xref: /optee_os/core/mm/core_mmu.c (revision 0b751ce4ddadd6c373d5cd353548373075fde06e)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <mm/core_memprot.h>
22 #include <mm/core_mmu.h>
23 #include <mm/mobj.h>
24 #include <mm/pgt_cache.h>
25 #include <mm/tee_pager.h>
26 #include <mm/vm.h>
27 #include <platform_config.h>
28 #include <string.h>
29 #include <trace.h>
30 #include <util.h>
31 
32 #ifndef DEBUG_XLAT_TABLE
33 #define DEBUG_XLAT_TABLE 0
34 #endif
35 
36 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
37 
38 #ifdef CFG_CORE_PHYS_RELOCATABLE
39 unsigned long core_mmu_tee_load_pa __nex_bss;
40 #else
41 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
42 #endif
43 
44 /*
45  * These variables are initialized before .bss is cleared. To avoid
46  * resetting them when .bss is cleared we're storing them in .data instead,
47  * even if they initially are zero.
48  */
49 
50 #ifdef CFG_CORE_RESERVED_SHM
51 /* Default NSec shared memory allocated from NSec world */
52 unsigned long default_nsec_shm_size __nex_bss;
53 unsigned long default_nsec_shm_paddr __nex_bss;
54 #endif
55 
56 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS
57 #ifdef CFG_CORE_ASLR
58 						+ 1
59 #endif
60 						+ 1] __nex_bss;
61 
62 /* Define the platform's memory layout. */
63 struct memaccess_area {
64 	paddr_t paddr;
65 	size_t size;
66 };
67 
68 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
69 
70 static struct memaccess_area secure_only[] __nex_data = {
71 #ifdef TRUSTED_SRAM_BASE
72 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
73 #endif
74 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
75 };
76 
77 static struct memaccess_area nsec_shared[] __nex_data = {
78 #ifdef CFG_CORE_RESERVED_SHM
79 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
80 #endif
81 };
82 
83 #if defined(CFG_SECURE_DATA_PATH)
84 static const char *tz_sdp_match = "linaro,secure-heap";
85 static struct memaccess_area sec_sdp;
86 #ifdef CFG_TEE_SDP_MEM_BASE
87 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
88 #endif
89 #ifdef TEE_SDP_TEST_MEM_BASE
90 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
91 #endif
92 #endif
93 
94 #ifdef CFG_CORE_RESERVED_SHM
95 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
96 #endif
97 static unsigned int mmu_spinlock;
98 
99 static uint32_t mmu_lock(void)
100 {
101 	return cpu_spin_lock_xsave(&mmu_spinlock);
102 }
103 
104 static void mmu_unlock(uint32_t exceptions)
105 {
106 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
107 }
108 
109 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
110 {
111 	/*
112 	 * The first range is always used to cover OP-TEE core memory, but
113 	 * depending on configuration it may cover more than that.
114 	 */
115 	*base = secure_only[0].paddr;
116 	*size = secure_only[0].size;
117 }
118 
119 static struct tee_mmap_region *get_memory_map(void)
120 {
121 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
122 		struct tee_mmap_region *map = virt_get_memory_map();
123 
124 		if (map)
125 			return map;
126 	}
127 
128 	return static_memory_map;
129 }
130 
131 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
132 			     paddr_t pa, size_t size)
133 {
134 	size_t n;
135 
136 	for (n = 0; n < alen; n++)
137 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
138 			return true;
139 	return false;
140 }
141 
142 #define pbuf_intersects(a, pa, size) \
143 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
144 
145 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
146 			    paddr_t pa, size_t size)
147 {
148 	size_t n;
149 
150 	for (n = 0; n < alen; n++)
151 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
152 			return true;
153 	return false;
154 }
155 
156 #define pbuf_is_inside(a, pa, size) \
157 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
158 
159 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
160 {
161 	paddr_t end_pa = 0;
162 
163 	if (!map)
164 		return false;
165 
166 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
167 		return false;
168 
169 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
170 }
171 
172 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
173 {
174 	if (!map)
175 		return false;
176 	return (va >= map->va && va <= (map->va + map->size - 1));
177 }
178 
179 /* check if target buffer fits in a core default map area */
180 static bool pbuf_inside_map_area(unsigned long p, size_t l,
181 				 struct tee_mmap_region *map)
182 {
183 	return core_is_buffer_inside(p, l, map->pa, map->size);
184 }
185 
186 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
187 {
188 	struct tee_mmap_region *map;
189 
190 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++)
191 		if (map->type == type)
192 			return map;
193 	return NULL;
194 }
195 
196 static struct tee_mmap_region *
197 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
198 {
199 	struct tee_mmap_region *map;
200 
201 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
202 		if (map->type != type)
203 			continue;
204 		if (pa_is_in_map(map, pa, len))
205 			return map;
206 	}
207 	return NULL;
208 }
209 
210 static struct tee_mmap_region *find_map_by_va(void *va)
211 {
212 	struct tee_mmap_region *map = get_memory_map();
213 	unsigned long a = (unsigned long)va;
214 
215 	while (!core_mmap_is_end_of_table(map)) {
216 		if (a >= map->va && a <= (map->va - 1 + map->size))
217 			return map;
218 		map++;
219 	}
220 	return NULL;
221 }
222 
223 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
224 {
225 	struct tee_mmap_region *map = get_memory_map();
226 
227 	while (!core_mmap_is_end_of_table(map)) {
228 		if (pa >= map->pa && pa <= (map->pa + map->size - 1))
229 			return map;
230 		map++;
231 	}
232 	return NULL;
233 }
234 
235 #if defined(CFG_SECURE_DATA_PATH)
236 static bool dtb_get_sdp_region(void)
237 {
238 	void *fdt = NULL;
239 	int node = 0;
240 	int tmp_node = 0;
241 	paddr_t tmp_addr = 0;
242 	size_t tmp_size = 0;
243 
244 	if (!IS_ENABLED(CFG_EMBED_DTB))
245 		return false;
246 
247 	fdt = get_embedded_dt();
248 	if (!fdt)
249 		panic("No DTB found");
250 
251 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
252 	if (node < 0) {
253 		DMSG("No %s compatible node found", tz_sdp_match);
254 		return false;
255 	}
256 	tmp_node = node;
257 	while (tmp_node >= 0) {
258 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
259 							 tz_sdp_match);
260 		if (tmp_node >= 0)
261 			DMSG("Ignore SDP pool node %s, supports only 1 node",
262 			     fdt_get_name(fdt, tmp_node, NULL));
263 	}
264 
265 	tmp_addr = fdt_reg_base_address(fdt, node);
266 	if (tmp_addr == DT_INFO_INVALID_REG) {
267 		EMSG("%s: Unable to get base addr from DT", tz_sdp_match);
268 		return false;
269 	}
270 
271 	tmp_size = fdt_reg_size(fdt, node);
272 	if (tmp_size == DT_INFO_INVALID_REG_SIZE) {
273 		EMSG("%s: Unable to get size of base addr from DT",
274 		     tz_sdp_match);
275 		return false;
276 	}
277 
278 	sec_sdp.paddr = tmp_addr;
279 	sec_sdp.size = tmp_size;
280 
281 	return true;
282 }
283 #endif
284 
285 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
286 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
287 				const struct core_mmu_phys_mem *start,
288 				const struct core_mmu_phys_mem *end)
289 {
290 	const struct core_mmu_phys_mem *mem;
291 
292 	for (mem = start; mem < end; mem++) {
293 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
294 			return true;
295 	}
296 
297 	return false;
298 }
299 #endif
300 
301 #ifdef CFG_CORE_DYN_SHM
302 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
303 			       paddr_t pa, size_t size)
304 {
305 	struct core_mmu_phys_mem *m = *mem;
306 	size_t n = 0;
307 
308 	while (true) {
309 		if (n >= *nelems) {
310 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
311 			     pa, size);
312 			return;
313 		}
314 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
315 			break;
316 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
317 			panic();
318 		n++;
319 	}
320 
321 	if (pa == m[n].addr && size == m[n].size) {
322 		/* Remove this entry */
323 		(*nelems)--;
324 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
325 		m = nex_realloc(m, sizeof(*m) * *nelems);
326 		if (!m)
327 			panic();
328 		*mem = m;
329 	} else if (pa == m[n].addr) {
330 		m[n].addr += size;
331 		m[n].size -= size;
332 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
333 		m[n].size -= size;
334 	} else {
335 		/* Need to split the memory entry */
336 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
337 		if (!m)
338 			panic();
339 		*mem = m;
340 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
341 		(*nelems)++;
342 		m[n].size = pa - m[n].addr;
343 		m[n + 1].size -= size + m[n].size;
344 		m[n + 1].addr = pa + size;
345 	}
346 }
347 
348 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
349 				      size_t nelems,
350 				      struct tee_mmap_region *map)
351 {
352 	size_t n;
353 
354 	for (n = 0; n < nelems; n++) {
355 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
356 					    map->pa, map->size)) {
357 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
358 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
359 			     start[n].addr, start[n].size,
360 			     map->type, map->pa, map->size);
361 			panic();
362 		}
363 	}
364 }
365 
366 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
367 static size_t discovered_nsec_ddr_nelems __nex_bss;
368 
369 static int cmp_pmem_by_addr(const void *a, const void *b)
370 {
371 	const struct core_mmu_phys_mem *pmem_a = a;
372 	const struct core_mmu_phys_mem *pmem_b = b;
373 
374 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
375 }
376 
377 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
378 				      size_t nelems)
379 {
380 	struct core_mmu_phys_mem *m = start;
381 	size_t num_elems = nelems;
382 	struct tee_mmap_region *map = static_memory_map;
383 	const struct core_mmu_phys_mem __maybe_unused *pmem;
384 
385 	assert(!discovered_nsec_ddr_start);
386 	assert(m && num_elems);
387 
388 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
389 
390 	/*
391 	 * Non-secure shared memory and also secure data
392 	 * path memory are supposed to reside inside
393 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
394 	 * are used for a specific purpose make holes for
395 	 * those memory in the normal non-secure memory.
