1 // SPDX-License-Identifier: BSD-2-Clause 2 /* LibTomCrypt, modular cryptographic library -- Tom St Denis 3 * 4 * LibTomCrypt is a library that provides various cryptographic 5 * algorithms in a highly modular and flexible manner. 6 * 7 * The library is free for all purposes without any express 8 * guarantee it works. 9 */ 10 #include "tomcrypt_private.h" 11 12 /** 13 @param rmd256.c 14 RLTC_MD256 Hash function 15 */ 16 17 #ifdef LTC_RIPEMD256 18 19 const struct ltc_hash_descriptor rmd256_desc = 20 { 21 "rmd256", 22 13, 23 32, 24 64, 25 26 /* OID */ 27 { 1, 3, 36, 3, 2, 3 }, 28 6, 29 30 &rmd256_init, 31 &rmd256_process, 32 &rmd256_done, 33 &rmd256_test, 34 NULL 35 }; 36 37 /* the four basic functions F(), G() and H() */ 38 #define F(x, y, z) ((x) ^ (y) ^ (z)) 39 #define G(x, y, z) (((x) & (y)) | (~(x) & (z))) 40 #define H(x, y, z) (((x) | ~(y)) ^ (z)) 41 #define I(x, y, z) (((x) & (z)) | ((y) & ~(z))) 42 43 /* the eight basic operations FF() through III() */ 44 #define FF(a, b, c, d, x, s) \ 45 (a) += F((b), (c), (d)) + (x);\ 46 (a) = ROLc((a), (s)); 47 48 #define GG(a, b, c, d, x, s) \ 49 (a) += G((b), (c), (d)) + (x) + 0x5a827999UL;\ 50 (a) = ROLc((a), (s)); 51 52 #define HH(a, b, c, d, x, s) \ 53 (a) += H((b), (c), (d)) + (x) + 0x6ed9eba1UL;\ 54 (a) = ROLc((a), (s)); 55 56 #define II(a, b, c, d, x, s) \ 57 (a) += I((b), (c), (d)) + (x) + 0x8f1bbcdcUL;\ 58 (a) = ROLc((a), (s)); 59 60 #define FFF(a, b, c, d, x, s) \ 61 (a) += F((b), (c), (d)) + (x);\ 62 (a) = ROLc((a), (s)); 63 64 #define GGG(a, b, c, d, x, s) \ 65 (a) += G((b), (c), (d)) + (x) + 0x6d703ef3UL;\ 66 (a) = ROLc((a), (s)); 67 68 #define HHH(a, b, c, d, x, s) \ 69 (a) += H((b), (c), (d)) + (x) + 0x5c4dd124UL;\ 70 (a) = ROLc((a), (s)); 71 72 #define III(a, b, c, d, x, s) \ 73 (a) += I((b), (c), (d)) + (x) + 0x50a28be6UL;\ 74 (a) = ROLc((a), (s)); 75 76 #ifdef LTC_CLEAN_STACK 77 static int _rmd256_compress(hash_state *md, const unsigned char *buf) 78 #else 79 static int rmd256_compress(hash_state *md, const unsigned char *buf) 80 #endif 81 { 82 ulong32 aa,bb,cc,dd,aaa,bbb,ccc,ddd,tmp,X[16]; 83 int i; 84 85 /* load words X */ 86 for (i = 0; i < 16; i++){ 87 LOAD32L(X[i], buf + (4 * i)); 88 } 89 90 /* load state */ 91 aa = md->rmd256.state[0]; 92 bb = md->rmd256.state[1]; 93 cc = md->rmd256.state[2]; 94 dd = md->rmd256.state[3]; 95 aaa = md->rmd256.state[4]; 96 bbb = md->rmd256.state[5]; 97 ccc = md->rmd256.state[6]; 98 ddd = md->rmd256.state[7]; 99 100 /* round 1 */ 101 FF(aa, bb, cc, dd, X[ 0], 11); 102 FF(dd, aa, bb, cc, X[ 1], 14); 103 FF(cc, dd, aa, bb, X[ 