xref: /optee_os/core/mm/core_mmu.c (revision 021fee0affe5db6f1f713fea1119350a7433baea)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <memtag.h>
22 #include <mm/core_memprot.h>
23 #include <mm/core_mmu.h>
24 #include <mm/mobj.h>
25 #include <mm/pgt_cache.h>
26 #include <mm/tee_pager.h>
27 #include <mm/vm.h>
28 #include <platform_config.h>
29 #include <stdalign.h>
30 #include <string.h>
31 #include <trace.h>
32 #include <util.h>
33 
34 #ifndef DEBUG_XLAT_TABLE
35 #define DEBUG_XLAT_TABLE 0
36 #endif
37 
38 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
39 
40 /* Physical Secure DDR pool */
41 tee_mm_pool_t tee_mm_sec_ddr;
42 
43 /* Virtual memory pool for core mappings */
44 tee_mm_pool_t core_virt_mem_pool;
45 
46 /* Virtual memory pool for shared memory mappings */
47 tee_mm_pool_t core_virt_shm_pool;
48 
49 #ifdef CFG_CORE_PHYS_RELOCATABLE
50 unsigned long core_mmu_tee_load_pa __nex_bss;
51 #else
52 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
53 #endif
54 
55 /*
56  * These variables are initialized before .bss is cleared. To avoid
57  * resetting them when .bss is cleared we're storing them in .data instead,
58  * even if they initially are zero.
59  */
60 
61 #ifdef CFG_CORE_RESERVED_SHM
62 /* Default NSec shared memory allocated from NSec world */
63 unsigned long default_nsec_shm_size __nex_bss;
64 unsigned long default_nsec_shm_paddr __nex_bss;
65 #endif
66 
67 static struct tee_mmap_region static_mmap_regions[CFG_MMAP_REGIONS
68 #if defined(CFG_CORE_ASLR) || defined(CFG_CORE_PHYS_RELOCATABLE)
69 						+ 1
70 #endif
71 						+ 1] __nex_bss;
72 static struct memory_map static_memory_map __nex_data = {
73 	.map = static_mmap_regions,
74 	.alloc_count = ARRAY_SIZE(static_mmap_regions),
75 };
76 
77 /* Define the platform's memory layout. */
78 struct memaccess_area {
79 	paddr_t paddr;
80 	size_t size;
81 };
82 
83 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
84 
85 static struct memaccess_area secure_only[] __nex_data = {
86 #ifdef CFG_CORE_PHYS_RELOCATABLE
87 	MEMACCESS_AREA(0, 0),
88 #else
89 #ifdef TRUSTED_SRAM_BASE
90 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
91 #endif
92 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
93 #endif
94 };
95 
96 static struct memaccess_area nsec_shared[] __nex_data = {
97 #ifdef CFG_CORE_RESERVED_SHM
98 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
99 #endif
100 };
101 
102 #if defined(CFG_SECURE_DATA_PATH)
103 static const char *tz_sdp_match = "linaro,secure-heap";
104 static struct memaccess_area sec_sdp;
105 #ifdef CFG_TEE_SDP_MEM_BASE
106 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
107 #endif
108 #ifdef TEE_SDP_TEST_MEM_BASE
109 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
110 #endif
111 #endif
112 
113 #ifdef CFG_CORE_RESERVED_SHM
114 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
115 #endif
116 static unsigned int mmu_spinlock;
117 
118 static uint32_t mmu_lock(void)
119 {
120 	return cpu_spin_lock_xsave(&mmu_spinlock);
121 }
122 
123 static void mmu_unlock(uint32_t exceptions)
124 {
125 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
126 }
127 
128 static void grow_mem_map(struct memory_map *mem_map)
129 {
130 	if (mem_map->count == mem_map->alloc_count) {
131 		EMSG("Out of entries (%zu) in mem_map", mem_map->alloc_count);
132 		panic();
133 	}
134 	mem_map->count++;
135 }
136 
137 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
138 {
139 	/*
140 	 * The first range is always used to cover OP-TEE core memory, but
141 	 * depending on configuration it may cover more than that.
142 	 */
143 	*base = secure_only[0].paddr;
144 	*size = secure_only[0].size;
145 }
146 
147 void core_mmu_set_secure_memory(paddr_t base, size_t size)
148 {
149 #ifdef CFG_CORE_PHYS_RELOCATABLE
150 	static_assert(ARRAY_SIZE(secure_only) == 1);
151 #endif
152 	runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE));
153 	assert(!secure_only[0].size);
154 	assert(base && size);
155 
156 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
157 	secure_only[0].paddr = base;
158 	secure_only[0].size = size;
159 }
160 
161 void core_mmu_get_ta_range(paddr_t *base, size_t *size)
162 {
163 	paddr_t b = 0;
164 	size_t s = 0;
165 
166 	static_assert(!(TEE_RAM_VA_SIZE % SMALL_PAGE_SIZE));
167 #ifdef TA_RAM_START
168 	b = TA_RAM_START;
169 	s = TA_RAM_SIZE;
170 #else
171 	static_assert(ARRAY_SIZE(secure_only) <= 2);
172 	if (ARRAY_SIZE(secure_only) == 1) {
173 		vaddr_t load_offs = 0;
174 
175 		assert(core_mmu_tee_load_pa >= secure_only[0].paddr);
176 		load_offs = core_mmu_tee_load_pa - secure_only[0].paddr;
177 
178 		assert(secure_only[0].size >
179 		       load_offs + TEE_RAM_VA_SIZE + TEE_SDP_TEST_MEM_SIZE);
180 		b = secure_only[0].paddr + load_offs + TEE_RAM_VA_SIZE;
181 		s = secure_only[0].size - load_offs - TEE_RAM_VA_SIZE -
182 		    TEE_SDP_TEST_MEM_SIZE;
183 	} else {
184 		assert(secure_only[1].size > TEE_SDP_TEST_MEM_SIZE);
185 		b = secure_only[1].paddr;
186 		s = secure_only[1].size - TEE_SDP_TEST_MEM_SIZE;
187 	}
188 #endif
189 	if (base)
190 		*base = b;
191 	if (size)
192 		*size = s;
193 }
194 
195 static struct memory_map *get_memory_map(void)
196 {
197 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
198 		struct memory_map *map = virt_get_memory_map();
199 
200 		if (map)
201 			return map;
202 	}
203 
204 	return &static_memory_map;
205 }
206 
207 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
208 			     paddr_t pa, size_t size)
209 {
210 	size_t n;
211 
212 	for (n = 0; n < alen; n++)
213 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
214 			return true;
215 	return false;
216 }
217 
218 #define pbuf_intersects(a, pa, size) \
219 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
220 
221 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
222 			    paddr_t pa, size_t size)
223 {
224 	size_t n;
225 
226 	for (n = 0; n < alen; n++)
227 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
228 			return true;
229 	return false;
230 }
231 
232 #define pbuf_is_inside(a, pa, size) \
233 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
234 
235 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
236 {
237 	paddr_t end_pa = 0;
238 
239 	if (!map)
240 		return false;
241 
242 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
243 		return false;
244 
245 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
246 }
247 
248 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
249 {
250 	if (!map)
251 		return false;
252 	return (va >= map->va && va <= (map->va + map->size - 1));
253 }
254 
255 /* check if target buffer fits in a core default map area */
256 static bool pbuf_inside_map_area(unsigned long p, size_t l,
257 				 struct tee_mmap_region *map)
258 {
259 	return core_is_buffer_inside(p, l, map->pa, map->size);
260 }
261 
262 TEE_Result core_mmu_for_each_map(void *ptr,
263 				 TEE_Result (*fn)(struct tee_mmap_region *map,
264 						  void *ptr))
265 {
266 	struct memory_map *mem_map = get_memory_map();
267 	TEE_Result res = TEE_SUCCESS;
268 	size_t n = 0;
269 
270 	for (n = 0; n < mem_map->count; n++) {
271 		res = fn(mem_map->map + n, ptr);
272 		if (res)
273 			return res;
274 	}
275 
276 	return TEE_SUCCESS;
277 }
278 
279 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
280 {
281 	struct memory_map *mem_map = get_memory_map();
282 	size_t n = 0;
283 
284 	for (n = 0; n < mem_map->count; n++) {
285 		if (mem_map->map[n].type == type)
286 			return mem_map->map + n;
287 	}
288 	return NULL;
289 }
290 
291 static struct tee_mmap_region *
292 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
293 {
294 	struct memory_map *mem_map = get_memory_map();
295 	size_t n = 0;
296 
297 	for (n = 0; n < mem_map->count; n++) {
298 		if (mem_map->map[n].type != type)
299 			continue;
300 		if (pa_is_in_map(mem_map->map + n, pa, len))
301 			return mem_map->map + n;
302 	}
303 	return NULL;
304 }
305 
306 static struct tee_mmap_region *find_map_by_va(void *va)
307 {
308 	struct memory_map *mem_map = get_memory_map();
309 	vaddr_t a = (vaddr_t)va;
310 	size_t n = 0;
311 
312 	for (n = 0; n < mem_map->count; n++) {
313 		if (a >= mem_map->map[n].va &&
314 		    a <= (mem_map->map[n].va - 1 + mem_map->map[n].size))
315 			return mem_map->map + n;
316 	}
317 
318 	return NULL;
319 }
320 
321 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
322 {
323 	struct memory_map *mem_map = get_memory_map();
324 	size_t n = 0;
325 
326 	for (n = 0; n < mem_map->count; n++) {
327 		/* Skip unmapped regions */
328 		if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) &&
329 		    pa >= mem_map->map[n].pa &&
330 		    pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size))
331 			return mem_map->map + n;
332 	}
333 
334 	return NULL;
335 }
336 
337 #if defined(CFG_SECURE_DATA_PATH)
338 static bool dtb_get_sdp_region(void)
339 {
340 	void *fdt = NULL;
341 	int node = 0;
342 	int tmp_node = 0;
343 	paddr_t tmp_addr = 0;
344 	size_t tmp_size = 0;
345 
346 	if (!IS_ENABLED(CFG_EMBED_DTB))
347 		return false;
348 
349 	fdt = get_embedded_dt();
350 	if (!fdt)
351 		panic("No DTB found");
352 
353 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
354 	if (node < 0) {
355 		DMSG("No %s compatible node found", tz_sdp_match);
356 		return false;
357 	}
358 	tmp_node = node;
359 	while (tmp_node >= 0) {
