xref: /optee_os/core/include/mm/core_mmu.h (revision 325d496372fce39d1e3c3aa07da6ee80523797e8)
1 /* SPDX-License-Identifier: BSD-2-Clause */
2 /*
3  * Copyright (c) 2016, Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  */
6 #ifndef __MM_CORE_MMU_H
7 #define __MM_CORE_MMU_H
8 
9 #ifndef __ASSEMBLER__
10 #include <assert.h>
11 #include <compiler.h>
12 #include <kernel/user_ta.h>
13 #include <mm/tee_mm.h>
14 #include <mm/tee_mmu_types.h>
15 #include <types_ext.h>
16 #include <util.h>
17 #endif
18 
19 #include <mm/core_mmu_arch.h>
20 #include <platform_config.h>
21 
22 /* A small page is the smallest unit of memory that can be mapped */
23 #define SMALL_PAGE_SIZE			BIT(SMALL_PAGE_SHIFT)
24 #define SMALL_PAGE_MASK			((paddr_t)SMALL_PAGE_SIZE - 1)
25 
26 /*
27  * PGDIR is the translation table above the translation table that holds
28  * the pages.
29  */
30 #define CORE_MMU_PGDIR_SIZE		BIT(CORE_MMU_PGDIR_SHIFT)
31 #define CORE_MMU_PGDIR_MASK		((paddr_t)CORE_MMU_PGDIR_SIZE - 1)
32 
33 /* TA user space code, data, stack and heap are mapped using this granularity */
34 #define CORE_MMU_USER_CODE_SIZE		BIT(CORE_MMU_USER_CODE_SHIFT)
35 #define CORE_MMU_USER_CODE_MASK		((paddr_t)CORE_MMU_USER_CODE_SIZE - 1)
36 
37 /* TA user space parameters are mapped using this granularity */
38 #define CORE_MMU_USER_PARAM_SIZE	BIT(CORE_MMU_USER_PARAM_SHIFT)
39 #define CORE_MMU_USER_PARAM_MASK	((paddr_t)CORE_MMU_USER_PARAM_SIZE - 1)
40 
41 /*
42  * Identify mapping constraint: virtual base address is the physical start addr.
43  * If platform did not set some macros, some get default value.
44  */
45 #ifndef TEE_RAM_VA_SIZE
46 #define TEE_RAM_VA_SIZE			CORE_MMU_PGDIR_SIZE
47 #endif
48 
49 #ifndef TEE_LOAD_ADDR
50 #define TEE_LOAD_ADDR			TEE_RAM_START
51 #endif
52 
53 #ifndef STACK_ALIGNMENT
54 #define STACK_ALIGNMENT			(sizeof(long) * U(2))
55 #endif
56 
57 #ifndef __ASSEMBLER__
58 /*
59  * Memory area type:
60  * MEM_AREA_TEE_RAM:  core RAM (read/write/executable, secure, reserved to TEE)
61  * MEM_AREA_TEE_RAM_RX:  core private read-only/executable memory (secure)
62  * MEM_AREA_TEE_RAM_RO:  core private read-only/non-executable memory (secure)
63  * MEM_AREA_TEE_RAM_RW:  core private read/write/non-executable memory (secure)
64  * MEM_AREA_INIT_RAM_RO: init private read-only/non-executable memory (secure)
65  * MEM_AREA_INIT_RAM_RX: init private read-only/executable memory (secure)
66  * MEM_AREA_NEX_RAM_RO: nexus private read-only/non-executable memory (secure)
67  * MEM_AREA_NEX_RAM_RW: nexus private r/w/non-executable memory (secure)
68  * MEM_AREA_TEE_COHERENT: teecore coherent RAM (secure, reserved to TEE)
69  * MEM_AREA_TEE_ASAN: core address sanitizer RAM (secure, reserved to TEE)
70  * MEM_AREA_IDENTITY_MAP_RX: core identity mapped r/o executable memory (secure)
71  * MEM_AREA_NSEC_SHM: NonSecure shared RAM between NSec and TEE.
