 149 vaddr_t load_offs = 0; 150 151 assert(core_mmu_tee_load_pa >= secure_only[0].paddr); 152 load_offs = core_mmu_tee_load_pa - secure_only[0].paddr; 153 154 assert(secure_only[0].size > 155 load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE); 156 b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE; 157 s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE - 158 TEE_SDP_TEST_MEM_SIZE; 159 } else { 160 assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE); 161 b = secure_only[1].paddr; 162 s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE; 163 } 164 #endif 165 if (base) 166 *base = b; 167 if (size) 168 *size = s; 169 } 170 171 static struct tee_mmap_region *get_memory_map(void) 172 { 173 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 174 struct tee_mmap_region *map = virt_get_memory_map(); 175 176 if (map) 177 return map; 178 } 179 180 return static_memory_map; 181 } 182 183 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, 184 paddr_t pa, size_t size) 185 { 186 size_t n; 187 188 for (n = 0; n < alen; n++) 189 if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) 190 return true; 191 return false; 192 } 193 194 #define pbuf_intersects(a, pa, size) \ 195 _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) 196 197 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, 198 paddr_t pa, size_t size) 199 { 200 size_t n; 201 202 for (n = 0; n < alen; n++) 203 if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) 204 return true; 205 return false; 206 } 207 208 #define pbuf_is_inside(a, pa, size) \ 209 _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) 210 211 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) 212 { 213 paddr_t end_pa = 0; 214 215 if (!map) 216 return false; 217 218 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 219 return false; 220 221 return (pa >= map->pa && end_pa <= map->pa + map->size - 1); 222 } 223 224 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) 225 { 226 if (!map) 227 return false; 228 return (va >= map->va && va <= (map->va + map->size - 1)); 229 } 230 231 /* check if target buffer fits in a core default map area */ 232 static bool pbuf_inside_map_area(unsigned long p, size_t l, 233 struct tee_mmap_region *map) 234 { 235 return core_is_buffer_inside(p, l, map->pa, map->size); 236 } 237 238 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) 239 { 240 struct tee_mmap_region *map; 241 242 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) 243 if (map->type == type) 244 return map; 245 return NULL; 246 } 247 248 static struct tee_mmap_region * 249 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) 250 { 251 struct tee_mmap_region *map; 252 253 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 254 if (map->type != type) 255 continue; 256 if (pa_is_in_map(map, pa, len)) 257 return map; 258 } 259 return NULL; 260 } 261 262 static struct tee_mmap_region *find_map_by_va(void *va) 263 { 264 struct tee_mmap_region *map = get_memory_map(); 265 unsigned long a = (unsigned long)va; 266 267 while (!core_mmap_is_end_of_table(map)) { 268 if (a >= map->va && a <= (map->va - 1 + map->size)) 269 return map; 270 map++; 271 } 272 return NULL; 273 } 274 275 static struct tee_mmap_region *find_map_by_pa(unsigned long pa) 276 { 277 struct tee_mmap_region *map = get_memory_map(); 278 279 while (!core_mmap_is_end_of_table(map)) { 280 if (pa >= map->pa && pa <= (map->pa + map->size - 1)) 281 return map; 282 map++; 283 } 284 return NULL; 285 } 286 287 #if defined(CFG_SECURE_DATA_PATH) 288 static bool dtb_get_sdp_region(void) 289 { 290 void *fdt = NULL; 291 int node = 0; 292 int tmp_node = 0; 293 paddr_t tmp_addr = 0; 294 size_t tmp_size = 0; 295 296 if (!IS_ENABLED(CFG_EMBED_DTB)) 297 return false; 298 299 fdt = get_embedded_dt(); 300 if (!fdt) 301 panic("No DTB found"); 302 303 node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match); 304 if (node < 0) { 305 DMSG("No %s compatible node found", tz_sdp_match); 306 return false; 307 } 308 tmp_node = node; 309 while (tmp_node >= 0) { 310 tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node, 311 tz_sdp_match); 312 if (tmp_node >= 0) 313 DMSG("Ignore SDP pool node %s, supports only 1 node", 314 fdt_get_name(fdt, tmp_node, NULL)); 315 } 316 317 tmp_addr = fdt_reg_base_address(fdt, node); 318 if (tmp_addr == DT_INFO_INVALID_REG) { 319 EMSG("%s: Unable to get base addr from DT", tz_sdp_match); 320 return false; 321 } 322 323 tmp_size = fdt_reg_size(fdt, node); 324 if (tmp_size == DT_INFO_INVALID_REG_SIZE) { 325 EMSG("%s: Unable to get size of base addr from DT", 326 tz_sdp_match); 327 return false; 328 } 329 330 sec_sdp.paddr = tmp_addr; 331 sec_sdp.size = tmp_size; 332 333 return true; 334 } 335 #endif 336 337 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) 338 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, 339 const struct core_mmu_phys_mem *start, 340 const struct core_mmu_phys_mem *end) 341 { 342 const struct core_mmu_phys_mem *mem; 343 344 for (mem = start; mem < end; mem++) { 345 if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) 346 return true; 347 } 348 349 return false; 350 } 351 #endif 352 353 #ifdef CFG_CORE_DYN_SHM 354 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, 355 paddr_t pa, size_t size) 356 { 357 struct core_mmu_phys_mem *m = *mem; 358 size_t n = 0; 359 360 while (true) { 361 if (n >= *nelems) { 362 DMSG("No need to carve out %#" PRIxPA " size %#zx", 363 pa, size); 364 return; 365 } 366 if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size)) 367 break; 368 if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size)) 369 panic(); 370 n++; 371 } 372 373 if (pa == m[n].addr && size == m[n].size) { 374 /* Remove this entry */ 375 (*nelems)--; 376 memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n)); 377 m = nex_realloc(m, sizeof(*m) * *nelems); 378 if (!m) 379 panic(); 380 *mem = m; 381 } else if (pa == m[n].addr) { 382 m[n].addr += size; 383 m[n].size -= size; 384 } else if ((pa + size) == (m[n].addr + m[n].size)) { 385 m[n].size -= size; 386 } else { 387 /* Need to split the memory entry */ 388 m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); 389 if (!m) 390 panic(); 391 *mem = m; 392 memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n)); 393 (*nelems)++; 394 m[n].size = pa - m[n].addr; 395 m[n + 1].size -= size + m[n].size; 396 m[n + 1].addr = pa + size; 397 } 398 } 399 400 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, 401 size_t nelems, 402 struct tee_mmap_region *map) 403 { 404 size_t n; 405 406 for (n = 0; n < nelems; n++) { 407 if (!core_is_buffer_outside(start[n].addr, start[n].size, 408 map->pa, map->size)) { 409 EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ 410 ") overlaps map (type %d %#" PRIxPA ":%#zx)", 411 start[n].addr, start[n].size, 412 map->type, map->pa, map->size); 413 panic(); 414 } 415 } 416 } 417 418 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; 419 static size_t discovered_nsec_ddr_nelems __nex_bss; 420 421 static int cmp_pmem_by_addr(const void *a, const void *b) 422 { 423 const struct core_mmu_phys_mem *pmem_a = a; 424 const struct core_mmu_phys_mem *pmem_b = b; 425 426 return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); 427 } 428 429 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 430 size_t nelems) 431 { 432 struct core_mmu_phys_mem *m = start; 433 size_t num_elems = nelems; 434 struct tee_mmap_region *map = static_memory_map; 435 const struct core_mmu_phys_mem __maybe_unused *pmem; 436 size_t n = 0; 437 438 assert(!discovered_nsec_ddr_start); 439 assert(m && num_elems); 440 441 qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); 442 443 /* 444 * Non-secure shared memory and also secure data 445 * path memory are supposed to reside inside 446 * non-secure memory. Since NSEC_SHM and SDP_MEM 447 * are used for a specific purpose make holes for 448 * those memory in the normal non-secure memory. 