396 	 *
397 	 * This has to be done since for instance QEMU
398 	 * isn't aware of which memory range in the
399 	 * non-secure memory is used for NSEC_SHM.
400 	 */
401 
402 #ifdef CFG_SECURE_DATA_PATH
403 	if (dtb_get_sdp_region())
404 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
405 
406 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
407 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
408 #endif
409 
410 	carve_out_phys_mem(&m, &num_elems, TEE_RAM_START, TEE_RAM_PH_SIZE);
411 	carve_out_phys_mem(&m, &num_elems, TA_RAM_START, TA_RAM_SIZE);
412 
413 	for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) {
414 		switch (map->type) {
415 		case MEM_AREA_NSEC_SHM:
416 			carve_out_phys_mem(&m, &num_elems, map->pa, map->size);
417 			break;
418 		case MEM_AREA_EXT_DT:
419 		case MEM_AREA_RES_VASPACE:
420 		case MEM_AREA_SHM_VASPACE:
421 		case MEM_AREA_TS_VASPACE:
422 		case MEM_AREA_PAGER_VASPACE:
423 			break;
424 		default:
425 			check_phys_mem_is_outside(m, num_elems, map);
426 		}
427 	}
428 
429 	discovered_nsec_ddr_start = m;
430 	discovered_nsec_ddr_nelems = num_elems;
431 
432 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
433 				   m[num_elems - 1].size))
434 		panic();
435 }
436 
437 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
438 				    const struct core_mmu_phys_mem **end)
439 {
440 	if (!discovered_nsec_ddr_start)
441 		return false;
442 
443 	*start = discovered_nsec_ddr_start;
444 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
445 
446 	return true;
447 }
448 
449 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
450 {
451 	const struct core_mmu_phys_mem *start;
452 	const struct core_mmu_phys_mem *end;
453 
454 	if (!get_discovered_nsec_ddr(&start, &end))
455 		return false;
456 
457 	return pbuf_is_special_mem(pbuf, len, start, end);
458 }
459 
460 bool core_mmu_nsec_ddr_is_defined(void)
461 {
462 	const struct core_mmu_phys_mem *start;
463 	const struct core_mmu_phys_mem *end;
464 
465 	if (!get_discovered_nsec_ddr(&start, &end))
466 		return false;
467 
468 	return start != end;
469 }
470 #else
471 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
472 {
473 	return false;
474 }
475 #endif /*CFG_CORE_DYN_SHM*/
476 
477 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
478 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
479 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
480 
481 #ifdef CFG_SECURE_DATA_PATH
482 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
483 {
484 	bool is_sdp_mem = false;
485 
486 	if (sec_sdp.size)
487 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
488 						   sec_sdp.size);
489 
490 	if (!is_sdp_mem)
491 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
492 						 phys_sdp_mem_end);
493 
494 	return is_sdp_mem;
495 }
496 
497 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
498 {
499 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
500 					    CORE_MEM_SDP_MEM);
501 
502 	if (!mobj)
503 		panic("can't create SDP physical memory object");
504 
505 	return mobj;
506 }
507 
508 struct mobj **core_sdp_mem_create_mobjs(void)
509 {
510 	const struct core_mmu_phys_mem *mem = NULL;
511 	struct mobj **mobj_base = NULL;
512 	struct mobj **mobj = NULL;
513 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
514 
515 	if (sec_sdp.size)
516 		cnt++;
517 
518 	/* SDP mobjs table must end with a NULL entry */
519 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
520 	if (!mobj_base)
521 		panic("Out of memory");
522 
523 	mobj = mobj_base;
524 
525 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
526 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
527 
528 	if (sec_sdp.size)
529 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
530 
531 	return mobj_base;
532 }
533 
534 #else /* CFG_SECURE_DATA_PATH */
535 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
536 {
537 	return false;
538 }
539 
540 #endif /* CFG_SECURE_DATA_PATH */
541 
542 /* Check special memories comply with registered memories */
543 static void verify_special_mem_areas(struct tee_mmap_region *mem_map,
544 				     size_t len,
545 				     const struct core_mmu_phys_mem *start,
546 				     const struct core_mmu_phys_mem *end,
547 				     const char *area_name __maybe_unused)
548 {
549 	const struct core_mmu_phys_mem *mem;
550 	const struct core_mmu_phys_mem *mem2;
551 	struct tee_mmap_region *mmap;
552 	size_t n;
553 
554 	if (start == end) {
555 		DMSG("No %s memory area defined", area_name);
556 		return;
557 	}
558 
559 	for (mem = start; mem < end; mem++)
560 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
561 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
562 
563 	/* Check memories do not intersect each other */
564 	for (mem = start; mem + 1 < end; mem++) {
565 		for (mem2 = mem + 1; mem2 < end; mem2++) {
566 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
567 						     mem->addr, mem->size)) {
568 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
569 						   mem->addr, mem->size);
570 				panic("Special memory intersection");
571 			}
572 		}
573 	}
574 
575 	/*
576 	 * Check memories do not intersect any mapped memory.
577 	 * This is called before reserved VA space is loaded in mem_map.
578 	 */
579 	for (mem = start; mem < end; mem++) {
580 		for (mmap = mem_map, n = 0; n < len; mmap++, n++) {
581 			if (core_is_buffer_intersect(mem->addr, mem->size,
582 						     mmap->pa, mmap->size)) {
583 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
584 						   mmap->pa, mmap->size);
585 				panic("Special memory intersection");
586 			}
587 		}
588 	}
589 }
590 
591 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems,
592 			 const char *mem_name __maybe_unused,
593 			 enum teecore_memtypes mem_type,
594 			 paddr_t mem_addr, paddr_size_t mem_size, size_t *last)
595 {
596 	size_t n = 0;
597 	paddr_t pa;
598 	paddr_size_t size;
599 
600 	if (!mem_size)	/* Discard null size entries */
601 		return;
602 	/*
603 	 * If some ranges of memory of the same type do overlap
604 	 * each others they are coalesced into one entry. To help this
605 	 * added entries are sorted by increasing physical.
606 	 *
607 	 * Note that it's valid to have the same physical memory as several
608 	 * different memory types, for instance the same device memory
609 	 * mapped as both secure and non-secure. This will probably not
610 	 * happen often in practice.
611 	 */
612 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
613 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
614 	while (true) {
615 		if (n >= (num_elems - 1)) {
616 			EMSG("Out of entries (%zu) in memory_map", num_elems);
617 			panic();
618 		}
619 		if (n == *last)
620 			break;
621 		pa = memory_map[n].pa;
622 		size = memory_map[n].size;
623 		if (mem_type == memory_map[n].type &&
624 		    ((pa <= (mem_addr + (mem_size - 1))) &&
625 		    (mem_addr <= (pa + (size - 1))))) {
626 			DMSG("Physical mem map overlaps 0x%" PRIxPA, mem_addr);
627 			memory_map[n].pa = MIN(pa, mem_addr);
628 			memory_map[n].size = MAX(size, mem_size) +
629 					     (pa - memory_map[n].pa);
630 			return;
631 		}
632 		if (mem_type < memory_map[n].type ||
633 		    (mem_type == memory_map[n].type && mem_addr < pa))
634 			break; /* found the spot where to insert this memory */
635 		n++;
636 	}
637 
638 	memmove(memory_map + n + 1, memory_map + n,
639 		sizeof(struct tee_mmap_region) * (*last - n));
640 	(*last)++;
641 	memset(memory_map + n, 0, sizeof(memory_map[0]));
642 	memory_map[n].type = mem_type;
643 	memory_map[n].pa = mem_addr;
644 	memory_map[n].size = mem_size;
645 }
646 
647 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems,
648 			 enum teecore_memtypes type, size_t size, size_t *last)
649 {
650 	size_t n = 0;
651 
652 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
653 	while (true) {
654 		if (n >= (num_elems - 1)) {
655 			EMSG("Out of entries (%zu) in memory_map", num_elems);
656 			panic();
657 		}
658 		if (n == *last)
659 			break;
660 		if (type < memory_map[n].type)
661 			break;
662 		n++;
663 	}
664 
665 	memmove(memory_map + n + 1, memory_map + n,
666 		sizeof(struct tee_mmap_region) * (*last - n));
667 	(*last)++;
668 	memset(memory_map + n, 0, sizeof(memory_map[0]));
669 	memory_map[n].type = type;
670 	memory_map[n].size = size;
671 }
672 
673 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
674 {
675 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
676 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
677 				TEE_MATTR_MEM_TYPE_SHIFT;
678 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
679 				TEE_MATTR_MEM_TYPE_SHIFT;
680 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
681 				  TEE_MATTR_MEM_TYPE_SHIFT;
682 
683 	switch (t) {
684 	case MEM_AREA_TEE_RAM:
685 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
686 	case MEM_AREA_TEE_RAM_RX:
687 	case MEM_AREA_INIT_RAM_RX:
688 	case MEM_AREA_IDENTITY_MAP_RX:
689 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
690 	case MEM_AREA_TEE_RAM_RO:
691 	case MEM_AREA_INIT_RAM_RO:
692 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
693 	case MEM_AREA_TEE_RAM_RW:
694 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
695 	case MEM_AREA_NEX_RAM_RW:
696 	case MEM_AREA_TEE_ASAN:
697 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
698 	case MEM_AREA_TEE_COHERENT:
699 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
700 	case MEM_AREA_TA_RAM:
701 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
702 	case MEM_AREA_NSEC_SHM:
703 		return attr | TEE_MATTR_PRW | cached;
704 	case MEM_AREA_EXT_DT:
705 		/*
706 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
707 		 * tree as secure non-cached memory, otherwise, fall back to
708 		 * non-secure mapping.
