1 /* SPDX-License-Identifier: BSD-2-Clause */ 2 /* 3 * Copyright (c) 2016, Linaro Limited 4 * Copyright (c) 2014, STMicroelectronics International N.V. 5 */ 6 #ifndef __MM_CORE_MMU_H 7 #define __MM_CORE_MMU_H 8 9 #ifndef __ASSEMBLER__ 10 #include <assert.h> 11 #include <compiler.h> 12 #include <kernel/user_ta.h> 13 #include <mm/tee_mm.h> 14 #include <mm/tee_mmu_types.h> 15 #include <types_ext.h> 16 #include <util.h> 17 #endif 18 19 #include <mm/core_mmu_arch.h> 20 #include <platform_config.h> 21 22 /* A small page is the smallest unit of memory that can be mapped */ 23 #define SMALL_PAGE_SIZE BIT(SMALL_PAGE_SHIFT) 24 #define SMALL_PAGE_MASK ((paddr_t)SMALL_PAGE_SIZE - 1) 25 26 /* 27 * PGDIR is the translation table above the translation table that holds 28 * the pages. 29 */ 30 #define CORE_MMU_PGDIR_SIZE BIT(CORE_MMU_PGDIR_SHIFT) 31 #define CORE_MMU_PGDIR_MASK ((paddr_t)CORE_MMU_PGDIR_SIZE - 1) 32 33 /* TA user space code, data, stack and heap are mapped using this granularity */ 34 #define CORE_MMU_USER_CODE_SIZE BIT(CORE_MMU_USER_CODE_SHIFT) 35 #define CORE_MMU_USER_CODE_MASK ((paddr_t)CORE_MMU_USER_CODE_SIZE - 1) 36 37 /* TA user space parameters are mapped using this granularity */ 38 #define CORE_MMU_USER_PARAM_SIZE BIT(CORE_MMU_USER_PARAM_SHIFT) 39 #define CORE_MMU_USER_PARAM_MASK ((paddr_t)CORE_MMU_USER_PARAM_SIZE - 1) 40 41 /* 42 * Identify mapping constraint: virtual base address is the physical start addr. 43 * If platform did not set some macros, some get default value. 44 */ 45 #ifndef TEE_RAM_VA_SIZE 46 #define TEE_RAM_VA_SIZE CORE_MMU_PGDIR_SIZE 47 #endif 48 49 #ifndef TEE_LOAD_ADDR 50 #define TEE_LOAD_ADDR TEE_RAM_START 51 #endif 52 53 #ifndef STACK_ALIGNMENT 54 #define STACK_ALIGNMENT (sizeof(long) * U(2)) 55 #endif 56 57 #ifndef __ASSEMBLER__ 58 /* 59 * Memory area type: 60 * MEM_AREA_TEE_RAM: core RAM (read/write/executable, secure, reserved to TEE) 61 * MEM_AREA_TEE_RAM_RX: core private read-only/executable memory (secure) 62 * MEM_AREA_TEE_RAM_RO: core private read-only/non-executable memory (secure) 63 * MEM_AREA_TEE_RAM_RW: core private read/write/non-executable memory (secure) 64 * MEM_AREA_INIT_RAM_RO: init private read-only/non-executable memory (secure) 65 * MEM_AREA_INIT_RAM_RX: init private read-only/executable memory (secure) 66 * MEM_AREA_NEX_RAM_RO: nexus private read-only/non-executable memory (secure) 67 * MEM_AREA_NEX_RAM_RW: nexus private r/w/non-executable memory (secure) 68 * MEM_AREA_TEE_COHERENT: teecore coherent RAM (secure, reserved to TEE) 69 * MEM_AREA_TEE_ASAN: core address sanitizer RAM (secure, reserved to TEE) 70 * MEM_AREA_IDENTITY_MAP_RX: core identity mapped r/o executable memory (secure) 71 * MEM_AREA_TA_RAM: Secure RAM where teecore loads/exec TA instances. 