1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis */ 2 /* SPDX-License-Identifier: Unlicense */ 3 /** 4 @file noekeon.c 5 Implementation of the Noekeon block cipher by Tom St Denis 6 */ 7 #include "tomcrypt_private.h" 8 9 #ifdef LTC_NOEKEON 10 11 const struct ltc_cipher_descriptor noekeon_desc = 12 { 13 "noekeon", 14 16, 15 16, 16, 16, 16, 16 &noekeon_setup, 17 &noekeon_ecb_encrypt, 18 &noekeon_ecb_decrypt, 19 &noekeon_test, 20 &noekeon_done, 21 &noekeon_keysize, 22 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL 23 }; 24 25 static const ulong32 RC[] = { 26 0x00000080UL, 0x0000001bUL, 0x00000036UL, 0x0000006cUL, 27 0x000000d8UL, 0x000000abUL, 0x0000004dUL, 0x0000009aUL, 28 0x0000002fUL, 0x0000005eUL, 0x000000bcUL, 0x00000063UL, 29 0x000000c6UL, 0x00000097UL, 0x00000035UL, 0x0000006aUL, 30 0x000000d4UL 31 }; 32 33 #define kTHETA(a, b, c, d) \ 34 temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \ 35 b ^= temp; d ^= temp; \ 36 temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \ 37 a ^= temp; c ^= temp; 38 39 #define THETA(k, a, b, c, d) \ 40 temp = a^c; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \ 41 b ^= temp ^ k[1]; d ^= temp ^ k[3]; \ 42 temp = b^d; temp = temp ^ ROLc(temp, 8) ^ RORc(temp, 8); \ 43 a ^= temp ^ k[0]; c ^= temp ^ k[2]; 44 45 #define GAMMA(a, b, c, d) \ 46 b ^= ~(d|c); \ 47 a ^= c&b; \ 48 temp = d; d = a; a = temp;\ 49 c ^= a ^ b ^ d; \ 50 b ^= ~(d|c); \ 51 a ^= c&b; 52 53 #define PI1(a, b, c, d) \ 54 b = ROLc(b, 1); c = ROLc(c, 5); d = ROLc(d, 2); 55 56 #define PI2(a, b, c, d) \ 57 b = RORc(b, 1); c = RORc(c, 5); d = RORc(d, 2); 58 59 /** 60 Initialize the Noekeon block cipher 61 @param key The symmetric key you wish to pass 62 @param keylen The key length in bytes 63 @param num_rounds The number of rounds desired (0 for default) 64 @param skey The key in as scheduled by this function. 65 @return CRYPT_OK if successful 66 */ 67 int noekeon_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) 68 { 69 ulong32 temp; 70 71 LTC_ARGCHK(key != NULL); 72 LTC_ARGCHK(skey != NULL); 73 74 if (keylen != 16) { 75 return CRYPT_INVALID_KEYSIZE; 76 } 77 78 if (num_rounds != 16 && num_rounds != 0) { 79 return CRYPT_INVALID_ROUNDS; 80 } 81 82 LOAD32H(skey->noekeon.K[0],&key[0]); 83 LOAD32H(skey->noekeon.K[1],&key[4]); 84 LOAD32H(skey->noekeon.K[2],&key[8]); 85 LOAD32H(skey->noekeon.K[3],&key[12]); 86 87 LOAD32H(skey->noekeon.dK[0],&key[0]); 