2], 15); 104 FF(bb, cc, dd, aa, X[ 3], 12); 105 FF(aa, bb, cc, dd, X[ 4], 5); 106 FF(dd, aa, bb, cc, X[ 5], 8); 107 FF(cc, dd, aa, bb, X[ 6], 7); 108 FF(bb, cc, dd, aa, X[ 7], 9); 109 FF(aa, bb, cc, dd, X[ 8], 11); 110 FF(dd, aa, bb, cc, X[ 9], 13); 111 FF(cc, dd, aa, bb, X[10], 14); 112 FF(bb, cc, dd, aa, X[11], 15); 113 FF(aa, bb, cc, dd, X[12], 6); 114 FF(dd, aa, bb, cc, X[13], 7); 115 FF(cc, dd, aa, bb, X[14], 9); 116 FF(bb, cc, dd, aa, X[15], 8); 117 118 /* parallel round 1 */ 119 III(aaa, bbb, ccc, ddd, X[ 5], 8); 120 III(ddd, aaa, bbb, ccc, X[14], 9); 121 III(ccc, ddd, aaa, bbb, X[ 7], 9); 122 III(bbb, ccc, ddd, aaa, X[ 0], 11); 123 III(aaa, bbb, ccc, ddd, X[ 9], 13); 124 III(ddd, aaa, bbb, ccc, X[ 2], 15); 125 III(ccc, ddd, aaa, bbb, X[11], 15); 126 III(bbb, ccc, ddd, aaa, X[ 4], 5); 127 III(aaa, bbb, ccc, ddd, X[13], 7); 128 III(ddd, aaa, bbb, ccc, X[ 6], 7); 129 III(ccc, ddd, aaa, bbb, X[15], 8); 130 III(bbb, ccc, ddd, aaa, X[ 8], 11); 131 III(aaa, bbb, ccc, ddd, X[ 1], 14); 132 III(ddd, aaa, bbb, ccc, X[10], 14); 133 III(ccc, ddd, aaa, bbb, X[ 3], 12); 134 III(bbb, ccc, ddd, aaa, X[12], 6); 135 136 tmp = aa; aa = aaa; aaa = tmp; 137 138 /* round 2 */ 139 GG(aa, bb, cc, dd, X[ 7], 7); 140 GG(dd, aa, bb, cc, X[ 4], 6); 141 GG(cc, dd, aa, bb, X[13], 8); 142 GG(bb, cc, dd, aa, X[ 1], 13); 143 GG(aa, bb, cc, dd, X[10], 11); 144 GG(dd, aa, bb, cc, X[ 6], 9); 145 GG(cc, dd, aa, bb, X[15], 7); 146 GG(bb, cc, dd, aa, X[ 3], 15); 147 GG(aa, bb, cc, dd, X[12], 7); 148 GG(dd, aa, bb, cc, X[ 0], 12); 149 GG(cc, dd, aa, bb, X[ 9], 15); 150 GG(bb, cc, dd, aa, X[ 5], 9); 151 GG(aa, bb, cc, dd, X[ 2], 11); 152 GG(dd, aa, bb, cc, X[14], 7); 153 GG(cc, dd, aa, bb, X[11], 13); 154 GG(bb, cc, dd, aa, X[ 8], 12); 155 156 /* parallel round 2 */ 157 HHH(aaa, bbb, ccc, ddd, X[ 6], 9); 158 HHH(ddd, aaa, bbb, ccc, X[11], 13); 159 HHH(ccc, ddd, aaa, bbb, X[ 3], 15); 160 HHH(bbb, ccc, ddd, aaa, X[ 7], 7); 161 HHH(aaa, bbb, ccc, ddd, X[ 0], 12); 162 HHH(ddd, aaa, bbb, ccc, X[13], 8); 163 HHH(ccc, ddd, aaa, bbb, X[ 5], 9); 164 HHH(bbb, ccc, ddd, aaa, X[10], 11); 165 HHH(aaa, bbb, ccc, ddd, X[14], 7); 166 HHH(ddd, aaa, bbb, ccc, X[15], 7); 167 HHH(ccc, ddd, aaa, bbb, X[ 8], 12); 168 HHH(bbb, ccc, ddd, aaa, X[12], 7); 169 HHH(aaa, bbb, ccc, ddd, X[ 4], 6); 170 HHH(ddd, aaa, bbb, ccc, X[ 9], 15); 171 HHH(ccc, ddd, aaa, bbb, X[ 1], 13); 172 HHH(bbb, ccc, ddd, aaa, X[ 2], 11); 173 174 tmp = bb; bb = bbb; bbb = tmp; 175 176 /* round 3 */ 177 HH(aa, bb, cc, dd, X[ 3], 11); 178 HH(dd, aa, bb, cc, X[10], 13); 179 HH(cc, dd, aa, bb, X[14], 