xref: /optee_os/core/include/mm/core_mmu.h (revision 79f8990d9d28539864d8f97f9f1cb32e289e595f)
1 /* SPDX-License-Identifier: BSD-2-Clause */
2 /*
3  * Copyright (c) 2016, Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  */
6 #ifndef __MM_CORE_MMU_H
7 #define __MM_CORE_MMU_H
8 
9 #ifndef __ASSEMBLER__
10 #include <assert.h>
11 #include <compiler.h>
12 #include <kernel/user_ta.h>
13 #include <mm/tee_mmu_types.h>
14 #include <types_ext.h>
15 #include <util.h>
16 #endif
17 
18 #include <mm/core_mmu_arch.h>
19 #include <platform_config.h>
20 
21 /* A small page is the smallest unit of memory that can be mapped */
22 #define SMALL_PAGE_SIZE			BIT(SMALL_PAGE_SHIFT)
23 #define SMALL_PAGE_MASK			((paddr_t)SMALL_PAGE_SIZE - 1)
24 
25 /*
26  * PGDIR is the translation table above the translation table that holds
27  * the pages.
28  */
29 #define CORE_MMU_PGDIR_SIZE		BIT(CORE_MMU_PGDIR_SHIFT)
30 #define CORE_MMU_PGDIR_MASK		((paddr_t)CORE_MMU_PGDIR_SIZE - 1)
31 
32 /* TA user space code, data, stack and heap are mapped using this granularity */
33 #define CORE_MMU_USER_CODE_SIZE		BIT(CORE_MMU_USER_CODE_SHIFT)
34 #define CORE_MMU_USER_CODE_MASK		((paddr_t)CORE_MMU_USER_CODE_SIZE - 1)
35 
36 /* TA user space parameters are mapped using this granularity */
37 #define CORE_MMU_USER_PARAM_SIZE	BIT(CORE_MMU_USER_PARAM_SHIFT)
38 #define CORE_MMU_USER_PARAM_MASK	((paddr_t)CORE_MMU_USER_PARAM_SIZE - 1)
39 
40 /*
41  * Identify mapping constraint: virtual base address is the physical start addr.
42  * If platform did not set some macros, some get default value.
43  */
44 #ifndef TEE_RAM_VA_SIZE
45 #define TEE_RAM_VA_SIZE			CORE_MMU_PGDIR_SIZE
46 #endif
47 
48 #ifndef TEE_LOAD_ADDR
49 #define TEE_LOAD_ADDR			TEE_RAM_START
50 #endif
51 
52 #ifndef STACK_ALIGNMENT
53 #define STACK_ALIGNMENT			(sizeof(long) * U(2))
54 #endif
55 
56 #ifndef __ASSEMBLER__
57 /*
58  * Memory area type:
59  * MEM_AREA_END:      Reserved, marks the end of a table of mapping areas.
60  * MEM_AREA_TEE_RAM:  core RAM (read/write/executable, secure, reserved to TEE)
61  * MEM_AREA_TEE_RAM_RX:  core private read-only/executable memory (secure)
62  * MEM_AREA_TEE_RAM_RO:  core private read-only/non-executable memory (secure)
63  * MEM_AREA_TEE_RAM_RW:  core private read/write/non-executable memory (secure)
64  * MEM_AREA_INIT_RAM_RO: init private read-only/non-executable memory (secure)
65  * MEM_AREA_INIT_RAM_RX: init private read-only/executable memory (secure)
66  * MEM_AREA_NEX_RAM_RO: nexus private read-only/non-executable memory (secure)
67  * MEM_AREA_NEX_RAM_RW: nexus private r/w/non-executable memory (secure)
68  * MEM_AREA_TEE_COHERENT: teecore coherent RAM (secure, reserved to TEE)
69  * MEM_AREA_TEE_ASAN: core address sanitizer RAM (secure, reserved to TEE)
70  * MEM_AREA_IDENTITY_MAP_RX: core identity mapped r/o executable memory (secure)
71  * MEM_AREA_TA_RAM:   Secure RAM where teecore loads/exec TA instances.