88 LOAD32H(skey->noekeon.dK[1],&key[4]); 89 LOAD32H(skey->noekeon.dK[2],&key[8]); 90 LOAD32H(skey->noekeon.dK[3],&key[12]); 91 92 kTHETA(skey->noekeon.dK[0], skey->noekeon.dK[1], skey->noekeon.dK[2], skey->noekeon.dK[3]); 93 94 return CRYPT_OK; 95 } 96 97 /** 98 Encrypts a block of text with Noekeon 99 @param pt The input plaintext (16 bytes) 100 @param ct The output ciphertext (16 bytes) 101 @param skey The key as scheduled 102 @return CRYPT_OK if successful 103 */ 104 #ifdef LTC_CLEAN_STACK 105 static int s_noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey) 106 #else 107 int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey) 108 #endif 109 { 110 ulong32 a,b,c,d,temp; 111 int r; 112 113 LTC_ARGCHK(skey != NULL); 114 LTC_ARGCHK(pt != NULL); 115 LTC_ARGCHK(ct != NULL); 116 117 LOAD32H(a,&pt[0]); LOAD32H(b,&pt[4]); 118 LOAD32H(c,&pt[8]); LOAD32H(d,&pt[12]); 119 120 #define ROUND(i) \ 121 a ^= RC[i]; \ 122 THETA(skey->noekeon.K, a,b,c,d); \ 123 PI1(a,b,c,d); \ 124 GAMMA(a,b,c,d); \ 125 PI2(a,b,c,d); 126 127 for (r = 0; r < 16; ++r) { 128 ROUND(r); 129 } 130 131 #undef ROUND 132 133 a ^= RC[16]; 134 THETA(skey->noekeon.K, a, b, c, d); 135 136 STORE32H(a,&ct[0]); STORE32H(b,&ct[4]); 137 STORE32H(c,&ct[8]); STORE32H(d,&ct[12]); 138 139 return CRYPT_OK; 140 } 141 142 #ifdef LTC_CLEAN_STACK 143 int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey) 144 { 145 int err = s_noekeon_ecb_encrypt(pt, ct, skey); 146 burn_stack(sizeof(ulong32) * 5 + sizeof(int)); 147 return err; 148 } 149 #endif 150 151 /** 152 Decrypts a block of text with Noekeon 153 @param ct The input ciphertext (16 bytes) 154 @param pt The output plaintext (16 bytes) 155 @param skey The key as scheduled 156 @return CRYPT_OK if successful 157 */ 158 #ifdef LTC_CLEAN_STACK 159 static int s_noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey) 160 #else 161 int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey) 162 #endif 163 { 164 ulong32 a,b,c,d, temp; 165 int r; 166 167 LTC_ARGCHK(skey != NULL); 168 LTC_ARGCHK(pt != NULL); 169 LTC_ARGCHK(ct != NULL); 170 171 LOAD32H(a,&ct[0]); LOAD32H(b,&ct[4]); 172 LOAD32H(c,&ct[8]); LOAD32H(d,&ct[12]); 173 174 175 #define ROUND(i) \ 176 THETA(skey->noekeon.dK, a,b,c,d); \ 177 a ^= RC[i]; \ 178 PI1(a,b,c,d); \ 179 GAMMA(a,b,c,d); \ 180 PI2(a,b,c,d); 181 182 for (r = 16; r > 0; --r) { 183 ROUND(r); 184 } 185 186 #undef ROUND 187 188 THETA(skey->noekeon.dK, a,b,c,d); 