449 * 450 * This has to be done since for instance QEMU 451 * isn't aware of which memory range in the 452 * non-secure memory is used for NSEC_SHM. 453 */ 454 455 #ifdef CFG_SECURE_DATA_PATH 456 if (dtb_get_sdp_region()) 457 carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size); 458 459 for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) 460 carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); 461 #endif 462 463 for (n = 0; n < ARRAY_SIZE(secure_only); n++) 464 carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr, 465 secure_only[n].size); 466 467 for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) { 468 switch (map->type) { 469 case MEM_AREA_NSEC_SHM: 470 carve_out_phys_mem(&m, &num_elems, map->pa, map->size); 471 break; 472 case MEM_AREA_EXT_DT: 473 case MEM_AREA_MANIFEST_DT: 474 case MEM_AREA_RAM_NSEC: 475 case MEM_AREA_RES_VASPACE: 476 case MEM_AREA_SHM_VASPACE: 477 case MEM_AREA_TS_VASPACE: 478 case MEM_AREA_PAGER_VASPACE: 479 break; 480 default: 481 check_phys_mem_is_outside(m, num_elems, map); 482 } 483 } 484 485 discovered_nsec_ddr_start = m; 486 discovered_nsec_ddr_nelems = num_elems; 487 488 if (!core_mmu_check_end_pa(m[num_elems - 1].addr, 489 m[num_elems - 1].size)) 490 panic(); 491 } 492 493 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, 494 const struct core_mmu_phys_mem **end) 495 { 496 if (!discovered_nsec_ddr_start) 497 return false; 498 499 *start = discovered_nsec_ddr_start; 500 *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; 501 502 return true; 503 } 504 505 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) 506 { 507 const struct core_mmu_phys_mem *start; 508 const struct core_mmu_phys_mem *end; 509 510 if (!get_discovered_nsec_ddr(&start, &end)) 511 return false; 512 513 return pbuf_is_special_mem(pbuf, len, start, end); 514 } 515 516 bool core_mmu_nsec_ddr_is_defined(void) 517 { 518 const struct core_mmu_phys_mem *start; 519 const struct core_mmu_phys_mem *end; 520 521 if (!get_discovered_nsec_ddr(&start, &end)) 522 return false; 523 524 return start != end; 525 } 526 #else 527 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) 528 { 529 return false; 530 } 531 #endif /*CFG_CORE_DYN_SHM*/ 532 533 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ 534 EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ 535 pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) 536 537 #ifdef CFG_SECURE_DATA_PATH 538 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) 539 { 540 bool is_sdp_mem = false; 541 542 if (sec_sdp.size) 543 is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr, 544 sec_sdp.size); 545 546 if (!is_sdp_mem) 547 is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, 548 phys_sdp_mem_end); 549 550 return is_sdp_mem; 551 } 552 553 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size) 554 { 555 struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED, 556 CORE_MEM_SDP_MEM); 557 558 if (!mobj) 559 panic("can't create SDP physical memory object"); 560 561 return mobj; 562 } 563 564 struct mobj **core_sdp_mem_create_mobjs(void) 565 { 566 const struct core_mmu_phys_mem *mem = NULL; 567 struct mobj **mobj_base = NULL; 568 struct mobj **mobj = NULL; 569 int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; 570 571 if (sec_sdp.size) 572 cnt++; 573 574 /* SDP mobjs table must end with a NULL entry */ 575 mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); 576 if (!mobj_base) 577 panic("Out of memory"); 578 579 mobj = mobj_base; 580 581 for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++) 582 *mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size); 583 584 if (sec_sdp.size) 585 *mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size); 586 587 return mobj_base; 588 } 589 590 #else /* CFG_SECURE_DATA_PATH */ 591 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) 592 { 593 return false; 594 } 595 596 #endif /* CFG_SECURE_DATA_PATH */ 597 598 /* Check special memories comply with registered memories */ 599 static void verify_special_mem_areas(struct tee_mmap_region *mem_map, 600 const struct core_mmu_phys_mem *start, 601 const struct core_mmu_phys_mem *end, 602 const char *area_name __maybe_unused) 603 { 604 const struct core_mmu_phys_mem *mem; 605 const struct core_mmu_phys_mem *mem2; 606 struct tee_mmap_region *mmap; 607 608 if (start == end) { 609 DMSG("No %s memory area defined", area_name); 610 return; 611 } 612 613 for (mem = start; mem < end; mem++) 614 DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", 615 area_name, mem->addr, (uint64_t)mem->addr + mem->size); 616 617 /* Check memories do not intersect each other */ 618 for (mem = start; mem + 1 < end; mem++) { 619 for (mem2 = mem + 1; mem2 < end; mem2++) { 620 if (core_is_buffer_intersect(mem2->addr, mem2->size, 621 mem->addr, mem->size)) { 622 MSG_MEM_INSTERSECT(mem2->addr, mem2->size, 623 mem->addr, mem->size); 624 panic("Special memory intersection"); 625 } 626 } 627 } 628 629 /* 630 * Check memories do not intersect any mapped memory. 631 * This is called before reserved VA space is loaded in mem_map. 632 */ 633 for (mem = start; mem < end; mem++) { 634 for (mmap = mem_map; mmap->type != MEM_AREA_END; mmap++) { 635 if (core_is_buffer_intersect(mem->addr, mem->size, 636 mmap->pa, mmap->size)) { 637 MSG_MEM_INSTERSECT(mem->addr, mem->size, 638 mmap->pa, mmap->size); 639 panic("Special memory intersection"); 640 } 641 } 642 } 643 } 644 645 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems, 646 const char *mem_name __maybe_unused, 647 enum teecore_memtypes mem_type, 648 paddr_t mem_addr, paddr_size_t mem_size, size_t *last) 649 { 650 size_t n = 0; 651 paddr_t pa; 652 paddr_size_t size; 653 654 if (!mem_size) /* Discard null size entries */ 655 return; 656 /* 657 * If some ranges of memory of the same type do overlap 658 * each others they are coalesced into one entry. To help this 659 * added entries are sorted by increasing physical. 660 * 661 * Note that it's valid to have the same physical memory as several 662 * different memory types, for instance the same device memory 663 * mapped as both secure and non-secure. This will probably not 664 * happen often in practice. 665 */ 666 DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, 667 mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size); 668 while (true) { 669 if (n >= (num_elems - 1)) { 670 EMSG("Out of entries (%zu) in memory_map", num_elems); 671 panic(); 672 } 673 if (n == *last) 674 break; 675 pa = memory_map[n].pa; 676 size = memory_map[n].size; 677 if (mem_type == memory_map[n].type && 678 ((pa <= (mem_addr + (mem_size - 1))) && 679 (mem_addr <= (pa + (size - 1))))) { 680 DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr); 681 memory_map[n].pa = MIN(pa, mem_addr); 682 memory_map[n].size = MAX(size, mem_size) + 683 (pa - memory_map[n].pa); 684 return; 685 } 686 if (mem_type < memory_map[n].type || 687 (mem_type == memory_map[n].type && mem_addr < pa)) 688 break; /* found the spot where to insert this memory */ 689 n++; 690 } 691 692 memmove(memory_map + n + 1, memory_map + n, 693 sizeof(struct tee_mmap_region) * (*last - n)); 694 (*last)++; 695 memset(memory_map + n, 0, sizeof(memory_map[0])); 696 memory_map[n].type = mem_type; 697 memory_map[n].pa = mem_addr; 698 memory_map[n].size = mem_size; 699 } 700 701 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems, 702 enum teecore_memtypes type, size_t size, size_t *last) 703 { 704 size_t n = 0; 705 706 DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); 707 while (true) { 708 if (n >= (num_elems - 1)) { 709 EMSG("Out of entries (%zu) in memory_map", num_elems); 710 panic(); 711 } 712 if (n == *last) 713 break; 714 if (type < memory_map[n].type) 715 break; 716 n++; 717 } 718 719 memmove(memory_map + n + 1, memory_map + n, 720 sizeof(struct tee_mmap_region) * (*last - n)); 721 (*last)++; 722 memset(memory_map + n, 0, sizeof(memory_map[0])); 723 memory_map[n].type = type; 724 memory_map[n].size = size; 725 } 726 727 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) 728 { 729 const uint32_t attr = TEE_MATTR_VALID_BLOCK; 730 const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED << 731 TEE_MATTR_MEM_TYPE_SHIFT; 732 const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << 733 TEE_MATTR_MEM_TYPE_SHIFT; 734 const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << 735 TEE_MATTR_MEM_TYPE_SHIFT; 736 737 switch (t) { 738 case MEM_AREA_TEE_RAM: 739 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged; 740 case MEM_AREA_TEE_RAM_RX: 741 case MEM_AREA_INIT_RAM_RX: 742 case MEM_AREA_IDENTITY_MAP_RX: 743 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged; 744 case MEM_AREA_TEE_RAM_RO: 745 case MEM_AREA_INIT_RAM_RO: 746 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged; 747 case MEM_AREA_TEE_RAM_RW: 748 case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ 749 case MEM_AREA_NEX_RAM_RW: 750 case MEM_AREA_TEE_ASAN: 751 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 752 case MEM_AREA_TEE_COHERENT: 753 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; 754 case MEM_AREA_TA_RAM: 755 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; 756 case MEM_AREA_NSEC_SHM: 757 case MEM_AREA_NEX_NSEC_SHM: 758 return attr | TEE_MATTR_PRW | cached; 759 case MEM_AREA_MANIFEST_DT: 760 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 761 case MEM_AREA_TRANSFER_LIST: 762 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 763 case MEM_AREA_EXT_DT: 764 /* 765 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device 766 * tree as secure non-cached memory, otherwise, fall back to 767 * non-secure mapping. 