72 * MEM_AREA_NSEC_SHM: NonSecure shared RAM between NSec and TEE. 73 * MEM_AREA_NEX_NSEC_SHM: nexus non-secure shared RAM between NSec and TEE. 74 * MEM_AREA_RAM_NSEC: NonSecure RAM storing data 75 * MEM_AREA_RAM_SEC: Secure RAM storing some secrets 76 * MEM_AREA_ROM_SEC: Secure read only memory storing some secrets 77 * MEM_AREA_IO_NSEC: NonSecure HW mapped registers 78 * MEM_AREA_IO_SEC: Secure HW mapped registers 79 * MEM_AREA_EXT_DT: Memory loads external device tree 80 * MEM_AREA_MANIFEST_DT: Memory loads manifest device tree 81 * MEM_AREA_TRANSFER_LIST: Memory area mapped for Transfer List 82 * MEM_AREA_RES_VASPACE: Reserved virtual memory space 83 * MEM_AREA_SHM_VASPACE: Virtual memory space for dynamic shared memory buffers 84 * MEM_AREA_TS_VASPACE: TS va space, only used with phys_to_virt() 85 * MEM_AREA_DDR_OVERALL: Overall DDR address range, candidate to dynamic shm. 86 * MEM_AREA_SEC_RAM_OVERALL: Whole secure RAM 87 * MEM_AREA_MAXTYPE: lower invalid 'type' value 88 */ 89 enum teecore_memtypes { 90 MEM_AREA_TEE_RAM = 1, 91 MEM_AREA_TEE_RAM_RX, 92 MEM_AREA_TEE_RAM_RO, 93 MEM_AREA_TEE_RAM_RW, 94 MEM_AREA_INIT_RAM_RO, 95 MEM_AREA_INIT_RAM_RX, 96 MEM_AREA_NEX_RAM_RO, 97 MEM_AREA_NEX_RAM_RW, 98 MEM_AREA_TEE_COHERENT, 99 MEM_AREA_TEE_ASAN, 100 MEM_AREA_IDENTITY_MAP_RX, 101 MEM_AREA_TA_RAM, 102 MEM_AREA_NSEC_SHM, 103 MEM_AREA_NEX_NSEC_SHM, 104 MEM_AREA_RAM_NSEC, 105 MEM_AREA_RAM_SEC, 106 MEM_AREA_ROM_SEC, 107 MEM_AREA_IO_NSEC, 108 MEM_AREA_IO_SEC, 109 MEM_AREA_EXT_DT, 110 MEM_AREA_MANIFEST_DT, 111 MEM_AREA_TRANSFER_LIST, 112 MEM_AREA_RES_VASPACE, 113 MEM_AREA_SHM_VASPACE, 114 MEM_AREA_TS_VASPACE, 115 MEM_AREA_PAGER_VASPACE, 116 MEM_AREA_SDP_MEM, 117 MEM_AREA_DDR_OVERALL, 118 MEM_AREA_SEC_RAM_OVERALL, 119 MEM_AREA_MAXTYPE 120 }; 121 122 static inline const char *teecore_memtype_name(enum teecore_memtypes type) 123 { 124 static const char * const names[] = { 125 [MEM_AREA_TEE_RAM] = "TEE_RAM_RWX", 126 [MEM_AREA_TEE_RAM_RX] = "TEE_RAM_RX", 127 [MEM_AREA_TEE_RAM_RO] = "TEE_RAM_RO", 128 [MEM_AREA_TEE_RAM_RW] = "TEE_RAM_RW", 129 [MEM_AREA_INIT_RAM_RO] = "INIT_RAM_RO", 130 [MEM_AREA_INIT_RAM_RX] = "INIT_RAM_RX", 131 [MEM_AREA_NEX_RAM_RO] = "NEX_RAM_RO", 132 [MEM_AREA_NEX_RAM_RW] = "NEX_RAM_RW", 133 [MEM_AREA_TEE_ASAN] = "TEE_ASAN", 134 [MEM_AREA_IDENTITY_MAP_RX] = "IDENTITY_MAP_RX", 135 [MEM_AREA_TEE_COHERENT] = "TEE_COHERENT", 136 [MEM_AREA_TA_RAM] = "TA_RAM", 137 [MEM_AREA_NSEC_SHM] = "NSEC_SHM", 138 [MEM_AREA_NEX_NSEC_SHM] = "NEX_NSEC_SHM", 139 [MEM_AREA_RAM_NSEC] = "RAM_NSEC", 140 [MEM_AREA_RAM_SEC] = "RAM_SEC", 141 [MEM_AREA_ROM_SEC] = "ROM_SEC", 142 [MEM_AREA_IO_NSEC] = "IO_NSEC", 143 [MEM_AREA_IO_SEC] = "IO_SEC", 144 [MEM_AREA_EXT_DT] = "EXT_DT", 145 [MEM_AREA_MANIFEST_DT] = "MANIFEST_DT", 146 [MEM_AREA_TRANSFER_LIST] = "TRANSFER_LIST", 147 [MEM_AREA_RES_VASPACE] = "RES_VASPACE", 148 [MEM_AREA_SHM_VASPACE] = "SHM_VASPACE", 149 [MEM_AREA_TS_VASPACE] = "TS_VASPACE", 150 [MEM_AREA_PAGER_VASPACE] = "PAGER_VASPACE", 151 [MEM_AREA_SDP_MEM] = "SDP_MEM", 152 [MEM_AREA_DDR_OVERALL] = "DDR_OVERALL", 153 [MEM_AREA_SEC_RAM_OVERALL] = "SEC_RAM_OVERALL", 154 }; 155 156 COMPILE_TIME_ASSERT(ARRAY_SIZE(names) == MEM_AREA_MAXTYPE); 157 return names[type]; 158 } 159 160 #ifdef CFG_CORE_RWDATA_NOEXEC 161 #define MEM_AREA_TEE_RAM_RW_DATA MEM_AREA_TEE_RAM_RW 162 #else 163 #define MEM_AREA_TEE_RAM_RW_DATA MEM_AREA_TEE_RAM 164 #endif 165 166 struct core_mmu_phys_mem { 167 const char *name; 168 enum teecore_memtypes type; 169 __extension__ union { 170 #if __SIZEOF_LONG__ != __SIZEOF_PADDR__ 171 struct { 172 uint32_t lo_addr; 173 uint32_t hi_addr; 174 }; 175 #endif 176 paddr_t addr; 177 }; 178 __extension__ union { 179 #if __SIZEOF_LONG__ != __SIZEOF_PADDR__ 180 struct { 181 uint32_t lo_size; 182 uint32_t hi_size; 183 }; 184 #endif 185 paddr_size_t size; 186 }; 187 }; 188 189 #define __register_memory(_name, _type, _addr, _size, _section) \ 190 SCATTERED_ARRAY_DEFINE_ITEM(_section, struct core_mmu_phys_mem) = \ 191 { .name = (_name), .type = (_type), .addr = (_addr), \ 192 .size = (_size) } 193 194 #if __SIZEOF_LONG__ != __SIZEOF_PADDR__ 195 #define __register_memory_ul(_name, _type, _addr, _size, _section) \ 196 SCATTERED_ARRAY_DEFINE_ITEM(_section, struct core_mmu_phys_mem) = \ 197 { .name = (_name), .type = (_type), .lo_addr = (_addr), \ 198 .lo_size = (_size) } 199 #else 200 #define __register_memory_ul(_name, _type, _addr, _size, _section) \ 201 __register_memory(_name, _type, _addr, _size, _section) 202 #endif 203 204 #define register_phys_mem(type, addr, size) \ 205 __register_memory(#addr, (type), (addr), (size), \ 206 phys_mem_map) 207 208 #define register_phys_mem_ul(type, addr, size) \ 209 __register_memory_ul(#addr, (type), (addr), (size), \ 210 phys_mem_map) 211 212 /* Same as register_phys_mem() but with PGDIR_SIZE granularity */ 213 #define register_phys_mem_pgdir(type, addr, size) \ 214 __register_memory(#addr, type, ROUNDDOWN(addr, CORE_MMU_PGDIR_SIZE), \ 215 ROUNDUP(size + addr - \ 216 ROUNDDOWN(addr, CORE_MMU_PGDIR_SIZE), \ 217 CORE_MMU_PGDIR_SIZE), phys_mem_map) 218 219 #ifdef CFG_SECURE_DATA_PATH 220 #define register_sdp_mem(addr, size) \ 221 __register_memory(#addr, MEM_AREA_SDP_MEM, (addr), (size), \ 222 phys_sdp_mem) 223 #else 224 #define register_sdp_mem(addr, size) \ 225 static int CONCAT(__register_sdp_mem_unused, __COUNTER__) \ 226 __unused 227 #endif 228 229 /* register_dynamic_shm() is deprecated, please use register_ddr() instead */ 230 #define register_dynamic_shm(addr, size) \ 231 __register_memory(#addr, MEM_AREA_DDR_OVERALL, (addr), (size), \ 232 phys_ddr_overall_compat) 233 234 /* 235 * register_ddr() - Define a memory range 236 * @addr: Base address 237 * @size: Length 238 * 239 * This macro can be used multiple times to define disjoint ranges. While 240 * initializing holes are carved out of these ranges where it overlaps with 241 * special memory, for instance memory registered with register_sdp_mem(). 242 * 243 * The memory that remains is accepted as non-secure shared memory when 244 * communicating with normal world. 245 * 246 * This macro is an alternative to supply the memory description with a 247 * devicetree blob. 248 */ 249 #define register_ddr(addr, size) \ 250 __register_memory(#addr, MEM_AREA_DDR_OVERALL, (addr), \ 251 (size), phys_ddr_overall) 252 253 #define phys_ddr_overall_begin \ 254 SCATTERED_ARRAY_BEGIN(phys_ddr_overall, struct core_mmu_phys_mem) 255 256 #define phys_ddr_overall_end \ 257 SCATTERED_ARRAY_END(phys_ddr_overall, struct core_mmu_phys_mem) 258 259 #define phys_ddr_overall_compat_begin \ 260 SCATTERED_ARRAY_BEGIN(phys_ddr_overall_compat, struct core_mmu_phys_mem) 261 