xref: /optee_os/core/mm/core_mmu.c (revision 00df7d993970664e0d77f2b1988343d5f1e76966)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016, 2022 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/linker.h>
12 #include <kernel/panic.h>
13 #include <kernel/spinlock.h>
14 #include <kernel/tee_l2cc_mutex.h>
15 #include <kernel/tee_misc.h>
16 #include <kernel/tlb_helpers.h>
17 #include <kernel/user_mode_ctx.h>
18 #include <kernel/virtualization.h>
19 #include <mm/core_memprot.h>
20 #include <mm/core_mmu.h>
21 #include <mm/mobj.h>
22 #include <mm/pgt_cache.h>
23 #include <mm/tee_pager.h>
24 #include <mm/vm.h>
25 #include <platform_config.h>
26 #include <string.h>
27 #include <trace.h>
28 #include <util.h>
29 
30 #ifndef DEBUG_XLAT_TABLE
31 #define DEBUG_XLAT_TABLE 0
32 #endif
33 
34 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
35 
36 /*
37  * These variables are initialized before .bss is cleared. To avoid
38  * resetting them when .bss is cleared we're storing them in .data instead,
39  * even if they initially are zero.
40  */
41 
42 #ifdef CFG_CORE_RESERVED_SHM
43 /* Default NSec shared memory allocated from NSec world */
44 unsigned long default_nsec_shm_size __nex_bss;
45 unsigned long default_nsec_shm_paddr __nex_bss;
46 #endif
47 
48 static struct tee_mmap_region static_memory_map[CFG_MMAP_REGIONS
49 #ifdef CFG_CORE_ASLR
50 						+ 1
51 #endif
52 						+ 1] __nex_bss;
53 
54 /* Define the platform's memory layout. */
55 struct memaccess_area {
56 	paddr_t paddr;
57 	size_t size;
58 };
59 
60 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
61 
62 static struct memaccess_area secure_only[] __nex_data = {
63 #ifdef TRUSTED_SRAM_BASE
64 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
65 #endif
66 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
67 };
68 
69 static struct memaccess_area nsec_shared[] __nex_data = {
70 #ifdef CFG_CORE_RESERVED_SHM
71 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
72 #endif
73 };
74 
75 #if defined(CFG_SECURE_DATA_PATH)
76 #ifdef CFG_TEE_SDP_MEM_BASE
77 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
78 #endif
79 #ifdef TEE_SDP_TEST_MEM_BASE
80 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
81 #endif
82 #endif
83 
84 #ifdef CFG_CORE_RWDATA_NOEXEC
85 register_phys_mem_ul(MEM_AREA_TEE_RAM_RO, TEE_RAM_START,
86 		     VCORE_UNPG_RX_PA - TEE_RAM_START);
87 register_phys_mem_ul(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
88 		     VCORE_UNPG_RX_SZ_UNSAFE);
89 register_phys_mem_ul(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
90 		     VCORE_UNPG_RO_SZ_UNSAFE);
91 
92 #ifdef CFG_VIRTUALIZATION
93 register_phys_mem_ul(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
94 		     VCORE_UNPG_RW_SZ_UNSAFE);
95 register_phys_mem_ul(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
96 		     VCORE_NEX_RW_SZ_UNSAFE);
97 #else
98 register_phys_mem_ul(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
99 		     VCORE_UNPG_RW_SZ_UNSAFE);
100 #endif
101 
102 #ifdef CFG_WITH_PAGER
103 register_phys_mem_ul(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
104 		     VCORE_INIT_RX_SZ_UNSAFE);
105 register_phys_mem_ul(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
106 		     VCORE_INIT_RO_SZ_UNSAFE);
107 #endif /*CFG_WITH_PAGER*/
108 #else /*!CFG_CORE_RWDATA_NOEXEC*/
109 register_phys_mem(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
110 #endif /*!CFG_CORE_RWDATA_NOEXEC*/
111 
112 #ifdef CFG_VIRTUALIZATION
113 register_phys_mem(MEM_AREA_SEC_RAM_OVERALL, TRUSTED_DRAM_BASE,
114 		  TRUSTED_DRAM_SIZE);
115 #endif
116 
117 #if defined(CFG_CORE_SANITIZE_KADDRESS) && defined(CFG_WITH_PAGER)
118 /* Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is disabled */
119 register_phys_mem_ul(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
120 #endif
121 
122 #ifndef CFG_VIRTUALIZATION
123 /* Every guest will have own TA RAM if virtualization support is enabled */
124 register_phys_mem(MEM_AREA_TA_RAM, TA_RAM_START, TA_RAM_SIZE);
125 #endif
126 #ifdef CFG_CORE_RESERVED_SHM
127 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
128 #endif
129 
130 static unsigned int mmu_spinlock;
131 
132 static uint32_t mmu_lock(void)
133 {
134 	return cpu_spin_lock_xsave(&mmu_spinlock);
135 }
136 
137 static void mmu_unlock(uint32_t exceptions)
138 {
139 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
140 }
141 
142 static struct tee_mmap_region *get_memory_map(void)
143 {
144 	if (IS_ENABLED(CFG_VIRTUALIZATION)) {
145 		struct tee_mmap_region *map = virt_get_memory_map();
146 
147 		if (map)
148 			return map;
149 	}
150 
151 	return static_memory_map;
152 }
153 
154 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
155 			     paddr_t pa, size_t size)
156 {
157 	size_t n;
158 
159 	for (n = 0; n < alen; n++)
160 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
161 			return true;
162 	return false;
163 }
164 
165 #define pbuf_intersects(a, pa, size) \
166 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
167 
168 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
169 			    paddr_t pa, size_t size)
170 {
171 	size_t n;
172 
173 	for (n = 0; n < alen; n++)
174 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
175 			return true;
176 	return false;
177 }
178 
179 #define pbuf_is_inside(a, pa, size) \
180 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
181 
182 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
183 {
184 	paddr_t end_pa = 0;
185 
186 	if (!map)
187 		return false;
188 
189 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
190 		return false;
191 
192 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
193 }
194 
195 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
196 {
197 	if (!map)
198 		return false;
199 	return (va >= map->va && va <= (map->va + map->size - 1));
200 }
201 
202 /* check if target buffer fits in a core default map area */
203 static bool pbuf_inside_map_area(unsigned long p, size_t l,
204 				 struct tee_mmap_region *map)
205 {
206 	return core_is_buffer_inside(p, l, map->pa, map->size);
207 }
208 
209 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
210 {
211 	struct tee_mmap_region *map;
212 
213 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++)
214 		if (map->type == type)
215 			return map;
216 	return NULL;
217 }
218 
219 static struct tee_mmap_region *
220 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
221 {
222 	struct tee_mmap_region *map;
223 
224 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
225 		if (map->type != type)
226 			continue;
227 		if (pa_is_in_map(map, pa, len))
228 			return map;
229 	}
230 	return NULL;
231 }
232 
233 static struct tee_mmap_region *find_map_by_va(void *va)
234 {
235 	struct tee_mmap_region *map = get_memory_map();
236 	unsigned long a = (unsigned long)va;
237 
238 	while (!core_mmap_is_end_of_table(map)) {
239 		if (a >= map->va && a <= (map->va - 1 + map->size))
240 			return map;
241 		map++;
242 	}
243 	return NULL;
244 }
245 
246 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
247 {
248 	struct tee_mmap_region *map = get_memory_map();
249 
250 	while (!core_mmap_is_end_of_table(map)) {
251 		if (pa >= map->pa && pa <= (map->pa + map->size - 1))
252 			return map;
253 		map++;
254 	}
255 	return NULL;
256 }
257 
258 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
259 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
260 				const struct core_mmu_phys_mem *start,
261 				const struct core_mmu_phys_mem *end)
262 {
263 	const struct core_mmu_phys_mem *mem;
264 
265 	for (mem = start; mem < end; mem++) {
266 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
267 			return true;
268 	}
269 
270 	return false;
271 }
272 #endif
273 
274 #ifdef CFG_CORE_DYN_SHM
275 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
276 			       paddr_t pa, size_t size)
277 {
278 	struct core_mmu_phys_mem *m = *mem;
279 	size_t n = 0;
280 
281 	while (true) {
282 		if (n >= *nelems) {
283 			DMSG("No need to carve out %#" PRIxPA " size %#zx",
284 			     pa, size);
285 			return;
286 		}
287 		if (core_is_buffer_inside(pa, size, m[n].addr, m[n].size))
288 			break;
289 		if (!core_is_buffer_outside(pa, size, m[n].addr, m[n].size))
290 			panic();
291 		n++;
292 	}
293 
294 	if (pa == m[n].addr && size == m[n].size) {
295 		/* Remove this entry */
296 		(*nelems)--;
297 		memmove(m + n, m + n + 1, sizeof(*m) * (*nelems - n));
298 		m = nex_realloc(m, sizeof(*m) * *nelems);
299 		if (!m)
300 			panic();
301 		*mem = m;
302 	} else if (pa == m[n].addr) {
303 		m[n].addr += size;
304 		m[n].size -= size;
305 	} else if ((pa + size) == (m[n].addr + m[n].size)) {
306 		m[n].size -= size;
307 	} else {
308 		/* Need to split the memory entry */
309 		m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
310 		if (!m)
311 			panic();
312 		*mem = m;
313 		memmove(m + n + 1, m + n, sizeof(*m) * (*nelems - n));
314 		(*nelems)++;
315 		m[n].size = pa - m[n].addr;
316 		m[n + 1].size -= size + m[n].size;
317 		m[n + 1].addr = pa + size;
318 	}
319 }
320 
321 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
322 				      size_t nelems,
323 				      struct tee_mmap_region *map)
324 {
325 	size_t n;
326 
327 	for (n = 0; n < nelems; n++) {
328 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
329 					    map->pa, map->size)) {
330 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
331 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
332 			     start[n].addr, start[n].size,
333 			     map->type, map->pa, map->size);
334 			panic();
335 		}
336 	}
337 }
338 
339 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
340 static size_t discovered_nsec_ddr_nelems __nex_bss;
341 
342 static int cmp_pmem_by_addr(const void *a, const void *b)
343 {
344 	const struct core_mmu_phys_mem *pmem_a = a;
345 	const struct core_mmu_phys_mem *pmem_b = b;
346 
347 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
348 }
349 
350 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
351 				      size_t nelems)
352 {
353 	struct core_mmu_phys_mem *m = start;
354 	size_t num_elems = nelems;
355 	struct tee_mmap_region *map = static_memory_map;
356 	const struct core_mmu_phys_mem __maybe_unused *pmem;
357 
358 	assert(!discovered_nsec_ddr_start);
359 	assert(m && num_elems);
360 
361 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
362 
363 	/*
364 	 * Non-secure shared memory and also secure data
365 	 * path memory are supposed to reside inside
366 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
367 	 * are used for a specific purpose make holes for
368 	 * those memory in the normal non-secure memory.