72  * MEM_AREA_NSEC_SHM: NonSecure shared RAM between NSec and TEE.
73  * MEM_AREA_NEX_NSEC_SHM: nexus non-secure shared RAM between NSec and TEE.
74  * MEM_AREA_RAM_NSEC: NonSecure RAM storing data
75  * MEM_AREA_RAM_SEC:  Secure RAM storing some secrets
76  * MEM_AREA_ROM_SEC:  Secure read only memory storing some secrets
77  * MEM_AREA_IO_NSEC:  NonSecure HW mapped registers
78  * MEM_AREA_IO_SEC:   Secure HW mapped registers
79  * MEM_AREA_EXT_DT:   Memory loads external device tree
80  * MEM_AREA_MANIFEST_DT: Memory loads manifest device tree
81  * MEM_AREA_TRANSFER_LIST: Memory area mapped for Transfer List
82  * MEM_AREA_RES_VASPACE: Reserved virtual memory space
83  * MEM_AREA_SHM_VASPACE: Virtual memory space for dynamic shared memory buffers
84  * MEM_AREA_TS_VASPACE: TS va space, only used with phys_to_virt()
85  * MEM_AREA_DDR_OVERALL: Overall DDR address range, candidate to dynamic shm.
86  * MEM_AREA_SEC_RAM_OVERALL: Whole secure RAM
87  * MEM_AREA_MAXTYPE:  lower invalid 'type' value
88  */
89 enum teecore_memtypes {
90 	MEM_AREA_END = 0,
91 	MEM_AREA_TEE_RAM,
92 	MEM_AREA_TEE_RAM_RX,
93 	MEM_AREA_TEE_RAM_RO,
94 	MEM_AREA_TEE_RAM_RW,
95 	MEM_AREA_INIT_RAM_RO,
96 	MEM_AREA_INIT_RAM_RX,
97 	MEM_AREA_NEX_RAM_RO,
98 	MEM_AREA_NEX_RAM_RW,
99 	MEM_AREA_TEE_COHERENT,
100 	MEM_AREA_TEE_ASAN,
101 	MEM_AREA_IDENTITY_MAP_RX,
102 	MEM_AREA_TA_RAM,
103 	MEM_AREA_NSEC_SHM,
104 	MEM_AREA_NEX_NSEC_SHM,
105 	MEM_AREA_RAM_NSEC,
106 	MEM_AREA_RAM_SEC,
107 	MEM_AREA_ROM_SEC,
108 	MEM_AREA_IO_NSEC,
109 	MEM_AREA_IO_SEC,
110 	MEM_AREA_EXT_DT,
111 	MEM_AREA_MANIFEST_DT,
112 	MEM_AREA_TRANSFER_LIST,
113 	MEM_AREA_RES_VASPACE,
114 	MEM_AREA_SHM_VASPACE,
115 	MEM_AREA_TS_VASPACE,
116 	MEM_AREA_PAGER_VASPACE,
117 	MEM_AREA_SDP_MEM,
118 	MEM_AREA_DDR_OVERALL,
119 	MEM_AREA_SEC_RAM_OVERALL,
120 	MEM_AREA_MAXTYPE
121 };
122 
123 static inline const char *teecore_memtype_name(enum teecore_memtypes type)
124 {
125 	static const char * const names[] = {
126 		[MEM_AREA_END] = "END",
127 		[MEM_AREA_TEE_RAM] = "TEE_RAM_RWX",
128 		[MEM_AREA_TEE_RAM_RX] = "TEE_RAM_RX",
129 		[MEM_AREA_TEE_RAM_RO] = "TEE_RAM_RO",
130 		[MEM_AREA_TEE_RAM_RW] = "TEE_RAM_RW",
131 		[MEM_AREA_INIT_RAM_RO] = "INIT_RAM_RO",
132 		[MEM_AREA_INIT_RAM_RX] = "INIT_RAM_RX",
133 		[MEM_AREA_NEX_RAM_RO] = "NEX_RAM_RO",
134 		[MEM_AREA_NEX_RAM_RW] = "NEX_RAM_RW",
135 		[MEM_AREA_TEE_ASAN] = "TEE_ASAN",
136 		[MEM_AREA_IDENTITY_MAP_RX] = "IDENTITY_MAP_RX",
137 		[MEM_AREA_TEE_COHERENT] = "TEE_COHERENT",
138 		[MEM_AREA_TA_RAM] = "TA_RAM",
139 		[MEM_AREA_NSEC_SHM] = "NSEC_SHM",
140 		[MEM_AREA_NEX_NSEC_SHM] = "NEX_NSEC_SHM",