360 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
361 							 tz_sdp_match);
362 		if (tmp_node >= 0)
363 			DMSG("Ignore SDP pool node %s, supports only 1 node",
364 			     fdt_get_name(fdt, tmp_node, NULL));
365 	}
366 
367 	tmp_addr = fdt_reg_base_address(fdt, node);
368 	if (tmp_addr == DT_INFO_INVALID_REG) {
369 		EMSG("%s: Unable to get base addr from DT", tz_sdp_match);
370 		return false;
371 	}
372 
373 	tmp_size = fdt_reg_size(fdt, node);
374 	if (tmp_size == DT_INFO_INVALID_REG_SIZE) {
375 		EMSG("%s: Unable to get size of base addr from DT",
376 		     tz_sdp_match);
377 		return false;
378 	}
379 
380 	sec_sdp.paddr = tmp_addr;
381 	sec_sdp.size = tmp_size;
382 
383 	return true;
384 }
385 #endif
386 
387 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
388 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
389 				const struct core_mmu_phys_mem *start,
390 				const struct core_mmu_phys_mem *end)
391 {
392 	const struct core_mmu_phys_mem *mem;
393 
394 	for (mem = start; mem < end; mem++) {
395 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
396 			return true;
397 	}
398 
399 	return false;
400 }
401 #endif
402 
403 #ifdef CFG_CORE_DYN_SHM
404 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
405 			       paddr_t pa, size_t size)
406 {
407 	struct core_mmu_phys_mem *m = *mem;
408 	size_t n = 0;
409 
410 	while (true) {
411 		if (n >= *nelems) {
412 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
413 			     pa, size);
414 			return;
415 		}
416 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
417 			break;
418 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
419 			panic();
420 		n++;
421 	}
422 
423 	if (pa == m[n].addr && size == m[n].size) {
424 		/* Remove this entry */
425 		(*nelems)--;
426 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
427 		m = nex_realloc(m, sizeof(*m) * *nelems);
428 		if (!m)
429 			panic();
430 		*mem = m;
431 	} else if (pa == m[n].addr) {
432 		m[n].addr += size;
433 		m[n].size -= size;
434 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
435 		m[n].size -= size;
436 	} else {
437 		/* Need to split the memory entry */
438 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
439 		if (!m)
440 			panic();
441 		*mem = m;
442 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
443 		(*nelems)++;
444 		m[n].size = pa - m[n].addr;
445 		m[n + 1].size -= size + m[n].size;
446 		m[n + 1].addr = pa + size;
447 	}
448 }
449 
450 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
451 				      size_t nelems,
452 				      struct tee_mmap_region *map)
453 {
454 	size_t n;
455 
456 	for (n = 0; n < nelems; n++) {
457 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
458 					    map->pa, map->size)) {
459 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
460 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
461 			     start[n].addr, start[n].size,
462 			     map->type, map->pa, map->size);
463 			panic();
464 		}
465 	}
466 }
467 
468 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
469 static size_t discovered_nsec_ddr_nelems __nex_bss;
470 
471 static int cmp_pmem_by_addr(const void *a, const void *b)
472 {
473 	const struct core_mmu_phys_mem *pmem_a = a;
474 	const struct core_mmu_phys_mem *pmem_b = b;
475 
476 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
477 }
478 
479 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
480 				      size_t nelems)
481 {
482 	struct core_mmu_phys_mem *m = start;
483 	size_t num_elems = nelems;
484 	struct memory_map *mem_map = &static_memory_map;
485 	const struct core_mmu_phys_mem __maybe_unused *pmem;
486 	size_t n = 0;
487 
488 	assert(!discovered_nsec_ddr_start);
489 	assert(m && num_elems);
490 
491 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
492 
493 	/*
494 	 * Non-secure shared memory and also secure data
495 	 * path memory are supposed to reside inside
496 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
497 	 * are used for a specific purpose make holes for
498 	 * those memory in the normal non-secure memory.
499 	 *
500 	 * This has to be done since for instance QEMU
501 	 * isn't aware of which memory range in the
502 	 * non-secure memory is used for NSEC_SHM.
503 	 */
504 
505 #ifdef CFG_SECURE_DATA_PATH
506 	if (dtb_get_sdp_region())
507 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
508 
509 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
510 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
511 #endif
512 
513 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
514 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
515 				   secure_only[n].size);
516 
517 	for  (n = 0; n < mem_map->count; n++) {
518 		switch (mem_map->map[n].type) {
519 		case MEM_AREA_NSEC_SHM:
520 			carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa,
521 					   mem_map->map[n].size);
522 			break;
523 		case MEM_AREA_EXT_DT:
524 		case MEM_AREA_MANIFEST_DT:
525 		case MEM_AREA_RAM_NSEC:
526 		case MEM_AREA_RES_VASPACE:
527 		case MEM_AREA_SHM_VASPACE:
528 		case MEM_AREA_TS_VASPACE:
529 		case MEM_AREA_PAGER_VASPACE:
530 			break;
531 		default:
532 			check_phys_mem_is_outside(m, num_elems,
533 						  mem_map->map + n);
534 		}
535 	}
536 
537 	discovered_nsec_ddr_start = m;
538 	discovered_nsec_ddr_nelems = num_elems;
539 
540 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
541 				   m[num_elems - 1].size))
542 		panic();
543 }
544 
545 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
546 				    const struct core_mmu_phys_mem **end)
547 {
548 	if (!discovered_nsec_ddr_start)
549 		return false;
550 
551 	*start = discovered_nsec_ddr_start;
552 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
553 
554 	return true;
555 }
556 
557 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
558 {
559 	const struct core_mmu_phys_mem *start;
560 	const struct core_mmu_phys_mem *end;
561 
562 	if (!get_discovered_nsec_ddr(&start, &end))
563 		return false;
564 
565 	return pbuf_is_special_mem(pbuf, len, start, end);
566 }
567 
568 bool core_mmu_nsec_ddr_is_defined(void)
569 {
570 	const struct core_mmu_phys_mem *start;
571 	const struct core_mmu_phys_mem *end;
572 
573 	if (!get_discovered_nsec_ddr(&start, &end))
574 		return false;
575 
576 	return start != end;
577 }
578 #else
579 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
580 {
581 	return false;
582 }
583 #endif /*CFG_CORE_DYN_SHM*/
584 
585 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
586 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
587 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
588 
589 #ifdef CFG_SECURE_DATA_PATH
590 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
591 {
592 	bool is_sdp_mem = false;
593 
594 	if (sec_sdp.size)
595 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
596 						   sec_sdp.size);
597 
598 	if (!is_sdp_mem)
599 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
600 						 phys_sdp_mem_end);
601 
602 	return is_sdp_mem;
603 }
604 
605 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
606 {
607 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
608 					    CORE_MEM_SDP_MEM);
609 
610 	if (!mobj)
611 		panic("can't create SDP physical memory object");
612 
613 	return mobj;
614 }
615 
616 struct mobj **core_sdp_mem_create_mobjs(void)
617 {
618 	const struct core_mmu_phys_mem *mem = NULL;
619 	struct mobj **mobj_base = NULL;
620 	struct mobj **mobj = NULL;
621 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
622 
623 	if (sec_sdp.size)
624 		cnt++;
625 
626 	/* SDP mobjs table must end with a NULL entry */
627 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
628 	if (!mobj_base)
629 		panic("Out of memory");
630 
631 	mobj = mobj_base;
632 
633 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
634 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
635 
636 	if (sec_sdp.size)
637 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
638 
639 	return mobj_base;
640 }
641 
642 #else /* CFG_SECURE_DATA_PATH */
643 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
644 {
645 	return false;
646 }
647 
648 #endif /* CFG_SECURE_DATA_PATH */
649 
650 /* Check special memories comply with registered memories */
651 static void verify_special_mem_areas(struct memory_map *mem_map,
652 				     const struct core_mmu_phys_mem *start,
653 				     const struct core_mmu_phys_mem *end,
654 				     const char *area_name __maybe_unused)
655 {
656 	const struct core_mmu_phys_mem *mem = NULL;
657 	const struct core_mmu_phys_mem *mem2 = NULL;
658 	size_t n = 0;
659 
660 	if (start == end) {
661 		DMSG("No %s memory area defined", area_name);
662 		return;
663 	}
664 
665 	for (mem = start; mem < end; mem++)
666 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
667 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
668 
669 	/* Check memories do not intersect each other */
670 	for (mem = start; mem + 1 < end; mem++) {
671 		for (mem2 = mem + 1; mem2 < end; mem2++) {
672 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
673 						     mem->addr, mem->size)) {
674 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
675 						   mem->addr, mem->size);
676 				panic("Special memory intersection");
677 			}
678 		}
679 	}
680 
681 	/*
682 	 * Check memories do not intersect any mapped memory.
683 	 * This is called before reserved VA space is loaded in mem_map.