369 	 *
370 	 * This has to be done since for instance QEMU
371 	 * isn't aware of which memory range in the
372 	 * non-secure memory is used for NSEC_SHM.
373 	 */
374 
375 #ifdef CFG_SECURE_DATA_PATH
376 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
377 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
378 #endif
379 
380 	carve_out_phys_mem(&m, &num_elems, TEE_RAM_START, TEE_RAM_PH_SIZE);
381 	carve_out_phys_mem(&m, &num_elems, TA_RAM_START, TA_RAM_SIZE);
382 
383 	for (map = static_memory_map; !core_mmap_is_end_of_table(map); map++) {
384 		switch (map->type) {
385 		case MEM_AREA_NSEC_SHM:
386 			carve_out_phys_mem(&m, &num_elems, map->pa, map->size);
387 			break;
388 		case MEM_AREA_EXT_DT:
389 		case MEM_AREA_RES_VASPACE:
390 		case MEM_AREA_SHM_VASPACE:
391 		case MEM_AREA_TS_VASPACE:
392 		case MEM_AREA_PAGER_VASPACE:
393 			break;
394 		default:
395 			check_phys_mem_is_outside(m, num_elems, map);
396 		}
397 	}
398 
399 	discovered_nsec_ddr_start = m;
400 	discovered_nsec_ddr_nelems = num_elems;
401 
402 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
403 				   m[num_elems - 1].size))
404 		panic();
405 }
406 
407 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
408 				    const struct core_mmu_phys_mem **end)
409 {
410 	if (!discovered_nsec_ddr_start)
411 		return false;
412 
413 	*start = discovered_nsec_ddr_start;
414 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
415 
416 	return true;
417 }
418 
419 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
420 {
421 	const struct core_mmu_phys_mem *start;
422 	const struct core_mmu_phys_mem *end;
423 
424 	if (!get_discovered_nsec_ddr(&start, &end))
425 		return false;
426 
427 	return pbuf_is_special_mem(pbuf, len, start, end);
428 }
429 
430 bool core_mmu_nsec_ddr_is_defined(void)
431 {
432 	const struct core_mmu_phys_mem *start;
433 	const struct core_mmu_phys_mem *end;
434 
435 	if (!get_discovered_nsec_ddr(&start, &end))
436 		return false;
437 
438 	return start != end;
439 }
440 #else
441 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
442 {
443 	return false;
444 }
445 #endif /*CFG_CORE_DYN_SHM*/
446 
447 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
448 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
449 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
450 
451 #ifdef CFG_SECURE_DATA_PATH
452 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
453 {
454 	return pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
455 				   phys_sdp_mem_end);
456 }
457 
458 struct mobj **core_sdp_mem_create_mobjs(void)
459 {
460 	const struct core_mmu_phys_mem *mem;
461 	struct mobj **mobj_base;
462 	struct mobj **mobj;
463 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
464 
465 	/* SDP mobjs table must end with a NULL entry */
466 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
467 	if (!mobj_base)
468 		panic("Out of memory");
469 
470 	for (mem = phys_sdp_mem_begin, mobj = mobj_base;
471 	     mem < phys_sdp_mem_end; mem++, mobj++) {
472 		*mobj = mobj_phys_alloc(mem->addr, mem->size,
473 					TEE_MATTR_MEM_TYPE_CACHED,
474 					CORE_MEM_SDP_MEM);
475 		if (!*mobj)
476 			panic("can't create SDP physical memory object");
477 	}
478 	return mobj_base;
479 }
480 
481 #else /* CFG_SECURE_DATA_PATH */
482 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
483 {
484 	return false;
485 }
486 
487 #endif /* CFG_SECURE_DATA_PATH */
488 
489 /* Check special memories comply with registered memories */
490 static void verify_special_mem_areas(struct tee_mmap_region *mem_map,
491 				     size_t len,
492 				     const struct core_mmu_phys_mem *start,
493 				     const struct core_mmu_phys_mem *end,
494 				     const char *area_name __maybe_unused)
495 {
496 	const struct core_mmu_phys_mem *mem;
497 	const struct core_mmu_phys_mem *mem2;
498 	struct tee_mmap_region *mmap;
499 	size_t n;
500 
501 	if (start == end) {
502 		DMSG("No %s memory area defined", area_name);
503 		return;
504 	}
505 
506 	for (mem = start; mem < end; mem++)
507 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
508 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
509 
510 	/* Check memories do not intersect each other */
511 	for (mem = start; mem + 1 < end; mem++) {
512 		for (mem2 = mem + 1; mem2 < end; mem2++) {
513 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
514 						     mem->addr, mem->size)) {
515 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
516 						   mem->addr, mem->size);
517 				panic("Special memory intersection");
518 			}
519 		}
520 	}
521 
522 	/*
523 	 * Check memories do not intersect any mapped memory.
524 	 * This is called before reserved VA space is loaded in mem_map.
525 	 */
526 	for (mem = start; mem < end; mem++) {
527 		for (mmap = mem_map, n = 0; n < len; mmap++, n++) {
528 			if (core_is_buffer_intersect(mem->addr, mem->size,
529 						     mmap->pa, mmap->size)) {
530 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
531 						   mmap->pa, mmap->size);
532 				panic("Special memory intersection");
533 			}
534 		}
535 	}
536 }
537 
538 static void add_phys_mem(struct tee_mmap_region *memory_map, size_t num_elems,
539 			 const struct core_mmu_phys_mem *mem, size_t *last)
540 {
541 	size_t n = 0;
542 	paddr_t pa;
543 	paddr_size_t size;
544 
545 	/*
546 	 * If some ranges of memory of the same type do overlap
547 	 * each others they are coalesced into one entry. To help this
548 	 * added entries are sorted by increasing physical.
549 	 *
550 	 * Note that it's valid to have the same physical memory as several
551 	 * different memory types, for instance the same device memory
552 	 * mapped as both secure and non-secure. This will probably not
553 	 * happen often in practice.