141 		[MEM_AREA_RAM_NSEC] = "RAM_NSEC",
142 		[MEM_AREA_RAM_SEC] = "RAM_SEC",
143 		[MEM_AREA_ROM_SEC] = "ROM_SEC",
144 		[MEM_AREA_IO_NSEC] = "IO_NSEC",
145 		[MEM_AREA_IO_SEC] = "IO_SEC",
146 		[MEM_AREA_EXT_DT] = "EXT_DT",
147 		[MEM_AREA_MANIFEST_DT] = "MANIFEST_DT",
148 		[MEM_AREA_TRANSFER_LIST] = "TRANSFER_LIST",
149 		[MEM_AREA_RES_VASPACE] = "RES_VASPACE",
150 		[MEM_AREA_SHM_VASPACE] = "SHM_VASPACE",
151 		[MEM_AREA_TS_VASPACE] = "TS_VASPACE",
152 		[MEM_AREA_PAGER_VASPACE] = "PAGER_VASPACE",
153 		[MEM_AREA_SDP_MEM] = "SDP_MEM",
154 		[MEM_AREA_DDR_OVERALL] = "DDR_OVERALL",
155 		[MEM_AREA_SEC_RAM_OVERALL] = "SEC_RAM_OVERALL",
156 	};
157 
158 	COMPILE_TIME_ASSERT(ARRAY_SIZE(names) == MEM_AREA_MAXTYPE);
159 	return names[type];
160 }
161 
162 #ifdef CFG_CORE_RWDATA_NOEXEC
163 #define MEM_AREA_TEE_RAM_RW_DATA	MEM_AREA_TEE_RAM_RW
164 #else
165 #define MEM_AREA_TEE_RAM_RW_DATA	MEM_AREA_TEE_RAM
166 #endif
167 
168 struct core_mmu_phys_mem {
169 	const char *name;
170 	enum teecore_memtypes type;
171 	__extension__ union {
172 #if __SIZEOF_LONG__ != __SIZEOF_PADDR__
173 		struct {
174 			uint32_t lo_addr;
175 			uint32_t hi_addr;
176 		};
177 #endif
178 		paddr_t addr;
179 	};
180 	__extension__ union {
181 #if __SIZEOF_LONG__ != __SIZEOF_PADDR__
182 		struct {
183 			uint32_t lo_size;
184 			uint32_t hi_size;
185 		};
186 #endif
187 		paddr_size_t size;
188 	};
189 };
190 
191 #define __register_memory(_name, _type, _addr, _size, _section) \
192 	SCATTERED_ARRAY_DEFINE_ITEM(_section, struct core_mmu_phys_mem) = \
193 		{ .name = (_name), .type = (_type), .addr = (_addr), \
194 		  .size = (_size) }
195 
196 #if __SIZEOF_LONG__ != __SIZEOF_PADDR__
197 #define __register_memory_ul(_name, _type, _addr, _size, _section) \
198 	SCATTERED_ARRAY_DEFINE_ITEM(_section, struct core_mmu_phys_mem) = \
199 		{ .name = (_name), .type = (_type), .lo_addr = (_addr), \
200 		  .lo_size = (_size) }
201 #else
202 #define __register_memory_ul(_name, _type, _addr, _size, _section) \
203 		__register_memory(_name, _type, _addr, _size, _section)
204 #endif
205 
206 #define register_phys_mem(type, addr, size) \
207 		__register_memory(#addr, (type), (addr), (size), \
208 				  phys_mem_map)
209 
210 #define register_phys_mem_ul(type, addr, size) \
211 		__register_memory_ul(#addr, (type), (addr), (size), \
212 				     phys_mem_map)
213 
214 /* Same as register_phys_mem() but with PGDIR_SIZE granularity */
215 #define register_phys_mem_pgdir(type, addr, size) \
216 	__register_memory(#addr, type, ROUNDDOWN(addr, CORE_MMU_PGDIR_SIZE), \
217 			  ROUNDUP(size + addr - \