709 		 */
710 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
711 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
712 			       noncache;
713 		fallthrough;
714 	case MEM_AREA_IO_NSEC:
715 		return attr | TEE_MATTR_PRW | noncache;
716 	case MEM_AREA_IO_SEC:
717 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
718 	case MEM_AREA_RAM_NSEC:
719 		return attr | TEE_MATTR_PRW | cached;
720 	case MEM_AREA_RAM_SEC:
721 	case MEM_AREA_SEC_RAM_OVERALL:
722 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
723 	case MEM_AREA_RES_VASPACE:
724 	case MEM_AREA_SHM_VASPACE:
725 		return 0;
726 	case MEM_AREA_PAGER_VASPACE:
727 		return TEE_MATTR_SECURE;
728 	default:
729 		panic("invalid type");
730 	}
731 }
732 
733 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
734 {
735 	switch (mm->type) {
736 	case MEM_AREA_TEE_RAM:
737 	case MEM_AREA_TEE_RAM_RX:
738 	case MEM_AREA_TEE_RAM_RO:
739 	case MEM_AREA_TEE_RAM_RW:
740 	case MEM_AREA_INIT_RAM_RX:
741 	case MEM_AREA_INIT_RAM_RO:
742 	case MEM_AREA_NEX_RAM_RW:
743 	case MEM_AREA_NEX_RAM_RO:
744 	case MEM_AREA_TEE_ASAN:
745 		return true;
746 	default:
747 		return false;
748 	}
749 }
750 
751 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
752 {
753 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
754 }
755 
756 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
757 {
758 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
759 }
760 
761 static int cmp_mmap_by_lower_va(const void *a, const void *b)
762 {
763 	const struct tee_mmap_region *mm_a = a;
764 	const struct tee_mmap_region *mm_b = b;
765 
766 	return CMP_TRILEAN(mm_a->va, mm_b->va);
767 }
768 
769 static void dump_mmap_table(struct tee_mmap_region *memory_map)
770 {
771 	struct tee_mmap_region *map;
772 
773 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
774 		vaddr_t __maybe_unused vstart;
775 
776 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
777 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
778 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
779 		     teecore_memtype_name(map->type), vstart,
780 		     vstart + map->size - 1, map->pa,
781 		     (paddr_t)(map->pa + map->size - 1), map->size,
782 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
783 	}
784 }
785 
786 #if DEBUG_XLAT_TABLE
787 
788 static void dump_xlat_table(vaddr_t va, unsigned int level)
789 {
790 	struct core_mmu_table_info tbl_info;
791 	unsigned int idx = 0;
792 	paddr_t pa;
793 	uint32_t attr;
794 
795 	core_mmu_find_table(NULL, va, level, &tbl_info);
796 	va = tbl_info.va_base;
797 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
798 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
799 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
800 			const char *security_bit = "";
801 
802 			if (core_mmu_entry_have_security_bit(attr)) {
803 				if (attr & TEE_MATTR_SECURE)
804 					security_bit = "S";
805 				else
806 					security_bit = "NS";
807 			}
808 
809 			if (attr & TEE_MATTR_TABLE) {
810 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
811 					" TBL:0x%010" PRIxPA " %s",
812 					level * 2, "", level, va, pa,
813 					security_bit);
814 				dump_xlat_table(va, level + 1);
815 			} else if (attr) {
816 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
817 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
818 					level * 2, "", level, va, pa,
819 					mattr_is_cached(attr) ? "MEM" :
820 					"DEV",
821 					attr & TEE_MATTR_PW ? "RW" : "RO",
822 					attr & TEE_MATTR_PX ? "X " : "XN",
823 					security_bit);
824 			} else {
825 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
826 					    " INVALID\n",
827 					    level * 2, "", level, va);
828 			}
829 		}
830 		va += BIT64(tbl_info.shift);
831 	}
832 }
833 
834 #else
835 
836 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
837 {
838 }
839 
840 #endif
841 
842 /*
843  * Reserves virtual memory space for pager usage.
844  *
845  * From the start of the first memory used by the link script +
846  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
847  * mapping for pager usage. This adds translation tables as needed for the
848  * pager to operate.
849  */
850 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems,
851 			      size_t *last)
852 {
853 	paddr_t begin = 0;
854 	paddr_t end = 0;
855 	size_t size = 0;
856 	size_t pos = 0;
857 	size_t n = 0;
858 
859 	if (*last >= (num_elems - 1)) {
860 		EMSG("Out of entries (%zu) in memory map", num_elems);
861 		panic();
862 	}
863 
864 	for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) {
865 		if (map_is_tee_ram(mmap + n)) {
866 			if (!begin)
867 				begin = mmap[n].pa;
868 			pos = n + 1;
869 		}
870 	}
871 
872 	end = mmap[pos - 1].pa + mmap[pos - 1].size;
873 	size = TEE_RAM_VA_SIZE - (end - begin);
874 	if (!size)
875 		return;
876 
877 	assert(pos <= *last);
878 	memmove(mmap + pos + 1, mmap + pos,
879 		sizeof(struct tee_mmap_region) * (*last - pos));
880 	(*last)++;
881 	memset(mmap + pos, 0, sizeof(mmap[0]));
882 	mmap[pos].type = MEM_AREA_PAGER_VASPACE;
883 	mmap[pos].va = 0;
884 	mmap[pos].size = size;
885 	mmap[pos].region_size = SMALL_PAGE_SIZE;
886 	mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE);
887 }
888 
889 static void check_sec_nsec_mem_config(void)
890 {
891 	size_t n = 0;
892 
893 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
894 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
895 				    secure_only[n].size))
896 			panic("Invalid memory access config: sec/nsec");
897 	}
898 }
899 
900 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map,
901 				 size_t num_elems)
902 {
903 	const struct core_mmu_phys_mem *mem = NULL;
904 	size_t last = 0;
905 
906 
907 #define ADD_PHYS_MEM(_type, _addr, _size) \
908 		add_phys_mem(memory_map, num_elems, #_addr, (_type), \
909 			     (_addr), (_size),  &last)
910 
911 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
912 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, TEE_RAM_START,
913 			     VCORE_UNPG_RX_PA - TEE_RAM_START);
914 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
915 			     VCORE_UNPG_RX_SZ);
916 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
917 			     VCORE_UNPG_RO_SZ);
918 
919 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
920 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
921 				     VCORE_UNPG_RW_SZ);
922 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
923 				     VCORE_NEX_RW_SZ);
924 		} else {
925 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
926 				     VCORE_UNPG_RW_SZ);
927 		}
928 
929 		if (IS_ENABLED(CFG_WITH_PAGER)) {
930 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
931 				     VCORE_INIT_RX_SZ);
932 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
933 				     VCORE_INIT_RO_SZ);
934 		}
935 	} else {
936 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
937 	}
938 
939 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
940 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
941 			     TRUSTED_DRAM_SIZE);
942 	} else {
943 		/*
944 		 * Every guest will have own TA RAM if virtualization
945 		 * support is enabled.
946 		 */
947 		ADD_PHYS_MEM(MEM_AREA_TA_RAM, TA_RAM_START, TA_RAM_SIZE);
948 	}
949 
950 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
951 	    IS_ENABLED(CFG_WITH_PAGER)) {
952 		/*
953 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
954 		 * disabled.