72  * MEM_AREA_NEX_NSEC_SHM: nexus non-secure shared RAM between NSec and TEE.
73  * MEM_AREA_RAM_NSEC: NonSecure RAM storing data
74  * MEM_AREA_RAM_SEC:  Secure RAM storing some secrets
75  * MEM_AREA_ROM_SEC:  Secure read only memory storing some secrets
76  * MEM_AREA_IO_NSEC:  NonSecure HW mapped registers
77  * MEM_AREA_IO_SEC:   Secure HW mapped registers
78  * MEM_AREA_EXT_DT:   Memory loads external device tree
79  * MEM_AREA_MANIFEST_DT: Memory loads manifest device tree
80  * MEM_AREA_TRANSFER_LIST: Memory area mapped for Transfer List
81  * MEM_AREA_RES_VASPACE: Reserved virtual memory space
82  * MEM_AREA_SHM_VASPACE: Virtual memory space for dynamic shared memory buffers
83  * MEM_AREA_TS_VASPACE: TS va space, only used with phys_to_virt()
84  * MEM_AREA_DDR_OVERALL: Overall DDR address range, candidate to dynamic shm.
85  * MEM_AREA_SEC_RAM_OVERALL: Whole secure RAM
86  * MEM_AREA_MAXTYPE:  lower invalid 'type' value
87  */
88 enum teecore_memtypes {
89 	MEM_AREA_TEE_RAM = 1,
90 	MEM_AREA_TEE_RAM_RX,
91 	MEM_AREA_TEE_RAM_RO,
92 	MEM_AREA_TEE_RAM_RW,
93 	MEM_AREA_INIT_RAM_RO,
94 	MEM_AREA_INIT_RAM_RX,
95 	MEM_AREA_NEX_RAM_RO,
96 	MEM_AREA_NEX_RAM_RW,
97 	MEM_AREA_TEE_COHERENT,
98 	MEM_AREA_TEE_ASAN,
99 	MEM_AREA_IDENTITY_MAP_RX,
100 	MEM_AREA_NSEC_SHM,
101 	MEM_AREA_NEX_NSEC_SHM,
102 	MEM_AREA_RAM_NSEC,
103 	MEM_AREA_RAM_SEC,
104 	MEM_AREA_ROM_SEC,
105 	MEM_AREA_IO_NSEC,
106 	MEM_AREA_IO_SEC,
107 	MEM_AREA_EXT_DT,
108 	MEM_AREA_MANIFEST_DT,
109 	MEM_AREA_TRANSFER_LIST,
110 	MEM_AREA_RES_VASPACE,
111 	MEM_AREA_SHM_VASPACE,
112 	MEM_AREA_TS_VASPACE,
113 	MEM_AREA_PAGER_VASPACE,
114 	MEM_AREA_SDP_MEM,
115 	MEM_AREA_DDR_OVERALL,
116 	MEM_AREA_SEC_RAM_OVERALL,
117 	MEM_AREA_MAXTYPE
118 };
119 
120 static inline const char *teecore_memtype_name(enum teecore_memtypes type)
121 {
122 	static const char * const names[] = {
123 		[MEM_AREA_TEE_RAM] = "TEE_RAM_RWX",
124 		[MEM_AREA_TEE_RAM_RX] = "TEE_RAM_RX",
125 		[MEM_AREA_TEE_RAM_RO] = "TEE_RAM_RO",
126 		[MEM_AREA_TEE_RAM_RW] = "TEE_RAM_RW",
127 		[MEM_AREA_INIT_RAM_RO] = "INIT_RAM_RO",
128 		[MEM_AREA_INIT_RAM_RX] = "INIT_RAM_RX",
129 		[MEM_AREA_NEX_RAM_RO] = "NEX_RAM_RO",
130 		[MEM_AREA_NEX_RAM_RW] = "NEX_RAM_RW",
131 		[MEM_AREA_TEE_ASAN] = "TEE_ASAN",
132 		[MEM_AREA_IDENTITY_MAP_RX] = "IDENTITY_MAP_RX",
133 		[MEM_AREA_TEE_COHERENT] = "TEE_COHERENT",
134 		[MEM_AREA_NSEC_SHM] = "NSEC_SHM",
135 		[MEM_AREA_NEX_NSEC_SHM] = "NEX_NSEC_SHM",
136 		[MEM_AREA_RAM_NSEC] = "RAM_NSEC",
137 		[MEM_AREA_RAM_SEC] = "RAM_SEC",
138 		[MEM_AREA_ROM_SEC] = "ROM_SEC",
139 		[MEM_AREA_IO_NSEC] = "IO_NSEC",
140 		[MEM_AREA_IO_SEC] = "IO_SEC",
141 		[MEM_AREA_EXT_DT] = "EXT_DT",
142 		[MEM_AREA_MANIFEST_DT] = "MANIFEST_DT",
143 		[MEM_AREA_TRANSFER_LIST] = "TRANSFER_LIST",