262 #define phys_ddr_overall_compat_end \ 263 SCATTERED_ARRAY_END(phys_ddr_overall_compat, struct core_mmu_phys_mem) 264 265 #define phys_sdp_mem_begin \ 266 SCATTERED_ARRAY_BEGIN(phys_sdp_mem, struct core_mmu_phys_mem) 267 268 #define phys_sdp_mem_end \ 269 SCATTERED_ARRAY_END(phys_sdp_mem, struct core_mmu_phys_mem) 270 271 #define phys_mem_map_begin \ 272 SCATTERED_ARRAY_BEGIN(phys_mem_map, struct core_mmu_phys_mem) 273 274 #define phys_mem_map_end \ 275 SCATTERED_ARRAY_END(phys_mem_map, struct core_mmu_phys_mem) 276 277 /* Physical Secure DDR pool */ 278 extern tee_mm_pool_t tee_mm_sec_ddr; 279 280 /* Virtual memory pool for core mappings */ 281 extern tee_mm_pool_t core_virt_mem_pool; 282 283 /* Virtual memory pool for shared memory mappings */ 284 extern tee_mm_pool_t core_virt_shm_pool; 285 286 #ifdef CFG_CORE_RESERVED_SHM 287 /* Default NSec shared memory allocated from NSec world */ 288 extern unsigned long default_nsec_shm_paddr; 289 extern unsigned long default_nsec_shm_size; 290 #endif 291 292 /* 293 * Physical load address of OP-TEE updated during boot if needed to reflect 294 * the value used. 295 */ 296 #ifdef CFG_CORE_PHYS_RELOCATABLE 297 extern unsigned long core_mmu_tee_load_pa; 298 #else 299 extern const unsigned long core_mmu_tee_load_pa; 300 #endif 301 302 void core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg); 303 void core_init_mmu_regs(struct core_mmu_config *cfg); 304 305 /* Arch specific function to help optimizing 1 MMU xlat table */ 306 bool core_mmu_prefer_tee_ram_at_top(paddr_t paddr); 307 308 /* 309 * struct mmu_partition - stores MMU partition. 310 * 311 * Basically it represent whole MMU mapping. It is possible 312 * to create multiple partitions, and change them in runtime, 313 * effectively changing how OP-TEE sees memory. 314 * This is opaque struct which is defined differently for 315 * v7 and LPAE MMUs 316 * 317 * This structure used mostly when virtualization is enabled. 318 * When CFG_NS_VIRTUALIZATION==n only default partition exists. 319 */ 320 struct mmu_partition; 321 322 /* 323 * core_mmu_get_user_va_range() - Return range of user va space 324 * @base: Lowest user virtual address 325 * @size: Size in bytes of user address space 326 */ 327 void core_mmu_get_user_va_range(vaddr_t *base, size_t *size); 328 329 /* 330 * enum core_mmu_fault - different kinds of faults 331 * @CORE_MMU_FAULT_ALIGNMENT: alignment fault 332 * @CORE_MMU_FAULT_DEBUG_EVENT: debug event 333 * @CORE_MMU_FAULT_TRANSLATION: translation fault 334 * @CORE_MMU_FAULT_WRITE_PERMISSION: Permission fault during write 335 * @CORE_MMU_FAULT_READ_PERMISSION: Permission fault during read 336 * @CORE_MMU_FAULT_ASYNC_EXTERNAL: asynchronous external abort 337 * @CORE_MMU_FAULT_ACCESS_BIT: access bit fault 338 * @CORE_MMU_FAULT_TAG_CHECK: tag check fault 339 * @CORE_MMU_FAULT_OTHER: Other/unknown fault 340 */ 341 enum core_mmu_fault { 342 CORE_MMU_FAULT_ALIGNMENT, 343 CORE_MMU_FAULT_DEBUG_EVENT, 344 CORE_MMU_FAULT_TRANSLATION, 345 CORE_MMU_FAULT_WRITE_PERMISSION, 346 CORE_MMU_FAULT_READ_PERMISSION, 347 CORE_MMU_FAULT_ASYNC_EXTERNAL, 348 CORE_MMU_FAULT_ACCESS_BIT, 349 CORE_MMU_FAULT_TAG_CHECK, 350 CORE_MMU_FAULT_OTHER, 351 }; 352 353 /* 354 * core_mmu_get_fault_type() - get fault type 355 * @fault_descr: Content of fault status or exception syndrome register 356 * @returns an enum describing the content of fault status register. 