218 					ROUNDDOWN(addr, CORE_MMU_PGDIR_SIZE), \
219 				  CORE_MMU_PGDIR_SIZE), phys_mem_map)
220 
221 #ifdef CFG_SECURE_DATA_PATH
222 #define register_sdp_mem(addr, size) \
223 		__register_memory(#addr, MEM_AREA_SDP_MEM, (addr), (size), \
224 				  phys_sdp_mem)
225 #else
226 #define register_sdp_mem(addr, size) \
227 		static int CONCAT(__register_sdp_mem_unused, __COUNTER__) \
228 			__unused
229 #endif
230 
231 /* register_dynamic_shm() is deprecated, please use register_ddr() instead */
232 #define register_dynamic_shm(addr, size) \
233 		__register_memory(#addr, MEM_AREA_DDR_OVERALL, (addr), (size), \
234 				  phys_ddr_overall_compat)
235 
236 /*
237  * register_ddr() - Define a memory range
238  * @addr: Base address
239  * @size: Length
240  *
241  * This macro can be used multiple times to define disjoint ranges. While
242  * initializing holes are carved out of these ranges where it overlaps with
243  * special memory, for instance memory registered with register_sdp_mem().
244  *
245  * The memory that remains is accepted as non-secure shared memory when
246  * communicating with normal world.
247  *
248  * This macro is an alternative to supply the memory description with a
249  * devicetree blob.
250  */
251 #define register_ddr(addr, size) \
252 		__register_memory(#addr, MEM_AREA_DDR_OVERALL, (addr), \
253 				  (size), phys_ddr_overall)
254 
255 #define phys_ddr_overall_begin \
256 	SCATTERED_ARRAY_BEGIN(phys_ddr_overall, struct core_mmu_phys_mem)
257 
258 #define phys_ddr_overall_end \
259 	SCATTERED_ARRAY_END(phys_ddr_overall, struct core_mmu_phys_mem)
260 
261 #define phys_ddr_overall_compat_begin \
262 	SCATTERED_ARRAY_BEGIN(phys_ddr_overall_compat, struct core_mmu_phys_mem)
263 
264 #define phys_ddr_overall_compat_end \
265 	SCATTERED_ARRAY_END(phys_ddr_overall_compat, struct core_mmu_phys_mem)
266 
267 #define phys_sdp_mem_begin \
268 	SCATTERED_ARRAY_BEGIN(phys_sdp_mem, struct core_mmu_phys_mem)
269 
270 #define phys_sdp_mem_end \
271 	SCATTERED_ARRAY_END(phys_sdp_mem, struct core_mmu_phys_mem)
272 
273 #define phys_mem_map_begin \
274 	SCATTERED_ARRAY_BEGIN(phys_mem_map, struct core_mmu_phys_mem)
275 
276 #define phys_mem_map_end \
277 	SCATTERED_ARRAY_END(phys_mem_map, struct core_mmu_phys_mem)
278 
279 #ifdef CFG_CORE_RESERVED_SHM
280 /* Default NSec shared memory allocated from NSec world */
281 extern unsigned long default_nsec_shm_paddr;
282 extern unsigned long default_nsec_shm_size;
283 #endif
284 
285 /*
286  * Physical load address of OP-TEE updated during boot if needed to reflect
287  * the value used.