955 		 */
956 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
957 	}
958 
959 #undef ADD_PHYS_MEM
960 
961 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
962 		/* Only unmapped virtual range may have a null phys addr */
963 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
964 
965 		add_phys_mem(memory_map, num_elems, mem->name, mem->type,
966 			     mem->addr, mem->size, &last);
967 	}
968 
969 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
970 		verify_special_mem_areas(memory_map, num_elems,
971 					 phys_sdp_mem_begin,
972 					 phys_sdp_mem_end, "SDP");
973 
974 	add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE,
975 		     CFG_RESERVED_VASPACE_SIZE, &last);
976 
977 	add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE,
978 		     SHM_VASPACE_SIZE, &last);
979 
980 	memory_map[last].type = MEM_AREA_END;
981 
982 	return last;
983 }
984 
985 static void assign_mem_granularity(struct tee_mmap_region *memory_map)
986 {
987 	struct tee_mmap_region *map = NULL;
988 
989 	/*
990 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
991 	 * SMALL_PAGE_SIZE.
992 	 */
993 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
994 		paddr_t mask = map->pa | map->size;
995 
996 		if (!(mask & CORE_MMU_PGDIR_MASK))
997 			map->region_size = CORE_MMU_PGDIR_SIZE;
998 		else if (!(mask & SMALL_PAGE_MASK))
999 			map->region_size = SMALL_PAGE_SIZE;
1000 		else
1001 			panic("Impossible memory alignment");
1002 
1003 		if (map_is_tee_ram(map))
1004 			map->region_size = SMALL_PAGE_SIZE;
1005 	}
1006 }
1007 
1008 static bool place_tee_ram_at_top(paddr_t paddr)
1009 {
1010 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1011 }
1012 
1013 /*
1014  * MMU arch driver shall override this function if it helps
1015  * optimizing the memory footprint of the address translation tables.
1016  */
1017 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1018 {
1019 	return place_tee_ram_at_top(paddr);
1020 }
1021 
1022 static bool assign_mem_va_dir(vaddr_t tee_ram_va,
1023 			      struct tee_mmap_region *memory_map,
1024 			      bool tee_ram_at_top)
1025 {
1026 	struct tee_mmap_region *map = NULL;
1027 	vaddr_t va = 0;
1028 	bool va_is_secure = true;
1029 
1030 	/*
1031 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1032 	 * 0 is by design an invalid va, so return false directly.
1033 	 */
1034 	if (!tee_ram_va)
1035 		return false;
1036 
1037 	/* Clear eventual previous assignments */
1038 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1039 		map->va = 0;
1040 
1041 	/*
1042 	 * TEE RAM regions are always aligned with region_size.
1043 	 *
1044 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1045 	 * since it handles virtual memory which covers the part of the ELF
1046 	 * that cannot fit directly into memory.
1047 	 */
1048 	va = tee_ram_va;
1049 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1050 		if (map_is_tee_ram(map) ||
1051 		    map->type == MEM_AREA_PAGER_VASPACE) {
1052 			assert(!(va & (map->region_size - 1)));
1053 			assert(!(map->size & (map->region_size - 1)));
1054 			map->va = va;
1055 			if (ADD_OVERFLOW(va, map->size, &va))
1056 				return false;
1057 			if (va >= BIT64(core_mmu_get_va_width()))
1058 				return false;
1059 		}
1060 	}
1061 
1062 	if (tee_ram_at_top) {
1063 		/*
1064 		 * Map non-tee ram regions at addresses lower than the tee
1065 		 * ram region.
1066 		 */
1067 		va = tee_ram_va;
1068 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1069 			map->attr = core_mmu_type_to_attr(map->type);
1070 			if (map->va)
1071 				continue;
1072 
1073 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1074 			    va_is_secure != map_is_secure(map)) {
1075 				va_is_secure = !va_is_secure;
1076 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1077 			}
1078 
1079 			if (SUB_OVERFLOW(va, map->size, &va))
1080 				return false;
1081 			va = ROUNDDOWN(va, map->region_size);
1082 			/*
1083 			 * Make sure that va is aligned with pa for
1084 			 * efficient pgdir mapping. Basically pa &
1085 			 * pgdir_mask should be == va & pgdir_mask
1086 			 */
1087 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1088 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1089 					return false;
1090 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1091 			}
1092 			map->va = va;
1093 		}
1094 	} else {
1095 		/*
1096 		 * Map non-tee ram regions at addresses higher than the tee
1097 		 * ram region.
1098 		 */
1099 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
1100 			map->attr = core_mmu_type_to_attr(map->type);
1101 			if (map->va)
1102 				continue;
1103 
1104 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1105 			    va_is_secure != map_is_secure(map)) {
1106 				va_is_secure = !va_is_secure;
1107 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1108 						     &va))
1109 					return false;
1110 			}
1111 
1112 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1113 				return false;
1114 			/*
1115 			 * Make sure that va is aligned with pa for
1116 			 * efficient pgdir mapping. Basically pa &
1117 			 * pgdir_mask should be == va & pgdir_mask
1118 			 */
1119 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1120 				vaddr_t offs = (map->pa - va) &
1121 					       CORE_MMU_PGDIR_MASK;
1122 
1123 				if (ADD_OVERFLOW(va, offs, &va))
1124 					return false;
1125 			}
1126 
1127 			map->va = va;
1128 			if (ADD_OVERFLOW(va, map->size, &va))
1129 				return false;
1130 			if (va >= BIT64(core_mmu_get_va_width()))
1131 				return false;
1132 		}
1133 	}
1134 
1135 	return true;
1136 }
1137 
1138 static bool assign_mem_va(vaddr_t tee_ram_va,
1139 			  struct tee_mmap_region *memory_map)
1140 {
1141 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1142 
1143 	/*
1144 	 * Check that we're not overlapping with the user VA range.
1145 	 */
1146 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1147 		/*
1148 		 * User VA range is supposed to be defined after these
1149 		 * mappings have been established.
1150 		 */
1151 		assert(!core_mmu_user_va_range_is_defined());
1152 	} else {
1153 		vaddr_t user_va_base = 0;
1154 		size_t user_va_size = 0;
1155 
1156 		assert(core_mmu_user_va_range_is_defined());
1157 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1158 		if (tee_ram_va < (user_va_base + user_va_size))
1159 			return false;
1160 	}
1161 
1162 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1163 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1164 
1165 		/* Try whole mapping covered by a single base xlat entry */
1166 		if (prefered_dir != tee_ram_at_top &&
1167 		    assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir))
1168 			return true;
1169 	}
1170 
1171 	return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top);
1172 }
1173 
1174 static int cmp_init_mem_map(const void *a, const void *b)
1175 {
1176 	const struct tee_mmap_region *mm_a = a;
1177 	const struct tee_mmap_region *mm_b = b;
1178 	int rc = 0;
1179 
1180 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1181 	if (!rc)
1182 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1183 	/*
1184 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1185 	 * the same level2 table. Hence sort secure mapping from non-secure
1186 	 * mapping.
1187 	 */
1188 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1189 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1190 
1191 	return rc;
1192 }
1193 
1194 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map,
1195 			       size_t num_elems, size_t *last,
1196 			       vaddr_t id_map_start, vaddr_t id_map_end)
1197 {
1198 	struct tee_mmap_region *map = NULL;
1199 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1200 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1201 	size_t len = end - start;
1202 
1203 	if (*last >= num_elems - 1) {
1204 		EMSG("Out of entries (%zu) in memory map", num_elems);
1205 		panic();
1206 	}
1207 
1208 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1209 		if (core_is_buffer_intersect(map->va, map->size, start, len))
1210 			return false;
1211 
1212 	*map = (struct tee_mmap_region){
1213 		.type = MEM_AREA_IDENTITY_MAP_RX,
1214 		/*
1215 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1216 		 * translation table, at the increased risk of clashes with
1217 		 * the rest of the memory map.
1218 		 */
1219 		.region_size = SMALL_PAGE_SIZE,
1220 		.pa = start,
1221 		.va = start,
1222 		.size = len,
1223 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1224 	};
1225 
1226 	(*last)++;
1227 
1228 	return true;
1229 }
1230 
1231 static unsigned long init_mem_map(struct tee_mmap_region *memory_map,
1232 				  size_t num_elems, unsigned long seed)
1233 {
1234 	/*
1235 	 * @id_map_start and @id_map_end describes a physical memory range
1236 	 * that must be mapped Read-Only eXecutable at identical virtual
1237 	 * addresses.
1238 	 */
1239 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1240 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1241 	unsigned long offs = 0;
1242 	size_t last = 0;
1243 
1244 	last = collect_mem_ranges(memory_map, num_elems);
1245 	assign_mem_granularity(memory_map);
1246 
1247 	/*
1248 	 * To ease mapping and lower use of xlat tables, sort mapping
1249 	 * description moving small-page regions after the pgdir regions.