6); 180 HH(bb, cc, dd, aa, X[ 4], 7); 181 HH(aa, bb, cc, dd, X[ 9], 14); 182 HH(dd, aa, bb, cc, X[15], 9); 183 HH(cc, dd, aa, bb, X[ 8], 13); 184 HH(bb, cc, dd, aa, X[ 1], 15); 185 HH(aa, bb, cc, dd, X[ 2], 14); 186 HH(dd, aa, bb, cc, X[ 7], 8); 187 HH(cc, dd, aa, bb, X[ 0], 13); 188 HH(bb, cc, dd, aa, X[ 6], 6); 189 HH(aa, bb, cc, dd, X[13], 5); 190 HH(dd, aa, bb, cc, X[11], 12); 191 HH(cc, dd, aa, bb, X[ 5], 7); 192 HH(bb, cc, dd, aa, X[12], 5); 193 194 /* parallel round 3 */ 195 GGG(aaa, bbb, ccc, ddd, X[15], 9); 196 GGG(ddd, aaa, bbb, ccc, X[ 5], 7); 197 GGG(ccc, ddd, aaa, bbb, X[ 1], 15); 198 GGG(bbb, ccc, ddd, aaa, X[ 3], 11); 199 GGG(aaa, bbb, ccc, ddd, X[ 7], 8); 200 GGG(ddd, aaa, bbb, ccc, X[14], 6); 201 GGG(ccc, ddd, aaa, bbb, X[ 6], 6); 202 GGG(bbb, ccc, ddd, aaa, X[ 9], 14); 203 GGG(aaa, bbb, ccc, ddd, X[11], 12); 204 GGG(ddd, aaa, bbb, ccc, X[ 8], 13); 205 GGG(ccc, ddd, aaa, bbb, X[12], 5); 206 GGG(bbb, ccc, ddd, aaa, X[ 2], 14); 207 GGG(aaa, bbb, ccc, ddd, X[10], 13); 208 GGG(ddd, aaa, bbb, ccc, X[ 0], 13); 209 GGG(ccc, ddd, aaa, bbb, X[ 4], 7); 210 GGG(bbb, ccc, ddd, aaa, X[13], 5); 211 212 tmp = cc; cc = ccc; ccc = tmp; 213 214 /* round 4 */ 215 II(aa, bb, cc, dd, X[ 1], 11); 216 II(dd, aa, bb, cc, X[ 9], 12); 217 II(cc, dd, aa, bb, X[11], 14); 218 II(bb, cc, dd, aa, X[10], 15); 219 II(aa, bb, cc, dd, X[ 0], 14); 220 II(dd, aa, bb, cc, X[ 8], 15); 221 II(cc, dd, aa, bb, X[12], 9); 222 II(bb, cc, dd, aa, X[ 4], 8); 223 II(aa, bb, cc, dd, X[13], 9); 224 II(dd, aa, bb, cc, X[ 3], 14); 225 II(cc, dd, aa, bb, X[ 7], 5); 226 II(bb, cc, dd, aa, X[15], 6); 227 II(aa, bb, cc, dd, X[14], 8); 228 II(dd, aa, bb, cc, X[ 5], 6); 229 II(cc, dd, aa, bb, X[ 6], 5); 230 II(bb, cc, dd, aa, X[ 2], 12); 231 232 /* parallel round 4 */ 233 FFF(aaa, bbb, ccc, ddd, X[ 8], 15); 234 FFF(ddd, aaa, bbb, ccc, X[ 6], 5); 235 FFF(ccc, ddd, aaa, bbb, X[ 4], 8); 236 FFF(bbb, ccc, ddd, aaa, X[ 1], 11); 237 FFF(aaa, bbb, ccc, ddd, X[ 3], 14); 238 FFF(ddd, aaa, bbb, ccc, X[11], 14); 239 FFF(ccc, ddd, aaa, bbb, X[15], 6); 240 FFF(bbb, ccc, ddd, aaa, X[ 0], 14); 241 FFF(aaa, bbb, ccc, ddd, X[ 5], 6); 242 FFF(ddd, aaa, bbb, ccc, X[12], 9); 243 FFF(ccc, ddd, aaa, bbb, X[ 2], 12); 244 FFF(bbb, ccc, ddd, aaa, X[13], 9); 245 FFF(aaa, bbb, ccc, ddd, X[ 9], 12); 246 FFF(ddd, aaa, bbb, ccc, X[ 7], 5); 247 FFF(ccc, ddd, aaa, bbb, X[10], 15); 248 FFF(bbb, ccc, ddd, aaa, X[14], 8); 249 250 tmp = dd; dd = ddd; ddd = tmp; 251 252 /* combine results */ 253 md->rmd256.state[0] += aa; 254 md->rmd256.state[1] += bb; 255 md->rmd256.state[2] += cc; 