288  */
289 #ifdef CFG_CORE_PHYS_RELOCATABLE
290 extern unsigned long core_mmu_tee_load_pa;
291 #else
292 extern const unsigned long core_mmu_tee_load_pa;
293 #endif
294 
295 void core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg);
296 void core_init_mmu_regs(struct core_mmu_config *cfg);
297 
298 /* Arch specific function to help optimizing 1 MMU xlat table */
299 bool core_mmu_prefer_tee_ram_at_top(paddr_t paddr);
300 
301 /*
302  * struct mmu_partition - stores MMU partition.
303  *
304  * Basically it	represent whole MMU mapping. It is possible
305  * to create multiple partitions, and change them in runtime,
306  * effectively changing how OP-TEE sees memory.
307  * This is opaque struct which is defined differently for
308  * v7 and LPAE MMUs
309  *
310  * This structure used mostly when virtualization is enabled.
311  * When CFG_NS_VIRTUALIZATION==n only default partition exists.
312  */
313 struct mmu_partition;
314 
315 /*
316  * core_mmu_get_user_va_range() - Return range of user va space
317  * @base:	Lowest user virtual address
318  * @size:	Size in bytes of user address space
319  */
320 void core_mmu_get_user_va_range(vaddr_t *base, size_t *size);
321 
322 /*
323  * enum core_mmu_fault - different kinds of faults
324  * @CORE_MMU_FAULT_ALIGNMENT:		alignment fault
325  * @CORE_MMU_FAULT_DEBUG_EVENT:		debug event
326  * @CORE_MMU_FAULT_TRANSLATION:		translation fault
327  * @CORE_MMU_FAULT_WRITE_PERMISSION:	Permission fault during write
328  * @CORE_MMU_FAULT_READ_PERMISSION:	Permission fault during read
329  * @CORE_MMU_FAULT_ASYNC_EXTERNAL:	asynchronous external abort
330  * @CORE_MMU_FAULT_ACCESS_BIT:		access bit fault
331  * @CORE_MMU_FAULT_TAG_CHECK:		tag check fault
332  * @CORE_MMU_FAULT_OTHER:		Other/unknown fault
333  */
334 enum core_mmu_fault {
335 	CORE_MMU_FAULT_ALIGNMENT,
336 	CORE_MMU_FAULT_DEBUG_EVENT,
337 	CORE_MMU_FAULT_TRANSLATION,
338 	CORE_MMU_FAULT_WRITE_PERMISSION,
339 	CORE_MMU_FAULT_READ_PERMISSION,
340 	CORE_MMU_FAULT_ASYNC_EXTERNAL,
341 	CORE_MMU_FAULT_ACCESS_BIT,
342 	CORE_MMU_FAULT_TAG_CHECK,
343 	CORE_MMU_FAULT_OTHER,
344 };
345 
346 /*
347  * core_mmu_get_fault_type() - get fault type
348  * @fault_descr:	Content of fault status or exception syndrome register
349  * @returns an enum describing the content of fault status register.
350  */
351 enum core_mmu_fault core_mmu_get_fault_type(uint32_t fault_descr);
352 
353 /*
354  * core_mm_type_to_attr() - convert memory type to attribute
355  * @t: memory type
356  * @returns an attribute that can be passed to core_mm_set_entry() and friends
357  */
358 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t);
359 
360 /*
361  * core_mmu_create_user_map() - Create user mode mapping
362  * @uctx:	Pointer to user mode context
363  * @map:	MMU configuration to use when activating this VA space
364  */
365 void core_mmu_create_user_map(struct user_mode_ctx *uctx,
366 			      struct core_mmu_user_map *map);
367 /*
368  * core_mmu_get_user_map() - Reads current MMU configuration for user VA space
369  * @map:	MMU configuration for current user VA space.
370  */
371 void core_mmu_get_user_map(struct core_mmu_user_map *map);
372 
373 /*
374  * core_mmu_set_user_map() - Set new MMU configuration for user VA space
375  * @map:	User context MMU configuration or NULL to set core VA space
376  *
377  * Activate user VA space mapping and set its ASID if @map is not NULL,
378  * otherwise activate core mapping and set ASID to 0.