684 	 */
685 	for (mem = start; mem < end; mem++) {
686 		for (n = 0; n < mem_map->count; n++) {
687 			if (core_is_buffer_intersect(mem->addr, mem->size,
688 						     mem_map->map[n].pa,
689 						     mem_map->map[n].size)) {
690 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
691 						   mem_map->map[n].pa,
692 						   mem_map->map[n].size);
693 				panic("Special memory intersection");
694 			}
695 		}
696 	}
697 }
698 
699 static void merge_mmaps(struct tee_mmap_region *dst,
700 			const struct tee_mmap_region *src)
701 {
702 	paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1);
703 	paddr_t pa = MIN(dst->pa, src->pa);
704 
705 	DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA,
706 	     dst->pa, dst->pa + dst->size - 1, src->pa,
707 	     src->pa + src->size - 1);
708 	dst->pa = pa;
709 	dst->size = end_pa - pa + 1;
710 }
711 
712 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1,
713 				const struct tee_mmap_region *r2)
714 {
715 	if (r1->type != r2->type)
716 		return false;
717 
718 	if (r1->pa == r2->pa)
719 		return true;
720 
721 	if (r1->pa < r2->pa)
722 		return r1->pa + r1->size >= r2->pa;
723 	else
724 		return r2->pa + r2->size >= r1->pa;
725 }
726 
727 static void add_phys_mem(struct memory_map *mem_map,
728 			 const char *mem_name __maybe_unused,
729 			 enum teecore_memtypes mem_type,
730 			 paddr_t mem_addr, paddr_size_t mem_size)
731 {
732 	size_t n = 0;
733 	const struct tee_mmap_region m0 = {
734 		.type = mem_type,
735 		.pa = mem_addr,
736 		.size = mem_size,
737 	};
738 
739 	if (!mem_size)	/* Discard null size entries */
740 		return;
741 
742 	/*
743 	 * If some ranges of memory of the same type do overlap
744 	 * each others they are coalesced into one entry. To help this
745 	 * added entries are sorted by increasing physical.
746 	 *
747 	 * Note that it's valid to have the same physical memory as several
748 	 * different memory types, for instance the same device memory
749 	 * mapped as both secure and non-secure. This will probably not
750 	 * happen often in practice.
751 	 */
752 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
753 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
754 	for  (n = 0; n < mem_map->count; n++) {
755 		if (mmaps_are_mergeable(mem_map->map + n, &m0)) {
756 			merge_mmaps(mem_map->map + n, &m0);
757 			/*
758 			 * The merged result might be mergeable with the
759 			 * next or previous entry.
760 			 */
761 			if (n + 1 < mem_map->count &&
762 			    mmaps_are_mergeable(mem_map->map + n,
763 						mem_map->map + n + 1)) {
764 				merge_mmaps(mem_map->map + n,
765 					    mem_map->map + n + 1);
766 				rem_array_elem(mem_map->map, mem_map->count,
767 					       sizeof(*mem_map->map), n + 1);
768 				mem_map->count--;
769 			}
770 			if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1,
771 							 mem_map->map + n)) {
772 				merge_mmaps(mem_map->map + n - 1,
773 					    mem_map->map + n);
774 				rem_array_elem(mem_map->map, mem_map->count,
775 					       sizeof(*mem_map->map), n);
776 				mem_map->count--;
777 			}
778 			return;
779 		}
780 		if (mem_type < mem_map->map[n].type ||
781 		    (mem_type == mem_map->map[n].type &&
782 		     mem_addr < mem_map->map[n].pa))
783 			break; /* found the spot where to insert this memory */
784 	}
785 
786 	grow_mem_map(mem_map);
787 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
788 		       n, &m0);
789 }
790 
791 static void add_va_space(struct memory_map *mem_map,
792 			 enum teecore_memtypes type, size_t size)
793 {
794 	size_t n = 0;
795 
796 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
797 	for  (n = 0; n < mem_map->count; n++) {
798 		if (type < mem_map->map[n].type)
799 			break;
800 	}
801 
802 	grow_mem_map(mem_map);
803 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
804 		       n, NULL);
805 	mem_map->map[n] = (struct tee_mmap_region){
806 		.type = type,
807 		.size = size,
808 	};
809 }
810 
811 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
812 {
813 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
814 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
815 				TEE_MATTR_MEM_TYPE_SHIFT;
816 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
817 				TEE_MATTR_MEM_TYPE_SHIFT;
818 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
819 				  TEE_MATTR_MEM_TYPE_SHIFT;
820 
821 	switch (t) {
822 	case MEM_AREA_TEE_RAM:
823 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
824 	case MEM_AREA_TEE_RAM_RX:
825 	case MEM_AREA_INIT_RAM_RX:
826 	case MEM_AREA_IDENTITY_MAP_RX:
827 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
828 	case MEM_AREA_TEE_RAM_RO:
829 	case MEM_AREA_INIT_RAM_RO:
830 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
831 	case MEM_AREA_TEE_RAM_RW:
832 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
833 	case MEM_AREA_NEX_RAM_RW:
834 	case MEM_AREA_TEE_ASAN:
835 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
836 	case MEM_AREA_TEE_COHERENT:
837 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
838 	case MEM_AREA_TA_RAM:
839 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
840 	case MEM_AREA_NSEC_SHM:
841 	case MEM_AREA_NEX_NSEC_SHM:
842 		return attr | TEE_MATTR_PRW | cached;
843 	case MEM_AREA_MANIFEST_DT:
844 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
845 	case MEM_AREA_TRANSFER_LIST:
846 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
847 	case MEM_AREA_EXT_DT:
848 		/*
849 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
850 		 * tree as secure non-cached memory, otherwise, fall back to
851 		 * non-secure mapping.
852 		 */
853 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
854 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
855 			       noncache;
856 		fallthrough;
857 	case MEM_AREA_IO_NSEC:
858 		return attr | TEE_MATTR_PRW | noncache;
859 	case MEM_AREA_IO_SEC:
860 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
861 	case MEM_AREA_RAM_NSEC:
862 		return attr | TEE_MATTR_PRW | cached;
863 	case MEM_AREA_RAM_SEC:
864 	case MEM_AREA_SEC_RAM_OVERALL:
865 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
866 	case MEM_AREA_ROM_SEC:
867 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
868 	case MEM_AREA_RES_VASPACE:
869 	case MEM_AREA_SHM_VASPACE:
870 		return 0;
871 	case MEM_AREA_PAGER_VASPACE:
872 		return TEE_MATTR_SECURE;
873 	default:
874 		panic("invalid type");
875 	}
876 }
877 
878 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
879 {
880 	switch (mm->type) {
881 	case MEM_AREA_TEE_RAM:
882 	case MEM_AREA_TEE_RAM_RX:
883 	case MEM_AREA_TEE_RAM_RO:
884 	case MEM_AREA_TEE_RAM_RW:
885 	case MEM_AREA_INIT_RAM_RX:
886 	case MEM_AREA_INIT_RAM_RO:
887 	case MEM_AREA_NEX_RAM_RW:
888 	case MEM_AREA_NEX_RAM_RO:
889 	case MEM_AREA_TEE_ASAN:
890 		return true;
891 	default:
892 		return false;
893 	}
894 }
895 
896 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
897 {
898 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
899 }
900 
901 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
902 {
903 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
904 }
905 
906 static int cmp_mmap_by_lower_va(const void *a, const void *b)
907 {
908 	const struct tee_mmap_region *mm_a = a;
909 	const struct tee_mmap_region *mm_b = b;
910 
911 	return CMP_TRILEAN(mm_a->va, mm_b->va);
912 }
913 
914 static void dump_mmap_table(struct memory_map *mem_map)
915 {
916 	size_t n = 0;
917 
918 	for (n = 0; n < mem_map->count; n++) {
919 		struct tee_mmap_region *map = mem_map->map + n;
920 		vaddr_t __maybe_unused vstart;
921 
922 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
923 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
924 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
925 		     teecore_memtype_name(map->type), vstart,
926 		     vstart + map->size - 1, map->pa,
927 		     (paddr_t)(map->pa + map->size - 1), map->size,
928 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
929 	}
930 }
931 
932 #if DEBUG_XLAT_TABLE
933 
934 static void dump_xlat_table(vaddr_t va, unsigned int level)
935 {
936 	struct core_mmu_table_info tbl_info;
937 	unsigned int idx = 0;
938 	paddr_t pa;
939 	uint32_t attr;
940 
941 	core_mmu_find_table(NULL, va, level, &tbl_info);
942 	va = tbl_info.va_base;
943 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
944 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
945 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
946 			const char *security_bit = "";
947 
948 			if (core_mmu_entry_have_security_bit(attr)) {
949 				if (attr & TEE_MATTR_SECURE)
950 					security_bit = "S";
951 				else
952 					security_bit = "NS";
953 			}
954 
955 			if (attr & TEE_MATTR_TABLE) {
956 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
957 					" TBL:0x%010" PRIxPA " %s",
958 					level * 2, "", level, va, pa,
959 					security_bit);
960 				dump_xlat_table(va, level + 1);
961 			} else if (attr) {
962 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
963 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
964 					level * 2, "", level, va, pa,
965 					mattr_is_cached(attr) ? "MEM" :
966 					"DEV",
967 					attr & TEE_MATTR_PW ? "RW" : "RO",
968 					attr & TEE_MATTR_PX ? "X " : "XN",
969 					security_bit);
970 			} else {
971 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
972 					    " INVALID\n",
973 					    level * 2, "", level, va);
974 			}
975 		}
976 		va += BIT64(tbl_info.shift);
977 	}
978 }
979 
980 #else
981 
982 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
983 {
984 }
985 
986 #endif
987 
988 /*
989  * Reserves virtual memory space for pager usage.
990  *
991  * From the start of the first memory used by the link script +
992  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
993  * mapping for pager usage. This adds translation tables as needed for the
994  * pager to operate.