768 */ 769 if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE)) 770 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | 771 noncache; 772 fallthrough; 773 case MEM_AREA_IO_NSEC: 774 return attr | TEE_MATTR_PRW | noncache; 775 case MEM_AREA_IO_SEC: 776 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; 777 case MEM_AREA_RAM_NSEC: 778 return attr | TEE_MATTR_PRW | cached; 779 case MEM_AREA_RAM_SEC: 780 case MEM_AREA_SEC_RAM_OVERALL: 781 return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; 782 case MEM_AREA_ROM_SEC: 783 return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; 784 case MEM_AREA_RES_VASPACE: 785 case MEM_AREA_SHM_VASPACE: 786 return 0; 787 case MEM_AREA_PAGER_VASPACE: 788 return TEE_MATTR_SECURE; 789 default: 790 panic("invalid type"); 791 } 792 } 793 794 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) 795 { 796 switch (mm->type) { 797 case MEM_AREA_TEE_RAM: 798 case MEM_AREA_TEE_RAM_RX: 799 case MEM_AREA_TEE_RAM_RO: 800 case MEM_AREA_TEE_RAM_RW: 801 case MEM_AREA_INIT_RAM_RX: 802 case MEM_AREA_INIT_RAM_RO: 803 case MEM_AREA_NEX_RAM_RW: 804 case MEM_AREA_NEX_RAM_RO: 805 case MEM_AREA_TEE_ASAN: 806 return true; 807 default: 808 return false; 809 } 810 } 811 812 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) 813 { 814 return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); 815 } 816 817 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) 818 { 819 return mm->region_size == CORE_MMU_PGDIR_SIZE; 820 } 821 822 static int cmp_mmap_by_lower_va(const void *a, const void *b) 823 { 824 const struct tee_mmap_region *mm_a = a; 825 const struct tee_mmap_region *mm_b = b; 826 827 return CMP_TRILEAN(mm_a->va, mm_b->va); 828 } 829 830 static void dump_mmap_table(struct tee_mmap_region *memory_map) 831 { 832 struct tee_mmap_region *map; 833 834 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 835 vaddr_t __maybe_unused vstart; 836 837 vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1)); 838 DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA 839 " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", 840 teecore_memtype_name(map->type), vstart, 841 vstart + map->size - 1, map->pa, 842 (paddr_t)(map->pa + map->size - 1), map->size, 843 map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); 844 } 845 } 846 847 #if DEBUG_XLAT_TABLE 848 849 static void dump_xlat_table(vaddr_t va, unsigned int level) 850 { 851 struct core_mmu_table_info tbl_info; 852 unsigned int idx = 0; 853 paddr_t pa; 854 uint32_t attr; 855 856 core_mmu_find_table(NULL, va, level, &tbl_info); 857 va = tbl_info.va_base; 858 for (idx = 0; idx < tbl_info.num_entries; idx++) { 859 core_mmu_get_entry(&tbl_info, idx, &pa, &attr); 860 if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { 861 const char *security_bit = ""; 862 863 if (core_mmu_entry_have_security_bit(attr)) { 864 if (attr & TEE_MATTR_SECURE) 865 security_bit = "S"; 866 else 867 security_bit = "NS"; 868 } 869 870 if (attr & TEE_MATTR_TABLE) { 871 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 872 " TBL:0x%010" PRIxPA " %s", 873 level * 2, "", level, va, pa, 874 security_bit); 875 dump_xlat_table(va, level + 1); 876 } else if (attr) { 877 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 878 " PA:0x%010" PRIxPA " %s-%s-%s-%s", 879 level * 2, "", level, va, pa, 880 mattr_is_cached(attr) ? "MEM" : 881 "DEV", 882 attr & TEE_MATTR_PW ? "RW" : "RO", 883 attr & TEE_MATTR_PX ? "X " : "XN", 884 security_bit); 885 } else { 886 DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA 887 " INVALID\n", 888 level * 2, "", level, va); 889 } 890 } 891 va += BIT64(tbl_info.shift); 892 } 893 } 894 895 #else 896 897 static void dump_xlat_table(vaddr_t va __unused, int level __unused) 898 { 899 } 900 901 #endif 902 903 /* 904 * Reserves virtual memory space for pager usage. 905 * 906 * From the start of the first memory used by the link script + 907 * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty 908 * mapping for pager usage. This adds translation tables as needed for the 909 * pager to operate. 910 */ 911 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems, 912 size_t *last) 913 { 914 paddr_t begin = 0; 915 paddr_t end = 0; 916 size_t size = 0; 917 size_t pos = 0; 918 size_t n = 0; 919 920 if (*last >= (num_elems - 1)) { 921 EMSG("Out of entries (%zu) in memory map", num_elems); 922 panic(); 923 } 924 925 for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) { 926 if (map_is_tee_ram(mmap + n)) { 927 if (!begin) 928 begin = mmap[n].pa; 929 pos = n + 1; 930 } 931 } 932 933 end = mmap[pos - 1].pa + mmap[pos - 1].size; 934 assert(end - begin < TEE_RAM_VA_SIZE); 935 size = TEE_RAM_VA_SIZE - (end - begin); 936 937 assert(pos <= *last); 938 memmove(mmap + pos + 1, mmap + pos, 939 sizeof(struct tee_mmap_region) * (*last - pos)); 940 (*last)++; 941 memset(mmap + pos, 0, sizeof(mmap[0])); 942 mmap[pos].type = MEM_AREA_PAGER_VASPACE; 943 mmap[pos].va = 0; 944 mmap[pos].size = size; 945 mmap[pos].region_size = SMALL_PAGE_SIZE; 946 mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE); 947 } 948 949 static void check_sec_nsec_mem_config(void) 950 { 951 size_t n = 0; 952 953 for (n = 0; n < ARRAY_SIZE(secure_only); n++) { 954 if (pbuf_intersects(nsec_shared, secure_only[n].paddr, 955 secure_only[n].size)) 956 panic("Invalid memory access config: sec/nsec"); 957 } 958 } 959 960 static void collect_device_mem_ranges(struct tee_mmap_region *memory_map, 961 size_t num_elems, size_t *last) 962 { 963 const char *compatible = "arm,ffa-manifest-device-regions"; 964 void *fdt = get_manifest_dt(); 965 const char *name = NULL; 966 uint64_t page_count = 0; 967 uint64_t base = 0; 968 int subnode = 0; 969 int node = 0; 970 971 assert(fdt); 972 973 node = fdt_node_offset_by_compatible(fdt, 0, compatible); 974 if (node < 0) 975 return; 976 977 fdt_for_each_subnode(subnode, fdt, node) { 978 name = fdt_get_name(fdt, subnode, NULL); 979 if (!name) 980 continue; 981 982 if (dt_getprop_as_number(fdt, subnode, "base-address", 983 &base)) { 984 EMSG("Mandatory field is missing: base-address"); 985 continue; 986 } 987 988 if (base & SMALL_PAGE_MASK) { 989 EMSG("base-address is not page aligned"); 990 continue; 991 } 992 993 if (dt_getprop_as_number(fdt, subnode, "pages-count", 994 &page_count)) { 995 EMSG("Mandatory field is missing: pages-count"); 996 continue; 997 } 998 999 add_phys_mem(memory_map, num_elems, name, MEM_AREA_IO_SEC, 1000 base, base + page_count * SMALL_PAGE_SIZE, last); 1001 } 1002 } 1003 1004 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map, 1005 size_t num_elems) 1006 { 1007 const struct core_mmu_phys_mem *mem = NULL; 1008 vaddr_t ram_start = secure_only[0].paddr; 1009 size_t last = 0; 1010 1011 1012 #define ADD_PHYS_MEM(_type, _addr, _size) \ 1013 add_phys_mem(memory_map, num_elems, #_addr, (_type), \ 1014 (_addr), (_size), &last) 1015 1016 if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) { 1017 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start, 1018 VCORE_UNPG_RX_PA - ram_start); 1019 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, 1020 VCORE_UNPG_RX_SZ); 1021 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, 1022 VCORE_UNPG_RO_SZ); 1023 1024 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1025 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, 1026 VCORE_UNPG_RW_SZ); 1027 ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, 1028 VCORE_NEX_RW_SZ); 1029 } else { 1030 ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, 1031 VCORE_UNPG_RW_SZ); 1032 } 1033 1034 if (IS_ENABLED(CFG_WITH_PAGER)) { 1035 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, 1036 VCORE_INIT_RX_SZ); 1037 ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, 1038 VCORE_INIT_RO_SZ); 1039 } 1040 } else { 1041 ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); 1042 } 1043 1044 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { 1045 ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE, 1046 TRUSTED_DRAM_SIZE); 1047 } else { 1048 /* 1049 * Every guest will have own TA RAM if virtualization 1050 * support is enabled. 1051 */ 1052 paddr_t ta_base = 0; 1053 size_t ta_size = 0; 1054 1055 core_mmu_get_ta_range(&ta_base, &ta_size); 1056 ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size); 1057 } 1058 1059 if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) && 1060 IS_ENABLED(CFG_WITH_PAGER)) { 1061 /* 1062 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is 1063 * disabled. 