144 		[MEM_AREA_RES_VASPACE] = "RES_VASPACE",
145 		[MEM_AREA_SHM_VASPACE] = "SHM_VASPACE",
146 		[MEM_AREA_TS_VASPACE] = "TS_VASPACE",
147 		[MEM_AREA_PAGER_VASPACE] = "PAGER_VASPACE",
148 		[MEM_AREA_SDP_MEM] = "SDP_MEM",
149 		[MEM_AREA_DDR_OVERALL] = "DDR_OVERALL",
150 		[MEM_AREA_SEC_RAM_OVERALL] = "SEC_RAM_OVERALL",
151 	};
152 
153 	COMPILE_TIME_ASSERT(ARRAY_SIZE(names) == MEM_AREA_MAXTYPE);
154 	return names[type];
155 }
156 
157 #ifdef CFG_CORE_RWDATA_NOEXEC
158 #define MEM_AREA_TEE_RAM_RW_DATA	MEM_AREA_TEE_RAM_RW
159 #else
160 #define MEM_AREA_TEE_RAM_RW_DATA	MEM_AREA_TEE_RAM
161 #endif
162 
163 struct core_mmu_phys_mem {
164 	const char *name;
165 	enum teecore_memtypes type;
166 	__extension__ union {
167 #if __SIZEOF_LONG__ != __SIZEOF_PADDR__
168 		struct {
169 			uint32_t lo_addr;
170 			uint32_t hi_addr;
171 		};
172 #endif
173 		paddr_t addr;
174 	};
175 	__extension__ union {
176 #if __SIZEOF_LONG__ != __SIZEOF_PADDR__
177 		struct {
178 			uint32_t lo_size;
179 			uint32_t hi_size;
180 		};
181 #endif
182 		paddr_size_t size;
183 	};
184 };
185 
186 #define __register_memory(_name, _type, _addr, _size, _section) \
187 	SCATTERED_ARRAY_DEFINE_ITEM(_section, struct core_mmu_phys_mem) = \
188 		{ .name = (_name), .type = (_type), .addr = (_addr), \
189 		  .size = (_size) }
190 
191 #if __SIZEOF_LONG__ != __SIZEOF_PADDR__
192 #define __register_memory_ul(_name, _type, _addr, _size, _section) \
193 	SCATTERED_ARRAY_DEFINE_ITEM(_section, struct core_mmu_phys_mem) = \
194 		{ .name = (_name), .type = (_type), .lo_addr = (_addr), \
195 		  .lo_size = (_size) }
196 #else
197 #define __register_memory_ul(_name, _type, _addr, _size, _section) \
198 		__register_memory(_name, _type, _addr, _size, _section)
199 #endif
200 
201 #define register_phys_mem(type, addr, size) \
202 		__register_memory(#addr, (type), (addr), (size), \
203 				  phys_mem_map)
204 
205 #define register_phys_mem_ul(type, addr, size) \
206 		__register_memory_ul(#addr, (type), (addr), (size), \
207 				     phys_mem_map)
208 
209 /* Same as register_phys_mem() but with PGDIR_SIZE granularity */
210 #define register_phys_mem_pgdir(type, addr, size) \
211 	__register_memory(#addr, type, ROUNDDOWN(addr, CORE_MMU_PGDIR_SIZE), \
212 			  ROUNDUP(size + addr - \
213 					ROUNDDOWN(addr, CORE_MMU_PGDIR_SIZE), \
214 				  CORE_MMU_PGDIR_SIZE), phys_mem_map)
215 
216 #ifdef CFG_SECURE_DATA_PATH
217 #define register_sdp_mem(addr, size) \
218 		__register_memory(#addr, MEM_AREA_SDP_MEM, (addr), (size), \
219 				  phys_sdp_mem)
220 #else
221 #define register_sdp_mem(addr, size) \
222 		static int CONCAT(__register_sdp_mem_unused, __COUNTER__) \
223 			__unused
224 #endif
225 