256 md->rmd256.state[3] += dd; 257 md->rmd256.state[4] += aaa; 258 md->rmd256.state[5] += bbb; 259 md->rmd256.state[6] += ccc; 260 md->rmd256.state[7] += ddd; 261 262 return CRYPT_OK; 263 } 264 265 #ifdef LTC_CLEAN_STACK 266 static int rmd256_compress(hash_state *md, const unsigned char *buf) 267 { 268 int err; 269 err = _rmd256_compress(md, buf); 270 burn_stack(sizeof(ulong32) * 25 + sizeof(int)); 271 return err; 272 } 273 #endif 274 275 /** 276 Initialize the hash state 277 @param md The hash state you wish to initialize 278 @return CRYPT_OK if successful 279 */ 280 int rmd256_init(hash_state * md) 281 { 282 LTC_ARGCHK(md != NULL); 283 md->rmd256.state[0] = 0x67452301UL; 284 md->rmd256.state[1] = 0xefcdab89UL; 285 md->rmd256.state[2] = 0x98badcfeUL; 286 md->rmd256.state[3] = 0x10325476UL; 287 md->rmd256.state[4] = 0x76543210UL; 288 md->rmd256.state[5] = 0xfedcba98UL; 289 md->rmd256.state[6] = 0x89abcdefUL; 290 md->rmd256.state[7] = 0x01234567UL; 291 md->rmd256.curlen = 0; 292 md->rmd256.length = 0; 293 return CRYPT_OK; 294 } 295 296 /** 297 Process a block of memory though the hash 298 @param md The hash state 299 @param in The data to hash 300 @param inlen The length of the data (octets) 301 @return CRYPT_OK if successful 302 */ 303 HASH_PROCESS(rmd256_process, rmd256_compress, rmd256, 64) 304 305 /** 306 Terminate the hash to get the digest 307 @param md The hash state 308 @param out [out] The destination of the hash (16 bytes) 309 @return CRYPT_OK if successful 310 */ 311 int rmd256_done(hash_state * md, unsigned char *out) 312 { 313 int i; 314 315 LTC_ARGCHK(md != NULL); 316 LTC_ARGCHK(out != NULL); 317 318 if (md->rmd256.curlen >= sizeof(md->rmd256.buf)) { 319 return CRYPT_INVALID_ARG; 320 } 321 322 323 /* increase the length of the message */ 324 md->rmd256.length += md->rmd256.curlen * 8; 325 326 /* append the '1' bit */ 327 md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0x80; 328 329 /* if the length is currently above 56 bytes we append zeros 330 * then compress. Then we can fall back to padding zeros and length 331 * encoding like normal. 332 */ 333 if (md->rmd256.curlen > 56) { 334 while (md->rmd256.curlen < 64) { 335 md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0; 336 } 337 rmd256_compress(md, md->rmd256.buf); 338 md->rmd256.curlen = 0; 339 } 340 341 /* pad upto 56 bytes of zeroes */ 342 while (md->rmd256.curlen < 56) { 343 md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0; 344 } 345 346 /* store length */ 347 STORE64L(md->rmd256.length, md->rmd256.buf+56); 348 