1064 */ 1065 ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); 1066 } 1067 1068 #undef ADD_PHYS_MEM 1069 1070 /* Collect device memory info from SP manifest */ 1071 if (IS_ENABLED(CFG_CORE_SEL2_SPMC)) 1072 collect_device_mem_ranges(memory_map, num_elems, &last); 1073 1074 for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { 1075 /* Only unmapped virtual range may have a null phys addr */ 1076 assert(mem->addr || !core_mmu_type_to_attr(mem->type)); 1077 1078 add_phys_mem(memory_map, num_elems, mem->name, mem->type, 1079 mem->addr, mem->size, &last); 1080 } 1081 1082 if (IS_ENABLED(CFG_SECURE_DATA_PATH)) 1083 verify_special_mem_areas(memory_map, phys_sdp_mem_begin, 1084 phys_sdp_mem_end, "SDP"); 1085 1086 add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE, 1087 CFG_RESERVED_VASPACE_SIZE, &last); 1088 1089 add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE, 1090 SHM_VASPACE_SIZE, &last); 1091 1092 memory_map[last].type = MEM_AREA_END; 1093 1094 return last; 1095 } 1096 1097 static void assign_mem_granularity(struct tee_mmap_region *memory_map) 1098 { 1099 struct tee_mmap_region *map = NULL; 1100 1101 /* 1102 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses 1103 * SMALL_PAGE_SIZE. 1104 */ 1105 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1106 paddr_t mask = map->pa | map->size; 1107 1108 if (!(mask & CORE_MMU_PGDIR_MASK)) 1109 map->region_size = CORE_MMU_PGDIR_SIZE; 1110 else if (!(mask & SMALL_PAGE_MASK)) 1111 map->region_size = SMALL_PAGE_SIZE; 1112 else 1113 panic("Impossible memory alignment"); 1114 1115 if (map_is_tee_ram(map)) 1116 map->region_size = SMALL_PAGE_SIZE; 1117 } 1118 } 1119 1120 static bool place_tee_ram_at_top(paddr_t paddr) 1121 { 1122 return paddr > BIT64(core_mmu_get_va_width()) / 2; 1123 } 1124 1125 /* 1126 * MMU arch driver shall override this function if it helps 1127 * optimizing the memory footprint of the address translation tables. 1128 */ 1129 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr) 1130 { 1131 return place_tee_ram_at_top(paddr); 1132 } 1133 1134 static bool assign_mem_va_dir(vaddr_t tee_ram_va, 1135 struct tee_mmap_region *memory_map, 1136 bool tee_ram_at_top) 1137 { 1138 struct tee_mmap_region *map = NULL; 1139 vaddr_t va = 0; 1140 bool va_is_secure = true; 1141 1142 /* 1143 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y. 1144 * 0 is by design an invalid va, so return false directly. 1145 */ 1146 if (!tee_ram_va) 1147 return false; 1148 1149 /* Clear eventual previous assignments */ 1150 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 1151 map->va = 0; 1152 1153 /* 1154 * TEE RAM regions are always aligned with region_size. 1155 * 1156 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here 1157 * since it handles virtual memory which covers the part of the ELF 1158 * that cannot fit directly into memory. 1159 */ 1160 va = tee_ram_va; 1161 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1162 if (map_is_tee_ram(map) || 1163 map->type == MEM_AREA_PAGER_VASPACE) { 1164 assert(!(va & (map->region_size - 1))); 1165 assert(!(map->size & (map->region_size - 1))); 1166 map->va = va; 1167 if (ADD_OVERFLOW(va, map->size, &va)) 1168 return false; 1169 if (va >= BIT64(core_mmu_get_va_width())) 1170 return false; 1171 } 1172 } 1173 1174 if (tee_ram_at_top) { 1175 /* 1176 * Map non-tee ram regions at addresses lower than the tee 1177 * ram region. 1178 */ 1179 va = tee_ram_va; 1180 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1181 map->attr = core_mmu_type_to_attr(map->type); 1182 if (map->va) 1183 continue; 1184 1185 if (!IS_ENABLED(CFG_WITH_LPAE) && 1186 va_is_secure != map_is_secure(map)) { 1187 va_is_secure = !va_is_secure; 1188 va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); 1189 } 1190 1191 if (SUB_OVERFLOW(va, map->size, &va)) 1192 return false; 1193 va = ROUNDDOWN(va, map->region_size); 1194 /* 1195 * Make sure that va is aligned with pa for 1196 * efficient pgdir mapping. Basically pa & 1197 * pgdir_mask should be == va & pgdir_mask 1198 */ 1199 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1200 if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) 1201 return false; 1202 va += (map->pa - va) & CORE_MMU_PGDIR_MASK; 1203 } 1204 map->va = va; 1205 } 1206 } else { 1207 /* 1208 * Map non-tee ram regions at addresses higher than the tee 1209 * ram region. 1210 */ 1211 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) { 1212 map->attr = core_mmu_type_to_attr(map->type); 1213 if (map->va) 1214 continue; 1215 1216 if (!IS_ENABLED(CFG_WITH_LPAE) && 1217 va_is_secure != map_is_secure(map)) { 1218 va_is_secure = !va_is_secure; 1219 if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, 1220 &va)) 1221 return false; 1222 } 1223 1224 if (ROUNDUP_OVERFLOW(va, map->region_size, &va)) 1225 return false; 1226 /* 1227 * Make sure that va is aligned with pa for 1228 * efficient pgdir mapping. Basically pa & 1229 * pgdir_mask should be == va & pgdir_mask 1230 */ 1231 if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { 1232 vaddr_t offs = (map->pa - va) & 1233 CORE_MMU_PGDIR_MASK; 1234 1235 if (ADD_OVERFLOW(va, offs, &va)) 1236 return false; 1237 } 1238 1239 map->va = va; 1240 if (ADD_OVERFLOW(va, map->size, &va)) 1241 return false; 1242 if (va >= BIT64(core_mmu_get_va_width())) 1243 return false; 1244 } 1245 } 1246 1247 return true; 1248 } 1249 1250 static bool assign_mem_va(vaddr_t tee_ram_va, 1251 struct tee_mmap_region *memory_map) 1252 { 1253 bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va); 1254 1255 /* 1256 * Check that we're not overlapping with the user VA range. 1257 */ 1258 if (IS_ENABLED(CFG_WITH_LPAE)) { 1259 /* 1260 * User VA range is supposed to be defined after these 1261 * mappings have been established. 1262 */ 1263 assert(!core_mmu_user_va_range_is_defined()); 1264 } else { 1265 vaddr_t user_va_base = 0; 1266 size_t user_va_size = 0; 1267 1268 assert(core_mmu_user_va_range_is_defined()); 1269 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 1270 if (tee_ram_va < (user_va_base + user_va_size)) 1271 return false; 1272 } 1273 1274 if (IS_ENABLED(CFG_WITH_PAGER)) { 1275 bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va); 1276 1277 /* Try whole mapping covered by a single base xlat entry */ 1278 if (prefered_dir != tee_ram_at_top && 1279 assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir)) 1280 return true; 1281 } 1282 1283 return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top); 1284 } 1285 1286 static int cmp_init_mem_map(const void *a, const void *b) 1287 { 1288 const struct tee_mmap_region *mm_a = a; 1289 const struct tee_mmap_region *mm_b = b; 1290 int rc = 0; 1291 1292 rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); 1293 if (!rc) 1294 rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); 1295 /* 1296 * 32bit MMU descriptors cannot mix secure and non-secure mapping in 1297 * the same level2 table. Hence sort secure mapping from non-secure 1298 * mapping. 1299 */ 1300 if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) 1301 rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); 1302 1303 return rc; 1304 } 1305 1306 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map, 1307 size_t num_elems, size_t *last, 1308 vaddr_t id_map_start, vaddr_t id_map_end) 1309 { 1310 struct tee_mmap_region *map = NULL; 1311 vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); 1312 vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); 1313 size_t len = end - start; 1314 1315 if (*last >= num_elems - 1) { 1316 EMSG("Out of entries (%zu) in memory map", num_elems); 1317 panic(); 1318 } 1319 1320 for (map = memory_map; !core_mmap_is_end_of_table(map); map++) 1321 if (core_is_buffer_intersect(map->va, map->size, start, len)) 1322 return false; 1323 1324 *map = (struct tee_mmap_region){ 1325 .type = MEM_AREA_IDENTITY_MAP_RX, 1326 /* 1327 * Could use CORE_MMU_PGDIR_SIZE to potentially save a 1328 * translation table, at the increased risk of clashes with 1329 * the rest of the memory map. 1330 */ 1331 .region_size = SMALL_PAGE_SIZE, 1332 .pa = start, 1333 .va = start, 1334 .size = len, 1335 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1336 }; 1337 1338 (*last)++; 1339 1340 return true; 1341 } 1342 1343 static unsigned long init_mem_map(struct tee_mmap_region *memory_map, 1344 size_t num_elems, unsigned long seed) 1345 { 1346 /* 1347 * @id_map_start and @id_map_end describes a physical memory range 1348 * that must be mapped Read-Only eXecutable at identical virtual 1349 * addresses. 