357 */ 358 enum core_mmu_fault core_mmu_get_fault_type(uint32_t fault_descr); 359 360 /* 361 * core_mm_type_to_attr() - convert memory type to attribute 362 * @t: memory type 363 * @returns an attribute that can be passed to core_mm_set_entry() and friends 364 */ 365 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t); 366 367 /* 368 * core_mmu_create_user_map() - Create user mode mapping 369 * @uctx: Pointer to user mode context 370 * @map: MMU configuration to use when activating this VA space 371 */ 372 void core_mmu_create_user_map(struct user_mode_ctx *uctx, 373 struct core_mmu_user_map *map); 374 /* 375 * core_mmu_get_user_map() - Reads current MMU configuration for user VA space 376 * @map: MMU configuration for current user VA space. 377 */ 378 void core_mmu_get_user_map(struct core_mmu_user_map *map); 379 380 /* 381 * core_mmu_set_user_map() - Set new MMU configuration for user VA space 382 * @map: User context MMU configuration or NULL to set core VA space 383 * 384 * Activate user VA space mapping and set its ASID if @map is not NULL, 385 * otherwise activate core mapping and set ASID to 0. 386 */ 387 void core_mmu_set_user_map(struct core_mmu_user_map *map); 388 389 /* 390 * struct core_mmu_table_info - Properties for a translation table 391 * @table: Pointer to translation table 392 * @va_base: VA base address of the transaltion table 393 * @level: Translation table level 394 * @next_level: Finer grained translation table level according to @level. 395 * @shift: The shift of each entry in the table 396 * @num_entries: Number of entries in this table. 397 */ 398 struct core_mmu_table_info { 399 void *table; 400 vaddr_t va_base; 401 unsigned num_entries; 402 #ifdef CFG_NS_VIRTUALIZATION 403 struct mmu_partition *prtn; 404 #endif 405 uint8_t level; 406 uint8_t shift; 407 uint8_t next_level; 408 }; 409 410 /* 411 * core_mmu_find_table() - Locates a translation table 412 * @prtn: MMU partition where search should be performed 413 * @va: Virtual address for the table to cover 414 * @max_level: Don't traverse beyond this level 415 * @tbl_info: Pointer to where to store properties. 416 * @return true if a translation table was found, false on error 417 */ 418 bool core_mmu_find_table(struct mmu_partition *prtn, vaddr_t va, 419 unsigned max_level, 420 struct core_mmu_table_info *tbl_info); 421 422 /* 423 * core_mmu_entry_to_finer_grained() - divide mapping at current level into 424 * smaller ones so memory can be mapped with finer granularity 425 * @tbl_info: table where target record located 426 * @idx: index of record for which a pdgir must be setup. 