379  */
380 void core_mmu_set_user_map(struct core_mmu_user_map *map);
381 
382 /*
383  * struct core_mmu_table_info - Properties for a translation table
384  * @table:	Pointer to translation table
385  * @va_base:	VA base address of the transaltion table
386  * @level:	Translation table level
387  * @next_level:	Finer grained translation table level according to @level.
388  * @shift:	The shift of each entry in the table
389  * @num_entries: Number of entries in this table.
390  */
391 struct core_mmu_table_info {
392 	void *table;
393 	vaddr_t va_base;
394 	unsigned num_entries;
395 #ifdef CFG_NS_VIRTUALIZATION
396 	struct mmu_partition *prtn;
397 #endif
398 	uint8_t level;
399 	uint8_t shift;
400 	uint8_t next_level;
401 };
402 
403 /*
404  * core_mmu_find_table() - Locates a translation table
405  * @prtn:	MMU partition where search should be performed
406  * @va:		Virtual address for the table to cover
407  * @max_level:	Don't traverse beyond this level
408  * @tbl_info:	Pointer to where to store properties.
409  * @return true if a translation table was found, false on error
410  */
411 bool core_mmu_find_table(struct mmu_partition *prtn, vaddr_t va,
412 			 unsigned max_level,
413 			 struct core_mmu_table_info *tbl_info);
414 
415 /*
416  * core_mmu_entry_to_finer_grained() - divide mapping at current level into
417  *     smaller ones so memory can be mapped with finer granularity
418  * @tbl_info:	table where target record located
419  * @idx:	index of record for which a pdgir must be setup.
420  * @secure:	true/false if pgdir maps secure/non-secure memory (32bit mmu)
421  * @return true on successful, false on error
422  */
423 bool core_mmu_entry_to_finer_grained(struct core_mmu_table_info *tbl_info,
424 				     unsigned int idx, bool secure);
425 
426 void core_mmu_set_entry_primitive(void *table, size_t level, size_t idx,
427 				  paddr_t pa, uint32_t attr);
428 
429 void core_mmu_get_user_pgdir(struct core_mmu_table_info *pgd_info);
430 
431 /*
432  * core_mmu_set_entry() - Set entry in translation table
433  * @tbl_info:	Translation table properties
434  * @idx:	Index of entry to update
435  * @pa:		Physical address to assign entry
436  * @attr:	Attributes to assign entry
437  */
438 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned idx,
439 			paddr_t pa, uint32_t attr);
440 
441 void core_mmu_get_entry_primitive(const void *table, size_t level, size_t idx,
442 				  paddr_t *pa, uint32_t *attr);
443 
444 /*
445  * core_mmu_get_entry() - Get entry from translation table
446  * @tbl_info:	Translation table properties
447  * @idx:	Index of entry to read
448  * @pa:		Physical address is returned here if pa is not NULL
449  * @attr:	Attributues are returned here if attr is not NULL
450  */
451 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned idx,
452 			paddr_t *pa, uint32_t *attr);
453 
454 /*
455  * core_mmu_va2idx() - Translate from virtual address to table index
456  * @tbl_info:	Translation table properties
457  * @va:		Virtual address to translate
458  * @returns index in transaltion table
459  */
460 static inline unsigned core_mmu_va2idx(struct core_mmu_table_info *tbl_info,
461 			vaddr_t va)
462 {
463 	return (va - tbl_info->va_base) >> tbl_info->shift;
464 }
465 
466 /*
467  * core_mmu_idx2va() - Translate from table index to virtual address
468  * @tbl_info:	Translation table properties
469  * @idx:	Index to translate
470  * @returns Virtual address
471  */
472 static inline vaddr_t core_mmu_idx2va(struct core_mmu_table_info *tbl_info,
473 			unsigned idx)
474 {
475 	return (idx << tbl_info->shift) + tbl_info->va_base;
476 }
477 
478 /*
479  * core_mmu_get_block_offset() - Get offset inside a block/page
480  * @tbl_info:	Translation table properties
481  * @pa:		Physical address
482  * @returns offset within one block of the translation table
483  */
484 static inline size_t core_mmu_get_block_offset(
485 			struct core_mmu_table_info *tbl_info, paddr_t pa)
486 {
487 	return pa & ((1 << tbl_info->shift) - 1);
488 }
489 
490 /*
491  * core_mmu_is_dynamic_vaspace() - Check if memory region belongs to
492  *  empty virtual address space that is used for dymanic mappings
493  * @mm:		memory region to be checked
494  * @returns result of the check
495  */
496 static inline bool core_mmu_is_dynamic_vaspace(struct tee_mmap_region *mm)
497 {
498 	return mm->type == MEM_AREA_RES_VASPACE ||
499 		mm->type == MEM_AREA_SHM_VASPACE;
500 }
501 
502 /*
503  * core_mmu_map_pages() - map list of pages at given virtual address
504  * @vstart:	Virtual address where mapping begins
505  * @pages:	Array of page addresses
506  * @num_pages:	Number of pages
507  * @memtype:	Type of memmory to be mapped
508  *
509  * Note: This function asserts that pages are not mapped executeable for
510  * kernel (privileged) mode.