554 	 */
555 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
556 	     mem->name, teecore_memtype_name(mem->type), mem->addr, mem->size);
557 	while (true) {
558 		if (n >= (num_elems - 1)) {
559 			EMSG("Out of entries (%zu) in memory_map", num_elems);
560 			panic();
561 		}
562 		if (n == *last)
563 			break;
564 		pa = memory_map[n].pa;
565 		size = memory_map[n].size;
566 		if (mem->type == memory_map[n].type &&
567 		    ((pa <= (mem->addr + (mem->size - 1))) &&
568 		    (mem->addr <= (pa + (size - 1))))) {
569 			DMSG("Physical mem map overlaps 0x%" PRIxPA, mem->addr);
570 			memory_map[n].pa = MIN(pa, mem->addr);
571 			memory_map[n].size = MAX(size, mem->size) +
572 					     (pa - memory_map[n].pa);
573 			return;
574 		}
575 		if (mem->type < memory_map[n].type ||
576 		    (mem->type == memory_map[n].type && mem->addr < pa))
577 			break; /* found the spot where to insert this memory */
578 		n++;
579 	}
580 
581 	memmove(memory_map + n + 1, memory_map + n,
582 		sizeof(struct tee_mmap_region) * (*last - n));
583 	(*last)++;
584 	memset(memory_map + n, 0, sizeof(memory_map[0]));
585 	memory_map[n].type = mem->type;
586 	memory_map[n].pa = mem->addr;
587 	memory_map[n].size = mem->size;
588 }
589 
590 static void add_va_space(struct tee_mmap_region *memory_map, size_t num_elems,
591 			 enum teecore_memtypes type, size_t size, size_t *last)
592 {
593 	size_t n = 0;
594 
595 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
596 	while (true) {
597 		if (n >= (num_elems - 1)) {
598 			EMSG("Out of entries (%zu) in memory_map", num_elems);
599 			panic();
600 		}
601 		if (n == *last)
602 			break;
603 		if (type < memory_map[n].type)
604 			break;
605 		n++;
606 	}
607 
608 	memmove(memory_map + n + 1, memory_map + n,
609 		sizeof(struct tee_mmap_region) * (*last - n));
610 	(*last)++;
611 	memset(memory_map + n, 0, sizeof(memory_map[0]));
612 	memory_map[n].type = type;
613 	memory_map[n].size = size;
614 }
615 
616 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
617 {
618 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
619 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
620 				TEE_MATTR_MEM_TYPE_SHIFT;
621 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
622 				  TEE_MATTR_MEM_TYPE_SHIFT;
623 
624 	switch (t) {
625 	case MEM_AREA_TEE_RAM:
626 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | cached;
627 	case MEM_AREA_TEE_RAM_RX:
628 	case MEM_AREA_INIT_RAM_RX:
629 	case MEM_AREA_IDENTITY_MAP_RX:
630 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | cached;
631 	case MEM_AREA_TEE_RAM_RO:
632 	case MEM_AREA_INIT_RAM_RO:
633 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
634 	case MEM_AREA_TEE_RAM_RW:
635 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
636 	case MEM_AREA_NEX_RAM_RW:
637 	case MEM_AREA_TEE_ASAN:
638 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
639 	case MEM_AREA_TEE_COHERENT:
640 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
641 	case MEM_AREA_TA_RAM:
642 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
643 	case MEM_AREA_NSEC_SHM:
644 		return attr | TEE_MATTR_PRW | cached;
645 	case MEM_AREA_EXT_DT:
646 		/*
647 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
648 		 * tree as secure non-cached memory, otherwise, fall back to
649 		 * non-secure mapping.
650 		 */
651 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
652 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
653 			       noncache;
654 		fallthrough;
655 	case MEM_AREA_IO_NSEC:
656 		return attr | TEE_MATTR_PRW | noncache;
657 	case MEM_AREA_IO_SEC:
658 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
659 	case MEM_AREA_RAM_NSEC:
660 		return attr | TEE_MATTR_PRW | cached;
661 	case MEM_AREA_RAM_SEC:
662 	case MEM_AREA_SEC_RAM_OVERALL:
663 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
664 	case MEM_AREA_RES_VASPACE:
665 	case MEM_AREA_SHM_VASPACE:
666 		return 0;
667 	case MEM_AREA_PAGER_VASPACE:
668 		return TEE_MATTR_SECURE;
669 	default:
670 		panic("invalid type");
671 	}
672 }
673 
674 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
675 {
676 	switch (mm->type) {
677 	case MEM_AREA_TEE_RAM:
678 	case MEM_AREA_TEE_RAM_RX:
679 	case MEM_AREA_TEE_RAM_RO:
680 	case MEM_AREA_TEE_RAM_RW:
681 	case MEM_AREA_INIT_RAM_RX:
682 	case MEM_AREA_INIT_RAM_RO:
683 	case MEM_AREA_NEX_RAM_RW:
684 	case MEM_AREA_NEX_RAM_RO:
685 	case MEM_AREA_TEE_ASAN:
686 		return true;
687 	default:
688 		return false;
689 	}
690 }
691 
692 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
693 {
694 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
695 }
696 
697 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
698 {
699 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
700 }
701 
702 static int cmp_mmap_by_lower_va(const void *a, const void *b)
703 {
704 	const struct tee_mmap_region *mm_a = a;
705 	const struct tee_mmap_region *mm_b = b;
706 
707 	return CMP_TRILEAN(mm_a->va, mm_b->va);
708 }
709 
710 static void dump_mmap_table(struct tee_mmap_region *memory_map)
711 {
712 	struct tee_mmap_region *map;
713 
714 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
715 		vaddr_t __maybe_unused vstart;
716 
717 		vstart = map->va + ((vaddr_t)map->pa & (map->region_size - 1));
718 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
719 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
720 		     teecore_memtype_name(map->type), vstart,
721 		     vstart + map->size - 1, map->pa,
722 		     (paddr_t)(map->pa + map->size - 1), map->size,
723 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
724 	}
725 }
726 
727 #if DEBUG_XLAT_TABLE
728 
729 static void dump_xlat_table(vaddr_t va, unsigned int level)
730 {
731 	struct core_mmu_table_info tbl_info;
732 	unsigned int idx = 0;
733 	paddr_t pa;
734 	uint32_t attr;
735 
736 	core_mmu_find_table(NULL, va, level, &tbl_info);
737 	va = tbl_info.va_base;
738 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
739 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
740 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
741 			const char *security_bit = "";
742 
743 			if (core_mmu_entry_have_security_bit(attr)) {
744 				if (attr & TEE_MATTR_SECURE)
745 					security_bit = "S";
746 				else
747 					security_bit = "NS";
748 			}
749 
750 			if (attr & TEE_MATTR_TABLE) {
751 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
752 					" TBL:0x%010" PRIxPA " %s",
753 					level * 2, "", level, va, pa,
754 					security_bit);
755 				dump_xlat_table(va, level + 1);
756 			} else if (attr) {
757 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
758 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
759 					level * 2, "", level, va, pa,
760 					mattr_is_cached(attr) ? "MEM" :
761 					"DEV",
762 					attr & TEE_MATTR_PW ? "RW" : "RO",
763 					attr & TEE_MATTR_PX ? "X " : "XN",
764 					security_bit);
765 			} else {
766 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
767 					    " INVALID\n",
768 					    level * 2, "", level, va);
769 			}
770 		}
771 		va += BIT64(tbl_info.shift);
772 	}
773 }
774 
775 #else
776 
777 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
778 {
779 }
780 
781 #endif
782 
783 /*
784  * Reserves virtual memory space for pager usage.
785  *
786  * From the start of the first memory used by the link script +
787  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
788  * mapping for pager usage. This adds translation tables as needed for the
789  * pager to operate.
790  */
791 static void add_pager_vaspace(struct tee_mmap_region *mmap, size_t num_elems,
792 			      size_t *last)
793 {
794 	paddr_t begin = 0;
795 	paddr_t end = 0;
796 	size_t size = 0;
797 	size_t pos = 0;
798 	size_t n = 0;
799 
800 	if (*last >= (num_elems - 1)) {
801 		EMSG("Out of entries (%zu) in memory map", num_elems);
802 		panic();
803 	}
804 
805 	for (n = 0; !core_mmap_is_end_of_table(mmap + n); n++) {
806 		if (map_is_tee_ram(mmap + n)) {
807 			if (!begin)
808 				begin = mmap[n].pa;
809 			pos = n + 1;
810 		}
811 	}
812 
813 	end = mmap[pos - 1].pa + mmap[pos - 1].size;
814 	size = TEE_RAM_VA_SIZE - (end - begin);
815 	if (!size)
816 		return;
817 
818 	assert(pos <= *last);
819 	memmove(mmap + pos + 1, mmap + pos,
820 		sizeof(struct tee_mmap_region) * (*last - pos));
821 	(*last)++;
822 	memset(mmap + pos, 0, sizeof(mmap[0]));
823 	mmap[pos].type = MEM_AREA_PAGER_VASPACE;
824 	mmap[pos].va = 0;
825 	mmap[pos].size = size;
826 	mmap[pos].region_size = SMALL_PAGE_SIZE;
827 	mmap[pos].attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE);
828 }
829 
830 static void check_sec_nsec_mem_config(void)
831 {
832 	size_t n = 0;
833 
834 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
835 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
836 				    secure_only[n].size))
837 			panic("Invalid memory access config: sec/nsec");
838 	}
839 }
840 
841 static size_t collect_mem_ranges(struct tee_mmap_region *memory_map,
842 				 size_t num_elems)
843 {
844 	const struct core_mmu_phys_mem *mem = NULL;
845 	size_t last = 0;
846 
847 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
848 		struct core_mmu_phys_mem m = *mem;
849 
850 		/* Discard null size entries */
851 		if (!m.size)
852 			continue;
853 
854 		/* Only unmapped virtual range may have a null phys addr */
855 		assert(m.addr || !core_mmu_type_to_attr(m.type));
856 
857 		add_phys_mem(memory_map, num_elems, &m, &last);
858 	}
859 
860 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
861 		verify_special_mem_areas(memory_map, num_elems,
862 					 phys_sdp_mem_begin,
863 					 phys_sdp_mem_end, "SDP");
864 
865 	add_va_space(memory_map, num_elems, MEM_AREA_RES_VASPACE,
866 		     CFG_RESERVED_VASPACE_SIZE, &last);
867 
868 	add_va_space(memory_map, num_elems, MEM_AREA_SHM_VASPACE,
869 		     SHM_VASPACE_SIZE, &last);
870 
871 	memory_map[last].type = MEM_AREA_END;
872 
873 	return last;
874 }
875 
876 static void assign_mem_granularity(struct tee_mmap_region *memory_map)
877 {
878 	struct tee_mmap_region *map = NULL;
879 
880 	/*
881 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
882 	 * SMALL_PAGE_SIZE.