1350 */ 1351 vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; 1352 vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; 1353 vaddr_t start_addr = secure_only[0].paddr; 1354 unsigned long offs = 0; 1355 size_t last = 0; 1356 1357 last = collect_mem_ranges(memory_map, num_elems); 1358 assign_mem_granularity(memory_map); 1359 1360 /* 1361 * To ease mapping and lower use of xlat tables, sort mapping 1362 * description moving small-page regions after the pgdir regions. 1363 */ 1364 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1365 cmp_init_mem_map); 1366 1367 if (IS_ENABLED(CFG_WITH_PAGER)) 1368 add_pager_vaspace(memory_map, num_elems, &last); 1369 1370 if (IS_ENABLED(CFG_CORE_ASLR) && seed) { 1371 vaddr_t base_addr = start_addr + seed; 1372 const unsigned int va_width = core_mmu_get_va_width(); 1373 const vaddr_t va_mask = GENMASK_64(va_width - 1, 1374 SMALL_PAGE_SHIFT); 1375 vaddr_t ba = base_addr; 1376 size_t n = 0; 1377 1378 for (n = 0; n < 3; n++) { 1379 if (n) 1380 ba = base_addr ^ BIT64(va_width - n); 1381 ba &= va_mask; 1382 if (assign_mem_va(ba, memory_map) && 1383 mem_map_add_id_map(memory_map, num_elems, &last, 1384 id_map_start, id_map_end)) { 1385 offs = ba - start_addr; 1386 DMSG("Mapping core at %#"PRIxVA" offs %#lx", 1387 ba, offs); 1388 goto out; 1389 } else { 1390 DMSG("Failed to map core at %#"PRIxVA, ba); 1391 } 1392 } 1393 EMSG("Failed to map core with seed %#lx", seed); 1394 } 1395 1396 if (!assign_mem_va(start_addr, memory_map)) 1397 panic(); 1398 1399 out: 1400 qsort(memory_map, last, sizeof(struct tee_mmap_region), 1401 cmp_mmap_by_lower_va); 1402 1403 dump_mmap_table(memory_map); 1404 1405 return offs; 1406 } 1407 1408 static void check_mem_map(struct tee_mmap_region *map) 1409 { 1410 struct tee_mmap_region *m = NULL; 1411 1412 for (m = map; !core_mmap_is_end_of_table(m); m++) { 1413 switch (m->type) { 1414 case MEM_AREA_TEE_RAM: 1415 case MEM_AREA_TEE_RAM_RX: 1416 case MEM_AREA_TEE_RAM_RO: 1417 case MEM_AREA_TEE_RAM_RW: 1418 case MEM_AREA_INIT_RAM_RX: 1419 case MEM_AREA_INIT_RAM_RO: 1420 case MEM_AREA_NEX_RAM_RW: 1421 case MEM_AREA_NEX_RAM_RO: 1422 case MEM_AREA_IDENTITY_MAP_RX: 1423 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1424 panic("TEE_RAM can't fit in secure_only"); 1425 break; 1426 case MEM_AREA_TA_RAM: 1427 if (!pbuf_is_inside(secure_only, m->pa, m->size)) 1428 panic("TA_RAM can't fit in secure_only"); 1429 break; 1430 case MEM_AREA_NSEC_SHM: 1431 if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) 1432 panic("NS_SHM can't fit in nsec_shared"); 1433 break; 1434 case MEM_AREA_SEC_RAM_OVERALL: 1435 case MEM_AREA_TEE_COHERENT: 1436 case MEM_AREA_TEE_ASAN: 1437 case MEM_AREA_IO_SEC: 1438 case MEM_AREA_IO_NSEC: 1439 case MEM_AREA_EXT_DT: 1440 case MEM_AREA_MANIFEST_DT: 1441 case MEM_AREA_TRANSFER_LIST: 1442 case MEM_AREA_RAM_SEC: 1443 case MEM_AREA_RAM_NSEC: 1444 case MEM_AREA_ROM_SEC: 1445 case MEM_AREA_RES_VASPACE: 1446 case MEM_AREA_SHM_VASPACE: 1447 case MEM_AREA_PAGER_VASPACE: 1448 break; 1449 default: 1450 EMSG("Uhandled memtype %d", m->type); 1451 panic(); 1452 } 1453 } 1454 } 1455 1456 static struct tee_mmap_region *get_tmp_mmap(void) 1457 { 1458 struct tee_mmap_region *tmp_mmap = (void *)__heap1_start; 1459 1460 #ifdef CFG_WITH_PAGER 1461 if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map)) 1462 tmp_mmap = (void *)__heap2_start; 1463 #endif 1464 1465 memset(tmp_mmap, 0, sizeof(static_memory_map)); 1466 1467 return tmp_mmap; 1468 } 1469 1470 /* 1471 * core_init_mmu_map() - init tee core default memory mapping 1472 * 1473 * This routine sets the static default TEE core mapping. If @seed is > 0 1474 * and configured with CFG_CORE_ASLR it will map tee core at a location 1475 * based on the seed and return the offset from the link address. 1476 * 1477 * If an error happened: core_init_mmu_map is expected to panic. 1478 * 1479 * Note: this function is weak just to make it possible to exclude it from 1480 * the unpaged area. 1481 */ 1482 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) 1483 { 1484 #ifndef CFG_NS_VIRTUALIZATION 1485 vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); 1486 #else 1487 vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, 1488 SMALL_PAGE_SIZE); 1489 #endif 1490 vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; 1491 struct tee_mmap_region *tmp_mmap = get_tmp_mmap(); 1492 unsigned long offs = 0; 1493 1494 if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) && 1495 (core_mmu_tee_load_pa & SMALL_PAGE_MASK)) 1496 panic("OP-TEE load address is not page aligned"); 1497 1498 check_sec_nsec_mem_config(); 1499 1500 /* 1501 * Add a entry covering the translation tables which will be 1502 * involved in some virt_to_phys() and phys_to_virt() conversions. 1503 */ 1504 static_memory_map[0] = (struct tee_mmap_region){ 1505 .type = MEM_AREA_TEE_RAM, 1506 .region_size = SMALL_PAGE_SIZE, 1507 .pa = start, 1508 .va = start, 1509 .size = len, 1510 .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), 1511 }; 1512 1513 COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13); 1514 offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed); 1515 1516 check_mem_map(tmp_mmap); 1517 core_init_mmu(tmp_mmap); 1518 dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); 1519 core_init_mmu_regs(cfg); 1520 cfg->map_offset = offs; 1521 memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map)); 1522 } 1523 1524 bool core_mmu_mattr_is_ok(uint32_t mattr) 1525 { 1526 /* 1527 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and 1528 * core_mmu_v7.c:mattr_to_texcb 1529 */ 1530 1531 switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { 1532 case TEE_MATTR_MEM_TYPE_DEV: 1533 case TEE_MATTR_MEM_TYPE_STRONGLY_O: 1534 case TEE_MATTR_MEM_TYPE_CACHED: 1535 case TEE_MATTR_MEM_TYPE_TAGGED: 1536 return true; 1537 default: 1538 return false; 1539 } 1540 } 1541 1542 /* 1543 * test attributes of target physical buffer 1544 * 1545 * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). 1546 * 1547 */ 1548 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) 1549 { 1550 paddr_t ta_base = 0; 1551 size_t ta_size = 0; 1552 struct tee_mmap_region *map; 1553 1554 /* Empty buffers complies with anything */ 1555 if (len == 0) 1556 return true; 1557 1558 switch (attr) { 1559 case CORE_MEM_SEC: 1560 return pbuf_is_inside(secure_only, pbuf, len); 1561 case CORE_MEM_NON_SEC: 1562 return pbuf_is_inside(nsec_shared, pbuf, len) || 1563 pbuf_is_nsec_ddr(pbuf, len); 1564 case CORE_MEM_TEE_RAM: 1565 return core_is_buffer_inside(pbuf, len, TEE_RAM_START, 1566 TEE_RAM_PH_SIZE); 1567 case CORE_MEM_TA_RAM: 1568 core_mmu_get_ta_range(&ta_base, &ta_size); 1569 return core_is_buffer_inside(pbuf, len, ta_base, ta_size); 1570 #ifdef CFG_CORE_RESERVED_SHM 1571 case CORE_MEM_NSEC_SHM: 1572 return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, 1573 TEE_SHMEM_SIZE); 1574 #endif 1575 case CORE_MEM_SDP_MEM: 1576 return pbuf_is_sdp_mem(pbuf, len); 1577 case CORE_MEM_CACHED: 1578 map = find_map_by_pa(pbuf); 1579 if (!map || !pbuf_inside_map_area(pbuf, len, map)) 1580 return false; 1581 return mattr_is_cached(map->attr); 1582 default: 1583 return false; 1584 } 1585 } 1586 1587 /* test attributes of target virtual buffer (in core mapping) */ 1588 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) 1589 { 1590 paddr_t p; 1591 1592 /* Empty buffers complies with anything */ 1593 if (len == 0) 1594 return true; 1595 1596 p = virt_to_phys((void *)vbuf); 1597 if (!p) 1598 return false; 1599 1600 return core_pbuf_is(attr, p, len); 1601 } 1602 1603 /* core_va2pa - teecore exported service */ 1604 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) 1605 { 1606 struct tee_mmap_region *map; 1607 1608 map = find_map_by_va(va); 1609 if (!va_is_in_map(map, (vaddr_t)va)) 1610 return -1; 1611 1612 /* 1613 * We can calculate PA for static map. Virtual address ranges 1614 * reserved to core dynamic mapping return a 'match' (return 0;) 1615 * together with an invalid null physical address. 