511  *
512  * @returns:	TEE_SUCCESS on success, TEE_ERROR_XXX on error
513  */
514 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
515 			      enum teecore_memtypes memtype);
516 
517 /*
518  * core_mmu_map_contiguous_pages() - map range of pages at given virtual address
519  * @vstart:	Virtual address where mapping begins
520  * @pstart:	Physical address of the first page
521  * @num_pages:	Number of pages
522  * @memtype:	Type of memmory to be mapped
523  *
524  * Note: This function asserts that pages are not mapped executeable for
525  * kernel (privileged) mode.
526  *
527  * @returns:	TEE_SUCCESS on success, TEE_ERROR_XXX on error
528  */
529 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
530 					 size_t num_pages,
531 					 enum teecore_memtypes memtype);
532 
533 /*
534  * core_mmu_unmap_pages() - remove mapping at given virtual address
535  * @vstart:	Virtual address where mapping begins
536  * @num_pages:	Number of pages to unmap
537  */
538 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages);
539 
540 /*
541  * core_mmu_user_mapping_is_active() - Report if user mapping is active
542  * @returns true if a user VA space is active, false if user VA space is
543  *          inactive.
544  */
545 bool core_mmu_user_mapping_is_active(void);
546 
547 /*
548  * core_mmu_mattr_is_ok() - Check that supplied mem attributes can be used
549  * @returns true if the attributes can be used, false if not.
550  */
551 bool core_mmu_mattr_is_ok(uint32_t mattr);
552 
553 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
554 			      vaddr_t *e);
555 
556 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa);
557 
558 /* routines to retreive shared mem configuration */
559 static inline bool core_mmu_is_shm_cached(void)
560 {
561 	return mattr_is_cached(core_mmu_type_to_attr(MEM_AREA_NSEC_SHM));
562 }
563 
564 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
565 				   size_t len);
566 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr,
567 			   size_t len);
568 
569 /*
570  * core_mmu_find_mapping_exclusive() - Find mapping of specified type and
571  *				       length. If more than one mapping of
572  *				       specified type is present, NULL will be
573  *				       returned.
574  * @type:	memory type
575  * @len:	length in bytes
576  */
577 struct tee_mmap_region *
578 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len);
579 
580 /*
581  * tlbi_va_range() - Invalidate TLB for virtual address range
582  * @va:		start virtual address, must be a multiple of @granule
583  * @len:	length in bytes of range, must be a multiple of @granule
584  * @granule:	granularity of mapping, supported values are
585  *		CORE_MMU_PGDIR_SIZE or SMALL_PAGE_SIZE. This value must
586  *		match the actual mappings.
587  */
588 void tlbi_va_range(vaddr_t va, size_t len, size_t granule);
589 
590 /*
591  * tlbi_va_range_asid() - Invalidate TLB for virtual address range for
592  *			  a specific ASID
593  * @va:		start virtual address, must be a multiple of @granule
594  * @len:	length in bytes of range, must be a multiple of @granule
595  * @granule:	granularity of mapping, supported values are
596  *		CORE_MMU_PGDIR_SIZE or SMALL_PAGE_SIZE. This value must
597  *		match the actual mappings.