883 	 */
884 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
885 		paddr_t mask = map->pa | map->size;
886 
887 		if (!(mask & CORE_MMU_PGDIR_MASK))
888 			map->region_size = CORE_MMU_PGDIR_SIZE;
889 		else if (!(mask & SMALL_PAGE_MASK))
890 			map->region_size = SMALL_PAGE_SIZE;
891 		else
892 			panic("Impossible memory alignment");
893 
894 		if (map_is_tee_ram(map))
895 			map->region_size = SMALL_PAGE_SIZE;
896 	}
897 }
898 
899 static bool place_tee_ram_at_top(paddr_t paddr)
900 {
901 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
902 }
903 
904 /*
905  * MMU arch driver shall override this function if it helps
906  * optimizing the memory footprint of the address translation tables.
907  */
908 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
909 {
910 	return place_tee_ram_at_top(paddr);
911 }
912 
913 static bool assign_mem_va_dir(vaddr_t tee_ram_va,
914 			      struct tee_mmap_region *memory_map,
915 			      bool tee_ram_at_top)
916 {
917 	struct tee_mmap_region *map = NULL;
918 	vaddr_t va = 0;
919 	bool va_is_secure = true;
920 
921 	/* Clear eventual previous assignments */
922 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
923 		map->va = 0;
924 
925 	/*
926 	 * TEE RAM regions are always aligned with region_size.
927 	 *
928 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
929 	 * since it handles virtual memory which covers the part of the ELF
930 	 * that cannot fit directly into memory.
931 	 */
932 	va = tee_ram_va;
933 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
934 		if (map_is_tee_ram(map) ||
935 		    map->type == MEM_AREA_PAGER_VASPACE) {
936 			assert(!(va & (map->region_size - 1)));
937 			assert(!(map->size & (map->region_size - 1)));
938 			map->va = va;
939 			if (ADD_OVERFLOW(va, map->size, &va))
940 				return false;
941 			if (va >= BIT64(core_mmu_get_va_width()))
942 				return false;
943 		}
944 	}
945 
946 	if (tee_ram_at_top) {
947 		/*
948 		 * Map non-tee ram regions at addresses lower than the tee
949 		 * ram region.
950 		 */
951 		va = tee_ram_va;
952 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
953 			map->attr = core_mmu_type_to_attr(map->type);
954 			if (map->va)
955 				continue;
956 
957 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
958 			    va_is_secure != map_is_secure(map)) {
959 				va_is_secure = !va_is_secure;
960 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
961 			}
962 
963 			if (SUB_OVERFLOW(va, map->size, &va))
964 				return false;
965 			va = ROUNDDOWN(va, map->region_size);
966 			/*
967 			 * Make sure that va is aligned with pa for
968 			 * efficient pgdir mapping. Basically pa &
969 			 * pgdir_mask should be == va & pgdir_mask
970 			 */
971 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
972 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
973 					return false;
974 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
975 			}
976 			map->va = va;
977 		}
978 	} else {
979 		/*
980 		 * Map non-tee ram regions at addresses higher than the tee
981 		 * ram region.
982 		 */
983 		for (map = memory_map; !core_mmap_is_end_of_table(map); map++) {
984 			map->attr = core_mmu_type_to_attr(map->type);
985 			if (map->va)
986 				continue;
987 
988 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
989 			    va_is_secure != map_is_secure(map)) {
990 				va_is_secure = !va_is_secure;
991 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
992 						     &va))
993 					return false;
994 			}
995 
996 			if (ROUNDUP_OVERFLOW(va, map->region_size, &va))
997 				return false;
998 			/*
999 			 * Make sure that va is aligned with pa for
1000 			 * efficient pgdir mapping. Basically pa &
1001 			 * pgdir_mask should be == va & pgdir_mask
1002 			 */
1003 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1004 				vaddr_t offs = (map->pa - va) &
1005 					       CORE_MMU_PGDIR_MASK;
1006 
1007 				if (ADD_OVERFLOW(va, offs, &va))
1008 					return false;
1009 			}
1010 
1011 			map->va = va;
1012 			if (ADD_OVERFLOW(va, map->size, &va))
1013 				return false;
1014 			if (va >= BIT64(core_mmu_get_va_width()))
1015 				return false;
1016 		}
1017 	}
1018 
1019 	return true;
1020 }
1021 
1022 static bool assign_mem_va(vaddr_t tee_ram_va,
1023 			  struct tee_mmap_region *memory_map)
1024 {
1025 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1026 
1027 	/*
1028 	 * Check that we're not overlapping with the user VA range.
1029 	 */
1030 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1031 		/*
1032 		 * User VA range is supposed to be defined after these
1033 		 * mappings have been established.
1034 		 */
1035 		assert(!core_mmu_user_va_range_is_defined());
1036 	} else {
1037 		vaddr_t user_va_base = 0;
1038 		size_t user_va_size = 0;
1039 
1040 		assert(core_mmu_user_va_range_is_defined());
1041 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1042 		if (tee_ram_va < (user_va_base + user_va_size))
1043 			return false;
1044 	}
1045 
1046 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1047 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1048 
1049 		/* Try whole mapping covered by a single base xlat entry */
1050 		if (prefered_dir != tee_ram_at_top &&
1051 		    assign_mem_va_dir(tee_ram_va, memory_map, prefered_dir))
1052 			return true;
1053 	}
1054 
1055 	return assign_mem_va_dir(tee_ram_va, memory_map, tee_ram_at_top);
1056 }
1057 
1058 static int cmp_init_mem_map(const void *a, const void *b)
1059 {
1060 	const struct tee_mmap_region *mm_a = a;
1061 	const struct tee_mmap_region *mm_b = b;
1062 	int rc = 0;
1063 
1064 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1065 	if (!rc)
1066 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1067 	/*
1068 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1069 	 * the same level2 table. Hence sort secure mapping from non-secure
1070 	 * mapping.
1071 	 */
1072 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1073 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1074 
1075 	return rc;
1076 }
1077 
1078 static bool mem_map_add_id_map(struct tee_mmap_region *memory_map,
1079 			       size_t num_elems, size_t *last,
1080 			       vaddr_t id_map_start, vaddr_t id_map_end)
1081 {
1082 	struct tee_mmap_region *map = NULL;
1083 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1084 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1085 	size_t len = end - start;
1086 
1087 	if (*last >= num_elems - 1) {
1088 		EMSG("Out of entries (%zu) in memory map", num_elems);
1089 		panic();
1090 	}
1091 
1092 	for (map = memory_map; !core_mmap_is_end_of_table(map); map++)
1093 		if (core_is_buffer_intersect(map->va, map->size, start, len))
1094 			return false;
1095 
1096 	*map = (struct tee_mmap_region){
1097 		.type = MEM_AREA_IDENTITY_MAP_RX,
1098 		/*
1099 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1100 		 * translation table, at the increased risk of clashes with
1101 		 * the rest of the memory map.
1102 		 */
1103 		.region_size = SMALL_PAGE_SIZE,
1104 		.pa = start,
1105 		.va = start,
1106 		.size = len,
1107 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1108 	};
1109 
1110 	(*last)++;
1111 
1112 	return true;
1113 }
1114 
1115 static unsigned long init_mem_map(struct tee_mmap_region *memory_map,
1116 				  size_t num_elems, unsigned long seed)
1117 {
1118 	/*
1119 	 * @id_map_start and @id_map_end describes a physical memory range
1120 	 * that must be mapped Read-Only eXecutable at identical virtual
1121 	 * addresses.
1122 	 */
1123 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1124 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1125 	unsigned long offs = 0;
1126 	size_t last = 0;
1127 
1128 	last = collect_mem_ranges(memory_map, num_elems);
1129 	assign_mem_granularity(memory_map);
1130 
1131 	/*
1132 	 * To ease mapping and lower use of xlat tables, sort mapping
1133 	 * description moving small-page regions after the pgdir regions.