226 /* register_dynamic_shm() is deprecated, please use register_ddr() instead */
227 #define register_dynamic_shm(addr, size) \
228 		__register_memory(#addr, MEM_AREA_DDR_OVERALL, (addr), (size), \
229 				  phys_ddr_overall_compat)
230 
231 /*
232  * register_ddr() - Define a memory range
233  * @addr: Base address
234  * @size: Length
235  *
236  * This macro can be used multiple times to define disjoint ranges. While
237  * initializing holes are carved out of these ranges where it overlaps with
238  * special memory, for instance memory registered with register_sdp_mem().
239  *
240  * The memory that remains is accepted as non-secure shared memory when
241  * communicating with normal world.
242  *
243  * This macro is an alternative to supply the memory description with a
244  * devicetree blob.
245  */
246 #define register_ddr(addr, size) \
247 		__register_memory(#addr, MEM_AREA_DDR_OVERALL, (addr), \
248 				  (size), phys_ddr_overall)
249 
250 #define phys_ddr_overall_begin \
251 	SCATTERED_ARRAY_BEGIN(phys_ddr_overall, struct core_mmu_phys_mem)
252 
253 #define phys_ddr_overall_end \
254 	SCATTERED_ARRAY_END(phys_ddr_overall, struct core_mmu_phys_mem)
255 
256 #define phys_ddr_overall_compat_begin \
257 	SCATTERED_ARRAY_BEGIN(phys_ddr_overall_compat, struct core_mmu_phys_mem)
258 
259 #define phys_ddr_overall_compat_end \
260 	SCATTERED_ARRAY_END(phys_ddr_overall_compat, struct core_mmu_phys_mem)
261 
262 #define phys_sdp_mem_begin \
263 	SCATTERED_ARRAY_BEGIN(phys_sdp_mem, struct core_mmu_phys_mem)
264 
265 #define phys_sdp_mem_end \
266 	SCATTERED_ARRAY_END(phys_sdp_mem, struct core_mmu_phys_mem)
267 
268 #define phys_mem_map_begin \
269 	SCATTERED_ARRAY_BEGIN(phys_mem_map, struct core_mmu_phys_mem)
270 
271 #define phys_mem_map_end \
272 	SCATTERED_ARRAY_END(phys_mem_map, struct core_mmu_phys_mem)
273 
274 /* Virtual memory pool for core mappings */
275 extern tee_mm_pool_t core_virt_mem_pool;
276 
277 /* Virtual memory pool for shared memory mappings */
278 extern tee_mm_pool_t core_virt_shm_pool;
279 
280 #ifdef CFG_CORE_RESERVED_SHM
281 /* Default NSec shared memory allocated from NSec world */
282 extern unsigned long default_nsec_shm_paddr;
283 extern unsigned long default_nsec_shm_size;
284 #endif
285 
286 /*
287  * Physical load address of OP-TEE updated during boot if needed to reflect
288  * the value used.
289  */
290 #ifdef CFG_CORE_PHYS_RELOCATABLE
291 extern unsigned long core_mmu_tee_load_pa;
292 #else
293 extern const unsigned long core_mmu_tee_load_pa;
294 #endif
295 
296 void core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg);
297 void core_init_mmu_regs(struct core_mmu_config *cfg);
298 /*
299  * Copy static memory map from temporary boot_mem to heap when CFG_BOOT_MEM
300  * is enabled.