995  */
996 static void add_pager_vaspace(struct memory_map *mem_map)
997 {
998 	paddr_t begin = 0;
999 	paddr_t end = 0;
1000 	size_t size = 0;
1001 	size_t pos = 0;
1002 	size_t n = 0;
1003 
1004 
1005 	for (n = 0; n < mem_map->count; n++) {
1006 		if (map_is_tee_ram(mem_map->map + n)) {
1007 			if (!begin)
1008 				begin = mem_map->map[n].pa;
1009 			pos = n + 1;
1010 		}
1011 	}
1012 
1013 	end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size;
1014 	assert(end - begin < TEE_RAM_VA_SIZE);
1015 	size = TEE_RAM_VA_SIZE - (end - begin);
1016 
1017 	grow_mem_map(mem_map);
1018 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
1019 		       n, NULL);
1020 	mem_map->map[n] = (struct tee_mmap_region){
1021 		.type = MEM_AREA_PAGER_VASPACE,
1022 		.size = size,
1023 		.region_size = SMALL_PAGE_SIZE,
1024 		.attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE),
1025 	};
1026 }
1027 
1028 static void check_sec_nsec_mem_config(void)
1029 {
1030 	size_t n = 0;
1031 
1032 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
1033 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
1034 				    secure_only[n].size))
1035 			panic("Invalid memory access config: sec/nsec");
1036 	}
1037 }
1038 
1039 static void collect_device_mem_ranges(struct memory_map *mem_map)
1040 {
1041 	const char *compatible = "arm,ffa-manifest-device-regions";
1042 	void *fdt = get_manifest_dt();
1043 	const char *name = NULL;
1044 	uint64_t page_count = 0;
1045 	uint64_t base = 0;
1046 	int subnode = 0;
1047 	int node = 0;
1048 
1049 	assert(fdt);
1050 
1051 	node = fdt_node_offset_by_compatible(fdt, 0, compatible);
1052 	if (node < 0)
1053 		return;
1054 
1055 	fdt_for_each_subnode(subnode, fdt, node) {
1056 		name = fdt_get_name(fdt, subnode, NULL);
1057 		if (!name)
1058 			continue;
1059 
1060 		if (dt_getprop_as_number(fdt, subnode, "base-address",
1061 					 &base)) {
1062 			EMSG("Mandatory field is missing: base-address");
1063 			continue;
1064 		}
1065 
1066 		if (base & SMALL_PAGE_MASK) {
1067 			EMSG("base-address is not page aligned");
1068 			continue;
1069 		}
1070 
1071 		if (dt_getprop_as_number(fdt, subnode, "pages-count",
1072 					 &page_count)) {
1073 			EMSG("Mandatory field is missing: pages-count");
1074 			continue;
1075 		}
1076 
1077 		add_phys_mem(mem_map, name, MEM_AREA_IO_SEC,
1078 			     base, base + page_count * SMALL_PAGE_SIZE);
1079 	}
1080 }
1081 
1082 static void collect_mem_ranges(struct memory_map *mem_map)
1083 {
1084 	const struct core_mmu_phys_mem *mem = NULL;
1085 	vaddr_t ram_start = secure_only[0].paddr;
1086 
1087 #define ADD_PHYS_MEM(_type, _addr, _size) \
1088 		add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size))
1089 
1090 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
1091 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, ram_start,
1092 			     VCORE_UNPG_RX_PA - ram_start);
1093 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
1094 			     VCORE_UNPG_RX_SZ);
1095 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
1096 			     VCORE_UNPG_RO_SZ);
1097 
1098 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1099 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
1100 				     VCORE_UNPG_RW_SZ);
1101 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
1102 				     VCORE_NEX_RW_SZ);
1103 		} else {
1104 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
1105 				     VCORE_UNPG_RW_SZ);
1106 		}
1107 
1108 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1109 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
1110 				     VCORE_INIT_RX_SZ);
1111 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
1112 				     VCORE_INIT_RO_SZ);
1113 		}
1114 	} else {
1115 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
1116 	}
1117 
1118 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1119 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
1120 			     TRUSTED_DRAM_SIZE);
1121 	} else {
1122 		/*
1123 		 * Every guest will have own TA RAM if virtualization
1124 		 * support is enabled.
1125 		 */
1126 		paddr_t ta_base = 0;
1127 		size_t ta_size = 0;
1128 
1129 		core_mmu_get_ta_range(&ta_base, &ta_size);
1130 		ADD_PHYS_MEM(MEM_AREA_TA_RAM, ta_base, ta_size);
1131 	}
1132 
1133 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
1134 	    IS_ENABLED(CFG_WITH_PAGER)) {
1135 		/*
1136 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
1137 		 * disabled.
1138 		 */
1139 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1140 	}
1141 
1142 #undef ADD_PHYS_MEM
1143 
1144 	/* Collect device memory info from SP manifest */
1145 	if (IS_ENABLED(CFG_CORE_SEL2_SPMC))
1146 		collect_device_mem_ranges(mem_map);
1147 
1148 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1149 		/* Only unmapped virtual range may have a null phys addr */
1150 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1151 
1152 		add_phys_mem(mem_map, mem->name, mem->type,
1153 			     mem->addr, mem->size);
1154 	}
1155 
1156 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1157 		verify_special_mem_areas(mem_map, phys_sdp_mem_begin,
1158 					 phys_sdp_mem_end, "SDP");
1159 
1160 	add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE);
1161 	add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE);
1162 }
1163 
1164 static void assign_mem_granularity(struct memory_map *mem_map)
1165 {
1166 	size_t n = 0;
1167 
1168 	/*
1169 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1170 	 * SMALL_PAGE_SIZE.
1171 	 */
1172 	for  (n = 0; n < mem_map->count; n++) {
1173 		paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size;
1174 
1175 		if (!(mask & CORE_MMU_PGDIR_MASK))
1176 			mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE;
1177 		else if (!(mask & SMALL_PAGE_MASK))
1178 			mem_map->map[n].region_size = SMALL_PAGE_SIZE;
1179 		else
1180 			panic("Impossible memory alignment");
1181 
1182 		if (map_is_tee_ram(mem_map->map + n))
1183 			mem_map->map[n].region_size = SMALL_PAGE_SIZE;
1184 	}
1185 }
1186 
1187 static bool place_tee_ram_at_top(paddr_t paddr)
1188 {
1189 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1190 }
1191 
1192 /*
1193  * MMU arch driver shall override this function if it helps
1194  * optimizing the memory footprint of the address translation tables.
1195  */
1196 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1197 {
1198 	return place_tee_ram_at_top(paddr);
1199 }
1200 
1201 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map,
1202 			      bool tee_ram_at_top)
1203 {
1204 	struct tee_mmap_region *map = NULL;
1205 	vaddr_t va = 0;
1206 	bool va_is_secure = true;
1207 	size_t n = 0;
1208 
1209 	/*
1210 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1211 	 * 0 is by design an invalid va, so return false directly.
1212 	 */
1213 	if (!tee_ram_va)
1214 		return false;
1215 
1216 	/* Clear eventual previous assignments */
1217 	for (n = 0; n < mem_map->count; n++)
1218 		mem_map->map[n].va = 0;
1219 
1220 	/*
1221 	 * TEE RAM regions are always aligned with region_size.
1222 	 *
1223 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1224 	 * since it handles virtual memory which covers the part of the ELF
1225 	 * that cannot fit directly into memory.
1226 	 */
1227 	va = tee_ram_va;
1228 	for (n = 0; n < mem_map->count; n++) {
1229 		map = mem_map->map + n;
1230 		if (map_is_tee_ram(map) ||
1231 		    map->type == MEM_AREA_PAGER_VASPACE) {
1232 			assert(!(va & (map->region_size - 1)));
1233 			assert(!(map->size & (map->region_size - 1)));
1234 			map->va = va;
1235 			if (ADD_OVERFLOW(va, map->size, &va))
1236 				return false;
1237 			if (va >= BIT64(core_mmu_get_va_width()))
1238 				return false;
1239 		}
1240 	}
1241 
1242 	if (tee_ram_at_top) {
1243 		/*
1244 		 * Map non-tee ram regions at addresses lower than the tee
1245 		 * ram region.
1246 		 */
1247 		va = tee_ram_va;
1248 		for (n = 0; n < mem_map->count; n++) {
1249 			map = mem_map->map + n;
1250 			map->attr = core_mmu_type_to_attr(map->type);
1251 			if (map->va)
1252 				continue;
1253 
1254 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1255 			    va_is_secure != map_is_secure(map)) {
1256 				va_is_secure = !va_is_secure;
1257 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1258 			}
1259 
1260 			if (SUB_OVERFLOW(va, map->size, &va))
1261 				return false;
1262 			va = ROUNDDOWN(va, map->region_size);
1263 			/*
1264 			 * Make sure that va is aligned with pa for
1265 			 * efficient pgdir mapping. Basically pa &
1266 			 * pgdir_mask should be == va & pgdir_mask
1267 			 */
1268 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1269 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1270 					return false;
1271 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1272 			}
1273 			map->va = va;
1274 		}
1275 	} else {
1276 		/*
1277 		 * Map non-tee ram regions at addresses higher than the tee
1278 		 * ram region.
1279 		 */
1280 		for (n = 0; n < mem_map->count; n++) {
1281 			map = mem_map->map + n;
1282 			map->attr = core_mmu_type_to_attr(map->type);
1283 			if (map->va)
1284 				continue;
1285 
1286 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1287 			    va_is_secure != map_is_secure(map)) {
1288 				va_is_secure = !va_is_secure;
1289 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1290 						     &va))
1291 					return false;
1292 			}
1293 
1294 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
1295 				return false;
1296 			/*
1297 			 * Make sure that va is aligned with pa for
1298 			 * efficient pgdir mapping. Basically pa &
1299 			 * pgdir_mask should be == va & pgdir_mask
1300 			 */
1301 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1302 				vaddr_t offs = (map->pa - va) &
1303 					       CORE_MMU_PGDIR_MASK;
1304 
1305 				if (ADD_OVERFLOW(va, offs, &va))
1306 					return false;
1307 			}
1308 
1309 			map->va = va;
1310 			if (ADD_OVERFLOW(va, map->size, &va))
1311 				return false;
1312 			if (va >= BIT64(core_mmu_get_va_width()))
1313 				return false;
1314 		}
1315 	}
1316 
1317 	return true;
1318 }
1319 
1320 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map)
1321 {
1322 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1323 
1324 	/*
1325 	 * Check that we're not overlapping with the user VA range.
1326 	 */
1327 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1328 		/*
1329 		 * User VA range is supposed to be defined after these
1330 		 * mappings have been established.