1616 */ 1617 if (map->pa) 1618 *pa = map->pa + (vaddr_t)va - map->va; 1619 else 1620 *pa = 0; 1621 1622 return 0; 1623 } 1624 1625 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) 1626 { 1627 if (!pa_is_in_map(map, pa, len)) 1628 return NULL; 1629 1630 return (void *)(vaddr_t)(map->va + pa - map->pa); 1631 } 1632 1633 /* 1634 * teecore gets some memory area definitions 1635 */ 1636 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s, 1637 vaddr_t *e) 1638 { 1639 struct tee_mmap_region *map = find_map_by_type(type); 1640 1641 if (map) { 1642 *s = map->va; 1643 *e = map->va + map->size; 1644 } else { 1645 *s = 0; 1646 *e = 0; 1647 } 1648 } 1649 1650 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) 1651 { 1652 struct tee_mmap_region *map = find_map_by_pa(pa); 1653 1654 if (!map) 1655 return MEM_AREA_MAXTYPE; 1656 return map->type; 1657 } 1658 1659 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1660 paddr_t pa, uint32_t attr) 1661 { 1662 assert(idx < tbl_info->num_entries); 1663 core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, 1664 idx, pa, attr); 1665 } 1666 1667 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, 1668 paddr_t *pa, uint32_t *attr) 1669 { 1670 assert(idx < tbl_info->num_entries); 1671 core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, 1672 idx, pa, attr); 1673 } 1674 1675 static void clear_region(struct core_mmu_table_info *tbl_info, 1676 struct tee_mmap_region *region) 1677 { 1678 unsigned int end = 0; 1679 unsigned int idx = 0; 1680 1681 /* va, len and pa should be block aligned */ 1682 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1683 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1684 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1685 1686 idx = core_mmu_va2idx(tbl_info, region->va); 1687 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1688 1689 while (idx < end) { 1690 core_mmu_set_entry(tbl_info, idx, 0, 0); 1691 idx++; 1692 } 1693 } 1694 1695 static void set_region(struct core_mmu_table_info *tbl_info, 1696 struct tee_mmap_region *region) 1697 { 1698 unsigned int end; 1699 unsigned int idx; 1700 paddr_t pa; 1701 1702 /* va, len and pa should be block aligned */ 1703 assert(!core_mmu_get_block_offset(tbl_info, region->va)); 1704 assert(!core_mmu_get_block_offset(tbl_info, region->size)); 1705 assert(!core_mmu_get_block_offset(tbl_info, region->pa)); 1706 1707 idx = core_mmu_va2idx(tbl_info, region->va); 1708 end = core_mmu_va2idx(tbl_info, region->va + region->size); 1709 pa = region->pa; 1710 1711 while (idx < end) { 1712 core_mmu_set_entry(tbl_info, idx, pa, region->attr); 1713 idx++; 1714 pa += BIT64(tbl_info->shift); 1715 } 1716 } 1717 1718 static void set_pg_region(struct core_mmu_table_info *dir_info, 1719 struct vm_region *region, struct pgt **pgt, 1720 struct core_mmu_table_info *pg_info) 1721 { 1722 struct tee_mmap_region r = { 1723 .va = region->va, 1724 .size = region->size, 1725 .attr = region->attr, 1726 }; 1727 vaddr_t end = r.va + r.size; 1728 uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; 1729 1730 while (r.va < end) { 1731 if (!pg_info->table || 1732 r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { 1733 /* 1734 * We're assigning a new translation table. 1735 */ 1736 unsigned int idx; 1737 1738 /* Virtual addresses must grow */ 1739 assert(r.va > pg_info->va_base); 1740 1741 idx = core_mmu_va2idx(dir_info, r.va); 1742 pg_info->va_base = core_mmu_idx2va(dir_info, idx); 1743 1744 /* 1745 * Advance pgt to va_base, note that we may need to 1746 * skip multiple page tables if there are large 1747 * holes in the vm map. 1748 */ 1749 while ((*pgt)->vabase < pg_info->va_base) { 1750 *pgt = SLIST_NEXT(*pgt, link); 1751 /* We should have allocated enough */ 1752 assert(*pgt); 1753 } 1754 assert((*pgt)->vabase == pg_info->va_base); 1755 pg_info->table = (*pgt)->tbl; 1756 1757 core_mmu_set_entry(dir_info, idx, 1758 virt_to_phys(pg_info->table), 1759 pgt_attr); 1760 } 1761 1762 r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), 1763 end - r.va); 1764 1765 if (!(*pgt)->populated && !mobj_is_paged(region->mobj)) { 1766 size_t granule = BIT(pg_info->shift); 1767 size_t offset = r.va - region->va + region->offset; 1768 1769 r.size = MIN(r.size, 1770 mobj_get_phys_granule(region->mobj)); 1771 r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); 1772 1773 if (mobj_get_pa(region->mobj, offset, granule, 1774 &r.pa) != TEE_SUCCESS) 1775 panic("Failed to get PA of unpaged mobj"); 1776 set_region(pg_info, &r); 1777 } 1778 r.va += r.size; 1779 } 1780 } 1781 1782 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, 1783 size_t size_left, paddr_t block_size, 1784 struct tee_mmap_region *mm __maybe_unused) 1785 { 1786 /* VA and PA are aligned to block size at current level */ 1787 if ((vaddr | paddr) & (block_size - 1)) 1788 return false; 1789 1790 /* Remainder fits into block at current level */ 1791 if (size_left < block_size) 1792 return false; 1793 1794 #ifdef CFG_WITH_PAGER 1795 /* 1796 * If pager is enabled, we need to map tee ram 1797 * regions with small pages only 1798 */ 1799 if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE) 1800 return false; 1801 #endif 1802 1803 return true; 1804 } 1805 1806 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) 1807 { 1808 struct core_mmu_table_info tbl_info; 1809 unsigned int idx; 1810 vaddr_t vaddr = mm->va; 1811 paddr_t paddr = mm->pa; 1812 ssize_t size_left = mm->size; 1813 unsigned int level; 1814 bool table_found; 1815 uint32_t old_attr; 1816 1817 assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); 1818 1819 while (size_left > 0) { 1820 level = CORE_MMU_BASE_TABLE_LEVEL; 1821 1822 while (true) { 1823 paddr_t block_size = 0; 1824 1825 assert(core_mmu_level_in_range(level)); 1826 1827 table_found = core_mmu_find_table(prtn, vaddr, level, 1828 &tbl_info); 1829 if (!table_found) 1830 panic("can't find table for mapping"); 1831 1832 block_size = BIT64(tbl_info.shift); 1833 1834 idx = core_mmu_va2idx(&tbl_info, vaddr); 1835 if (!can_map_at_level(paddr, vaddr, size_left, 1836 block_size, mm)) { 1837 bool secure = mm->attr & TEE_MATTR_SECURE; 1838 1839 /* 1840 * This part of the region can't be mapped at 1841 * this level. Need to go deeper. 1842 */ 1843 if (!core_mmu_entry_to_finer_grained(&tbl_info, 1844 idx, 1845 secure)) 1846 panic("Can't divide MMU entry"); 1847 level = tbl_info.next_level; 1848 continue; 1849 } 1850 1851 /* We can map part of the region at current level */ 1852 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1853 if (old_attr) 1854 panic("Page is already mapped"); 1855 1856 core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr); 1857 paddr += block_size; 1858 vaddr += block_size; 1859 size_left -= block_size; 1860 1861 break; 1862 } 1863 } 1864 } 1865 1866 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 1867 enum teecore_memtypes memtype) 1868 { 1869 TEE_Result ret; 1870 struct core_mmu_table_info tbl_info; 1871 struct tee_mmap_region *mm; 1872 unsigned int idx; 1873 uint32_t old_attr; 1874 uint32_t exceptions; 1875 vaddr_t vaddr = vstart; 1876 size_t i; 1877 bool secure; 1878 1879 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1880 1881 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1882 1883 if (vaddr & SMALL_PAGE_MASK) 1884 return TEE_ERROR_BAD_PARAMETERS; 1885 1886 exceptions = mmu_lock(); 1887 1888 mm = find_map_by_va((void *)vaddr); 1889 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1890 panic("VA does not belong to any known mm region"); 1891 1892 if (!core_mmu_is_dynamic_vaspace(mm)) 1893 panic("Trying to map into static region"); 1894 1895 for (i = 0; i < num_pages; i++) { 1896 if (pages[i] & SMALL_PAGE_MASK) { 1897 ret = TEE_ERROR_BAD_PARAMETERS; 1898 goto err; 1899 } 1900 1901 while (true) { 1902 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1903 &tbl_info)) 1904 panic("Can't find pagetable for vaddr "); 1905 1906 idx = core_mmu_va2idx(&tbl_info, vaddr); 1907 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1908 break; 1909 1910 /* This is supertable. Need to divide it. */ 1911 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1912 secure)) 1913 panic("Failed to spread pgdir on small tables"); 1914 } 1915 1916 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1917 if (old_attr) 1918 panic("Page is already mapped"); 1919 1920 core_mmu_set_entry(&tbl_info, idx, pages[i], 1921 core_mmu_type_to_attr(memtype)); 1922 vaddr += SMALL_PAGE_SIZE; 1923 } 1924 1925 /* 1926 * Make sure all the changes to translation tables are visible 1927 * before returning. TLB doesn't need to be invalidated as we are 1928 * guaranteed that there's no valid mapping in this range. 