301  */
302 void core_mmu_save_mem_map(void);
303 
304 /* Arch specific function to help optimizing 1 MMU xlat table */
305 bool core_mmu_prefer_tee_ram_at_top(paddr_t paddr);
306 
307 /*
308  * struct mmu_partition - stores MMU partition.
309  *
310  * Basically it	represent whole MMU mapping. It is possible
311  * to create multiple partitions, and change them in runtime,
312  * effectively changing how OP-TEE sees memory.
313  * This is opaque struct which is defined differently for
314  * v7 and LPAE MMUs
315  *
316  * This structure used mostly when virtualization is enabled.
317  * When CFG_NS_VIRTUALIZATION==n only default partition exists.
318  */
319 struct mmu_partition;
320 
321 /*
322  * core_mmu_get_user_va_range() - Return range of user va space
323  * @base:	Lowest user virtual address
324  * @size:	Size in bytes of user address space
325  */
326 void core_mmu_get_user_va_range(vaddr_t *base, size_t *size);
327 
328 /*
329  * enum core_mmu_fault - different kinds of faults
330  * @CORE_MMU_FAULT_ALIGNMENT:		alignment fault
331  * @CORE_MMU_FAULT_DEBUG_EVENT:		debug event
332  * @CORE_MMU_FAULT_TRANSLATION:		translation fault
333  * @CORE_MMU_FAULT_WRITE_PERMISSION:	Permission fault during write
334  * @CORE_MMU_FAULT_READ_PERMISSION:	Permission fault during read
335  * @CORE_MMU_FAULT_ASYNC_EXTERNAL:	asynchronous external abort
336  * @CORE_MMU_FAULT_ACCESS_BIT:		access bit fault
337  * @CORE_MMU_FAULT_TAG_CHECK:		tag check fault
338  * @CORE_MMU_FAULT_SYNC_EXTERNAL:	synchronous external abort
339  * @CORE_MMU_FAULT_OTHER:		Other/unknown fault
340  */
341 enum core_mmu_fault {
342 	CORE_MMU_FAULT_ALIGNMENT,
343 	CORE_MMU_FAULT_DEBUG_EVENT,
344 	CORE_MMU_FAULT_TRANSLATION,
345 	CORE_MMU_FAULT_WRITE_PERMISSION,
346 	CORE_MMU_FAULT_READ_PERMISSION,
347 	CORE_MMU_FAULT_ASYNC_EXTERNAL,
348 	CORE_MMU_FAULT_ACCESS_BIT,
349 	CORE_MMU_FAULT_TAG_CHECK,
350 	CORE_MMU_FAULT_SYNC_EXTERNAL,
351 	CORE_MMU_FAULT_OTHER,
352 };
353 
354 /*
355  * core_mmu_get_fault_type() - get fault type
356  * @fault_descr:	Content of fault status or exception syndrome register
357  * @returns an enum describing the content of fault status register.
358  */
359 enum core_mmu_fault core_mmu_get_fault_type(uint32_t fault_descr);
360 
361 /*
362  * core_mm_type_to_attr() - convert memory type to attribute
363  * @t: memory type
364  * @returns an attribute that can be passed to core_mm_set_entry() and friends
365  */
366 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t);
367 
368 /*
369  * core_mmu_create_user_map() - Create user mode mapping
370  * @uctx:	Pointer to user mode context
371  * @map:	MMU configuration to use when activating this VA space
372  */
373 void core_mmu_create_user_map(struct user_mode_ctx *uctx,
374 			      struct core_mmu_user_map *map);
375 /*
376  * core_mmu_get_user_map() - Reads current MMU configuration for user VA space
377  * @map:	MMU configuration for current user VA space.
378  */
379 void core_mmu_get_user_map(struct core_mmu_user_map *map);
380 
381 /*
382  * core_mmu_set_user_map() - Set new MMU configuration for user VA space
383  * @map:	User context MMU configuration or NULL to set core VA space
384  *
385  * Activate user VA space mapping and set its ASID if @map is not NULL,
386  * otherwise activate core mapping and set ASID to 0.