1331 		 */
1332 		assert(!core_mmu_user_va_range_is_defined());
1333 	} else {
1334 		vaddr_t user_va_base = 0;
1335 		size_t user_va_size = 0;
1336 
1337 		assert(core_mmu_user_va_range_is_defined());
1338 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1339 		if (tee_ram_va < (user_va_base + user_va_size))
1340 			return false;
1341 	}
1342 
1343 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1344 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1345 
1346 		/* Try whole mapping covered by a single base xlat entry */
1347 		if (prefered_dir != tee_ram_at_top &&
1348 		    assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir))
1349 			return true;
1350 	}
1351 
1352 	return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top);
1353 }
1354 
1355 static int cmp_init_mem_map(const void *a, const void *b)
1356 {
1357 	const struct tee_mmap_region *mm_a = a;
1358 	const struct tee_mmap_region *mm_b = b;
1359 	int rc = 0;
1360 
1361 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1362 	if (!rc)
1363 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1364 	/*
1365 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1366 	 * the same level2 table. Hence sort secure mapping from non-secure
1367 	 * mapping.
1368 	 */
1369 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1370 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1371 
1372 	return rc;
1373 }
1374 
1375 static bool mem_map_add_id_map(struct memory_map *mem_map,
1376 			       vaddr_t id_map_start, vaddr_t id_map_end)
1377 {
1378 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1379 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1380 	size_t len = end - start;
1381 	size_t n = 0;
1382 
1383 
1384 	for (n = 0; n < mem_map->count; n++)
1385 		if (core_is_buffer_intersect(mem_map->map[n].va,
1386 					     mem_map->map[n].size, start, len))
1387 			return false;
1388 
1389 	grow_mem_map(mem_map);
1390 	mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){
1391 		.type = MEM_AREA_IDENTITY_MAP_RX,
1392 		/*
1393 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1394 		 * translation table, at the increased risk of clashes with
1395 		 * the rest of the memory map.
1396 		 */
1397 		.region_size = SMALL_PAGE_SIZE,
1398 		.pa = start,
1399 		.va = start,
1400 		.size = len,
1401 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1402 	};
1403 
1404 	return true;
1405 }
1406 
1407 static struct memory_map *init_mem_map(struct memory_map *mem_map,
1408 				       unsigned long seed,
1409 				       unsigned long *ret_offs)
1410 {
1411 	/*
1412 	 * @id_map_start and @id_map_end describes a physical memory range
1413 	 * that must be mapped Read-Only eXecutable at identical virtual
1414 	 * addresses.
1415 	 */
1416 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1417 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1418 	vaddr_t start_addr = secure_only[0].paddr;
1419 	unsigned long offs = 0;
1420 
1421 	collect_mem_ranges(mem_map);
1422 	assign_mem_granularity(mem_map);
1423 
1424 	/*
1425 	 * To ease mapping and lower use of xlat tables, sort mapping
1426 	 * description moving small-page regions after the pgdir regions.
1427 	 */
1428 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1429 	      cmp_init_mem_map);
1430 
1431 	if (IS_ENABLED(CFG_WITH_PAGER))
1432 		add_pager_vaspace(mem_map);
1433 
1434 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1435 		vaddr_t base_addr = start_addr + seed;
1436 		const unsigned int va_width = core_mmu_get_va_width();
1437 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1438 						   SMALL_PAGE_SHIFT);
1439 		vaddr_t ba = base_addr;
1440 		size_t n = 0;
1441 
1442 		for (n = 0; n < 3; n++) {
1443 			if (n)
1444 				ba = base_addr ^ BIT64(va_width - n);
1445 			ba &= va_mask;
1446 			if (assign_mem_va(ba, mem_map) &&
1447 			    mem_map_add_id_map(mem_map, id_map_start,
1448 					       id_map_end)) {
1449 				offs = ba - start_addr;
1450 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1451 				     ba, offs);
1452 				goto out;
1453 			} else {
1454 				DMSG("Failed to map core at %#"PRIxVA, ba);
1455 			}
1456 		}
1457 		EMSG("Failed to map core with seed %#lx", seed);
1458 	}
1459 
1460 	if (!assign_mem_va(start_addr, mem_map))
1461 		panic();
1462 
1463 out:
1464 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1465 	      cmp_mmap_by_lower_va);
1466 
1467 	dump_mmap_table(mem_map);
1468 
1469 	*ret_offs = offs;
1470 	return mem_map;
1471 }
1472 
1473 static void check_mem_map(struct memory_map *mem_map)
1474 {
1475 	struct tee_mmap_region *m = NULL;
1476 	size_t n = 0;
1477 
1478 	for (n = 0; n < mem_map->count; n++) {
1479 		m = mem_map->map + n;
1480 		switch (m->type) {
1481 		case MEM_AREA_TEE_RAM:
1482 		case MEM_AREA_TEE_RAM_RX:
1483 		case MEM_AREA_TEE_RAM_RO:
1484 		case MEM_AREA_TEE_RAM_RW:
1485 		case MEM_AREA_INIT_RAM_RX:
1486 		case MEM_AREA_INIT_RAM_RO:
1487 		case MEM_AREA_NEX_RAM_RW:
1488 		case MEM_AREA_NEX_RAM_RO:
1489 		case MEM_AREA_IDENTITY_MAP_RX:
1490 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1491 				panic("TEE_RAM can't fit in secure_only");
1492 			break;
1493 		case MEM_AREA_TA_RAM:
1494 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1495 				panic("TA_RAM can't fit in secure_only");
1496 			break;
1497 		case MEM_AREA_NSEC_SHM:
1498 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1499 				panic("NS_SHM can't fit in nsec_shared");
1500 			break;
1501 		case MEM_AREA_SEC_RAM_OVERALL:
1502 		case MEM_AREA_TEE_COHERENT:
1503 		case MEM_AREA_TEE_ASAN:
1504 		case MEM_AREA_IO_SEC:
1505 		case MEM_AREA_IO_NSEC:
1506 		case MEM_AREA_EXT_DT:
1507 		case MEM_AREA_MANIFEST_DT:
1508 		case MEM_AREA_TRANSFER_LIST:
1509 		case MEM_AREA_RAM_SEC:
1510 		case MEM_AREA_RAM_NSEC:
1511 		case MEM_AREA_ROM_SEC:
1512 		case MEM_AREA_RES_VASPACE:
1513 		case MEM_AREA_SHM_VASPACE:
1514 		case MEM_AREA_PAGER_VASPACE:
1515 			break;
1516 		default:
1517 			EMSG("Uhandled memtype %d", m->type);
1518 			panic();
1519 		}
1520 	}
1521 }
1522 
1523 /*
1524  * core_init_mmu_map() - init tee core default memory mapping
1525  *
1526  * This routine sets the static default TEE core mapping. If @seed is > 0
1527  * and configured with CFG_CORE_ASLR it will map tee core at a location
1528  * based on the seed and return the offset from the link address.
1529  *
1530  * If an error happened: core_init_mmu_map is expected to panic.
1531  *
1532  * Note: this function is weak just to make it possible to exclude it from
1533  * the unpaged area.
1534  */
1535 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1536 {
1537 #ifndef CFG_NS_VIRTUALIZATION
1538 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1539 #else
1540 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1541 				  SMALL_PAGE_SIZE);
1542 #endif
1543 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1544 	struct tee_mmap_region tmp_mmap_region = { };
1545 	struct memory_map mem_map = { };
1546 	unsigned long offs = 0;
1547 
1548 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1549 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1550 		panic("OP-TEE load address is not page aligned");
1551 
1552 	check_sec_nsec_mem_config();
1553 
1554 	mem_map = static_memory_map;
1555 	static_memory_map = (struct memory_map){
1556 		.map = &tmp_mmap_region,
1557 		.alloc_count = 1,
1558 		.count = 1,
1559 	};
1560 	/*
1561 	 * Add a entry covering the translation tables which will be
1562 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1563 	 */
1564 	static_memory_map.map[0] = (struct tee_mmap_region){
1565 		.type = MEM_AREA_TEE_RAM,
1566 		.region_size = SMALL_PAGE_SIZE,
1567 		.pa = start,
1568 		.va = start,
1569 		.size = len,
1570 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1571 	};
1572 
1573 	init_mem_map(&mem_map, seed, &offs);
1574 
1575 	check_mem_map(&mem_map);
1576 	core_init_mmu(&mem_map);
1577 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1578 	core_init_mmu_regs(cfg);
1579 	cfg->map_offset = offs;
1580 	static_memory_map = mem_map;
1581 }
1582 
1583 bool core_mmu_mattr_is_ok(uint32_t mattr)
1584 {
1585 	/*
1586 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1587 	 * core_mmu_v7.c:mattr_to_texcb
1588 	 */
1589 
1590 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1591 	case TEE_MATTR_MEM_TYPE_DEV:
1592 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1593 	case TEE_MATTR_MEM_TYPE_CACHED:
1594 	case TEE_MATTR_MEM_TYPE_TAGGED:
1595 		return true;
1596 	default:
1597 		return false;
1598 	}
1599 }
1600 
1601 /*
1602  * test attributes of target physical buffer
1603  *
1604  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1605  *
1606  */
1607 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1608 {
1609 	paddr_t ta_base = 0;
1610 	size_t ta_size = 0;
1611 	struct tee_mmap_region *map;
1612 
1613 	/* Empty buffers complies with anything */
1614 	if (len == 0)
1615 		return true;
1616 
1617 	switch (attr) {
1618 	case CORE_MEM_SEC:
1619 		return pbuf_is_inside(secure_only, pbuf, len);
1620 	case CORE_MEM_NON_SEC:
1621 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1622 			pbuf_is_nsec_ddr(pbuf, len);
1623 	case CORE_MEM_TEE_RAM:
1624 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1625 							TEE_RAM_PH_SIZE);
1626 	case CORE_MEM_TA_RAM:
1627 		core_mmu_get_ta_range(&ta_base, &ta_size);
1628 		return core_is_buffer_inside(pbuf, len, ta_base, ta_size);
1629 #ifdef CFG_CORE_RESERVED_SHM
1630 	case CORE_MEM_NSEC_SHM:
1631 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1632 							TEE_SHMEM_SIZE);
1633 #endif
1634 	case CORE_MEM_SDP_MEM:
1635 		return pbuf_is_sdp_mem(pbuf, len);
1636 	case CORE_MEM_CACHED:
1637 		map = find_map_by_pa(pbuf);
1638 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1639 			return false;
1640 		return mattr_is_cached(map->attr);
1641 	default:
1642 		return false;
1643 	}
1644 }
1645 
1646 /* test attributes of target virtual buffer (in core mapping) */
1647 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1648 {
1649 	paddr_t p;
1650 
1651 	/* Empty buffers complies with anything */
1652 	if (len == 0)
1653 		return true;
1654 
1655 	p = virt_to_phys((void *)vbuf);
1656 	if (!p)
1657 		return false;
1658 
1659 	return core_pbuf_is(attr, p, len);
1660 }
1661 
1662 /* core_va2pa - teecore exported service */
1663 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1664 {
1665 	struct tee_mmap_region *map;
1666 
1667 	map = find_map_by_va(va);
1668 	if (!va_is_in_map(map, (vaddr_t)va))
1669 		return -1;
1670 
1671 	/*
1672 	 * We can calculate PA for static map. Virtual address ranges
1673 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1674 	 * together with an invalid null physical address.