1250 	 */
1251 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1252 	      cmp_init_mem_map);
1253 
1254 	add_pager_vaspace(memory_map, num_elems, &last);
1255 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1256 		vaddr_t base_addr = TEE_RAM_START + seed;
1257 		const unsigned int va_width = core_mmu_get_va_width();
1258 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1259 						   SMALL_PAGE_SHIFT);
1260 		vaddr_t ba = base_addr;
1261 		size_t n = 0;
1262 
1263 		for (n = 0; n < 3; n++) {
1264 			if (n)
1265 				ba = base_addr ^ BIT64(va_width - n);
1266 			ba &= va_mask;
1267 			if (assign_mem_va(ba, memory_map) &&
1268 			    mem_map_add_id_map(memory_map, num_elems, &last,
1269 					       id_map_start, id_map_end)) {
1270 				offs = ba - TEE_RAM_START;
1271 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1272 				     ba, offs);
1273 				goto out;
1274 			} else {
1275 				DMSG("Failed to map core at %#"PRIxVA, ba);
1276 			}
1277 		}
1278 		EMSG("Failed to map core with seed %#lx", seed);
1279 	}
1280 
1281 	if (!assign_mem_va(TEE_RAM_START, memory_map))
1282 		panic();
1283 
1284 out:
1285 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1286 	      cmp_mmap_by_lower_va);
1287 
1288 	dump_mmap_table(memory_map);
1289 
1290 	return offs;
1291 }
1292 
1293 static void check_mem_map(struct tee_mmap_region *map)
1294 {
1295 	struct tee_mmap_region *m = NULL;
1296 
1297 	for (m = map; !core_mmap_is_end_of_table(m); m++) {
1298 		switch (m->type) {
1299 		case MEM_AREA_TEE_RAM:
1300 		case MEM_AREA_TEE_RAM_RX:
1301 		case MEM_AREA_TEE_RAM_RO:
1302 		case MEM_AREA_TEE_RAM_RW:
1303 		case MEM_AREA_INIT_RAM_RX:
1304 		case MEM_AREA_INIT_RAM_RO:
1305 		case MEM_AREA_NEX_RAM_RW:
1306 		case MEM_AREA_NEX_RAM_RO:
1307 		case MEM_AREA_IDENTITY_MAP_RX:
1308 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1309 				panic("TEE_RAM can't fit in secure_only");
1310 			break;
1311 		case MEM_AREA_TA_RAM:
1312 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1313 				panic("TA_RAM can't fit in secure_only");
1314 			break;
1315 		case MEM_AREA_NSEC_SHM:
1316 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1317 				panic("NS_SHM can't fit in nsec_shared");
1318 			break;
1319 		case MEM_AREA_SEC_RAM_OVERALL:
1320 		case MEM_AREA_TEE_COHERENT:
1321 		case MEM_AREA_TEE_ASAN:
1322 		case MEM_AREA_IO_SEC:
1323 		case MEM_AREA_IO_NSEC:
1324 		case MEM_AREA_EXT_DT:
1325 		case MEM_AREA_RAM_SEC:
1326 		case MEM_AREA_RAM_NSEC:
1327 		case MEM_AREA_RES_VASPACE:
1328 		case MEM_AREA_SHM_VASPACE:
1329 		case MEM_AREA_PAGER_VASPACE:
1330 			break;
1331 		default:
1332 			EMSG("Uhandled memtype %d", m->type);
1333 			panic();
1334 		}
1335 	}
1336 }
1337 
1338 static struct tee_mmap_region *get_tmp_mmap(void)
1339 {
1340 	struct tee_mmap_region *tmp_mmap = (void *)__heap1_start;
1341 
1342 #ifdef CFG_WITH_PAGER
1343 	if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map))
1344 		tmp_mmap = (void *)__heap2_start;
1345 #endif
1346 
1347 	memset(tmp_mmap, 0, sizeof(static_memory_map));
1348 
1349 	return tmp_mmap;
1350 }
1351 
1352 /*
1353  * core_init_mmu_map() - init tee core default memory mapping
1354  *
1355  * This routine sets the static default TEE core mapping. If @seed is > 0
1356  * and configured with CFG_CORE_ASLR it will map tee core at a location
1357  * based on the seed and return the offset from the link address.
1358  *
1359  * If an error happened: core_init_mmu_map is expected to panic.
1360  *
1361  * Note: this function is weak just to make it possible to exclude it from
1362  * the unpaged area.
1363  */
1364 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1365 {
1366 #ifndef CFG_NS_VIRTUALIZATION
1367 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1368 #else
1369 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1370 				  SMALL_PAGE_SIZE);
1371 #endif
1372 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1373 	struct tee_mmap_region *tmp_mmap = get_tmp_mmap();
1374 	unsigned long offs = 0;
1375 
1376 	check_sec_nsec_mem_config();
1377 
1378 	/*
1379 	 * Add a entry covering the translation tables which will be
1380 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1381 	 */
1382 	static_memory_map[0] = (struct tee_mmap_region){
1383 		.type = MEM_AREA_TEE_RAM,
1384 		.region_size = SMALL_PAGE_SIZE,
1385 		.pa = start,
1386 		.va = start,
1387 		.size = len,
1388 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1389 	};
1390 
1391 	COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13);
1392 	offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed);
1393 
1394 	check_mem_map(tmp_mmap);
1395 	core_init_mmu(tmp_mmap);
1396 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1397 	core_init_mmu_regs(cfg);
1398 	cfg->map_offset = offs;
1399 	memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map));
1400 }
1401 
1402 bool core_mmu_mattr_is_ok(uint32_t mattr)
1403 {
1404 	/*
1405 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1406 	 * core_mmu_v7.c:mattr_to_texcb
1407 	 */
1408 
1409 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1410 	case TEE_MATTR_MEM_TYPE_DEV:
1411 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1412 	case TEE_MATTR_MEM_TYPE_CACHED:
1413 	case TEE_MATTR_MEM_TYPE_TAGGED:
1414 		return true;
1415 	default:
1416 		return false;
1417 	}
1418 }
1419 
1420 /*
1421  * test attributes of target physical buffer
1422  *
1423  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1424  *
1425  */
1426 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1427 {
1428 	struct tee_mmap_region *map;
1429 
1430 	/* Empty buffers complies with anything */
1431 	if (len == 0)
1432 		return true;
1433 
1434 	switch (attr) {
1435 	case CORE_MEM_SEC:
1436 		return pbuf_is_inside(secure_only, pbuf, len);
1437 	case CORE_MEM_NON_SEC:
1438 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1439 			pbuf_is_nsec_ddr(pbuf, len);
1440 	case CORE_MEM_TEE_RAM:
1441 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1442 							TEE_RAM_PH_SIZE);
1443 	case CORE_MEM_TA_RAM:
1444 		return core_is_buffer_inside(pbuf, len, TA_RAM_START,
1445 							TA_RAM_SIZE);
1446 #ifdef CFG_CORE_RESERVED_SHM
1447 	case CORE_MEM_NSEC_SHM:
1448 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1449 							TEE_SHMEM_SIZE);
1450 #endif
1451 	case CORE_MEM_SDP_MEM:
1452 		return pbuf_is_sdp_mem(pbuf, len);
1453 	case CORE_MEM_CACHED:
1454 		map = find_map_by_pa(pbuf);
1455 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1456 			return false;
1457 		return mattr_is_cached(map->attr);
1458 	default:
1459 		return false;
1460 	}
1461 }
1462 
1463 /* test attributes of target virtual buffer (in core mapping) */
1464 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1465 {
1466 	paddr_t p;
1467 
1468 	/* Empty buffers complies with anything */
1469 	if (len == 0)
1470 		return true;
1471 
1472 	p = virt_to_phys((void *)vbuf);
1473 	if (!p)
1474 		return false;
1475 
1476 	return core_pbuf_is(attr, p, len);
1477 }
1478 
1479 /* core_va2pa - teecore exported service */
1480 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1481 {
1482 	struct tee_mmap_region *map;
1483 
1484 	map = find_map_by_va(va);
1485 	if (!va_is_in_map(map, (vaddr_t)va))
1486 		return -1;
1487 
1488 	/*
1489 	 * We can calculate PA for static map. Virtual address ranges
1490 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1491 	 * together with an invalid null physical address.