387  */
388 void core_mmu_set_user_map(struct core_mmu_user_map *map);
389 
390 /*
391  * struct core_mmu_table_info - Properties for a translation table
392  * @table:	Pointer to translation table
393  * @va_base:	VA base address of the transaltion table
394  * @level:	Translation table level
395  * @next_level:	Finer grained translation table level according to @level.
396  * @shift:	The shift of each entry in the table
397  * @num_entries: Number of entries in this table.
398  */
399 struct core_mmu_table_info {
400 	void *table;
401 	vaddr_t va_base;
402 	unsigned num_entries;
403 #ifdef CFG_NS_VIRTUALIZATION
404 	struct mmu_partition *prtn;
405 #endif
406 	uint8_t level;
407 	uint8_t shift;
408 	uint8_t next_level;
409 };
410 
411 /*
412  * core_mmu_find_table() - Locates a translation table
413  * @prtn:	MMU partition where search should be performed
414  * @va:		Virtual address for the table to cover
415  * @max_level:	Don't traverse beyond this level
416  * @tbl_info:	Pointer to where to store properties.
417  * @return true if a translation table was found, false on error
418  */
419 bool core_mmu_find_table(struct mmu_partition *prtn, vaddr_t va,
420 			 unsigned max_level,
421 			 struct core_mmu_table_info *tbl_info);
422 
423 /*
424  * core_mmu_entry_to_finer_grained() - divide mapping at current level into
425  *     smaller ones so memory can be mapped with finer granularity
426  * @tbl_info:	table where target record located
427  * @idx:	index of record for which a pdgir must be setup.
428  * @secure:	true/false if pgdir maps secure/non-secure memory (32bit mmu)
429  * @return true on successful, false on error
430  */
431 bool core_mmu_entry_to_finer_grained(struct core_mmu_table_info *tbl_info,
432 				     unsigned int idx, bool secure);
433 
434 void core_mmu_set_entry_primitive(void *table, size_t level, size_t idx,
435 				  paddr_t pa, uint32_t attr);
436 
437 void core_mmu_get_user_pgdir(struct core_mmu_table_info *pgd_info);
438 
439 /*
440  * core_mmu_set_entry() - Set entry in translation table
441  * @tbl_info:	Translation table properties
442  * @idx:	Index of entry to update
443  * @pa:		Physical address to assign entry
444  * @attr:	Attributes to assign entry
445  */
446 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned idx,
447 			paddr_t pa, uint32_t attr);
448 
449 void core_mmu_get_entry_primitive(const void *table, size_t level, size_t idx,
450 				  paddr_t *pa, uint32_t *attr);
451 
452 /*
453  * core_mmu_get_entry() - Get entry from translation table
454  * @tbl_info:	Translation table properties
455  * @idx:	Index of entry to read
456  * @pa:		Physical address is returned here if pa is not NULL
457  * @attr:	Attributues are returned here if attr is not NULL
458  */
459 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned idx,
460 			paddr_t *pa, uint32_t *attr);
461 
462 /*
463  * core_mmu_va2idx() - Translate from virtual address to table index
464  * @tbl_info:	Translation table properties
465  * @va:		Virtual address to translate
466  * @returns index in transaltion table
467  */
468 static inline unsigned core_mmu_va2idx(struct core_mmu_table_info *tbl_info,
469 			vaddr_t va)
470 {
471 	return (va - tbl_info->va_base) >> tbl_info->shift;
472 }
473 
474 /*
475  * core_mmu_idx2va() - Translate from table index to virtual address
476  * @tbl_info:	Translation table properties
477  * @idx:	Index to translate
478  * @returns Virtual address
479  */
480 static inline vaddr_t core_mmu_idx2va(struct core_mmu_table_info *tbl_info,
481 			unsigned idx)
482 {
483 	return (idx << tbl_info->shift) + tbl_info->va_base;
484 }
485 
486 /*
487  * core_mmu_get_block_offset() - Get offset inside a block/page
488  * @tbl_info:	Translation table properties
489  * @pa:		Physical address
490  * @returns offset within one block of the translation table
491  */
492 static inline size_t core_mmu_get_block_offset(
493 			struct core_mmu_table_info *tbl_info, paddr_t pa)
494 {
495 	return pa & ((1 << tbl_info->shift) - 1);
496 }
497 
498 /*
499  * core_mmu_is_dynamic_vaspace() - Check if memory region belongs to
500  *  empty virtual address space that is used for dymanic mappings
501  * @mm:		memory region to be checked
502  * @returns result of the check
503  */
504 static inline bool core_mmu_is_dynamic_vaspace(struct tee_mmap_region *mm)
505 {
506 	return mm->type == MEM_AREA_RES_VASPACE ||
507 		mm->type == MEM_AREA_SHM_VASPACE;
508 }
509 
510 /*
511  * core_mmu_map_pages() - map list of pages at given virtual address
512  * @vstart:	Virtual address where mapping begins
513  * @pages:	Array of page addresses
514  * @num_pages:	Number of pages
515  * @memtype:	Type of memmory to be mapped
516  *
517  * Note: This function asserts that pages are not mapped executeable for
518  * kernel (privileged) mode.