1675 	 */
1676 	if (map->pa)
1677 		*pa = map->pa + (vaddr_t)va  - map->va;
1678 	else
1679 		*pa = 0;
1680 
1681 	return 0;
1682 }
1683 
1684 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1685 {
1686 	if (!pa_is_in_map(map, pa, len))
1687 		return NULL;
1688 
1689 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1690 }
1691 
1692 /*
1693  * teecore gets some memory area definitions
1694  */
1695 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1696 			      vaddr_t *e)
1697 {
1698 	struct tee_mmap_region *map = find_map_by_type(type);
1699 
1700 	if (map) {
1701 		*s = map->va;
1702 		*e = map->va + map->size;
1703 	} else {
1704 		*s = 0;
1705 		*e = 0;
1706 	}
1707 }
1708 
1709 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1710 {
1711 	struct tee_mmap_region *map = find_map_by_pa(pa);
1712 
1713 	if (!map)
1714 		return MEM_AREA_MAXTYPE;
1715 	return map->type;
1716 }
1717 
1718 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1719 			paddr_t pa, uint32_t attr)
1720 {
1721 	assert(idx < tbl_info->num_entries);
1722 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1723 				     idx, pa, attr);
1724 }
1725 
1726 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1727 			paddr_t *pa, uint32_t *attr)
1728 {
1729 	assert(idx < tbl_info->num_entries);
1730 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1731 				     idx, pa, attr);
1732 }
1733 
1734 static void clear_region(struct core_mmu_table_info *tbl_info,
1735 			 struct tee_mmap_region *region)
1736 {
1737 	unsigned int end = 0;
1738 	unsigned int idx = 0;
1739 
1740 	/* va, len and pa should be block aligned */
1741 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1742 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1743 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1744 
1745 	idx = core_mmu_va2idx(tbl_info, region->va);
1746 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1747 
1748 	while (idx < end) {
1749 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1750 		idx++;
1751 	}
1752 }
1753 
1754 static void set_region(struct core_mmu_table_info *tbl_info,
1755 		       struct tee_mmap_region *region)
1756 {
1757 	unsigned int end;
1758 	unsigned int idx;
1759 	paddr_t pa;
1760 
1761 	/* va, len and pa should be block aligned */
1762 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1763 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1764 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1765 
1766 	idx = core_mmu_va2idx(tbl_info, region->va);
1767 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1768 	pa = region->pa;
1769 
1770 	while (idx < end) {
1771 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1772 		idx++;
1773 		pa += BIT64(tbl_info->shift);
1774 	}
1775 }
1776 
1777 static void set_pg_region(struct core_mmu_table_info *dir_info,
1778 			  struct vm_region *region, struct pgt **pgt,
1779 			  struct core_mmu_table_info *pg_info)
1780 {
1781 	struct tee_mmap_region r = {
1782 		.va = region->va,
1783 		.size = region->size,
1784 		.attr = region->attr,
1785 	};
1786 	vaddr_t end = r.va + r.size;
1787 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1788 
1789 	while (r.va < end) {
1790 		if (!pg_info->table ||
1791 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1792 			/*
1793 			 * We're assigning a new translation table.
1794 			 */
1795 			unsigned int idx;
1796 
1797 			/* Virtual addresses must grow */
1798 			assert(r.va > pg_info->va_base);
1799 
1800 			idx = core_mmu_va2idx(dir_info, r.va);
1801 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1802 
1803 			/*
1804 			 * Advance pgt to va_base, note that we may need to
1805 			 * skip multiple page tables if there are large
1806 			 * holes in the vm map.
1807 			 */
1808 			while ((*pgt)->vabase < pg_info->va_base) {
1809 				*pgt = SLIST_NEXT(*pgt, link);
1810 				/* We should have allocated enough */
1811 				assert(*pgt);
1812 			}
1813 			assert((*pgt)->vabase == pg_info->va_base);
1814 			pg_info->table = (*pgt)->tbl;
1815 
1816 			core_mmu_set_entry(dir_info, idx,
1817 					   virt_to_phys(pg_info->table),
1818 					   pgt_attr);
1819 		}
1820 
1821 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1822 			     end - r.va);
1823 
1824 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1825 			size_t granule = BIT(pg_info->shift);
1826 			size_t offset = r.va - region->va + region->offset;
1827 
1828 			r.size = MIN(r.size,
1829 				     mobj_get_phys_granule(region->mobj));
1830 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1831 
1832 			if (mobj_get_pa(region->mobj, offset, granule,
1833 					&r.pa) != TEE_SUCCESS)
1834 				panic("Failed to get PA of unpaged mobj");
1835 			set_region(pg_info, &r);
1836 		}
1837 		r.va += r.size;
1838 	}
1839 }
1840 
1841 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1842 			     size_t size_left, paddr_t block_size,
1843 			     struct tee_mmap_region *mm __maybe_unused)
1844 {
1845 	/* VA and PA are aligned to block size at current level */
1846 	if ((vaddr | paddr) & (block_size - 1))
1847 		return false;
1848 
1849 	/* Remainder fits into block at current level */
1850 	if (size_left < block_size)
1851 		return false;
1852 
1853 #ifdef CFG_WITH_PAGER
1854 	/*
1855 	 * If pager is enabled, we need to map TEE RAM and the whole pager
1856 	 * regions with small pages only
1857 	 */
1858 	if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) &&
1859 	    block_size != SMALL_PAGE_SIZE)
1860 		return false;
1861 #endif
1862 
1863 	return true;
1864 }
1865 
1866 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1867 {
1868 	struct core_mmu_table_info tbl_info;
1869 	unsigned int idx;
1870 	vaddr_t vaddr = mm->va;
1871 	paddr_t paddr = mm->pa;
1872 	ssize_t size_left = mm->size;
1873 	unsigned int level;
1874 	bool table_found;
1875 	uint32_t old_attr;
1876 
1877 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1878 
1879 	while (size_left > 0) {
1880 		level = CORE_MMU_BASE_TABLE_LEVEL;
1881 
1882 		while (true) {
1883 			paddr_t block_size = 0;
1884 
1885 			assert(core_mmu_level_in_range(level));
1886 
1887 			table_found = core_mmu_find_table(prtn, vaddr, level,
1888 							  &tbl_info);
1889 			if (!table_found)
1890 				panic("can't find table for mapping");
1891 
1892 			block_size = BIT64(tbl_info.shift);
1893 
1894 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1895 			if (!can_map_at_level(paddr, vaddr, size_left,
1896 					      block_size, mm)) {
1897 				bool secure = mm->attr & TEE_MATTR_SECURE;
1898 
1899 				/*
1900 				 * This part of the region can't be mapped at
1901 				 * this level. Need to go deeper.
1902 				 */
1903 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1904 								     idx,
1905 								     secure))
1906 					panic("Can't divide MMU entry");
1907 				level = tbl_info.next_level;
1908 				continue;
1909 			}
1910 
1911 			/* We can map part of the region at current level */
1912 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1913 			if (old_attr)
1914 				panic("Page is already mapped");
1915 
1916 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1917 			paddr += block_size;
1918 			vaddr += block_size;
1919 			size_left -= block_size;
1920 
1921 			break;
1922 		}
1923 	}
1924 }
1925 
1926 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1927 			      enum teecore_memtypes memtype)
1928 {
1929 	TEE_Result ret;
1930 	struct core_mmu_table_info tbl_info;
1931 	struct tee_mmap_region *mm;
1932 	unsigned int idx;
1933 	uint32_t old_attr;
1934 	uint32_t exceptions;
1935 	vaddr_t vaddr = vstart;
1936 	size_t i;
1937 	bool secure;
1938 
1939 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1940 
1941 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1942 
1943 	if (vaddr & SMALL_PAGE_MASK)
1944 		return TEE_ERROR_BAD_PARAMETERS;
1945 
1946 	exceptions = mmu_lock();
1947 
1948 	mm = find_map_by_va((void *)vaddr);
1949 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1950 		panic("VA does not belong to any known mm region");
1951 
1952 	if (!core_mmu_is_dynamic_vaspace(mm))
1953 		panic("Trying to map into static region");
1954 
1955 	for (i = 0; i < num_pages; i++) {
1956 		if (pages[i] & SMALL_PAGE_MASK) {
1957 			ret = TEE_ERROR_BAD_PARAMETERS;
1958 			goto err;
1959 		}
1960 
1961 		while (true) {
1962 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1963 						 &tbl_info))
1964 				panic("Can't find pagetable for vaddr ");
1965 
1966 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1967 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1968 				break;
1969 
1970 			/* This is supertable. Need to divide it. */
1971 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1972 							     secure))
1973 				panic("Failed to spread pgdir on small tables");
1974 		}
1975 
1976 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1977 		if (old_attr)
1978 			panic("Page is already mapped");
1979 
1980 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1981 				   core_mmu_type_to_attr(memtype));
1982 		vaddr += SMALL_PAGE_SIZE;
1983 	}
1984 
1985 	/*
1986 	 * Make sure all the changes to translation tables are visible
1987 	 * before returning. TLB doesn't need to be invalidated as we are
1988 	 * guaranteed that there's no valid mapping in this range.