1492 	 */
1493 	if (map->pa)
1494 		*pa = map->pa + (vaddr_t)va  - map->va;
1495 	else
1496 		*pa = 0;
1497 
1498 	return 0;
1499 }
1500 
1501 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1502 {
1503 	if (!pa_is_in_map(map, pa, len))
1504 		return NULL;
1505 
1506 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1507 }
1508 
1509 /*
1510  * teecore gets some memory area definitions
1511  */
1512 void core_mmu_get_mem_by_type(unsigned int type, vaddr_t *s, vaddr_t *e)
1513 {
1514 	struct tee_mmap_region *map = find_map_by_type(type);
1515 
1516 	if (map) {
1517 		*s = map->va;
1518 		*e = map->va + map->size;
1519 	} else {
1520 		*s = 0;
1521 		*e = 0;
1522 	}
1523 }
1524 
1525 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1526 {
1527 	struct tee_mmap_region *map = find_map_by_pa(pa);
1528 
1529 	if (!map)
1530 		return MEM_AREA_MAXTYPE;
1531 	return map->type;
1532 }
1533 
1534 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1535 			paddr_t pa, uint32_t attr)
1536 {
1537 	assert(idx < tbl_info->num_entries);
1538 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1539 				     idx, pa, attr);
1540 }
1541 
1542 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1543 			paddr_t *pa, uint32_t *attr)
1544 {
1545 	assert(idx < tbl_info->num_entries);
1546 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1547 				     idx, pa, attr);
1548 }
1549 
1550 static void clear_region(struct core_mmu_table_info *tbl_info,
1551 			 struct tee_mmap_region *region)
1552 {
1553 	unsigned int end = 0;
1554 	unsigned int idx = 0;
1555 
1556 	/* va, len and pa should be block aligned */
1557 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1558 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1559 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1560 
1561 	idx = core_mmu_va2idx(tbl_info, region->va);
1562 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1563 
1564 	while (idx < end) {
1565 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1566 		idx++;
1567 	}
1568 }
1569 
1570 static void set_region(struct core_mmu_table_info *tbl_info,
1571 		       struct tee_mmap_region *region)
1572 {
1573 	unsigned int end;
1574 	unsigned int idx;
1575 	paddr_t pa;
1576 
1577 	/* va, len and pa should be block aligned */
1578 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1579 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1580 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1581 
1582 	idx = core_mmu_va2idx(tbl_info, region->va);
1583 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1584 	pa = region->pa;
1585 
1586 	while (idx < end) {
1587 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1588 		idx++;
1589 		pa += BIT64(tbl_info->shift);
1590 	}
1591 }
1592 
1593 static void set_pg_region(struct core_mmu_table_info *dir_info,
1594 			  struct vm_region *region, struct pgt **pgt,
1595 			  struct core_mmu_table_info *pg_info)
1596 {
1597 	struct tee_mmap_region r = {
1598 		.va = region->va,
1599 		.size = region->size,
1600 		.attr = region->attr,
1601 	};
1602 	vaddr_t end = r.va + r.size;
1603 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1604 
1605 	while (r.va < end) {
1606 		if (!pg_info->table ||
1607 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1608 			/*
1609 			 * We're assigning a new translation table.
1610 			 */
1611 			unsigned int idx;
1612 
1613 			/* Virtual addresses must grow */
1614 			assert(r.va > pg_info->va_base);
1615 
1616 			idx = core_mmu_va2idx(dir_info, r.va);
1617 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1618 
1619 			/*
1620 			 * Advance pgt to va_base, note that we may need to
1621 			 * skip multiple page tables if there are large
1622 			 * holes in the vm map.
1623 			 */
1624 			while ((*pgt)->vabase < pg_info->va_base) {
1625 				*pgt = SLIST_NEXT(*pgt, link);
1626 				/* We should have allocated enough */
1627 				assert(*pgt);
1628 			}
1629 			assert((*pgt)->vabase == pg_info->va_base);
1630 			pg_info->table = (*pgt)->tbl;
1631 
1632 			core_mmu_set_entry(dir_info, idx,
1633 					   virt_to_phys(pg_info->table),
1634 					   pgt_attr);
1635 		}
1636 
1637 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1638 			     end - r.va);
1639 
1640 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1641 			size_t granule = BIT(pg_info->shift);
1642 			size_t offset = r.va - region->va + region->offset;
1643 
1644 			r.size = MIN(r.size,
1645 				     mobj_get_phys_granule(region->mobj));
1646 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1647 
1648 			if (mobj_get_pa(region->mobj, offset, granule,
1649 					&r.pa) != TEE_SUCCESS)
1650 				panic("Failed to get PA of unpaged mobj");
1651 			set_region(pg_info, &r);
1652 		}
1653 		r.va += r.size;
1654 	}
1655 }
1656 
1657 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1658 			     size_t size_left, paddr_t block_size,
1659 			     struct tee_mmap_region *mm __maybe_unused)
1660 {
1661 	/* VA and PA are aligned to block size at current level */
1662 	if ((vaddr | paddr) & (block_size - 1))
1663 		return false;
1664 
1665 	/* Remainder fits into block at current level */
1666 	if (size_left < block_size)
1667 		return false;
1668 
1669 #ifdef CFG_WITH_PAGER
1670 	/*
1671 	 * If pager is enabled, we need to map tee ram
1672 	 * regions with small pages only
1673 	 */
1674 	if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE)
1675 		return false;
1676 #endif
1677 
1678 	return true;
1679 }
1680 
1681 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1682 {
1683 	struct core_mmu_table_info tbl_info;
1684 	unsigned int idx;
1685 	vaddr_t vaddr = mm->va;
1686 	paddr_t paddr = mm->pa;
1687 	ssize_t size_left = mm->size;
1688 	unsigned int level;
1689 	bool table_found;
1690 	uint32_t old_attr;
1691 
1692 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1693 
1694 	while (size_left > 0) {
1695 		level = CORE_MMU_BASE_TABLE_LEVEL;
1696 
1697 		while (true) {
1698 			paddr_t block_size = 0;
1699 
1700 			assert(level <= CORE_MMU_PGDIR_LEVEL);
1701 
1702 			table_found = core_mmu_find_table(prtn, vaddr, level,
1703 							  &tbl_info);
1704 			if (!table_found)
1705 				panic("can't find table for mapping");
1706 
1707 			block_size = BIT64(tbl_info.shift);
1708 
1709 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1710 			if (!can_map_at_level(paddr, vaddr, size_left,
1711 					      block_size, mm)) {
1712 				bool secure = mm->attr & TEE_MATTR_SECURE;
1713 
1714 				/*
1715 				 * This part of the region can't be mapped at
1716 				 * this level. Need to go deeper.
1717 				 */
1718 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1719 								     idx,
1720 								     secure))
1721 					panic("Can't divide MMU entry");
1722 				level++;
1723 				continue;
1724 			}
1725 
1726 			/* We can map part of the region at current level */
1727 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1728 			if (old_attr)
1729 				panic("Page is already mapped");
1730 
1731 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1732 			paddr += block_size;
1733 			vaddr += block_size;
1734 			size_left -= block_size;
1735 
1736 			break;
1737 		}
1738 	}
1739 }
1740 
1741 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1742 			      enum teecore_memtypes memtype)
1743 {
1744 	TEE_Result ret;
1745 	struct core_mmu_table_info tbl_info;
1746 	struct tee_mmap_region *mm;
1747 	unsigned int idx;
1748 	uint32_t old_attr;
1749 	uint32_t exceptions;
1750 	vaddr_t vaddr = vstart;
1751 	size_t i;
1752 	bool secure;
1753 
1754 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1755 
1756 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1757 
1758 	if (vaddr & SMALL_PAGE_MASK)
1759 		return TEE_ERROR_BAD_PARAMETERS;
1760 
1761 	exceptions = mmu_lock();
1762 
1763 	mm = find_map_by_va((void *)vaddr);
1764 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1765 		panic("VA does not belong to any known mm region");
1766 
1767 	if (!core_mmu_is_dynamic_vaspace(mm))
1768 		panic("Trying to map into static region");
1769 
1770 	for (i = 0; i < num_pages; i++) {
1771 		if (pages[i] & SMALL_PAGE_MASK) {
1772 			ret = TEE_ERROR_BAD_PARAMETERS;
1773 			goto err;
1774 		}
1775 
1776 		while (true) {
1777 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1778 						 &tbl_info))
1779 				panic("Can't find pagetable for vaddr ");
1780 
1781 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1782 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1783 				break;
1784 
1785 			/* This is supertable. Need to divide it. */
1786 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1787 							     secure))
1788 				panic("Failed to spread pgdir on small tables");
1789 		}
1790 
1791 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1792 		if (old_attr)
1793 			panic("Page is already mapped");
1794 
1795 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1796 				   core_mmu_type_to_attr(memtype));
1797 		vaddr += SMALL_PAGE_SIZE;
1798 	}
1799 
1800 	/*
1801 	 * Make sure all the changes to translation tables are visible
1802 	 * before returning. TLB doesn't need to be invalidated as we are
1803 	 * guaranteed that there's no valid mapping in this range.
1804 	 */
1805 	core_mmu_table_write_barrier();
1806 	mmu_unlock(exceptions);
1807 
1808 	return TEE_SUCCESS;
1809 err:
1810 	mmu_unlock(exceptions);
1811 
1812 	if (i)
1813 		core_mmu_unmap_pages(vstart, i);
1814 
1815 	return ret;
1816 }
1817 
1818 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
1819 					 size_t num_pages,
1820 					 enum teecore_memtypes memtype)
1821 {
1822 	struct core_mmu_table_info tbl_info = { };
1823 	struct tee_mmap_region *mm = NULL;
1824 	unsigned int idx = 0;
1825 	uint32_t old_attr = 0;
1826 	uint32_t exceptions = 0;
1827 	vaddr_t vaddr = vstart;
1828 	paddr_t paddr = pstart;
1829 	size_t i = 0;
1830 	bool secure = false;
1831 
1832 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1833 
1834 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1835 
1836 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
1837 		return TEE_ERROR_BAD_PARAMETERS;
1838 
1839 	exceptions = mmu_lock();
1840 
1841 	mm = find_map_by_va((void *)vaddr);
1842 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1843 		panic("VA does not belong to any known mm region");
1844 
1845 	if (!core_mmu_is_dynamic_vaspace(mm))
1846 		panic("Trying to map into static region");
1847 
1848 	for (i = 0; i < num_pages; i++) {
1849 		while (true) {
1850 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1851 						 &tbl_info))
1852 				panic("Can't find pagetable for vaddr ");
1853 
1854 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1855 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1856 				break;
1857 
1858 			/* This is supertable. Need to divide it. */
1859 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1860 							     secure))
1861 				panic("Failed to spread pgdir on small tables");
1862 		}
1863 
1864 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1865 		if (old_attr)
1866 			panic("Page is already mapped");
1867 
1868 		core_mmu_set_entry(&tbl_info, idx, paddr,
1869 				   core_mmu_type_to_attr(memtype));
1870 		paddr += SMALL_PAGE_SIZE;
1871 		vaddr += SMALL_PAGE_SIZE;
1872 	}
1873 
1874 	/*
1875 	 * Make sure all the changes to translation tables are visible
1876 	 * before returning. TLB doesn't need to be invalidated as we are
1877 	 * guaranteed that there's no valid mapping in this range.