189 a ^= RC[0]; 190 STORE32H(a,&pt[0]); STORE32H(b, &pt[4]); 191 STORE32H(c,&pt[8]); STORE32H(d, &pt[12]); 192 return CRYPT_OK; 193 } 194 195 #ifdef LTC_CLEAN_STACK 196 int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey) 197 { 198 int err = s_noekeon_ecb_decrypt(ct, pt, skey); 199 burn_stack(sizeof(ulong32) * 5 + sizeof(int)); 200 return err; 201 } 202 #endif 203 204 /** 205 Performs a self-test of the Noekeon block cipher 206 @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled 207 */ 208 int noekeon_test(void) 209 { 210 #ifndef LTC_TEST 211 return CRYPT_NOP; 212 #else 213 static const struct { 214 int keylen; 215 unsigned char key[16], pt[16], ct[16]; 216 } tests[] = { 217 { 218 16, 219 { 0xAA, 0x3C, 0x8C, 0x86, 0xD9, 0x8B, 0xF8, 0xBE, 0x21, 0xE0, 0x36, 0x09, 0x78, 0xFB, 0xE4, 0x90 }, 220 { 0xE4, 0x96, 0x6C, 0xD3, 0x13, 0xA0, 0x6C, 0xAF, 0xD0, 0x23, 0xC9, 0xFD, 0x45, 0x32, 0x23, 0x16 }, 221 { 0xA6, 0xEC, 0xB8, 0xA8, 0x61, 0xFD, 0x62, 0xD9, 0x13, 0x02, 0xFE, 0x9E, 0x47, 0x01, 0x3F, 0xC3 } 222 }, 223 { 224 16, 225 { 0xED, 0x43, 0xD1, 0x87, 0x21, 0x7E, 0xE0, 0x97, 0x3D, 0x76, 0xC3, 0x37, 0x2E, 0x7D, 0xAE, 0xD3 }, 226 { 0xE3, 0x38, 0x32, 0xCC, 0xF2, 0x2F, 0x2F, 0x0A, 0x4A, 0x8B, 0x8F, 0x18, 0x12, 0x20, 0x17, 0xD3 }, 227 { 0x94, 0xA5, 0xDF, 0xF5, 0xAE, 0x1C, 0xBB, 0x22, 0xAD, 0xEB, 0xA7, 0x0D, 0xB7, 0x82, 0x90, 0xA0 } 228 }, 229 { 230 16, 231 { 0x6F, 0xDC, 0x23, 0x38, 0xF2, 0x10, 0xFB, 0xD3, 0xC1, 0x8C, 0x02, 0xF6, 0xB4, 0x6A, 0xD5, 0xA8 }, 232 { 0xDB, 0x29, 0xED, 0xB5, 0x5F, 0xB3, 0x60, 0x3A, 0x92, 0xA8, 0xEB, 0x9C, 0x6D, 0x9D, 0x3E, 0x8F }, 233 { 0x78, 0xF3, 0x6F, 0xF8, 0x9E, 0xBB, 0x8C, 0x6A, 0xE8, 0x10, 0xF7, 0x00, 0x22, 0x15, 0x30, 0x3D } 234 }, 235 { 236 16, 237 { 0x2C, 0x0C, 0x02, 0xEF, 0x6B, 0xC4, 0xF2, 0x0B, 0x2E, 0xB9, 0xE0, 0xBF, 0xD9, 0x36, 0xC2, 0x4E }, 238 { 0x84, 0xE2, 0xFE, 0x64, 0xB1, 0xB9, 0xFE, 0x76, 0xA8, 0x3F, 0x45, 0xC7, 0x40, 0x7A, 0xAF, 0xEE }, 239 { 0x2A, 0x08, 0xD6, 0xA2, 0x1C, 0x63, 0x08, 0xB0, 0xF8, 0xBC, 0xB3, 0xA1, 0x66, 0xF7, 0xAE, 0xCF } 240 }, 241 { 242 16, 243 { 0x6F, 0x30, 0xF8, 0x9F, 0xDA, 0x6E, 0xA0, 0x91, 0x04, 0x0F, 0x6C, 0x8B, 0x7D, 0xF7, 0x2A, 0x4B }, 244 { 0x65, 0xB6, 0xA6, 0xD0, 0x42, 0x14, 0x08, 0x60, 0x34, 0x8D, 0x37, 0x2F, 0x01, 0xF0, 0x46, 0xBE }, 245 { 0x66, 0xAC, 0x0B, 0x62, 0x1D, 0x68, 0x11, 0xF5, 0x27, 0xB1, 0x13, 0x5D, 0xF3, 0x2A, 0xE9, 0x18 } 246 }, 247 { 248 16, 249 { 0xCA, 0xA4, 0x16, 0xB7, 0x1C, 0x92, 