1989 	 */
1990 	core_mmu_table_write_barrier();
1991 	mmu_unlock(exceptions);
1992 
1993 	return TEE_SUCCESS;
1994 err:
1995 	mmu_unlock(exceptions);
1996 
1997 	if (i)
1998 		core_mmu_unmap_pages(vstart, i);
1999 
2000 	return ret;
2001 }
2002 
2003 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
2004 					 size_t num_pages,
2005 					 enum teecore_memtypes memtype)
2006 {
2007 	struct core_mmu_table_info tbl_info = { };
2008 	struct tee_mmap_region *mm = NULL;
2009 	unsigned int idx = 0;
2010 	uint32_t old_attr = 0;
2011 	uint32_t exceptions = 0;
2012 	vaddr_t vaddr = vstart;
2013 	paddr_t paddr = pstart;
2014 	size_t i = 0;
2015 	bool secure = false;
2016 
2017 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
2018 
2019 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
2020 
2021 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
2022 		return TEE_ERROR_BAD_PARAMETERS;
2023 
2024 	exceptions = mmu_lock();
2025 
2026 	mm = find_map_by_va((void *)vaddr);
2027 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
2028 		panic("VA does not belong to any known mm region");
2029 
2030 	if (!core_mmu_is_dynamic_vaspace(mm))
2031 		panic("Trying to map into static region");
2032 
2033 	for (i = 0; i < num_pages; i++) {
2034 		while (true) {
2035 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
2036 						 &tbl_info))
2037 				panic("Can't find pagetable for vaddr ");
2038 
2039 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2040 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
2041 				break;
2042 
2043 			/* This is supertable. Need to divide it. */
2044 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
2045 							     secure))
2046 				panic("Failed to spread pgdir on small tables");
2047 		}
2048 
2049 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2050 		if (old_attr)
2051 			panic("Page is already mapped");
2052 
2053 		core_mmu_set_entry(&tbl_info, idx, paddr,
2054 				   core_mmu_type_to_attr(memtype));
2055 		paddr += SMALL_PAGE_SIZE;
2056 		vaddr += SMALL_PAGE_SIZE;
2057 	}
2058 
2059 	/*
2060 	 * Make sure all the changes to translation tables are visible
2061 	 * before returning. TLB doesn't need to be invalidated as we are
2062 	 * guaranteed that there's no valid mapping in this range.
2063 	 */
2064 	core_mmu_table_write_barrier();
2065 	mmu_unlock(exceptions);
2066 
2067 	return TEE_SUCCESS;
2068 }
2069 
2070 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
2071 {
2072 	struct core_mmu_table_info tbl_info;
2073 	struct tee_mmap_region *mm;
2074 	size_t i;
2075 	unsigned int idx;
2076 	uint32_t exceptions;
2077 
2078 	exceptions = mmu_lock();
2079 
2080 	mm = find_map_by_va((void *)vstart);
2081 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
2082 		panic("VA does not belong to any known mm region");
2083 
2084 	if (!core_mmu_is_dynamic_vaspace(mm))
2085 		panic("Trying to unmap static region");
2086 
2087 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
2088 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
2089 			panic("Can't find pagetable");
2090 
2091 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
2092 			panic("Invalid pagetable level");
2093 
2094 		idx = core_mmu_va2idx(&tbl_info, vstart);
2095 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
2096 	}
2097 	tlbi_all();
2098 
2099 	mmu_unlock(exceptions);
2100 }
2101 
2102 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
2103 				struct user_mode_ctx *uctx)
2104 {
2105 	struct core_mmu_table_info pg_info = { };
2106 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
2107 	struct pgt *pgt = NULL;
2108 	struct pgt *p = NULL;
2109 	struct vm_region *r = NULL;
2110 
2111 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
2112 		return; /* Nothing to map */
2113 
2114 	/*
2115 	 * Allocate all page tables in advance.
2116 	 */
2117 	pgt_get_all(uctx);
2118 	pgt = SLIST_FIRST(pgt_cache);
2119 
2120 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2121 
2122 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2123 		set_pg_region(dir_info, r, &pgt, &pg_info);
2124 	/* Record that the translation tables now are populated. */
2125 	SLIST_FOREACH(p, pgt_cache, link) {
2126 		p->populated = true;
2127 		if (p == pgt)
2128 			break;
2129 	}
2130 	assert(p == pgt);
2131 }
2132 
2133 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2134 				   size_t len)
2135 {
2136 	struct core_mmu_table_info tbl_info = { };
2137 	struct tee_mmap_region *res_map = NULL;
2138 	struct tee_mmap_region *map = NULL;
2139 	paddr_t pa = virt_to_phys(addr);
2140 	size_t granule = 0;
2141 	ptrdiff_t i = 0;
2142 	paddr_t p = 0;
2143 	size_t l = 0;
2144 
2145 	map = find_map_by_type_and_pa(type, pa, len);
2146 	if (!map)
2147 		return TEE_ERROR_GENERIC;
2148 
2149 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2150 	if (!res_map)
2151 		return TEE_ERROR_GENERIC;
2152 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2153 		return TEE_ERROR_GENERIC;
2154 	granule = BIT(tbl_info.shift);
2155 
2156 	if (map < static_memory_map.map ||
2157 	    map >= static_memory_map.map + static_memory_map.count)
2158 		return TEE_ERROR_GENERIC;
2159 	i = map - static_memory_map.map;
2160 
2161 	/* Check that we have a full match */
2162 	p = ROUNDDOWN(pa, granule);
2163 	l = ROUNDUP(len + pa - p, granule);
2164 	if (map->pa != p || map->size != l)
2165 		return TEE_ERROR_GENERIC;
2166 
2167 	clear_region(&tbl_info, map);
2168 	tlbi_all();
2169 
2170 	/* If possible remove the va range from res_map */
2171 	if (res_map->va - map->size == map->va) {
2172 		res_map->va -= map->size;
2173 		res_map->size += map->size;
2174 	}
2175 
2176 	/* Remove the entry. */
2177 	rem_array_elem(static_memory_map.map, static_memory_map.count,
2178 		       sizeof(*static_memory_map.map), i);
2179 	static_memory_map.count--;
2180 
2181 	return TEE_SUCCESS;
2182 }
2183 
2184 struct tee_mmap_region *
2185 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2186 {
2187 	struct memory_map *mem_map = get_memory_map();
2188 	struct tee_mmap_region *map_found = NULL;
2189 	size_t n = 0;
2190 
2191 	if (!len)
2192 		return NULL;
2193 
2194 	for (n = 0; n < mem_map->count; n++) {
2195 		if (mem_map->map[n].type != type)
2196 			continue;
2197 
2198 		if (map_found)
2199 			return NULL;
2200 
2201 		map_found = mem_map->map + n;
2202 	}
2203 
2204 	if (!map_found || map_found->size < len)
2205 		return NULL;
2206 
2207 	return map_found;
2208 }
2209 
2210 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2211 {
2212 	struct memory_map *mem_map = &static_memory_map;
2213 	struct core_mmu_table_info tbl_info = { };
2214 	struct tee_mmap_region *map = NULL;
2215 	size_t granule = 0;
2216 	paddr_t p = 0;
2217 	size_t l = 0;
2218 
2219 	if (!len)
2220 		return NULL;
2221 
2222 	if (!core_mmu_check_end_pa(addr, len))
2223 		return NULL;
2224 
2225 	/* Check if the memory is already mapped */
2226 	map = find_map_by_type_and_pa(type, addr, len);
2227 	if (map && pbuf_inside_map_area(addr, len, map))
2228 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2229 
2230 	/* Find the reserved va space used for late mappings */
2231 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2232 	if (!map)
2233 		return NULL;
2234 
2235 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2236 		return NULL;
2237 
2238 	granule = BIT64(tbl_info.shift);
2239 	p = ROUNDDOWN(addr, granule);
2240 	l = ROUNDUP(len + addr - p, granule);
2241 
2242 	/* Ban overflowing virtual addresses */
2243 	if (map->size < l)
2244 		return NULL;
2245 
2246 	/*
2247 	 * Something is wrong, we can't fit the va range into the selected
2248 	 * table. The reserved va range is possibly missaligned with
2249 	 * granule.