1878 	 */
1879 	core_mmu_table_write_barrier();
1880 	mmu_unlock(exceptions);
1881 
1882 	return TEE_SUCCESS;
1883 }
1884 
1885 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
1886 {
1887 	struct core_mmu_table_info tbl_info;
1888 	struct tee_mmap_region *mm;
1889 	size_t i;
1890 	unsigned int idx;
1891 	uint32_t exceptions;
1892 
1893 	exceptions = mmu_lock();
1894 
1895 	mm = find_map_by_va((void *)vstart);
1896 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
1897 		panic("VA does not belong to any known mm region");
1898 
1899 	if (!core_mmu_is_dynamic_vaspace(mm))
1900 		panic("Trying to unmap static region");
1901 
1902 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
1903 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
1904 			panic("Can't find pagetable");
1905 
1906 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
1907 			panic("Invalid pagetable level");
1908 
1909 		idx = core_mmu_va2idx(&tbl_info, vstart);
1910 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
1911 	}
1912 	tlbi_all();
1913 
1914 	mmu_unlock(exceptions);
1915 }
1916 
1917 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
1918 				struct user_mode_ctx *uctx)
1919 {
1920 	struct core_mmu_table_info pg_info = { };
1921 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
1922 	struct pgt *pgt = NULL;
1923 	struct pgt *p = NULL;
1924 	struct vm_region *r = NULL;
1925 
1926 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
1927 		return; /* Nothing to map */
1928 
1929 	/*
1930 	 * Allocate all page tables in advance.
1931 	 */
1932 	pgt_get_all(uctx);
1933 	pgt = SLIST_FIRST(pgt_cache);
1934 
1935 	core_mmu_set_info_table(&pg_info, dir_info->level + 1, 0, NULL);
1936 
1937 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
1938 		set_pg_region(dir_info, r, &pgt, &pg_info);
1939 	/* Record that the translation tables now are populated. */
1940 	SLIST_FOREACH(p, pgt_cache, link) {
1941 		p->populated = true;
1942 		if (p == pgt)
1943 			break;
1944 	}
1945 	assert(p == pgt);
1946 }
1947 
1948 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
1949 				   size_t len)
1950 {
1951 	struct core_mmu_table_info tbl_info = { };
1952 	struct tee_mmap_region *res_map = NULL;
1953 	struct tee_mmap_region *map = NULL;
1954 	paddr_t pa = virt_to_phys(addr);
1955 	size_t granule = 0;
1956 	ptrdiff_t i = 0;
1957 	paddr_t p = 0;
1958 	size_t l = 0;
1959 
1960 	map = find_map_by_type_and_pa(type, pa, len);
1961 	if (!map)
1962 		return TEE_ERROR_GENERIC;
1963 
1964 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
1965 	if (!res_map)
1966 		return TEE_ERROR_GENERIC;
1967 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
1968 		return TEE_ERROR_GENERIC;
1969 	granule = BIT(tbl_info.shift);
1970 
1971 	if (map < static_memory_map ||
1972 	    map >= static_memory_map + ARRAY_SIZE(static_memory_map))
1973 		return TEE_ERROR_GENERIC;
1974 	i = map - static_memory_map;
1975 
1976 	/* Check that we have a full match */
1977 	p = ROUNDDOWN(pa, granule);
1978 	l = ROUNDUP(len + pa - p, granule);
1979 	if (map->pa != p || map->size != l)
1980 		return TEE_ERROR_GENERIC;
1981 
1982 	clear_region(&tbl_info, map);
1983 	tlbi_all();
1984 
1985 	/* If possible remove the va range from res_map */
1986 	if (res_map->va - map->size == map->va) {
1987 		res_map->va -= map->size;
1988 		res_map->size += map->size;
1989 	}
1990 
1991 	/* Remove the entry. */
1992 	memmove(map, map + 1,
1993 		(ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map));
1994 
1995 	/* Clear the last new entry in case it was used */
1996 	memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1,
1997 	       0, sizeof(*map));
1998 
1999 	return TEE_SUCCESS;
2000 }
2001 
2002 struct tee_mmap_region *
2003 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2004 {
2005 	struct tee_mmap_region *map = NULL;
2006 	struct tee_mmap_region *map_found = NULL;
2007 
2008 	if (!len)
2009 		return NULL;
2010 
2011 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
2012 		if (map->type != type)
2013 			continue;
2014 
2015 		if (map_found)
2016 			return NULL;
2017 
2018 		map_found = map;
2019 	}
2020 
2021 	if (!map_found || map_found->size < len)
2022 		return NULL;
2023 
2024 	return map_found;
2025 }
2026 
2027 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2028 {
2029 	struct core_mmu_table_info tbl_info;
2030 	struct tee_mmap_region *map;
2031 	size_t n;
2032 	size_t granule;
2033 	paddr_t p;
2034 	size_t l;
2035 
2036 	if (!len)
2037 		return NULL;
2038 
2039 	if (!core_mmu_check_end_pa(addr, len))
2040 		return NULL;
2041 
2042 	/* Check if the memory is already mapped */
2043 	map = find_map_by_type_and_pa(type, addr, len);
2044 	if (map && pbuf_inside_map_area(addr, len, map))
2045 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2046 
2047 	/* Find the reserved va space used for late mappings */
2048 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2049 	if (!map)
2050 		return NULL;
2051 
2052 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2053 		return NULL;
2054 
2055 	granule = BIT64(tbl_info.shift);
2056 	p = ROUNDDOWN(addr, granule);
2057 	l = ROUNDUP(len + addr - p, granule);
2058 
2059 	/* Ban overflowing virtual addresses */
2060 	if (map->size < l)
2061 		return NULL;
2062 
2063 	/*
2064 	 * Something is wrong, we can't fit the va range into the selected
2065 	 * table. The reserved va range is possibly missaligned with
2066 	 * granule.
2067 	 */
2068 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2069 		return NULL;
2070 
2071 	/* Find end of the memory map */
2072 	n = 0;
2073 	while (!core_mmap_is_end_of_table(static_memory_map + n))
2074 		n++;
2075 
2076 	if (n < (ARRAY_SIZE(static_memory_map) - 1)) {
2077 		/* There's room for another entry */
2078 		static_memory_map[n].va = map->va;
2079 		static_memory_map[n].size = l;
2080 		static_memory_map[n + 1].type = MEM_AREA_END;
2081 		map->va += l;
2082 		map->size -= l;
2083 		map = static_memory_map + n;
2084 	} else {
2085 		/*
2086 		 * There isn't room for another entry, steal the reserved
2087 		 * entry as it's not useful for anything else any longer.
2088 		 */
2089 		map->size = l;
2090 	}
2091 	map->type = type;
2092 	map->region_size = granule;
2093 	map->attr = core_mmu_type_to_attr(type);
2094 	map->pa = p;
2095 
2096 	set_region(&tbl_info, map);
2097 
2098 	/* Make sure the new entry is visible before continuing. */
2099 	core_mmu_table_write_barrier();
2100 
2101 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2102 }
2103 
2104 #ifdef CFG_WITH_PAGER
2105 static vaddr_t get_linear_map_end_va(void)
2106 {
2107 	/* this is synced with the generic linker file kern.ld.S */
2108 	return (vaddr_t)__heap2_end;
2109 }
2110 
2111 static paddr_t get_linear_map_end_pa(void)
2112 {
2113 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2114 }
2115 #endif
2116 
2117 #if defined(CFG_TEE_CORE_DEBUG)
2118 static void check_pa_matches_va(void *va, paddr_t pa)
2119 {
2120 	TEE_Result res = TEE_ERROR_GENERIC;
2121 	vaddr_t v = (vaddr_t)va;
2122 	paddr_t p = 0;
2123 	struct core_mmu_table_info ti __maybe_unused = { };
2124 
2125 	if (core_mmu_user_va_range_is_defined()) {
2126 		vaddr_t user_va_base = 0;
2127 		size_t user_va_size = 0;
2128 
2129 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2130 		if (v >= user_va_base &&
2131 		    v <= (user_va_base - 1 + user_va_size)) {
2132 			if (!core_mmu_user_mapping_is_active()) {
2133 				if (pa)
2134 					panic("issue in linear address space");
2135 				return;
2136 			}
2137 
2138 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2139 				       va, &p);
2140 			if (res == TEE_ERROR_NOT_SUPPORTED)
2141 				return;
2142 			if (res == TEE_SUCCESS && pa != p)
2143 				panic("bad pa");
2144 			if (res != TEE_SUCCESS && pa)
2145 				panic("false pa");
2146 			return;
2147 		}
2148 	}
2149 #ifdef CFG_WITH_PAGER
2150 	if (is_unpaged(va)) {
2151 		if (v - boot_mmu_config.map_offset != pa)
2152 			panic("issue in linear address space");
2153 		return;
2154 	}
2155 
2156 	if (tee_pager_get_table_info(v, &ti)) {
2157 		uint32_t a;
2158 
2159 		/*
2160 		 * Lookups in the page table managed by the pager is
2161 		 * dangerous for addresses in the paged area as those pages
2162 		 * changes all the time. But some ranges are safe,
2163 		 * rw-locked areas when the page is populated for instance.