1134 	 */
1135 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1136 	      cmp_init_mem_map);
1137 
1138 	add_pager_vaspace(memory_map, num_elems, &last);
1139 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1140 		vaddr_t base_addr = TEE_RAM_START + seed;
1141 		const unsigned int va_width = core_mmu_get_va_width();
1142 		const vaddr_t va_mask = GENMASK_64(va_width - 1,
1143 						   SMALL_PAGE_SHIFT);
1144 		vaddr_t ba = base_addr;
1145 		size_t n = 0;
1146 
1147 		for (n = 0; n < 3; n++) {
1148 			if (n)
1149 				ba = base_addr ^ BIT64(va_width - n);
1150 			ba &= va_mask;
1151 			if (assign_mem_va(ba, memory_map) &&
1152 			    mem_map_add_id_map(memory_map, num_elems, &last,
1153 					       id_map_start, id_map_end)) {
1154 				offs = ba - TEE_RAM_START;
1155 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1156 				     ba, offs);
1157 				goto out;
1158 			} else {
1159 				DMSG("Failed to map core at %#"PRIxVA, ba);
1160 			}
1161 		}
1162 		EMSG("Failed to map core with seed %#lx", seed);
1163 	}
1164 
1165 	if (!assign_mem_va(TEE_RAM_START, memory_map))
1166 		panic();
1167 
1168 out:
1169 	qsort(memory_map, last, sizeof(struct tee_mmap_region),
1170 	      cmp_mmap_by_lower_va);
1171 
1172 	dump_mmap_table(memory_map);
1173 
1174 	return offs;
1175 }
1176 
1177 static void check_mem_map(struct tee_mmap_region *map)
1178 {
1179 	struct tee_mmap_region *m = NULL;
1180 
1181 	for (m = map; !core_mmap_is_end_of_table(m); m++) {
1182 		switch (m->type) {
1183 		case MEM_AREA_TEE_RAM:
1184 		case MEM_AREA_TEE_RAM_RX:
1185 		case MEM_AREA_TEE_RAM_RO:
1186 		case MEM_AREA_TEE_RAM_RW:
1187 		case MEM_AREA_INIT_RAM_RX:
1188 		case MEM_AREA_INIT_RAM_RO:
1189 		case MEM_AREA_NEX_RAM_RW:
1190 		case MEM_AREA_NEX_RAM_RO:
1191 		case MEM_AREA_IDENTITY_MAP_RX:
1192 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1193 				panic("TEE_RAM can't fit in secure_only");
1194 			break;
1195 		case MEM_AREA_TA_RAM:
1196 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1197 				panic("TA_RAM can't fit in secure_only");
1198 			break;
1199 		case MEM_AREA_NSEC_SHM:
1200 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1201 				panic("NS_SHM can't fit in nsec_shared");
1202 			break;
1203 		case MEM_AREA_SEC_RAM_OVERALL:
1204 		case MEM_AREA_TEE_COHERENT:
1205 		case MEM_AREA_TEE_ASAN:
1206 		case MEM_AREA_IO_SEC:
1207 		case MEM_AREA_IO_NSEC:
1208 		case MEM_AREA_EXT_DT:
1209 		case MEM_AREA_RAM_SEC:
1210 		case MEM_AREA_RAM_NSEC:
1211 		case MEM_AREA_RES_VASPACE:
1212 		case MEM_AREA_SHM_VASPACE:
1213 		case MEM_AREA_PAGER_VASPACE:
1214 			break;
1215 		default:
1216 			EMSG("Uhandled memtype %d", m->type);
1217 			panic();
1218 		}
1219 	}
1220 }
1221 
1222 static struct tee_mmap_region *get_tmp_mmap(void)
1223 {
1224 	struct tee_mmap_region *tmp_mmap = (void *)__heap1_start;
1225 
1226 #ifdef CFG_WITH_PAGER
1227 	if (__heap1_end - __heap1_start < (ptrdiff_t)sizeof(static_memory_map))
1228 		tmp_mmap = (void *)__heap2_start;
1229 #endif
1230 
1231 	memset(tmp_mmap, 0, sizeof(static_memory_map));
1232 
1233 	return tmp_mmap;
1234 }
1235 
1236 /*
1237  * core_init_mmu_map() - init tee core default memory mapping
1238  *
1239  * This routine sets the static default TEE core mapping. If @seed is > 0
1240  * and configured with CFG_CORE_ASLR it will map tee core at a location
1241  * based on the seed and return the offset from the link address.
1242  *
1243  * If an error happened: core_init_mmu_map is expected to panic.
1244  *
1245  * Note: this function is weak just to make it possible to exclude it from
1246  * the unpaged area.
1247  */
1248 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1249 {
1250 #ifndef CFG_VIRTUALIZATION
1251 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1252 #else
1253 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1254 				  SMALL_PAGE_SIZE);
1255 #endif
1256 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1257 	struct tee_mmap_region *tmp_mmap = get_tmp_mmap();
1258 	unsigned long offs = 0;
1259 
1260 	check_sec_nsec_mem_config();
1261 
1262 	/*
1263 	 * Add a entry covering the translation tables which will be
1264 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1265 	 */
1266 	static_memory_map[0] = (struct tee_mmap_region){
1267 		.type = MEM_AREA_TEE_RAM,
1268 		.region_size = SMALL_PAGE_SIZE,
1269 		.pa = start,
1270 		.va = start,
1271 		.size = len,
1272 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1273 	};
1274 
1275 	COMPILE_TIME_ASSERT(CFG_MMAP_REGIONS >= 13);
1276 	offs = init_mem_map(tmp_mmap, ARRAY_SIZE(static_memory_map), seed);
1277 
1278 	check_mem_map(tmp_mmap);
1279 	core_init_mmu(tmp_mmap);
1280 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1281 	core_init_mmu_regs(cfg);
1282 	cfg->load_offset = offs;
1283 	memcpy(static_memory_map, tmp_mmap, sizeof(static_memory_map));
1284 }
1285 
1286 bool core_mmu_mattr_is_ok(uint32_t mattr)
1287 {
1288 	/*
1289 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1290 	 * core_mmu_v7.c:mattr_to_texcb
1291 	 */
1292 
1293 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1294 	case TEE_MATTR_MEM_TYPE_DEV:
1295 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1296 	case TEE_MATTR_MEM_TYPE_CACHED:
1297 		return true;
1298 	default:
1299 		return false;
1300 	}
1301 }
1302 
1303 /*
1304  * test attributes of target physical buffer
1305  *
1306  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1307  *
1308  */
1309 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1310 {
1311 	struct tee_mmap_region *map;
1312 
1313 	/* Empty buffers complies with anything */
1314 	if (len == 0)
1315 		return true;
1316 
1317 	switch (attr) {
1318 	case CORE_MEM_SEC:
1319 		return pbuf_is_inside(secure_only, pbuf, len);
1320 	case CORE_MEM_NON_SEC:
1321 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1322 			pbuf_is_nsec_ddr(pbuf, len);
1323 	case CORE_MEM_TEE_RAM:
1324 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1325 							TEE_RAM_PH_SIZE);
1326 	case CORE_MEM_TA_RAM:
1327 		return core_is_buffer_inside(pbuf, len, TA_RAM_START,
1328 							TA_RAM_SIZE);
1329 #ifdef CFG_CORE_RESERVED_SHM
1330 	case CORE_MEM_NSEC_SHM:
1331 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1332 							TEE_SHMEM_SIZE);
1333 #endif
1334 	case CORE_MEM_SDP_MEM:
1335 		return pbuf_is_sdp_mem(pbuf, len);
1336 	case CORE_MEM_CACHED:
1337 		map = find_map_by_pa(pbuf);
1338 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1339 			return false;
1340 		return mattr_is_cached(map->attr);
1341 	default:
1342 		return false;
1343 	}
1344 }
1345 
1346 /* test attributes of target virtual buffer (in core mapping) */
1347 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1348 {
1349 	paddr_t p;
1350 
1351 	/* Empty buffers complies with anything */
1352 	if (len == 0)
1353 		return true;
1354 
1355 	p = virt_to_phys((void *)vbuf);
1356 	if (!p)
1357 		return false;
1358 
1359 	return core_pbuf_is(attr, p, len);
1360 }
1361 
1362 /* core_va2pa - teecore exported service */
1363 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1364 {
1365 	struct tee_mmap_region *map;
1366 
1367 	map = find_map_by_va(va);
1368 	if (!va_is_in_map(map, (vaddr_t)va))
1369 		return -1;
1370 
1371 	/*
1372 	 * We can calculate PA for static map. Virtual address ranges
1373 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1374 	 * together with an invalid null physical address.
1375 	 */
1376 	if (map->pa)
1377 		*pa = map->pa + (vaddr_t)va  - map->va;
1378 	else
1379 		*pa = 0;
1380 
1381 	return 0;
1382 }
1383 
1384 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1385 {
1386 	if (!pa_is_in_map(map, pa, len))
1387 		return NULL;
1388 
1389 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1390 }
1391 
1392 /*
1393  * teecore gets some memory area definitions
1394  */
1395 void core_mmu_get_mem_by_type(unsigned int type, vaddr_t *s, vaddr_t *e)
1396 {
1397 	struct tee_mmap_region *map = find_map_by_type(type);
1398 
1399 	if (map) {
1400 		*s = map->va;
1401 		*e = map->va + map->size;
1402 	} else {
1403 		*s = 0;
1404 		*e = 0;
1405 	}
1406 }
1407 
1408 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1409 {
1410 	struct tee_mmap_region *map = find_map_by_pa(pa);
1411 
1412 	if (!map)
1413 		return MEM_AREA_MAXTYPE;
1414 	return map->type;
1415 }
1416 
1417 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1418 			paddr_t pa, uint32_t attr)
1419 {
1420 	assert(idx < tbl_info->num_entries);
1421 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1422 				     idx, pa, attr);
1423 }
1424 
1425 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1426 			paddr_t *pa, uint32_t *attr)
1427 {
1428 	assert(idx < tbl_info->num_entries);
1429 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1430 				     idx, pa, attr);
1431 }
1432 
1433 static void clear_region(struct core_mmu_table_info *tbl_info,
1434 			 struct tee_mmap_region *region)
1435 {
1436 	unsigned int end = 0;
1437 	unsigned int idx = 0;
1438 
1439 	/* va, len and pa should be block aligned */
1440 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1441 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1442 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1443 
1444 	idx = core_mmu_va2idx(tbl_info, region->va);
1445 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1446 
1447 	while (idx < end) {
1448 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1449 		idx++;
1450 	}
1451 }
1452 
1453 static void set_region(struct core_mmu_table_info *tbl_info,
1454 		       struct tee_mmap_region *region)
1455 {
1456 	unsigned int end;
1457 	unsigned int idx;
1458 	paddr_t pa;
1459 
1460 	/* va, len and pa should be block aligned */
1461 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1462 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1463 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1464 
1465 	idx = core_mmu_va2idx(tbl_info, region->va);
1466 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1467 	pa = region->pa;
1468 
1469 	while (idx < end) {
1470 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1471 		idx++;
1472 		pa += BIT64(tbl_info->shift);
1473 	}
1474 }
1475 
1476 static void set_pg_region(struct core_mmu_table_info *dir_info,
1477 			  struct vm_region *region, struct pgt **pgt,
1478 			  struct core_mmu_table_info *pg_info)
1479 {
1480 	struct tee_mmap_region r = {
1481 		.va = region->va,
1482 		.size = region->size,
1483 		.attr = region->attr,
1484 	};
1485 	vaddr_t end = r.va + r.size;
1486 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1487 
1488 	while (r.va < end) {
1489 		if (!pg_info->table ||
1490 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1491 			/*
1492 			 * We're assigning a new translation table.