2250 	 */
2251 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2252 		return NULL;
2253 
2254 	if (static_memory_map.count >= static_memory_map.alloc_count)
2255 		return NULL;
2256 
2257 	mem_map->map[mem_map->count] = (struct tee_mmap_region){
2258 		.va = map->va,
2259 		.size = l,
2260 		.type = type,
2261 		.region_size = granule,
2262 		.attr = core_mmu_type_to_attr(type),
2263 		.pa = p,
2264 	};
2265 	map->va += l;
2266 	map->size -= l;
2267 	map = mem_map->map + mem_map->count;
2268 	mem_map->count++;
2269 
2270 	set_region(&tbl_info, map);
2271 
2272 	/* Make sure the new entry is visible before continuing. */
2273 	core_mmu_table_write_barrier();
2274 
2275 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2276 }
2277 
2278 #ifdef CFG_WITH_PAGER
2279 static vaddr_t get_linear_map_end_va(void)
2280 {
2281 	/* this is synced with the generic linker file kern.ld.S */
2282 	return (vaddr_t)__heap2_end;
2283 }
2284 
2285 static paddr_t get_linear_map_end_pa(void)
2286 {
2287 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2288 }
2289 #endif
2290 
2291 #if defined(CFG_TEE_CORE_DEBUG)
2292 static void check_pa_matches_va(void *va, paddr_t pa)
2293 {
2294 	TEE_Result res = TEE_ERROR_GENERIC;
2295 	vaddr_t v = (vaddr_t)va;
2296 	paddr_t p = 0;
2297 	struct core_mmu_table_info ti __maybe_unused = { };
2298 
2299 	if (core_mmu_user_va_range_is_defined()) {
2300 		vaddr_t user_va_base = 0;
2301 		size_t user_va_size = 0;
2302 
2303 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2304 		if (v >= user_va_base &&
2305 		    v <= (user_va_base - 1 + user_va_size)) {
2306 			if (!core_mmu_user_mapping_is_active()) {
2307 				if (pa)
2308 					panic("issue in linear address space");
2309 				return;
2310 			}
2311 
2312 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2313 				       va, &p);
2314 			if (res == TEE_ERROR_NOT_SUPPORTED)
2315 				return;
2316 			if (res == TEE_SUCCESS && pa != p)
2317 				panic("bad pa");
2318 			if (res != TEE_SUCCESS && pa)
2319 				panic("false pa");
2320 			return;
2321 		}
2322 	}
2323 #ifdef CFG_WITH_PAGER
2324 	if (is_unpaged(va)) {
2325 		if (v - boot_mmu_config.map_offset != pa)
2326 			panic("issue in linear address space");
2327 		return;
2328 	}
2329 
2330 	if (tee_pager_get_table_info(v, &ti)) {
2331 		uint32_t a;
2332 
2333 		/*
2334 		 * Lookups in the page table managed by the pager is
2335 		 * dangerous for addresses in the paged area as those pages
2336 		 * changes all the time. But some ranges are safe,
2337 		 * rw-locked areas when the page is populated for instance.
2338 		 */
2339 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2340 		if (a & TEE_MATTR_VALID_BLOCK) {
2341 			paddr_t mask = BIT64(ti.shift) - 1;
2342 
2343 			p |= v & mask;
2344 			if (pa != p)
2345 				panic();
2346 		} else {
2347 			if (pa)
2348 				panic();
2349 		}
2350 		return;
2351 	}
2352 #endif
2353 
2354 	if (!core_va2pa_helper(va, &p)) {
2355 		/* Verfiy only the static mapping (case non null phys addr) */
2356 		if (p && pa != p) {
2357 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2358 			     va, p, pa);
2359 			panic();
2360 		}
2361 	} else {
2362 		if (pa) {
2363 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2364 			panic();
2365 		}
2366 	}
2367 }
2368 #else
2369 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2370 {
2371 }
2372 #endif
2373 
2374 paddr_t virt_to_phys(void *va)
2375 {
2376 	paddr_t pa = 0;
2377 
2378 	if (!arch_va2pa_helper(va, &pa))
2379 		pa = 0;
2380 	check_pa_matches_va(memtag_strip_tag(va), pa);
2381 	return pa;
2382 }
2383 
2384 #if defined(CFG_TEE_CORE_DEBUG)
2385 static void check_va_matches_pa(paddr_t pa, void *va)
2386 {
2387 	paddr_t p = 0;
2388 
2389 	if (!va)
2390 		return;
2391 
2392 	p = virt_to_phys(va);
2393 	if (p != pa) {
2394 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2395 		panic();
2396 	}
2397 }
2398 #else
2399 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2400 {
2401 }
2402 #endif
2403 
2404 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2405 {
2406 	if (!core_mmu_user_mapping_is_active())
2407 		return NULL;
2408 
2409 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2410 }
2411 
2412 #ifdef CFG_WITH_PAGER
2413 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2414 {
2415 	paddr_t end_pa = 0;
2416 
2417 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2418 		return NULL;
2419 
2420 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2421 		if (end_pa > get_linear_map_end_pa())
2422 			return NULL;
2423 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2424 	}
2425 
2426 	return tee_pager_phys_to_virt(pa, len);
2427 }
2428 #else
2429 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2430 {
2431 	struct tee_mmap_region *mmap = NULL;
2432 
2433 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2434 	if (!mmap)
2435 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2436 	if (!mmap)
2437 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2438 	if (!mmap)
2439 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2440 	if (!mmap)
2441 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2442 	if (!mmap)
2443 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2444 	/*
2445 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2446 	 * used with pager and not needed here.
2447 	 */
2448 	return map_pa2va(mmap, pa, len);
2449 }
2450 #endif
2451 
2452 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2453 {
2454 	void *va = NULL;
2455 
2456 	switch (m) {
2457 	case MEM_AREA_TS_VASPACE:
2458 		va = phys_to_virt_ts_vaspace(pa, len);
2459 		break;
2460 	case MEM_AREA_TEE_RAM:
2461 	case MEM_AREA_TEE_RAM_RX:
2462 	case MEM_AREA_TEE_RAM_RO:
2463 	case MEM_AREA_TEE_RAM_RW:
2464 	case MEM_AREA_NEX_RAM_RO:
2465 	case MEM_AREA_NEX_RAM_RW:
2466 		va = phys_to_virt_tee_ram(pa, len);
2467 		break;
2468 	case MEM_AREA_SHM_VASPACE:
2469 		/* Find VA from PA in dynamic SHM is not yet supported */
2470 		va = NULL;
2471 		break;
2472 	default:
2473 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2474 	}
2475 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2476 		check_va_matches_pa(pa, va);
2477 	return va;
2478 }
2479 
2480 void *phys_to_virt_io(paddr_t pa, size_t len)
2481 {
2482 	struct tee_mmap_region *map = NULL;
2483 	void *va = NULL;
2484 
2485 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2486 	if (!map)
2487 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2488 	if (!map)
2489 		return NULL;
2490 	va = map_pa2va(map, pa, len);
2491 	check_va_matches_pa(pa, va);
2492 	return va;
2493 }
2494 
2495 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2496 {
2497 	if (cpu_mmu_enabled())
2498 		return (vaddr_t)phys_to_virt(pa, type, len);
2499 
2500 	return (vaddr_t)pa;
2501 }
2502 
2503 #ifdef CFG_WITH_PAGER
2504 bool is_unpaged(const void *va)
2505 {
2506 	vaddr_t v = (vaddr_t)va;
2507 
2508 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2509 }
2510 #endif
2511 
2512 #ifdef CFG_NS_VIRTUALIZATION
2513 bool is_nexus(const void *va)
2514 {
2515 	vaddr_t v = (vaddr_t)va;
2516 
2517 	return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ;
2518 }
2519 #endif
2520 
2521 void core_mmu_init_virtualization(void)
2522 {
2523 	paddr_t b1 = 0;
2524 	paddr_size_t s1 = 0;
2525 
2526 	static_assert(ARRAY_SIZE(secure_only) <= 2);
2527 	if (ARRAY_SIZE(secure_only) == 2) {
2528 		b1 = secure_only[1].paddr;
2529 		s1 = secure_only[1].size;
2530 	}
2531 	virt_init_memory(&static_memory_map, secure_only[0].paddr,
2532 			 secure_only[0].size, b1, s1);
2533 }
2534 
2535 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2536 {
2537 	assert(p->pa);
2538 	if (cpu_mmu_enabled()) {
2539 		if (!p->va)
2540 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2541 		assert(p->va);
2542 		return p->va;
2543 	}
2544 	return p->pa;
2545 }
2546 
2547 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2548 {
2549 	assert(p->pa);
2550 	if (cpu_mmu_enabled()) {
2551 		if (!p->va)
2552 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2553 						      len);
2554 		assert(p->va);
2555 		return p->va;
2556 	}
2557 	return p->pa;
2558 }
2559 
2560 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2561 {
2562 	assert(p->pa);
2563 	if (cpu_mmu_enabled()) {
2564 		if (!p->va)
2565 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2566 						      len);
2567 		assert(p->va);
2568 		return p->va;
2569 	}
2570 	return p->pa;
2571 }
2572 
2573 #ifdef CFG_CORE_RESERVED_SHM
2574 static TEE_Result teecore_init_pub_ram(void)
2575 {
2576 	vaddr_t s = 0;
2577 	vaddr_t e = 0;
2578 
2579 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2580 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2581 
2582 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2583 		panic("invalid PUB RAM");
2584 
2585 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2586 	if (!tee_vbuf_is_non_sec(s, e - s))
2587 		panic("PUB RAM is not non-secure");
2588 
2589 #ifdef CFG_PL310
2590 	/* Allocate statically the l2cc mutex */
2591 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2592 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2593 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2594 #endif
2595 
2596 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2597 	default_nsec_shm_size = e - s;
2598 
2599 	return TEE_SUCCESS;
2600 }
2601 early_init(teecore_init_pub_ram);
2602 #endif /*CFG_CORE_RESERVED_SHM*/
2603 
2604 void core_mmu_init_ta_ram(void)
2605 {
2606 	vaddr_t s = 0;
2607 	vaddr_t e = 0;
2608 	paddr_t ps = 0;
2609 	size_t size = 0;
2610 
2611 	/*
2612 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2613 	 * shared mem allocated from teecore.
2614 	 */
2615 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
2616 		virt_get_ta_ram(&s, &e);
2617 	else
2618 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2619 
2620 	ps = virt_to_phys((void *)s);
2621 	size = e - s;
2622 
2623 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2624 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2625 		panic("invalid TA RAM");
2626 
2627 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2628 	if (!tee_pbuf_is_sec(ps, size))
2629 		panic("TA RAM is not secure");
2630 
2631 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2632 		panic("TA RAM pool is not empty");
2633 
2634 	/* remove previous config and init TA ddr memory pool */
2635 	tee_mm_final(&tee_mm_sec_ddr);
2636 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2637 		    TEE_MM_POOL_NO_FLAGS);
2638 }
2639