2164 		 */
2165 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2166 		if (a & TEE_MATTR_VALID_BLOCK) {
2167 			paddr_t mask = BIT64(ti.shift) - 1;
2168 
2169 			p |= v & mask;
2170 			if (pa != p)
2171 				panic();
2172 		} else {
2173 			if (pa)
2174 				panic();
2175 		}
2176 		return;
2177 	}
2178 #endif
2179 
2180 	if (!core_va2pa_helper(va, &p)) {
2181 		/* Verfiy only the static mapping (case non null phys addr) */
2182 		if (p && pa != p) {
2183 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2184 			     va, p, pa);
2185 			panic();
2186 		}
2187 	} else {
2188 		if (pa) {
2189 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2190 			panic();
2191 		}
2192 	}
2193 }
2194 #else
2195 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2196 {
2197 }
2198 #endif
2199 
2200 paddr_t virt_to_phys(void *va)
2201 {
2202 	paddr_t pa = 0;
2203 
2204 	if (!arch_va2pa_helper(va, &pa))
2205 		pa = 0;
2206 	check_pa_matches_va(va, pa);
2207 	return pa;
2208 }
2209 
2210 #if defined(CFG_TEE_CORE_DEBUG)
2211 static void check_va_matches_pa(paddr_t pa, void *va)
2212 {
2213 	paddr_t p = 0;
2214 
2215 	if (!va)
2216 		return;
2217 
2218 	p = virt_to_phys(va);
2219 	if (p != pa) {
2220 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2221 		panic();
2222 	}
2223 }
2224 #else
2225 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2226 {
2227 }
2228 #endif
2229 
2230 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2231 {
2232 	if (!core_mmu_user_mapping_is_active())
2233 		return NULL;
2234 
2235 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2236 }
2237 
2238 #ifdef CFG_WITH_PAGER
2239 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2240 {
2241 	paddr_t end_pa = 0;
2242 
2243 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2244 		return NULL;
2245 
2246 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2247 		if (end_pa > get_linear_map_end_pa())
2248 			return NULL;
2249 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2250 	}
2251 
2252 	return tee_pager_phys_to_virt(pa, len);
2253 }
2254 #else
2255 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2256 {
2257 	struct tee_mmap_region *mmap = NULL;
2258 
2259 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2260 	if (!mmap)
2261 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2262 	if (!mmap)
2263 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2264 	if (!mmap)
2265 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2266 	if (!mmap)
2267 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2268 	if (!mmap)
2269 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2270 	/*
2271 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2272 	 * used with pager and not needed here.
2273 	 */
2274 	return map_pa2va(mmap, pa, len);
2275 }
2276 #endif
2277 
2278 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2279 {
2280 	void *va = NULL;
2281 
2282 	switch (m) {
2283 	case MEM_AREA_TS_VASPACE:
2284 		va = phys_to_virt_ts_vaspace(pa, len);
2285 		break;
2286 	case MEM_AREA_TEE_RAM:
2287 	case MEM_AREA_TEE_RAM_RX:
2288 	case MEM_AREA_TEE_RAM_RO:
2289 	case MEM_AREA_TEE_RAM_RW:
2290 	case MEM_AREA_NEX_RAM_RO:
2291 	case MEM_AREA_NEX_RAM_RW:
2292 		va = phys_to_virt_tee_ram(pa, len);
2293 		break;
2294 	case MEM_AREA_SHM_VASPACE:
2295 		/* Find VA from PA in dynamic SHM is not yet supported */
2296 		va = NULL;
2297 		break;
2298 	default:
2299 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2300 	}
2301 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2302 		check_va_matches_pa(pa, va);
2303 	return va;
2304 }
2305 
2306 void *phys_to_virt_io(paddr_t pa, size_t len)
2307 {
2308 	struct tee_mmap_region *map = NULL;
2309 	void *va = NULL;
2310 
2311 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2312 	if (!map)
2313 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2314 	if (!map)
2315 		return NULL;
2316 	va = map_pa2va(map, pa, len);
2317 	check_va_matches_pa(pa, va);
2318 	return va;
2319 }
2320 
2321 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2322 {
2323 	if (cpu_mmu_enabled())
2324 		return (vaddr_t)phys_to_virt(pa, type, len);
2325 
2326 	return (vaddr_t)pa;
2327 }
2328 
2329 #ifdef CFG_WITH_PAGER
2330 bool is_unpaged(void *va)
2331 {
2332 	vaddr_t v = (vaddr_t)va;
2333 
2334 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2335 }
2336 #else
2337 bool is_unpaged(void *va __unused)
2338 {
2339 	return true;
2340 }
2341 #endif
2342 
2343 void core_mmu_init_virtualization(void)
2344 {
2345 	paddr_t b1 = 0;
2346 	paddr_size_t s1 = 0;
2347 
2348 	static_assert(ARRAY_SIZE(secure_only) <= 2);
2349 	if (ARRAY_SIZE(secure_only) == 2) {
2350 		b1 = secure_only[1].paddr;
2351 		s1 = secure_only[1].size;
2352 	}
2353 	virt_init_memory(static_memory_map, secure_only[0].paddr,
2354 			 secure_only[0].size, b1, s1);
2355 }
2356 
2357 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2358 {
2359 	assert(p->pa);
2360 	if (cpu_mmu_enabled()) {
2361 		if (!p->va)
2362 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2363 		assert(p->va);
2364 		return p->va;
2365 	}
2366 	return p->pa;
2367 }
2368 
2369 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2370 {
2371 	assert(p->pa);
2372 	if (cpu_mmu_enabled()) {
2373 		if (!p->va)
2374 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2375 						      len);
2376 		assert(p->va);
2377 		return p->va;
2378 	}
2379 	return p->pa;
2380 }
2381 
2382 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2383 {
2384 	assert(p->pa);
2385 	if (cpu_mmu_enabled()) {
2386 		if (!p->va)
2387 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2388 						      len);
2389 		assert(p->va);
2390 		return p->va;
2391 	}
2392 	return p->pa;
2393 }
2394 
2395 #ifdef CFG_CORE_RESERVED_SHM
2396 static TEE_Result teecore_init_pub_ram(void)
2397 {
2398 	vaddr_t s = 0;
2399 	vaddr_t e = 0;
2400 
2401 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2402 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2403 
2404 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2405 		panic("invalid PUB RAM");
2406 
2407 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2408 	if (!tee_vbuf_is_non_sec(s, e - s))
2409 		panic("PUB RAM is not non-secure");
2410 
2411 #ifdef CFG_PL310
2412 	/* Allocate statically the l2cc mutex */
2413 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2414 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2415 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2416 #endif
2417 
2418 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2419 	default_nsec_shm_size = e - s;
2420 
2421 	return TEE_SUCCESS;
2422 }
2423 early_init(teecore_init_pub_ram);
2424 #endif /*CFG_CORE_RESERVED_SHM*/
2425 
2426 void core_mmu_init_ta_ram(void)
2427 {
2428 	vaddr_t s = 0;
2429 	vaddr_t e = 0;
2430 	paddr_t ps = 0;
2431 	size_t size = 0;
2432 
2433 	/*
2434 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2435 	 * shared mem allocated from teecore.
2436 	 */
2437 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
2438 		virt_get_ta_ram(&s, &e);
2439 	else
2440 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2441 
2442 	ps = virt_to_phys((void *)s);
2443 	size = e - s;
2444 
2445 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2446 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2447 		panic("invalid TA RAM");
2448 
2449 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2450 	if (!tee_pbuf_is_sec(ps, size))
2451 		panic("TA RAM is not secure");
2452 
2453 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2454 		panic("TA RAM pool is not empty");
2455 
2456 	/* remove previous config and init TA ddr memory pool */
2457 	tee_mm_final(&tee_mm_sec_ddr);
2458 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2459 		    TEE_MM_POOL_NO_FLAGS);
2460 }
2461