1493 			 */
1494 			unsigned int idx;
1495 
1496 			/* Virtual addresses must grow */
1497 			assert(r.va > pg_info->va_base);
1498 
1499 			idx = core_mmu_va2idx(dir_info, r.va);
1500 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1501 
1502 #ifdef CFG_PAGED_USER_TA
1503 			/*
1504 			 * Advance pgt to va_base, note that we may need to
1505 			 * skip multiple page tables if there are large
1506 			 * holes in the vm map.
1507 			 */
1508 			while ((*pgt)->vabase < pg_info->va_base) {
1509 				*pgt = SLIST_NEXT(*pgt, link);
1510 				/* We should have allocated enough */
1511 				assert(*pgt);
1512 			}
1513 			assert((*pgt)->vabase == pg_info->va_base);
1514 			pg_info->table = (*pgt)->tbl;
1515 #else
1516 			assert(*pgt); /* We should have allocated enough */
1517 			pg_info->table = (*pgt)->tbl;
1518 			*pgt = SLIST_NEXT(*pgt, link);
1519 #endif
1520 
1521 			core_mmu_set_entry(dir_info, idx,
1522 					   virt_to_phys(pg_info->table),
1523 					   pgt_attr);
1524 		}
1525 
1526 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1527 			     end - r.va);
1528 
1529 		if (!mobj_is_paged(region->mobj)) {
1530 			size_t granule = BIT(pg_info->shift);
1531 			size_t offset = r.va - region->va + region->offset;
1532 
1533 			r.size = MIN(r.size,
1534 				     mobj_get_phys_granule(region->mobj));
1535 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1536 
1537 			if (mobj_get_pa(region->mobj, offset, granule,
1538 					&r.pa) != TEE_SUCCESS)
1539 				panic("Failed to get PA of unpaged mobj");
1540 			set_region(pg_info, &r);
1541 		}
1542 		r.va += r.size;
1543 	}
1544 }
1545 
1546 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1547 			     size_t size_left, paddr_t block_size,
1548 			     struct tee_mmap_region *mm __maybe_unused)
1549 {
1550 	/* VA and PA are aligned to block size at current level */
1551 	if ((vaddr | paddr) & (block_size - 1))
1552 		return false;
1553 
1554 	/* Remainder fits into block at current level */
1555 	if (size_left < block_size)
1556 		return false;
1557 
1558 #ifdef CFG_WITH_PAGER
1559 	/*
1560 	 * If pager is enabled, we need to map tee ram
1561 	 * regions with small pages only
1562 	 */
1563 	if (map_is_tee_ram(mm) && block_size != SMALL_PAGE_SIZE)
1564 		return false;
1565 #endif
1566 
1567 	return true;
1568 }
1569 
1570 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1571 {
1572 	struct core_mmu_table_info tbl_info;
1573 	unsigned int idx;
1574 	vaddr_t vaddr = mm->va;
1575 	paddr_t paddr = mm->pa;
1576 	ssize_t size_left = mm->size;
1577 	unsigned int level;
1578 	bool table_found;
1579 	uint32_t old_attr;
1580 
1581 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1582 
1583 	while (size_left > 0) {
1584 		level = CORE_MMU_BASE_TABLE_LEVEL;
1585 
1586 		while (true) {
1587 			paddr_t block_size = 0;
1588 
1589 			assert(level <= CORE_MMU_PGDIR_LEVEL);
1590 
1591 			table_found = core_mmu_find_table(prtn, vaddr, level,
1592 							  &tbl_info);
1593 			if (!table_found)
1594 				panic("can't find table for mapping");
1595 
1596 			block_size = BIT64(tbl_info.shift);
1597 
1598 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1599 			if (!can_map_at_level(paddr, vaddr, size_left,
1600 					      block_size, mm)) {
1601 				bool secure = mm->attr & TEE_MATTR_SECURE;
1602 
1603 				/*
1604 				 * This part of the region can't be mapped at
1605 				 * this level. Need to go deeper.
1606 				 */
1607 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
1608 								     idx,
1609 								     secure))
1610 					panic("Can't divide MMU entry");
1611 				level++;
1612 				continue;
1613 			}
1614 
1615 			/* We can map part of the region at current level */
1616 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1617 			if (old_attr)
1618 				panic("Page is already mapped");
1619 
1620 			core_mmu_set_entry(&tbl_info, idx, paddr, mm->attr);
1621 			paddr += block_size;
1622 			vaddr += block_size;
1623 			size_left -= block_size;
1624 
1625 			break;
1626 		}
1627 	}
1628 }
1629 
1630 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
1631 			      enum teecore_memtypes memtype)
1632 {
1633 	TEE_Result ret;
1634 	struct core_mmu_table_info tbl_info;
1635 	struct tee_mmap_region *mm;
1636 	unsigned int idx;
1637 	uint32_t old_attr;
1638 	uint32_t exceptions;
1639 	vaddr_t vaddr = vstart;
1640 	size_t i;
1641 	bool secure;
1642 
1643 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1644 
1645 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1646 
1647 	if (vaddr & SMALL_PAGE_MASK)
1648 		return TEE_ERROR_BAD_PARAMETERS;
1649 
1650 	exceptions = mmu_lock();
1651 
1652 	mm = find_map_by_va((void *)vaddr);
1653 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1654 		panic("VA does not belong to any known mm region");
1655 
1656 	if (!core_mmu_is_dynamic_vaspace(mm))
1657 		panic("Trying to map into static region");
1658 
1659 	for (i = 0; i < num_pages; i++) {
1660 		if (pages[i] & SMALL_PAGE_MASK) {
1661 			ret = TEE_ERROR_BAD_PARAMETERS;
1662 			goto err;
1663 		}
1664 
1665 		while (true) {
1666 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1667 						 &tbl_info))
1668 				panic("Can't find pagetable for vaddr ");
1669 
1670 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1671 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1672 				break;
1673 
1674 			/* This is supertable. Need to divide it. */
1675 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1676 							     secure))
1677 				panic("Failed to spread pgdir on small tables");
1678 		}
1679 
1680 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1681 		if (old_attr)
1682 			panic("Page is already mapped");
1683 
1684 		core_mmu_set_entry(&tbl_info, idx, pages[i],
1685 				   core_mmu_type_to_attr(memtype));
1686 		vaddr += SMALL_PAGE_SIZE;
1687 	}
1688 
1689 	/*
1690 	 * Make sure all the changes to translation tables are visible
1691 	 * before returning. TLB doesn't need to be invalidated as we are
1692 	 * guaranteed that there's no valid mapping in this range.
1693 	 */
1694 	core_mmu_table_write_barrier();
1695 	mmu_unlock(exceptions);
1696 
1697 	return TEE_SUCCESS;
1698 err:
1699 	mmu_unlock(exceptions);
1700 
1701 	if (i)
1702 		core_mmu_unmap_pages(vstart, i);
1703 
1704 	return ret;
1705 }
1706 
1707 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
1708 					 size_t num_pages,
1709 					 enum teecore_memtypes memtype)
1710 {
1711 	struct core_mmu_table_info tbl_info = { };
1712 	struct tee_mmap_region *mm = NULL;
1713 	unsigned int idx = 0;
1714 	uint32_t old_attr = 0;
1715 	uint32_t exceptions = 0;
1716 	vaddr_t vaddr = vstart;
1717 	paddr_t paddr = pstart;
1718 	size_t i = 0;
1719 	bool secure = false;
1720 
1721 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
1722 
1723 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
1724 
1725 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
1726 		return TEE_ERROR_BAD_PARAMETERS;
1727 
1728 	exceptions = mmu_lock();
1729 
1730 	mm = find_map_by_va((void *)vaddr);
1731 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
1732 		panic("VA does not belong to any known mm region");
1733 
1734 	if (!core_mmu_is_dynamic_vaspace(mm))
1735 		panic("Trying to map into static region");
1736 
1737 	for (i = 0; i < num_pages; i++) {
1738 		while (true) {
1739 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
1740 						 &tbl_info))
1741 				panic("Can't find pagetable for vaddr ");
1742 
1743 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1744 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
1745 				break;
1746 
1747 			/* This is supertable. Need to divide it. */
1748 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
1749 							     secure))
1750 				panic("Failed to spread pgdir on small tables");
1751 		}
1752 
1753 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
1754 		if (old_attr)
1755 			panic("Page is already mapped");
1756 
1757 		core_mmu_set_entry(&tbl_info, idx, paddr,
1758 				   core_mmu_type_to_attr(memtype));
1759 		paddr += SMALL_PAGE_SIZE;
1760 		vaddr += SMALL_PAGE_SIZE;
1761 	}
1762 
1763 	/*
1764 	 * Make sure all the changes to translation tables are visible
1765 	 * before returning. TLB doesn't need to be invalidated as we are
1766 	 * guaranteed that there's no valid mapping in this range.