0x2E, 0xAD, 0xEB, 0xA7, 0xDB, 0x69, 0x92, 0xCB, 0x35, 0xEF }, 250 { 0x81, 0x6F, 0x8E, 0x4D, 0x96, 0xC6, 0xB3, 0x67, 0x83, 0xF5, 0x63, 0xC7, 0x20, 0x6D, 0x40, 0x23 }, 251 { 0x44, 0xF7, 0x63, 0x62, 0xF0, 0x43, 0xBB, 0x67, 0x4A, 0x75, 0x12, 0x42, 0x46, 0x29, 0x28, 0x19 } 252 }, 253 { 254 16, 255 { 0x6B, 0xCF, 0x22, 0x2F, 0xE0, 0x1B, 0xB0, 0xAA, 0xD8, 0x3C, 0x91, 0x99, 0x18, 0xB2, 0x28, 0xE8 }, 256 { 0x7C, 0x37, 0xC7, 0xD0, 0xAC, 0x92, 0x29, 0xF1, 0x60, 0x82, 0x93, 0x89, 0xAA, 0x61, 0xAA, 0xA9 }, 257 { 0xE5, 0x89, 0x1B, 0xB3, 0xFE, 0x8B, 0x0C, 0xA1, 0xA6, 0xC7, 0xBE, 0x12, 0x73, 0x0F, 0xC1, 0x19 } 258 }, 259 { 260 16, 261 { 0xE6, 0xD0, 0xF1, 0x03, 0x2E, 0xDE, 0x70, 0x8D, 0xD8, 0x9E, 0x36, 0x5C, 0x05, 0x52, 0xE7, 0x0D }, 262 { 0xE2, 0x42, 0xE7, 0x92, 0x0E, 0xF7, 0x82, 0xA2, 0xB8, 0x21, 0x8D, 0x26, 0xBA, 0x2D, 0xE6, 0x32 }, 263 { 0x1E, 0xDD, 0x75, 0x22, 0xB9, 0x36, 0x8A, 0x0F, 0x32, 0xFD, 0xD4, 0x48, 0x65, 0x12, 0x5A, 0x2F } 264 } 265 }; 266 symmetric_key key; 267 unsigned char tmp[2][16]; 268 int err, i, y; 269 270 for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) { 271 zeromem(&key, sizeof(key)); 272 if ((err = noekeon_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) { 273 return err; 274 } 275 276 noekeon_ecb_encrypt(tests[i].pt, tmp[0], &key); 277 noekeon_ecb_decrypt(tmp[0], tmp[1], &key); 278 if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "Noekeon Encrypt", i) || 279 compare_testvector(tmp[1], 16, tests[i].pt, 16, "Noekeon Decrypt", i)) { 280 return CRYPT_FAIL_TESTVECTOR; 281 } 282 283 /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ 284 for (y = 0; y < 16; y++) tmp[0][y] = 0; 285 for (y = 0; y < 1000; y++) noekeon_ecb_encrypt(tmp[0], tmp[0], &key); 286 for (y = 0; y < 1000; y++) noekeon_ecb_decrypt(tmp[0], tmp[0], &key); 287 for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; 288 } 289 return CRYPT_OK; 290 #endif 291 } 292 293 /** Terminate the context 294 @param skey The scheduled key 295 */ 296 void noekeon_done(symmetric_key *skey) 297 { 298 LTC_UNUSED_PARAM(skey); 299 } 300 301 /** 302 Gets suitable key size 303 @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable. 304 @return CRYPT_OK if the input key size is acceptable. 305 */ 306 int noekeon_keysize(int *keysize) 307 { 308 LTC_ARGCHK(keysize != NULL); 309 if (*keysize < 16) { 310 return CRYPT_INVALID_KEYSIZE; 311 } 312 *keysize = 16; 313 return CRYPT_OK; 314 } 315 316 #endif 317 318