598  * @asid:	Address space identifier
599  */
600 void tlbi_va_range_asid(vaddr_t va, size_t len, size_t granule, uint32_t asid);
601 
602 /* Check cpu mmu enabled or not */
603 bool cpu_mmu_enabled(void);
604 
605 #ifdef CFG_CORE_DYN_SHM
606 /*
607  * Check if platform defines nsec DDR range(s).
608  * Static SHM (MEM_AREA_NSEC_SHM) is not covered by this API as it is
609  * always present.
610  */
611 bool core_mmu_nsec_ddr_is_defined(void);
612 
613 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
614 				      size_t nelems);
615 #endif
616 
617 /* Initialize MMU partition */
618 void core_init_mmu_prtn(struct mmu_partition *prtn, struct tee_mmap_region *mm);
619 
620 unsigned int asid_alloc(void);
621 void asid_free(unsigned int asid);
622 
623 #ifdef CFG_SECURE_DATA_PATH
624 /* Alloc and fill SDP memory objects table - table is NULL terminated */
625 struct mobj **core_sdp_mem_create_mobjs(void);
626 #endif
627 
628 #ifdef CFG_NS_VIRTUALIZATION
629 size_t core_mmu_get_total_pages_size(void);
630 struct mmu_partition *core_alloc_mmu_prtn(void *tables);
631 void core_free_mmu_prtn(struct mmu_partition *prtn);
632 void core_mmu_set_prtn(struct mmu_partition *prtn);
633 void core_mmu_set_default_prtn(void);
634 void core_mmu_set_default_prtn_tbl(void);
635 #endif
636 
637 void core_mmu_init_virtualization(void);
638 
639 /* init some allocation pools */
640 void core_mmu_init_ta_ram(void);
641 
642 void core_init_mmu(struct tee_mmap_region *mm);
643 
644 void core_mmu_set_info_table(struct core_mmu_table_info *tbl_info,
645 			     unsigned int level, vaddr_t va_base, void *table);
646 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
647 				struct user_mode_ctx *uctx);
648 void core_mmu_map_region(struct mmu_partition *prtn,
649 			 struct tee_mmap_region *mm);
650 
651 bool arch_va2pa_helper(void *va, paddr_t *pa);
652 
653 static inline bool core_mmap_is_end_of_table(const struct tee_mmap_region *mm)
654 {
655 	return mm->type == MEM_AREA_END;
656 }
657 
658 static inline bool core_mmu_check_end_pa(paddr_t pa, size_t len)
659 {
660 	paddr_t end_pa = 0;
661 
662 	if (ADD_OVERFLOW(pa, len - 1, &end_pa))
663 		return false;
664 	return core_mmu_check_max_pa(end_pa);
665 }
666 
667 /*
668  * core_mmu_set_secure_memory() - set physical secure memory range
669  * @base: base address of secure memory
670  * @size: size of secure memory
671  *
672  * The physical secure memory range is not known in advance when OP-TEE is
673  * relocatable, this information must be supplied once during boot before
674  * the translation tables can be initialized and the MMU enabled.
675  */
676 void core_mmu_set_secure_memory(paddr_t base, size_t size);
677 
678 /*
679  * core_mmu_get_secure_memory() - get physical secure memory range
680  * @base: base address of secure memory
681  * @size: size of secure memory
682  *
683  * The physical secure memory range returned covers at least the memory
684  * range used by OP-TEE Core, but may cover more memory depending on the
685  * configuration.
686  */
687 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size);
688 
689 /*
690  * core_mmu_get_ta_range() - get physical memory range reserved for TAs
691  * @base: [out] range base address ref or NULL
692  * @size: [out] range size ref or NULL
693  */
694 void core_mmu_get_ta_range(paddr_t *base, size_t *size);
695 
696 #endif /*__ASSEMBLER__*/
697 
698 #endif /* __MM_CORE_MMU_H */
699