1767 	 */
1768 	core_mmu_table_write_barrier();
1769 	mmu_unlock(exceptions);
1770 
1771 	return TEE_SUCCESS;
1772 }
1773 
1774 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
1775 {
1776 	struct core_mmu_table_info tbl_info;
1777 	struct tee_mmap_region *mm;
1778 	size_t i;
1779 	unsigned int idx;
1780 	uint32_t exceptions;
1781 
1782 	exceptions = mmu_lock();
1783 
1784 	mm = find_map_by_va((void *)vstart);
1785 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
1786 		panic("VA does not belong to any known mm region");
1787 
1788 	if (!core_mmu_is_dynamic_vaspace(mm))
1789 		panic("Trying to unmap static region");
1790 
1791 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
1792 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
1793 			panic("Can't find pagetable");
1794 
1795 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
1796 			panic("Invalid pagetable level");
1797 
1798 		idx = core_mmu_va2idx(&tbl_info, vstart);
1799 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
1800 	}
1801 	tlbi_all();
1802 
1803 	mmu_unlock(exceptions);
1804 }
1805 
1806 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
1807 				struct user_mode_ctx *uctx)
1808 {
1809 	struct core_mmu_table_info pg_info = { };
1810 	struct pgt_cache *pgt_cache = &thread_get_tsd()->pgt_cache;
1811 	struct pgt *pgt = NULL;
1812 	struct vm_region *r = NULL;
1813 	struct vm_region *r_last = NULL;
1814 
1815 	/* Find the first and last valid entry */
1816 	r = TAILQ_FIRST(&uctx->vm_info.regions);
1817 	if (!r)
1818 		return; /* Nothing to map */
1819 	r_last = TAILQ_LAST(&uctx->vm_info.regions, vm_region_head);
1820 
1821 	/*
1822 	 * Allocate all page tables in advance.
1823 	 */
1824 	pgt_alloc(pgt_cache, uctx->ts_ctx, r->va,
1825 		  r_last->va + r_last->size - 1);
1826 	pgt = SLIST_FIRST(pgt_cache);
1827 
1828 	core_mmu_set_info_table(&pg_info, dir_info->level + 1, 0, NULL);
1829 
1830 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
1831 		set_pg_region(dir_info, r, &pgt, &pg_info);
1832 }
1833 
1834 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
1835 				   size_t len)
1836 {
1837 	struct core_mmu_table_info tbl_info = { };
1838 	struct tee_mmap_region *res_map = NULL;
1839 	struct tee_mmap_region *map = NULL;
1840 	paddr_t pa = virt_to_phys(addr);
1841 	size_t granule = 0;
1842 	ptrdiff_t i = 0;
1843 	paddr_t p = 0;
1844 	size_t l = 0;
1845 
1846 	map = find_map_by_type_and_pa(type, pa, len);
1847 	if (!map)
1848 		return TEE_ERROR_GENERIC;
1849 
1850 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
1851 	if (!res_map)
1852 		return TEE_ERROR_GENERIC;
1853 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
1854 		return TEE_ERROR_GENERIC;
1855 	granule = BIT(tbl_info.shift);
1856 
1857 	if (map < static_memory_map ||
1858 	    map >= static_memory_map + ARRAY_SIZE(static_memory_map))
1859 		return TEE_ERROR_GENERIC;
1860 	i = map - static_memory_map;
1861 
1862 	/* Check that we have a full match */
1863 	p = ROUNDDOWN(pa, granule);
1864 	l = ROUNDUP(len + pa - p, granule);
1865 	if (map->pa != p || map->size != l)
1866 		return TEE_ERROR_GENERIC;
1867 
1868 	clear_region(&tbl_info, map);
1869 	tlbi_all();
1870 
1871 	/* If possible remove the va range from res_map */
1872 	if (res_map->va - map->size == map->va) {
1873 		res_map->va -= map->size;
1874 		res_map->size += map->size;
1875 	}
1876 
1877 	/* Remove the entry. */
1878 	memmove(map, map + 1,
1879 		(ARRAY_SIZE(static_memory_map) - i - 1) * sizeof(*map));
1880 
1881 	/* Clear the last new entry in case it was used */
1882 	memset(static_memory_map + ARRAY_SIZE(static_memory_map) - 1,
1883 	       0, sizeof(*map));
1884 
1885 	return TEE_SUCCESS;
1886 }
1887 
1888 struct tee_mmap_region *
1889 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
1890 {
1891 	struct tee_mmap_region *map = NULL;
1892 	struct tee_mmap_region *map_found = NULL;
1893 
1894 	if (!len)
1895 		return NULL;
1896 
1897 	for (map = get_memory_map(); !core_mmap_is_end_of_table(map); map++) {
1898 		if (map->type != type)
1899 			continue;
1900 
1901 		if (map_found)
1902 			return NULL;
1903 
1904 		map_found = map;
1905 	}
1906 
1907 	if (!map_found || map_found->size < len)
1908 		return NULL;
1909 
1910 	return map_found;
1911 }
1912 
1913 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
1914 {
1915 	struct core_mmu_table_info tbl_info;
1916 	struct tee_mmap_region *map;
1917 	size_t n;
1918 	size_t granule;
1919 	paddr_t p;
1920 	size_t l;
1921 
1922 	if (!len)
1923 		return NULL;
1924 
1925 	if (!core_mmu_check_end_pa(addr, len))
1926 		return NULL;
1927 
1928 	/* Check if the memory is already mapped */
1929 	map = find_map_by_type_and_pa(type, addr, len);
1930 	if (map && pbuf_inside_map_area(addr, len, map))
1931 		return (void *)(vaddr_t)(map->va + addr - map->pa);
1932 
1933 	/* Find the reserved va space used for late mappings */
1934 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
1935 	if (!map)
1936 		return NULL;
1937 
1938 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
1939 		return NULL;
1940 
1941 	granule = BIT64(tbl_info.shift);
1942 	p = ROUNDDOWN(addr, granule);
1943 	l = ROUNDUP(len + addr - p, granule);
1944 
1945 	/* Ban overflowing virtual addresses */
1946 	if (map->size < l)
1947 		return NULL;
1948 
1949 	/*
1950 	 * Something is wrong, we can't fit the va range into the selected
1951 	 * table. The reserved va range is possibly missaligned with
1952 	 * granule.
1953 	 */
1954 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
1955 		return NULL;
1956 
1957 	/* Find end of the memory map */
1958 	n = 0;
1959 	while (!core_mmap_is_end_of_table(static_memory_map + n))
1960 		n++;
1961 
1962 	if (n < (ARRAY_SIZE(static_memory_map) - 1)) {
1963 		/* There's room for another entry */
1964 		static_memory_map[n].va = map->va;
1965 		static_memory_map[n].size = l;
1966 		static_memory_map[n + 1].type = MEM_AREA_END;
1967 		map->va += l;
1968 		map->size -= l;
1969 		map = static_memory_map + n;
1970 	} else {
1971 		/*
1972 		 * There isn't room for another entry, steal the reserved
1973 		 * entry as it's not useful for anything else any longer.
1974 		 */
1975 		map->size = l;
1976 	}
1977 	map->type = type;
1978 	map->region_size = granule;
1979 	map->attr = core_mmu_type_to_attr(type);
1980 	map->pa = p;
1981 
1982 	set_region(&tbl_info, map);
1983 
1984 	/* Make sure the new entry is visible before continuing. */
1985 	core_mmu_table_write_barrier();
1986 
1987 	return (void *)(vaddr_t)(map->va + addr - map->pa);
1988 }
1989 
1990 #ifdef CFG_WITH_PAGER
1991 static vaddr_t get_linear_map_end(void)
1992 {
1993 	/* this is synced with the generic linker file kern.ld.S */
1994 	return (vaddr_t)__heap2_end;
1995 }
1996 #endif
1997 
1998 #if defined(CFG_TEE_CORE_DEBUG)
1999 static void check_pa_matches_va(void *va, paddr_t pa)
2000 {
2001 	TEE_Result res = TEE_ERROR_GENERIC;
2002 	vaddr_t v = (vaddr_t)va;
2003 	paddr_t p = 0;
2004 	struct core_mmu_table_info ti __maybe_unused = { };
2005 
2006 	if (core_mmu_user_va_range_is_defined()) {
2007 		vaddr_t user_va_base = 0;
2008 		size_t user_va_size = 0;
2009 
2010 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2011 		if (v >= user_va_base &&
2012 		    v <= (user_va_base - 1 + user_va_size)) {
2013 			if (!core_mmu_user_mapping_is_active()) {
2014 				if (pa)
2015 					panic("issue in linear address space");
2016 				return;
2017 			}
2018 
2019 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2020 				       va, &p);
2021 			if (res == TEE_ERROR_NOT_SUPPORTED)
2022 				return;
2023 			if (res == TEE_SUCCESS && pa != p)
2024 				panic("bad pa");
2025 			if (res != TEE_SUCCESS && pa)
2026 				panic("false pa");
2027 			return;
2028 		}
2029 	}
2030 #ifdef CFG_WITH_PAGER
2031 	if (is_unpaged(va)) {
2032 		if (v - boot_mmu_config.load_offset != pa)
2033 			panic("issue in linear address space");
2034 		return;
2035 	}
2036 
2037 	if (tee_pager_get_table_info(v, &ti)) {
2038 		uint32_t a;
2039 
2040 		/*
2041 		 * Lookups in the page table managed by the pager is
2042 		 * dangerous for addresses in the paged area as those pages
2043 		 * changes all the time. But some ranges are safe,
2044 		 * rw-locked areas when the page is populated for instance.