1929 */ 1930 core_mmu_table_write_barrier(); 1931 mmu_unlock(exceptions); 1932 1933 return TEE_SUCCESS; 1934 err: 1935 mmu_unlock(exceptions); 1936 1937 if (i) 1938 core_mmu_unmap_pages(vstart, i); 1939 1940 return ret; 1941 } 1942 1943 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 1944 size_t num_pages, 1945 enum teecore_memtypes memtype) 1946 { 1947 struct core_mmu_table_info tbl_info = { }; 1948 struct tee_mmap_region *mm = NULL; 1949 unsigned int idx = 0; 1950 uint32_t old_attr = 0; 1951 uint32_t exceptions = 0; 1952 vaddr_t vaddr = vstart; 1953 paddr_t paddr = pstart; 1954 size_t i = 0; 1955 bool secure = false; 1956 1957 assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); 1958 1959 secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; 1960 1961 if ((vaddr | paddr) & SMALL_PAGE_MASK) 1962 return TEE_ERROR_BAD_PARAMETERS; 1963 1964 exceptions = mmu_lock(); 1965 1966 mm = find_map_by_va((void *)vaddr); 1967 if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) 1968 panic("VA does not belong to any known mm region"); 1969 1970 if (!core_mmu_is_dynamic_vaspace(mm)) 1971 panic("Trying to map into static region"); 1972 1973 for (i = 0; i < num_pages; i++) { 1974 while (true) { 1975 if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, 1976 &tbl_info)) 1977 panic("Can't find pagetable for vaddr "); 1978 1979 idx = core_mmu_va2idx(&tbl_info, vaddr); 1980 if (tbl_info.shift == SMALL_PAGE_SHIFT) 1981 break; 1982 1983 /* This is supertable. Need to divide it. */ 1984 if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, 1985 secure)) 1986 panic("Failed to spread pgdir on small tables"); 1987 } 1988 1989 core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); 1990 if (old_attr) 1991 panic("Page is already mapped"); 1992 1993 core_mmu_set_entry(&tbl_info, idx, paddr, 1994 core_mmu_type_to_attr(memtype)); 1995 paddr += SMALL_PAGE_SIZE; 1996 vaddr += SMALL_PAGE_SIZE; 1997 } 1998 1999 /* 2000 * Make sure all the changes to translation tables are visible 2001 * before returning. TLB doesn't need to be invalidated as we are 2002 * guaranteed that there's no valid mapping in this range. 2003 */ 2004 core_mmu_table_write_barrier(); 2005 mmu_unlock(exceptions); 2006 2007 return TEE_SUCCESS; 2008 } 2009 2010 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) 2011 { 2012 struct core_mmu_table_info tbl_info; 2013 struct tee_mmap_region *mm; 2014 size_t i; 2015 unsigned int idx; 2016 uint32_t exceptions; 2017 2018 exceptions = mmu_lock(); 2019 2020 mm = find_map_by_va((void *)vstart); 2021 if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) 2022 panic("VA does not belong to any known mm region"); 2023 2024 if (!core_mmu_is_dynamic_vaspace(mm)) 2025 panic("Trying to unmap static region"); 2026 2027 for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { 2028 if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) 2029 panic("Can't find pagetable"); 2030 2031 if (tbl_info.shift != SMALL_PAGE_SHIFT) 2032 panic("Invalid pagetable level"); 2033 2034 idx = core_mmu_va2idx(&tbl_info, vstart); 2035 core_mmu_set_entry(&tbl_info, idx, 0, 0); 2036 } 2037 tlbi_all(); 2038 2039 mmu_unlock(exceptions); 2040 } 2041 2042 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 2043 struct user_mode_ctx *uctx) 2044 { 2045 struct core_mmu_table_info pg_info = { }; 2046 struct pgt_cache *pgt_cache = &uctx->pgt_cache; 2047 struct pgt *pgt = NULL; 2048 struct pgt *p = NULL; 2049 struct vm_region *r = NULL; 2050 2051 if (TAILQ_EMPTY(&uctx->vm_info.regions)) 2052 return; /* Nothing to map */ 2053 2054 /* 2055 * Allocate all page tables in advance. 2056 */ 2057 pgt_get_all(uctx); 2058 pgt = SLIST_FIRST(pgt_cache); 2059 2060 core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL); 2061 2062 TAILQ_FOREACH(r, &uctx->vm_info.regions, link) 2063 set_pg_region(dir_info, r, &pgt, &pg_info); 2064 /* Record that the translation tables now are populated. */ 2065 SLIST_FOREACH(p, pgt_cache, link) { 2066 p->populated = true; 2067 if (p == pgt) 2068 break; 2069 } 2070 assert(p == pgt); 2071 } 2072 2073 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 2074 size_t len) 2075 { 2076 struct core_mmu_table_info tbl_info = { }; 2077 struct tee_mmap_region *res_map = NULL; 2078 struct tee_mmap_region *map = NULL; 2079 paddr_t pa = virt_to_phys(addr); 2080 size_t granule = 0; 2081 ptrdiff_t i = 0; 2082 paddr_t p = 0; 2083 size_t l = 0; 2084 2085 map = find_map_by_type_and_pa(type, pa, len); 2086 if (!map) 2087 return TEE_ERROR_GENERIC; 2088 2089 res_map = find_map_by_type(MEM_AREA_RES_VASPACE); 2090 if (!res_map) 2091 return TEE_ERROR_GENERIC; 2092 if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) 2093 return TEE_ERROR_GENERIC; 2094 granule = BIT(tbl_info.shift); 2095 2096 if (map < static_memory_map || 2097 map >= static_memory_map + ARRAY_SIZE(static_memory_map)) 2098 return TEE_ERROR_GENERIC; 2099 i = map - static_memory_map; 2100 2101 /* Check that we have a full match */ 2102 p = ROUNDDOWN(pa, granule); 2103 l = ROUNDUP(len + pa - p, granule); 2104 if (map->pa != p || map->size != l) 2105 return TEE_ERROR_GENERIC; 2106 2107 clear_region(&tbl_info, map); 2108 tlbi_all(); 2109 2110 /* If possible remove the va range from res_map */ 2111 if (res_map->va - map->size == map->va) { 2112 res_map->va -= map->size; 2113 res_map->size += map->size; 2114 } 2115 2116 /* Remove the entry. */ 2117 memmove(map, map + 1, 2118 (ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map)); 2119 2120 /* Clear the last new entry in case it was used */ 2121 memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1, 2122 0, sizeof(*map)); 2123 2124 return TEE_SUCCESS; 2125 } 2126 2127 struct tee_mmap_region * 2128 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) 2129 { 2130 struct tee_mmap_region *map = NULL; 2131 struct tee_mmap_region *map_found = NULL; 2132 2133 if (!len) 2134 return NULL; 2135 2136 for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) { 2137 if (map->type != type) 2138 continue; 2139 2140 if (map_found) 2141 return NULL; 2142 2143 map_found = map; 2144 } 2145 2146 if (!map_found || map_found->size < len) 2147 return NULL; 2148 2149 return map_found; 2150 } 2151 2152 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) 2153 { 2154 struct core_mmu_table_info tbl_info; 2155 struct tee_mmap_region *map; 2156 size_t n; 2157 size_t granule; 2158 paddr_t p; 2159 size_t l; 2160 2161 if (!len) 2162 return NULL; 2163 2164 if (!core_mmu_check_end_pa(addr, len)) 2165 return NULL; 2166 2167 /* Check if the memory is already mapped */ 2168 map = find_map_by_type_and_pa(type, addr, len); 2169 if (map && pbuf_inside_map_area(addr, len, map)) 2170 return (void *)(vaddr_t)(map->va + addr - map->pa); 2171 2172 /* Find the reserved va space used for late mappings */ 2173 map = find_map_by_type(MEM_AREA_RES_VASPACE); 2174 if (!map) 2175 return NULL; 2176 2177 if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) 2178 return NULL; 2179 2180 granule = BIT64(tbl_info.shift); 2181 p = ROUNDDOWN(addr, granule); 2182 l = ROUNDUP(len + addr - p, granule); 2183 2184 /* Ban overflowing virtual addresses */ 2185 if (map->size < l) 2186 return NULL; 2187 2188 /* 2189 * Something is wrong, we can't fit the va range into the selected 2190 * table. The reserved va range is possibly missaligned with 2191 * granule. 2192 */ 2193 if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) 2194 return NULL; 2195 2196 /* Find end of the memory map */ 2197 n = 0; 2198 while (!core_mmap_is_end_of_table(static_memory_map + n)) 2199 n++; 2200 2201 if (n < (ARRAY_SIZE(static_memory_map) - 1)) { 2202 /* There's room for another entry */ 2203 static_memory_map[n].va = map->va; 2204 static_memory_map[n].size = l; 2205 static_memory_map[n + 1].type = MEM_AREA_END; 2206 map->va += l; 2207 map->size -= l; 2208 map = static_memory_map + n; 2209 } else { 2210 /* 2211 * There isn't room for another entry, steal the reserved 2212 * entry as it's not useful for anything else any longer. 2213 */ 2214 map->size = l; 2215 } 2216 map->type = type; 2217 map->region_size = granule; 2218 map->attr = core_mmu_type_to_attr(type); 2219 map->pa = p; 2220 2221 set_region(&tbl_info, map); 2222 2223 /* Make sure the new entry is visible before continuing. */ 2224 core_mmu_table_write_barrier(); 2225 2226 return (void *)(vaddr_t)(map->va + addr - map->pa); 2227 } 2228 2229 #ifdef CFG_WITH_PAGER 2230 static vaddr_t get_linear_map_end_va(void) 2231 { 2232 /* this is synced with the generic linker file kern.ld.S */ 2233 return (vaddr_t)__heap2_end; 2234 } 2235 2236 static paddr_t get_linear_map_end_pa(void) 2237 { 2238 return get_linear_map_end_va() - boot_mmu_config.map_offset; 2239 } 2240 #endif 2241 2242 #if defined(CFG_TEE_CORE_DEBUG) 2243 static void check_pa_matches_va(void *va, paddr_t pa) 2244 { 2245 TEE_Result res = TEE_ERROR_GENERIC; 2246 vaddr_t v = (vaddr_t)va; 2247 paddr_t p = 0; 2248 struct core_mmu_table_info ti __maybe_unused = { }; 2249 2250 if (core_mmu_user_va_range_is_defined()) { 2251 vaddr_t user_va_base = 0; 2252 size_t user_va_size = 0; 2253 2254 core_mmu_get_user_va_range(&user_va_base, &user_va_size); 2255 if (v >= user_va_base && 2256 v <= (user_va_base - 1 + user_va_size)) { 2257 if (!core_mmu_user_mapping_is_active()) { 2258 if (pa) 2259 panic("issue in linear address space"); 2260 return; 2261 } 2262 2263 res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), 2264 va, &p); 2265 if (res == TEE_ERROR_NOT_SUPPORTED) 2266 return; 2267 if (res == TEE_SUCCESS && pa != p) 2268 panic("bad pa"); 2269 if (res != TEE_SUCCESS && pa) 2270 panic("false pa"); 2271 return; 2272 } 2273 } 2274 #ifdef CFG_WITH_PAGER 2275 if (is_unpaged(va)) { 2276 if (v - boot_mmu_config.map_offset != pa) 2277 panic("issue in linear address space"); 2278 return; 2279 } 2280 2281 if (tee_pager_get_table_info(v, &ti)) { 2282 uint32_t a; 2283 2284 /* 2285 * Lookups in the page table managed by the pager is 2286 * dangerous for addresses in the paged area as those pages 2287 * changes all the time. But some ranges are safe, 2288 * rw-locked areas when the page is populated for instance. 