427 * @secure: true/false if pgdir maps secure/non-secure memory (32bit mmu) 428 * @return true on successful, false on error 429 */ 430 bool core_mmu_entry_to_finer_grained(struct core_mmu_table_info *tbl_info, 431 unsigned int idx, bool secure); 432 433 void core_mmu_set_entry_primitive(void *table, size_t level, size_t idx, 434 paddr_t pa, uint32_t attr); 435 436 void core_mmu_get_user_pgdir(struct core_mmu_table_info *pgd_info); 437 438 /* 439 * core_mmu_set_entry() - Set entry in translation table 440 * @tbl_info: Translation table properties 441 * @idx: Index of entry to update 442 * @pa: Physical address to assign entry 443 * @attr: Attributes to assign entry 444 */ 445 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned idx, 446 paddr_t pa, uint32_t attr); 447 448 void core_mmu_get_entry_primitive(const void *table, size_t level, size_t idx, 449 paddr_t *pa, uint32_t *attr); 450 451 /* 452 * core_mmu_get_entry() - Get entry from translation table 453 * @tbl_info: Translation table properties 454 * @idx: Index of entry to read 455 * @pa: Physical address is returned here if pa is not NULL 456 * @attr: Attributues are returned here if attr is not NULL 457 */ 458 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned idx, 459 paddr_t *pa, uint32_t *attr); 460 461 /* 462 * core_mmu_va2idx() - Translate from virtual address to table index 463 * @tbl_info: Translation table properties 464 * @va: Virtual address to translate 465 * @returns index in transaltion table 466 */ 467 static inline unsigned core_mmu_va2idx(struct core_mmu_table_info *tbl_info, 468 vaddr_t va) 469 { 470 return (va - tbl_info->va_base) >> tbl_info->shift; 471 } 472 473 /* 474 * core_mmu_idx2va() - Translate from table index to virtual address 475 * @tbl_info: Translation table properties 476 * @idx: Index to translate 477 * @returns Virtual address 478 */ 479 static inline vaddr_t core_mmu_idx2va(struct core_mmu_table_info *tbl_info, 480 unsigned idx) 481 { 482 return (idx << tbl_info->shift) + tbl_info->va_base; 483 } 484 485 /* 486 * core_mmu_get_block_offset() - Get offset inside a block/page 487 * @tbl_info: Translation table properties 488 * @pa: Physical address 489 * @returns offset within one block of the translation table 490 */ 491 static inline size_t core_mmu_get_block_offset( 492 struct core_mmu_table_info *tbl_info, paddr_t pa) 493 { 494 return pa & ((1 << tbl_info->shift) - 1); 495 } 496 497 /* 498 * core_mmu_is_dynamic_vaspace() - Check if memory region belongs to 499 * empty virtual address space that is used for dymanic mappings 500 * @mm: memory region to be checked 501 * @returns result of the check 502 */ 503 static inline bool core_mmu_is_dynamic_vaspace(struct tee_mmap_region *mm) 504 { 505 return mm->type == MEM_AREA_RES_VASPACE || 506 mm->type == MEM_AREA_SHM_VASPACE; 507 } 508 509 /* 510 * core_mmu_map_pages() - map list of pages at given virtual address 511 * @vstart: Virtual address where mapping begins 512 * @pages: Array of page addresses 513 * @num_pages: Number of pages 514 * @memtype: Type of memmory to be mapped 515 * 516 * Note: This function asserts that pages are not mapped executeable for 517 * kernel (privileged) mode. 518 * 519 * @returns: TEE_SUCCESS on success, TEE_ERROR_XXX on error 520 */ 521 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, 522 enum teecore_memtypes memtype); 523 524 /* 525 * core_mmu_map_contiguous_pages() - map range of pages at given virtual address 526 * @vstart: Virtual address where mapping begins 527 * @pstart: Physical address of the first page 528 * @num_pages: Number of pages 529 * @memtype: Type of memmory to be mapped 530 * 531 * Note: This function asserts that pages are not mapped executeable for 532 * kernel (privileged) mode. 533 * 534 * @returns: TEE_SUCCESS on success, TEE_ERROR_XXX on error 535 */ 536 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, 537 size_t num_pages, 538 enum teecore_memtypes memtype); 539 540 /* 541 * core_mmu_unmap_pages() - remove mapping at given virtual address 542 * @vstart: Virtual address where mapping begins 543 * @num_pages: Number of pages to unmap 544 */ 545 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages); 546 547 /* 548 * core_mmu_user_mapping_is_active() - Report if user mapping is active 549 * @returns true if a user VA space is active, false if user VA space is 550 * inactive. 551 */ 552 bool core_mmu_user_mapping_is_active(void); 553 554 /* 555 * core_mmu_mattr_is_ok() - Check that supplied mem attributes can be used 556 * @returns true if the attributes can be used, false if not. 557 */ 558 bool core_mmu_mattr_is_ok(uint32_t mattr); 559 560 TEE_Result core_mmu_for_each_map(void *ptr, 561 TEE_Result (*fn)(struct tee_mmap_region *map, 562 void *ptr)); 563 564 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s, 565 vaddr_t *e); 566 567 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa); 568 569 /* routines to retreive shared mem configuration */ 570 static inline bool core_mmu_is_shm_cached(void) 571 { 572 return mattr_is_cached(core_mmu_type_to_attr(MEM_AREA_NSEC_SHM)); 573 } 574 575 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, 576 size_t len); 577 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, 578 size_t len); 579 580 /* 581 * core_mmu_find_mapping_exclusive() - Find mapping of specified type and 582 * length. If more than one mapping of 583 * specified type is present, NULL will be 584 * returned. 585 * @type: memory type 586 * @len: length in bytes 587 */ 588 struct tee_mmap_region * 589 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len); 590 591 /* 592 * tlbi_va_range() - Invalidate TLB for virtual address range 593 * @va: start virtual address, must be a multiple of @granule 594 * @len: length in bytes of range, must be a multiple of @granule 595 * @granule: granularity of mapping, supported values are 596 * CORE_MMU_PGDIR_SIZE or SMALL_PAGE_SIZE. This value must 597 * match the actual mappings. 598 */ 599 void tlbi_va_range(vaddr_t va, size_t len, size_t granule); 600 601 /* 602 * tlbi_va_range_asid() - Invalidate TLB for virtual address range for 603 * a specific ASID 604 * @va: start virtual address, must be a multiple of @granule 605 * @len: length in bytes of range, must be a multiple of @granule 606 * @granule: granularity of mapping, supported values are 607 * CORE_MMU_PGDIR_SIZE or SMALL_PAGE_SIZE. This value must 608 * match the actual mappings. 