519  *
520  * @returns:	TEE_SUCCESS on success, TEE_ERROR_XXX on error
521  */
522 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
523 			      enum teecore_memtypes memtype);
524 
525 /*
526  * core_mmu_map_contiguous_pages() - map range of pages at given virtual address
527  * @vstart:	Virtual address where mapping begins
528  * @pstart:	Physical address of the first page
529  * @num_pages:	Number of pages
530  * @memtype:	Type of memmory to be mapped
531  *
532  * Note: This function asserts that pages are not mapped executeable for
533  * kernel (privileged) mode.
534  *
535  * @returns:	TEE_SUCCESS on success, TEE_ERROR_XXX on error
536  */
537 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
538 					 size_t num_pages,
539 					 enum teecore_memtypes memtype);
540 
541 /*
542  * core_mmu_unmap_pages() - remove mapping at given virtual address
543  * @vstart:	Virtual address where mapping begins
544  * @num_pages:	Number of pages to unmap
545  */
546 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages);
547 
548 /*
549  * core_mmu_user_mapping_is_active() - Report if user mapping is active
550  * @returns true if a user VA space is active, false if user VA space is
551  *          inactive.
552  */
553 bool core_mmu_user_mapping_is_active(void);
554 
555 /*
556  * core_mmu_user_va_range_is_defined() - check if user va range is defined
557  * @returns true if a user VA space is defined, false if not.
558  */
559 bool core_mmu_user_va_range_is_defined(void);
560 
561 /*
562  * core_mmu_mattr_is_ok() - Check that supplied mem attributes can be used
563  * @returns true if the attributes can be used, false if not.
564  */
565 bool core_mmu_mattr_is_ok(uint32_t mattr);
566 
567 TEE_Result core_mmu_for_each_map(void *ptr,
568 				 TEE_Result (*fn)(struct tee_mmap_region *map,
569 						  void *ptr));
570 
571 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
572 			      vaddr_t *e);
573 
574 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa);
575 
576 /* routines to retreive shared mem configuration */
577 static inline bool core_mmu_is_shm_cached(void)
578 {
579 	return mattr_is_cached(core_mmu_type_to_attr(MEM_AREA_NSEC_SHM));
580 }
581 
582 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
583 				   size_t len);
584 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr,
585 			   size_t len);
586 
587 /*
588  * core_mmu_find_mapping_exclusive() - Find mapping of specified type and
589  *				       length. If more than one mapping of
590  *				       specified type is present, NULL will be
591  *				       returned.
592  * @type:	memory type
593  * @len:	length in bytes
594  */
595 struct tee_mmap_region *
596 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len);
597 
598 /*
599  * tlbi_va_range() - Invalidate TLB for virtual address range
600  * @va:		start virtual address, must be a multiple of @granule
601  * @len:	length in bytes of range, must be a multiple of @granule
602  * @granule:	granularity of mapping, supported values are
603  *		CORE_MMU_PGDIR_SIZE or SMALL_PAGE_SIZE. This value must
604  *		match the actual mappings.