2289 */ 2290 core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); 2291 if (a & TEE_MATTR_VALID_BLOCK) { 2292 paddr_t mask = BIT64(ti.shift) - 1; 2293 2294 p |= v & mask; 2295 if (pa != p) 2296 panic(); 2297 } else { 2298 if (pa) 2299 panic(); 2300 } 2301 return; 2302 } 2303 #endif 2304 2305 if (!core_va2pa_helper(va, &p)) { 2306 /* Verfiy only the static mapping (case non null phys addr) */ 2307 if (p && pa != p) { 2308 DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, 2309 va, p, pa); 2310 panic(); 2311 } 2312 } else { 2313 if (pa) { 2314 DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); 2315 panic(); 2316 } 2317 } 2318 } 2319 #else 2320 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) 2321 { 2322 } 2323 #endif 2324 2325 paddr_t virt_to_phys(void *va) 2326 { 2327 paddr_t pa = 0; 2328 2329 if (!arch_va2pa_helper(va, &pa)) 2330 pa = 0; 2331 check_pa_matches_va(va, pa); 2332 return pa; 2333 } 2334 2335 #if defined(CFG_TEE_CORE_DEBUG) 2336 static void check_va_matches_pa(paddr_t pa, void *va) 2337 { 2338 paddr_t p = 0; 2339 2340 if (!va) 2341 return; 2342 2343 p = virt_to_phys(va); 2344 if (p != pa) { 2345 DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); 2346 panic(); 2347 } 2348 } 2349 #else 2350 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) 2351 { 2352 } 2353 #endif 2354 2355 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) 2356 { 2357 if (!core_mmu_user_mapping_is_active()) 2358 return NULL; 2359 2360 return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); 2361 } 2362 2363 #ifdef CFG_WITH_PAGER 2364 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2365 { 2366 paddr_t end_pa = 0; 2367 2368 if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) 2369 return NULL; 2370 2371 if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) { 2372 if (end_pa > get_linear_map_end_pa()) 2373 return NULL; 2374 return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset); 2375 } 2376 2377 return tee_pager_phys_to_virt(pa, len); 2378 } 2379 #else 2380 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) 2381 { 2382 struct tee_mmap_region *mmap = NULL; 2383 2384 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); 2385 if (!mmap) 2386 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); 2387 if (!mmap) 2388 mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); 2389 if (!mmap) 2390 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); 2391 if (!mmap) 2392 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); 2393 if (!mmap) 2394 mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); 2395 /* 2396 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only 2397 * used with pager and not needed here. 2398 */ 2399 return map_pa2va(mmap, pa, len); 2400 } 2401 #endif 2402 2403 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) 2404 { 2405 void *va = NULL; 2406 2407 switch (m) { 2408 case MEM_AREA_TS_VASPACE: 2409 va = phys_to_virt_ts_vaspace(pa, len); 2410 break; 2411 case MEM_AREA_TEE_RAM: 2412 case MEM_AREA_TEE_RAM_RX: 2413 case MEM_AREA_TEE_RAM_RO: 2414 case MEM_AREA_TEE_RAM_RW: 2415 case MEM_AREA_NEX_RAM_RO: 2416 case MEM_AREA_NEX_RAM_RW: 2417 va = phys_to_virt_tee_ram(pa, len); 2418 break; 2419 case MEM_AREA_SHM_VASPACE: 2420 /* Find VA from PA in dynamic SHM is not yet supported */ 2421 va = NULL; 2422 break; 2423 default: 2424 va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); 2425 } 2426 if (m != MEM_AREA_SEC_RAM_OVERALL) 2427 check_va_matches_pa(pa, va); 2428 return va; 2429 } 2430 2431 void *phys_to_virt_io(paddr_t pa, size_t len) 2432 { 2433 struct tee_mmap_region *map = NULL; 2434 void *va = NULL; 2435 2436 map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); 2437 if (!map) 2438 map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); 2439 if (!map) 2440 return NULL; 2441 va = map_pa2va(map, pa, len); 2442 check_va_matches_pa(pa, va); 2443 return va; 2444 } 2445 2446 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) 2447 { 2448 if (cpu_mmu_enabled()) 2449 return (vaddr_t)phys_to_virt(pa, type, len); 2450 2451 return (vaddr_t)pa; 2452 } 2453 2454 #ifdef CFG_WITH_PAGER 2455 bool is_unpaged(const void *va) 2456 { 2457 vaddr_t v = (vaddr_t)va; 2458 2459 return v >= VCORE_START_VA && v < get_linear_map_end_va(); 2460 } 2461 #endif 2462 2463 #ifdef CFG_NS_VIRTUALIZATION 2464 bool is_nexus(const void *va) 2465 { 2466 vaddr_t v = (vaddr_t)va; 2467 2468 return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ; 2469 } 2470 #endif 2471 2472 void core_mmu_init_virtualization(void) 2473 { 2474 paddr_t b1 = 0; 2475 paddr_size_t s1 = 0; 2476 2477 static_assert(ARRAY_SIZE(secure_only) <= 2); 2478 if (ARRAY_SIZE(secure_only) == 2) { 2479 b1 = secure_only[1].paddr; 2480 s1 = secure_only[1].size; 2481 } 2482 virt_init_memory(static_memory_map, secure_only[0].paddr, 2483 secure_only[0].size, b1, s1); 2484 } 2485 2486 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) 2487 { 2488 assert(p->pa); 2489 if (cpu_mmu_enabled()) { 2490 if (!p->va) 2491 p->va = (vaddr_t)phys_to_virt_io(p->pa, len); 2492 assert(p->va); 2493 return p->va; 2494 } 2495 return p->pa; 2496 } 2497 2498 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) 2499 { 2500 assert(p->pa); 2501 if (cpu_mmu_enabled()) { 2502 if (!p->va) 2503 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, 2504 len); 2505 assert(p->va); 2506 return p->va; 2507 } 2508 return p->pa; 2509 } 2510 2511 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) 2512 { 2513 assert(p->pa); 2514 if (cpu_mmu_enabled()) { 2515 if (!p->va) 2516 p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, 2517 len); 2518 assert(p->va); 2519 return p->va; 2520 } 2521 return p->pa; 2522 } 2523 2524 #ifdef CFG_CORE_RESERVED_SHM 2525 static TEE_Result teecore_init_pub_ram(void) 2526 { 2527 vaddr_t s = 0; 2528 vaddr_t e = 0; 2529 2530 /* get virtual addr/size of NSec shared mem allocated from teecore */ 2531 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); 2532 2533 if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) 2534 panic("invalid PUB RAM"); 2535 2536 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2537 if (!tee_vbuf_is_non_sec(s, e - s)) 2538 panic("PUB RAM is not non-secure"); 2539 2540 #ifdef CFG_PL310 2541 /* Allocate statically the l2cc mutex */ 2542 tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); 2543 s += sizeof(uint32_t); /* size of a pl310 mutex */ 2544 s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ 2545 #endif 2546 2547 default_nsec_shm_paddr = virt_to_phys((void *)s); 2548 default_nsec_shm_size = e - s; 2549 2550 return TEE_SUCCESS; 2551 } 2552 early_init(teecore_init_pub_ram); 2553 #endif /*CFG_CORE_RESERVED_SHM*/ 2554 2555 void core_mmu_init_ta_ram(void) 2556 { 2557 vaddr_t s = 0; 2558 vaddr_t e = 0; 2559 paddr_t ps = 0; 2560 size_t size = 0; 2561 2562 /* 2563 * Get virtual addr/size of RAM where TA are loaded/executedNSec 2564 * shared mem allocated from teecore. 2565 */ 2566 if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) 2567 virt_get_ta_ram(&s, &e); 2568 else 2569 core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e); 2570 2571 ps = virt_to_phys((void *)s); 2572 size = e - s; 2573 2574 if (!ps || (ps & CORE_MMU_USER_CODE_MASK) || 2575 !size || (size & CORE_MMU_USER_CODE_MASK)) 2576 panic("invalid TA RAM"); 2577 2578 /* extra check: we could rely on core_mmu_get_mem_by_type() */ 2579 if (!tee_pbuf_is_sec(ps, size)) 2580 panic("TA RAM is not secure"); 2581 2582 if (!tee_mm_is_empty(&tee_mm_sec_ddr)) 2583 panic("TA RAM pool is not empty"); 2584 2585 /* remove previous config and init TA ddr memory pool */ 2586 tee_mm_final(&tee_mm_sec_ddr); 2587 tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT, 2588 TEE_MM_POOL_NO_FLAGS); 2589 } 2590