609 * @asid: Address space identifier 610 */ 611 void tlbi_va_range_asid(vaddr_t va, size_t len, size_t granule, uint32_t asid); 612 613 /* Check cpu mmu enabled or not */ 614 bool cpu_mmu_enabled(void); 615 616 #ifdef CFG_CORE_DYN_SHM 617 /* 618 * Check if platform defines nsec DDR range(s). 619 * Static SHM (MEM_AREA_NSEC_SHM) is not covered by this API as it is 620 * always present. 621 */ 622 bool core_mmu_nsec_ddr_is_defined(void); 623 624 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, 625 size_t nelems); 626 #endif 627 628 /* Initialize MMU partition */ 629 void core_init_mmu_prtn(struct mmu_partition *prtn, struct memory_map *mem_map); 630 631 unsigned int asid_alloc(void); 632 void asid_free(unsigned int asid); 633 634 #ifdef CFG_SECURE_DATA_PATH 635 /* Alloc and fill SDP memory objects table - table is NULL terminated */ 636 struct mobj **core_sdp_mem_create_mobjs(void); 637 #endif 638 639 #ifdef CFG_NS_VIRTUALIZATION 640 size_t core_mmu_get_total_pages_size(void); 641 struct mmu_partition *core_alloc_mmu_prtn(void *tables); 642 void core_free_mmu_prtn(struct mmu_partition *prtn); 643 void core_mmu_set_prtn(struct mmu_partition *prtn); 644 void core_mmu_set_default_prtn(void); 645 void core_mmu_set_default_prtn_tbl(void); 646 #endif 647 648 void core_mmu_init_virtualization(void); 649 650 /* init some allocation pools */ 651 void core_mmu_init_ta_ram(void); 652 653 void core_init_mmu(struct memory_map *mem_map); 654 655 void core_mmu_set_info_table(struct core_mmu_table_info *tbl_info, 656 unsigned int level, vaddr_t va_base, void *table); 657 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, 658 struct user_mode_ctx *uctx); 659 void core_mmu_map_region(struct mmu_partition *prtn, 660 struct tee_mmap_region *mm); 661 662 bool arch_va2pa_helper(void *va, paddr_t *pa); 663 664 static inline bool core_mmu_check_end_pa(paddr_t pa, size_t len) 665 { 666 paddr_t end_pa = 0; 667 668 if (ADD_OVERFLOW(pa, len - 1, &end_pa)) 669 return false; 670 return core_mmu_check_max_pa(end_pa); 671 } 672 673 /* 674 * core_mmu_set_secure_memory() - set physical secure memory range 675 * @base: base address of secure memory 676 * @size: size of secure memory 677 * 678 * The physical secure memory range is not known in advance when OP-TEE is 679 * relocatable, this information must be supplied once during boot before 680 * the translation tables can be initialized and the MMU enabled. 681 */ 682 void core_mmu_set_secure_memory(paddr_t base, size_t size); 683 684 /* 685 * core_mmu_get_secure_memory() - get physical secure memory range 686 * @base: base address of secure memory 687 * @size: size of secure memory 688 * 689 * The physical secure memory range returned covers at least the memory 690 * range used by OP-TEE Core, but may cover more memory depending on the 691 * configuration. 692 */ 693 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size); 694 695 /* 696 * core_mmu_get_ta_range() - get physical memory range reserved for TAs 697 * @base: [out] range base address ref or NULL 698 * @size: [out] range size ref or NULL 699 */ 700 void core_mmu_get_ta_range(paddr_t *base, size_t *size); 701 702 #endif /*__ASSEMBLER__*/ 703 704 #endif /* __MM_CORE_MMU_H */ 705