rmd256_compress(md, md->rmd256.buf); 349 350 /* copy output */ 351 for (i = 0; i < 8; i++) { 352 STORE32L(md->rmd256.state[i], out+(4*i)); 353 } 354 #ifdef LTC_CLEAN_STACK 355 zeromem(md, sizeof(hash_state)); 356 #endif 357 return CRYPT_OK; 358 } 359 360 /** 361 Self-test the hash 362 @return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled 363 */ 364 int rmd256_test(void) 365 { 366 #ifndef LTC_TEST 367 return CRYPT_NOP; 368 #else 369 static const struct { 370 const char *msg; 371 unsigned char hash[32]; 372 } tests[] = { 373 { "", 374 { 0x02, 0xba, 0x4c, 0x4e, 0x5f, 0x8e, 0xcd, 0x18, 375 0x77, 0xfc, 0x52, 0xd6, 0x4d, 0x30, 0xe3, 0x7a, 376 0x2d, 0x97, 0x74, 0xfb, 0x1e, 0x5d, 0x02, 0x63, 377 0x80, 0xae, 0x01, 0x68, 0xe3, 0xc5, 0x52, 0x2d } 378 }, 379 { "a", 380 { 0xf9, 0x33, 0x3e, 0x45, 0xd8, 0x57, 0xf5, 0xd9, 381 0x0a, 0x91, 0xba, 0xb7, 0x0a, 0x1e, 0xba, 0x0c, 382 0xfb, 0x1b, 0xe4, 0xb0, 0x78, 0x3c, 0x9a, 0xcf, 383 0xcd, 0x88, 0x3a, 0x91, 0x34, 0x69, 0x29, 0x25 } 384 }, 385 { "abc", 386 { 0xaf, 0xbd, 0x6e, 0x22, 0x8b, 0x9d, 0x8c, 0xbb, 387 0xce, 0xf5, 0xca, 0x2d, 0x03, 0xe6, 0xdb, 0xa1, 388 0x0a, 0xc0, 0xbc, 0x7d, 0xcb, 0xe4, 0x68, 0x0e, 389 0x1e, 0x42, 0xd2, 0xe9, 0x75, 0x45, 0x9b, 0x65 } 390 }, 391 { "message digest", 392 { 0x87, 0xe9, 0x71, 0x75, 0x9a, 0x1c, 0xe4, 0x7a, 393 0x51, 0x4d, 0x5c, 0x91, 0x4c, 0x39, 0x2c, 0x90, 394 0x18, 0xc7, 0xc4, 0x6b, 0xc1, 0x44, 0x65, 0x55, 395 0x4a, 0xfc, 0xdf, 0x54, 0xa5, 0x07, 0x0c, 0x0e } 396 }, 397 { "abcdefghijklmnopqrstuvwxyz", 398 { 0x64, 0x9d, 0x30, 0x34, 0x75, 0x1e, 0xa2, 0x16, 399 0x77, 0x6b, 0xf9, 0xa1, 0x8a, 0xcc, 0x81, 0xbc, 400 0x78, 0x96, 0x11, 0x8a, 0x51, 0x97, 0x96, 0x87, 401 0x82, 0xdd, 0x1f, 0xd9, 0x7d, 0x8d, 0x51, 0x33 } 402 }, 403 { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789", 404 { 0x57, 0x40, 0xa4, 0x08, 0xac, 0x16, 0xb7, 0x20, 405 0xb8, 0x44, 0x24, 0xae, 0x93, 0x1c, 0xbb, 0x1f, 406 0xe3, 0x63, 0xd1, 0xd0, 0xbf, 0x40, 0x17, 0xf1, 407 0xa8, 0x9f, 0x7e, 0xa6, 0xde, 0x77, 0xa0, 0xb8 } 408 } 409 }; 410 411 int i; 412 unsigned char tmp[32]; 413 hash_state md; 414 415 for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) { 416 rmd256_init(&md); 417 rmd256_process(&md, (unsigned char *)tests[i].msg, strlen(tests[i].msg)); 418 rmd256_done(&md, tmp); 419 if (compare_testvector(tmp, sizeof(tmp), tests[i].hash, sizeof(tests[i].hash), "RIPEMD256", i)) { 420 return CRYPT_FAIL_TESTVECTOR; 421 } 422 } 423 return CRYPT_OK; 424 #endif 425 } 426 427 #endif 428 429 /* ref: $Format:%D$ */ 430 /* git commit: $Format:%H$ */ 431 /* commit time: $Format:%ai$ */ 432