605  */
606 void tlbi_va_range(vaddr_t va, size_t len, size_t granule);
607 
608 /*
609  * tlbi_va_range_asid() - Invalidate TLB for virtual address range for
610  *			  a specific ASID
611  * @va:		start virtual address, must be a multiple of @granule
612  * @len:	length in bytes of range, must be a multiple of @granule
613  * @granule:	granularity of mapping, supported values are
614  *		CORE_MMU_PGDIR_SIZE or SMALL_PAGE_SIZE. This value must
615  *		match the actual mappings.
616  * @asid:	Address space identifier
617  */
618 void tlbi_va_range_asid(vaddr_t va, size_t len, size_t granule, uint32_t asid);
619 
620 /* Check cpu mmu enabled or not */
621 bool cpu_mmu_enabled(void);
622 
623 #ifdef CFG_CORE_DYN_SHM
624 /*
625  * Check if platform defines nsec DDR range(s).
626  * Static SHM (MEM_AREA_NSEC_SHM) is not covered by this API as it is
627  * always present.
628  */
629 bool core_mmu_nsec_ddr_is_defined(void);
630 
631 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
632 				      size_t nelems);
633 #endif
634 
635 /* Initialize MMU partition */
636 void core_init_mmu_prtn(struct mmu_partition *prtn, struct memory_map *mem_map);
637 
638 unsigned int asid_alloc(void);
639 void asid_free(unsigned int asid);
640 
641 #ifdef CFG_SECURE_DATA_PATH
642 /* Alloc and fill SDP memory objects table - table is NULL terminated */
643 struct mobj **core_sdp_mem_create_mobjs(void);
644 #endif
645 
646 #ifdef CFG_NS_VIRTUALIZATION
647 size_t core_mmu_get_total_pages_size(void);
648 struct mmu_partition *core_alloc_mmu_prtn(void *tables);
649 void core_free_mmu_prtn(struct mmu_partition *prtn);
650 void core_mmu_set_prtn(struct mmu_partition *prtn);
651 void core_mmu_set_default_prtn(void);
652 void core_mmu_set_default_prtn_tbl(void);
653 #endif
654 
655 /* Initialize physical memory pool */
656 void core_mmu_init_phys_mem(void);
657 
658 void core_init_mmu(struct memory_map *mem_map);
659 
660 void core_mmu_set_info_table(struct core_mmu_table_info *tbl_info,
661 			     unsigned int level, vaddr_t va_base, void *table);
662 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
663 				struct user_mode_ctx *uctx);
664 void core_mmu_map_region(struct mmu_partition *prtn,
665 			 struct tee_mmap_region *mm);
666 
667 bool arch_va2pa_helper(void *va, paddr_t *pa);
668 
669 static inline bool core_mmu_check_end_pa(paddr_t pa, size_t len)
670 {
671 	paddr_t end_pa = 0;
672 
673 	if (ADD_OVERFLOW(pa, len - 1, &end_pa))
674 		return false;
675 	return core_mmu_check_max_pa(end_pa);
676 }
677 
678 /*
679  * core_mmu_set_secure_memory() - set physical secure memory range
680  * @base: base address of secure memory
681  * @size: size of secure memory
682  *
683  * The physical secure memory range is not known in advance when OP-TEE is
684  * relocatable, this information must be supplied once during boot before
685  * the translation tables can be initialized and the MMU enabled.
686  */
687 void core_mmu_set_secure_memory(paddr_t base, size_t size);
688 
689 /*
690  * core_mmu_get_secure_memory() - get physical secure memory range
691  * @base: base address of secure memory
692  * @size: size of secure memory
693  *
694  * The physical secure memory range returned covers at least the memory
695  * range used by OP-TEE Core, but may cover more memory depending on the
696  * configuration.
697  */
698 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size);
699 
700 #endif /*__ASSEMBLER__*/
701 
702 #endif /* __MM_CORE_MMU_H */
703