2045 		 */
2046 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2047 		if (a & TEE_MATTR_VALID_BLOCK) {
2048 			paddr_t mask = BIT64(ti.shift) - 1;
2049 
2050 			p |= v & mask;
2051 			if (pa != p)
2052 				panic();
2053 		} else {
2054 			if (pa)
2055 				panic();
2056 		}
2057 		return;
2058 	}
2059 #endif
2060 
2061 	if (!core_va2pa_helper(va, &p)) {
2062 		/* Verfiy only the static mapping (case non null phys addr) */
2063 		if (p && pa != p) {
2064 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2065 			     va, p, pa);
2066 			panic();
2067 		}
2068 	} else {
2069 		if (pa) {
2070 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2071 			panic();
2072 		}
2073 	}
2074 }
2075 #else
2076 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2077 {
2078 }
2079 #endif
2080 
2081 paddr_t virt_to_phys(void *va)
2082 {
2083 	paddr_t pa = 0;
2084 
2085 	if (!arch_va2pa_helper(va, &pa))
2086 		pa = 0;
2087 	check_pa_matches_va(va, pa);
2088 	return pa;
2089 }
2090 
2091 #if defined(CFG_TEE_CORE_DEBUG)
2092 static void check_va_matches_pa(paddr_t pa, void *va)
2093 {
2094 	paddr_t p = 0;
2095 
2096 	if (!va)
2097 		return;
2098 
2099 	p = virt_to_phys(va);
2100 	if (p != pa) {
2101 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2102 		panic();
2103 	}
2104 }
2105 #else
2106 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2107 {
2108 }
2109 #endif
2110 
2111 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2112 {
2113 	if (!core_mmu_user_mapping_is_active())
2114 		return NULL;
2115 
2116 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2117 }
2118 
2119 #ifdef CFG_WITH_PAGER
2120 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2121 {
2122 	paddr_t end_pa = 0;
2123 
2124 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2125 		return NULL;
2126 
2127 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end()) {
2128 		if (end_pa > get_linear_map_end())
2129 			return NULL;
2130 		return (void *)(vaddr_t)(pa + boot_mmu_config.load_offset);
2131 	}
2132 
2133 	return tee_pager_phys_to_virt(pa, len);
2134 }
2135 #else
2136 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2137 {
2138 	struct tee_mmap_region *mmap = NULL;
2139 
2140 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2141 	if (!mmap)
2142 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2143 	if (!mmap)
2144 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2145 	if (!mmap)
2146 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2147 	if (!mmap)
2148 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2149 	if (!mmap)
2150 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2151 	/*
2152 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2153 	 * used with pager and not needed here.
2154 	 */
2155 	return map_pa2va(mmap, pa, len);
2156 }
2157 #endif
2158 
2159 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2160 {
2161 	void *va = NULL;
2162 
2163 	switch (m) {
2164 	case MEM_AREA_TS_VASPACE:
2165 		va = phys_to_virt_ts_vaspace(pa, len);
2166 		break;
2167 	case MEM_AREA_TEE_RAM:
2168 	case MEM_AREA_TEE_RAM_RX:
2169 	case MEM_AREA_TEE_RAM_RO:
2170 	case MEM_AREA_TEE_RAM_RW:
2171 	case MEM_AREA_NEX_RAM_RO:
2172 	case MEM_AREA_NEX_RAM_RW:
2173 		va = phys_to_virt_tee_ram(pa, len);
2174 		break;
2175 	case MEM_AREA_SHM_VASPACE:
2176 		/* Find VA from PA in dynamic SHM is not yet supported */
2177 		va = NULL;
2178 		break;
2179 	default:
2180 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2181 	}
2182 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2183 		check_va_matches_pa(pa, va);
2184 	return va;
2185 }
2186 
2187 void *phys_to_virt_io(paddr_t pa, size_t len)
2188 {
2189 	struct tee_mmap_region *map = NULL;
2190 	void *va = NULL;
2191 
2192 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2193 	if (!map)
2194 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2195 	if (!map)
2196 		return NULL;
2197 	va = map_pa2va(map, pa, len);
2198 	check_va_matches_pa(pa, va);
2199 	return va;
2200 }
2201 
2202 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2203 {
2204 	if (cpu_mmu_enabled())
2205 		return (vaddr_t)phys_to_virt(pa, type, len);
2206 
2207 	return (vaddr_t)pa;
2208 }
2209 
2210 #ifdef CFG_WITH_PAGER
2211 bool is_unpaged(void *va)
2212 {
2213 	vaddr_t v = (vaddr_t)va;
2214 
2215 	return v >= VCORE_START_VA && v < get_linear_map_end();
2216 }
2217 #else
2218 bool is_unpaged(void *va __unused)
2219 {
2220 	return true;
2221 }
2222 #endif
2223 
2224 void core_mmu_init_virtualization(void)
2225 {
2226 	virt_init_memory(static_memory_map);
2227 }
2228 
2229 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2230 {
2231 	assert(p->pa);
2232 	if (cpu_mmu_enabled()) {
2233 		if (!p->va)
2234 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2235 		assert(p->va);
2236 		return p->va;
2237 	}
2238 	return p->pa;
2239 }
2240 
2241 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2242 {
2243 	assert(p->pa);
2244 	if (cpu_mmu_enabled()) {
2245 		if (!p->va)
2246 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2247 						      len);
2248 		assert(p->va);
2249 		return p->va;
2250 	}
2251 	return p->pa;
2252 }
2253 
2254 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2255 {
2256 	assert(p->pa);
2257 	if (cpu_mmu_enabled()) {
2258 		if (!p->va)
2259 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2260 						      len);
2261 		assert(p->va);
2262 		return p->va;
2263 	}
2264 	return p->pa;
2265 }
2266 
2267 #ifdef CFG_CORE_RESERVED_SHM
2268 static TEE_Result teecore_init_pub_ram(void)
2269 {
2270 	vaddr_t s = 0;
2271 	vaddr_t e = 0;
2272 
2273 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2274 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2275 
2276 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2277 		panic("invalid PUB RAM");
2278 
2279 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2280 	if (!tee_vbuf_is_non_sec(s, e - s))
2281 		panic("PUB RAM is not non-secure");
2282 
2283 #ifdef CFG_PL310
2284 	/* Allocate statically the l2cc mutex */
2285 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2286 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2287 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2288 #endif
2289 
2290 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2291 	default_nsec_shm_size = e - s;
2292 
2293 	return TEE_SUCCESS;
2294 }
2295 early_init(teecore_init_pub_ram);
2296 #endif /*CFG_CORE_RESERVED_SHM*/
2297 
2298 void core_mmu_init_ta_ram(void)
2299 {
2300 	vaddr_t s = 0;
2301 	vaddr_t e = 0;
2302 	paddr_t ps = 0;
2303 	size_t size = 0;
2304 
2305 	/*
2306 	 * Get virtual addr/size of RAM where TA are loaded/executedNSec
2307 	 * shared mem allocated from teecore.
2308 	 */
2309 	if (IS_ENABLED(CFG_VIRTUALIZATION))
2310 		virt_get_ta_ram(&s, &e);
2311 	else
2312 		core_mmu_get_mem_by_type(MEM_AREA_TA_RAM, &s, &e);
2313 
2314 	ps = virt_to_phys((void *)s);
2315 	size = e - s;
2316 
2317 	if (!ps || (ps & CORE_MMU_USER_CODE_MASK) ||
2318 	    !size || (size & CORE_MMU_USER_CODE_MASK))
2319 		panic("invalid TA RAM");
2320 
2321 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2322 	if (!tee_pbuf_is_sec(ps, size))
2323 		panic("TA RAM is not secure");
2324 
2325 	if (!tee_mm_is_empty(&tee_mm_sec_ddr))
2326 		panic("TA RAM pool is not empty");
2327 
2328 	/* remove previous config and init TA ddr memory pool */
2329 	tee_mm_final(&tee_mm_sec_ddr);
2330 	tee_mm_init(&tee_mm_sec_ddr, ps, size, CORE_MMU_USER_CODE_SHIFT,
2331 		    TEE_MM_POOL_NO_FLAGS);
2332 }
2333